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Abstract

The intergalactic medium is expected to clump on scales down to –10 104 8 Me before the onset of reionization. The
impact of these small-scale structures on reionization is poorly understood despite the modern understanding that
gas clumpiness limits the growth of H II regions. We use a suite of radiation-hydrodynamics simulations that
capture the ~ M104 Jeans mass of unheated gas to study density fluctuations during reionization. Our simulations
track the complex ionization and hydrodynamical response of gas in the wake of ionization fronts. The clumping
factor of ionized gas (proportional to the recombination rate) rises to a peak value of 5–20 approximately Δt=
10 Myr after ionization front passage, depending on the incident intensity, redshift, and degree to which the gas
had been preheated by the first X-ray sources. The clumping factor reaches its relaxed value of ≈3 by
Δt=300Myr. The mean free path of Lyman-limit photons evolves in unison, being up to several times shorter in
unrelaxed, recently reionized regions compared to those that were reionized much earlier. Assessing the impact of
this response on the global reionization process, we find that unrelaxed gaseous structures boost the total number of
recombinations by ≈50% and lead to spatial fluctuations in the mean free path that persist appreciably for several
hundred million years after the completion of reionization.

Unified Astronomy Thesaurus concepts: Reionization (1383); Intergalactic medium (813); Radiative transfer
simulations (1967); Hydrodynamical simulations (767); Cosmic web (330)

1. Introduction

A consistent picture of reionization has begun to emerge
from observations. Measurements of the cosmic microwave
background (CMB) anisotropies by the Planck collaboration
imply a reionization midpoint of = z 7.7 0.7 (Planck
Collaboration et al. 2018). This is supported by a number of
independent astrophysical probes. Evidence of damping wing
absorption in two of the three known >z 7 quasars (Mortlock
et al. 2011; Greig et al. 2017; Bañados et al. 2018; Davies et al.
2018), the steep decline in the fraction of galaxies that show
Lyα emission at >z 6 (e.g., Kashikawa et al. 2006; Ono et al.
2012; Schenker et al. 2012; Pentericci et al. 2014; Mesinger
et al. 2015), and the lack of transmission in the >z 6.2 Lyα
forest (Fan et al. 2006; Wang et al. 2019) all support the view
that much of the intergalactic medium (IGM) was neutral at
these redshifts. Together with a direct census of the galaxy and
quasar populations (e.g., Bouwens et al. 2015; Finkelstein et al.
2019; Kulkarni et al. 2019b), these observations favor a
scenario in which the bulk of reionization occurred between
z=5.5 and 10 and was driven mostly by the earliest galaxies.

The reionization process is shaped by both the sources and
the small-scale density structure of the IGM. Of particular
importance are the so-called sinks of ionizing photons, or self-
shielding systems—intergalactic absorbers with photoelectric
optical depth to 1 Ry photons of >1. (In what follows, we will
use the terms sink and self-shielding region interchangeably.)
Numerous papers have been written on how reionization is
affected by the properties of the sources (see McQuinn 2016
and references therein). Comparatively little effort has gone
into understanding the impact of small-scale structure. That is
the main focus of this paper.

It is important to model the effects of small-scale structure
accurately for several reasons. The recombination rate of the

IGM, which is proportional to the variance of density
fluctuations, sets the total number of ionizing photons required
to reionize the universe and to maintain it thereafter. To
understand what reionization reveals about the sources driving
it, we must also understand the small-scale gas distribution.
Second, small-scale structure impacts the morphology of H II
regions during reionization. The growth of an ionized bubble
will be slowed by absorptions once it is larger than the mean
free path of ionizing photons to be absorbed within a sink
(Furlanetto & Oh 2005; McQuinn et al. 2007; Alvarez &
Abel 2012; Sobacchi & Mesinger 2014). In addition, self-
shielding could produce islands of neutral gas inside H II
regions (Choudhury et al. 2009; Crociani et al. 2011). Aside
from the large-scale CMB anisotropies, all reionization
observables are sensitive to its morphology and, thus, are
impacted to some extent by the sinks.
One complication to modeling these effects is that the

density structure of the IGM evolves significantly in response
to the heating from reionization. To illustrate this point, in
Figure 1 we show snapshots from a radiative hydrodynamics
simulation of an ionization front (I-front) sweeping through the
IGM. The light blue shaded regions correspond to neutral gas.
Immediately after a region has been reionized, the gas clumps
on mass scales as small as M104 , corresponding to ∼1
physical kpc, the Jeans scale of the pre-reionization gas.
Afterwards, the gas begins to relax dynamically and redis-
tribute in response to the photoheating from reionization,
evacuating from small potential wells over a sound-crossing
time (Shapiro et al. 2004; Iliev et al. 2005). The relaxation can
take hundreds of millions of years, ultimately smoothing the
gas on 100 kpc scales and over masses of M109

(Schaye 2001). The right panel in Figure 1 shows a more
relaxed state 80 million years after the initial ionization.
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Simulating these processes requires high-resolution cosmolo-
gical hydrodynamics (hydro) coupled to radiative transfer (RT).

In this paper we use a suite of radiation-hydrodynamics
simulations to study small-scale structure and its impact on
reionization. The central questions that we aim to address are
(1) how do the opacity and recombination rate of the IGM
evolve in response to reionization? (2) How do they depend on
environmental factors such as the local intensity of the ionizing
background and density? (3) What role does the relaxation of
the IGM play in the global reionization process?

The work presented here builds on previous numerical
studies, which fall mainly into two classes. The first class uses
cosmological RT simulations of reionization to explore the role
of small-scale structure (e.g., So et al. 2014; Kaurov &
Gnedin 2015; Chardin et al. 2018; Rahmati & Schaye 2018).
These studies include prescriptions for modeling galaxy
formation at varying levels of complexity. Recently, it has
become possible to run coupled hydro+RT simulations of
reionization in boxes up to = -L h100box

1 Mpc (e.g., Gnedin
2014; Ocvirk et al. 2016; Doussot et al. 2019). The main
disadvantages of this class are (1) at present, it is computa-
tionally infeasible to capture the large-scale structure of
reionization, which requires box sizes with >L 100 Mpc (Iliev
et al. 2014), while also resolving the kiloparsec-scale size of
unrelaxed gas clumps; and (2) the complexity of the
simulations render it difficult to interpret how the mean free
path and gas clumping are affected by the various physical
processes at play.

The second class of study avoids these issues by running
simplified simulations in smaller volumes (and therefore at
higher resolutions). In contrast to the full reionization
simulations, this class does not attempt to model the full
complexity of the source population, but instead applies a
“controlled” radiation field to the gas. Earlier studies applied a
uniform radiation field (no RT) with a simple density threshold
criterion to approximate the effects of self-shielding (e.g.,

Miralda-Escudé et al. 2000; Pawlik et al. 2009; Finlator et al.
2012; Shull et al. 2012). These provide a rough estimate for
the clumping factor, but their results are generally limited to the
relaxed limit and are accurate at the ~50% level owing to
the simplistic modeling of self-shielding. Other studies have
attempted to account more realistically for self-shielding by
postprocessing cosmological hydro simulations with RT. This
approach is more accurate but has only been applied in the fully
unrelaxed limit (Emberson et al. 2013) or the fully relaxed limit
(Altay et al. 2011; McQuinn et al. 2011; Rahmati et al. 2013;
Chardin et al. 2018).5 We note that the unrelaxed limit yields
recombination rates that are a factor of 5–10 larger than the
relaxed case (Emberson et al. 2013), motivating our work to
quantify the transition between these regimes, which we show
takes hundreds of millions of years—a substantial fraction of
the duration of reionization. More recently, Park et al. (2016)
explored the evolution of small-scale structure through this
transition using a suite of small-volume hydro simulations
coupled to an approximate model for RT (most of their runs
use = -L h200box

1 kpc).
The current paper fits into the second class and is most

similar to the study of Park et al. (2016). Our work includes
major improvements over their pioneering study. The simula-
tions in Park et al. (2016) employed an approximate scheme for
the RT based on local gradients in density that loosely mimics
the full RT performed here. Furthermore, structure formation is
strongly suppressed in such small boxes. We are able to
achieve comparable resolution to Park et al. (2016) with »130
times the volume. We also use DC modes (e.g., Gnedin et al.
2011) and a new method of averaging over them based on
Gauss–Hermite quadrature to model the effects of larger
structures that our simulations miss.

Figure 1. Hydrodynamic response of the IGM during reionization. The panels show three snapshots from a ray-tracing radiation-hydrodynamics simulation in which
plane-parallel radiation is turned on at z=10. Shaded regions are neutral and the sharp boundary in the left panel corresponds to the ionization front. Each panel is

-h0.5 1 Mpc on a side and the simulation uses an Eulerian grid with =N 5123 cells (the code will be described in Section 3). The gas density, Δg, is given in units of
the cosmic mean. At early times (left panel), the gas clumps on scales down to the~104 Me Jeans mass of the unheated IGM. The supersonic I-front sweeps through
the volume ahead of the hydrodynamic response, getting trapped in some locations by self-shielding density peaks (middle panel). Over time the density structure is
smoothed out as the gas responds to the impulsive heating by the ionization front (right panel).

5 The relaxed limit calculations postprocess simulations in which the gas had
been heated by a uniform ultraviolet background at a much earlier time. The
first three studies referenced also focused on the post-reionization IGM.
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The remainder of this paper is organized as follows. In
Section 2 we provide intuition for the characteristic scales at
play in the IGM during reionization. In Section 3 we describe
our simulation setup and analysis. In Section 4 we present our
main results, and in Section 5 we discuss their implications
for the global reionization process. Finally, in Section 6 we
offer concluding remarks. Throughout this paper, we adopt
a flat ΛCDM cosmology with W = 0.31m , W = 0.048b , =H0

h100 km s−1 Mpc−1, with h=0.68, s = 0.828 , ns=0.9667,
and a hydrogen mass fraction of =X 0.7547Hy , consistent with
the latest Planck measurements (Planck Collaboration et al.
2018). Unless otherwise noted, all distances are reported in
comoving units.

2. Characteristic Scales

We begin by considering the relevant distance, time, and
velocity scales that frame the photoionization and photoheating
processes under study. There are two velocity scales of
importance during reionization: the speed of I-fronts and the
speed of sound. The former is determined by the number flux
of ionizing photons, F, at the front boundary according to the
condition =v n FIF H , where vIF is the front speed and nH is the
proper hydrogen density.6 We can write the proper I-front
speed in terms of the hydrogen photoionization rate,7
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Here, Δg is the gas density in units of the cosmic mean and
Γ−12 is the photoionization rate in units of 10−12 s−1, with the
~z 5.5 Lyα forest suggesting –áG ñ »- 0.3 0.512 (D’Aloisio

et al. 2018; Wu et al. 2019) and O(1) spatial fluctuations
about this value (Mesinger & Furlanetto 2009; Davies &
Furlanetto 2016). Thus, I-front speeds are typically in the range

–~10 103 4 proper km s−1, with the faster speeds occurring near
the end of reionization (D’Aloisio et al. 2019; Deparis et al.
2019).

For the bulk of the IGM during reionization, the I-front
speeds are much larger than the sound speed of the gas,
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where T is the gas temperature. (Here we have assumed an
ideal gas of fully ionized hydrogen and singly ionized helium
of primordial composition and adiabatic index γ=5/3.). An
exception to this is the high-density (D  100g ) gas surround-
ing halos, where I-fronts can slow down to speeds of order cs
and below.

The characteristic coherence length of overdense gas is the
distance a sound wave can travel in a freefall (or dynamical)

time—the Jeans length—which in comoving units is
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Below, we will see that the actual sizes of self-shielding regions
can be considerably larger than this during reionization.8

Before reionization, the intergalactic gas temperatures are
expected to be in the range –~T 10 1000 K (Furlanetto 2006;
Fialkov et al. 2014). When an I-front sweeps through a region,
it impulsively heats the gas to temperatures –20, 000 30, 000 K
(D’Aloisio et al. 2019), such that LJ has to adjust by a factor of
5–50. A rough estimate for the timescale of this relaxation is
the sound-crossing time of the absorption systems with size LJ,
i.e., the dynamical time,
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where G is Newton’s gravitational constant, and rm is the total
matter density.9 These arguments imply that overdensities
D ~ 10g , which are thought to contribute substantially to the
Lyman-limit opacity, have a relaxation timescale of a few
hundred million years.
These velocity, distance, and timescales prove helpful not

only for interpreting our results; as we will see in the next
section, our simulation setup was optimized according to them.

3. Numerical Methodology

3.1. Radiative Hydrodynamics Simulations

We ran a suite of high-resolution hydro+RT simulations
using a modified version of the ray-tracing code of Trac et al.
(2008; see also Trac & Pen 2004; Trac & Cen 2007). Our
simulations can be thought of as a set of controlled numerical
experiments in which we send I-fronts through a small patch of
the IGM and track how the gas responds. In this spirit, we do
not implement the complex physical processes associated with
galaxy formation. The hydro module does, however, track all
of the relevant heating and cooling processes for gas of
primordial composition (see description in D’Aloisio et al.
2018). We initialized our simulations at z=300 using first-
order perturbation theory and separate transfer functions for the
baryonic and dark matter obtained from CAMB (Lewis et al.
2000).10 Unless otherwise stated, the gas evolves adiabatically
after decoupling with the CMB (at »z 150), until the ionizing
radiation turns on.
Multifrequency ray tracing is implemented in a plane-

parallel geometry on a uniform grid with five frequency bins
spanning 1 Ry to 4 Ry. We adopted a power-law spectrum with
specific intensity nµn

-J 1.5 (where ν is frequency), which
roughly mimics the unabsorbed spectral energy distributions of
stars and quasars. However, as the heating is only weakly
dependent on the spectral index, we expect our results to be
insensitive to this choice (McQuinn & Upton Sanderbeck 2016;

6 This expression applies in the nonrelativistic limit, which is a good
approximation for the galactic sources that likely drove reionization.
7 In detail, to derive Equation (1) we adopt a spectrum of the form

( )n nµn
a-I H I with a sharp cutoff at 4 Ry, where Iν is the specific intensity

and n =h 13.6 eVH I . We also assume a photoionization cross section of
( )s n nµ -

H I H I
2.8, which is an excellent approximation at the energies of

interest.

8 However, Equation (3) has been shown to hold at at a surprisingly
quantitative level for overdense systems after reionization (see e.g.,
Schaye 2001; McQuinn et al. 2011; Rahmati & Schaye 2018).
9 At lower densities, the characteristic time is (( ) )» +- -H z1 Gyr 1 81 3 2,
where H is the Hubble parameter.
10 We checked that our simulations reproduce linear theory.
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D’Aloisio et al. 2019). We set the frequency binning such that
the number density of photons is the same for all bins. The RT
grid’s resolution is matched to that of the hydro solver, with the
option of sending rays from any of the six directions
simultaneously. For all simulations described herein, we chose
to send rays along two orthogonal directions. This configura-
tion yields a planar propagation of the I-front while at the same
time avoiding unrealistic shadowing effects in a single
direction. Simulations of reionization suggest that radiation
from multiple directions (and many sources) contributes to the
flux at the I-front.

To reduce computational costs, we implemented an adaptive
speed-of-light approximation motivated by the characteristic
velocity scales in Section 2. We set the speed of light to

=c c0.1sim (where = ´c 3 105 km s−1) until the volume-
weighted mean H I fraction of the box dropped below 1%.
Below this threshold, we set =c c0.01sim . Our adaptive
algorithm ensures that csim is much greater than the I-front
speeds while the box is being ionized and the sound speed
thereafter. We have tested our algorithm against a simulation in
which csim=c. In Appendix A we show that the adaptive
algorithm is accurate to better than 10%.

Our fiducial box sizes and resolutions were =Lbox
-h1.024 Mpc1 and º = = =N N N N 1024gas dm rt

3, respec-
tively (where Ngas, Ndm, and Nrt are the hydro solver grid, dark
matter particle, and RT grid numbers, respectively). Note that
this corresponds to a gas resolution ofD = -x h1 kpc1 , roughly
the Jeans scale of the adiabatically evolving gas prior to
ionization, and a dark matter particle mass of M105 . In
Appendix A we present numerical convergence tests with
respect to resolution. Our simulations are well converged for
D >t 10 Myr after ionization. At earlier times they are
converged at only the factor of 2 level, suggesting that
structures smaller in size than D = -x h10 1 kpc contribute to
the clumping at these times. In what follows, we will find that
uncertainties in the degree of preheating by the first X-ray
sources lead to similar variations at Δt<10 Myr.

We aim to study the evolution of small-scale structure after it
has been impulsively heated by passing I-fronts. If we had
placed the ray sources at the boundaries of the box, as we did
for the illustrative example shown in Figure 1, the I-fronts
would have taken several tens of millions of years to traverse
the box. This would complicate our interpretation of the
evolution because the difference in reionization times for gas
parcels separated by roughly one box length would have been a
significant fraction of the relaxation timescale. Another issue is
that the shadowing effects of self-shielding systems would have
caused the intensity of the ionizing radiation to be significantly
lower behind them, potentially resulting in a strong gradient
across the box. We would like to control the intensity to
quantify how relaxation depends on the local radiation
background.

To mitigate these problems, we divide our simulation box
into 323 cubical “domains” with side lengths = -L h32dom

1

kpc, and we send rays from a grid of sources placed on the
boundaries of the domains. The photon number densities are
not diluted with cosmological expansion, and rays are deleted
once they reach the ends of their respective domains. This way,
all of the gas in the box is reionized at nearly the same time and
is exposed to a fixed radiation intensity at all times. We omit
source cells for all calculated quantities discussed in this paper.
We note that our domain sizes are somewhat smaller than the

~ -h50 1 kpc-wide zones around I-fronts within which photo-
heating and line cooling set the post-I-front temperature,
Treion (D’Aloisio et al. 2019). In spite of this, we find that

»T 20, 000reion K in our simulations, consistent with the range
of values reported by D’Aloisio et al. (2019). One might also
worry that the domain structure ionizes overdense gas that
would have remained neutral otherwise, potentially resulting in
a spuriously high recombination rate. In Appendix A we test
for such an effect using larger domains. The test simulta-
neously demonstrates the need for small domains and shows
that our results are insensitive to the domain size once the
I-fronts have traversed the box.
We parameterize the radiation field with Γ−12 and zre. The

former is the hydrogen photoionization rate in our source
cells (at the boundaries of the domains), expressed in units of
10−12 s−1. The latter is the redshift at which the radiation turns
on. Thanks to our domain setup, we may also take this to be the
redshift at which the entire simulation domain is “reionized”—
i.e., a cosmological I-front has passed and neutral gas is confined
to dense self-shielding structures.
Table 1 lists all of the runs performed for this paper. (In the

next section we will describe the box-scale density parameter,
δ/σ.) Note that our runs generally consist of permutations of

=z 6, 8re , and 12, and Γ−12=0.3 and 3.0. We have also
performed one run with Γ−12=0.1. In addition, one of our
runs quantifies the impact of preheating of the gas by the first
astrophysical X-ray sources during cosmic dawn. For this we

Table 1
Radiative Hydrodynamics Simulations Run for This Study

zre G-12
a δ/σ Lbox

b N Comment

Production Runs

12 0.3 0 1.024 10243

12 3.0 0 1.024 10243

8 0.1 0 1.024 10243

8 0.3 0 1.024 10243

8 0.3 0 1.024 10243 =T 1000Ki

8 0.3 0 2.048 10243

8 0.3 + 3 1.024 10243

8 0.3 - 3 1.024 10243

8 3 0 1.024 10243

8 3 + 3 1.024 10243

8 3 - 3 1.024 10243

6 0.3 0 1.024 10243

6 0.3 + 3 1.024 10243

6 0.3 - 3 1.024 10243

6 3 0 1.024 10243

Convergence Runs

8 0.3 0 0.256 2563 csim=c
8 0.3 0 0.256 2563 =c c0.1sim

8 0.3 0 0.256 2563 =c c0.01sim

8 0.3 0 0.256 2563

8 0.3 0 0.256 10243

8 0.3 0 0.256 5123

8 0.3 0 0.256 1283

8 0.3 0 0.256 643

8 0.3 + 3 0.256 2563

8 0.3 + 3 0.256 2563 Ndom=1

Notes.
a In units of - -10 s12 1.
b In units of comoving h−1 Mpc.
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simply impose a temperature floor of Ti=1000 K starting at
z=20. This is in the hotter range of expected temperatures,
and existing models generally predict the bulk of the X-ray
heating to occur closer to the time of ionization (Furlanetto
2006; Fialkov et al. 2014), which would result in less relaxation
compared to our artificial temperature floor. In this sense, the
run provides a crude upper limit for the possible effects.11

Lastly, we have run a set of 10 simulations for convergence
tests, which are described in Appendix A.

Our controlled “numerical experiment” setup fixes Γ−12 in
time. One might expect that the local Γ−12 of a recently
reionized patch increases with time as H II bubbles grow to
encompass more sources. Sobacchi & Mesinger (2014) found,
however, that the evolution of Γ−12 is reasonably flat on
average. The expanding number of sources within a given
bubble is tempered by the increasing cost to reionize a larger
volume (and to maintain it thereafter). Moreover, we argue that
it is the initial radiation intensity, i.e., what the gas is exposed
to within the first ∼10 Myr of ionization, that dominates the
evolution of the density structure during relaxation. If Γ−12

evolves with time, the gas will subsequently adjust over a
longer timescale, but this relaxation will be subdominant to that
from the impulsive heating of I-fronts.

3.2. DC Modes

Our box sizes strike a balance between computational cost
and achieving the high resolutions necessary to capture small-
scale structure. However, the variance of linear density
fluctuations in spheres of radius ( ) -h1 2 Mpc1 is already

( )0.6 0.4 by a redshift of z=5.5. If our suite consisted only
of simulations normalized to the cosmic mean density, we
would miss effects from the large density variations on our
= -L h1.024 1 Mpc box scale. To model these effects, we have

modified the simulation code to add a uniform background
density—termed a “DC mode”—to the box. We follow the
approach of Gnedin et al. (2011), except that our implementa-
tion accounts for the full nonlinear evolution of the DC mode.12

This is important because fluctuations on the box scale are
already in the nonlinear regime by z=5.5. We parameterize
the environmental density of our boxes with δ/σ, the ratio of
the mean linear perturbation theory density contrast on the box
scale (the box’s “zero mode”) to the standard deviation of
linear fluctuations on this scale (see Table 1). Note that δ/σ
does not vary with time.

The method of DC modes serves a twofold purpose for us:
(1) it allows us to test how quantities such as the mean free path
and recombination rate scale with the environmental density;
and (2) by averaging the results from our simulations
appropriately, we can effectively sample the full distribution
of IGM densities. To this end, we developed a novel method of
averaging over DC-mode simulations based on Gauss–Hermite
quadrature, which we describe in Appendix B. For three
samples of the box-scale density, the accuracy of the average is

maximized by choosing d s = 0, 3 based the roots of the
Hermite polynomial, H3(x).

13 The overdense runs with
d s = 3 would reach turnaround at z≈5.0, so we
terminated them before reaching this point.

4. Results

4.1. Visualization of the Density Field

We begin with visualizations of the IGM during the
relaxation process. Figure 2 shows slices through the gas
density in our simulation with ( ) ( )d sG =- z, , 0.3, 8, 012 re .
From top left to bottom right (going from left to right), the
panels correspond to time intervals of Δt=10, 60, 150 and
300Myr from =z 8re .14 At Δt=10 Myr since I-fronts have
swept through the box, the IGM has just begun to respond and
the small-scale structure that formed in the unheated, pre-
reionization gas remains intact. By Δt=300Myr, the smallest
structures have been erased; the gas has largely reached its
relaxed state. The panels exhibit weak shock fronts and
conspicuous interference patterns formed by intergalactic
sound waves. In each panel there is a characteristic scale
corresponding to the “sound horizon” Dc ts , or the distance that
a sound wave could have traveled since zre.

4.2. Visualization of Self-shielding Regions

Next we visualize the Lyman-limit opacities along sight lines
through our simulation boxes. These visualizations show the
structures within H II regions that are likely to absorb ionizing
photons. We construct two-dimensional maps of the opacity by
computing t912 for skewers of length Lbox, traced along the
coordinate axis into the page. Figure 3 illustrates how the maps
evolve in time. The colors represent t912, and we have set an
upper limit of t = 1912 in order to highlight the self-shielding
structures. The top, middle, and bottom rows correspond to
Γ−12=3.0, 0.3, and 0.1, while the left, middle, and right
columns show Δt=10, 60, and 300Myr, respectively. In all
cases, the ionizing radiation turns on at =z 8re . The top-left
corner of each panel displays the corresponding volume- and
mass-weighted mean neutral fraction of the entire simulation
volume, denoted xV and xM, respectively. Additionally,
Figure 4 shows a t912 map from one of our DC-mode runs
with d s = 3 . Note that our use of the same initial seeds for
all runs allows a direct comparison of structures.
Consider the middle row of Figure 3. At Δt=10 Myr, the

map exhibits small-scale structure and the covering fraction of
t  1912 is large. The t912 regions extend well beyond halos;
indeed, they are connected by filaments. The small-scale
structure is erased as self-shielding clumps are photoevapo-
rated. By Δt=300Myr, the remaining t  1912 regions are
relegated to rare, high-density peaks around massive halos
(right panel).
Comparing the rows of Figure 3 shows visually how the

morphology of self-shielding depends on the intensity of the
ionizing radiation background. For Γ−12=3.0, the t  1912
regions are already isolated to small islands by Δt=10 Myr,
whereas evenD = 10g gas is able to self-shield at this time for
Γ−12=0.1. The grid-like structure seen for the latter (and
more subtly in the other Δt=10 Myr panels) is a relic of our

11 A larger effect potentially would be if the dark matter is warm or fuzzy,
which would erase the smallest fluctuations. Constraints from the Lyα forest
suggest that the dark matter cannot be so warm to erase clumps of mass

– ~ M10 107 8 (e.g., Viel et al. 2013; Iršič et al. 2017). A cosmology that
saturates this bound would erase much of the structure that contributes to the
relaxation.
12 An alternative method exploits the fact that adding a uniform density to a
simulation is equivalent to modifying the cosmological parameters, including a
nonzero spatial curvature. This approach has been termed the “separate
universe” approach (Sirko 2005; Wagner et al. 2015).

13 For reference, d s =  3 corresponds to d = 50 , where d0 is linearly
extrapolated to the present day.
14 In terms of redshift, these correspond to z=7.9, 7.5, 6.8, and 6.0.
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RT domain setup (see Section 3). We emphasize that the box is
already highly ionized by Δt=10 Myr for all cases
shown here.

Figure 4 shows how the self-shielding changes with
environmental density. The overdense (d s = 3 ) run is
effectively a more evolved version of the corresponding
δ/σ=0 run shown in the middle panels of Figure 3. The
structure is more nonlinear in the former and the consequence
of this can be seen in the increased amount of self-shielding.

4.3. Self-shielding and the Distribution of Gas Densities

In Figure 5 we examine the self-shielding more quantitatively
with the probability distribution of ionized gas density. The
dashed curves show ( )D DPg g

3 , where ( )DP g is the volume-
weighted probability distribution ofΔg. Following McQuinn et al.
(2011), the solid curves show this quantity multiplied by the
square of the mean ionized fraction at densityΔg, ¯ ( )Dx gH II

2 . Note
that ¯ ( ) ( )D D Dx Pg g gH II

2 3 is proportional to the contribution of gas

Figure 2. Relaxation of the IGM atΔt=10 (top left), 60 (top right), 150 (bottom left), and 300 (bottom right)Myr after I-fronts have crossed the simulation box. The
panels show slices, two cells thick, through our simulation with Γ−12=0.3 and =z 8re , color-coded by the log of the density. Each panel is = -L h1box

1 Mpc across.
At Δt=10 Myr, insufficient time has transpired to erase the smallest gaseous structures that were present in the unheated IGM. By Δt=300 Myr the gas has largely
reached its relaxed state, with weak shock fronts and interference patterns from the sound waves that drove this relaxation strikingly visible. The sound waves are
initialized at the time of ionization, leading to a coherent acoustic scale in the gas density that can be seen in the bottom two panels.
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Figure 3. Evolution of self-shielding in the cosmic web after I-front passage. Panels show 1×1 ( )-h Mpc1 2 maps of the Lyman-limit (λ=912 Å) optical depth
integrated along the coordinate axis into the plane, with our color scheme saturating at t = 1912 to highlight self-shielding regions. The top, middle, and bottom rows
correspond to Γ−12=3.0, 0.3, and 0.1, respectively. From left to right, the columns correspond to Δt=10, 60, and 300 Myr from =z 8re . Each panel is annotated in
the top-left corner with the corresponding volume- and mass-weighted average neutral fractions of the simulation volume. At Δt=10 Myr, the gas has not had time
to relax, and a web of kiloparsec-scale structures shape the optical depth. As time proceeds, the self-shielding regions become smaller and disconnected. The t  1912
regions are larger and more connected for lower Γ−12. The grid-like structure most apparent in the Δt=10 Myr, Γ−12=0.1 panel is an artifact of our RT domain
setup that Appendix A shows does not affect our main results.
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at density Δg to the global recombination rate, per logarithmic
interval in Δg. In other words, the recombination rate can be
written as ¯ ( ) ( )òµ D D D D

¥
R d x Pln g g g g0 H II

2 2 . The often sharp
transitions to zero exhibited by the solid curves at highΔg are due
to self-shielding.

Figure 5 explores different values of Γ−12, zre, and δ/σ, as
marked in each panel (δ/σ=0 unless otherwise stated). In the
center-bottom panel we show results from our preheating run
with Ti=1000 K. The green, blue, and red curves correspond
to cosmic time intervals of Δt=10, 60, and 300Myr
measured from =z zre. For the two runs with =z 6re (middle-
and bottom-right panels), the orange curves show results from
the last simulation snapshot, as indicated by the labels.

Clearly the gas distribution and the self-shielding densities
depend on the intensity of the ionizing background, the timing
of (local) reionization, and the environmental density. But the
evolution is qualitatively similar in all cases. The IGM contains
more gas at D > 10g before relaxation. The I-fronts penetrate
into density peaks, with a depth determined by Γ−12, and the
recombination rate reaches a maximum. By Δt=300Myr,
much of the gas has been evacuated to lower density such that
the (now lower) recombination rate receives a larger fractional
contribution from Δg=1–10.

Does the post-reionization gas distribution depend on the
details of the local reionization history? We address this question
in Figure 6 by showing ( )D DPg g

3 at fixed redshifts for different
Γ−12 (bottom) and zre (top). The bottom panel shows that, for
fixed =z 8re , a more intense local background leads to less gas at
high density. The top and bottom sets of curves in that panel
correspond to snapshots at z=5 and z=6, respectively, where
we have rescaled the latter by a factor of 1/20 for clarity.
The bottom panel further illustrates that gravitational collapse
eventually drives the distributions to a more similar shape as the
high-density regime becomes dominated by more-massive halos.
The differences among the curves are more pronounced at z=6
than at z=5.

Considering now the impact of zre at fixed Γ−12, the top panel
of Figure 6 shows that regions with lower zre retain more high-
density gas. This effect, which is particularly evident in the

=z 6re case, can be attributed to two causes: (1) the gas spent
more of its time evolving at cold, pre-reionization temperatures,
during which structure formation was unimpeded by pressure
smoothing. More gas was able to collapse to high, self-shielding
densities. This effect is responsible for the differences between the

=z 8re and 12 cases, which are both in the relaxed limit by z=5.
(2) For the =z 6re case, the dominant effect is that the gas is also
still undergoing relaxation at z=5 (D =t 240 Myr; we will
show this in the next section).
A central finding of this work is that the distribution of gas

density can vary with location due to the local history of the
ionizing background. Imagine two similar patches of the IGM
exposed to radiation from two different star formation histories,
e.g., nearby starbursts at different cosmic times and/or
intensities. Even well after reionization, differences in the
two histories can manifest themselves in the gas distributions
because of the interplay between self-shielding and the
relaxation process. Gravity acts to erase much of this variation
as the high-density regime becomes dominated by larger shelf-
shielding structures over a Hubble time.

4.4. The Recombination Rate

We quantify the recombination rate in our simulation boxes
with a clumping factor,

( )
( )

( )a
a

=
á ñ

á ñá ñ
C

T n n

T n n
, 5R

B H II e

B ref H II e

where Tref is a reference temperature that we take to be
10,000 K, and the angular brackets denote spatial averages over
the simulation box. Physically, CR is the factor by which the
recombination rate is boosted by the presence of small-scale
structure over the (hypothetical) case of a homogeneous density
field with uniform temperature Tref.

Figure 4. Same as in the middle panels of Figure 3 (with Γ−12=0.3), but for the corresponding DC-mode simulation with d s = 3 . Comparing to Figure 3
illustrates the impact of environmental density on the topology of self-shielding. The comoving side length, from left to right, is =L 0.75box , 0.73, and 0.65 h−1 Mpc.
We have used the same random seed for all simulations.
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Figure 7 shows how the clumping factor evolves during the
relaxation process. In the bottom (top) panel, we show CR as a
function of cosmic time since zre for Γ−12=0.3 (3.0). The blue
dotted–dashed, solid, and short-dashed curves correspond to

=z 12re , 8, and 6, respectively. (The =z 6re curves terminate
earlier because we did not run any of these simulations past
z=5.) The cyan/long-dashed curve in the bottom panel
corresponds to our Ti=1000 K run, which serves as a crude
upper limit on the impact of preheating by the first X-ray
sources.

As the I-fronts sweep through the domains, the ionizing
radiation races up the overdensities ahead of their hydro-
dynamic response, causing the recombination rate to peak at
D »t 10 Myr (or somewhat earlier in the Γ−12=3.0 case
because of the faster I-fronts). A larger Γ−12 produces a higher
peak CR because the radiation is able to penetrate more deeply
into the overdensities. A lower zre produces a higher peak
because structure formation has had more time to amplify the
overdensities before they are photoheated. The clumping factor
declines after D »t 10 Myr as overdense gas is photoevapo-
rated to lower densities.

It is useful to compare CR(t) to its late-time evolution, i.e.,
after the gas has adjusted to the heating from reionization.
To this end, we obtain “relaxed limit” models, shown as the

red/dotted curves, using our =z 12re runs. For these curves,
Δt measures the cosmic time since z=8. However, we find
that CR in this late-time regime is very weakly dependent on
time15 and Γ−12, so the red/dotted curves serve as a general
basis of reference.
Our results indicate that CR eventually approaches approxi-

mately the same relaxed limit, which we find is remarkably
insensitive to Γ−12. At first glance this result may be surprising
because the densities that self-shield are very different between
Γ−12=0.3 and Γ−12=3.0, for example (see the Δt=300Myr
curves in the top- and middle-left panels of Figure 5).
The insensitivity to Γ−12 results from two effects: (1) at late
times, densities of Δg=1–10 contribute relatively more to the
recombination rate, and the gas distributions at these densities
are nearly identical. This can be best seen in the bottom panel of
Figure 6. (2) In the case of higher Γ−12, photoevaporation removes
more gas from moderate and high densities. At late times, the lack
of gas at these densities compensates for the higher threshold for
self-shielding.
A comparison of the cyan/long-dashed and blue/solid

curves in the bottom panel of Figure 7 reveals that the impact
of preheating is greatest during the early phases of the

Figure 5. The distribution of gas densities in a selection of nine simulations with parameters denoted at the top of each panel. The green, blue, and red curves
correspond to Δt=10, 60, and 300 Myr from zre. For the two runs with =z 6re (middle- and bottom-right panels), the orange curves show results from the last
simulation snapshot, as indicated by the labels. The dashed curves show ( )D DPg g

3 for all gas, where Δg is the density in units of the mean. The solid curves
correspond to only ionized gas or, more precisely, ¯ ( ) ( )D D Dx Pi g g g

2 3 , which is proportional to the contribution per logarithmic interval to the recombination rate (see
main text). The high-density cutoffs of the solid curves show the densities above which self-shielding occurs. Self-shielding and relaxation significantly alter the
density structure of the gas.

15 For overdense boxes, however, the time dependence is stronger.
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relaxation process. Preheating raises the >z zre Jeans temper-
ature, which erases some of the small-scale density peaks that
play a role in the early evolution of CR. As a result, CR is80%
lower within the first 10 Myr. Note also that the peak in CR

occurs»10 Myr later compared to the fiducial run (solid/blue)
because the photoevaporation timescale for the more-massive
clumps that survive preheating is longer (Shapiro et al. 2004;
Iliev et al. 2005).

The trends found here are qualitatively similar to those
reported in Park et al. (2016), though our results differ in detail.
The most direct comparison can be drawn with their M_I-
0.5_z10 run, for which G =- 2.812 and =z 10re . Examining the
solid and dashed curves in the top panel of Figure 7, our CR

reaches a similar maximum value of 10–15 (compared to 13 in
their simulation). However, the peak is reached atD »t 8 Myr,
which is significantly later than theD »t 3 Myr peak found in
Park et al. (2016). In addition, our CR relaxes to a value of»3,
whereas Park et al. (2016) found »C 1.5R at Δt=150Myr.16

These differences may owe to their approximate model for RT.

4.5. Mean Free Path

We computed the mean free path using the method of
Emberson et al. (2013). To maximize the use of the simulation
volume, we filled the box with skewers traced along the three
coordinate axes. The skewers were divided into segments of
length = -L h32dom

1 kpc. For each segment we measured
the fraction of transmitted flux at wavelength 912Å,

( )t= -f expout 912 , where ( )òt s= ds n s
L

912 0 H I 912
dom , and

s912 is the hydrogen photoionization cross section evaluated
at 912Å. We then averaged fout over all segments and
computed the mean free path using ( )l = - á ñL fln912

mfp
dom out .

We note that this procedure breaks down for l  L912
mfp

dom,
when skewer segments become optically thick. Fortunately, we
will see that l L912

mfp
dom over almost all of the parameter

space of interest. We have also checked this procedure for
measuring lmfp

912 against an alternative method based on
averaging GnH I . We found good agreement between the two
methods.
Figure 8 shows how lmfp

912 evolves during the relaxation
process. The red/dotted curves correspond to relaxed limits. In
contrast to the clumping factor, we find that the relaxed limit of
lmfp

912 evolves quickly with time. Hence, for clarity, we show the
relaxed limits for only the =z 8re runs. Consistent with our
discussion of self-shielding regions in Section 4.2, lmfp

912 starts
out at its shortest during the unrelaxed phase following the
passage of the I-fronts. The mean free path rises as the gas
responds, reaching the relaxed limit on a timescale of
D »t 300 Myr. Figure 8 also shows that lmfp

912 begins at larger
values for lower zre. This results from the combined effects of a
decreasing mean density and structure formation moving gas
into high-density peaks. At later times self-shielding systems
occupy a smaller fraction of the volume.
Whereas the relaxed limit of CR is characterized by a nearly

constant value of 2–3 (Figure 7), we find that the time

Figure 6. Memory of the local history of the ionizing background in the
relaxed gas distribution. Here we show ( )D DPg g

3 for all gas at fixed redshifts
for D t 300 Myr after zre. The top panel explores the effect of the local
timing of reionization by showing different zre for fixed Γ−12. The bottom
panel explores the effect of background intensity with different Γ−12 and fixed

=z 8re . In the bottom panel we have shifted the z=6 curves downward for
clarity. Even in the relaxed limit well after ionization, the distribution of gas
densities depends on the local history of the ionizing background.

Figure 7. Evolution of the clumping factor as the gas relaxes in response to
reionization. The top and bottom panels correspond to G =- 312 and 0.3,
respectively. The blue curves correspond to different zre as denoted in the top
panel. The red/dotted curves show the relaxed (or late-time) limit of the
clumping factor, which is nearly independent of z, Γ−12, and zre (see text for
more details). In the bottom panel, the cyan/long-dashed curve shows results
from our preheating run with a 1000 K temperature floor at <z 20, which we
argue in the main text should provide an upper bound on the effect of
preheating by early X-ray sources.

16 We note that this comparison is not exact, as Park et al. (2016) take Tref to
be the mass-weighted average of their simulation.

10

The Astrophysical Journal, 898:149 (18pp), 2020 August 1 D’Aloisio et al.



evolution of the relaxed limit is reproduced well by a power
law of the form ( )l µ + -z1mfp

912 4.4, which we obtained by
fitting to the =z 12re simulation results. For comparison, we
show this power-law scaling as the green/dotted–dashed curve
in the bottom panel of Figure 8. Note that ( )l µ + -z1mfp

912 4.4

(where the lmfp
912 here is comoving) is also the best-fit redshift

dependence from Worseck et al. (2014) obtained from
observational measurements at z 5.2. This empirical evol-
ution is well reproduced by the relaxed limit of our
“minimalist” simulations in which only hydrodynamics and
RT shape the mean free path.

We now turn to howlmfp
912 depends on Γ−12. The steepness of

this dependence determines how rapidly the opacity of the
forest evolves with the emissivity of ionizing sources
(McQuinn et al. 2011). Furthermore, a strong dependence of
the local lmfp

912 on Γ−12 can yield large fluctuations in the
ionizing radiation background. These effects have been
invoked in models of the ionizing background to explain the
rapid evolution and large opacity fluctuations in the >z 5.5
Lyα forest (Davies & Furlanetto 2016; D’Aloisio et al. 2018;
Nasir & D’Aloisio 2020).

A comparison between the red/dotted curves in the top and
bottom panels of Figure 8 indicates that the relaxed lmfp

912 is, to a
good approximation, proportional to Γ−12. At face value, this result
appears to imply a steeper scaling than the l µ G-

-
mfp
912

12
0.66 0.75

dependence found by McQuinn et al. (2011). However, the
interpretation of this comparison is complicated by the fact that our
mean free paths are calculated from simulations that have a single
value of Γ−12 over their entire ionization histories, whereas the
scaling of McQuinn et al. (2011) was obtained in the limit of

instantaneous change in Γ−12 for fully relaxed gas. The latter limit
is more appropriate for the ionizing background model of Davies
& Furlanetto (2016).
We can nonetheless attempt to make more direct contact with

the results of McQuinn et al. (2011) by examining the slopes of
the relaxed gas density probability distribution functions (PDFs)
in Figure 5, i.e., the curves with Δt=300Myr. The slopes
allow one to estimate the scaling from an instantaneous change
in Γ−12. For all cases, we find that ( )D ~ D g-P , with

–g » 1.7 1.8, provides a reasonable approximation to the PDFs
above the densities where self-shielding kicks in (which are the
densities applicable for calculating the response to an increase in
the ionizing background). According to the arguments of
McQuinn et al. (2011), this implies a scaling of l µ G-mfp

912
12

0.33,
which is notably shallower than what they found. A similar
scaling appears to hold during the relaxation process. This
shallower scaling would reduce fluctuations in the >z 5
ionizing background relative to current models (Davies &
Furlanetto 2016; Nasir & D’Aloisio 2020). We caution,
however, that the scaling is likely to be steeper than what we
estimate here because γ becomes larger (such that ( )D DPg g

3

flattens out) near the densities of the self-shielding transition. In
future work, we plan to investigate the implications of these
findings in more detail.

4.6. Effect of Box-scale Density Fluctuations

In Figure 9, we use our DC-mode simulations to examine the
impact of box-scale density variations on the local and δ-
averaged CR (left) and lmfp

912 (right). The green, red, and blue

dashed curves correspond to d s = + 3 , 0, and - 3 ,
respectively. In the DC-mode runs, CR quantifies the boost in
the recombination rate above the cosmic mean. In other words,
we measure the numerator in Equation (5) from the over-/
underdense simulations, but take á ñnH II and á ñne in the
denominator to be the cosmic mean values. The solid curves
correspond to the δ-averaged quantities, ( )á ñC tR and ( )lá ñtmfp

912 ,
calculated from Gauss–Hermite quadrature using
Equation (B3). All results are for =z 8re , and the bottom and
top panels illustrate the effect of varying Γ−12 from 0.3 to 3.0.
As noted above, the DC-mode runs can be thought of as

universes in which structure formation is more advanced
(d s > 0) or delayed (d s < 0). In the overdense (under-
dense) simulation, the larger (smaller) variance of density
fluctuations results in a boosted (suppressed) recombination
rate, as shown in the left panels of Figure 9. Likewise, the
abundance (paucity) of self-shielding regions in the overdense
(underdense) runs results in a shorter (longer) mean free path.
In Section 3 we raised the concern that our δ/σ=0 runs

miss potentially important effects of large density fluctuations
on our box scale. What impact do these fluctuations have on the
recombination rate and mean free path? We find that both

( )á ñC tR and ( )lá ñtmfp
912 are quite close to the results from our

δ/σ=0 runs. (Compare the solid and red dashed curves in
each of the panels in Figure 9.) The similarity owes to a large
cancellation between the contributions of over- and underdense
regions. We emphasize that although we have utilized three
simulations to evaluate the integral, Equation (B1), our Gauss–
Hermite quadrature method approximates the average over the
entire range of box-scale overdensities. It appears, then, that
our δ/σ=0 runs match reasonably well what we would have
obtained if it were feasible to run a larger simulation.

Figure 8. Evolution of the (local) mean free path during relaxation. Line styles
are the same as in Figure 7. In contrast to the clumping factor, the relaxed limit
evolves with z and is nearly proportional to Γ−12. Thus, for clarity, we show the
relaxed limits for the =z 8re cases only. The time evolution of the relaxed limit
is well-described by the empirical scaling ( )l µ + -z1mfp

912 4.4 of Worseck et al.
(2014), which we show in the bottom panel as the green/dotted–dashed curve.
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One might still worry that our Gauss–Hermite quadrature
method misses the contribution of rare overdense absorbers that
are not captured in our simulation volumes. Indeed, in the case
of the mean free path, for example, our method relies on
approximating the quantity ( ) ( )l d+- 1mfp

912 1
NL , where dNL is

the nonlinear DC mode of the box, as a fifth-order
polynomial.17 We have not observed any evidence that this
approximation fails. To support this statement, the cyan/
dotted–dashed curve in the bottom panels of Figure 9 show CR

(left) and l912
mfp (right) from a run with N=10243 and

= -L h2.048box
1 Mpc, eight times the volume of our fiducial

runs. This run has poorer resolution, so we expect some
deviation early in the evolution owing to numerical conv-
ergence (see discussion in Appendix A). However, the
agreement, especially at D t 20 Myr, is encouraging indica-
tion that our averaging method picks up the contribution from
structures missed by our = -L h1.024 1 Mpc (δ/σ=0) boxes.

5. Implications for Reionization

We now use the “local” results from our simulation boxes to
explore implications for the global reionization process. To
motivate our semianalytic approach, consider how the gas
evolves in different locations of the universe: Figure 10 shows
the clumping factor and mean free path as a function of redshift
for 30 values of zre and δ/σ=0. The left and right panels
correspond to Γ−12=0.3 and 3.0, respectively. (To create
these plots we have interpolated results between our simula-
tions at =z 6, 8re , and 12.) At any snapshot in time, patches

that were reionized at different times are at different stages of
dynamical relaxation. These panels illustrate the level of spatial
variation in CR and lmfp

912 that results. For example, at z=7, the
CR of recently reionized gas is a factor of 2–3 higher than of
gas reionized at >z 9. The spatial variations persist well after
the last gas parcel has been reionized. Our aim in this section is
to estimate the impact of these relaxation effects on the global
reionization process using a simplistic model.

5.1. Clumping Factor and the Ionizing Photon Budget

Our starting point is the familiar reionization accounting
equation (Shapiro & Giroux 1987; Madau et al. 1999), which
has been widely used to model the global ionized fraction
(QH II),

( ) [ ( )] ( )
=

á ñ
-

á ñ
dQ

dt

n t

n

Q t

n
, 6

H

H II ion

H

H II

where nion is the proper ionizing emissivity (the number of
ionizing photons per unit time, per unit volume, produced by
the sources), and á ñnH is the mean proper hydrogen number
density. The quantity  is the volume-weighted mean
recombination rate, and the notation [ ( )]=  Q tH II denotes
that the recombination rate is a functional of the global
reionization history. Previous analyses based on Equation (6)
have taken  to be a function of time only, extracted from
cosmological simulations. Here we will take account of its
dependence on the reionization history.
Our model relates the local recombination rates measured in

our simulation boxes to the global quantity [ ( )] Q tH II . Let
us define R to be the local recombination rate, which

Figure 9. The effect of box-scale density fluctuations on the clumping factor (left panels) and mean free path (right panels). Here we show results for fixed =z 8re .
The green, red, and blue dashed curves correspond to d s = + 3 , 0, and- 3 , respectively. The solid black curves show the average over all box-scale densities
using our Gauss–Hermite quadrature method. The agreement between the average and our δ/σ=0 run indicates that the mean-density simulation is a good
approximation for á ñCR and lá ñmfp

912 . To cross-check our averaging scheme, the bottom panels show results from a simulation with 2 h−1 Mpc, N=10243, which has
eight times the volume of our production runs (but with 1/8 the resolution elements).

17 In fact, if this quantity were a fifth-order polynomial, then our computation
of the integral, Equation (B1), would be exact.
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can be obtained from the clumping factor using =R
( )a á ñá ñC T n nR B eref H II . In reality R varies from location to

location because of spatial variations in the ionizing radiation
background (Γ−12), temperature, density, and local timing
of reionization (zre). For simplicity, we will focus solely on
variations in zre, fixing Γ−12 to a constant value and δ/σ=0.
Although ignored here, spatial variations in the ionizing
background and their interplay with density fluctuations almost
certainly play a significant role in shaping the reionization
process. We will gauge the potential impact of background
fluctuations by comparing results for different values of Γ−12.

Under these simplifications, to obtain the global  we
integrate ( )R t z, re over the probability distribution of zre,

µdP dz dQ dzre H II re, where the proportionality is set by
normalizing to unity. Plugging this model for  into
Equation (6) yields

( ) ( ) ( ) ( )
a c=

á ñ
- á ñ +

dQ

dt

n t

n
T Q n 1 , 7B H

H II ion

H
gl ref H II

where we have defined the global clumping factor,

[ ( )] ( ) ( )
( )ò= ¢

¢
¢

¥
 Q t dz

dP

dz
C t z, , 8

z t
Rgl H II

as a volume-weighted average of CR, and we have used
( )cá ñ » á ñ +n n 1e H , with c º =n n 0.083He H for singly

ionized helium and ºQ n nH II H II H. Note that the last term in
Equation (7) depends on the reionization history through the
integral in gl. This makes it slightly more complicated than the
standard case, but the equation can nonetheless be solved easily
using elementary numerical techniques such as Euler’s method.

We adopt the ionizing emissivities from Robertson et al.
(2015) and Finkelstein et al. (2019; specifically their “minimal
AGN” model) to explore illustrative examples of “rapid” and
“gradual” reionization models, respectively. We fix the start of
reionization at z=12, because we did not run simulations with

>z 12re , and we rescale the emissivities such that our fiducial

models (denoted “patchy model” below) end at »z 6. We
evaluate the integral (8) by interpolating ( )C t z,R re in two
dimensions using our three runs with =z 6, 8re , and 12. The
interpolations are illustrated in Figure 10.
To gauge the impact of relaxation, we compare our patchy

model against a “relaxed limit” in which all of the gas has
relaxed down to the limiting evolution. For the relaxed models,
we use CR from the =z 12re simulations for <z 9. Above this
redshift, we extrapolate backward in time using a power-law fit
of the regime < <z8 9. Fitting to this redshift range is
motivated by visual inspection, but our analysis is insensitive to
the details of the extrapolation because the relaxed limit of CR

is very weakly dependent on redshift (see e.g., Figure 11).
The solid curves in the left (right) panel of Figure 11 show

the results of our patchy model with Γ−12=0.3 (3.0). We
adopt the former as our fiducial value because both Γ−12 and
the derived global lmfp

912 (which we will discuss below) at
z<6 are more consistent with observational measurements
(e.g., Worseck et al. 2014; D’Aloisio et al. 2018). The top and
middle panels show the global ionized fraction and clumping
factor, respectively. The red and blue curves correspond to the
rapid and gradual scenarios. The relaxed limit clumping factors
are shown as the blue/dashed curves in the middle panels of
Figure 11, and the corresponding reionization histories for the
rapid and gradual scenarios are shown as the red and blue
dashed curves in the top panels.18 The unrelaxed gas, in which
recombination rates are higher, causes a significant delay in the
global reionization history. This can be seen in the top panel by
comparing the dashed curves to their respective solid curves.
The evolution of the global clumping factors is shown in the

middle panels of Figure 11. Near the beginning of reionization,
essentially all ionized gas is unrelaxed. As reionization
progresses, the evolution of gl is set by a competition between
the unrelaxed, freshly ionized gas, and the relaxed gas that was

Figure 10. Clumping factors and mean free paths for regions that were reionized at different redshifts. We obtain these results by interpolating between our δ/σ=0
simulations. The left and right panels correspond to Γ−12=0.3 and 3.0, respectively. In Section 5 these interpolations are used to construct a simple model for
assessing the impact of gas relaxation on the global reionization process.

18 The relaxed models (dashed) adopt the same ionizing emissivities as the
corresponding patchy models (solid curves).
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reionized long ago. At the end of reionization, gl begins to fall
because the production of unrelaxed, clumpy gas halts.
Notably, we find that gl depends somewhat on the reionization
history. Intuitively, if more volume is reionized later (such as in
our rapid model), the clumping factor rises to a larger value.

For comparison, we also show a couple of clumping factors
from the literature. The dotted curve in the middle panel of
Figure 11 is from the L25N512 simulation of Pawlik et al.
(2015), which was used in the recent study of Finkelstein et al.
(2019). The dotted–dashed curve shows the form

= + -C z1 43100
1.71 from Pawlik et al. (2009), which was

adopted in the widely used model of Haardt & Madau
(2012) for the ionizing radiation background. They define

r rº á ñ á ñC b b100
2

100 , where rb is the baryonic matter density
and á¼ñ100 denotes an average over gas with overdensities
100. In spite of this and other major differences in the
numerical methods and approximations (e.g., our simplistic
model adopts constant values of Γ−12), our results are
reasonably similar to the most recently published clumping
factors. The main qualitative difference is that gl drops off
after the last gas parcels are reionized, in a manner that depends
on the reionization history.

Unrelaxed gas contributes significantly to the total ionizing
photon budget. A comparison between the number of ionizing
photons per hydrogen atom required to complete reionization,

ò= á ñN dt n nion ion H , supports this conclusion. Using our
Γ−12=0.3 model, the relaxed limits of the rapid and gradual

scenarios require 1.47 and 1.72 photons per hydrogen atom,
respectively, to complete reionization. Comparing these
numbers to the higher cost of 1.80 and 2.12 photons per
hydrogen atom in the corresponding patchy models indicates a
50%–70% boost to the total number of recombinations
( -N 1ion ) due to unrelaxed gas.19

Lastly, the bottom panels of Figure 11 consider the evolution
of the comoving mean free path averaged over ionized regions.
Similar to Equation (8), we define the global mean free path in
ionized gas by an average over local absorption coefficients,

( ) ( ) /òl lº- ¥ - ¢z dz dP dz
zgl

1
mfp
912 1 . The relaxed limits (dashed)

were extrapolated to high redshift in a manner similar to the
clumping factor. A more rapid reionization process leads to a
modestly shorter post-reionization mean free path owing to the
effects of relaxation. This is evident in the comparison between
our models at z<6. At z=5.8 (5.2), the mean free path in our
rapid model is 20% (10%) shorter than in the gradual one
(using the Γ−12=0.3 case).

5.2. Spatial Fluctuations in the Mean Free Path

Figure 10 shows that the relaxation process naturally leads to
spatial variations in the mean free path. During reionization, the
mean free path in recently reionized gas can be a factor of a few

Figure 11. The impact of relaxation on the global reionization process. We use two ionizing emissivities from the literature to explore a rapid (red) and gradual (blue)
reionization process. The top, middle, and bottom panels show the global ionized fraction, clumping factor, and mean free path, respectively. Our “patchy” models
account for the fact that regions are reionized at different times and are thus at different stages of relaxation. Ionizing emissivities are rescaled such that reionization
ends at z=6 in all the patchy models. To gauge the effect of relaxation, we compare the models against corresponding relaxed limit models (dashed curves) in which
we adopt the relaxed/late-time clumping factor shown as the blue dashed curves in the middle panels (see text for details). The left and right panels adopt the clumping
factors from our simulations with Γ−12=0.3 and 3.0, respectively. We find that unrelaxed gaseous structures delay reionization and increase the total number of
recombinations by up to a factor of 2. Rapid reionization leads to a shorter mean free path.

19 For Γ−12=3.0, the recombination rate is boosted by 70% and 240% in the
rapid and gradual scenarios, respectively. However, we note that Γ−12=3.0 is
unrealistically large for the mean photoionization rate during reionization.
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lower compared to relaxed regions. Even after reionization is
over, spatial variations persist for the relaxation timescale of a
few hundred million years. Consider, for example, the bottom-
left panel of Figure 10. If the last neutral gas parcels are
reionized at z=6, relaxation alone leads to a factor of 2–3
variation in the mean free path at z=5.5.

This may have observable consequences for the >z 5 Lyα
forest. It has been proposed that the 160Mpc-long Lyα trough
toward quasar ULAS J0148+0600 (Becker et al. 2015) may
owe to neutral islands intersecting the sight line (Nasir &
D’Aloisio 2020; Keating et al. 2020). If true, the ionized
regions bordering the neutral islands were likely in the process
of relaxing at the epoch of observation. In this case, the
unrelaxed gas could contribute to the suppression of Γ−12 in the
vicinity of the neutral islands, and the enhanced clumpiness
may produce signatures in the small-scale structure of the
forest. These possible effects are absent in the postprocessed
RT and seminumerical simulations used thus far to explore
late-ending reionization scenarios (e.g., Kulkarni et al. 2019a;
Nasir & D’Aloisio 2020; Keating et al. 2020). It is furthermore
unclear to what degree relaxation is captured in large-volume,
fully coupled RT simulations because of the extreme dynamic
range required to resolve it. Current models of reionization may
be missing important effects from hydrodynamic relaxation.

6. Conclusion

There have been relatively few studies of the clumpiness of
the recently ionized IGM relative to the properties of the
sources that drove reionization. This is despite the modern
understanding that clumpiness—which sets the mean free path
in ionized regions—shapes the structure of reionization as
much as the sources (Furlanetto & Oh 2005; McQuinn et al.
2007; Alvarez & Abel 2012). Additionally, constraints on the
global rate of ionizing emissions are limited by our under-
standing of the mean free path (Bolton & Haehnelt 2007;
Becker & Bolton 2013; D’Aloisio et al. 2018). Previous studies
of clumpiness have primarily focused on the relaxed limit well
after ionization (e.g., Miralda-Escudé et al. 2000; Pawlik et al.
2009; Finlator et al. 2012; Shull et al. 2012), and those that
followed the hydrodynamic response did so with prescriptions
for the radiation field or did not demonstrate convergence in
resolution nor box size (Pawlik et al. 2009; Kaurov &
Gnedin 2015; Park et al. 2016; Rahmati & Schaye 2018).

We presented a systematic exploration of the clumpiness of
the recently ionized IGM in the concordance ΛCDM cosmology.
This exploration used extremely high-resolution ray-tracing RT
that captured the ~ M104 Jeans scale for an unheated IGM,
combined with DC-mode simulations to explore the effect of
long-wavelength modes. We presented a new Gauss–Hermite
quadrature approach for averaging over DC-mode simulations,
which should be significantly more accurate than the simpler
summation methods of prior studies. Our simulations reveal a
complex ionization and heating process in which the smallest
structures initially self-shield but are ultimately photoevaporated,
driving a hydrodynamic response into the relaxing, ionized IGM
(c.f. Figure 1). The sound waves are initialized at the time of
ionization, leading to a coherent acoustic scale in the gas density
in regions reionized at the same time.

We found that the relaxation of reionized gas lasts hundreds of
millions of years. The clumping factor (which is proportional to
the recombination rate) of the ionized gas can reach as high as
10–20 for regions reionized near ~z 6, close to the likely end of

reionization, with the peak value depending on the incident
ionizing intensity and the degree to which the gas had been
preheated by X-ray sources. Peak clumping occurs 10 Myr after
ionization, set by a balance between how deep the I-fronts
penetrate into dense regions and the timescale of their relaxation.
The clumping factor decays to roughly half its peak value
100 Myr later as the gas responds to the photoheating, reaching
its final relaxed value of»3 after 300 Myr. Because 300 Myr is
a substantial fraction of the reionization duration, differences in
the local timing of ionization introduce spatial variations in the
clumpiness of the IGM.
To understand the impact of unrelaxed gas on the global

reionization history, we implemented our time-dependent
clumping factors into a simple semianalytic model that
accounts for the inhomogeneity of zre. We found that unrelaxed
gas boosts the mean clumping factor during reionization by a
factor of 1.5–1.7, leading to a similar enhancement in the total
number of recombinations. This boost can delay reionization
by Δz=0.4–0.8, with a longer delay for more extended
reionization histories. Our prescription for treating the
inhomogeneous gas clumping can be similarly applied in
future studies assessing the ability of the observed galaxy
population to reionize the universe.
The other side of the coin to gas clumpiness is the mean free

path in ionized regions. The mean free path evolves in unison
with the clumping factor, reaching its relaxed evolution of

( )l µ + -z1mfp
912 4.4 (at fixed Γ−12) within a few hundred

million years. Notably, this is also the evolution of the
(comoving) mean free path measured observationally at
z 5.2 by Worseck et al. (2014). The long timescale of

relaxation has implications for the mean free path and its spatial
fluctuations. A more gradual reionization process, in which
more volume is reionized at earlier times, leads to a longer
post-reionization mean free path. The mean free path is also
more inhomogeneous because the local values in regions that
were reionized more recently can be substantially shorter than
in those that were reionized longer ago.
Our results for the clumping factor and mean free path are

well suited to be applied in subgrid models for both
seminumeric and RT reionization simulation codes. In light
of the emerging picture in which the >z 6 forest may be
probing deep into reionization, another topic of interest is how
relaxation manifests in the forest. There is evidence that some
high-redshift quasars were active for 10 Myr at the epoch of
observation and were shining into a largely neutral medium
(e.g., Eilers et al. 2017; Davies et al. 2019). Our results imply
that these proximity zones may contain unrelaxed gas. A
preliminary investigation by us suggests that the fine-grained
clumpiness of this unrelaxed gas is largely masked by the
considerable thermal broadening of gas recently ionized by a
hard and intense quasar spectrum. Outside of proximity zones,
forest transmission peaks arising from hot, recently ionized
regions may also be a signpost for unrelaxed gas. However,
unrelaxed regions also correspond to shorter mean free paths
and thus more absorption from attenuation of the local ionizing
background. The potential signatures of recently ionized gas in
the Lyα forest merits further study.
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Appendix A
Numerical Convergence and Other Tests

To reduce computational costs, our simulations adopt an
adaptive reduced speed-of-light approximation as described in
Section 3. We have tested this approximation against a series
of runs with different light speeds in boxes with

= -L h256box
1 kpc, N=2563, =z 8re , and Γ−12=0.3. In

order to keep the RT domain sizes equal to those of our
production runs, we have set =N 8dom

3 for all runs with
= -L h256box

1 kpc. The left panel of Figure A1 shows the
clumping factor (CR; top) and mean free path (l ;mfp

912 bottom)
from our speed-of-light tests. In the plot legend, we quote the
adopted speed of light in units of c. The red/solid curve with
the “adaptive” label corresponds to the algorithm used for our
production runs. We find that, while the =c c 0.01sim results
deviate significantly from the rest at early times (D < 10 Myr),
both CR and lmfp

912 are relatively insensitive to c csim at later
times. This is consistent with our argument in Section 3,
justifying our adaptive c csim . In the early phases of the
ionization, the relevant velocity scale is that of the I-fronts,
which is much smaller than =c c0.1sim for the Γ−12 adopted in
this paper (see Equation (1)). However, once the I-fronts have
traversed the domains in our simulations, the relevant scale is
the sound speed, which is always very much smaller than

=c c0.01sim . We find that our adaptive approximation deviates

from the =c c 1sim case by at most ≈10% near the peak
of CR.
We have also tested the numerical convergence of our results

with respect to N (which, recall, corresponds to the hydro and
RT grid sizes, and the dark matter particle number, which are
all equal to one another). We used the adaptive speed-of-light
approximation and the same run parameters as in the above
paragraph, except that we varied N from 10243 down to 643 by
factors of 8. In these tests, N=2563 corresponds to the same
resolution as our production runs. The right panel of Figure A1
shows a comparison of CR and lmfp

912 . We find that our
production simulations are well converged after Δt=10 Myr.
Before Δt=10 Myr, however, even our N=10243 simula-
tion may be approaching convergence at the 10% level,
suggesting that structures smaller in size than D = -x h10 1 kpc
contribute significantly to the recombination rate at these early
times. The N=2563 and N=10243 results for CR deviate by
a factor of 1.7 for Δt<10 Myr. We note that this is similar to
the difference we found between our fiducial runs and our
preheating run with Ti=1000 K (which differ by a factor of
1.9). In other words, our production runs—in which the gas
evolves adiabatically until the ionizing radiation turns on—fail
to converge at a similar level to the uncertainties introduced by
X-ray preheating of the gas. On the other hand, the bottom-
right panel of Figure A1 shows that mean free paths agree
within ≈30% between the N=2563 and N=10243 runs.
As described in Section 3, our RT method employs a domain

structure that is designed to clarify the interpretation of our
results by making zre and Γ−12 as uniform as possible
throughout the simulation box. We have tested the robustness
of our domain method. We compare results from two test runs,
each with = -L h256box

1 kpc and N=2563. The primary goal

Figure A1. Numerical convergence tests of our radiation-hydrodynamics simulations. The top and bottom panels show the clumping factor and mean free path,
respectively. All test simulations shown here use = -L h256box

1 kpc (with 1/8 the volume of our production runs), Γ−12=0.3, and =z 8re . Left: test of our adaptive
reduce speed-of-light approximation. The solid/red curve employs our adaptive method, while the other line styles correspond to constant light speeds. The blue/
dotted–dashed curve shows a full speed-of-light run with csim=c. All test runs here have N=2563. Our adaptive method is accurate to better than 10%. Right: test of
convergence with respect to grid size, N. The red curve has the same resolution as our production runs. Our production runs are well converged after Δt=10 Myr.
Before this time, the clumping factor in the N=2563 run deviates from that of the N=10243 run by a factor of 1.7, which is similar to the level of uncertainty
introduced by X-ray preheating of the gas. On the other hand, the mean free path always agrees within »30%.
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here is to test whether the ionization of overdense regions
(which otherwise might have remained neutral) by the domain
structure introduces spurious effects in our results, e.g.,
artificially boosting CR. To this end, we employ a DC mode
with d s = 3 in order to enhance the abundance of
overdensities in the box. The first run uses one domain, i.e.,
the “domain” is the entire = -L h256box

1 kpc box, and the
other uses =N 8dom

3 domains of size = -L h32dom
1 kpc—the

same size as in our production runs. The first case is equivalent
to using =N 4dom

3 domains of size = -L h256dom
1 kpc in our

production boxes. The left panel of Figure A2 compares CR

(top) and the volume-weighted average neutral fraction, á ñxH I
(bottom). The crucial difference between the runs is that the
neutral fractions reach 1% at Δt=20Myr and D =t 5 Myr
for Ndom=1 and Ndom=8, respectively. As a result, the
Ndom=1 run fails to capture the rapid evolution of CR at
D <t 20 Myr because the I-fronts are still moving through the
larger domains at these times. The CR agree quite well once I-
fronts have traversed both boxes. The right-hand panels of
Figure A2 compare gas density distributions at Δt=20Myr
and Δt=300Myr, respectively. The solid curves correspond
to ionized gas, while the dashed curves correspond to the full
gas distribution (see Section 4.3 for a definition of ( )D DPg g

3 ).
We find good agreement between the Ndom=1 and Ndom=8
distributions, even at Δt=20Myr, in spite of the neutral
fractions differing by a factor of 5. These results suggest that
the domains used in our production runs do not introduce
significant spurious effects at high densities.

Appendix B
Averaging over DC Modes with Gauss–Hermite

Quadrature

Here we present our Gauss–Hermite quadrature method for
averaging results from DC-mode simulations. Consider a
physical quantity, Y(t). (For concreteness, one may consider
the clumping factor—see Section 4.4). Imagine dividing up the
universe into cubic subvolumes equal to our simulation

volumes and measuring Y in each. If the mean density
contrasts were sufficient to describe evolution in each
subvolume, we could compute the average of Y by performing
the integral ( ) ( ) ( )ò d d dá ñ =

-

¥
Y t d Y t P t, ,V1 NL NL NL , where

( )d tNL is the mean nonlinear density contrast of a given
subvolume, and PV is the volume-weighted probability
distribution of dNL. This assumes that the evolution within a
volume is entirely characterized by ( )d tNL , ignoring correla-
tions with other box-scale quantities (the most important of
which is likely the tidal field). Because the box-scale
overdensity controls growth, this assumption is likely accurate
for the Y of interest—the clumping factor and the mean
free path.
We can recast this integral in terms of δ, the linearly

extrapolated initial density contrasts, by writing ( )á ñ =Y t

( ) ( )ò d d d
-¥

¥
d Y t P t, ,V . Here, ( ) ( ) · ( )d d d=P t P V V t, ,V L E L ,

where ( )dPL is the Gaussian probability distribution of δ,
and ( )dV V t,E L is the fraction of the final volume that is
occupied by Lagrangian elements with initial density δ. The
latter accounts for the contraction/expansion of Lagrangian
volume elements from gravitational collapse. Appealing to
the spherical collapse model, we approximate this fraction as

( ) ( ( ))d h d d= +V V t t, 1 ,E L NL , where η is a “fudge factor”
that accounts for deviations in volume conservation from
approximating the universe as a collection of spherically
collapsing/expanding regions. Under these approximations, the
average becomes

( ) ( )
( )

( )
⎛
⎝⎜

⎞
⎠⎟òh d

d
d d ps

d
s

á ñ »
+

-
-¥

¥
Y t d

Y t

t

,

1 ,

1

2
exp

2
. B1

NL 2

2

2

We fix η by demanding that the integral is normalized to unity
in the absence of ( )dY t, in the integrand. Equation (B1) is of
course approximate, but we find that η is never far from unity in
our calculations, with a maximum deviation of 1 – η=6% at
z=5.5 (the lowest redshift in our DC-mode simulations).

Figure A2. A test for potential artifacts from our domain RT structure. We show results from two simulations with = -L h256box
1 kpc, =z 8re , Γ−12=0.3, and

d s = 3 . The DC mode is used to increase the amount of dense peaks in the box, which increases the potential for spurious effects arising from the domain
structure. We compare two runs with ==N 1dom and 8, respectively. Left: comparison of the clumping factors (top) and volume-weighted mean neutral fractions
(bottom) from the two runs. The I-fronts in the Ndom=1 simulation take much longer to traverse the domains, illustrating the need for small domains to capture the
rapid early evolution of CR in the unrelaxed gas. ByΔt=20 Myr the I-fronts have made it through the =N 1box box and the two runs agree. Right: comparison of the
gas density distributions for ionized (solid) and all gas (dashed). The top and bottom panels show two snapshots in time. Agreement between the distributions suggests
that the domains do not introduce significant spurious effects from ionized overdense gas that would otherwise have remained neutral.
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In practice, we must evaluate the integral, Equation (B1),
using measurements of ( )dY t, from just a handful of
simulations. The optimal values of δ/σ can be determined by
appealing to Gaussian quadrature. Under the change of
variable, d s=x 2 2 , we can recast Equation (B1) to the form

( ) ( ) ( ) ( )ò
h
p

á ñ = -
-¥

¥
Y t dx f x t x, exp , B22

where we have defined ( ) ( ) ( ( ))d= +f x t Y x t x t, , 1 ,NL . To
this integral we can readily apply the technique of Gauss–
Hermite quadrature,

( ) ( ) ( )åh
p

á ñ »
=

Y t w f x t, , B3
i

n

i i
1

where n is the number of sample points, wi are the Gauss–
Hermite weights, and xi are the roots of the Hermite polynomial
Hi(x). Note that if f were a polynomial up to degree five, then
á ñY could be computed exactly using just n=3 sample points.
In what follows, we assume that f can be well approximated by
a polynomial of degree five, as we expect the clumping factor
and mean free path to be smooth functions of the DC mode. We
use three sample points determined by the roots of H3(x) to be
d s = 0, 3 . We therefore complement our mean-density
runs with two DC-mode simulations with d s =  3 (see
Table 1). In this case, the weights are p=w 2 31 and

p= =w w 62 3 , where w1 corresponds to the δ/σ=0
evaluation.

We apply this method to compute the mean clumping factor,
( )á ñC tR , and mean free path, ( )lá ñtmfp

912 . For the latter, we take Y
(t) to be the absorption coefficient of the box,

( ) ( )k lºt t1 mfp
912 . We then take ( ) ( )l ká ñ » á ñt t1mfp

912 , which
is equivalent to assuming that correlations in κ between
neighboring = -L h1box

1 Mpc patches of the universe are
negligible.
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