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Abstract: We show that narrowband two-color entangled single Stokes photons can be generated
in a ultra-cold atoms sample via selective excitation of two spontaneous four-wavemixing (SFWM)
processes. Under certain circumstances, the generation, heralded by the respective common
anti-Stokes photon, is robust against losses and phase-mismatching and is remarkably efficient
owing to balanced resonant enhancement of the two four-wave mixing processes in a regime
of combined induced transparency. Maximally color-entangled states can be easily attained by
adjusting the detunings of the external couplings and driving fields, even when these are quite
weak.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Over the past decade, much attention has been devoted to developing sources of non-classical
light, such as single-photon and entangled-photon states. Combining techniques of linear and
nonlinear optical processing, measurement postselection techniques and optical (homodyne)
tomography has led to a number of pioneering experiments in which several non-classical optical
states have been prepared and measured [1]. Entangled states is just an ubiquitous example and
one that represents a cornerstone of most protocols [2] for foundations of quantum physics and for
applications of quantum technologies, such as e.g. quantum information processing [3], quantum
computers [4,5] and algorithms [6], quantum metrology [7] and other essential resources for next
generation photonic quantum technologies [8,9].

It has also been known since the very beginning of quantum optics that nonclassical properties
of optical states such as e.g. entanglement rely indeed on rather weak-nonlinearities and are
furthermore vulnerable to losses [10–13] The quantum features of an optical state propagating
through a lossy medium are shared with the environment and hence are lost when the environment
is traced over. Therefore it has been a long standing goal to minimize the amount of losses
while maximizing the strength of the nonlinearities in the preparation of these states in order to
make them useful for quantum networks [14], quantum memories [15], quantum key distribution
[16,17] and more generally for quantum information processing [3].

Approaches based on nonlinear optical effects such as spontaneous parametric down-conversion
and spontaneous four-wave mixing have been widely employed for decades to generate entangled
photon pairs. Entangled photons, generated by spontaneous parametric down-conversion (SPDC)
in nonlinear crystals [18–23], are endowed with large bandwidths, typically on the order of
several THz, which makes them unfortunately unfit for quantum memory devices or repeaters
based on atomic interfaces [24–28]. Spontaneous four-wave mixing (SFWM) is better suited to
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the task of generating narrowband photons [28–30] as witnessed by the recent development in
the generation of bi-photons in atomic vapors [31,32]. In this case configurations comprising
two [33,34], three [35] or four atomic levels [36,37] suitably driven by external (classical) fields
have been thoroughly investigated.
Up to now, several SFWM based schemes to generate pairs of polarization entangled [38],

position-momentum entangled [39] and hyperentangled photons [40] sources have been proposed
and experimentally demonstrated. More recently, frequency-entanglement has also been proposed
in the context of a two-color entangled single-photon [41,42], where two frequency (color) modes
become entangled through sharing of a single photon, very much alike spatial entanglement
where the single-photon shares instead two distinct paths.

Intrinsic to this scheme is the three-level atomic configuration, which prevents from balancing
the resonant enhancement [43–45] of the nonlinearities associated with the two SFWM processes
responsible for entanglement. This appears to limit the efficiency of the entanglement generation.

Fig. 1. Single-photon Color-entanglement Generation. Three sufficiently weak laser
beams (ωc, ωc′ , ωd) may promote the spontaneous generation of two distinct pairs of
Stokes and anti-Stokes photons. This occurs through third-order nonlinear spontaneous
processes where the driving (ωd) and coupling (ωc) fields yield the Stokes and anti-Stokes
pair {ωs,ωas} whereas the same driving (ωd) and the other coupling (ω′c) yields the
second pair {ω′s,ωas}. The two distinct processes are displayed separately in panels
(A) and (B). The two couplings alone (ωc,ω′c) are instead responsible for the energy
exchange between the two Stokes photons ωs and ωs′ as depicted in panel (C). The
atomic level scheme comprises the three excited states |3〉 = |5 2P1/2,F = 1,mF = 0〉,
|4〉 = |5 2P1/2,F = 2,mF = 0〉 and |5〉 = |5 2P3/2,F = 2,mF = 0〉 and the two close
ground–hyperfine states |1〉 = |5 2S1/2,F = 1,mF = −1〉 and |2〉 = |5 2S1/2,F = 1,mF = 1〉.
This choice of states, where all optical transitions have approximately the same dipole matrix
elements |µ| ≈ 0.73× 10−29 C·m and coherence decay rate γ and with all processes (A-B-C)
further sharing the common spin coherence γ12 (see Sect. 3), makes the level configuration
symmetric. This holds, in particular, for the two non-linear mixing processes in panels
(A) and (B), the two key four-wave mixing processes (that may be interpreted as the two
indistinguishable paths in the double-slit experiment) responsible for the entanglement
generation, whereas panel (C) describes an additional process that can be suppressed (see
text). We can control the efficiency of the generation process through the detuning ∆c,
∆c′ , ∆d and the Rabi frequency Ωc, Ωc′ and Ωd of the applied beams as well as through
the two-photon detuning δ. A magnetic field removes all degeneracies with respect to the
sub-levels {mF} and selectivity is ensured by polarization selection rules: the laser field ωc
that drives the transition |1〉 ↔ |3〉 is assumed to be σ+- polarized, yet without coupling the
atoms through the |2〉 ↔ |3〉 transition, though the two ground states |1〉 and |2〉 lie close
to each other. For the same reason, ωc′ and ωd are assumed to be σ+- and σ−- polarized,
respectively.
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In this paper, we propose an efficient novel approach to the single-photon color-entanglement
generation problem. The efficiency of the generation process hinges on the balanced resonant
enhancement of two specific SFWMprocesses responsible for the entanglement. This is harnessed
through a five atomic-level configuration driven by “two” couplings and “one” driving field
where each coupling and driving pair is two-photon resonant with the respective Stokes and
(common) anti-Stoke modes (See Fig. 1). Despite the apparent complexity of the multi-levels
configuration, the present proposal scores a remarkable increase in the generation efficiency when
compared to apparently simpler schemes [41]. This mainly hinges on the concomitant resonant
enhancement of the relevant third-order susceptibilities in a regime of induced transparency
which warrants for a generation process that is robust against loss and phase-mismatching. Both
are crucial for quantum applications and processing [3]. Control of the efficiency is moreover
rather straightforward and attained by adjusting the external fields parameters (See Fig. 1). Bright
narrowband maximally color-entangled states can be attained e.g. with very weak and resonant
coupling and driving fields.

We give in Sect. 2–3 the linear and third-order susceptibilities along with the archetype of an
atomic interface in Sec. 3 needed to describe the entanglement generation in Sec. 4. Details
on the derivation of the susceptibilities are provided in the Appendix. Some properties of the
color-entangled single-photon state are presented therein along with an analysis of the main
factors affecting the generation process efficiency. In addition, specific generation results are
discussed in the subsections 4.1 and 4.2 respectively for a large detuning driving and a resonant
driving regime. We present instead in the following Sect. 5 a scheme to engineer both efficiency
and degree of entanglement while the conclusions are summarized in Sec. 6.

2. Model susceptibilities

The generation scheme follows from a four-photons spontaneous four-wave mixing process [38]
in a multi-level third-order nonlinear medium where, in the presence of a weak classical coupling
ωc (ωc′) and a driving ωd beam, Stokes and anti-Stokes photon pairs emerge. Two of such
processes, one leading to the emission of a Stokes (ωs) and an anti-Stokes (ωas) photon–pair and
the other leading to the emission of the same anti-Stokes (ωas) yet a different Stokes (ω′s) photon
are separately sketched in Figs. 1(A) and (B). The nonlinear mixing process leading e.g. to the
generation of the first pair {ωas,ωs} hinges on the formation of a common collective atomic spin
excitation between levels |1〉 and |2〉 via the coupling and the driving that are responsible for the
cycling transitions between the two lower levels through the upper levels |3〉 and |5〉. Similarly
for the second pair {ωas,ω′s}, which involves the upper levels |4〉 and |5〉.

Control over the generation process occurs through the coupling and driving fields. We denote
e.g. by ∆c = ω31 − ωc the coupling’s detuning from the resonant frequency of the transition
|1〉 ↔ |3〉 and with Ωc = µ13Ec/2~ its Rabi frequency, where Ec stands for the field’s amplitude
and µ13 for the dipole matrix element of the same transition. The other detunings ∆c′ and ∆d and
Rabi frequencies Ωc′ and Ωd are defined in the same manner. We further denote by Ê+m, with
m ∈ {s, s′, as}, the field operator for the Stokes or anti-Stokes photon

Ê+m(r, t) =
1
√
π

∫
dω

√
2~ω
cε0A

ei[km(ω)·r−ωt]âm. (1)

The Stokes photon’s frequency ωs detuning from the corresponding transition is ∆s = ω32 − ωs
with the other detunings ∆s′ and ∆as defined in the same manner. In addition, we introduce the
two-photon detuning

∆c − ∆s = ∆c′ − ∆s′ = −(∆d − ∆as) = δ (2)

which we assume to be the same for each conjugate pair of classical-photon fields.
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We can thus work in the rotating frame approximation with a time independent Hamiltonian
Ĥ. The atomic dynamics, in particular, can be described by the Heisenberg-Langevin equations
of motion for populations (σ̂ii) and coherences (σ̂ij),

i~
∂

∂t
σ̂ij = [σ̂ij, Ĥ] = [σ̂ij, Ĥ0 + ĤI], (3)

where as usual Ĥ0 and ĤI denote the (free) atoms and the electric dipole interaction parts [46]. As
the Stokes and anti-Stokes fields represent single-photons, they are taken to be much weaker than
the two applied couplings and driving, which warrant for a perturbative approach by replacing
Ê±m → εÊ±m, where ε is a small parameter. This enables us to expand populations and coherences
in powers of ε ,

σ̂ij = σ̂
(0)
ij + εσ̂

(1)
ij + ε

2σ̂
(1)
ij · · · (4)

leading to sets of zero-order and first-order evolution equations namely for σ̂(0)ij and for σ̂(1)ij . The
former describes the free evolution in the presence of the applied coupling and driving beams
while the latter describes the evolution when weak nonlinear Stokes and anti-Stokes fields are
being generated. One can obtain the solution for σ̂(0)ij as shown in the Appendix Eqs. (24a)–(25j).
Provided all detunings are sufficiently larger than the excited states decay rate (optical transitions),
i.e. ∆n � Γj′j, or all classical beams Rabi frequencies are sufficiently small when ∆n → 0, i.e.
Ωn � Γj′j, with n ∈ {c, c′, d}, j′ ∈ {3, 4, 5}, j ∈ {1, 2}, then the zero-order solutions for the
excited states populations are vanishing,

σ
(0)
jj → 0, j ∈ {3, 4, 5}. (5)

We checked that for the parameters we used in Sect. 4.1 (large detuning case) and in Sect. 4.2
(resonant case), the excited states (overall) zeroth-order population σ(0)jj , j ∈ {3, 4, 5} obtained
from solving (A2a-A2j) does not exceed 5%�. For the single-photon generation process to be
reliable negligible excited states populations are indeed required. While the solutions for the
ground populations satisfy the relation

σ
(0)
11

σ
(0)
22

=
|Ωd |

2

(|Ωc |
2 + |Ωc′ |

2)
(6)

We can now use (5–6) to obtain steady-state expressions for the first-order optical coherences
which are then used to attain the macroscopic polarization exhibited by the anti-Stokes photon
(ωas)

p̂15 = ε0 χasÊ+as
+ ε0 χ

(3)
as,sEcEdÊ−s + ε0 χ

(3)
as,s′Ec′EdÊ−s′ .

(7a)

and that exhibited by the (two) Stokes photons (ωs,s′) i.e.

p̂23 = ε0 χsÊ+s
+ ε0 χ

(3)
s,asEcEdÊ−as + ε0 χ

(3)
s,s′EcE∗c′Ê

+
s′ ,

(7b)

p̂24 = ε0 χs′Ê+s′

+ ε0 χ
(3)
s′,asEc′EdÊ−as + ε0 χ

(3)
s′,sE

∗
cEc′Ê+s .

(7c)

Here
χas = iNσ(0)11

|µ15 |
2

ε0~
g12g32g35g42g45

D6 , (8a)
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χs = iNσ(0)22
|µ23 |

2

ε0~
g21g24g51g53g54
(D∗)6

, (8b)

χs′ = iNσ(0)22
|µ24 |

2

ε0~
g21g23g51g53g54
(D∗)6

, (8c)

denote the linear susceptibilities, while

χ
(3)
as,s = − iN

µ13µ15µ23µ25

4ε0~3
g42g45
D6[

g32g35
g13

σ
(0)
11 +

(
g12 + g35 +

g12g32
g25

)
σ
(0)
22

]
,

(9a)

χ
(3)
as,s′ = − iN

µ15µ14µ25µ24

4ε0~3
g32g35
D6[

g42g45
g14

σ
(0)
11 +

(
g12 + g45 +

g12g42
g25

)
σ
(0)
22

]
,

(9b)

χ
(3)
s,as = − iN

µ13µ15µ23µ25

4ε0~3
g24g54
(D∗)6[ (

g21 + g53 +
g21g51
g13

)
σ
(0)
11 +

g51g53
g25

σ
(0)
22

]
,

(9c)

χ
(3)
s′,as = − iN

µ15µ14µ25µ24

4ε0~3
g23g53
(D∗)6[ (

g21 + g54 +
g21g51
g14

)
σ
(0)
11 +

g51g54
g25

σ
(0)
22

]
,

(9d)

χ
(3)
s,s′ = − iN

µ13µ23µ41µ42

4ε0~3
g51g53g54
(D∗)6[ (

g24
g41
+
g21g24
g13g43

+
g21g24
g41g43

)
σ
(0)
11 + σ

(0)
22

]
,

(9e)

χ
(3)
s′,s = − iN

µ14µ24µ31µ32

4ε0~3
g51g53g54
(D∗)6[(

g23
g31
−
g21g23
g14g34

−
g21g23
g31g34

)
σ
(0)
11 + σ

(0)
22

]
,

(9f)

denote the nonlinear (third-order) susceptibilities, with

D6 =g12g15g32g35g42g45

×

(
1 +
|Ωc |

2

g12g32
+
|Ωc′ |

2

g12g42
+
|Ωd |

2

g12g15

)
.

and with gij the complex decay functions whose imaginary and real parts denote respectively
the detuning and coherence decay rate γij associated with the corresponding transition, namely
g13 = γ13+ i∆c, g14 = γ14+ i∆c′ , g12 = γ12+ iδ, g13 = γ13+ i∆c, g14 = γ14+ i∆c′ , g15 = γ15+ i∆as,
g23 = γ23 − i (δ − ∆c), g24 = γ24 − i (δ − ∆c′), g25 = γ25 − i (δ − ∆as), g34 = γ34 − i (∆c − ∆c′),
g35 = γ35 − i (∆c − ∆as), g45 = γ45 − i (∆c′ − ∆as), and gij = g∗ji.

The susceptibility χas in (7a), e.g., represents the linear contribution to the medium polarization
[47] at the anti-Stokes frequency ωas and its real and imaginary parts are known to describe
respectively the medium dispersion and absorption of photons at the anti-Stokes frequency ωas
[48]. Similarly for the linear Stokes susceptibilities χs,s′ in (7b–7c). The spontaneous nonlinear
(four) wave-mixing of a coupling (ωc), driving (ωd), anti-Stokes (ωas) and Stokes (ωs) photon
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contributes to the medium non-linear polarization at ωas and at ωs respectively through the
susceptibility χ(3)as,s in (7a) and χ

(3)
s,as in (7b). Both processes are sketched in Panel A of Fig. 1. The

two processes can also be interpreted as arising from the cycling transition |1〉 → |3〉 → |2〉 → |5〉
leading to the emission of a photon at frequency ωas, yielding a nonlinear polarization ∝ χ

(3)
as,s

at the |5〉 ↔ |1〉 transition or arising from the transition |2〉 → |5〉 → |1〉 → |3〉 leading to
the emission of a photon at frequency ωs and yielding a nonlinear polarization ∝ χ

(3)
s,as at the

|3〉 ↔ |2〉 transition. The other nonlinear contributions to the polarization(s) can be discussed in
much the same way namely those proportional to χ(3)as,s′ and χ

(3)
s′,as, which we sketch in Panel B

of Fig. 1, and the nonlinear contributions proportional to χs′,s and χs,s′ , sketched in Panel C of
Fig. 1.

3. Atomic interface model

The interface setup we examine here to discuss the entanglement generation efficiency adopts
atomic transitions appropriate to a cold 87Rb sample (Fig. 1). The level scheme involves
both D1 and D2 transitions with the three excited states |3〉 = |5 2P1/2,F = 1,mF = 0〉,
|4〉 = |5 2P1/2,F = 2,mF = 0〉 and |5〉 = |5 2P3/2,F = 2,mF = 0〉 and the two close
ground–hyperfine states |1〉 = |5 2S1/2,F = 1,mF = −1〉 and |2〉 = |5 2S1/2,F = 1,mF = 1〉.
For such a level configuration the population decay rates from the three excited states and

the coherence decay rates of the excited to ground states and of the excited to excited states
are approximately equal. We take Γj′j = Γ = 3 MHz, with j ∈ {1, 2} and j′ ∈ {3, 4, 5} for the
single-channel excited state decay. Because γij = 1

2
∑

k Γik +
1
2
∑

k′ Γjk′ is half the sum of the
overall decay rates from levels |i〉 and |j〉, when taking a common single-channel excited state
decay Γj′j = Γ, with j ∈ {1, 2} and j′ ∈ {3, 4, 5}, optical transitions will share the common
dephasing γ51 ' γ52 ' γ41 ' γ42 ' γ31 ' γ32 = γeg ' Γ, yet with the other coherences decaying
at γ54 ' γ53 ' γ43 ' γee′ = 2Γ. The two close ground levels (spin) coherence is here taken to
decay with γ12 ' 5 × 10−4 Γ [49].
For the atomic levels of Fig. 1, |µ13 | = |µ14 | = |µ23 | = |µ24 | =

√
1/12 × 2.5377 × 10−29 Cm

= 0.7326× 10−29 Cm while |µ15 | = |µ25 | =
√
1/24× 3.58424× 10−29 Cm = 0.7316× 10−29 Cm.

All the optical transitions have then approximatly the same dipole moment µ ' 0.73 × 10−29 Cm
(see e.g. [50]).

Then, to a very good approximation,

|µjj′ | ≈ |µ|, with j ∈ {1, 2}, j′ ∈ {3, 4, 5}. (10)

This makes the two non-linear processes (A) and (B) in Fig. 1 symmetric. This amounts to say,
in turn, that generation of the two Stokes photons via spontaneous scattering through the two
distinct excited states |3〉 and |4〉 occurs much in the same way so as to render the two four-wave
mixing processes (A) and (B) indistinguishable.
We further anticipate some important properties of the susceptibilities that are to be used in

the next section. When (10) holds along with

∆c = ∆c′ (11)

it can be shown in fact that χ(3)as,s = χ
(3)
as,s′ , and χ

(3)
s,as = χ

(3)
s′,as. The above condition (11) means that

the (two) couplings frequency difference matches exactly the energy separation between level |3〉
and |4〉 or equivalently that the emitted Stokes photons are equally detuned from the relevant
transitions. Through the condition (11) we can further reduce the number of complex decay
functions, i.e., g54 ' g53, g42 ' g32 and g41 ' g31.
It is also worth noting that the five-level configuration of Fig. 1, which will be used in the

following Sec. 4(A-B) to assess the generation efficiency in a cold 87Rb sample, may well fit
other atomic gas species such as Cesium atoms [51,52] as well as solid media such as quantum
dots in semiconductors [53] or nitrogen-vacancy centers in diamond [54].
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4. Generation of the entangled states

In the interaction picture, the effective Hamiltonian describing the photon-atom interaction can
be written as [55,56]

ĤI =
ε0A
4

∫ L
2

− L
2

dz
(
χ
(3)
A EcEdÊ−asÊ

−
s + χ

(3)
B Ec′EdÊ−asÊ

−
s′

+χ
(3)
s,s′E

∗
c′EcE−s E

+
s′ + χ

(3)
s′,sEc′E∗cE

−
s′E
+
s

)
+ H.c.

(12)

where we denote by χ
(3)
A = χ

(3)
as,s + χ

(3)
s,as and by χ

(3)
B = χ

(3)
as,s′ + χ

(3)
s′,as. Here we assume that

the Stokes and anti-Stokes photons are collected within a very small angle with respected to z
direction along which the coupling and the driving fields travel together. The first term in (12),
proportional to χ

(3)
A , relates to the mixing process in Panel A of Fig. 1 and is responsible for

the generation of the Stokes and anti-Stokes pair {ωs,ωas} from one of the two couplings and
the driving field. The second term, proportional to χ(3)B , is responsible for the generation of a
different photon pair {ω′s,ωas} through a similar process as depicted in Panel B in Fig. 1. For
weak nonlinear interactions (weak spontaneous scattering limit) [57], we may limit ourselves to
two-photons excitations so that the resulting state can be described to the first-order perturbation
theory in which higher-order terms in the expansions corresponding to more than two-photons
excitations are neglected, see also [41,57]. Then we have

|Ψ〉out '

(
1 − i

~

∫ ∞

−∞

dtĤI

)
|0〉

= |0〉 +
∫

dω
[
fA(ωc + ωd − ω,ω)â†as(ωc + ωd − ω)â†s (ω)

+ fB(ωc′ + ωd − ω,ω)â†as(ωc′ + ωd − ω)â†s′(ω)
]
|0〉.

(13)

The last two additional terms in (12), describing the conversion of the two Stokes photons
ωs′ and ωs into one another, are proportional to Ê+s and Ê+s′ and do not contribute to |Ψ〉out. We
further may rewrite the two complex amplitudes

fA(ω,ω′) = −i
√
ωω′

4πc
χ
(3)
A (ω,ω

′)EcEd δ
(L)
A L (14)

fB(ω,ω′) = −i
√
ωω′

4πc
χ
(3)
B (ω,ω

′)Ec′Ed δ
(L)
B L (15)

in terms of the (complex) mismatch function

δ
(L)
A = e−i(

∆kAL
2 )sinc(

∆kAL
2
) (16)

resulting from the spatial integral over the medium length L in (12). The overall (complex)
wavevectormismatch∆kA, which includes attenuation and the characteristic wave-vectormismatch
among all fields involved in the process A, is computed from the index of refraction as,
∆kA = ω′

c n51(ω
′) + ω

c n32(ω) −
ωc
c n31(ωc) −

ωd
c n52(ωd), where nj′j with j′ ∈ {3, 4, 5} and

j ∈ {1, 2} is the complex refractive index experienced by the fields driving the respective
transitions |j′〉 ↔ |j〉, which in turn is computed from the usual (linear) susceptibility relation
n ∼ 1 + 1

2 χ [47]. Analogous expressions hold for ∆kB and δ(L)B . Equation (13) anticipates a
valuable feature of our proposal, namely, that the detection of an anti-Stokes photon (ωas) projects
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|Ψ〉out into
|Ψ〉p = [〈0as |âas(ωas)]|Ψ〉out. (17)

i.e. state superposition of a (single) photon with frequency ωs and ωs′ . Substituting, in fact, (13)
into (17) and with the help of

[
âas(ω), â†as(ω′)

]
= δ(ω − ω′) [58,59]

|Ψ〉p = fA(ωas,ωs)|1s, 0s′〉 + fB(ωas,ωs′)|0s, 1s′〉 (18)

with ωs(s′) = ωc(c′) +ωd −ωas set by the conservation of energy. In the state (18) fA is the spectral
amplitude component of the two-photon state probability distribution. Its magnitude square |fA |2
may then be considered as the spectral component of the generation rate of the pair {ωas,ωs} for
the process in Fig. 1(A). The overall probability of finding a single-Stokes photon at ωs or ωs′ ,

P =
��〈1s |Ψ〉p��2 + ��〈1s′ |Ψ〉p��2 = |fA |2 + |fB |2, (19)

may then be regarded as a figure of merit (P) for the entanglement generation efficiency. Note
that we assume that once an anti-Stokes photon is detected, an Stokes photon is detected for
sure (100% heralding efficiency). Such genaration probability will essentially depend on three
factors. First, it will depend on the mismatch functions δ(L)A,B, second, on the Stokes photons
absorption also affecting the mismatch above through ∆kA,B and which we model here as
R(ωs,s′) = 1 − exp

{
−Im[χs,s′(ωs,s′)]ωs,s′L/c

}
and third on the nonlinear susceptibilities χ(3)A,B.

Clearly, large values of the mismatch functions and the non-linear susceptibilities ensure large
frequency-conversions and hence increased efficiencies P’s. Remarkably, all three factors can be
optimized acting on the (common) detuning δ and to assess this important point we examine
below the specific situation described in Sec. 2 following from (10–11) and for which we have
χs = χs′ and χ(3)A = χ

(3)
B

4.1. Large detuning generation

We start discussing Stokes generation (ωs) for the archetype setup discussed in Sect. 3 and the
further assumption of large detunings and weak strengths of the two couplings and driving fields
(See Fig. 1). The results shown in Fig. 2 would hold unchanged for the Stokes photon ωs′ because,
under the above conditions, the two Stokes photons have the same absorption, phase mismatch,
nonlinear susceptibility and hence generation efficiency. In particular, Fig. 2(a) shows that photon
absorption is negligible at two-photon resonance δ = 0 while maximum slightly below resonance
(P1); such a behaviour originates from the fact that when ∆ � Γ the denominator of the linear
susceptibilities can in general be written as

D6 ' 4∆5(δ − ∆eff − iγeff) (20)

with

∆eff = −
Ω2

c +Ω
2
c′ +Ω

2
d

∆
, (21a)

γeff =
Ω2

cγ23 +Ω
2
c′γ24 +Ω

2
dγ15

∆2
. (21b)

The upper level is dynamically shifted [60] by the amount ∆eff while the generated/absorption
Stokes line-width γeff being a suitable combination of the linewidths associated with the transitions
in Panel A of Fig. 1. Just in correspondence of the absorption peak the absorption dependent
mismatch δ(L)A in Fig. 2(b) exhibits a minimum bearing also a similar width, yet for the typical
interface lengths L ' 100 µm we use here the mismatch function acquires values close to
unity at two-photon resonance (P1). Finally, the (dimensionless) nonlinear susceptibility in
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Fig. 2(c) appears in this regime to be a pure imaginary function and vanishing when absorption
is maximum. All three parameters combine together to yield the generation efficiency curve
P plotted in Fig. 2(d) that has a maximum at P3 where absorption less than that at the shifted
value (P2) and with a mismatch is closer to unity. Within this regime we can obtain a maximum
efficiency P which is approximately 2 × 10−5. By the way, the large-detuning case with
∆c = ∆c′ = ∆d unlike the present situation with ∆c = ∆c′ = −∆d will make a significant increase
in the coherence between excited levels |3〉 and |5〉 and between |4〉 and |5〉, causing amplification
at the Stokes-photon transition (Im χm<0 m ∈ {s, s′}. The latter turns out to be detrimental
for (Stokes) "single-photon" generation. As for the unbalancing of the detuning condition,
We checked that ∆c , ∆c′ will quickly unbalance the two SFWM processes, even when equal
coupling fields strengths are chosen, it hampers in the end the degree of the entanglement.

Fig. 2. Large Detuning Color-Entanglement Generation. (a) Absorption R, (b) modulus
of the mismatch function δ(L)A , (c) real and imaginary part of the nonlinear susceptibility
χ
(3)
A and (d) generation efficiency P as a function of the Stokes (ωs) two-photon detuning δ

(Panel A Fig. 1). Here ∆c = ∆c′ = 10 Γ, ∆d = −10 Γ, Ωc = Ωc′ = 0.5 Γ, Ωd =
√
2Ωc. Plots

in each panel are the same for Stokes photon ωs′ (Panel B Fig. 1). Characteristics points in
the Stokes generation process are marked by vertical lines representing maximum generation
efficiency (P3), maximum (P2) and minimum (P1) absorption. Optimal efficiency occurs
for Stokes photons at wavelengths λs = 795.522 nm, λ′s = 795.521 nm, with equal detuning
(δ = −0.08Γ) from the relevant transitions, whereas the anti-Stokes photon is emitted at
λas = 780.778 nm. The sample is L = 100 µm long and contains atoms with an average
density of N0 = 5 × 1011 cm−3 while other atomic parameters are as in Fig. 1.

4.2. Resonant generation

While keeping the above large-detuning regime as a reference case we now focus on a similar
situation except that coupling and driving beams are now taken all resonant while having
strengths one order of magnitude smaller. As before the discussion would hold unchanged
for the Stokes photon ωs′ and results are now shown in Fig. 3. Unlike in the previous case
Stokes absorption now exhibits the typical electromagnetically induced transparency narrow
dip whose width δEIT ∼ Ω2

c/γ32 gives approximately the linewidth of the entangled state. At
double-photon resonance the absorption reaches a minimum of approximately 8%� and such a
small absorption affects also the mismatch δ(L)A that shows a peak exactly at the double-photon
resonance (see Fig. 3(b)). The mismatch is otherwise bound to the background value of about
0.6, as the absorption of the coupling and driving fields remain strong. The (dimensionless)
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nonlinear susceptibility χ(3)A in Fig. 3(c), again a purely imaginary function, is maximum at the
double-photon resonance reaching values 2 ∼ 3 orders of magnitude larger than in the previous
large-detuning case. At last, owing to the combined effect of the resonant enhancement of
the nonlinearity and the very small absorption, both hinging on electromagnetically induced
transparency with coupling and driving fields both resonant, P can reach values as high as
0.005 within a very narrow bandwidth (see Fig. 3(d)). Because both (nonlinear) mixing paths
in Fig. 1(A,B) are "equally" enhanced, the generation of the state (18) can be attained with
rather good efficiencies, here quantified in terms of the count rate per unit of pump intensity and
bandwidth (brightness). The latter largely exceeds [61] the one obtained e.g. with a different yet
simpler atomic level configuration [41], with both driving fields off resonance, but also the one
obtained e.g. in [29], where only one resonant driving pump is used.

Fig. 3. Resonant Color-Entanglement Generation. Same as Fig. 2 but ∆c = ∆c′ = ∆d = 0
and Ωc = Ωc′ = 0.05 Γ.

5. Entanglement engineering

In this last section we would like to investigate how to optimize the entanglement generation.
Specifically, this amounts to identify regimes where large generation efficiencies (P) occur with
a concomitant high degree of entanglement. As a measurement of the entanglement we here
adopt the negativity of the partial transpose (NPT), a concept based on the Peres-Horodecki
separability criterion [62,63]. For our superposition state (18), we have

NPT =
2
P
× |fA | |fB | (22)

taking on values ranging from 0 to 1 respectively for separable and maximally entangled states.
Switching off, e.g. one of the coupling field (f → 0) clearly makes NPT → 0 while under
conditions (10–11) and further assuming equal strengths of the applied couplings would make
NPT → 1, with |Ψ〉p being a maximally entangled in this case. As it may already be seen by
inspection of Eqs. (14–15) and (18), the degree of entanglement basically relies on the relative
strengths of the two coupling fields Ωc and Ωc′ “provided” the two nonlinear susceptibilities
for the spontaneous FWM processes have the same value and provided that mismatches are
negligible. And it is instructive to notice that when Eqs. (10–11) and Ωc = Ωc′ both hold, it
follows that |Ψ〉p → |1s, 0s′〉 + |0s, 1s′〉, i.e. we attain a maximal entangled state, regardless of
the values of the two-photon detuning δ.
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We report in Fig. 4, the degree of entanglement (NPT) together with the generation efficiency
(P) for different values of Ωc and Ωc′ . We observe that maximal entanglement takes place over
an appreciably wide region along the diagonal, while dropping quickly to zero as one unbalances
the two coupling beam intensities. Notice that the maximal entanglement region is represented
by a cone that widens for increasing coupling intensities and so does the efficiency that grows
larger as P ∝ |Ωc |

2 + |Ωc′ |
2. To this extent it’s worth noting that we can not make P to increase

at will so as to mantain the first-order perturbation expansion (13) valid.

Fig. 4. Negativity of the partial transpose (NPT) (color scale) and generation efficiency (P)
(white lines) vs. the strength of the two coupling beams. Here ∆c = ∆c′ = ∆d = 0, δ = 0,
Ωd = 0.08 Γ. Other parameters are as in Fig. 2.

6. Conclusions

We have proposed an efficient scheme for heralded generation of single-photon narrowband
color-entangled states in a cold atoms sample. Under certain circumstances, the selective
excitation of two specific non-linear spontaneous four-wave mixing in a five-level configuration
leads to the entanglement of two frequency modes (color-entanglement) being shared by a
single Stokes photon. Weak losses and evenly balanced enhancement of these two nonlinear
wave mixing processes lead to an improvement of the entanglement generation efficiency, as
compared to apparently simpler generation schemes [41]. More generally, our results may also
provide an advantage in improving [61] the generation efficiency of bi-photons with shaped
temporal waveforms [31,32] where, unlike in the present work, a single four-wave mixing process
underlays the generation of a Stokes-antiStokes pair. Besides weak losses and evenly balanced
enhancement, both important experimental key factors in the generation of the state (18), the
state’s very narrow-bandwidth is another important feature, its relevance laying on the fact that
(single-photon) line-widths smaller than the atomic line-width are essential e.g. in the storage
of entanglement at distant locations (See e.g. [24]). Our proposal further allows for flexible
manipulation of the degree of entanglement and optimization of its generation efficiency both
of which may e.g. be enabled by a proper balance of the external driving fields parameters
(see Figs. 2–4). The generation of maximally single-photon color-entangled states [10,46], as
an example, can be attained under readily straightforward manipulation of the coupling fields
driving conditions.

Appendix: the zero-order and first-order solutions

Let us consider the five-level system interacting with two coupling fields ωc and ωc′ and a driving
field ωd, as shown in Fig. 1. Here ωn, n ∈ {c, c′, d} stands for the frequency of the corresponding
field. Under the law of energy and momentum, the Stokes photons ωs, ωs′ and anti-Stokes
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photons ωas are spontaneously generated. For the convenience of the parameter choice, we take
into account a specific 87Rb atom for our five-level system, however this model can represent other
media such as quantum dots or nitrogen-vacancy centers. In the rotating-wave approximations,
the Hamiltonian describing the dynamics of such system is given by

Ĥ/~ = δσ̂22 + ∆cσ̂33 + ∆c′σ̂44 + (∆d + δ)σ̂55 − (Ωcσ̂31 +Ωc′σ̂41 +Ωdσ̂52 + H.c.)

−
1
2~
(µ15Ê+asσ̂51 + µ23Ê+s σ̂32 + µ24Ê+s′σ̂42 + H.c.),

(23)

with σ̂ij = |i〉〈j | (i, j ∈ {1, 2, 3, 4, 5}) serving as the atomic raising and lowering operators when
i , j, and the atomic energy-level population operators when i = j In Fig. 1, the double detuning
δ is highlighted using the yellow color. The atom on the upper level |j′〉, j′ ∈ {3, 4, 5} decays
through (optical) transition |j′〉 ↔ |j〉 to the ground states |j〉, j ∈ {1, 2} at the rate of Γjj′ . The
decoherence rate γjj′ of the transition is determined by the Lindbald operator L(σ̂j′j) [46].
As discussed in the Sec. 2, the Heisenberg-Langevin equations of motion can be solved

perturbatively. With Qij = σ
(0)
ii − σ

(0)
jj , the zero-order equations can be written as:

∂σ
(0)
55
∂t
= −σ

(0)
55 (Γ51 + Γ52) − iσ

(0)
25 Ω

∗
d + iΩdσ

(0)
52 , (24a)

∂σ
(0)
44
∂t
= −σ

(0)
44 (Γ41 + Γ42) − iσ

(0)
14 Ω

∗
c′ + iΩc′σ

(0)
41 , (24b)

∂σ
(0)
33
∂t
= −σ

(0)
33 (Γ31 + Γ32) − iσ

(0)
13 Ω

∗
c + iΩcσ

(0)
31 , (24c)

∂σ
(0)
22
∂t
=Γ32σ

(0)
33 + Γ52σ

(0)
55 + Γ42σ

(0)
44

+ iσ(0)25 Ω
∗
d − iΩdσ

(0)
52 ,

(24d)

σ
(0)
11 + σ

(0)
22 + σ

(0)
33 + σ

(0)
44 + σ

(0)
55 = 1, (24e)

∂σ
(0)
54
∂t
= −g54σ(0)54 + iΩc′σ

(0)
51 − iσ

(0)
24 Ω

∗
d, (25a)

∂σ
(0)
34
∂t
= −g34σ(0)34 + iΩc′σ

(0)
31 − iσ

(0)
14 Ω

∗
c, (25b)

∂σ
(0)
24
∂t
= −g24σ(0)24 + iΩc′σ

(0)
21 − iΩdσ

(0)
54 , (25c)

∂σ
(0)
14
∂t
= −g14σ(0)14 − iΩcσ

(0)
34 + iΩc′Q14, (25d)

∂σ
(0)
35
∂t
= −g35σ(0)35 + iΩdσ

(0)
32 − iσ

(0)
15 Ω

∗
c, (25e)

∂σ
(0)
25
∂t
= −g25σ(0)25 + iΩdQ25, (25f)

∂σ
(0)
13
∂t
= −g13σ(0)13 − iΩc′σ

(0)
43 + iΩcQ13, (25g)
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∂σ
(0)
12
∂t
= −g12σ(0)12 − i(Ωcσ

(0)
32 +Ωc′σ

(0)
42 −Ω

∗
dσ
(0)
15 ), (25h)

∂σ
(0)
23
∂t
= −g23σ(0)23 + iΩcσ

(0)
21 − iΩdσ

(0)
53 , (25i)

∂σ
(0)
15
∂t
= −g15σ(0)15 + i(Ωdσ

(0)
12 −Ωcσ

(0)
35 −Ωc′σ

(0)
45 ), (25j)

For the steady state, we can set ∂σ(0)ij /∂t = 0, and find the solutions to the above equations,
which are

σ
(0)
34 =

Ωc′Ω
∗
c(g14Q13 + g∗13Q14)

g14 |Ωc′ |2 + g∗13 |Ωc |2 + g14g∗13g34
, (26a)

σ
(0)
14 =

iQ14
(
|Ωc′ |

2 + g∗13g34
)
Ωc′ − iQ13 |Ωc |

2Ωc′

g14 |Ωc′ |2 + g∗13 |Ωc |2 + g14g∗13g34
, (26b)

σ
(0)
25 =

iQ25Ωd

g25
, (26c)

σ
(0)
13 =

iQ13(|Ωc |
2 + g∗14g

∗
34)Ωc − iQ14Ωc |Ωc′ |

2

g13 |Ωc |2 + g∗14 |Ωc′ |2 + g13g∗14g
∗
34

, (26d)

σ
(0)
12 = σ

(0)
54 = σ

(0)
15 = σ

(0)
23 = σ

(0)
35 = σ

(0)
24 = 0 (26e)

The expressions for the Qij’s correspond to Eqs. (5) and (6). Then the susceptibilities for
coupling field and the driving field can be obtained, and written as

χc =
N|µ13 |

2

ε0~
ig41g43Q13

g13 |Ωc |2 + g41 |Ωc′ |2 + g41g43g13
(27a)

χc′ =
N|µ14 |

2

ε0~
ig31g34Q14

g31 |Ωc |2 + g14 |Ωc′ |2 + g31g34g14
(27b)

χd =
N|µ25 |

2

ε0~
iQ25
g25

(27c)

Note that in the case of the large detunings ∆n � Γj′j, or the small Rabi frequencies Ωn � Γj′j,
(n ∈ {c, c′, d}, j′ ∈ {3, 4, 5}, j ∈ {1, 2}) which we discussed in Sec. II, χc and χc′ can be further
simplified as

χc =
N|µ13 |

2

ε0~
iQ13
g13

(28a)

χc′ =
N|µ14 |

2

ε0~
iQ14
g14

(28b)

The first order equations are

∂σ
(1)
55
∂t
= −i

(
Ω
∗
dσ
(1)
25 −Ωdσ

(1)
52 − iσ

(1)
55 Γ51 − iσ

(1)
55 Γ52 + E

−
asσ
(0)
15 µ15 − E

+
asσ
(0)
51 µ51

)
(29a)

∂σ
(1)
44
∂t
= −i

(
Ω
∗
c′σ
(1)
14 −Ωc′σ

(1)
41 − iσ

(1)
44 Γ41 − iσ

(1)
44 Γ42 + E

−
s′σ
(0)
24 µ24 − E

+
s′σ
(0)
42 µ42

)
(29b)

∂σ
(1)
33
∂t
= −i

(
Ω
∗
cσ
(1)
13 −Ωcσ

(1)
31 − iσ

(1)
33 Γ31 − iσ

(1)
33 Γ32 + E

−
s σ
(0)
23 µ23 − E

+
s σ
(0)
32 µ32

)
(29c)
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∂σ
(1)
22
∂t
=iΩ∗dσ

(1)
25 − iΩdσ

(1)
52 + σ

(1)
33 Γ32 + σ

(1)
55 Γ52 + σ

(1)
44 Γ42

+ iE−s σ
(0)
23 µ23 + iE

−
s′σ
(0)
24 µ24 − iE

+
s σ
(0)
32 µ32 − iE

+
s′σ
(0)
42 µ42

(29d)

∂σ
(1)
54
∂t
= −i

(
Ω
∗
dσ
(1)
24 −Ωc′σ

(1)
51 − iσ

(1)
54 g54 + E

−
asσ
(0)
14 µ15 − E

+
s′σ
(0)
52 µ42

)
(29e)

∂σ
(1)
34
∂t
= −i

(
Ω
∗
cσ
(1)
14 −Ωc′σ

(1)
31 − iσ

(1)
34 g34 + E

−
s σ
(0)
24 µ23 − E

+
s′σ
(0)
32 µ42

)
(29f)

∂σ
(1)
24
∂t
= −i

(
−Ωc′σ

(1)
21 +Ωdσ

(1)
54 − iσ

(1)
24 g24 + E

+
s σ
(0)
34 µ32 − E

+
s′σ
(0)
22 µ42 + E

+
s′σ
(0)
44 µ42

)
(29g)

∂σ
(1)
14
∂t
= −i

(
Ωcσ

(1)
34 +Ωc′

(
σ
(1)
44 − σ

(1)
11

)
− iσ(1)14 g14 + E

+
asσ
(0)
54 µ51 − E

+
s′σ
(0)
12 µ42

)
(29h)

∂σ
(1)
35
∂t
= −i

(
Ω
∗
cσ
(1)
15 −Ωdσ

(1)
32 − iσ

(1)
35 g35 + E

−
s σ
(0)
25 µ23 − E

+
asσ
(0)
31 µ51

)
(29i)

∂σ
(1)
25
∂t
= i

(
Ωd

(
σ
(1)
22 − σ

(1)
55

)
+ iσ(1)25 g25 − E

+
s σ
(0)
35 µ32 + E

+
asσ
(0)
21 µ51 − E

+
s′σ
(0)
45 µ42

)
(29j)

∂σ
(1)
15
∂t
= i

(
Ωdσ

(1)
12 −Ωcσ

(1)
35 −Ωc′σ

(1)
45 + iσ

(1)
15 g15 + E

+
asσ
(0)
11 µ51 − E

+
asσ
(0)
55 µ51

)
(29k)

∂σ
(1)
23
∂t
= i

(
Ωcσ

(1)
21 −Ωdσ

(1)
53 + iσ

(1)
23 g23 + E

+
s σ
(0)
22 µ32 − E

+
s σ
(0)
33 µ32 − E

+
s′σ
(0)
43 µ42

)
(29l)

∂σ
(1)
13
∂t
= −i

(
Ωc

(
σ
(1)
33 − σ

(1)
11

)
+Ωc′σ

(1)
43 − iσ

(1)
13 g13 − E

+
s σ
(0)
12 µ32 + E

+
asσ
(0)
53 µ51

)
(29m)

∂σ
(1)
12
∂t
= i

(
Ω
∗
dσ
(1)
15 −Ωcσ

(1)
32 −Ωc′σ

(1)
42 + iσ

(1)
12 g12 + E

−
s σ
(0)
13 µ23 + E

−
s′σ
(0)
14 µ24 − E

+
asσ
(0)
52 µ51

)
(29n)

Substituting the zeroth-order solution into the above equation, and solving the algebraic equation
obtain from setting ∂σ(1)ij /∂t = 0 will lead us to the solution given in Sec. 2. Note that for the
resonant case with Ωn � Γj′j, or the large detuning case ∆n � Γj′j (n ∈ {c, c′, d}, j ∈ {1, 2} and
j′ ∈ {3, 4, 5}), we only need to keep the terms up to second order with respect to coupling or
driving Rabi frequencies (Ωn) during the calculation. This is a very useful procedure and help us
to get a relatively simpler but accurate enough expressions.
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