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We introduce a measure of non-Markovianity based on the minimal amount of extra Markovian noise we
have to add to the process via incoherent mixing, in order to make the resulting transformation Markovian too
at all times. We show how to evaluate this measure by considering the set of depolarizing evolutions in arbitrary
dimension and the set of dephasing evolutions for qubits.

I. INTRODUCTION

In open quantum system dynamics [1] Markovian evolu-
tions are characterized by the existence of a one-way flow of
information from the system to its environment. While ap-
proximatively valid in many contexts of physical relevance
(in particular under system-environment weak-coupling con-
ditions), in the vast majority of settings the Markovianity of
the dynamical evolution is lost and one witnesses backflows
of information from the environment to the system [2–5]. The
study of these non-Markovian effects is a central topic of
quantum information theory both because they arise almost
everywhere, but also because, when properly exploited, they
may show advantages in different quantum information pro-
cessing tasks, such as quantum metrology [6], quantum key
distribution [7], quantum teleportation [8], entanglement gen-
eration [9], quantum communication [10] and quantum ther-
modynamics [11–14].

The standard procedure to characterize and possibly mea-
sure the non-Markovianity of a given evolution is to target
functionals that are guaranteed to be monotonic under arbi-
trary Markovian evolutions and to check for violations of such
behaviour. Many quantities have been studied in this frame-
work: the distance between pair of states [15, 16], channel ca-
pacities [10], the guessing probability of evolving ensembles
of states [17], the volume of the accessible states [18] and cor-
relation measures [19, 20]. In the present work we introduce
a conceptually different approach to the problem which tries
to quantify non-Markovian character of a dynamical evolution
by computing the minimal amount of extra noise that one has
to inject into the system dynamics in order to stop the informa-
tion backflow at all times. Specifically we consider the mini-
mum value of the probability needed to introduce Markovian-
ity for the entire temporal evolution of the system by incoher-
ently mixing it with an arbitrary extra process which is already
Markovian. Our measure has a clear operational meaning due
to the fact that creating stochastic convolutions of processes
is a well defined physical procedure. We remark however that
since neither the set of Markovian evolutions, nor its comple-
mentary counterpart, are convex [21] the explicit evaluation of
the proposed measure is typically hard to comply. At variance
with the approaches presented in Refs. [22, 23] which dis-
cuss similar ideas focusing on infinitesimal Markovian evo-

lutions [24–26], the lack of convexity also prevents us from
framing our proposal in the context of a conventional (con-
vex) resource theory of evolutions where Markovian trajecto-
ries constitute the resource-free set [27, 28]. After introduc-
ing the procedure in the general case of arbitrary open quan-
tum evolutions we focus on the special subset of depolarizing
transformations of arbitrary dimension and for qubit dephas-
ing channels [29–31] which, thanks to their highly symmetric
character, allow for an explicit analytical treatment. Depo-
larizing channels represent an important error model in quan-
tum information theory. Indeed by pre- and post- processing
and classical communication via twirling [32], any other open
quantum dynamics can be mapped into a depolarizing channel
whose efficiency in protecting the information stored into the
system is lower than or equal to the corresponding one of the
original process. Accordingly the study of the non-Markovian
character of this special set of open quantum evolutions is an
important task in its own.

The manuscript is organized as follows. We start in Sec. II
by defining Markovian and non-Markovian evolutions. In
Sec. III we introduce the depolarizing evolutions set. In ad-
dition, we describe its Markovian and non-Markovian subsets
(Sec. III A), we discuss some geometrical properties of these
subsets (Sec. III B) and we characterize continuous depolar-
izing evolutions (Sec. III C). In Sec. IV we present the mea-
sure of non-Markovianity that we study throughout this work
and we describe how to apply it to non-Markovian depolar-
izing evolutions (Sec. IV A). We follow in Sec. V by evalu-
ating this measure of non-Markovianity for continuous depo-
larizing evolutions. Sec. VI is dedicated to show that, con-
sidering the task of making continuous depolarizing evolu-
tions Markovian by mixing them with Markovian evolutions,
non-continuous Markovian evolutions are less efficient than
continuous Markovian evolutions. From Sec. VII we start
to study non-continuous non-Markovian depolarizing evolu-
tions. In particular, we show that in some particular cases the
approaches considered for continuous non-Markovian evolu-
tions are still valid to evaluate the degree of non-Markovianity
of these evolutions. In Sec. VIII we consider our measure
of non-Markovianity applied to generic non-continuous non-
Markovian depolarizing evolutions. We start by noticing some
features of these evolutions that imply an ambiguity for the
identification of the optimal Markovian evolution that makes
a generic non-Markovian depolarizing evolution Markovian
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(Sec. VIII A). Hence, in Sec. VIII B, we propose a strategy
to calculate our measure of non-Markovianity for any non-
continuous depolarizing evolutions. Finally, in Sec. IX we ex-
tend the analysis to the case of dephasing channels for qubits.
The paper ends in Sec. X with the conclusions. Technical ma-
terial is presented in the appendices.

II. MARKOVIAN AND NON-MARKOVIAN EVOLUTIONS

Let S(H) be the set of density matrices on a d-dimensional
Hilbert spaceH . Any time evolution on S(H) is defined by a
one-parameter family Λ = {Λt}t≥0 of superoperators called
dynamical maps Λt. These are completely positive, trace
preserving (CPTP) transformations which induce the evolu-
tion of a generic initial state ρ at time t ≥ 0 via the rela-
tion ρ(t) = Λt(ρ) [29, 30, 33]. The CPTP requirement can
be enforced via the Stinespring-Kraus representation theorem
[36, 37], which allows us to describe the action of Λt in terms
of a Hamiltonian interaction with an initially uncorelated ex-
ternal environment E via the expression

Λt(ρ) = TrE

[
Ut (ρ ⊗ σE) U†t

]
, (1)

with σE ∈ S(HE) the initial state of E, Ut a unitary operator
on the compound system, and TrE [·] the partial trace over the
environment.

In what follows we shall impose that for t = 0, Λt should
correspond to the identity map, i.e.,

Λ0 = id(·) , (2)

and require the family Λ to be continuous and differentiable
almost everywhere, allowing at most a countable set of dis-
continuity points. These assumptions are physically well mo-
tivated when considering that the partial trace in Eq. (1) is a
continuous operation and that Ut should be the solution of a
Schrödinger equation, hence continuous and differentiable in t
apart from the presence of abrupt Hamiltonian quenches pos-
sibly induced by external controls. We hence define E ≡ {Λ}
to be the set of all the evolutions on S(H) that obey the above
constraints. One can easily verify that such set is closed under
convex combination meaning that

pΛ + (1 − p)Ω ∈ E , ∀p ∈ [0, 1], ∀Λ,Ω ∈ E . (3)

Following [21, 39–42] we now identify Markovian and
non-Markovian evolutions of the system by linking it directly
to the divisibility condition of the quantum trajectory, i.e.,

Definition 1. An evolution Λ = {Λt}t≥0 ∈ E is CP-divisible
if and only if for any 0 ≤ s ≤ t there exists a linear CPTP
super-operator Vt,s such that

Λt(·) = (Vt,s ◦ Λs)(·) ≡ Vt,s(Λs(·)) . (4)

We also call Vt,s the intermediate map of Λ between the times
s and t.

Accordingly we identify the Markovian subset EM of E by
the collection of all CP-divisible evolutions, i.e.,

EM ≡ {Λ ∈ E |Λ is CP-divisible} , (5)

and define the complement to E of EM as the set of non-
Markovian evolutions of the system, i.e.

ENM ≡ E \ EM . (6)

As already mentioned in the introduction neither EM nor ENM

are closed under convex convolutions [21].

III. DEPOLARIZING EVOLUTIONS

Depolarizing evolutions D form a closed convex subset
of E [29–31]. An evolution D = {Dt}t belongs to D if and
only if at any time t ≥ 0 the corresponding dynamical map
Dt can be written as a linear combination of the identity trans-
formation id(·) and the map that sends every inputs into the
completely mixed state. Specifically we have

Dt(·) = f (t) id(·) + (1 − f (t))Tr [·]
1

d
, (7)

with 1 the identity operator on H and f (t) a real quantity be-
longing to the interval

ID ≡
[
−

1
d2 − 1

, 1
]
, (8)

this last property being necessary and sufficient to ensure Dt
to be CPTP [31]. From Eq. (7) it is clear that we can use the
function f (t) to uniquely characterize the elements of D. In
order to comply with the structural requirements we imposed
on E in the previous section, we focus on the collection of
functions f (t) : R+ → ID that

1. are continuous for almost-all t;

2. admit right and left time derivatives ( ḟ (t±) ≡

limε→0±
f (t+ε)− f (t)

ε
);

3. satisfy f (0) = 1;

the last property being introduced to enforce Eq. (2). We de-
fine F to be the set of characteristic functions f (t) that satisfy
the above conditions and use Eq. (7) to establishing a one-
to-one relation between such set and D. We also introduce
the special subset of continuous depolarizing evolutions DC
as the collection of depolaring evolutions (7) whose f (t) be-
long to the subset FC ⊂ F formed by continuous characteristic
functions.

To fix the notation, if {ti}i is the discrete collection of times
when f (t) is discontinuous, we have that f (t+i ) ≡ limε→0+ f (ti+
ε) is different from f (t−i ) ≡ limε→0+ f (ti − ε). To describe the
discontinuous behavior of f (t) we hence introduce the quan-
tity

ξ( f (t)) ≡
f (t+)
f (t−)

, (9)
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which assumes values in [−∞,+∞], where we fix ξ( f (t)) =

±∞ when sign( f (t+)) = ±1 and f (t−) = 0. Moreover, when
f (t+) = f (t−) = 0 we define ξ( f (t)) = 1. From Eq. (9) it
follows that f (t) is continuous at time t if ξ( f (t)) = 1 and
that f (t) ∈ FC if and only if ξ( f (t)) = 1 for any t ≥ 0. On
the contrary from Eq. (9) it also follows that a discontinuity
distances f (t) from zero preserving its sign if ξ( f (t)) > 1,
it makes f (t) change its sign if ξ( f (t)) < 0, and finally that
ξ( f (t)) = 0 if and only if f (t+) = 0 and f (t−) , 0.

A. Markovian and non-Markovian depolarizing evolutions

In view of the one-to-one correspondence between D and
F, we define the Markovian and non-Markovian depolarizing
subsetsDM ≡ D∩EM andDNM ≡ D∩ENM = D\DM by as-
signing the corresponding sets of the associated characteristic
functions FM and FNM .

We start by observing that if the characteristic function of
an element D ofD assumes zero value at s (namely f (s) = 0)
then Ds becomes the complete depolarizing channel Tr [·] 1d ,
loosing memory of the input state of the system. Accordingly
the only possibility we have to fulfil the constraint (4) needed
for Markovianity is that Dt correspond to Tr [·] 1d too, i.e.,

f (s) = 0 =⇒ f (t) = 0 , ∀t ≥ s . (10)

On the contrary if f (s) , 0, Eq. (4) can be enforced by ob-
serving that the intermediate map Vt,s assumes the same form
of Eq. (7), i.e.,

Vt,s(·) =
f (t)
f (s)

id(·) +

(
1 −

f (t)
f (s)

)
Tr [·]

1

d
, (11)

which is CPTP if and only if

f (t)
f (s)
∈ ID , (12)

with ID the interval defined in Eq. (8). This includes also
the case (10) by noticing that only with f (t) = 0 we prevent
f (t)/ f (s) from diverging when f (s) = 0. As shown in Ap-
pendix A, Eq. (12) can be conveniently casted in the following
inequality that in some case is easier to handle, i.e.,

C(t, s) ≡
∣∣∣2(d2 − 1) f (t) − (d2 − 2) f (s)

∣∣∣ − d2| f (s)| ≤ 0 . (13)

From Definition 1 we have hence that D ∈ DM if and only if
its characteristic function f (t) is such that (12) (or equivalently
(13)) holds true for any t ≥ s ≥ 0, i.e.,

F
M ≡ { f (t) ∈ F |C(t, s) ≤ 0 , ∀t ≥ s ≥ 0} . (14)

Considering the property (10) and that for f (t) ∈ F we must
have f (0) = 1, it is easy to verify that all continuous elements
of FM are non-negative and non-increasing (more on this in
Sec. III C). Markovian characteristic functions can however
change their sign through discontinuities. Indeed according to
(12) a non continuous element f (t) of FM can jump either to
a value f (t+) with the same sign and | f (t+)| < | f (t−)|, namely
ξ( f (t)) ∈ [0, 1), or to a value with opposite sign and | f (t+)| ≤

| f (t−)|/(d2 − 1), namely ξ( f (t)) ∈ [−1/(d2 − 1), 0]. These facts
can be formalized by saying that a generic f (t) ∈ F exhibits
a Markovian behaviour at time τ ≥ 0 if one of the two condi-
tions applies

CM1(τ) : ξ( f (τ)) = 1 and d
dτ | f (τ)| ≤ 0;

CM2(τ) : ξ( f (τ)) ∈ ID \ 1; (15)

where CM1(τ) has to be replaced by ḟ (τ±) f (τ) ≤ 0 when
ḟ (τ) is non-continuous, i.e., ḟ (τ−) , ḟ (τ+). Notice that the
conditions given in Eq. (15) do not explicitly exclude the cases
for which ḟ (t) , 0 and f (t) = 0. Nonetheless, the properties
of F would imply that ∃δ > 0 such that ḟ (t + δ) f (t + δ) > 0,
which would exclude f (t) from FM . It is worth stressing that
imposing (15) for all τ ≥ 0 is equivalent to enforce (12) (or
(13)) for all couples 0 ≤ s ≤ t. Hence, Eq. (14) can be casted
in the form

F
M = { f (t) ∈ F |CM1(τ) or CM2(τ) = TRUE,∀τ ≥ 0} ,

(16)
which involves only local properties of f (t). By construction
any f (t) ∈ F that fails to fulfil both the constraints of Eq. (15)
at least for one τ, or the inequality (13) for some couple s
and t, defines an element of the non-Markovian character-
istic function set FNM ≡ F \ FM which describes the non-
Markovian depolarizing evolutions DNM . At variance with
the elements of FM a characteristic function f (t) which is non-
Markovian can show any increasing or decreasing continuous
behaviour and discontinuities with ξ( f (t)) ∈ [−∞,+∞]. In
Fig. 1 we show the typical behavior of characteristic func-
tions in FM and FNM .

We notice that any element of FNM can still obey the con-
straints (15) on some part of the real axis. In particular we say
that f (t) ∈ FNM has a Markovian behaviour in (t1, t2) if the
function satisfies at least one of the conditions of Eq. (15) for
any τ ∈ (t1, t2). Finally, we say that τ is a time when f (t) ∈ F
shows a Markovian discontinuity if ξ( f (τ)) ∈ ID \ 1. Instead,
if ξ( f (τ)) < ID, we say that τ is a time when f (t) shows a
non-Markovian discontinuity.

B. Border and geometry of the Markovian depolarizing set

It is possible to show that the following properties hold:

• D is convex,

• DM is closed, non-convex, and border(DM) = DM ,

• DNM is open, non-convex, and dense.

The non convexity ofDM andDNM (and hence FM and FNM)
can be easily proven by presenting some explicit counter-
examples (see Appendix B). To show instead that DM co-
incides with its border we can proceed as follows: given a
generic Markovian depolarizing evolution DM ∈ DM , con-
sider a time s > 0 where the associated characteristic function
f M(t) is continuous, namely ξ( f M(s)) = 1 (of course such s
can alway be found since the set of discontinuity points for a
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FIG. 1. Example of a non-continuous Markovian characteristic func-
tion (above) f M(t) ∈ FM and a non-continuous non-Markovian char-
acteristic function (below) f NM(t) ∈ FNM for d = 2. Given Eq. (8),
any characteristic function has to assume values in ID = [−1/3, 1].
Discontinuities are underlined by dotted dashed lines. f M(t), when
continuous, satisfies CM1(τ), i.e., it does not increase its distance
from zero. When f M(t) is not continuous it satisfies CM2(τ): for the
times τ = 1, 2, 5 and 8, we have ξ( f M(1)) = 0.83, ξ( f M(2)) = −0.33,
ξ( f M(5)) = −0.27 and ξ( f M(8)) = 0. Since f M(8+) = 0, f M(t)
has to be equal to 0 for any t > 8. The times when f NM

C (t) has a
non-Markovian behavior are colored in purple. This characteristic
function shows both time intervals and times of discontinuity when,
respectively, CM1(τ) and CM2(τ) are violated. Indeed, for τ = 7
and 9 we have non-Markovian discontinuities ξ( f NM(7)) = 2.39 and
ξ( f NM(t)) = −∞, while at τ = 8 we have ξ( f NM(8)) = 0, i.e., a
Markovian discontinuity. The temporal parameter t in the plots is
expressed in arbitrary unit.

generic element of F is at most countable). Take then a non-
Markovian depolarizing evolution DNM ∈ DNM with char-
acterstic function f NM(t) which instead has ξ( f NM(s)) > 1
and sign( f NM(s−)) = sign( f M(s+)) (such an element can al-
ways be identified). It is then straightforward to verify that
the whole family of elements of D defined as D(p) = (1 −
p)DNM + pDM for p ∈ [0, 1) is non-Markovian: indeed for all
such values, at t = s the characteristic function

f (p)(t) = (1 − p) f NM(t) + p f M(t) , (17)

of D(p) has a non-Markovian discontinuity (ξ( f (p)(s)) > 1).
Notice also that as p → 1, D(p) gets arbitrarily close to DM

in any conceivable norm one can introduce on E or D (in-

deed ‖D(p) − DM‖ = (1 − p)‖DNM − DM‖). The above ar-
gument shows that any neighbour of a Markovian depolar-
izing trajectory contains non-Markovian processes, i.e., that
DM is a set of measure zero, or equivalently, that almost-all
depolarizing evolutions are non-Markovian. On the contrary,
for any non-Markovian depolarizing evolution DNM one can
show that there exists no Markovian DM such that the convex
combination D(p) = (1 − p)DNM + pDM is Markovian for any
p ∈ (0, 1]. More precisely it is possible to identify a probabil-
ity value p∗(DNM) ∈ (0, 1] such that, irrespectively from the
choice of DM , we have

D(p) ∈ DNM ∀p < p∗(DNM) . (18)

Indeed, since DNM is explicitly non-Markovian, there must
exist t ≥ s ≥ 0 such that its the characteristic function violate
the constraint (13) which we rewrite here as

ANM(t, s) ≡
∣∣∣2(d2 − 1) f NM(t) − (d2 − 2) f NM(s)

∣∣∣ > d2| f NM(s)| .
(19)

On the contrary, if D(p) is Markovian, its characteristic func-
tion must fulfil (13), i.e.∣∣∣2(d2 − 1) f (p)(t) − (d2 − 2) f (p)(s)

∣∣∣ ≤ d2| f (p)(s)| . (20)

Using (17) we notice however that the left-hand-side of the
above expression can be lower bounded as follows∣∣∣2(d2 − 1) f (p)(t) − (d2 − 2) f (p)(s)

∣∣∣
≥ (1 − p)ANM(t, s) − p

∣∣∣2(d2 − 1) f M(t) − (d2 − 2) f M(s)
∣∣∣

≥ (1 − p)ANM(t, s) − p(3d2 − 4) , (21)

where in the last inequality we exploit the fact that all char-
acteristic functions must have modulus smaller or equal to 1.
Similarly the right-hand-side of (20) can be upper bounded as

∣∣∣ f (p)(s)
∣∣∣ ≤ (1 − p)

∣∣∣ f NM(s)
∣∣∣+ p

∣∣∣ f M(s)
∣∣∣ ≤ (1 − p)

∣∣∣ f NM(s)
∣∣∣+ p .

(22)
Hence a necessary condition for (20) is to have

4p(d2 − 1) ≥ (1 − p)CNM(t, s) , (23)

where CNM(t, s) ≡ ANM(t, s) − d2| f NM(s)|. Due to the strict
positivity of the rightmost term of Eq. (23) (see (19)), it cannot
be fulfilled for all p ∈ (0, 1]. Equation (18) finally follows
from (23) e.g. by setting

p∗(DNM) =
CNM(t, s)

CNM(t, s) + 4(d2 − 1)
. (24)

It is easy to show that this value of p∗(DNM) belongs to (0, 1]
if and only if CNM(t, s) violates Eq. (13).

C. Markovian and non-Markovian continuous depolarizing
evolutions

Important subsets ofDM andDNM are obtained by consid-
ering their intersections with the continuous subset DC of D,
i.e.,

DM
C ≡ DC ∩D

M , DNM
C ≡ DC ∩D

NM . (25)
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By construction DM
C and DNM

C are composed by depolarizing
process whose associated characteristic functions f (t) belong
respectively to the intersections FM

C ≡ FC ∩ F
M and FNM

C ≡

FC ∩ F
MN . From Eq. (15) we deduce that the elements of

FM
C are monotonically non increasing, continuous functions

f M
C (t) ∈ [0, 1]. In particular, since any convex combination of

two continuous functions in FM
C belongs to FM

C , we have

• DC is convex,

• DM
C is closed and convex,

• DNM
C is open and non-convex.

Furthermore, if f M
C (t′) = 0 for some time t′, the time deriva-

tive of f M
C (t) cannot be different from zero for any t > t′

without violating the first condition of Eq. (15). Instead the
elements of FNM

C are continuous functions f NM
C (t) that can as-

sume any value in ID such that f NM
C (0) = 1. In Fig. 2 we show

the typical behavior of continuous characteristic functions in
FM

C and FNM
C .

In Appendix C we introduce another convex subset of D
given by the positive depolarizing evolutions, namely defined
by, in general non-continuous, positive characteristic func-
tions. The Markovian subset of these evolutions is convex
and, as we show, it contains the set of continuous Markovian
evolutions.

IV. A MEASURE OF NON-MARKOVIANITY BY NOISE
ADDITION

In this section we introduce our measure of non-
Markovianity. Given Λ ∈ E the quantum process we are in-
terested in, consider the quantum trajectories Λ(p) ∈ E defined
by the convex sums

Λ(p) = (1 − p)Λ + pΛM , p ∈ [0, 1] , (26)

one get by incoherently mixing the original evolution with
an element ΛM of the Markovian subset EM with time-
independent weights 1 − p and p. It is worth stressing that
the dynamical evolution (26) can be physically implemented,
at least in principle, by a simple random event taking place at
time t = 0 which decides wether to transform the state of the
system under the action of Λ or under the action of ΛM . We
introduce a measure of non-Markovianity p(Λ) by consider-
ing the smallest p that enables us to make Λ(p) Markovian for
some ΛM , i.e.

p(Λ) ≡ min
p
{p | ∃ΛM ∈ EM s.t. Λ(p) ∈ EM} , (27)

and call optimal a Markovian evolution ΛM that allows us to
attain such value. In other contexts, e.g. resource theories
[34, 35], the measure of non-Markovianity p(Λ) is ofter re-
ferred to as a robustness measure. p(Λ) is always well de-
fined since the set of p entering the optimization contains at
least the point 1. The rational of this choice is that, the greater
is p, the stronger is the perturbation we add into the system by

FIG. 2. Example of a continuous Markovian characteristic function
(above) f M

C (t) ∈ FM
C and a continuous non-Markovian characteristic

function (below) f NM
C (t) ∈ FNM

C for d = 2. Given Eq. (8), any char-
acteristic function has to assume values in ID = [−1/3, 1]. f M

C (t) is
non-increasing and assumes values in [0, 1]. f NM

C (t) assumes values
in ID = [−1/3, 1] (horizontal lines) and violates the Markovian con-
dition CM1(τ) in the time intervals colored in purple, i.e., when it
increases its distance from zero. Dahsed lines underline the times
when the respective time derivatives are non-continuous. The tem-
poral parameter t in the plots is expressed in arbitrary unit.

the mixing operation (26): indeed, for fixed ΛM , the distance
between Λ(p) and the original trajectory Λ is always propor-
tional to p. For instance, at any given time t we can write
‖Λ

(p)
t − Λt‖ = p‖ΛM

t − Λt‖ where ‖ · ‖ stands for (say) the
diamond norm for super-operators [43]. As a consequence,
p(Λ) is the minimum perturbation one needs to introduce via
the mixing procedure (26) to enforce Markovianity into the
system evolution. The maximum value of this quantity has a
precise meaning: p(Λ) = 1 implies that Λ cannot be made
Markovian by any non-trivial mixture (26). On the contrary,
since p(Λ) = 0 if and only if Λ ∈ EM , it is clear that (27) is a
faithful measure of non-Markovianity.

We can consider the case where in Eq. (26) Λ(p) is asked
to belong to a specific Markovian target subset T M of EM ,
while at same time ΛM belongs to a particular set AM of T M

(namelyAM ⊆ T M ⊆ EM). This leads to the functional

p(Λ| AM ,T M) ≡ min
p
{p | ∃ΛM ∈ AM s.t. Λ(p) ∈ T M} , (28)



6

which by construction provides a bound for (27)

p(Λ| AM ,T M) ≥ p(Λ| AM ,EM) ≥ p(Λ) , (29)

A typical situation where p(Λ| AM ,T M) can be considered
is given when AM represents the accessible Markovian evo-
lutions that we are able to reproduce in our laboratory and
mix with Λ, while T M represents a particular subset of EM

for which Markovianity is easy to certify, or which possesses
some additional features that we demand. From this perspec-
tive Eq. (29), besides being an upper bound for Eq. (27) can
also be seen as a different approach to quantify the degree
of non-Markovianity of the process Λ. A case of special in-
terest is provided by the scenario where the subsets AM and
T M entering (28) coincide and correspond to the Markovian
part of a convex subset of the system evolutions B ⊂ E, i.e.
AM = T M = BM ≡ B∩EM . Under these conditions from (26)
it follows that we can write

p(Λ|BM) ≡ p(Λ|BM ,BM) = p(Λ|BM ,EM) , ∀Λ ∈ B ,
(30)

showing that for the elements of B, at least the first of the in-
equalities in (29) closes (of course this does not necessarily
hold if B is not convex, as in this case there could be maps
Λ(p) in EM which are not necessarily in BM). Furthermore,
while we have no explicit evidence in support of this claim,
if B is a sufficiently "structured" set as in the case of the de-
polarizing evolutions addressed in the following subsection,
it is also tempting to conjecture that the second gap in (29)
should collapse too, implying that in this case p(Λ|B) should
coincide with p(Λ) for all Λ ∈ B, or equivalently that

(CONJECT.) p(Λ) = p(Λ|BM) , ∀Λ ∈ B . (31)

A. Measuring the non-Markovianity of depolarizing
evolutions

To study the non-Markovian behaviour of depolarizing evo-
lutions D ∈ D we shall focus on the case where the set B
entering in Eq. (30) corresponds to D itself, i.e., the quan-
tity p(D|DM). While for elements of the Markovian subset
p(D|DM) is clearly equal to 0, in the case DNM ∈ DNM we
can invoke (18) to claim the following lower bound

p(DNM |DM)≥p∗(DNM) , (32)

which is non trivial due to the fact that p∗(DNM) is strictly
larger than 0. SinceDC is a proper subset ofD, it is also clear
that in general the following ordering holds

p(D|DM
C ,D

M)≥p(D|DM) , ∀D ∈ D . (33)

In particular if the channel we test is an element of the con-
tinuous subset ofD, the inequality in Eq. (33) closes, leading
to

p(DC |D
M
C ) = p(DC |D

M) , ∀DC ∈ DC . (34)

Notice that we used the fact that, due to the convexity of
DC , one has that p(DC |D

M
C ,D

M) corresponds to p(DC |D
M
C ) ≡

p(DC |D
M
C ,D

M
C ) when evaluated on DC ∈ DC). The proof of

Eq. (34) is rather cumbersome and we posticipate it to Sec. VI,
focusing first on the explicit computation of p(DC |D

M
C ), which

we present in Sec. V.

V. MEASURE OF NON-MARKOVIANITY FOR
CONTINUOUS DEPOLARIZING EVOLUTIONS

In this section we evaluate our measure of non-
Markovianity

p(DC |D
M
C ) , (35)

for the cases where DC is an arbitrary element of the con-
tinuous subset DC of the depolarizing evolutions, under the
assumption that also the transformations DM of (36) are ele-
ments ofDC . Before entering into the details of the analysis it
is worth clarifying that in computing p(DC |D

M
C ) the map Λ(p)

of Eq. (26) has the form

D(p)
C = (1 − p)DC + pDM

C , (36)

where DM
C ∈ D

M
C and DC ∈ DC . Thus, sinceDC is convex, for

any p, DC and DM
C , we have that D(p)

C ∈ DC with characteristic
function f (p)

C (t) ∈ FC given by the convex sum of the charac-
teristic functions fC(t) and f M

C (t) associated with DC and DM
C

respectively, i.e.

f (p)
C (t) = (1 − p) fC(t) + p f M

C (t) . (37)

In order to evaluate p(DC |D
M) our goal is hence to obtain the

optimal choice of f M
C (t) ∈ FM

C that allows the minimum value
of p such that f (p)

C (t) ∈ FM
C .

As notice before, if DC is an element of DM
C then we can

simply take p = 0, i.e., p(DM
C |D

M
C ) = 0. For the depo-

larizing evolutions which instead have a continuous charac-
teristic function f NM

C (t) that possesses some degree of non-
Markovianity, the computation of (35) requires instead some
non trivial work. In this case Eq. (37) becomes

f (p)
C (t) = (1 − p) f NM

C (t) + p f M
C (t) . (38)

While the continuity of f (p)
C (t) is automatically ensured by

construction, finding the minimum p that forces this function
into FM

C (namely that allows it to be also positive and non-
increasing) is not a simple task. In order to tackle this problem
we start by first illustrating the relatively simple case of non-
Markovian depolorazing evolutions with positive f NM

C (t) ∈
FNM

C (see Sec. V A). Next we discuss the slightly more com-
plex scenario of f NM

C (t) ∈ FNM
C having a non definite sign,

but which exhibit their non-Markovian character exclusively
on the time intervals where they are negative (Section V B).
Finally we conclude by addressing the general case of a non-
Markovian continuous characteristic functions f NM

C (t) ∈ FNM
C

in Sec. V C.



7

A. Positive non-Markovian continuous characteristic functions

In this section we consider depolorazing processes DNM
C

characterized by f NM
C (t) ∈ FNM

C which are positive and which
have a number L > 0 of intervals T +

k ≡ (t(in)
k , t( f in)

k ) of non-
Markovianity where ḟ NM(t±) > 0, i.e.,

f NM
C (t) ≥ 0, ḟ NM

C (t±) ≤ 0, ξ( f NM
C (t)) = 1 t < T NM ,

f NM
C (t) ≥ 0, ḟ NM

C (t±) > 0, ξ( f NM
C (t)) = 1 t ∈ T NM ,

(39)

with T NM ≡
⋃L

k=1 T +
k being the collection of the intervals T +

k .
As we shall see, in this case the quantity (35) is a monotoni-
cally increasing function of the gaps

∆NM
k ≡ f NM

C (t( f in)
k ) − f NM

C (t(in)
k ) > 0 , (40)

which certify the non-Markovian character of f NM
C (t) on the

intervals T +
k . Specifically, given

∆NM ≡

L∑
k=1

∆NM
k , (41)

we have

p(DNM
C |D

M
C ) =

∆NM

1 + ∆NM , (42)

which saturates to its upper bound 1 in the case where ∆NM

diverges, e.g. when f NM
C (t) exhibit infinite, not properly

dumped, oscillations. In order to derive (42) we first address
the simple case of a single non-Markovian interval (L = 1),
and then generalize it to the case of arbitrary (possibly infi-
nite) L.

1. One time interval of non-Markovianity for positive
characteristic functions (L = 1)

Let DNM
C be an element ofDNM

C with characteristic function
f NM
C (t) ∈ FNM

C that is always positive and which has positive
derivative (hence non-Markovian character) in a single time
interval T +

1 = (t(in)
1 , t( f in)

1 ) (t( f in)
1 being possibly infinite), i.e,

f NM
C (t) ≥ 0, ḟ NM

C (t±) ≤ 0, ξ( f NM
C (t)) = 1 t < T +

1 ,

f NM
C (t) ≥ 0, ḟ NM

C (t±) > 0, ξ( f NM
C (t)) = 1 t ∈ T +

1 .
(43)

Our goal is to determine the minimum value of p which al-
lows f (p)

C (t) of (38) to be an element of FM
C , i.e., to obey to

the first of the constraints (15) – the function being already
continuous by construction. Since both f NM

C (t) and f M
C (t) are

non-negative, this is equivalent to impose

ḟ (p)
C (t±) = (1 − p) ḟ NM

C (t±) + p ḟ M
C (t±) ≤ 0 , (44)

which is automatically verified for t < T +
1 . A necessary con-

dition for (44) can then be obtained by imposing that f (p)
C (t)

experiences a negative gap at the extremal points of T +
1 , i.e.,

∆
(p)
1 ≡ f (p)

C (t( f in)
1 ) − f (p)

C (t(in)
1 ) ≤ 0 . (45)

From (38) we can cast this into the condition

∆
(p)
1 = (1 − p)∆NM

1 + p∆M
1 ≤ 0 , (46)

where ∆NM
1 is the positive gap defined as in Eq. (40) and

∆M
1 ≡ f M

C (t( f in)
1 ) − f M

C (t(in)
1 ) , (47)

is the associated gap of f M
C (t). Notice that from the proper-

ties of f M
C (t) it follows that the latter quantity is non-negative

and larger than −1 (which is the minimum allowed gap for an
element of FM

C ), i.e.

∆M
1 ∈ [−1, 0] =⇒ |∆M

1 | ≤ 1 . (48)

From Eq. (46) it follows that a necessary condition for p is

p ≥
∆NM

1

|∆M
1 | + ∆NM

1

≥
∆NM

1

1 + ∆NM
1

≡ p1 , (49)

where the last inequality follows from (48). To show that (49)
is also a sufficient condition for (44), we provide a particular
example of f M

C (t) such that ḟ (p)
C (t) ≤ 0 for p ≥ p1. For this

purpose consider gM
C (t) ∈ FM

C such that

gM
C (t) =


1 t ≤ t(in)

1 ,

1 −
(

f NM(t) − f NM(t(in)
1 )

)
/∆NM

1 t ∈ T +
1 ,

0 t ≥ t( f in)
1 .

(50)
This function, for t ∈ T +

1 , is a linear manipulation of f NM
C (t),

where its slope is stretched and inverted. Moreover, in this
case ∆M

1 = −1 and ∆
(p)
1 ≤ 0 for p ≥ p1. Finally, if we consider

gM
C (t) in f (p)(t), for p = p1, we obtain

f (p1)(t) =
f NM(t( f in)

1 )

1 + ∆NM
1

, for t ∈ T +
1 , (51)

which is a constant. Hence, in this case ḟ (p1)(t) ≤ 0 for any
t ≥ 0. Putting all together we can hence claim that

p(DNM
C |D

M
C ) = p1 =

∆NM
1

1 + ∆NM
1

, (52)

which proves the validity of (42) at least for the functions we
are considering here, namely when L = 1.

2. Multiple time intervals of non-Markovianity for positive
characteristic functions

Here we extend the previous construction to address the
general case of functions of the form (43), i.e., which are pos-
itive and which have an arbitrary (possibly infinite) number
L > 0 of intervals T +

k ≡ (t(in)
k , t( f in)

k ) of non-Markovianity. As
in the previous section for each of the intervals T +

k we intro-
duce the gaps

∆M
k ≡ f M

C (t( f in)
k ) − f M

C (t(in)
k ) , (53)

∆
(p)
k ≡ f (p)

C (t( f in)
k ) − f (p)

C (t(in)
k ) = (1 − p)∆NM

k + p∆M
k , (54)
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with ∆NM
k the positive quantities defined in (40). Observe then

due to the fact that f M
C (t) is in FM

C , the ∆M
k are all non-positive

while their global sum is larger than −1, i.e.

∆M
k ∈ [−1, 0] , ∆M ≡

L∑
k=1

∆M
k ∈ [−1, 0] . (55)

This is just a consequence of the fact that the maximum gap
of a continuous Markovian characteristic function is at most
equal to −1. A necessary condition for the Markovianity of
f (p)
M (t) can then be obtained by imposing that ∆

(p)
k ≤ 0 for all

k, which in turn implies

0 ≥
L∑

k=1

∆
(p)
k = (1 − p)∆M + p∆NM (56)

=⇒ p ≥
∆NM

|∆M | + ∆NM ≥
∆NM

1 + ∆NM ≡ pL , (57)

where 57 we used (41) and (C2). Now we show that a gM
C (t) ∈

FM
C that makes f (p)

C (t) Markovian for any p ≥ pL exists. We
consider the following monotonically decreasing function

gM
C (t) =



1 t ≤ t(in)
1

1 −
(

f NM(t) − f NM(t(in)
1 )

)
/∆NM t ∈ T +

1

gM
C (t( f in)

1 ) −
(

f NM(t) − f NM(t(in)
2 )

)
/∆NM t ∈ T +

2
· · ·

gM
C (t( f in)

k−1 ) −
(

f NM(t) − f NM(t(in)
k )

)
/∆NM t ∈ T +

k
· · ·

,

(58)
that we define constant and equal to gM

C (t( f in)
k−1 ) in the time in-

tervals [t( f in)
k−1 , t

(in)
k ], for k = 1, . . . , L. Therefore, the temporal

derivative of gM
C (t) is particularly simple

ġM
C (t±) =


− ḟ NM

C (t±)/|∆NM | t ∈ T +
k ,

0 otherwise.
(59)

As a consequence, for t ∈ T +
k , the function gM

C (t) decreases by
a factor proportional to the increase of f NM(t) in the same
time interval, namely ∆M

k = −∆NM
k /∆NM < 0. An intu-

itive explanation for the form of gM
C (t) is the following. The

“resource” of a continuous Markovian characteristic function
to contrast the non-Markovianity of f NM

C (t) is its distance
from zero. Once that f NM

C (t) decreases, it cannot increase
again. Therefore, to efficiently use the maximum available
gap allowed for Markovian characteristic functions, namely
∆M = −1, gM

C (t) is constant whenever f NM
C (t) behaves as a

Markovian characteristic function. Instead, when this behav-
ior is non-Markovian, gNM

C (t) decreases accordingly to the in-
crease of f NM

C (t) in order to make their convex sum f (p)
C (t) =

(1 − p) f NM
C (t) + pgM

C (t) constant for the smallest value of p.
This proves that, for the continuous depolarizing evolutions
defined as in Eq. (43), p(DNM

C |D
M
C ) = pL. Therefore, the cor-

responding measure of non-Markovianity (35) is equal to

p(DNM
C |D

M
C ) = pL =

∆NM

1 + ∆NM , (60)

which corresponds to Eq. (42).

B. Characteristic functions with non definite sign that exhibit
non-Markovianity only when negative

Here we consider elements of DNM
C with f NM

C (t) such that
their non-Markovian nature is shown only in a number m > 0
of time intervals T−j ≡ (t(in)

j , t( f in)
j ) where it assumes nega-

tive values while being strictly decreasing, namely violating
CM1(τ) while being negative, as notified by the following
negative gaps

ΘNM
j ≡ f NM

C (t( f in)
j ) − f NM

C (t(in)
j ) < 0 . (61)

It is worth observing that under the above assumption f NM
C (t)

cannot be positive after that it becomes negative for the first
time. Otherwise, for some time we would have f NM

C (t) ≥ 0
and ḟ NM

C (t+) > 0, which contradicts our premise. Therefore,
we have that

f NM
C (t) ≤ 0 , ∀t ≥ t(in)

1 . (62)

We shall see that in this scenario the the measure of non-
Markovianity (35) reduces to

p(DNM
C |D

M
C ) =

|ΘNM |

1 + |ΘNM |
, (63)

with

ΘNM ≡

m∑
j=1

ΘNM
j . (64)

As in the previous section, to derive the above identity first
we obtain a necessary condition for f (p)(t) to belong to FM

C
and then we provide an explicit example that saturates this
value. In this case however we find it useful to treat separately
the case of finite m from those where m is unbounded which
introduce some technicalities which have to be dealt carefully.

1. The m finite case

If m is finite the function f NM
C (t) cannot exhibit infinite os-

cillations. Therefore its t → ∞ limit exists finite, i.e.

lim
t→∞

f NM
C (t) = f NM

C (∞) ≤ 0 . (65)

Define now T j = (t(in)
j , t( f in)

j ) to be the time intervals when
f NM
C (t) ≤ 0 and ḟ NM

C (t±) ≥ 0, namely the times when the
Markovian condition CM1(τ) is satisfied while f NM

C (t) is neg-
ative. We notice that, since f NM

C (t) is continuous, for any T−j
there exists a T j such that t( f in)

j = t(in)
j , the only case when it

does not happen is for t( f in)
j = ∞: accordingly the total num-

ber m of the intervals T j is either equal to m or to m− 1 and is
hence also finite by assumption. We consider now the associ-
ated gaps of the functions f NM

C (t), f M
C (t), and f (p)

C (t), i.e., the
quantities

δNM
j ≡ f NM

C (t( f in)
j ) − f NM

C (t(in)
j ) , (66)

δM
j ≡ f M

C (t( f in)
j ) − f M

C (t(in)
j ) , (67)

δ
(p)
j ≡ f (p)

C (t( f in)
j ) − f (p)

C (t(in)
j ) = (1 − p)δNM

j + pδM
j . (68)
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By definition we have that the δNM
j must be non-negative,

while the δM
j must be non-positive, i.e.,

δNM
j ≥ 0 , δM

j ≤ 0 , ∀ j. (69)

If f (p)
C (t) is Markovian it has to be positive and non-increasing.

Therefore, we should also have

δ
(p)
j ≤ 0 , ∀ j. (70)

Therefore a necessary condition for the Markovianity of
f (p)
C (t) is given by the following inequality

δ(p) ≡

m∑
j=1

δ
(p)
j = (1 − p)δNM − p|δM | ≤ 0 , (71)

where δM ≡
∑m

j=1 δ
M
j ≤ 0 and δNM ≡

∑m
j=1 δ

NM
j ≥ 0. Ob-

serve also that since f M
C (t) and f (p)

C (t) are both elements of FM
C

their limiting values for t → ∞ exist and fulfil the following
constraints

f M
C (t) ≥ f M

C (∞) ≥ 0 , f (p)
C (t) ≥ f (p)

C (∞) ≥ 0 , (72)

for all t ≥ 0. Notice finally that since f M
C (t) is non increas-

ing and upper bounded by 1, its limiting value must fulfil the
constraint

1 ≥ f M
C (∞) + |δM | . (73)

Accordingly from (65) we can write

f (p)
C (∞) = (1 − p) f NM

C (∞) + p f M
C (∞) ≥ 0 , (74)

or equivalently

−(1 − p)(δNM + ΘNM) − p f M
C (∞) ≤ 0 , (75)

where we used

f NM
C (∞) = δNM + ΘNM , (76)

with ΘNM as in Eq. (64). Summing up (75) with (71) term by
term, the following necessary constraint for p can finally be
obtained

−(1 − p)ΘNM − p( f M
C (∞) + |δM |) ≤ 0 , (77)

which implies

p ≥
|ΘNM |

f M
C (∞) + |δM | + |ΘNM |

≥
|ΘNM |

1 + |ΘNM |
≡ pm , (78)

where in the last passage we used the inequality (73). Accord-
ingly we can conclude that the quantity pm is lower bound for
the value p(DNM

C |D
M
C ) associated with the evolutions DNM

C we
are considering here. In order to show that pm does indeed
correspond to p(DNM

C |D
M
C ) we now present a example of f M

C (t)

which makes f (p)
C (t) an element of FM

C for p = pm. To do so
we define gM

C (t) ∈ FM
C to be equal to

1 t ≤ t( f in)
1

1 −
(

f NM(t) − f NM(t(in)
1 )

)
/|ΘNM | t ∈ T 1

1 − δNM
1 /|ΘNM | t ∈ T−2

(1 − δNM/|ΘNM |) −
(

f NM(t) − f NM(t(in)
2 )

)
/|ΘNM | t ∈ T 2

. . .

gM
C (t( f in)

j−1 ) −
(

f NM(t) − f NM(t(in)
j )

)
/|ΘNM | t ∈ T j

1 −
∑ j

i=1 δ
NM
i /|ΘNM | t ∈ T−j+1
. . .

1 − δNM/|ΘNM | t → ∞

.

(79)
The temporal derivative of gM

C (t) assumes the simple form

ġ
M
C (t±) =

{
− ḟ NM

C (t±)/|ΘNM | t ∈ T j
0 otherwise

. (80)

It is easy to show that f (p)
C (t) = (1 − p) f NM

C (t) + pgM
C (t)

Markovian for p ≥ pm. Therefore, for any f NM
C (t) that shows

a non-Markovian behavior while being negative, we have that

p(DNM
C |D

M
C ) = pm =

|ΘNM |

1 + |ΘNM |
, (81)

which proves (63).

2. Removing the finite m constraint

In the previous paragraph we have assumed m to be explic-
itly finite, a useful hypothesis which allowed us to assume the
existence of (65) and to express its value as in (76). It turns
out however that this assumption is not fundamental and that
Eq. (63) holds true also if we drop it. In order to show this,
instead of studying the Markovian character of f (p)

C (t) for all
t ≥ 0, we limit the analysis for just all t ≤ T with T being
finite quantity. Observe then that the number m(T ) of time in-
tervals T−j = (t(in)

j , t( f in)
j ) contained into domain [0,T ], where

the characteristic function f NM
C (t) is negative and decreasing,

is by construction finite. Same considerations holds for the
total number m(T ) of the time intervals T j = (t(in)

j , t( f in)
j ) when

f NM
C (t) ≤ 0 and ḟ NM

C (t±) ≥ 0 and which fit on [0,T ]. Follow-
ing the same reasoning we adopted in the previous section, the
following relations can then be derived

f NM
C (T ) = δNM(T ) + ΘNM(T ) , (82)

1 ≥ f M
C (T ) + |δM(T )| , (83)

with

δM(T ) ≡
∑m(T )

j=1 δM
j ≤ 0 , δNM(T ) ≡

∑m(T )
j=1 δNM

j ≥ 0 ,

ΘNM(T ) ≡
∑m(T )

j=1 ΘNM
j < 0 . (84)

Furthermore Eqs. (71) and (75) get replaced by

(1 − p)δNM(T ) − p|δM(T )| ≤ 0 , (85)
−(1 − p)(δNM(T ) + ΘNM(T )) − p f M

C (T ) ≤ 0 , (86)



10

FIG. 3. Plots of f NM
C (t) = e−2t/5 cos(t) (yellow), the corresponding

optimal Markovian characteristic function hM
C (t) (blue) and f (p)(t) for

different values of p (dashed lines) in the time interval t ∈ [0, 7π/2].
The inset shows their behavior for t ≥ 5.90. In this example T−1 '
(π/2, 2.76), T +

1 ' (3π/2, 5.90) and T−2 ' (5π/2, 9.04) are the time
intervals of non-Markovianity of f NM(t) and ΘNM

1 ' −0.31, ∆NM
1 '

0.09 and ΘNM
2 ' −0.02 are the corresponding non-Markovian gaps.

The value of the measure of non-Markovianity is p(DNM
C |D

M) '
0.30. If p = 0.5 > p(DNM

C |D
M
C ), f (p)(t) ∈ FM

C is monotonically de-
creasing (green dashed line). If p = p(DNM

C |D
M
C ) ' 0.30, f (p)(t) ∈

FM
C is monotonically decreasing and constant when ḟ NM(t) > 0 (red

dashed line). If p = 0.15 < p(DNM
C |D

M
C ), f (p)(t) ∈ FNM

C is not mono-
tonic nor positive in more than one time interval (purple dashed line).

that summed up term by term lead to

p ≥
|ΘNM(T )|

1 + |ΘNM(T )|
, (87)

which is a necessary condition to have f (p)
C (t) Markovian at

least on [0,T ]. Following then a construction which is analo-
gous to the one given in (79) we can also show that indeed
the right-hand-side term of (87) is the minimum value for
p to ensure the Markovianity of f (p)

C (t) on [0,T ]. The fi-
nal result thus can be derived by taking the limit T → ∞

which leads to (63) where now ΘNM is properly computed
as ΘNM = limT→∞ ΘNM(T ). Notice in particular that having
extend (63) to the case of infinite m it is now possible that
|ΘNM | will diverge (a case that for instance happen whenever
f NM
C (t) has infinitely many – not properly dumpted – oscilla-

tions) leading to the maximum value for the measure of non-
Markovianity, namely p(DNM

C |D
M
C ) = 1.

C. Multiple time intervals of non-Markovianity for continuous
characteristic functions: the general case

Building up from the previous sections here we compute
p(DNM

C |D
M
C ) for the general case of a non-Markovian de-

polarizing processes with continuous characteristic function
f NM
C (t). At variance with the examples discussed before,

now f NM
C (t) may possess both a collection of time intervals

T +
k ≡ (t(in)

k , t( f in)
k ) where it is positive and increasing, and also

time intervals T−j ≡ (t(in)
j , t( f in)

j ) where instead it is negative
and decreasing (namely it may exhibit all the non-Markovian
features detailed separately in Sec. V A and Sec. V B).

In this case we can show that Eqs. (42) and (63) get replaced
by the more general formula

p(DNM
C |D

M
C ) =

ΓNM

1 + ΓNM , (88)

with ΓNM being given by the expression

ΓNM ≡ ∆NM + |ΘNM | , (89)

where ∆NM and ΘNM , defined as in Eqs. (41) and (64), are the
sums of the non-Markovian increments the function f NM

C (t)
experiences on the intervals T +

k and T−j , respectively.
Since f NM

C (t) may not admit a limiting value for t → ∞, to
prove (88) we shall proceed as in Section V B 2, determining
first the conditions under which the associated f (p)

C (t) is guar-
anteed to be Markovian at least on the time interval [0,T ] with
T finite. Under this condition the numbers L(T ) and m(T ) of
intervals T +

k and T−j of f NM
C (t) that fit on the considered do-

main, are both finite. We introduce also the time intervals
T j ≡ (t(in)

j , t( f in)
j ) of [0,T ] where f NM

C (t) is negative and non
decreasing (their number m(T ) being finite too), and define
the gaps ∆NM

k (T ), ∆M
k (T ), ∆

(p)
k (T ), ΘNM

j (T ), δNM
j (T ), δM

j (T )

and δ
(p)
j (T ) as in Eqs. (40), (53), (54), (61), (66), (67), and

(68). By construction we have the following conditions

∆NM
k (T ) > 0 , ΘNM

j (T ) < 0 δNM
j (T ) ≥ 0 ,

∆M
k (T ) ≤ 0 , δM

j (T ) ≤ 0 ,

∆
(p)
k (T ) = (1 − p)∆NM

k (T ) + p∆M
k (T ) , (90)

δ
(p)
j (T ) = (1 − p)δNM

j (T ) + pδM
j (T ) , (91)

for all k and j. A necessary condition for f (p)(t) being Marko-
vian on the considered domain is that all its gaps ∆

(p)
k (T ) and

δ
(p)
j (T ) are non-positive, i.e.,

(1 − p)∆NM
k (T ) + p∆M

k (T ) ≤ 0 , (92)

(1 − p)δNM
j (T ) + pδM

j (T ) ≤ 0 . (93)

By summing up term by term, all contributions from (92) and
(93) we get

(1 − p)(∆NM(T ) + δNM(T )) − p(|∆M(T )| + |δM(T )|) ≤ 0 ,
(94)

where

∆NM(T ) ≡
L(T )∑
k=1

∆NM
k (T ) > 0 , ∆M(T ) ≡

L(T )∑
k=1

∆M
k (T ) ≤ 0 ,

δNM(T ) ≡
m(T )∑
k=1

∆NM
k (T ) > 0 , δM(T ) ≡

m(T )∑
k=1

∆M
k (T ) ≤ 0 .

Suppose now that f NM
C (T ) is a non-negative quantity, i.e.,

f NM
C (T ) ≥ 0. Under this condition it is easy to verify that
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the total gaps this function experiences on the interval where
it is negative must nullify, i.e.,

δNM(T ) = |ΘNM(T )| , (95)

with

ΘNM(T ) ≡
m(T )∑
j=1

ΘNM
j (T ) < 0 . (96)

Replacing this into (94) we hence get the condition

p ≥
∆NM(T ) + |ΘNM(T )|

|∆M(T )| + |δM(T )| + ∆NM(T ) + |ΘNM(T )|

≥
∆NM(T ) + |ΘNM(T )|

1 + ∆NM(T ) + |ΘNM(T )|
, (97)

where in the second line we used the fact that the sum over
the gaps of a continuous Markovian function cannot cannot
be larger than 1, i.e., |∆M(T )| + |δM(T )| ≤ 1. If f NM

C (T ) is
negative, i.e., f NM

C (T ) < 0, we can still show that (97) holds,
but we need to change the derivation. In this case we observe
that Eq. (95) is substituted by the constraint

f NM
C (T ) = δNM(T ) + ΘNM(T ) , (98)

which allows us to rewrite positivity of f (p)
M (t) for t = T (a

necessary condition for f (p)(t) to be Markovian on [0,T ]) as

(1 − p)(δNM(T ) + ΘNM(T )) + p f M
C (T ) ≥ 0 . (99)

Together with (94) the above expression finally leads to

(1 − p)(∆NM(T ) − ΘNM(T )) ≤ p(|∆M(T )| + |δM(T )| + f M
C (T ))

≤ p , (100)

where in the last passage we used the fact that continuous
Markovian characteristic function cannot have drops larger
than 1, i.e., |∆M(T )|+ |δM(T )|+ f M

C (T ) ≤ 1. Equation (100) co-
incides with (97) which hence holds true irrespectively from
the sign of f NM

C (T ). Taking the limit T → ∞ we can finally
conclude that a necessary condition for f (p)

C (t) to be Marko-
vian is

p ≥
ΓNM

1 + ΓNM , (101)

with ΓNM as in (89) with ∆NM and ΘNM formally given by

∆NM = lim
T→∞

∆NM(T ) , ΘNM = lim
T→∞

ΘNM(T ) . (102)

To show that the inequality (101) is also a sufficient condition
for the Markovianity of f (p)

C (t) we now provide an explicit ex-
ample that saturates it – in Appendix D we also prove that the
solution we present here is also unique.

It is intuitive to understand that the function hM
C (t) ∈ FM

C
that we are looking for must be a combination of gM

C (t) (see
Eq. (58)) and gM

C (t) (see Eq. (79)). In order to simplify its
complicated formulation, we express hM

C (t) only through its
temporal derivative

ḣM
C (t±) =


− ḟ NM

C (t±)/ΓNM t ∈ T +
k

− ḟ NM
C (t±)/ΓNM t ∈ T j

0 otherwise
, (103)

which can be rewritten in a particularly simple form

ḣM
C (t±) =

{
− ḟ NM

C (t±)/ΓNM if ḟ NM
C (t) > 0

0 otherwise , (104)

(see Figure 3 for an example). After a long but straightforward
calculation, it is possible to show that f (p)(t) = (1−p) f NM

C (t)+
phM

C (t) belongs to the Markovian set for all p fulfilling (101).
Therefore, this proves that

p(DNM
C |D

M) =
ΓNM

1 + ΓNM , (105)

and therefore (88).

VI. OPTIMAL MARKOVIAN CHARACTERISTIC
FUNCTIONS FOR CONTINUOUS NON-MARKOVIAN

EVOLUTIONS ARE CONTINUOUS

In this section we prove the identities (34) showing that
in the case of continuous characteristic functions fC(t), non-
continuous Markovian characteristic functions f M(t) < FM

C
cannot make their convex combination f (p)(t) Markovian for
values of p smaller than p(DC |D

M
C ). This is trivial if fC(t)

is already Markovian as in this case p(DC |D
M
C ) saturates to

the minimum allowed value 0. For characteristic functions
which are explicitly non-Markovian in Sec. V A 1 we anal-
yse the simple scenario of positive functions which exhibit
non-Markovianity only in a single interval. Then in Sec. VI B
we discuss the case of functions that have non-Markovian be-
haviour when negative, and conclude in Sec. VI C with the
general case.

A. Single time interval of non-Markovianity with f NM
C (t) ≥ 0

We start by studying the cases discussed in Sec. V A 1,
where f NM

C (t) has a single time interval (t1, t2) of non-
Markovianity when f NM

C (t) ≥ 0 and ḟ NM
C (t) > 0. In this

case the optimal continuous Markovian function gM
C (t) which

makes the corresponding f (p)(t) Markovian for the smallest p
is given in Eq. (50) and leads to

p ≥ p(DNM
C |D

M
C ) =

∆NM

1 + ∆NM , (106)

where ∆NM = f NM
C (t2) − f NM

C (t1) > 0. To show that Eq. (106)
cannot be improved by allowing f M(t) to be non continuous,
we start noticing that in this scenario also f (p)(t) will be non-
continuous. We distinguish then six possible cases:

(i) f M(t1) > 0 and f M(t2) ≥ 0 with a discontinuity at T ∈
(t1, t2);

(ii) f M(t1) ≥ 0 and f M(t2) < 0 with a discontinuity at T ∈
(t1, t2);

(iii) f M(t1) < 0 and f M(t2) ≤ 0 with f M(t) continuous in
(t1, t2);
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(iv) f M(t1) < 0 and f M(t2) ≤ 0 with a discontinuity at T ∈
(t1, t2);

(v) f M(t1) < 0 and f M(t2) > 0 with a discontinuity at T ∈
(t1, t2);

(vi) f M(t1) > 0 and f M(t2) ≥ 0 with f M(t) exhibiting dis-
continuities before t1.

Notice that in the cases (iii) and (v) where f M(t1) < 0 implic-
itly imply a discontinuity ξ( f M(T0)) ∈ [−1/(d2−1), 0) at some
T0 < t1.

In case (i) we have that at time T ∈ (t1, t2) a discontinuity is
shown such that f M(T +)− f M(T−) = −ε < 0, where ε ∈ (0, 1).
Notice that ε = 1 implies that f M(T−) = 1 and f M(T +) = 0,
and therefore this choice does not make sense if our purpose
is to make f (p)(t) Markovian. Fixed this ε-jump for f M(t),
we build the optimal behavior that makes f (p)(t) Markovian
for the smallest p possible. Using the same technique used
to obtain Eq. (104), we see that this function is characterized
by f M(t1) = 1 and ḟ M(t) = − ḟ NM(t)(1 − p)/p for t ∈ (t1, t2)
and the smallest value of p for which f M(t) is Markovian in
(t1, t2). Indeed, with this structure f (p)(t) is non-increasing for
any p ≥ p and ḟ (p)(t) = 0 for t ∈ (t1, t2). By studying the
condition of Markovianity f M(t2) ≥ 0, we obtain

p ≥
∆NM/(1 − ε)

1 + ∆NM/(1 − ε)
> p(DM

C |DC) ,

where the last inequality holds for any ε ∈ (0, 1), i.e., for any
discontinuity of this type.

Cases (ii), (iii) and (iv) can be proven to be inefficient to
make f (p)(t) Markovian thanks to the following argument.
Since ḟ NM(t) > 0 for t ∈ (t1, t2), in order to make f (p)(t)
Markovian, we have to require that f (p)(t2) ≤ 0, i.e., it has
to assume the same sign of f M(t2). It implies that

p ≥
f M(t2)/| f M(t2)|

1 + f M(t2)/| f M(t2)|
≥

∆NM/| f M(t2)|
1 + ∆NM/| f M(t2)|

≥
(d2 − 1)∆NM

1 + (d2 − 1)∆NM > p(DC |D
M
C ) , (107)

where we used f NM(t2) ≥ ∆NM and | f M(t2)| ≤ 1/(d2 − 1).
For case (v) we start by noticing that the discontinuity at

time T may lead to a non-Markovian discontinuity for f (p)(t).
Therefore, we parametrize the discontinuity of f M(t) as fol-
lows: f M(T +) = | f M(T−)| λ/(d2 − 1), where λ ∈ [0, 1]. More-
over, in order for f M(t) to make f (p)(t) Markovian, f (p)(T−) <
0. Hence, f (p)(t) shows a Markovian discontinuity at time
t = T if and only if ξ( f (p)(T )) ≥ −1/(d2 − 1). This condition
can be written as

λ ≤ 1 −
(1 − p)d2

p
f NM
C (T )
| f M(T−)|

. (108)

If we consider this bound for p = p(DNM
C |D

M
C ), we have that

the difference hM
C (T ) − f M(T +) becomes

hM
C (T ) − f M(T +) ≥

1
∆NM

 f NM
C (T )
d2 − 1

+ f NM
C (t1)

 > 0 , (109)

where hM
C (T ) = 1 − ( f NM(T ) − f NM(t1))/∆NM (see Eq. (50))

and we used that in the optimal case f M(T−) = −1/(d2 − 1).
By considering the Markovianity of f (p)(t) in the time interval
(T, t2), the optimal strategy imposes that ḟ M(t) = − ḟ NM

C (t)(1−
p)/p for t ∈ (T, t2) and some p < 1. In analogy to what we
found in case (i), Eq. (109) implies that f M(t) cannot make
f (p)(t) Markovian for p = p(DNM

C |D
M
C ).

The last case we need to check is (vi), where f M(t) is con-
tinuous (hence non increasing) in (t1, t2) but exhibits some dis-
continuities before t1. Since by construction f (p)(t) is contin-
uous in (t1, t2), it can be Markovian only if it is non increasing
in this interval, which in particular implies

0 ≥ f (p)(t−2 ) − f (p)(t+1 )
= (1 − p)( f NM(t2) − f NM(t1)) − p( f M(t+1 ) − f M(t−2 ))
= (1 − p)∆NM − p( f M(t+1 ) − f M(t−2 )) , (110)

that leads to

p ≥
∆NM

f M(t+1 ) − f M(t−2 ) + ∆NM >p(DNM
C |D

M
C ) , (111)

where in the last passage we used the fact that f M(t) is pos-
itive, continuous in (t1, t2) and, since it shows discontinuities
before t1, f M(t+1 ) < 1 and therefore f M(t+1 ) − f M(t−2 ) ∈ [0, 1).

B. Single time interval of non-Markovianity with f NM(t) < 0

Let consider a non-Markovian f NM
C (t) such that it has a sin-

gle time interval of non-Markovianity (t1, t2) when f NM
C (t) < 0

and ḟ NM
C (t) < 0. An important difference from discontinuous

non-Markovian characteristic functions is that f NM
C (t) can be-

come negative if and only if it shows a time interval of non-
Markovianity of this type. Indeed, f NM

C (t1) = 0. Notice that in
the non-continuous case a characteristic function can change
its sign without being non-Markovian.

The optimal continuous Markovian characteristic function
hM

C (t) is constant and equal to 1 for any t ∈ [0, t2] and it de-
creases depending on the behavior of f NM

C (t) (see Eq. (79)
or (104)) for t ≥ t2. It can make the corresponding f (p)(t)
Markovian for p ≥ p(DNM

C |D
M
C ) = |ΘNM |/(1 + |ΘNM |), where

ΘNM = f NM
C (t2) − f NM

C (t2) < 0.
Now we consider non-continuous Markovian characteristic

functions f M(t) and we study which scenarios could poten-
tially make f (p)(t) Markovian for some p < p(DNM

C |D
M
C ). We

have to study the following scenarios:

(i) f M(t2) ∈ (0, 1);

(ii) f M(t) jumps at time T ≤ t1 to some negative value and
f M(t2) < 0;

(iii) f M(t) jumps at time T ∈ (t1, t2) to some negative value
and f M(t2) < 0.

In case (i) we include all those situations where f M(t)
shows discontinuities with or without changes of sign for one
or more times prior to t2 and such that f M(t2) > 0. A necessary
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condition for f M(t) to make f (p)(t) Markovian is f (p)(t2) ≥ 0.
The non-negativity of f (p)(t2) holds if and only if

p ≥
|ΘNM |/ f M(t2)

1 + |ΘNM |/ f M(t2)
.

Since f M(t2) = 1 if and only if f M(t) = 1 for any t ∈ [0, t2] we
have that all the f M(t) with discontinuities of this type cannot
perform better than hM

C (t) in making f (p)(t) Markovian.
Considering case (ii), we start by noticing that, if f M(t1) <

0 and f M(t) is continuous for any t ∈ (t1, t2), the optimal f M(t)
of this type can make f (p)(t) Markovian for

p ≥
|ΘNM |/ f M(t1)

1 + |ΘNM |/ f M(t1)
≥

(d2 − 1)|ΘNM |

1 + (d2 − 1)|ΘNM |
> p(DNM

C |D
M
C ) ,

where p(DNM
C |D

M
C ) = |ΘNM |/(1 + |ΘNM |). In the case of a dis-

continuity of f M(t) (without change of sign) during the time
interval (t1, t2), in analogy with case (i) of the previous sec-
tion, we conclude that f M(t) cannot make f (p)(t) Markovian
for p < p(DNM

C |D
M
C ) also in this scenario.

In case (iii) f M(T−) > 0 and f M(T +) < 0 for some T ∈
(t1, t2). We have to make f (p)(t) Markovian in (t1, t2) and in
order to obtain this result we need that f (p)(t) and f M(t) have
the same sign. As a consequence, f (p)(t) shows a discontinuity
at time T such that ξ( f (p)(T )) < 0. If we study the condition
of Markovianity ξ( f (p)(T )) ≥ −1/(d2 − 1), we obtain

ξ( f (p)(T )) =
(1 − p) f NM(T ) + p f M(T +)
(1 − p) f NM(T ) + p f M(T−)

=
−(1 − p)| f NM(T )| − pλ f M(T−)/(d2 − 1)

−(1 − p)| f NM(T )| + p f M(T−)
≥
−1

d2 − 1
, (112)

where we used f NM(T ) = −| f NM(T )| and | f M(T +)| =

f M(T−)λ/(d2 − 1), where λ ∈ (0, 1). We can use Eq. (112)
to find a p-dependent bound for the values of λ that make
ξ( f (p)(T )) ≥ −1/(d2 − 1). By doing so we obtain λ ≤ 1 −
(1 − p)d2| f NM(T )|/(p f M(T−)). Now we check if the f M(t) of
this case can make f (p)(t) Markovian for p = p(DNM

C |D
M
C ) =

|ΘNM |/(1 + |ΘNM |). The optimal scenario is obtained when
f M(T−) = 1 and therefore we get

f M(T +) =
−λ

d2 − 1
≥
−1

d2 − 1
+

d2| f NM(T )|
(d2 − 1)|ΘNM |

,

where we used (1 − p(DNM
C |D

M
C ))/p(DNM

C |D
M
C ) = 1/|ΘNM |.

The optimal behavior of f M(t) that makes the derivative
ḟ (p)(t) ≥ 0 for the smallest increase of f M(t) in (T, t2) is
achieved by considering ḟ M(t) = − ḟ NM(t)(1 − p)/p, for the
smallest p that allows a Markovian f M(t). Therefore, for
p = p(DNM

C |D
M
C ) = |ΘNM |/(1 + |ΘNM |), we get ḟ M(t) =

− ḟ NM(t)/|ΘNM |. This implies that at time t2 we have

f M(t2) ≥
(

d2| f NM(T )|
(d2 − 1)|ΘNM |

−
1

d2 − 1

)
+
| f NM(t2)| − | f NM(T )|

|ΘNM |

= | f NM(T )|
(

d2

(d2 − 1)|ΘNM |
−

1
|ΘNM |

)
+1−

1
d2 − 1

> 0 , (113)

where we used f NM(t2) = ΘNM < 0. In summary, we proved
that a f M(t) that jumps at T ∈ (t1, t2) to some negative value
such that f (p)(t) does not show a non-Markovian jump at time
t = T , cannot make f (p)(t) Markovian in the time interval
(T, t2) for p = p(DNM

C |D
M
C ). Indeed, the Markovianity of

f p(DNM
C |DM

C )(t) in this time interval implies that f M(t2) > 0,
i.e., f M(t) should change sign while being continuous (this
behavior is not allowed for Markovian characteristic func-
tions). We underline that Markovian functions of case (iii)
can make f (p)(t) Markovian but only for values of p larger
than p(DNM

C |D
M
C ), i.e., by imposing ḟ M(t) = − ḟ NM(t)(1− p)/p

in (T, t2) with some p > p(DNM
C |D

M
C ) that allows f M(t2) ≤ 0.

From the results obtained in this section it is clear that, if
we add to cases (i), (ii) and (iii) any additional discontinuity
in (t1, t2), we cannot reduce the value of p for which f (p)(t)
can be made Markovian with a discontinuous f M(t) ∈ FM(t).

C. General case

In order to prove (34) for any DC ∈ D
NM
C represented by

a f NM
C (t) ∈ FNM

C , we notice that the same technique that we
used to derive the optimal continuous solution hM

C (t) given in
Eq. (104) can be generalized to the case where we fix the dis-
continuities that the Markovian characteristic function has to
show. Indeed, the rules given in Eq. (104) can be generalized
to the cases where f M(t) jumps with or without a change of
sign and we obtain

hM
NC(t) =


− ḟ NM

C (t)/Γ′ if ḟ NM
C (t) > 0 and hM

NC(t) > 0
0 if ḟ NM

C (t) ≤ 0 and hM
NC(t) > 0

− ḟ NM
C (t)/Γ′ if ḟ NM

C (t) < 0 and hM
NC(t) < 0

0 if ḟ NM
C (t) ≥ 0 and hM

NC(t) < 0

,

(114)
where the sign of hM

NC(t) depends on the discontinuities
ξ(hM

NC(t)) ∈ ID that we impose and Γ′ > 0 has to be chosen
such that hM

NC(t) is Markovian and f (p)(t) is made Markovian
for the smallest possible p.

The main difference between hM
C (t) and hM

NC(t) is that ΓNM

is replaced by Γ′, which in general depends on the particular
jumps that hM

NC(t) has to show. Notice that in the previous
two sections we used Γ′ = p/(1 − p). Our goal is to prove
that in every scenario Γ′ > ΓNM . Indeed, hM

NC(t) makes f (p)(t)
Markovian for p ≥ Γ′/(1 + Γ′) = p and Γ′ > ΓNM implies that
p > p(DNM

C |D
M
C ) = ΓNM/(1 + ΓNM).

We consider those cases where the discontinuities of hM
NC(t)

does not take place during time intervals of non-Markovianity
of f NM

C (t). We show that, even if we ignore possible non-
Markovian discontinuities of f (p)(t) caused by the discontinu-
ities of hM

NC(t) (which may increase the minimum p for which
f (p)(t) can be made Markovian by hM

NC(t)), Γ′ > ΓNM . We use
the following notation for the intervals of non-Markovianity
of f NM

C (t): the i-th interval (t(in)
i , t( f in)

i ) can either be a time in-
terval where f NM

C (t) shows a non-Markovian behavior while
being positive or negative. The i-th gap ΓNM

i ≡ | f NM
C (t( f in)

i ) −
f NM
C (t(in)

i )| > 0 is therefore the non-Markovian gap shown in
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the time interval (t(in)
i , t( f in)

i ). Notice that ΓNM =
∑

i ΓNM
i (see

Eq. (89)). Let start with the case of a hM
NC(t) that shows a sin-

gle discontinuity at time T1 < t(in)
1 , where ξ1 = ξ(hM

NC(T1)) ∈
{ID \ 1}. It is easy to prove that the minimum probability p for
which hM

NC(t) can make f (p)(t) Markovian satisfies the follow-
ing lower bound p ≥ (ΓNM/|ξ1|)/(1 + ΓNM/|ξ1|). Therefore, in
these cases

Γ′ = ΓNM/|ξ1| > ΓNM . (115)

Now, suppose that a discontinuity characterized by ξ1 =

ξ(hM
NC(T1)) ∈ {ID \ 1} is verified for t( f in)

k1
≤ T1 ≤ t(in)

k1+1, i.e.,
between the k1-th and the k1 + 1-th non-Markovian time inter-
val. It is easy to show that in this case

Γ′ =

k1∑
i=1

ΓNM
i +

∑N
i=k1+1 ΓNM

i

|ξ1|
> ΓNM , (116)

where N (which may be infinite) is the number of non-
Markovianity intervals of f NM

C (t). In the case of an additional
discontinuity ξ2 = ξ(hM

NC(T2)) ∈ {ID \ 1} that is shown at time
t( f in)
k2
≤ T2 ≤ t(in)

k2+1, we have

Γ′ =

k1∑
i=1

ΓNM
i +

∑k2
i=k1+1 ΓNM

i

|ξ1|
+

∑N
i=k2+1 ΓNM

i

|ξ1 ξ2|
> ΓNM . (117)

We notice that, the presence of two Markovian discontinuities
for hM

NC(t) provides a value of Γ′ that is strictly larger than the
Γ′ obtained with only the first or the second discontinuity (see
Eq. (116)). The generalization of Eq. (117) to any number
of this type of discontinuities is trivial. We conclude that the
hM

NC(t) obtained by any number of discontinuities {ξ j} j of this
type are always characterized by Γ′ > ΓNM .

In the previous sections we proved that the presence of
any discontinuity that takes place during a single time inter-
val of non-Markovianity (t1, t2) does not allow to make f (p)(t)
Markovian for p ≤ p(DNM

C |D
M
C ). It is clear that Eq. (114)

provides an optimal non-continuous Markovian solution for
any set of discontinuities that takes place inside or outside the
time intervals (t(in)

i , t( f in)
i ). Moreover, combining the previous

results together we obtain that in every scenario Γ′ = p/(1−p)
is larger than ΓNM = p(DNM

C |D
M
C )/(1 + p(DNM

C |D
M
C )) hence

proving Eq. (34).

VII. INTERLUDE: A REMARK ON A SPECIAL SUBSET
OF NON-CONTINUOUS, NON-MARKOVIAN

DEPOLARIZING EVOLUTIONS

As we shall see in details in the next section, computing
our measure of non-Markovianity for depolorazing trajecto-
ries which are explicitly non continuous is rather demand-
ing. For this reason we find it useful to remark that the
construction presented in Sec. V can however be shown to
generalize beyond the domain DNM

C allowing us to compute
p(DNM |DM

C ,D
M) at least for some non continuous elements

DNM .

A. Non-Markovian characteristic functions with Markovian
discontinuities

In particular, following the same approach we used in
Sec. V A 1, the function gM

C (t) of Eq. (50) can be shown
to provide the optimal choice for the computation of
p(DNM |DM

C ,D
M) for the whole set of non-Markovian evolu-

tions DNM ∈ DNM with characteristic functions of the form


f NM(t) ≥ 0, ḟ NM(t±) ≤ 0, ξ( f NM(t)) ∈ [0, 1] t < t(in)

1

f NM(t) ≥ 0, ḟ NM(t±) > 0, ξ( f NM(t)) = 1 t ∈ T +
1

“Markovian” t > t( f in)
1 .

(118)
Notice that differently from the case addressed in Eq. (43)
this new set of functions (i) can show Markovian disconti-
nuities without changing their sign for any t < t(in)

1 , and (ii)
can follow any behaviour allowed by the Markovian con-
ditions (see Eq. (15)), even changing sign, for t > t( f in)

1 .
Since DM is non-convex (see Section B 2), the mixture be-
tween f NM(t) and gM

C (t) may in principle make f (p)(t) non-
Markovian for one or more times when f NM(t) behaves as a
Markovian characteristic function. Nonethelss, this is not the
case. Indeed, for t > t( f in)

1 , we have gM
C (t) = 0 and there-

fore f (p)(t) = (1 − p) f NM(t) is always Markovian. Instead,
for t < t(in)

1 , since gM
C (t) and f NM(t) are positive, f (p)(t) can-

not behave as a non-Markovian characteristic function. As a
result of this observation one has that for the functions of the
form (118) we have

p(DNM |DM
C ,D

M) =
∆NM

1

1 + ∆NM
1

, (119)

with ∆NM
1 being the gap associated with the non-Markovian

character of the function on T +
1 .

Analogously the function gM
C (t) given in Eq. (58) can be

shown to provide the value of p(DNM |DM
C ,D

M) also for the
following class of not necessarily continuous, non-Markovian
characteristic functions f NM(t) of the form

f NM(t) ≥ 0, ḟ NM(t) ≤ 0, ξ( f NM(t)) ∈ [0, 1] t < T NM

f NM(t) ≥ 0, ḟ NM(t) > 0, ξ( f NM(t)) = 1 t ∈ T NM

“Markovian” t > t( f in)
N ,

(120)
where, if t( f in)

N < τ for some τ > 0, the latter of Eq. (120) is
the condition that we consider for t > t( f in)

N . Therefore, also
for the depolarizing evolutions DNM defined by Eq. (120), we
have

p(DNM |DM
C ,D

M) =
∆NM

1 + ∆NM . (121)

By the same token one can show that hM
C (t) of Eq. (103) yields

the measure of non-Markovianity p(DNM |DM
C ,D

M) also for
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the class of characteristic functions of the form

f NM(t) ≥ 0, ḟ NM(t) ≤ 0, ξ( f NM(t)) ∈ [0, 1] t < T NM

f NM(t) ≤ 0, ḟ NM(t) ≥ 0, ξ( f NM(t)) = 1 t < T NM

f NM(t) ≥ 0, ḟ NM(t) > 0, ξ( f NM(t)) = 1 t ∈ T NM

f NM(t) ≤ 0, ḟ NM(t) < 0, ξ( f NM(t)) = 1 t ∈ T NM

“Markovian” t > t( f in) ,
(122)

with T NM = (∪kT +
k )∪ (∪ jT−j ) being the same intervals defined

in Sec. V C and where, if there exits a time t( f in) such that
f NM
C (t) does not show any non-Markovian behavior for t ≥

t( f in), the last condition replaces the first two for t ≥ t( f in). In
this case we get

p(DNM |DM
C ,D

M) =
ΓNM

1 + ΓNM , (123)

where again ΓNM is defined as in (89).

VIII. NON-CONTINUOUS DEPOLARIZING
EVOLUTIONS

Extending the results of the previous sections to the general
case of non-Markovian depolarizing evolutions DNM which
are not necessarily continuous is rather complex. This has to
due with the fact that in computing p(DNM |DM) we have to
perform an optimization with respect to all the elements of
DM , which as discussed in Sec. III B is not convex. As we
shall see in Sec. VIII A this introduces an ambiguity in the
definition of the optimal Markovian element which is hard to
handle. Nonetheless in Sec. VIII B we propose a solution to
the problem which, even though does not allow to derive a
closed formula for p(DNM |DM) leads in principle to the exact
results for any assigned element ofDNM .

Before entering into the details of the analysis we define
two sets of times: WC is the set of times when f NM(t) is con-
tinuous, namely ξ( f NM(t)) = 1 if and only if t ∈ WC and
WNC ≡ {tNC,i}i = R+ \ WC is the discrete set of times when
f NM(t) is discontinuous, namely ξ( f NM(t)) , 1 if and only if
t ∈ WNC . Moreover, we divide WNC in W M

NC and WNM
NC , namely

the times when f NM(t) shows Markovian (ξ( f NM(tM
NC,i)) ∈ ID)

and non-Markovian (ξ( f NM(tNM
NC,i)) < ID) discontinuities, re-

spectively.

A. Ambiguity for the choice of the optimal Markovian
evolution

In Section V, while evaluating the measure of non-
Markovianity p(DNM

C |D
M) for continuous evolutions, we

never assumed any particular shape for f NM
C (t) and ḟ NM

C (t) in
order to provide the the optimal f M

C (t) needed to calculate this
measure. In the following example, instead, we show that for

non-continuous evolutions there is an ambiguity for the choice
of the times when the optimal f M(t) shows discontinuities.
This ambiguity is solved only if we know exactly the shape of
f NM(t). Moreover, in these cases the value of the measure of
non-Markovianity does not depend solely from ΓNM .

We consider the non-Markovian characteristic function for
qubits f NM

Θ
(t) ∈ FNM with a single Markovian discontinuity

at time tNC , i.e., W M
NC = {tNC}, and a single time interval of

non-Markovianity T− = (t(in), t( f in)) when the characteristic
function and its time derivative are negative. More in details

f NM
Θ (t) =



1 t ∈ [0, tNC]
−1/3 t → t+NC

f NM
Θ

(t) ≤ 0, ḟ NM
Θ

(t) ≥ 0 t ∈ [tNC , t(in)]
Θ − 1/3 t = t(in)

f NM
Θ

(t) ≤ 0, ḟ NM
Θ

(t) < 0 t ∈ (t(in), t( f in))
−1/3 t ≥ t( f in)

, (124)

where Θ ∈ (0, 1/3]. It is clear that this function is charac-
terized by a null positive non-Markovian gap ∆NM = 0 and
a negative non-Markovian gap ΘNM = −Θ that is shown
in the time interval T− = (t(in), t( f in)). This example can
be easily generalized to the qudit case: if we have a d-
dimensional system, we have to replace the following con-
ditions f NM

Θ
(t+NC) = −1/(d2−1), f NM

Θ
(t) = −1/(d2−1) for any

t ≥ t( f in), f NM
Θ

(t(in)) = Θ − 1/(d2 − 1) and Θ ∈ (0, 1/(d2 − 1)].
We can adopt two inequivalent f M,1(t) and f M,2(t) in order

to make f (p)(t) = (1 − p) f NM
Θ

(t) + p f M(t) Markovian. We
show that the form of the optimal Markovian characteristic
function needed to evaluate p(DNM

Θ
|DM) depends on the par-

ticular value of Θ. Indeed, consider

f M,1(t) =


1 t ∈ [0, tNC]
−1/3 t ∈ (tNC , t(in)]

f M,2(t) ≤ 0, ḟ M,2(t) > 0 t ∈ (t(in), t( f in)]
0 t ≥ t( f in)

, (125)

or

f M,2(t) =


1 t ∈ [0, t(in)]

f M,1(t) > 0, ḟ M,1(t) < 0 t ∈ (t(in), t( f in)]
f M,1(t) > 0, ḟ M,1(t) = 0 t ≥ t( f in)

, (126)

where, when the time derivative of the characteristic funci-
ton is different from zero, we impose it to be equal to
− f NM

Θ
(t)/∆e f f

1 and − f NM
Θ

(t)/∆e f f
2 , respectively. In Fig. 4 and

5 we provide an example of this situation. We find that f (p)(t)
can be made Markovian for

• p ≥ 3Θ
1+3Θ

, if we consider f M,1(t) with ∆
e f f
1 = 3Θ;

• p ≥ 1/3+Θ

4/3+Θ
, if we consider f M,2(t) with ∆

e f f
2 = Θ + 1

3 .

It follows that, depending on the value of Θ ∈ (0, 1/3], the
optimal Markovian characteristic function needed to evalu-
ate the measure of non-Markovianity is different, namely it
is f M,1(t), if Θ ∈ (0, 1/6] and f M,2(t), if Θ ∈ [1/6, 1/3]. As a
consequence

p(DNM
Θ |D) =

{ 3Θ
1+3Θ

Θ ∈ (0, 1
6 ]

1/3+Θ

4/3+Θ
Θ ∈ [ 1

6 ,
1
3 ] . (127)
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FIG. 4. Plots of f M
1 (t), f NM

Θ
(t) and f (p)(t) for a non-Markovian gap

Θ = −ΘNM = 0.1 and p = p(DNM
Θ
|D) ' 0.77. The time interval of

non-Markovianity T− = (2, 3) of f NM
0.1 (t) is colored in purple. Since

Θ < 1/6, the optimal Markovian characteristic function is f M
1 (t).

FIG. 5. Plots of f M
2 (t), f NM

Θ
(t) and f (p)(t) for a non-Markovian gap

Θ = −ΘNM = 0.2 and p = p(DNM
Θ
|D) ' 0.65. The time interval of

non-Markovianity T− = (2, 3) of f NM
0.2 (t) is colored in purple. Since

Θ > 1/6, the optimal Markovian characteristic function is f M
2 (t).

We notice that, differently from the continuous case, given
the signs of f NM(t) and ḟ NM(t), it is not possible to know a
priori which are the signs of the optimal f M(t) and ḟ M(t) that
make f (p) Markovian for the smallest value of p. Indeed, we
have to consider all the possible alternatives for the optimal
f M(t) and evaluate the minimum p for which each one make
the corresponding f (p)(t) Markovian. This ambiguity is gen-
erated by the sign that we decide to assign to f M(t) during
its evolution. Notice that in the continuous case f M

C (t) could
not change its sign and we had no ambiguity in the defini-
tion of the optimal Markovian characteristic function. For in-
stance, as we concluded studying f NM

Θ
(t), the difference be-

tween f M,1(t) and f M,2(t) is obtained solely by the choice of
making the Markovian characteristic function change its sign
at time tNC with a discontinuity or not. The remaining part of
their definitions are analogous to the optimal solution obtained
for continuous evolutions (see Eq. (114))

In the following, we describe how to evaluate the measure
of non-Markovianity for generic non-Markovian depolarizing
evolutions, where we pay particular attention to all the possi-

ble choices for the signs of the Markovian characteristic func-
tion during its evolution.

B. Measure of non-Markovianity for non-continuous
depolarizing evolutions

In this section we propose a technique to evaluate the mea-
sure of non-Markovianity for any non-Markovian depolariz-
ing channel. For this purpose, we collect the results of the
previous sections in order to find a strategy that singles out
the optimal DM needed to evaluate this measure.

Given the previous results, we consider two rules

• If t′ ∈ WC , the f M(t) that are discontinuous at t = t′

do not provide larger values of p (if compared with the
f M(t) that are continuous for t = t′);

• If t′ ∈ WNC , the f M(t) that are discontinuous at t = t′

may provide larger values of p.

Therefore, the optimal Markovian evolution that we need to
evaluate p(DNM |DM) is continuous at least for any t ∈ WC .

1. Vector of signs

We define TC,i = (tNC,i−1, tNC,i) to be the time intervals de-
fined between the times in WNC = {tNC,i}

N
i=1, where we fix

tNC,0 = 0 and, if N is finite, tNC,N+1 = ∞. With this procedure
we define N + 1 time intervals such that ∪iTC,i = WC .

We consider a dichotomic variable σi ∈ {−1, 1} that we at-
tach to each time interval TC,i. Therefore, we obtain a vector
σ = (σ1, σ2, . . . ) of values equal to +1 or -1. We have a
countable number of combinations for this vector. We label
each combination σa = (σa,1, σa,2, . . . ) with a different value
of an integer number a = 1, 2, . . . . We impose σa,0 = +1 for
each combination and we fix a labeling scheme, for instance

σ1 = (+1,+1,+1,+1, . . . ), σ5 = (+1,+1,+1,−1, . . . ) ,
σ2 = (+1,−1,+1,+1, . . . ), σ6 = (+1,−1,+1,−1, . . . ) ,
σ3 = (+1,+1,−1,+1, . . . ), σ7 = (+1,+1,−1,−1, . . . ) ,
σ4 = (+1,−1,−1,+1, . . . ), σ8 = (+1,−1,−1,−1, . . . ) , . . .

We call each σa a vector of signs for the following reason.
We call f M

a (t) the Markovian characteristic functions such that
their sign is defined by σa as follows

sign( f M
a (t)) =


σa,1 = +1 t ∈ [0, tNC,1]
σa,2 t ∈ (tNC,1, tNC,2]
σa,3 t ∈ (tNC,2, tNC,3]
. . . . . .

. (128)

We underline that, as noticed in Section III A, a Markovian
characteristic function can change its sign only with discon-
tinuities such that ξ( f M(t)) ∈ [−1/(d2 − 1), 0). Indeed, we
imposed that f M

a (t) is continuous at least for any t ∈ WC . In-
deed, f M

a (t) can show a discontinuity only when f NM(t) shows
a discontinuity. Therefore,
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• σa,i = σa,i+1: f M
a (t) can either be continuous or show a

discontinuity at t = tNC,i;

• σa,i = −σa,i+1: f M
a (t) must show a discontinuity

ξ( f M(tNC,i)) ∈ [−1/(d2 − 1), 0) while it changes sign.

The Markovian characteristic functions with these features de-
fine the set FM

a .
Consider the convex sum f (p)(t) = (1 − p) f NM(t) + p f M

a (t).
First, it is continuous for any t ∈ WC . Second, if it is Marko-
vian for some p and f M

a (t), it also has to belong to FM
b for

some vector of signs σb, namely such that sign( f (p)(t)) = σb,i
for any t ∈ TC,i. Notice that σb may be different from σa.
Therefore, in order to obtain p(DNM |DM) we proceed as fol-
lows. We fix a vector σa for f M

a (t) and we make f (p)(t) ∈ FM
b

for the smallest p

pa,b ≡ min{p | ∃ f M
a (t) ∈ FM

a s.t. f (p)(t) ∈ FM
b } , (129)

Therefore, we get

p(DNM |DM) = min
a,b

pa,b . (130)

The procedure to evaluate pa,a is given in Section VIII B 2,
while the evaluation of pa,b for a , b is given in Appendix E.
In both cases, we simplify the minimization over a functional
space given in Eq. (129) with a minimization over a discrete
set of real parameters.

2. Optimal Markovian function for a generic vector of signs

In this section we evaluate pa,a. Therefore, we fix a generic
vector of signs σa that describes the signs of f M

a (t) and f (p)(t),
namely sign( f M

a (t)) = sign( f (p)(t)) = σa,i for any t ∈ TC,i.
A generic f NM(t) ∈ FNM is characterized by:

• Time intervals TC,i = (tNC,i−1, tNC,i) when f NM(t) is con-
tinuous, namely ∪iTC,i = WC .

• Discrete set of times W M
NC = {tM

NC,i}i when f NM(t) shows
Markovian discontinuities ξ( f NM(t)) ∈ ID for any t ∈
W M

NC . We define WNC = WNM
NC ∪W M

NC .

• Discrete set of times WNM
NC = {tNM

NC,i}i when f NM(t) shows
non-Markovian discontinuities ξ( f NM(t)) < ID for any
t ∈ WNM

NC .

Our goal is not only to make f (p)(t) Markovian during the
times when f NM(t) behaves as a non-Markovian characteristic
function, but we also have to take care of the possible non-
Markovianity generated from the convex sum of two charac-
teristic functions, namely f NM(t) and f M

a (t), that for for some
times behave as Markovian functions (see the example in Sec-
tion B 2).

We adopt the following strategy. First, we generalize the
technique introduced in Section V in order to make f (p)(t) be-
have as a Markovian characteristic function for any t ∈ WC
(Section VIII B 2 a). Second, we make sure not to gener-
ate non-Markovianity for those times t ∈ W M

NC when f NM(t)
shows Markovian discontinuities (Section VIII B 2 b). Finally,
we study the cases of those times t ∈ WNM

NC when f NM(t) shows
non-Markovian discontinuities (Section VIII B 2 c).

t ∈ TC,i t ∈ T M t ∈ T NM

sign( f NM(t)) = σa,i ḟ M
a (t) = 0 ḟ (p)(t) = 0

sign( f NM(t)) = −σa,i ḟ (p)(t) = 0 ḟ M
a (t) = 0

TABLE I. The conditions for time derivative of the optimal f M
a (t)

for t ∈ TC,i depends on σa,i, f NM(t) and ḟ NM(t). T M (T NM) is the
set of times when f NM(t) behaves as a Markovian (non-Markovian)
characteristic function.

a. Times of continuity:– Consider those times t ∈ WC
when f NM(t) is continuous. Following what we saw in Sec-
tion V C, it is straightforward to obtain the behavior of the op-
timal f M

a (t) that allows to obtain pa,a. The definition of f M
a (t)

has to change depending on (i) the Markovian/non-Markovian
behavior of f NM(t) at time t, (ii) the sign of f NM(t) at time t
and (iii) the sign of f M

a (t) at time t. Therefore, we focus on
a generic TC,i = (tNC,i−1, tNC,i) when sign( f M

a ) = σa,i. Then,
the definition of the time derivative of f M

a (t) is given in Ta-
ble I. The adopted strategy has the following purpose. We
have ḟ M

a (t) = 0 for all those times when a non-zero deriva-
tive is not needed to make f (p)(t) Markovian. This strat-
egy cannot be used when the sign of the time derivative of
f NM(t) is such that sign( ḟ NM(t))sign( f (p)

a (t)) = +1. Indeed, if
ḟ M
a (t) = 0, sign( ḟ (p)(t))sign( f (p)

a (t)) = +1 and f (p)(t) would
not satisfy the first Markovian condition (15). The condition
ḟ (p)(t) = 0 is given in analogy to the continuous case. In or-
der to apply it, we introduce a parameter ∆ > 0 as follows:
ḟ M
a (t) = − ḟ NM(t)/∆ [44], which indeed makes f (p)(t) Marko-

vian in these time intervals for p ≥ ∆/(1 + ∆). We notice
that not all values of ∆ > 0 are allowed. Indeed, if ∆ is not
large enough, f M

a (t) could violate the Markovian conditions
of Eq. (15). The introduction of this parameter imposes to
consider f M

a (t) as a function of t and ∆:

f M
a (t) = f M

a (t,∆) . (131)

If not necessary, we omit this dependence on ∆.
b. Markovian discontinuities:– In this section we define

the behavior of the optimal f M
a (t) for those times when f NM(t)

shows Markovian discontinuities, namely we consider times
tNC,i ∈ W M

NC such that ξ( f NM(tNC,i)) ∈ ID. Having fixed
σa = (σa,1, . . . , σa,i, σa,i+1, . . . ), we know the sign of f M

a (t)
and f (p)

a (t) before and after tNC,i. Moreover, we need to de-
cide what value has to assume f M

a (t+NC,i), while we consider
f M
a (t−NC,i) fixed by its behavior in the time interval TC,i =

(tNC,i−1, tNC,i).
If σa,i = σa,i+1, for f M

a (t) the time t = tNC,i can be either (i)
a time of continuity ξ( f M

a (t)) = 1 or (ii) a time of discontinuity
when it does not change its sign, namely ξ( f M

a (tNC,i)) ∈ [0, 1)
[45]. Instead, if σa,i = −σa,i+1, for f M

a (t) the time t = tNC,i is a
time of (Markovian) discontinuity ξ( f NM(t)) ∈ [−1/(d2−1), 0)
when its sign changes.

Straightforward counts show that, if the starting sign of
f NM(t) and f M

a (t) are the same and they are both showing a
Markovian discontinuity, f (p)(t) shows a Markovian disconti-
nuity independently from their final signs. In order to illus-
trate the discontinuities that f M

a (t) has to show for any com-
bination of σa,i, σa,i+1, sign( f NM(t−NC,i)) and sign( f NM(t+NC,i)),
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t ∈ W M
NC

σa,i = +1
σa,i+1 = +1

σa,i = +1
σa,i+1 = −1

sign( f NM(t−NC,i)) = +1
sign( f NM(t+

NC,i)) = +1
(a) (b)

sign( f NM(t−NC,i)) = +1
sign( f NM(t+

NC,i)) = −1
(a) (b)

sign( f NM(t−NC,i)) = −1
sign( f NM(t+

NC,i)) = +1
(c) (d)

sign( f NM(t−NC,i)) = −1
sign( f NM(t+

NC,i)) = −1
(c) (d)

TABLE II. Discontinuities of f M
a (t) depending of σa,i, σa,i+1,

sign( f NM(t−NC,i)) and sign( f NM(t+
NC,i)) in the case that tNC,i is a Marko-

vian discontinuity for f NM(t). The remaining combinations are ob-
tained by flipping all the signs of this table, where the optimal strate-
gies are the same.

we follow the scheme of Table II.

(a) f M
a (t) preserves its sign and, indipendently from the fi-

nal value and sign of f NM(t+NC,i), the time tNC,i is not
a non-Markovian discontiuity for f (p)(t). Therefore,
the best strategy is to consider f M

a (tNC,i) continuous:
ξ( f M

a (tNC,i)) = 1.

(b) Similarly to (a), tNC,i is never a non-Markovian discon-
tiuity for f (p)(t). Since f M

a (t) has to change sign, the
best strategy is to maximize the final distance from zero.
Therefore, we impose ξ( f M

a (tNC,i)) = −1/(d2 − 1).

(c) ξ( f M
a (tNC,i)) = 1 implies a non-Markovian discontinu-

ity for f (p)(tNC,i) for any p < 1. Since ξ( f M
a (tNC,i)) < 1

makes f M
a (tNC,i) and f (p)(tNC,i) closer to zero, we need

the minimal intervention to make f (p)(t) Markovian and
positive. Due to this ambiguity, we introduce the pa-
rameter Ξi = ξM( f M

a (tNC,i)) ∈ [0, 1) [46].

(d) ξ( f M
a (t)) = −1/(d2−1) implies ξ( f (p)(tNC,i)) < −1/(d2−

1) for any p < 1. In this case, we introduce the param-
eter Ξi = ξM( f M

a (tNC,i)) ∈ (−1/(d2 − 1), 0].

Therefore, these conditions fix the behavior of f M
a (t) when

f NM(t) shows a Markovian discontinuity.
c. Non-Markovian discontinuities:– In this section we

define the behavior of the optimal f M
a (t) for those times when

f NM(t) shows non-Markovian discontinuities, namely we con-
sider times tNC,i ∈ WNM

NC such that ξ( f NM(tNC,i)) < ID. Having
fixed σa = (σa,1, . . . , σa,i, σa,i+1, . . . ), we know the sign of
f M
a (t) and f (p)

a (t) before and after tNC,i. Moreover, we need to
decide what value has to assume f M

a (t+NC,i).
In order to illustrate the discontinuities that f M

a (t) has to
show for any combination of σa,i, σa,i+1, sign( f NM(t−NC,i)) and
sign( f NM(t+NC,i)), we follow the scheme of Table III.

(e) Similarly to case (c), we introduce the parameter Ξi =

ξ( f M
a (tNC,i)) ∈ [0, 1).

t ∈ WNM
NC

σa,i = +1
σa,i+1 = +1

σa,i = +1
σa,i+1 = −1

sign( f NM(t−NC,i)) = +1
sign( f NM(t+

NC,i)) = +1
(e) (g)

sign( f NM(t−NC,i)) = +1
sign( f NM(t+

NC,i)) = −1
(f) (h)

sign( f NM(t−NC,i)) = −1
sign( f NM(t+

NC,i)) = +1
(e) (g)

sign( f NM(t−NC,i)) = −1
sign( f NM(t+

NC,i)) = −1
(f) (h)

TABLE III. Discontinuities of f M
a (t) depending of σa,i, σa,i+1,

sign( f NM(t−NC,i)) and sign( f NM(t+
NC,i)) in the case that tNC,i is a non-

Markovian discontinuity for f NM(t). The remaining combinations
are obtained by flipping all the signs of this table, where the optimal
strategies are the same.

(f) Calculations show that the optimal f M
a (t) is obtained

when f M
a (t) is continuous at time t = tNC,i, namely by

imposing ξ( f M
a (tNC,i)) = 1.

(g) Calculations show that the optimal f M
a (t) is obtained

when ξ( f M
a (tNC,i)) = −1/(d2 − 1).

(h) Similarly to case (d), we introduce the parameter Ξi =

ξ( f M
a (tNC,i)) ∈ (−1/(d2 − 1), 0].

Therefore, these conditions fix the behavior of f M
a (t) when

f NM(t) shows a non-Markovian discontinuity.
d. Evaluation of pa,a:– We show the procedure to define

the optimal f M
a (t) until t = tNC,2.

• First interval of continuity [0, tNC,1): we start by impos-
ing the condition of physicality f M

a (0) = 1. We have
sign( f M

a (t)) = sign( f (p)(t)) = +1. The evolution of
f M
a (t) for t ∈ TC,1 = (0, tNC,1) is given in Table I.

• First time of discontinuity tNC,1: the behavior of f M
a (t)

for t = tNC,1 is given by Table II if tNC,1 is a Markovian
discontinuity for f NM(t) and by Table III if tNC,1 is a
non-Markovian discontinuity for f NM(t).

• Second interval of continuity TC,2 = (tNC,1, tNC,2): we
have sign( f M

a (t)) = sign( f (p)(t)) = σa,2. The evolution
of f M

a (t) is given in Table I.

The definition of this characteristic function for any t ≥ tNC,2
is now obvious.

We saw that in order to define f M
a (t) for t ∈ (tNC,i−1, tNC,i)

it may be necessary to introduce a parameter ∆ > 0 that al-
lows to make ḟ (p)(t) = 0 when the cross-diagonal conditions
of Table I occur (see Eq. (131)). Moreover, for each time of
discontinuity tNC,i ∈ WNC we have to define ξ( f M

a (tNC,i)). For
each discontinuity of type (a) or (f), we impose ξ( f M

a (tNC,i)) =

1. For each discontinuity of type (b) or (g), we impose
ξ( f M

a (tNC,i)) = −1/(d2 − 1). For each discontinuity of type
(e) or (c), we introduce a parameter Ξi ∈ [0, 1). For each
discontinuity of type (d) or (h), we introduce a parameter
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Ξi = ξ( f M
a (tNC,i)) ∈ (−1/(d2 − 1), 0]. Therefore, in general,

we introduce a set of parameters that defines f M
a (t):

f M
a (t) = f M

a (t,∆, {Ξi}i) . (132)

We seek a combination of ∆ and {Ξi}i that minimizes the
value of p for which f (p)(t) ∈ FM

a . Eq. (129) becomes

pa,a = min
∆,{Ξi}i

{p | f M
a (t,∆, {Ξa}i) and f (p)(t) ∈ FM} . (133)

Therefore, we obtained a drastic simplification of the mini-
mization required in Eq. (129). Indeed, to calculate pa,b, we
formally need to perform a minimization over the elements of
FM

a , which have infinite degrees of freedom. Instead, thanks
to this procedure, we only need to perform a minimization
over ∆ and {Ξi}i. Notice that, if the discontinuities of type (c),
(d), (e) and (h) are finite, the total number of parameters over
which we need to optimize pa,a is finite.

IX. DEPHASING EVOLUTIONS

In this section we show that the convex class of dephasing
evolutions for qubitsZ requires a method to evaluate the cor-
responding measure of non-Markovianity p(ZNM |ZM) which
is very similar to the depolarizing case. A dephsing evolution
Z = {Zt}t ∈ Z corresponds to a family of dynamical maps Zt
that at any time t ≥ 0 assumes the form

Zt(·) = φ(t) id(·) + (1 − φ(t))σz · σz , (134)

with σz = diag(1,−1) being the diagonal z-Pauli matrix . We
have that φ(t) ∈ [0, 1] is a necessary and sufficient condition
to ensure Zt to be CPTP. We rewrite Eq. (134) making use of
ϕ(t) ≡ 2φ(t) − 1, namely considering

Zt(·) =
1 + ϕ(t)

2
id(·) +

1 − ϕ(t)
2

σz · σz , (135)

where ϕ(t) belonging to

IZ ≡ [−1, 1] , (136)

is the necessary and sufficient condition to ensure Zt to be
CPTP.

In order to characterize Markovian dephasing evolutions,
similarly to the case of depolarizing channels, if ϕ(s) = 0 for
some s > 0, then the intermediate map Zt,s from s to t ≥ s of
a dephasing channel can be CPTP if and only if ϕ(t) = 0 for
any t ≥ s, i.e., Zt,s(·) = id(·) for any t ≥ s. In the case of a
non-zero value of φ(s), the parametrization given in Eq. (137)
allows us to write the intermediate map Zt,s for t ≥ s in the
following convenient form

Zt,s(·) =
1 + ϕ(t)/ϕ(s)

2
id(·) +

1 − ϕ(t)/ϕ(s)
2

σz · σz , (137)

which is a dephasing channel characterized by the value of
ϕ(t)/ϕ(s). As a consequence, Zt,s is CPTP if and only if
ϕ(t)/ϕ(s) ∈ IZ.

From Eq. (137) it is clear that we can use ϕ(t) to uniquely
characterize Z. We define the set of dephasing characteris-
tic functions S by requiring the same conditions of regularity
considered in Sec. III for depolarizing evolutions. As a re-
sult, we have a one-to-one correspondence between dephasing
evolutions Z ∈ Z and “regular” (in general non-continuous)
characteristic functions that take values in IZ, i.e., ϕ(t) ∈ S.

In analogy to Eq. (9), the non-continuous behavior of ϕ(t)
can be studied by considering the quantity

ξ(ϕ(t)) =
ϕ(t+)
ϕ(t−)

. (138)

Similarly to the depolarizing case, we have a Markovian dis-
continuity when ξ(ϕ(t)) ∈ IZ \ 1, a non-Markovian discon-
tinuity when ξ(ϕ(t)) < IZ and a time of continuity when
ξ(ϕ(t)) = 1.

The similarities between the CPTP conditions for dephas-
ing and depolarizing channels and the role of the correspond-
ing characteristic functions allows to conclude that a dephas-
ing evolution Z with characteristic function ϕ(t) exhibits a
Markovian behaviour at time τ ≥ 0 if one of the two con-
ditions applies

CM1(τ) : ξ(ϕ(τ)) = 1 and d
dτ |ϕ(τ)| ≤ 0;

CM2(τ) : ξ(ϕ(τ)) ∈ IZ \ 1;
(139)

where CM1(τ) has to be replaced by ϕ̇(τ±)ϕ(τ) ≤ 0 when ϕ̇(τ)
is non-continuous, i.e., ϕ̇(τ−) , ϕ̇(τ+). We define the set of
Markovian dephasing characteristic functions as

S
M = {ϕ(t) ∈ S |CM1(τ) or CM2(τ) = TRUE,∀τ ≥ 0} ,

(140)
which involves only local properties of ϕ(t). Consequently,
we can define SNM ≡ S \SM ,ZM andZNM .

We can summarize the behavior of Markovian dephas-
ing functions as follows. ϕM(t) ∈ SM , when continuous
(ξ(ϕ(t)) = 1), does not increase its distance from zero, i.e.,
its modulus is non-increasing. Therefore, in the time inter-
vals where it is positive (negative) and it is continuous, it is
monotonically non-increasing (non-decreasing). As a conse-
quence, ϕM(t) cannot change sign while being continuous, i.e.,
if ϕM(s) = 0 for some s ≥ 0, then ϕM(t) = 0 for any t ≥ s.
Discontinuities of Markovian characteristic functions cannot
make ϕM(t) increase its modulus. Therefore, ϕM(t) can change
its sign at a generic time τ (only) with a discontinuity, where
|ϕM(τ+)| ≤ |ϕM(τ−)|. Non-Markovian characteristic functions
ϕNM(t) ∈ SNM , instead, can show any discontinuity and non-
monotonic behavior, with the only constraint of assuming val-
ues in IZ = [−1, 1] at any time.

We notice that the characterizations of Markovian dephas-
ing evolutions and depolarizing evolutions are analogous.
Given the similarities between the Markovian conditions (15)
and (139) and the dependence of the intermediate maps (11)
and (138) from the respective characteristic functions f (t) and
ϕ(t), we obtain a very similar procedure needed to evaluate
the measure of non-Markovianity p(ZNM |ZM). Indeed, in
this case we need to find a ZM ∈ ZM that allows to make
Z(p) = (1 − p)ZNM + pZM Markovian for the smallest value
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of p ∈ [0, 1], where the Markovian condition for Z(p) can be
studied by imposing ϕ(p) = (1 − p)ϕNM(t) + pϕM(t) to sat-
isfy the Markovian conditions (139). The main difference
between the evaluations of p(ZNM |ZM) and p(DNM |DM) for
generic ZNM ∈ ZNM and DNM ∈ DNM is given by the fact that
ID , IZ, which in particular implies that Markovian and non-
Markovian characteristic functions of dephasing and depolar-
izing evolutions have different freedoms to assume values and
show discontinuities (compare Eqs. (8) and (136) for the val-
ues of physicality of characteristic functions and CM2(τ) of
Eqs. (15) and (139) for the definition of Markovian disconti-
nuities). Nonetheless, the evaluation of p(ZNM |ZM) does not
require any particular additional technique compared to the
depolarizing case.

Generalizing this approach to convex set of dynamics of
similar forms is straightforward. Some examples are (i)X and
Y obtained by replacing in Eq. (134) σz with the Pauli matrix,
respectively, σx and σy and, more in general, (ii) N obtained
by replacing in Eq. (134) σz with any σn = nxσx +nyσy +nzσz
where (nx, ny, nz) is a unit real vector.

X. CONCLUSIONS

We introduced a measure of non-Markovianity inspired by
the intuitive concept for which, in order to consider an evo-
lution highly non-Markovian, it has to be difficult to make it

Markovian via incoherent mixing with Markovian dynamics.
We showed how to evaluate this measure in the case of depo-
larizing evolutions in arbitrary dimensions and we discussed
the case of dephasing evolutions for qubits. Analytical results
are derived for evolutions that satisfy precise continuity and
regularity criteria, while we proposed a numerical approach
for generic depolarizing evolutions. It would be interesting to
generalize this analysis to other (even non-convex) classes of
evolutions with particular symmetries, e.g. generalized ampli-
tude damping channels and higher-dimensional pure dephas-
ing evolutions. Moreover, conjecture (31) necessitates a valid
proof to be enforced.
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Appendix A: Derivation of Eq. (13)

To cast inequality (12) into the equivalent form (13) let us
first consider the case where f (s) > 0. Under this condition
(12) forces f (t) to belong to the interval [− f (s)

d2−1 , f (s)] which
is centred on the point

fM ≡
1
2

(
f (s) −

f (s)
d2 − 1

)
=

d2 − 2
2(d2 − 1)

f (s) , (A1)

and has width

W ≡ f (s) +
f (s)

d2 − 1
=

d2

d2 − 1
f (s) . (A2)

Accordingly imposing f (t) ∈ [− f (s)
d2−1 , f (s)] is equivalent to re-

quire

| f (t) − fM | ≤ W/2 , (A3)

that is

|2(d2 − 1) f (t) − (d2 − 2) f (s)| ≤ d2 f (s) , (A4)

which corresponds to (13). Similarly if f (s) ≤ 0, Eq. (12)
forces f (t) to belong to the interval [ f (s),− f (s)

d2−1 ] which can
still be expressed as in (A3) by observing that fM is still as
in (A1) while W becomes

W ≡ −
f (s)

d2 − 1
− f (s) = −

d2

d2 − 1
f (s) . (A5)

In this case hence we get

|2(d2 − 1) f (t) − (d2 − 2) f (s)| ≤ −d2 f (s) , (A6)

which corresponds to (13) for nonpositive values of f (s).

Appendix B: Non convexity of the Markovian and
non-Markovian subsets of depolarizing evolutions

From the results of Ref. [21] it follows that neither the
Markovian subset EM nor its complement ENM are convex (or
equivalently that EM is neither convex nor concave). In Sub-
sec. B 1 and B 2 we show that the same property holds also
for the Markovian and non-Markovian parts of the depolariz-
ing trajectoriesD.

1. Non-convexity ofDNM

Consider the pair of non-Markovian depolarizing evolu-
tions DNM,1 and DNM,2 with characteristic functions

f NM,1(t) ≡ θH(1 − t) + θH(t − 1) cos2(t − 1) , (B1)
f NM,2(t) ≡ θH(1 − t) + θH(t − 1) sin2(t − 1) , (B2)

where θH(τ) = 1 for τ ≥ 0 and θH(τ) = 0 for τ < 0. The
characteristic functions f NM,1(t) and f NM,2(t) belong to F but
fail to fulfil the conditions (15) for all t, hence they are ele-
ments of FNM . Interestingly these two evolutions are max-
imally non-Markovian. Indeed, they show infinitely many
non-Markovian gaps ∆NM

k = 1 while being positive and con-
tinuous. f NM,1(t) is continuous at any time and f NM,2(t),
even if it is not continuous at t = 1, belongs to the fam-
ily described in Eq. (120). Hence, since for both of them
we have ∆NM =

∑
k ∆NM

k = +∞, they assume the maximal
value for the measure of non-Markovianity p(DNM,1|DM) =

p(DNM,2|DM) = 1 (see Eq. (60)). Nonetheless, the convex
combination f (p)(t) = (1 − p) f NM,1(t) + p f NM,2(t) is Marko-
vian for p = 1/2. Indeed, we have

f (1/2)(t) = θH(1 − t) +
θH(t − 1)

2
=


1 t ∈ [0, 1] ,

1
2 t > 1 ,

(B3)

which is an element of FM with a Markovian discontinuity
at t = 1 (indeed ξ( f (1/2)(1)) = 1/2 ∈ ID). Accordingly the
process (DNM,1 + DNM,2)/2 is an element of DM proving that
DNM is not closed under convex combination.
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2. Non-convexity ofDM

Focusing on the qubit case d = 2, we show an example
where any non-trivial convex combination of two Markovian
depolarizing evolutions provide a non-Markovian depolariz-
ing evolution (generalization for d > 2 being trivial). There-
fore, this proves that the Markovian set of depolarizing chan-
nels is non-convex and that the two Markovian evolutions
used in this example belong to the border of the Markovian
set EM .

Consider two Markovian qubit evolutions DM,1 and DM,2

defined by the characteristic functions f M,1(t) and f M,2(t), re-
spectively. First, we define f M,1(t) = 1 for any t, noticing that
DM,1

t (·) = id(·) is the identical map for any t ≥ 0. Secondly we
take

f M,2(t) ≡


1 t ≤ tNC,1

−1/3 t ∈ (tNC,1, tNC,2]
1/9 t > tNC,2 ,

(B4)

which exhibits Markovian discontinuities

ξ( f M,2(tNC,1)) = ξ( f M,2(tNC,2)) = −
1

d2 − 1
= −

1
3
. (B5)

The convex combination D(p) = (1 − p)DM,1 + pDM,2 is char-
acterized by f (p)(t) = (1 − p) f M,1(t) + p f M,2(t). While the
discontinuity that f (p)(t) shows at t = tNC,1 is always Marko-
vian, at t = tNC,2 we have

ξ( f (p)(tNC,2)) =
9 − 8p

9 − 12p
< ID , ∀p ∈ (0, 1) . (B6)

Indeed, ξ( f (p)(tNC,2)) > 1 for any p ∈ (0, 3/4), ξ( f (p)(tNC,2)) <
−1/3 for any p ∈ (3/4, 1) and it diverges for p = 3/4, i.e.,
limp→3/4∓ ξ( f (p)(tNC,2)) = ±∞ (see Fig. 6). Therefore, any
depolarizing evolution D(p) obtained by the non-trivial convex
combination of the Markovian depolarizing evolutions DM,1

and DM,2 is non-Markovian.

Appendix C: Markovian and non-Markovian positive
depolarizing evolutions

We define D+ ⊂ D to be the class of positive depolariz-
ing evolutions which is defined by non-negative characteristic
functions, namely the set F+ ⊂ F made by the elements of
F that are non-negative for any t ≥ 0. Given the defining
feature of the elements of the F+, it is clear that the positive
depolarizing evolutions form a convex set. We define DM

+ to
be the Markovian subset of D+ which is in one-to-one corre-
spondence with the set of characteristic functions FM

+ ⊂ F
M .

Similary, we defineDNM
+ and FNM

+ .
The characteristic functions of F+ are in general non-

continuous. Indeed, we require that ξ( f M(t)) ∈ [0, 1] for any
f M
+ (t) ∈ FM

+ and t ≥ 0. Analogously, ξ( f NM(t)) ∈ [0,+∞]
for any f NM

+ (t) ∈ FNM
+ and t ≥ 0. A negative value of ξ( f (t))

implies that f (t) changes sign at time t and this circumstance
cannot occur for positive f (t). A straightforward calculation

FIG. 6. Plots of f M
1 (t) = 1 (orange), f M

2 (t) (purple) and f (p)(t) =

p f M
1 (t)+(1−p) f M

2 (t) for p = 0.75 (red), where tNC,1 = 1 and tNC,2 = 2.
While f M

1,2(t) satisfy the conditions (15) at any time, this is not the
case for f (0.75)(t): it shows a non-Markovian discontinuity at tNC,2 = 2
when CM2(2) is violated. Indeed, f (0.75)(2−) = 0, f (0.75)(2+) > 0 and
ξ( f (0.75)(2)) = +∞.

shows that f (p)(t) = (1 − p) f M,1
+ (t) + p f M,2

+ (t) cannot show
non-Markovian discontinuities and more in general cannot be
non-Markovian. Hence,

• D+ is convex,

• DM
+ is closed and convex,

• DNM
+ is open and non-convex.

We remember that the set of continuous depolarizing evo-
lutionsDC has a convex Markovian subset that we calledDM

C .
The set of characteristic functions that corresponds to DM

C is
FM

C , which is the collection of non-increasing continuous non-
negative functions f M

C (t). Therefore, we can conclude that

DM
C ⊂ D

M
+ , (C1)

whereDM
+ \D

M
C is given by those evolutions ofDM

+ that show
at least one (Markovian) discontinuity. Moreover, since no
f NM
+ (t) ∈ FNM

+ can assume negative values, it is easy to see
that DNM

C 1 DNM
+ , DNM

+ 1 DNM
C and DNM

+ ∩ DNM
C , ∅,

namely the intersection is not empty.

1. Positive non-Markovian characteristic functions

We discuss the value of p(DNM
+ |D

M
+ ) when DNM

+ ∈ DM
+ ,

namely a non-Markovian depolarizing evolution with a posi-
tive characteristic function f NM

+ (t) ∈ FNM
+ . Therefore we have

to consider the convex combination f (p)(t) = (1 − p) f NM
+ (t) +

p f M
+ (t) and evaluate the smallest p for which there exists a

f M
+ (t) ∈ FM

+ that makes f (p)(t) Markovian, more precisely an
element of FM

+ .
Similarly to the previous sections, we define T NM

+ and ∆NM

exactly as in the continuous case, i.e., the collection of the
time intervals T +

k = (t(in)
k , t( f in)

k ) where a non-Markovian gap
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∆NM
k > 0 is shown while the non-negative f NM

+ (t) is continu-
ous. Analogously to Sec. V A 2, we introduce

∆M
k ∈ [−1, 0] , ∆M ≡

L∑
k=1

∆M
k ∈ [−1, 0] , (C2)

where ∆M
k = f M

+ (t( f in)
k ) − f M

+ (t(in)
k ) ≤ 0 is the gap that f M

+ (t)
describes when f NM

+ (t) is increasing.
Moreover, we introduce WNM

+ ≡ {τi}i as the discrete set
of times when f NM

+ (t) shows a non-Markovian discontinu-
ity, namely such that ξ( f NM

+ (τi)) ∈ (1,∞] (remember that
ξ( f NM

+ (t)) and f NM
+ (t) itself cannot be negative). Analogously

to ∆NM
k , we introduce the quantities

πNM
i ≡ f NM

+ (τ+
i ) − f NM

+ (τ−i ) > 0 , (C3)

πM
i ≡ f M

+ (τ+
i ) − f M

+ (τ−i ) < 0 , (C4)

respectively the non-Markovian gaps shown by f NM
+ (t) and

the Markovian gaps shown by f M
+ (t) at the times when f NM

+ (t)
shows non-Markovian discontinuities. Moreover,

πNM=
∑

i

πNM
i > 0 , (C5)

πM =
∑

i

πM
i ∈ [−1, 0] , (C6)

are respectively the sum of all the non-Markovian jumps
shown by f NM

+ (t) and all the Markovian jumps shown by
f M
+ (t). Notice that, since f M

+ (t) is non-increasing, ∆M + πM ∈

[−1, 0] [47]. Indeed, it is easy to show that, in order to cal-
culate p(DNM

+ |D
M
+ ), by considering f M

+ (t) with (Markovian)
discontinuities for some t < WNM

+ we do not obtain an ad-
vantage. More precisely, we have to consider f M

+ (t) that show
Markovian discontinuities if and only if t ∈ WNM

+ .
A necessary condition to make f (p)(t) Markovian is that

p ≥ p+ ≡ (∆NM + πNM)/(1 + ∆NM + πNM). This relation
is obtained as Eq.(57), where we also require that π(p)

i =

(1 − p)πNM
i + pπM

i ≤ 0, namely that the discontinuities of
f (p)(t) are Markovian.

In order to evaluate the measure of non-Markovianity of
f NM
+ (t), we adapt the tools introduced in Sec. V A 2 (where

we studied non-negative continuous non-Markovian charac-
teristic functions) to implement the cases where f NM

+ (t) shows
non-Markovian discontinuities. We define gM

+ (t) as the follow-
ing function

1 t ≤ t1 ,
· · ·

gM
+ (t( f in)

k−1 ) −
(

f NM(t) − f NM(t(in)
k )

)
/(∆NM + πNM) t ∈ T +

k ,

· · ·

gM
+ (τ−i ) − πNM

i /(∆NM + πNM) t = τi .
(C7)

where t1 ≡ min{τ1, t
(in)
1 }. It is easy to see that Eq. (C7) is ob-

tained from Eq. (58) by replacing ∆NM with ∆NM +πNM and by
implementing the Markovian gaps πM

i ≡ −π
NM
i /(∆NM + πNM)

that gM
+ (t) shows when f NM

+ (t) shows a non-Markovian dis-
continuity. Moreover, we notice that by considering gM

+ (t) we

have ∆M + πM = −1. The function f (p)(t) = (1 − p) f NM
+ (t) +

pgM
+ (t) belongs to FM

+ for any p ≥ p+, where f (p+)(t) is con-
stant for any t ∈ T NM and continuous for any t ∈ WNM

+ . Fi-
nally, we can state that

p(DNM
+ |D

M
+ ) =

∆NM + πNM

1 + ∆NM + πNM , (C8)

and therefore this measure of non-Markovianity depends on
the non-Markovian gaps shown by the non-Markovian charac-
teristic function (in this case ∆NM + πNM) as in the continuous
case.

We notice that, while for continuous depolarizing evolu-
tions we have p(DNM

C |D
M) = p(DNM

C |D
M
C ) (see Sec. VI),

in the case of positive depolarizing evolutions we have
p(DNM

+ |D
M) ≤ p(DNM

+ |D
M
+ ). We present a simple exam-

ple that shows this feature. Consider f NM
+ (t) with (i) a sin-

gle non-Markovian discontinuity WNM
+ = {τ}, (ii) no non-

Markovian intervals of non-Markovianity T NM
k and (iii) such

that ḟ NM
+ (t) = 0 for any t ≥ τ. In this case we have that

gM
+ (t) = 1 for any t ≤ τ and gM

+ (t) = 0 for any t > τ.
Therefore, we obtain p(DNM

+ |D
M
+ ) = πNM/(1 + πNM), where

πNM = f NM
+ (τ+) − f NM

+ (τ−). By considering the non-positive
Markovian characteristic function gM(t) = 1 for t ≤ τ and
gM(t) = −1/(d2 − 1) for t ≥ τ we have [48]

p(DNM
+ |D

M) =
πNM

1 + 1
d2−1 + πNM

< p(DNM
+ |D

M
+ ) .

Appendix D: Uniqueness of the optimal continuous Markovian
characteristic function

We consider the evaluation of p(DNM
C |D

M
C ) when DNM

C ∈

DNM
C and f NM

C (t) is the corresponding continuous character-
istic function. For the purpose of evaluating this quantity, in
Sec. V C we saw that its value is given by ΓNM/(1 + ΓNM)
and a continuous characteristic function that makes the corre-
sponding f (p)(t) Markovian for p = p(DNM

C |D
M
C ) is hM

C (t) (see
Eq. (104)). In this section we show that hM

C (t) is the only con-
tinuous Markovian characteristic function that makes f (p)(t)
Markovian for any p ≥ p(DNM

C |D
M
C ).

Any continuous Markovian characteristic function f M
C (t)

assumes values in [0, 1] and is non-increasing. Let start notic-
ing that, if f M

C (t) decreases while hM
C (t) is constant, given what

we discussed in Sec. V we conclude that the former has no
chance to perform better than the latter. Therefore, consider a
time interval (t1, t2) of non-Markovianity where ḣM

C (t) < 0 and
ḟ NM(t) > 0. If for some t ∈ (t1, t2) we have ḣM

C (t) < ḟ M
C (t) ≤ 0,

the f (p)(t) obtained with f M
C (t) has a time derivative that can be

made non-positive for larger values of p if compared with the
f (p)(t) obtained with hM

C (t). Therefore, in this situation f M
C (t)

is less efficient than hM
C (t) to make f (p)(t) Markovian.

Consider a time interval of non-Markovianity (t(in)
k , t( f in)

k )
where ḟ M

C (t) < ḣM
C (t) < 0 for some t ∈ (t(in)

k , t( f in)
k ) and

ḟ M
C (t) ≤ ḣM

C (t) < 0 for every t ∈ (t(in)
k , t( f in)

k ). Assume that
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f NM(t) ≥ 0 and therefore limt→∞ hM
C (t) = 0. Using the no-

tation introduced in Eqs. (40), (53) and (54), we see that by
using hM

C (t) all the ∆
(p)
k are non-positive for p ≥ p(DNM

C |D
M
C ),

while they are all positive for p < p(DNM
C |D

M
C ). In the case

of the f M
C (t) described above, we may have that some∆

(p)
k (t)

can be made non-positive for some p < p(DNM
C |D

M
C ). Since∑

k ∆M
k ∈ [−1, 0] and by considering that with hM

C (t) we have∑
k ∆M

k = −1, there must be a k′ , k such that the value of
|∆M

k′ | obtained with f M
C (t) is smaller than the one obtained with

hM
C (t). Hence, while hM

C (t) can make f (p)(t) Markovian for
p = p(DNM

C |DC), f M
C (t) cannot do the same. A similar argu-

ment can be used for f NM(t) that assume positive and negative
values.

Finally, since any f M
C (t) that make f (p)(t) Markovian for

p = p(DNM |DM
C ) cannot have a time derivative different from

ḣM
C (t), hM

C (t) is the only continuous Markovian characteristic
function that is optimal to make f (p)(t) Markovian, i.e., f (p)(t)
can be made Markovian for p = p(DNM

C |DC) with a contin-
uous characteristic function if and only if we consider hM

C (t).
In particular, given the results of Sec. VI, we can state that the
optimal Markovian evolution needed to evaluate p(DNM

C |D
M)

is unique and defined by hM
C (t).

Appendix E: Different vectors of signs for f M
a (t) and f (p)(t)

We consider f (p)(t) ∈ FM
b for some σb, where f M

a (t) ∈ FM
a

for some σa , σb. In the following, b is always the index
attached to f (p)(t) and a is always the index attached to f M

a (t).
First, we make the following consideration. In the case

that f NM(t) violates the conditions of Markovianity given in
Eq. (15) in a time interval in TC,i, then we must consider
σa,i = σb,i. Indeed, if sign( f M(t)) = −sign( f NM(t)) and
f NM(t) shows a non-Markovian behavior while being contin-
uous at time t, f (p)(t) can be made Markovian at time t if and
only if sign( f (p)(t)) = sign( f M(t)). Therefore:

(A) If TC,i is a time interval when f NM(t) behaves as a non-
Markovian characteristic function, then σa,i = σb,i.

Therefore, if σa and σb do not satisfy (A) for at least one
time interval TC,i we set pa,b = 1 because f M

a (t) cannot make
f (p)(t) ∈ FM

b .

1. Times of continuity

Let consider σa and σb that satisfy (A) for each TC,i and
define the optimal f M

a (t) for a generic time interval TC,i when
σa,i , σb,i. During this time interval f NM(t) behaves as a
continuous Markovian characteristic function and therefore
cannot change its sign. As a consequence, we must be in
a situation where σa,i = −σb,i while sign( f M

a (t)) = σa,i and
sign( f NM(t)) = sign( f (p)(t)) = σb,i. Therefore, with opposite
signs, f M

a (t) and f NM(t) are approaching continuously zero
and we need to make their convex combination be of the same
sign of f NM(t).

We analyze the situation σa,i = +1 and σb,i = −1, where
sign( f M

a (t)) = +1 and sign( f NM(t)) = sign( f (p)(t)) = −1 for
any t ∈ [tNC,i−1, tNC] (the same results can also be obtained
for sign( f M

a (t)) = −1 and sign( f NM(t)) = sign( f (p)(t)) = +1).
We write f M

a (tNC,i) = | f M
a (tNC,i)| = | f M

a (tNC,i−1)| − δM,i and
f NM(tNC,i) = −| f NM(tNC,i)| = −| f NM(tNC,i−1)| + δNM

i , where
δM

i , δ
NM
i ≥ 0. Indeed, between tNC,i−1 and tNC,i, f M

a (t) ≥ 0
decreases and f NM(t) ≤ 0 increases. Therefore, if we con-
sider the value of f M

a (tNC,i−1) fixed by the study of the time
interval [tNC,i−2, tNC,i−1], we have to study for which values
of p the function f (p)(t) in negative and non-decreasing in
[tNC,i−1, tNC,i], when δM

i varies. These two conditions can be
respectively written as:

p ≤
| f NM(tNC,i)|

| f NM(tNC,i)| + | f NM(tNC,i)| − δM
i

≤ 1 , (E1)

p ≤
δNM

i

δNM
i + δM

i

≤ 1 , (E2)

which are upper bounds for p. This is the first time that we
obtain upper bounds on p rather than lower bounds. The rea-
son of this new situation is given by the fact that we impose
f (p)(t) to have the same sign of f NM(t) and the opposite sign
of f M

a (t). Hence, this condition cannot be satisfied if p is too
large and it is surely verified when p is small enough. Notice
that (E1) provides the largest interval of validity when δM

i is as
large as possible, i.e., | f NM(tNC,i)| − δM

i = 0, while for (E2) we
have the opposite situation. Since they are both upper bounds,
δM

i = 0 may seem the best choice. Nonetheless, we have to
consider that (E1) have to be consistent with the lower bounds
on p that we obtain when we impose Markovianity for f (p)(t)
in the other time intervals and times of discontinuity. As a
consequence, the choice of δM

i is not obvious, and we have to
implement a variable δM

i that we fix when we calculate pa,b.
Therefore, for each time interval where σa,i , σb,i we intro-
duce a parameter δM

i and f M
a (t) has to be parametrized by this

set, namely f M
a (t) = f M

a (t, {δM
i }i).

Notice that, for the time intervals when instead we have
σa,i = σb,i, we use the conditions introduced in Table I. There-
fore, we defined the behavior of f M

a (t) for all the times t ∈ WC .

2. Discontinuities

Let consider those discontinuities that cannot be described
by Tables II and III, namely those times tNC,i such that:

σa,i−1 = −σb,i−1 and σa,i = σb,i

σa,i−1 = σb,i−1 and σa,i = −σb,i

σa,i−1 = −σb,i−1 and σa,i = −σb,i

. (E3)

These discontinuities, analogously to (E1) and (E2), often pro-
vide upper-bounds for p. Consider that, if there is just one
time interval where the cross-diagonal conditions of Table I
occur, we obtain a lower-bound p ≥ pup = ∆/(1 + ∆). More-
over, lower-bound conditions are obtained when we consider
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Tables II and III (while (E3) does not apply). Moreover we
notice that we must have at least one lower-bound condition,
otherwise p = 0 would be consistent with f (p)(t) being Marko-
vian, which is a contradiction. Therefore, we may be inter-
ested to maximize plim as a function of ξ( f M

a (t)) in order to
make it compatible with one or more lower-bound conditions.
In several cases given by Eq. (E3) this result is obtained for
ξ( f M

a (t)) = 0. Therefore, there is a trade-off between plim and
the ability of f M

a (t) to make f (p)(t) for later times. We con-
clude that, for each Markovian and non-Markovian disconti-
nuity of type (E3), we introduce a parameter Ξi that defines
the value of ξ( f M

a (tNC,i)).

3. Evaluation of pab

Therefore, having σa , σb such that condition (A) is satis-
fied, in general we need to consider an f M

a (t) that depends on

the parameters ∆ (see Section VIII B 2 a), {Ξi}i (see Sections
VIII B 2 b and VIII B 2 c), δM

i (see Section E 1) and {Ξi}i (see
Section E 2) and pa,b is obtained by the optimization

pa,b = min
∆,{δM

i }i,{Ξi}i,{Ξi}i

{p | f M
a (∆, {δM

i }i, {Ξi}i, {Ξi}i) ∈ FM
a , f (p)(t) ∈ FM

b }.

(E4)
It is plausible that, even if condition (A) holds, the maximiza-
tion required for pa,b has no solution. Indeed, the upper-bound
and lower-bound conditions discussed above may not be made
compatible for any f M

a (t) ∈ FM
a .
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