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In this paper we explore the possibility of performing Heisenberg limited quantum metrology
of a phase, without any prior, by employing only maximally entangled states. Starting from the
estimator introduced by Higgins et al. in New J. Phys. 11, 073023 (2009), the main result of this
paper is to produce an analytical upper bound on the associated Mean Squared Error which is
monotonically decreasing as a function of the square of the number of quantum probes used in
the process. The analyzed protocol is non-adaptive and requires in principle (for distinguishable
probes) only separable measurements. We explore also metrology in presence of a limitation on the
entanglement size and in presence of loss.

I. INTRODUCTION

Quantum metrology [1–3] is a special sector of quan-
tum information theory with a large variety of potential
applications, spanning from probing delicate biological
systems [4] to squeezing enhanced optical interferome-
try [5, 6] and gravitational wave detection [7, 8], along-
side with magnetometry [9–13] and atomic clocks [14–
16]. This last two are notable applications of atom based
enhanced sensors [17, 18], which have been found rich
in uses [19]. Arguably the most intriguing result in the
field is the so called Heisenberg Scaling (HS) [20, 21] ac-
cording to which the achievable accuracy in estimating
an unknown phase parameter encoded into a quantum
probing system, is predicted to decrease as the inverse of
the total number N of probes employed in the process,
overcoming the Standard Quantum Limit (SQL) N−1/2

scaling dictated by a mere statistical arguments. This is a
direct consequence of the Quantum Cramér-Rao (QCR)
bound [22, 23] which, by maximizing the Quantum Fisher
Information (QFI) of the problem upon all possible input
states of the probes, gauges the ultimate susceptibility of
the latter with respect to small variations of the param-
eter we want to estimate. Unfortunately, even without
considering the technical limitations associated with the
preparation of the optimal QFI input states and with
the implementations of high-performing quantum read-
outs, translating the HS susceptibility enhancement into
an effective estimation accuracy is typically not as simple
as one could expect from general principles. Indeed, it
turns out that any estimation procedure aimed to directly
recover the value of the unknown parameter from the op-
timal states identified through the QFI analysis, is bound
to suffer from a loophole that renders the whole strategy
ineffective for metrology in the absence of prior informa-
tion. Such failure can be ultimately ascribed to an extra
bias term appearing in the QCR bound which doesn’t go
to zero in the N large limit, hence compromising the HS
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scaling. The message here is that although optimal input
probe states have maximal precision in terms of the QFI
we cannot use them to estimate a totally unknown pa-
rameter by only performing measurements on such states.
The underlying problem is that the QFI doesn’t offer the
actual achievable bound for the estimation precision, but
it can rather differ a lot from it, raising the question of
whether HS is reachable at all.

The works dealing with this question can be roughly
divided between two approaches. The first one, concerns
the determination of the state that minimizes directly
the actual Root Mean Square Error (RMSE) of the es-
timator or the associated Holevo variance [24]. In par-
ticular, in the case of a two mode interferometer aimed
to recover an unknown optical phase term θ, Berry and
Wiseman [25] computed the optimal state of N photons
(the so called sine state |ψsin〉), which is equivalent [26]
to the state computed by Hayashi [27]. A covariant mea-
surement [28] on |ψsin〉 (after the encoding of θ) allows
the extraction of the phase with an asymptotic precision
of π/N , being it the best performance achievable [29].
This photonic state can be transformed in a state of dis-
tinguishable (qubit-like) probes with the same statistical
properties [27], yet it is worth stressing that it has no mul-
tipass counterpart where one trades the number of em-
ployed probes with an equivalent number of multiple im-
printing of the phase into the state of a single probe [21]–
a trick that in some cases allows one to simplify the im-
plementation of the metrological scheme [30, 31]. Some
experiments realizing the sine state for small N have also
been performed [32]. The optimal covariant measure-
ment is hard to realize experimentally with entangling
operations but it can be well approximated by single
photon adaptive measurements [25, 33, 34]. This ap-
proximations come though with no analytical study on
the achievability of HS, nevertheless they work well nu-
merically. The second approach relays on properly split-
ting the total number of available resources (say the to-
tal number of probes employed in the process or the to-
tal number of parameter imprinting steps in the multi-
pass formulation of the problem) into ordered groups of
increasing complexity, in an effort to progressively re-
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duce the uncertainty of the unknown phase. In particu-
lar, taking inspiration from the Quantum Phase Estima-
tion Algorithm (QPEA) [35–37] which in its basic form
doesn’t give HS [38], in Ref. [26, 39, 40] numerical ev-
idence were presented in support of the fact that such
result can instead be achieved by testing the collection
of groups through a properly crafted sequence of adap-
tive measurements – see also Ref. [41] where, using the
resource distributions of the modified QPEA [39], an HS
for the amplitude estimation problem was derived. A
fully independent analysis of the loophole problem in the
adaptive measurement scenario has also been carried out
in Ref. [42] where, approximating with Gaussian curves
the probability distributions of measurement outcomes
and estimators, Boixo and Somma managed to restrict
step by step the confidence interval of a Bayesian phase
estimator in such a way to deliver the HS. A further
progress in the problem was finally made by Higgins et
al. in Ref. [43] and by Kimmel et al. in the followup
works [44, 45]: in these papers it was presented an an-
alytical proof that, via a proper management of the re-
source splitting, one can force the Holevo variance [43]
and the RMSE [44, 45] of the phase estimation problem
to reach the HS even without resorting to adaptive mea-
surements, but only relaying on a clever post-processing
of the acquired data.

A first aim of our manuscript is red to present a
thoughtful review of the protocol used in Refs. [43–45],
giving a detailed account of all the technicalities involved
in the analysis, cleaning up some minor errors, and ex-
tending it to account for regimes where the available re-
sources do not exactly match the splitting conditions im-
plicitly assumed in the scheme. The final result of this
effort is to derive a rigorous analytical upper bound for
the RMSE of the estimation process which deviates from
the lower bound dictated by the HS by a multiplicative
constant. In the second part of the work we analyze the
performance of the protocol in some non ideal scenarios.
To begin with, we discuss what happens when the en-
tanglement size we are allowed to employ in preparing
the input state of the probes (or equivalently when the
total number of consecutive phase imprinting rounds in
the corresponding multipass description of the problem)
is limited by technological reasons: under this condition
we present an analytical characterization of the transition
to the SQL regime, where the attainable RMSE scales in-
versely with the square root of the employed probes. Sec-
ond we analyze how the presence of noise (represented by
the mere loss of the encoded message on the probes) af-
fects the optimal resource distribution, both in the ideal
framework and in the limited entanglement case.

The material is organized as follows: in Sec. II we
formulate the HS phase estimation problem and explain
the loophole affecting the metrological scenario with op-
timal input states that maximize the associated QFI
functional. In Sec. III we present the phase estimation
procedure, starting from the definition of the required
measurements to be performed. In this section we ex-

plain how to extract the relevant information from each
measurement, how to post-process it adaptively (Algo-
rithm 1), and produce an upper bound on the attainable
precision. In Sec. IV we optimize the bound with re-
spect to the resource splitting diagram showing that the
scheme operates indeed at the HS: such optimization is
performed under some simplifications, which allow for a
straightforward analytical treatment but neglect to use
some of the probes. Then a little further achievable im-
provement is obtained by optimizing the redistribution
of such extra resources.

In Sec. V we deal with modified strategies useful when
external limitations are imposed, such as a maximum
entanglement size or a loss noise. Conclusions are pre-
sented in Sec. VI while technical material is reported in
the Appendix. In particular Appendix A clarifies the
separability of the measurements employed in the proce-
dure of Sec. III A. Appendix B proofs the equivalence of
conditions in Eq. (24) and Eq. (25). Appendix C con-
tains a generalization of the main bound in Eq. (44).
Appendix D contains the proof of Theorem IV.1. Ap-
pendix E is a clarification on the domain of validity of
Eq. (55) of the main text. Appendix F is a side question
that arises during the resource optimization in Sec. IV C
and Appendix G defines the adaptive measurements to
be used in Sec. V A.

II. THE PROBLEM

In our analysis we shall focus on a conventional black-
box model [21] where the unknown parameter θ we wish
to estimate is a phase term that gets imprinted into the
input state |ψ〉 of a probing quantum system via the
transformation

|ψ〉 −→ |ψθ〉 := Uθ|ψ〉 , (1)

where Uθ := eiθH is a unitary gate generated by a fixed
Hamiltonian operator H. In the multi-test scenario we
assume to have M probes initialized in a (possibly en-
tangled) state |ψ(M)〉, each evolving thanks to the ap-
plication of the same black-box transformation (1). The
resulting output configuration

|ψ(M)
θ 〉 := U⊗Mθ |ψ(M)〉 , (2)

is the state we can operate on to recover the value of θ.
Without loss of generality we shall focus on procedures

that produce an estimate θ̂ of θ by performing measure-

ments on ν copies of the state |ψ(M)
θ 〉, corresponding to

a total number of probes involved in the process equal to

N := νM . (3)

Indicating with P (θ̂|θ) the conditional probability of one
of such protocols, we define hence its corresponding Root
Mean Square Error (RMSE) as

∆θ̂ :=

√
E
[
|θ̂ − θ|2

]
, (4)
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FIG. 1. Plot of the unit circle distance |θ̂ − θ|: this is piece-

wisely a linear ramp and has period 2π. Setting x = θ̂ − θ
this distance can be formally expressed as π−|x mod 2π−π|.

with E[f(θ̂)] :=
∫
dθ̂P (θ̂|θ)f(θ̂) representing the mean

value of the function f(θ̂) of the estimator θ̂. The RMSE
is the most important figure of merit for an estimator, as
whatever other sensible definition of the estimation er-
ror (like the Holevo variance [28]) is bounded by it, but
the opposite is not true. Notice also that in case θ is
a periodic quantity of period 2π as in the examples we

shall focus in this work, the term |θ̂ − θ| appearing in
Eq. (4) should be properly understood as the distance
evaluated on the unit circle depicted in Fig. 1. The QCR
bound [22, 23] implies that, irrespectively from the se-
lected estimation protocol, the MSE (Mean Squared Er-

ror) ∆θ̂2 is limited by the inequality

∆2θ̂ = E
[
|θ̂ − θ|2

]
≥

(
1 + dbθ

dθ

)2
ν QFI(ψ(M))

+ |bθ|2 , (5)

first rigorously derived in [46]. In this expression bθ :=

E[θ̂] − θ is the bias of the procedure while QFI(ψ(M))
is a functional of the imprinted state (2), called Quan-
tum Fisher Information (QFI) [47, 48], which gauges the
sensitivity of the probe with respect to infinitesimal vari-
ations of θ and which in the present example, is given
by

QFI(ψ(M)) := 4
(
〈(H(M))2〉 − 〈H(M)〉2

)
, (6)

where 〈 · · · 〉 is a short hand notation for the expecta-

tion value on |ψ(M)〉, and where H(M) :=
∑M
j=1Hj is

the collective Hamiltonian associated with the action of
M black-boxes. For an estimator to be useful it must
satisfy at least the asymptotic unbiasedness condition,
which requires bθ → 0 for all θ as the total number of
probes used grows. Normally we also ask for dbθ/dθ → 0
and under such hypothesis dbθ/dθ gives a sub-leading
term in Eq. (5). In many cases the bias of an estimator
scales as bθ ∝ 1/ν, so that also the b2θ term is sub-leading
when ν → ∞ (we shall see however that this term may
become a problem if we try to perform Heisenberg scaling
metrology with ν = O(1)). Assuming all these conditions

Eq. (5) can hence be reduced to

∆2θ̂ ≥ 1

ν QFI(ψ(M))
, (7)

which is the starting point to derive the HS [20]. First of
all one notices that, setting the maximum spectral gap of
H equal to 1 for the sake of simplicity, the maximum of
(6) is easily computed as QFImax := M2 and is obtained
by taking as probe an equally weighted superposition of
the minimum and maximum energy eigenvectors [21] of
the generator H(M), i.e. a GHZ-like state of the form

|GHZ(M)〉 := (|0〉⊗M + |1〉⊗M )/
√

2 . (8)

Accordingly Eq. (7) yields the following ultimate limit

for ∆2θ̂

∆2θ̂ ≥ 1

νM2
, (9)

which holds for all choices of the parameters ν and M .
If the size of the probe M is held fixed, then the QCR is
called the Standard Quantum Limit (SQL), whose scaling

reads ∆2θ̂ ≥ 1
M N ∝

1
N . The footprint of a quantum

estimation scheme is however the HS

∆2θ̂ ∝ 1

N2
, (10)

that follows from Eq. (9) by using a single (giant) GHZ
state obtained by taking ν = 1, or equivalently M = N .
As anticipated in the introductory section, attaining the
scaling (10) is challenged by the fact that, after the phase
imprinting stage (2), the associated output state is given
by the vector

|GHZ
(N)
θ 〉 = (|0〉⊗N + eiNθ|1〉⊗N )/

√
2 , (11)

which is periodic in θ with period 2π/N . This implies
that in order to exploit the data obtained by measuring

|GHZ
(N)
θ 〉 we must be able to locate θ within a range of

size ∝ 1/N , so we must already know the phase θ with
HS precision [49]. In other words the GHZ state (11)
contains no information regarding in which of the inter-

vals
[

2πk
N , 2π(k+1)

N

)
for k = 0, 1, . . . , N − 1 the phase is

and can only be exploited if this information is known
a priori. Such a failure ultimately can be related to the
presence of the bias term in the QCR bound of Eq. (5),
which when working with estimation procedures based

on a single input state |GHZ
(N)
θ 〉 simply doesn’t go to

zero: neglecting this contribution as we did when writ-
ing Eq. (7) may hence introduce a finite gap between the
left and right and side terms of the inequality that need
to be properly accounted for, possibly resulting in an
overall estimation precision that can be rather different
from the one predicted by Eq. (10). The message here is
that although the GHZ-like states (8) have maximal sen-
sitivity in terms of the QFI, there is no guarantee that
we can use it to estimate a totally unknown parameter θ
with measurements on a single copy of one of them.
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It is finally worth mentioning that the above analy-
sis can be exactly reproduced in the multipass version of

the problem where the vector |ψ(M)
θ 〉 of Eq. (2) get re-

placed by |ψMθ〉 = UMθ|ψ〉 obtained by forcing the input
state |ψ〉 of a single probe to M consecutive imprinting
stages (1). Also in this case the ultimate lower bound for

the associated MSE ∆2θ̂ is given by Eq. (9) (obtained
this time by taking as optimal input state the superpo-
sition (|0〉+ |1〉)/

√
2), and the possibility of reaching the

HS limit (10) is compromised by the fact that the vector

(|0〉 + eiNθ|1〉)/
√

2 suffers by the same periodicity prob-
lem as (11).

III. PHASE ESTIMATION ALGORITHM

As anticipated in the introduction, an analytical proof
of the possibility of attaining the HS has been presented
in Refs. [43–45] by detailing an algorithm that we now
review with minimal, yet not fully trivial, modifications
that help in a effort to clarify some technicalities. The
starting point of the analysis is to split the total num-
ber N of available probes into an ordered collection of K
subgroups, each composed by a certain number of iden-
tical copies of GHZ-like states of probes. Specifically for
j = 1, · · · ,K, we shall assume the j-th group to contain
2νj copies of the state

|GHZ(Mj)〉 = (|0〉⊗Mj + |1〉⊗Mj )/
√

2 , (12)

with νj and Mj fulfilling the constraint

N = 2

K∑
j=1

νjMj . (13)

As a result the N probes input state we assume in our
model writes explicitly as

|ψ(N)
alg 〉 :=

K⊗
j=1

|GHZ(Mj)〉⊗2νj , (14)

and admits a QFI value equal to

QFI(ψ
(N)
alg ) = 2

N∑
j=1

νjM
2
j . (15)

After being imprinted via the process (2), the GHZ-like
states of each subgroup are measured independently in a
non-adaptive fashion (see Sec. III A) yielding K random
outcomes that are hence later properly post-processed
(see Sec. III B) in order to produce the estimated value

θ̂ of the parameter θ. The possibility of reaching the
HS following this approach will be presented in Sec. IV
by performing an explicit optimization with respect to
the choices of the partitioning parameters entering in the
resource decomposition (13).

A. Measuring each GHZ-like state

Here we describe the measurements we perform on each
maximally entangled state of the j-th subgroup, which
according to our construction contains 2νj copies of the

state |GHZ(Mj)〉 of Eq. (12). We start by noticing that
given the imprinted version of such state, i.e. the vector

|GHZ
(Mj)
θ 〉 = (|0〉⊗Mj + eiMjθ|1〉⊗Mj )/

√
2 , (16)

the information on θ can be extracted by projecting it
onto (|0〉⊗Mj ± |1〉⊗Mj )/

√
2, a procedure which yields as

outcome a Bernoulli variable with value 0 or 1 character-
ized by outcome probabilities

p0 :=
1 + cosMjθ

2
, p1 = 1− p0 . (17)

Such outcome can be obtained by employing only local
detection of the individual probes forming each maxi-
mally entangled state. This means that we can build an
outcome variable distributed with the probabilities (17)
without even performing entangled measures but only
separable measurements on each individual system com-
posing the state (16). If the probes are qubits this means
performing only single qubit measurements. Unfortu-
nately this result applies only to distinguishable probes
and not for example to photons loaded in an optical mode
for which we have to apply an entangled measure on each
GHZ-like state (see Ref. [50] and the discussion presented
in Appendix A for details). There is thought an issue still
to be solved. If we perform only this kind of measure-
ment, namely the one that gives for every GHZ-like state
a Bernoulli variable with probabilities (17), even after
confining the phase to a specific period of size 2π

Mj
, due to

the accidental degeneracy associated with the functional
θ-dependence of the probabilities (17), two distinct val-
ues of θ will give the same statistics– see Fig. 2. To cope
with this issue, one can resort in performing two types
of measurements (called Type-0 and Type-+), one pro-

jecting a fraction of the copies of the state |GHZ
(Mj)
θ 〉 on

(|0〉⊗Mj±|1〉⊗Mj )/
√

2 as before, and the other projecting

the remaining copies on (|0〉⊗Mj ± i|1〉⊗Mj )/
√

2. Indicat-
ing the outcomes of the Bernoulli variable produced by
the Type-0 measurement with the symbol 0, 1, we have
that their associated probabilities are again expressed as
in Eq. (17); on the contrary indicating with +,− the out-
comes of the Bernoulli variable produced by the Type-+
measurement, we have that their probabilities are given
by

p+ :=
1 + sinMjθ

2
, p− = 1− p+ , (18)

whose functional dependence on θ allows us to resolve
the above mentioned accidental degeneracy of (17). Also
the outcome of a Type-+ measurement can be realized
by resorting only to individual detections on each probe
constituting the state (16), if the probes are distinguish-
able. In particular, repeating νj measurements of Type-0
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FIG. 2. Example of the accidental degeneracy affecting the
probability (17) in the [0, 2π/Mj) interval, and its removal
thanks to the interplay with probability (18). Two angles θ1
and θ2 correspond to the same probability value p0. To lift
the degeneracy we estimate also the value of p+, which gives
θ1 and θ?2 6= θ2 as corresponding angles. So we can identify θ1
as the angle from which p0 and p+ have been generated. The
resolution of the ambiguity is automatic when the estimator
in Eq. (21) is used.

and νj measurements of Type-+, each time burning one
of the 2νj resources, we define the observed probabilities
of the process as

f0 :=
a0

νj
, f+ :=

a+

νj
, (19)

where a0 and a+ represent, respectively the recorded val-
ues of 0 and + outcomes. The quantities f+ and f0 are
(bounded) independent random variables which, due to
the (Weak) Law of Large Numbers, for νj →∞ converge
in probability to their associated expectation values

f0/+
prob−−−→ p0/+ . (20)

It is worth stressing that the prospected measurement
scheme is chosen a priori and doesn’t depend on the run-
time result of the previous measurements neither on the
actual value of θ. This means that the measurement is
non-adaptive. On the contrary the estimator θ̂ produced
at each step will be dependent on the history of the previ-
ous constructed estimators, hence it will be adaptive. To
reach the HS it will be important to gauge the resource
distribution νj and reprocess correctly the data produced
by the measurement, this last is the task of Algorithm 1
we discuss in the next section. From the outcome of the
fixed measurements we extract at each step the quantity

M̂jθ, defined as:

M̂jθ := atan2 (2f+ − 1, 2f0 − 1) ∈ [0, 2π) , (21)

where atan2 is the 2-arguments arctangent casted in
[0, 2π). Notice also that the estimator defined in Eq. (21)

is consistent: indeed since M̂jθ is a continuous function
of f0,+, from Eq. (20) it follows that it will converges in
probability to the correct value, i.e.

M̂jθ
prob−−−→ atan2 (2f+ − 1, 2f0 − 1) = Mjθ mod 2π .

(22)
The above convergence holds in the limit νj →∞, how-
ever in this reviewed algorithm the typical number of rep-
etitions νj is exponentially smaller than the total amount
of resources used. We will see indeed that the non-
asymptotic proprieties of the estimator, characterizing
the small νj regime, play here a fundamental role in the
achievability of the HS. The purpose of Algorithm 1 is to

distill from the M̂jθs a proper estimator θ̂ of the phase
θ. It is also important to stress that in the analysis of
the performances of the algorithm we will not be much

interested in the MSE of M̂jθ but rather in bounding the
probability of it missing the target by far.

B. Constructing the estimator

The procedure that ultimately will lead us to the es-
timation of θ with HS precision is summarized in Algo-
rithm 1. As explicitly stated in line 3 of the procedure,
we shall work under the assumption that, starting from
M1 = 1, the size of the maximally entangled states (12)
double with the index j of the subgroup, i.e.

Mj = 2j−1 ∀j = 1, · · · ,K, (23)

with the aim of using these resources to reduce by a con-
stant shrinking factor 1/2 the uncertainty on θ at each
new step of the process, by identifying θ in a confidence
interval of size 2π

3·2j−1 (we refer the reader to Appendix C
for a detailed discussion on the constraints that apply
when using different choices for the Mj). Initially the
prior on the phase θ is flat, implying a complete uncer-
tainty on the full interval [0, 2π). By using ν1 copies of
a single probe (M1 = 1) we try to locate the phase θ
(probabilistically) in a range which is 1/3 of the original
one (only in the first step, in all the others the shrink-
ing factor is 1/2), i.e. having size equal to 2π/3: ac-
cordingly, at the end of this step, with a confidence that
we shall evaluate in the following, we now know that

θ ∈ (θ̂ − π/3, θ̂ + π/3). Then we employ ν2 states of

size M2 = 2 and compute the quantity M̂2θ as dictated

in Eq. (21). We know that the ratio M̂2θ/M2 gives an
estimation of the position of θ inside the two equivalent
periods of size π in which the unitary circle is divided
(see Fig. 11). The two possible positions for θ, namely

ξ̂ and ξ̂ + π, are opposite on the circle. Now our aim
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is to reduce the uncertainty by 1/2 with respect to the
previous step, that is we want to identify θ with precision
π/6. We notice that one and only one of the intervals of

size π/3 centered around ξ̂ and ξ̂ + π intersects the pre-

viously assessed range (θ̂−π/3, θ̂+π/3), this means that
we can unambiguously discriminate between the different
equivalent periods generated by the GHZ-like states. The
procedure is carried out for all stages j = 1, · · · ,K − 1
until the maximum entanglement size is reached.

Algorithm 1 Phase estimation

1: θ̂ ← 0
2: for j = 1 to K do
3: Mj ← 2j−1

4: [0, 2π) 3 M̂jθ ← Estimated from measurements.

5:
[
0, 2π

Mj

)
3 ξ̂ ← M̂jθ

Mj

6: m←
⌊

2j−2θ̂
π
− 1

3

⌋
7: ξ̂ ← m π

2j−2 + ξ̂

8: if θ̂ + 1
2

π
2i−2 ≤ ξ̂ < θ̂ + 3

2
π

2i−2 then

9: θ̂ ← ξ̂ − π
2j−2

10: else if θ̂ − 3
2

π
2i−2 ≤ ξ̂ < θ̂ − 1

2
π

2i−2 then

11: θ̂ ← ξ̂ + π
2j−2

12: else
13: θ̂ ← ξ̂
14: end if
15: θ̂ ← θ̂ − 2πb θ̂

2π
c

16: end for

C. RME evaluation

Here we evaluate the RME we can reach following
Algorithm 1 presenting an upper bound which, upon a
proper optimization with respect to the choices of the
parameters νj (see next section), will lead us to the HS.

Form the structure of the algorithm it is clear that to
guarantee that it will return the correct result we must
choose the right interval at every step. This entails that

given θ̂ our guess for θ at the end of the j-th step it will
fulfill the constraint

|θ̂ − θ| ≤ π

3 · 2j−1
, (24)

where as usual the left-hand-side is meant to indicate
the distance on the unit circle (see Fig. 1) and which,
as shown explicitly in Appendix B, can be conveniently
written as

|M̂jθ −Mjθ| ≤
π

3
. (25)

In view of this observation the probability of a bad esti-
mation at the j-th step of the algorithm can be computed

as P
(
|M̂jθ −Mjθ| ≥ π

3

)
. As it will be clear in the fol-

lowing, to prove that the Algorithm 1 can reach HS it is

FIG. 3. Geometrical proof that there exists an ε small enough
such that when the observed frequencies f0 and f+ define a
point (2f0 − 1, 2f+ − 1) that sits in a box of side 4ε centred

around θ then |M̂jθ −Mjθ| ≤ π
3

. The white dot in center
of the blue shaded square identifies the angle Mjθ while the
black dot is the measured point (2f0 − 1, 2f+ − 1).

sufficient to produce an exponential bound of the form

P
(
|M̂jθ −Mjθ| ≥

π

3

)
≤ AC−νj , (26)

for some constants A ≥ 0 and C > 1. For this purpose,
let us first select an ε small enough such that |f0−p0| ≤ ε
and |f+− p+| ≤ ε imply |M̂jθ−Mjθ| ≤ π

3 (a choice that
this is always possible as one can verify e.g. by looking
at Fig. 3). Then apply the Hoeffding’s bound [51] on the
rescaled binomial variables f0 and f+, obtaining

P (|f0 − p0| ≥ ε) ≤ 2 exp
(
−2νjε

2
)
, (27)

P (|f+ − p+| ≥ ε) ≤ 2 exp
(
−2νjε

2
)
. (28)

Together these inequalities imply

P
(
|M̂jθ −Mjθ| ≥

π

3

)
≤ 4 exp

(
−2νjε

2
)
, (29)

and the required exponential bound has been found with

A = 4 and C = e2ε2 > 1. The largest value of ε that sat-
isfies the requirements [52] is in this case ε =

√
6/8, which

gives C = 1.206. We carried out a numerical evaluation
of optimal A and C by computing exact error probabili-
ties for each ν ≤ 80. One hundred angles of the form 2πi

100
for i = 0, 1, . . . , 99 have been tried for every ν, and the
highest probability error among them has been selected.
All these maximum errors are bounded as

P
(
|M̂jθ −Mjθ| ≥

π

3

)
≤ 0.5949× 1.6640−νj , (30)
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FIG. 4. In the worse case scenario all the estimators drift
further away from θ, but fortunately the total maximum error
always converges.

so A = 0.5949 and C = 1.6640. We stress that it is
not necessary to use any numerical constant A and C in
order to prove the Heisenberg scaling, the ones computed
analytically are sufficient. Nevertheless the numerics are
useful to tighten the prefactor. We are ready now to
compute the MSE of the presented metrological protocol
for arbitrary choices of the parameter νj and K. If no
errors were made in the whole procedure, the last step,
performed with states of size 2K−1, is done to reduce

the range size to 2π
3·2K−1 , so we have |θ̂ − θ| ≤ π

3·2K−1 .
The probability of this to happen is the product of the

probabilities of all the events |M̂jθ −Mjθ| ≤ π
3 for j =

1, 2, . . . ,K. They are all independent, as each estimator

M̂jθ is a function only of the measurements outcome on
the j-th probe bunch. Surprisingly it will be sufficient

to bound the probabilities P
(
|M̂jθ −Mjθ| ≤ π

3

)
by 1 to

get HS scaling, so that the probability of getting every
choice right is trivially bounded as

K∏
α=1

P
(
|M̂αθ −Mαθ| ≤

π

3

)
≤ 1 . (31)

Each time a new step j is carried out the possible range
for θ is reduced and if a wrong estimation is made all the
subsequent are also wrong. We can classify all the possi-
ble estimation histories by the first wrong choice and they
form disjoint classes. If the j-th is the first wrong choice
then by definition the (j−1)-th choice is correct. At step
(j−1)-th the phase has been identified to be in a range of
size 2π

3·2j−2 , but because of all the successive non reliable
steps of the algorithm the phase estimator can further
drift away from θ. The maximum it can drift is 4π

3·2j−2 ,

which is obtained by summing 2π
3·2j−2

(
1 + 1

2 + 1
4 + · · ·

)
,

see Fig. 4. This is not a tight upper bound as the sum
should contain only as many terms as steps of the algo-
rithm yet to perform. The probability that the first error
occurs at k = j is the product of the probabilities to get
it right until k = j− 1 times the probability of doing the
wrong choice at j, so it reads

P
(
|M̂jθ −Mjθ| ≥

π

3

) j−1∏
α=1

P
(
|M̂αθ −Mαθ| ≤

π

3

)
,

(32)
this is bounded by AC−νj as in Eq. (26). Now we put ev-

erything together to find the following MSE upper bound

∆2θ̂ =

∫
(θ̂ − θ)2P (θ̂|θ) dθ̂

≤
( π

3 · 2K−1

)2

+

K∑
j=1

(
8π

3 · 2j−1

)2

AC−νj

=

(
2π

3

)2
 1

4K
+ 16

K∑
j=1

A

4j−1
C−νj

 . (33)

The first term is an upper bound on the probability of
getting all the choices right times the precision squared
we would have at the end. Similarly all the other terms
are the product of the upper bound probability of getting
the first error at j times the squared upper bound on the
error of the estimator at the end. The maximum error of
the j = 1 term is not precise, but its contribution to the
sum will turn out to be negligible.

IV. OPTIMIZATION OF THE RESOURCES

For all choices of the integer K and of the numbers of
copies νj which fulfill the resource constraint (13), the
inequality (33) provides an upper bound for the MSE at-
tainable with the Algorithm 1. Aim of the present section
is to show that this allows us to prove the achievability of
the HS. We start in Sec. IV A by employing the Lagrange
multiplier technique to perform an explicit minimization
of the right-hand-side of (33) for fixed values of N which
ultimately leads to the inequality (44) below. As will
shall see in order to get such a clean analytical expression
the approach we follow imposes a functional dependence
between N and K that paves the way for some extra
(minor) improvements which are discussed in Secs. IV B
and IV C. In particular in Sec. IV B we study the most
efficient way to upgrade the maximum entanglement size
employed in the process as N increases, and in Sec. IV C
we analyze how to redistribute the extra resources that
are left-over by the rigid connection between N and K
imposed by the derivation of Eq. (44)

A. Proof of Heisenberg scaling

Here we minimize the right-hand-side of (33) while
keeping the total number of probes constant via Lagrange
multipliers. In doing so we find it useful to initially re-
place the integer νj with real variables xj , and then to
express the optimal solution by rounding our results to
the closest integers (if needed). Under this assumption
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the Lagrangian of the problem reads

L :=

(
2π

3

)2
 1

4K
+ 16

K∑
j=1

A

4j−1
C−xj


− λ

2

K∑
j=1

xj2
j−1 −N

 , (34)

where we have explicitly used the fact that in our analysis
Mj = 2j−1. Imposing the stability condition with respect
to variation of xj , i.e. ∂xjL = 0, we hence get the identity

λ = −
(

2π

3

)2
16A logC

23j−2
2−xj log2 C , (35)

which, exploiting the fact that λ cannot depend upon j,
forces the optimal distribution of the number of copies to
be close to a linear ramp (so as the states become bigger
and bigger we employ less and less statistics), i.e.

xj =
3

log2 C
(K − j) + xK = γ (K − j) + xK , (36)

∀j = 1, · · ·K ,

with γ := 3
log2 C

. Notice that the parameters xK and

K entering Eq. (37) can be freely chosen under the con-
straint (13), which formally writes

N = 2

K∑
j=1

bxje2j−1 , (37)

with the rounding operation b·e introduced to compen-
sate for the fact that Eq. (37) will typically yields values
of νj which are not integers. A simple analytical con-
nection between N and K can be now be forced by con-
sidering the following trivial upper and lower bounds on
bxje,

xj −
1

2
≤ νj = bxje < xj +

1

2
. (38)

Replaced into (37) this leads us to

N<
K ≤ N ≤ N

>
K , (39)

with

N>
K :=

(
γ + xK +

1

2

)
2K+1 , (40)

N<
K :=

(
γ + xK −

1

2

)
2K+1 , (41)

which have been derived by performing the summation
over j and dropping negligible O (K) contributions in or-
der to simplify the functional dependence upon K. Fur-
thermore, replacing into (33) the lower bound on νj of
Eq. (38) allows us to write

∆2θ̂ ≤
(

2π

3

)2
 1

4K
+

64A

23KCxK−
1
2

K∑
j=1

2j

 (42)

=

(
2π

3

)2(
1 +

128A

CxK−
1
2

)
1

4K
. (43)

This expression shows that the advanced steps of the esti-
mation exponentially dominate the error. Apart from the
numerical factor it closely resemble Eq. (13) of Ref. [43]
(specifically the differences are that in Eq. (43) the size of
the last error is half that of Ref. [43], that the size of the
other contributions are increased to account for the drift
of the estimator, and the presence of xj − 1

2 instead of
xj). To link (43) to the total number of employed probes
N , we can use the second inequality of Eq. (39) to write

∆2θ̂N2 ≤ 4

(
2π

3

)2(
γ + xK +

1

2

)2(
1 +

128A

CxK−
1
2

)
,

(44)
that explicitly proves the possibility of attaining HS pre-
cision (10) by noticing that we can make N → ∞ by
increasing K while maintaining xK constant, so that the
right hand side of bound (44) remains constant.

From the numerical estimates of Eq. (30) we can evalu-
ate γ = 4.0835 and A = 0.5949. The prefactor of Eq. (44)
can then be optimized as a function of xK , revealing that
it achieves its minimum value

∆2θ̂N2 ≤ (24.26π)
2
, (45)

for xK = 11. The right-hand-side of (45) has to be
compared with π2 which according to the recent work
[29] represents the best estimation for the multiplica-
tive factor entering in the HS scaling (10). It is also
worth observing that this precision differs by only a fac-
tor 24.26/3.17 ' 7.65 from the QCR lower bound (7)
associated to the QFI value (15) of the input state (14)
of the model. Indeed in this case we have

QFI−1(ψ
(N)
alg )N2 =

N2

2
∑N
j=1 νj (2j−1)

2

≥
(N<

K)2

1
3

(
2γ
3 + 2xK + 1

)
4K

(46)

= 36

(
γ + xK − 1

2

)2
2γ + 6xK + 3

= (3.17π)
2
,

where the inequality follows from by inserting the upper
bound of Eq. (38) into the denominator and the lower
bound of (39) in the numerator, while the final expression
was obtained by setting the same numerical factors we
used in (45).

B. Optimal upgrade of the entanglement size

A refinement of the inequality (44) can be obtained by
inverting Eq. (40) to deduce the suitable xK correspond-
ing to a certain N>

K . Substituting such value in Eq. (43)
we have

∆2θ̂ ≤
(

2π

3

)2
(

1 +
128A

C
N>
K

2K+1−γ−1

)
1

4K
(47)

≤
(

2π

3

)2(
1 +

128A

C
N

2K+1−γ−1

)
1

4K
, (48)
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FIG. 5. Plot of the curves in Eq. (48) (dashed yellow line)
and Eq. (49) (solid blue line) for K = 15. The dashed one
corresponds to a maximally entangled size 214 and the solid
one to 215. The values A and C are those of Eq. (30). The
curves intersect at point N? = 22.9 · 2K+1.

where the last passage was obtained by exploiting the
inequality (39) and the monotonicity of the functional
dependence of the involved term upon N>

K . In Fig. 5 we
compare bound (48) and the same bound obtained after
the substitution K → K + 1, i.e.

∆2θ̂ ≤
(

2π

3

)2(
1 +

128A

C
N

2K+2−γ−1

)
1

4K+1
. (49)

The intersection between these two curves gives an idea
of the location of the point N? from which it starts to be
useful to upgrade the maximum entanglement size of the
input state (14) from 2K−1 to 2K . This comparison is
carried out with the numerical values given in Eq. (30).
Fig. 5 refers in particular to the case K = 15 but the
form of the curves is independent on K, this means that
the position of the intersection, being N? = 22.9 ·2K+1 is
valid ∀K. The value of xK corresponding to N? is xK =
18.3, while xK+1, given by substituting K → K + 1 and
N? in Eq. (40), is xK+1 = 6.87. We conclude that while
increasing the resources the optimal upgrade position is
expected to be close to νK = 18. Then we start from
νK = 7 with the upgraded maximal state size. The upper
bound on the MSE is obtained by piecewise joining the
expressions in Eq. (48) and Eq. (49) at N? for every K.
Repeating the same analysis for the QCR lower bound (7)
associated to the QFI value (15) of the input state (14)
allows us to replace Eq. (46) with the inequality

QFI−1(ψ
(N)
alg )N2 ≥ 3N2(

N
2K
− 4γ

3

)
4K

, (50)

where we have again inverted Eq. (40) and used the upper
bound (39), and

QFI−1(ψ
(N)
alg )N2 ≥ 3N2(

N
2K+1 − 4γ

3

)
4K+1

, (51)

FIG. 6. Comparison (on a double logarithmic plot) between
the Standard Quantum Limit 1/N (upper dashed gray line),
the HS π2/N2 of Ref. [29] (lower dashed gray line), the up-
per bound on the MSE for the reviewed algorithm (solid
red curve), obtained as a piecewise junction of Eq. (48) and
Eq. (49) as shown in Fig. 5, and the lower bounds on QFI−1

(dotted green curve), similarly obtained by joining Eq. (50)
and (51). Observe that the algorithm precision is monotoni-
cally decreasing in N . The numerical values of A and C are
those of Eq. (30). Their validity conditions (νj ≤ 80) are met
in this plot.

obtained from the first one by replacing K → K + 1
and valid for N ≥ N?. The resulting values are plot
in Fig. 6 together with the upper bound on the MSE,

the reachable Heisenberg scaling π2

N2 , and the SQL. Ac-
cording to analyzed upper bound the reachable precision
of Algorithm 1 necessarily starts to beat the SQL from
N ' 6 · 103.

C. Redistribution of the extra resources

Given a true amount of resources T we could take it
as the upper bound N>

K = T , then there exists a strat-

egy with N ≤ T that reaches an accuracy ∆2θ̂ that ful-

fills Eq. (47). Therefore this particular ∆2θ̂ is achiev-
able with T resources. But we can do better. The value
xK obtained from Eq. (40) gives the actual distribution
νj = bxje from Eq. (37). The amount of resourcesN used
in the strategy identified by this specific xK is given by
Eq. (37). By construction N ≤ T and we define

∆N := T −N = T − 2

K∑
j=1

bxje2j−1 ≤ 2 · 2K +O (K) .

(52)
The extra terms O (K) arise because of the approxi-
mations in Eq. (40). To avoid them we must solve
N>
K − 2γ (K + 1) − 2xK − 1 = T to find xK , instead

of N>
K = T . In this section we see how to employ the

extra resources ∆N in order to do slightly better than
bound Eq. (48) We modify the resource distribution as
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xj = γ (K − j) + xK + ∆νj with ∆νj ∈ N such that

2
∑K
j=1 ∆νj2

j−1 = ∆N . The objective is to optimize on
∆νj subject to the constraints

∆νj > −bγ (K − j) + xKe , (53)

(so that we don’t erase any step of the estimation). Then
we rewrite Eq. (42) as

∆2θ̂ ≤
(

2π

3

)2
 1

4K
+

64A

23KCxK−
1
2

K∑
j=1

2j−log2 C·∆νj

 ,

(54)
where we just accounted for the effect of having the ex-
tra measurements at disposal. We see that in order to
minimize the MSE we need to minimize the summation∑K
j=1 2j−log2 C·∆νj . We will forget about the constraints

(53) as we check in retrospect that our solution satisfies
them anyway.

Theorem IV.1 Given the number of additional probes

∆N = 2
∑K
j=1 bj2

j−1 written in binary representation,
the optimal ∆νj is ∆νj = bj.

The proof of this theorem is given in Appendix D. It
means that we should build with the extra resources
states that are as entangled as possible. We compute
the MSE bound given by such optimal distribution by

using
∑K
j=1 2j−bj log2 C =

∑K
j=1

[
2j −

(
1− 1

C

)
bj2

j
]

=∑K
j=1 2j −

(
1− 1

C

)
∆N , and it reads

∆2θ̂ ≤
(

2π

3

)2
 1

4K
+

64A

23KCxK−
1
2

K∑
j=1

2j−log2 C·bj


=

(
2π

3

)2(
1 +

128A

CxK−
1
2

)
1

4K

−
(

2π

3

)2(
1− 1

C

)
64A

23KCxK−
1
2

∆N ,

(55)

where 0 ≤ ∆N ≤ 2 · 2K . Notice that this formula ap-
parently works only for ∆N even, as prescribed by Theo-
rem IV.1, but we consider it valid for every ∆N (also odd)
between 0 and 2 · 2K . For more details see Appendix E.
In conclusion we compute an upper bound QFI> on the
QFI of the complete input state in Eq. (14), modified
with ∆νj , starting from Eq. (46).

QFI> := 2

K∑
j=1

xj
(
2j−1

)2
(56)

=

(
2γ

3
+ 2xK + 1

)
4K

3
+ 2

K∑
j=1

4j−1∆νj .(57)

Given that ∆N
2 =

∑K
j=1 ∆νj2

j−1 =
∑K
j=1 bj2

j−1 we ask

how the extra term 2
∑K
j=1 4j−1bj compares with ∆N2

2 =

2
(∑K

j=1 bj2
j−1
)2

. If only one bj = 1 then

2

K∑
j=1

4j−1bj =
∆N2

2
. (58)

The other extremal case happens when bj = 1 for all j,
then

2

K∑
j=1

4j−1bj =
2

3

(
4K − 1

)
(59)

≥ ∆N2

6
=

2

3

(
2K − 1

)2
. (60)

In general for whatever bj it holds

∆N2

6
≤ 2

K∑
j=1

4j−1bj ≤
∆N2

2
. (61)

Therefore we have the following two bound for QFI>, i.e.

QFI> ≥
[(

2γ

3
+ 2xK + 1

)
4K

3
+

∆N2

2

]−1

, (62)

QFI> ≤
[(

2γ

3
+ 2xK + 1

)
4K

3
+

∆N2

6

]−1

. (63)

V. OPTIMAL DISTRIBUTION IN THE
PRESENCE OF EXTERNAL LIMITATIONS

In this section we study two situations where some ex-
ternal constraints affect the the estimation process lim-
iting its precision and forcing us to modify the optimal
strategy. The first one is the case in which the maxi-
mum allowed dimension of the entangled state is limited
(by technological constraint for example) and its much
smaller than the entangled size required for the optimum
strategy with a given number of resources N . In such
case when N → ∞ the precision of the estimation with
the resource distribution of section Sec. III is not opti-
mal. Then an hybrid strategy, which explicitly consider
an estimation at the SQL in the last step will be a better
choice. The second scenario consists in the addition of
a loss noise. We will compare the optimal distributions
of an amount of resources N in the noisy and noiseless
case, both without further constraints and with a maxi-
mum entanglement size constraint.

A. Optimal distribution of resources with limited
entanglement

Consider the case where we are allowed to entangled
our states only up to a size 2K−1, for some given inte-
ger value K. Under this circumstance the possibility of
reaching HS (10) in the large N limit, is clearly prevented
as one can easily verify by looking at the inequality (9).
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Yet we may consider the possibility of using an hybrid
strategy that employs the entanglement resources we are
provided to reach a 1/N SQL for the MSE with an opti-
mal factor. The idea is to use maximally entangled states
of sizes M1 = 1,M2 = 2,M3 = 4, . . . ,MK−2 = 2K−2

to progressively restrict the search region, and then em-
ploy 2νK � 1 copies of a GHZ-like state of maximal size

MK−1 = 2K−1 to produce an estimator θ̂K that saturates
the QCR bound (9), i.e.

∆2θ̂K =

∫
|θ̂K − θ|2P (θ̂|θ) =

(
1

2K−1

)2
1

2νK
, (64)

a possibility that is e.g. granted by using the adaptive
measurement discussed in Ref. [53] – see Appendix G for
details. In order to determine the optimal choice of the
parameters νj , we can use the bound (33) where now we
substitute the last precision range (reached if all the pre-
vious steps were correct) with the MSE in Eq. (64). The
solution can hence be founded by studying the associated
Lagrangian problem

L :=

(
1

2K−1

)2
1

2xK
+

K−1∑
j=1

(
8π

3 · 2j−1

)2

AC−xj

− λ

2

K∑
j=1

2j−1xj −N

 , (65)

where, as in the case detailed in Sec. IV A, we treat the
integer variables νj as real quantities xj . The derivatives
with respect to xj read

∂xKL = −
(

1

2K−1

)2
1

2x2
K

− λ2K = 0 , (66)

∂xjL = −
(

2π

3

)2
16A logC

4j−1
C−xj − λ2j = 0 , (67)

where the first one holds for j = K and the second is for
j ≤ K−1. Having obtained λ from the (j−1)-th deriva-
tive we compute xK as a function of xK−1, obtaining

xK =
3C

xK−1
2

2π (256A logC)
1
2

, (68)

which in order to deliver the value of νK should be
rounded to the nearest integer (notice however that since
we expect νK � 1 the rounding doesn’t play any role in

∆2θ̂). The optimal number of measurements performed
in the last step (with states of size 2K−1) grows exponen-
tially in the number of measurements used in the previous
localization phase. The other xj for j ≤ K − 1 are

xj = γ (K − 1− j) + xK−1 , (69)

which again should be rounded to the nearest integer.
The localization steps from j = 1 to j = K − 1 operate
at the Heisenberg scaling but the great majority of the

FIG. 7. Both distributions xj refer to K = 10 and to almost
the same number of probes N ' 1.5×105. The upper (orange)
chart is the linear ramp in Eq. (37) with xK = 68.7, while
the lower (blue) chart is the distribution in Eq. (69) with
xK−1 = 30 for j = 1, . . . ,K − 1 and Eq. (68) for j = K. The
upper bound on the MSE of the first distribution saturate to
the limit xj →∞, this can be check using the analytical values

of A and C. The bounds are respectively ∆2θ̂ ≤ 4.18·10−6 for
Eq. (37) and ∆2θ̂ ≤ 1.73× 10−8 for the limited entanglement
optimized strategy.

resources is employed in the last step that operates at the
Standard Quantum Limit. The resummed upper bound
on the MSE is hence

∆2θ̂ ≤ 1

4K−1

π

3
(256A logC)

1
2 C−

xK−1
2

+
1

4K−1

(
2π

3

)2
128A

CxK−1− 1
2

, (70)

while the resource summation equation instead gives

N = 2

K−1∑
j=1

bxje2j−1 +
⌊ 3C

xK−1
2

2π (256A logC)
1
2

⌉
2K . (71)

For growing νK−1 its clear how the MSE is dominated
by the first term coming from the SQL. The derived en-
tanglement limited optimal strategy is compared to that
in Eq. (37) in Fig. 7. Here we neglected that xj are not
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integers and set N = 2
∑K
j=1 xj2

j−1. The tendency is to
reduce the number of resources used for steps j ≤ K − 1
and concentrate them to the biggest entangled state con-
structible. As N grows the MSE approaches the CR
bound 2K−1/N . The previous analysis can be easily gen-
eralized to account also for the case where we are bound
to use states of size at most R with R being an arbi-
trary integer not necessarily multiple of 2. then we could
employ a series of states of sizes R, dR2 e, d

R
4 e, . . . , 1. For

the last states, on which effectively depends the MSE, we
can neglect the fact that R

2 , R
4 , . . . are not integers (be-

cause R � 1), therefore we write a simple and suitable
Lagrangian

L :=
1

2R2xK
+

K−1∑
j=1

(
8π · 2K−j

3R

)2

AC−xj

− λ

2

K∑
j=1

xj

(
R

2K−j

)
−N

 , (72)

where also for the states with fewer probes we haven’t
rounded the size as their corresponding terms will not
affect much the error. In Eq. (72) K is chosen to be the
smallest value for which d R

2K−1 e = 1. We notice that the

MSE is rescaled by a factor
(

2K−1

R

)2

, while R
2K−1 is the

rescaling of the total number of probes. Therefore by
defining κ := R

2K−1 we have the Lagrangian

L :=
1

κ2

(
1

2K−1

)2
1

2xK
+

1

κ2

K−1∑
j=1

(
8π

3 · 2j−1

)2

AC−xj

− λ

2κ

K∑
j=1

2j−1xj −N

 . (73)

The optimal xj are again given by Eq. (68) and Eq. (69),
the only difference being that in the resource summa-

tion (71) we substitute N → 2K−1N
R .

B. Optimal distribution of resources with noise

Consider now a simple case in which loss is added to the
probes, this will be characterized by the value η, meaning
that there is a probability η of retaining a certain probe
and 1 − η of losing it. This is particularly damaging
for the maximally entangled states, as a GHZ state of

size 2j−1 can survive only with probability η2j−1

. The
expression of the Lagrangian to minimize in this scenario
is

L :=

(
2π

3

)2
 1

4K
+ 16

K∑
j=1

A

4j−1
C−xj


− λ

2

K∑
j=1

xj
η2j−1 2j−1 −N

 . (74)

The parameter xj is the number of measurements we
expect to perform at step j after the loss, so it appears
in the probability of error AC−xj . However the expected
number of probes to be employed, accounting also those
that will be lost, is x′j :=

xj

η2
j−1 , which appears in the

constraint of the Lagrangian. These numbers have to be
rounded to refer to the actual strategy. The derivative
with respect to xj gives

λ = −
(

2π

3

)2
16A logC

23j−2
C−xjη2j−1

. (75)

Also in this case the optimal distribution of the resources
can be found analytically by imposing the equation

− xj log2 C +
log η

log 2
2j−1 − 3j = const. , (76)

which gives the expressions

xj = γ (K − j) + xK +
| log η|
logC

(
2K−1 − 2j−1

)
, (77)

and

x′j =
γ (K − j) + xK

η2j−1 +
| log η|
logC

2K−1 − 2j−1

η2j−1 . (78)

A proper comparison between the noisy and the noiseless
optimal distributions is to be carried out between strate-
gies referring to the same number of resources N , hence
having different xK . Such fair comparison is presented
in Fig. 8 and Fig. 9, these show the reallocation of the
probes in the various steps. We took the number of re-

sources to be N = 2
∑K
j=1 xj2

j−1 for the noiseless strat-

egy and N = 2
∑K
j=1 x

′
j2
j−1 for the noisy one, avoiding

the rounding, as we want to show only the main differ-
ences not precise numerical results. The comparison tells
us that the resources are expected to migrate toward the
high entanglement end, as these are the states more af-
fected by the loss. As in the precedent subsection we can
limit the entanglement size to R and write the following
Lagrangian for the resource optimization when noise is
present

L :=
1

κ2

(
1

2K−1

)2
1

2xK
+

1

κ2

K−1∑
j=1

(
8π

3 · 2j−1

)2

AC−xj

− λ

2κ

K∑
j=1

2j−1xjη
−κ2j−1

−N

 . (79)

The derivatives with respect to xj are

∂xKL = − 1

4K−1

1

2κ2x2
K

− κλ2Kη−κ2K−1

= 0 , (80)

∂xjL = −
(

2π

3

)2
16A logC

κ24j−1
C−xj − κλ2jη−κ2j−1

= 0 ,

(81)
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FIG. 8. The solid blue bar and red striped bars are respec-
tively the number of states to be added (solid bar) or sub-
tracted (striped bar) at each level j of the estimation accord-
ing to Eq. (78) with xK = 10 and η = 0.998, with respect to
the base noiseless strategy given in Eq. (37) with xK = 23.1.
Both strategies refer approximately to the same number of
probes N ' 5.6 × 104 and to K = 10. The numerical values
for A and C are those of bound (30). The number of states
to be used in the noisy strategy exceeds that of the noiseless
one only in step j = K.

FIG. 9. The solid blue bar and red striped bars are respec-
tively the number of probes to be added (solid bar) or sub-
tracted (striped bars) at each level j of the estimation ac-
cording to Eq. (78) with xK = 10 and η = 0.998, with re-
spect to the base noiseless strategy given in Eq. (37) with
xK = 23.1. Both strategies refer approximately to the same
number of probe N ' 5.6×104 and to K = 10. The resources
of the noisy strategy are Nj = x′j2

j while that of the base are

Nj = xj2
j . The numerical values for A and C are those of

bound (30). Resources are reallocated to the highest entan-
gled states from less entangled regions. Notice that the step
which in absolute terms is stripped off more of resources is
j = 8, in relative terms it is j = 6.

they give xK as function of xK−1, i.e.

xK =
3η

R
4 C

xK−1
2

2π (256A logC)
1
2

. (82)

FIG. 10. Comparison between QFIM and QFIR, the latter
being discrete as the entangled states have size R.

When N →∞ we have N ' 2R
ηR
xK and ∆2θ̂ ' 1

2R2xK
=

1
RηRN

, which is exactly the inverse of Eq. (84). Therefore

given a certain level of noise we can choose the optimal
maximum size of the entangled states (see Sec. V C) and
obtain an asymptotic SQL scaling with prefactor which
is the best allowed for a GHZ-like state, all after a local-
ization procedure at the Heisenberg scaling.

C. The GHZ state in presence of loss

In the presence of loss the entanglement size is natu-
rally limited to those states that are metrologically use-
ful. Indeed the QFI for a GHZ state of size N subject to
a loss η is

QFI
(
|GHZ(N)〉

)
= ηNN2 . (83)

This drops quickly to zero after a maximum size depen-
dent on η. This type of noise is the qubit equivalent of
photon loss in both arms of an interferometer. Given N
resources, they can be divided in bunches of R probes
to be entangled [54], so that the asymptotic QFI of the
process will scale linearly as

QFIR := ηRR2 N

R
. (84)

By maximizing this expression we find the optimal cut
R = − 1

log η , which corresponds to QFIR := − N
e log η .

We compare this with an upper bound valid for every
state [55, 56], when noise is present, i.e.

QFI ≤ QFIM :=
N2

1 + 1−η
η N

, (85)

see Fig. 10. The asymptotic ratio between the upper
bound QFIM and the one obtained by employing suitable
GHZ-like states is

κ := lim
N→+∞

QFIM
QFIR

= −eη log η

1− η
, (86)
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so we see that the precision bound using only GHZ-like
states is at most a factor ∼

√
e = 1.65 away from that

of the absolute optimal state. The state size R can be
reached at the end of a procedure of localization em-
ploying smaller states, like the one presented in the pa-
per. The probability of not being in the correct window
drops exponentially and the MSE asymptotically scales

as ∆2θ̂ ∼ − e log η
N .

VI. CONCLUSIONS

Quantum metrology has shown how it is possible to ex-
ploit the hypersensitivity of the entangled states to boost
the phase estimation task. A particular attention is ded-
icated in the literature to maximally entangled states. It
is though often unspoken that because these states cy-
cle multiple times when subject to phase encoding they
erase the large scale information on the position of the
phase, while holding the information regarding its small
fluctuation. This appears to make maximally entangled
states unsuitable to be used alone without a prior local-
ization of the phase, see Sec. II. The risk is that because
of the necessity of this preliminary stage, with its re-
source requirement, the Heisenberg scaling is lost. In
this paper we studied the scenario in which such local-
ization is performed by maximally entangled states grow-
ing exponentially in size, which step by step codify finer
and finer properties of the unknown phase. We reviewed
here that by suitably choosing the number of states of
each size it is possible to prove rigorously that HS is still
achieved, see Sec. IV A. A proper distribution of resources
is what above all allows for the HS. The actual physical
operations to be performed in an experiment are pretty
straightforward. Given the total amount of probes one
has to create entanglement in it according to the distri-
bution in Eq. (37) and to Sec. IV B and Sec. IV C, then

he can encode and measure each individual probe. There
is no need of performing whatever type of entangled mea-
surement as single probe measurement will suffice if they
are distinguishable, see Sec. III A and Appendix A. As a
matter of fact also entanglement among the probes can
be exchange for multipassage through the phase encod-
ing process. The measurements output can then be saved
and later processed to find the estimator. The data anal-
ysis stands as a simple task, however we reported ex-
plicitly (for the sake of completeness) a valid pseudocode
in Algorithm 1. Because the procedure is non-adaptive
the measurement stage and the data processing stage are
completely independent. If further measurement are con-
ducted then they can just be added to the data set which
will be reprocessed.

The optimization results are relative to the upper
bound (33) on the MSE, and are definitive to this regard.
Of course such inequality does not necessarily predict the
actual results of the algorithm (which could be better
than the one dictated by the bound): nevertheless this is
the furthest we could carry out an analytical approach.
A further improvement toward obtaining the optimal re-
source scheme for the algorithm could come from tighter
bounds or numerical computations, but we decided pur-
posefully to avoid as much as possible numerics in order
to give an analytic review. The analysis of the limited
entanglement and noisy cases are to be thought more as
toy models, still they capture some of the key features of
those scenarios.
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Appendix A: Separability of the optimal projective
measurement

Here we explicitly show that the Type-0 measurement
(as well as the Type-+) can obtained via a separable
procedure [50]. As for any probe only two quantum states
are involved in the construction of the GHZ-like state,
from now on we simply assume they are provided by qubit
systems and use the associated standard notation. Given
hence the output state (16) we observe that by applying
an Hadamard gate to each of the probes that compose
it, we can transform it into the following vector

1√
2

[(
|0〉+ |1〉√

2

)⊗M
+ eiMθ

(
|0〉 − |1〉√

2

)⊗M]

=
1

2
M+1

2

M∑
k=0

√(
M

k

)
|M − k, k〉

[
1 + eiMθ (−1)

k
]
,

(A1)

where for easy of notation we replace Mj with M . In
the second line of the above expression |M − k, k〉 is a
normalized and symmetrized state and corresponds to
M − k probes in the state |0〉 and k in |1〉. We then
project each probe of the transformed state (A1) on their
corresponding computational basis. The probability of
getting k probes in the state |1〉 is hence given by

pk =
1

2M

(
M

k

)[
1 + (−1)

k
cosMθ

]
. (A2)

The phase Mθ modulates the probability outline for odd
and even k in the same way, and all the information about
θ is contained in the parity of the probe number. Inter-
estingly enough the probability of getting an odd count
is exactly coincident with the probability p0 reported in
Eq. (17), i.e.∑
k odd

1

2M

(
M

k

)
(1 + cosMθ) =

1 + cosMθ

2
= p0 . (A3)
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This shows that a simple data-processing of the outcomes
obtained by the separable measurement detailed above
exactly matches the statistical properties of the Type-0
detection reported in the main text. Similar conclusions
can also be drawn for the Type-+ measurement setting:
indeed this last can just be obtained from Type-0 by
adding a proper π/2 phase shift on the input state, via
the action of Vφ := e−iφH , see App. G.

It is worth observing that the possibility of turning
Type-0 and Type-+ measurements into the separable de-
tections schemes, strongly relays on the distinguishability
character of the employed probes (a feature that is built-
in the qubit model). This property will not be applica-
ble for instance if we consider an estimation task that
involves a phase θ codified in one of the two arms of a
Mach-Zehnder interferometer [3, 57], with the objective
of estimating it through the injection of a limited num-
ber of photons detected after the closing beam splitter.
Given a and b, being the two spatial modes corresponding
to the upper and lower arms, the encoding of the phase
θ is performed by a unitary Uθ = eiθNa , where Na = aa†.
It’s well known that a path-entangled N00N state is N
times more sensitive to the unknown phase than a single
photon state [1], indeed

|NOONθ〉 = (|N0〉+ eiNθ |0N〉)/
√

2 , (A4)

with its QFI being N2, plays the same role of the GHZ-
like states we consider in the main text. Given that, the
protocol discussed in this paper can also be employed in
the optical case with the only difference that the neces-
sary photon parity measurements [58] will not be imple-
mentable via a separable scheme. Of course this distinc-
tion does not apply if each photon is loaded in a different
interferometer, each with its own version of the black box
Uθ, all identical, then the photons are distinguishable and
the optimal measurement is again separable and can be
realized with photon counting.

Appendix B: Derivation of the condition (25)

Here we explicitly show that imposing

|θ̂ − θ| ≤ π

3 · 2j−1
, (B1)

for all j, is equivalent to assume (25). For this purpose it
is worth to take a closer look at the various steps of Algo-
rithm 1. First of all, in line 1, the estimator is initialized
to zero, then in line 3 the size of the j-th entangled state
is set to 2j−1 and after measuring its imprinted counter-
part the estimator (21) is computed. In line 5 the variable

ξ̂ is loaded with M̂jθ/Mj . In order to understand line 6
it helps looking at Fig. 12. For each j in the cycle we
assume that the preceding step (i.e. the j − 1-th step)
of the algorithm was successful so that we can guarantee

that given θ̂ the estimator of θ we have constructed at
this point of the procedure, we have

|θ̂ − θ| ≤ π

3 · 2j−2
, (B2)

where as mentioned in the introduction, due to the pe-
riodicity of the angular variable, the left-hand-side term
is thought to be computed on the unit circle, see Fig. 1.
Given the partition

[
k π

2j−2 , k
π

2j−2 + π
2j−2

)
for k = 0 to

k = 2j−1−1 of [0, 2π), we want to find the one extremum
of this partition closest from below to the interval iden-
tified by Eq. (B2) in which by hypothesis lays the true
value of the phase θ. In order to do so we compute

m :=
⌊ θ̂ − π

3·2j−2

π
2j−2

⌋
=
⌊2j−2θ̂

π
− 1

3

⌋
. (B3)

By shifting ξ̂ of mπ
2j−2 (line 7) we get near to the previous

assessed interval around θ̂. The possible new positions

for θ̂ are ξ̂ − π
2j−2 , ξ̂ and ξ̂ + π

2j−2 . By geometric reason-
ing, because of the choice of m, one and only one of the
three intervals centered in these new possible positions

must overlay with the old interval around θ̂. The two
conditions for an interval of size 2π

3·2j−1 centered around

ξ̂ − π
2j−2 to overlap with

[
θ̂ − π

3·2j−2 , θ̂ + π
3·2j−2

)
are

ξ̂ − π

2i−2
+

1

6

π

2i−2
≥ θ̂ − 1

3

π

2i−2
, (B4)

ξ̂ − π

2i−2
− 1

6

π

2i−2
< θ̂ +

1

3

π

2i−2
, (B5)

and give the condition in line 8 of the algorithm. For the

interval around ξ̂ + π
2i−2 the conditions are instead

ξ̂ +
π

2i−2
+

1

6

π

2i−2
≥ θ̂ − 1

3

π

2i−2
, (B6)

ξ̂ +
π

2i−2
− 1

6

π

2i−2
< θ̂ +

1

3

π

2i−2
, (B7)

and become line 10. If neither ξ̂ − π
2j−2 nor ξ̂ + π

2j−2 get

to be chosen as estimator then ξ̂ is chosen (line 13). In

the end (line 15) the estimator θ̂ is casted into [0, 2π).
Given all these, let’s now show the equivalence between

(25) and (B1). To begin with given m as in (B3) and

noticing that at the end of the j-th step θ̂ is obtained by

properly shifting
M̂jθ
Mj

, from (B1) we can write

∣∣∣M̂jθ

Mj
+m

π

2j−2

(
± π

2j−2

)
− θ
∣∣∣ ≤ π

3 · 2j−1
=⇒

|M̂jθ + 2πm (±2π)−Mjθ| ≤
π

3
=⇒

|M̂jθ −Mjθ| ≤
π

3
.

(B8)

On the other hand, if all the previous range guess were
correct, it is easy to see that the reverse implication holds,

see also Fig. 12. Indeed given ξ̂ = M̂jθ/Mj , the condi-
tion (25) implies θ to be in one of the intervals∣∣∣ξ̂ +

kπ

2j−2
− θ
∣∣∣ ≤ π

3 · 2j−1
, (B9)



17

FIG. 11. In this picture we see ξ̂, ξ̂ + π, and θ̂ for j = 2.

FIG. 12. The hollow red point is the current estimator θ̂ with
its confidence interval in red (dark gray), while all the shifted

positions of ξ̂ (defined in line 5) are in green (light gray). The
blue cross is the true value of the parameter θ. Only one of
the green (light gray) intervals intersects the red (dark gray)
one. The picture refers to j = 3 and M3 = 4.

with k = 0, 1, . . . ,Mj − 1, these are represented in green

(light gray) in Fig. 12. Algorithm 1 selects as θ̂ the only

one shifted version of ξ̂ which range intersects with the
previous known interval for θ, so the range of size π

3·2j−1

centered on the new θ̂ necessarily contains θ, this is ex-
pressed by the inequality (B1).

Appendix C: Alternative choices for the
entanglement size parameters Mj

As discussed in Sec. III B, in presenting the phase es-
timation algorithm we assumed the size of the K groups
to vary as in Eq. (23). This choice is not mandatory and
one can imagine a strategy with different sizes for the
entangled states, for example Mj = bj−1 with b > 2, and
for some now choice of the angular confidence interval
π/n. For the algorithm to be valid we ask for one and

only one intersection of each old interval around θ̂ with
the new intervals, just as it holds in Fig. 11, which in the

FIG. 13. The picture refers for clarity to n = 3 and b = 2
but the principle is general. The two possible estimators ξ̂
and ξ̂ + π are 2π

b
apart and their confidence intervals are of

size 2π
nb

. In the space between them fits perfectly the previous

confidence interval for θ̂, which is of size 2π
n

, therefore we have
Eq. (C1).

present case means

2π

nb
+

2π

n
=

2π

b
=⇒ n = b+ 1 , (C1)

see Fig. 13 (of course analogous equations 2π
nbj + 2π

nbj−1 =
2π
bj must hold for each j, but they all reduce to Eq. (C1)).
We observe that while our original choice (b = 2, n = 3)
fulfills (C1) this is not the case for the generalization of
[43] presented in [44], paving the way for an underesti-
mation of the associated MSE. Following the derivation
presented in the main text we now proceed in computing
the upper bound for the MSE associated with choices of
n and b that satisfies (C1). First of all we notice that the
probability bound of Eq. (26) becomes:

P
(
|M̂jθ −Mjθ| ≥

π

n

)
≤ AC−νj , (C2)

and by virtue of [52] we have C = exp
[

1
4 sin2

(
π
n

)]
. The

variable A keeps its value A = 4. The optimal bound on
the MSE can be derived from the Lagrangian

L =
( π

n · bK−1

)2

+

K∑
j=1

(
2π

n · bj−2

b

b− 1

)2

AC−xj+

+ λ

2

K∑
j=1

xjb
j−1

 , (C3)

which accounts for the drift via the term b
b−1 . From this

we find

∆2θ̂ ≤
(

2π

n

)2
[
b2

4
+

b7A

(b− 1)
3
Cxk−

1
2

]
1

b2K
, (C4)

and the resource upper bound of Eq. (40) reads

N>
K :=

2bK

b− 1

(
γ

b− 1
+ xK +

1

2

)
, (C5)
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FIG. 14. Upper bounds on the prefactor ∆2θ̂N2 from
Eq. (C6) for discrete b = 2, 3, . . . , 10. It shows a minimum
for b? = 3.

with γ := 3
logb C

= 12 log b

sin2(πn )
. Putting this two together we

get the bound on the prefactor, analogous to Eq. (44),
i.e.

∆2θ̂N2 ≤ 16π2

(b2 − 1)
2

[
b2

4
+

b7A

(b− 1)
2
Cxk−

1
2

]
·

·
[

γ

b− 1
+ xK +

1

2

]2

. (C6)

The idea will be to establish which b ∈ N with b ≥ 2
is optimal regarding this bound. This analysis can be
carried out by computing numerically the optimal xK as
a function of b, and inserting it back into Eq. (C6). This
produces Fig. 14, which shows a minimum for b? = 3.
The corresponding upper bound on the prefactor is

∆2θ̂N2 ≤ (62.7π)
2
. (C7)

Remember that this analysis is based only on an upper
bound on the precision and an analytical estimation of
the error probability. Neither of these are expected to be
tight, nevertheless this result may suggest that the real
optimal b is greater than 2.

Appendix D: Proof of Theorem IV.1

To prove the statement we define a set of four moves
to be applied in order to transform a distribution ∆νj
into another distribution ∆ν′j with a MSE strictly lower
than that of ∆νj . In the end the only distribution that
cannot be further lowered will be ∆νj = bj , which also
satisfies ∆νj > −bγ (K − j) + xKe being bj ≥ 0. The
first two rules are:

1. If ∆νj ≥ ∆νj+1 + 2 then fuse a pair probes of size
2j−1 to produce a probe of size 2j .

2. If ∆νj+1 ≥ ∆νj + 2 then split a probe of size 2j

into two probes of size 2j−1.

Assuming that the above moves have been applied wher-
ever is possible, then the difference between to consecu-
tive ∆νj can be only ±1 or 0. The following two moves
are applied under this hypothesis.

3. If ∃ l |∆νl > 1 then there must exist νj = 2 for
some j. A string containing the first occurrence
(from the right) of ∆νj = 2 reads 2 1 1 . . . 1 0 with
a certain number of ones in between 2 and 0. We
are guaranteed to find a 0 on the right because if
∆νK ≥ 1 then we would have more resources than
allowed (∆N ≤ 2K+1 − 2). The move is then

2 1 · · · 10→ 0 0 · · · 0 1 , (D1)

4. If some ∆νj < 0 then they can’t be all < 0, be-

cause 2
∑K
j=1 ∆νj2

j−1 = ∆N ≥ 0. Starting from
the right the first −1 encountered must belong to a
sequence of the form−1 0 · · · 0 1 or 1 0 · · · 0−1 (∆νj
must cross the zero). The possibility that the first
−1 belongs to a sequence of the second kind with-
out belonging also to a sequence of the first kind is
again excluded by the requirement ∆N ≥ 0. The
move is then

− 1 0 · · · 0 1→ 1 1 · · · 1 0 . (D2)

The idea is that after the application of one of the last two
moves we have to apply wherever possible the first two
before applying again 3 or 4. A distribution allowing the
above moves can’t be a minimizer because we can modify
it to have a strictly lower MSE. Therefore the minimizer
must be searched among the distributions to which the
moves don’t apply, which are those with ∆νj ∈ {0, 1}.
There happens to be only one of such distributions which
is the binary writing of ∆N . We now show that each of
the four moves gives a decrease in the MSE bound.

1. Let’s confront the changes in the summation on the
right hand of bound (54) before and after the first
move, i.e.

2j−log2 C∆νj + 2j+1−log2 C∆νj+1 >

2j−log2 C(∆νj−2) + 2j+1−log2 C(∆νj+1+1) ,
(D3)

this means

∆νj > ∆νj+1 + log2

(
C2 + C

2

)/
log2 C =⇒

∆νj ≥ ∆νj+1 + 2 .

(D4)

The last implication holds because νK and νK+1

are integers and C > 1. In this case there is always
a non zero gap between the MSE before and after
the application of the rule.
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2. We now determine when the reverse move of split-
ting a probe is useful.

2j−log2 C(∆νj+2) + 2j+1−log2 C(∆νj+1−1)

< 2j−log2 C∆νj + 2j+1−log2 C∆νj+1 ,
(D5)

that is

∆νj+1 > ∆νj + log2

(
2C2

1 + C

)/
log2 C , (D6)

so the splitting is convenient if ∆νj+1 ≥ ∆νj +
2 and also in this case the gap between the MSE
before and after the application of the rule is always
positive.

3. Let’s say that in rule (D1) there are α − 1 ones in
the middle of the left hand side. We compare the
MSE before and after the move only for the affected
part of the summation in bound (54) (regardless of
common factors).

2−2 log2 C + 21−log2 C + · · ·+ 2α−1−log2 C + 2α

> 1 + 2 + · · ·+ 2α−1 + 2α−log2 C ,
(D7)

that means

C−2 + C−1 (2α − 2) + 2α > 2α − 1 + 2αC−1 , (D8)

this last inequality implies (C − 1)
2
> 0. There-

fore also in this case we have a finite gap and it is
convenient to perform the move.

4. Let’s say that in rule (D2) there are α − 1 ones in
the middle of the right hand side. Then the com-
parison between the MSE bounds reads (neglecting
common factors)

2− log2 C + 21−log2 C + · · · 2α−1−log2 C + 2α

< 2log2 C + 21 + · · ·+ 2α−1 + 2α−log2 C ,
(D9)

which is

C−1 (2α − 1) + 2α < C + (2α − 2) + C−12α , (D10)

again the last inequality is (C − 1)
2
> 0 and there

is a positive decrease of the MSE when the move is
performed.

This closes the proof of Theorem IV.1.

Appendix E: Upper bound for odd ∆N

Theorem IV.1 states that the number of extra probes

is of the form ∆N = 2
∑K
j=1 bj2

j−1, therefore it must be
even. This stems from the fact that the algorithm as-
sumes that an equal number of measurements νj is per-
formed for every step of the estimation. Even the single

probe measurement at step j = 1 requires the resources
to be evenly distributed between measurements of Type-
0 and of Type-+. Suppose that we are given an extra
probe, then it may be used to enhance one of the mea-
surements at step j = 1. Let’s say without loss of gener-
ality that measurement of Type-0 is now performed with
ν1 + 1 probes (Type-+ still employs ν1 measurements),
then the probability bound (27) becomes:

P (|f0 − p0| ≥ ε) ≤ 2 exp
(
−2ν1ε

2 − 2ε2
)

(E1)

=
2

C
exp

(
−2ν1ε

2
)
, (E2)

where C = exp
(
2ε2
)
. The analytical bound (29) is mod-

ified as

P
(
|M̂1θ −M1θ| ≥

π

3

)
≤ 4C−ν1

[
1− 1

2

(
1− 1

C

)]
,

(E3)
We assume that such modification applies to every bound
of the form in Eq. (26), even if it has not been derived
from the Hoeffding’s bound. So in general

P
(
|M̂1θ −M1θ| ≥

π

3

)
≤ AC−ν1

[
1− 1

2

(
1− 1

C

)]
.

(E4)
We start again from Eq. (33) and add a probe to the first
step, by modifying the error probability as prescribed the
bound becomes

∆2θ̂ ≤
(

2π

3

)2
 1

4K
+ 16

K∑
j=1

A

4j−1
C−νj


−
(

2π

3

)2(
1− 1

C

)
64A

23KCxK−
1
2

. (E5)

The first part of this expression can be optimized as in
Sec. IV C to get bound (55) with an even number of re-
sources. It is legit to single out a probe from the op-
timization as it will have no role in the measurement
scheme. The extra term in Eq. (E5) is the same term
arising from Eq. (55) by incrementing ∆N → ∆N + 1.
Therefore for an odd ∆N this procedure gives exactly
bound (55), so the applicability of this formula depends
no more on the parity of ∆N .

Appendix F: Optimal redistribution for negative ∆N

In this appendix we answer the following question:
what happens if we reduce the number of probes but we
are bound to keep the same (fixed) size for the biggest
entangled state? In particular, what is the optimal dis-
tribution of probes? Equivalently what is the optimal
distribution when ∆N < 0? Such question was not rele-
vant to compute the distribution of resource as it is not
convenient to force the input state to be more entan-
gled than the ramp in Eq. (37) suggests. Nevertheless to
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answer this question we modify Eq. (42) with ∆νj and
write

∆2θ̂ ≤
(

2π

3

)2
 1

4K
+

64A

23KCxK−
1
2

K∑
j=1

2j−log2 C·∆νj

 ,

this time we have xK fixed (∆νK = 0) and ∆νj ≤ 0.
Each time ∆N = −2

(
2K − 1

)
we have ∆νj = −1 for

j = 1, 2, . . . ,K−1, at this point we reset all the counters
∆νj and ∆N , accounting this contributions as a com-

mon factor in the next step , indeed
∑K
j=1 2j−log2 C∆νj =

C
∑K
j=1 2j . By changing signs to ∆νj in the four moves,

Theorem IV.1 is still valid (with bj ∈ {0,−1}), but we
don’t report here the necessary checks. In the end we get

∆2θ̂ ≤
(

2π

3

)2(
1 +

128A

CxK−
1
2

)
1

4K

−
(

2π

3

)2
64A (C − 1)Ci

23KCxK−
1
2

∆N ,

(F1)

where the index i start as i = 0 and is raised by one at
every saturation of the ∆νj variables. The formula in
bound (F1) has been obtained by noticing that

K∑
j=1

2j−log2 C·∆νj =

K∑
j=1

2j − (C − 1) ∆N . (F2)

We don’t use this bound in the main text as it will never
be optimal in comparison to strategies with less entan-
glement.

Appendix G: Adaptive measurement

In this appendix we present a manipulation which
consists in applying to each probe of the codified state

|GHZ
(Mj)
θ 〉 the phase shift Vφ := e−iφH , generating

|GHZ
(Mj)
θ−φ 〉 = (|0〉⊗Mj + eiMj(θ−φ)|1〉⊗Mj )/

√
2 , (G1)

In Sec. V A, after the (K − 1)-th step has been success-
fully executed, we know the phase to be in an inter-
val of size 1

2K−2
2π
3 . By applying an appropriate shift

operator Vφ1
, we can make the computed interval for

θ̂ at the (K − 1)-th step completely contained in one

of the periods of |GHZ
(MK)
θ−φ 〉, with MK = 2K−1, being

them of size 2π
2K−1 > 1

2K−2
2π
3 . This resolves the pe-

riod ambiguity in the last step. For each state of size
MK , numbered with the index i = 1, . . . , 2νK , a con-
trol V ⊗MK

φi
is applied. Each entangled state is projected

onto (|0〉⊗Mj ± |1〉⊗Mj )/
√

2. This produces as outcome
a Bernoulli variable with value 0 or 1 characterized by
outcome probabilities

pi0 :=
1 + cosMK(θ − φi)

2
, pi1 = 1− pi0 , (G2)

where each φi is chosen according to the previous records.
The Maximum Likelihood Estimator extracted from the
collected data saturates the QCR bound, Eq. (64), in
the limit νK →∞, see [53], when suitable φi are chosen.
Again the above detection procedure can be implemented
via local detection of the individual probes of (16) – see
Ref. [50] and the discussion presented in Appendix A. No-
tice that by keeping the error interval 8π

3·2j−1 in Eq. (65),
as explained in Sec. III C, we account for the possible
accumulation of errors also in this modified strategy.
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