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Abstract: It is known that the Kramers-Kronig (KK) relation between real and imaginary parts
of the optical susceptibility in the frequency domain can also be realized in the space domain, as
first proposed in [Nat. Photonics 9(7), 436 (2015)]. We here study a mechanism to implement
spatial KK relations in a cold atomic sample and use it to control unidirectional reflectionless for
probe light incident from either the left or right side of the sample at will. In our model, the
complex frequency dependent atomic susceptibility is mapped into a spatially dependent one,
employing a far-detuned driving field of intensity linearly varied in space. The reflection of an
incident light from one side of the sample can then be set to vanish over a specific frequency band
directly by changing the driving field parameters, such as its intensity and frequency. Also, by
incorporating the Bragg scattering into the spatial KK relation, the reflectivity from the opposite
side of the sample, though typically small for realistic atomic densities, can be made to increase
to improve the reflectivity contrast. The present scheme bears potentials for all-optical network
applications that require controllable unidirectional light propagation.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Asymmetric reflection control of the flow of a light beam is a key technique to perform photonic
and quantum communication manipulations. Unidirectional reflectionless, in particular, has
attracted much research efforts because of its perspective applications in developing novel
photonic devices [1–9]. Control over reflection of a light beam incident from opposite sides of
a device is usually reciprocal and static, i.e., takes place with identical reflectivity values and
cannot be changed. This can be achieved, e.g., using photonic band-gap materials exhibiting a
given periodic structure of the real refractive index [10,11]. Tunable photonic band gap structures
have also been proven to be viable, where control of the periodic structure of the complex
susceptibility can be done, e.g., through electromagnetically induced transparency (EIT) [12–14],
with homogeneous atomic clouds dressed by standing-wave coupling fields [15–22] or periodic
atomic lattices dressed by traveling-wave coupling fields [23–33]. Generally speaking, it is
hard to achieve asymmetric light transport through standard linear optical processes [34–36],
though significant progresses have been made recently in coherently driven moving atomic
lattices [1,2,32] and in materials exhibiting parity-time (PT) symmetry or asymmetry [3,4,37–41].
Realistic implementations of these schemes are challenging owing to complex atom-light coupling
configurations, precise light field arrangement in space and peculiar balanced gain and loss over
a single period.

Alternatively, asymmetric and unidirectional reflection can be realized in an inhomogeneous
continuous medium as the usual Kramers-Kronig (KK) relation, satisfied by its complex optical
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response function, is mapped from the frequency domain to the space domain [5–8,42–49]. In
the pioneering work [5], Horsley et al. found that a non-Hermitian medium would not reflect
light from one side for all incident angles if its complex permittivity satisfies the spatial KK
relation, which promises also the realization of omnidirectional perfect absorber [7] and media
with no transmission [50]. When extended into discrete lattices, complex potentials exhibiting the
spatial KK relation may further become invisible to support a bidirectional reflectionless behavior
[48,49]. Notice, in addition, that the original idea has been already experimentally demonstrated
via a suitable design of different inhomogeneous media [7,43,51,52]. All above findings not
only deepen our understanding of light propagation, but also provide new platforms toward
multi-functional optical elements, especially those requiring perfect antireflection properties.
Yet, schemes so far studied rely on fixed complex refractive index, susceptibility, or permittivity
structures and hence lack of dynamic tunability.

Here we propose an efficient scheme for mapping the KK relation of a probe susceptibility
from the frequency domain into the space domain in a cold atomic sample. The scheme hinges
on devising a position-dependent ground level shift with a far detuned external control field
whose intensity can be linearly varied in space (see Sect. 2). Other spatially dependent EIT
systems have also been used to manipulate structured light beams, albeit via phase-dependent
dark-states [53–55]. It is worth noting that in our scheme, depending on the probe frequency,
spatial KK relations may be completely or partially fulfilled or even destroyed; in the following
these are termed respectively as "unbroken", "transitional", and "broken" regimes. The unbroken
regime is of particular interest here because it enables us to attain reflectionless manipulation of
a probe beam incident on one sample end over a tunable range of frequencies. The transitional
regime may instead be exploited to attain reflectionless manipulation from both sample side ends,
albeit at different frequencies. Furthermore, changing the "sign" of the ground level shift enables
us to directly swap the direction of the vanishing reflectivity whereas increasing the level shift
"magnitude" leads to an enhancement of the nonzero reflectivity while maintaining (on the other
side) a vanishing reflectivity. Bragg scattering may also be incorporated into the spatial KK
relation to further increase the forward-backward reflectivity contrast.

2. Model and equations

We consider in Fig. 1(a) a cold atomic sample extending from x = 0 to x = L, driven by a weak
probe field of amplitude (frequency) Ep (ωp) and a strong control field of amplitude (frequency)
Ec (ωc). The control field is assumed to illuminate the sample along the −y direction while the
probe field can travel through the sample along either x or −x direction. All atoms are driven
into the three-level V configuration, as shown in Fig. 1(b), characterized by Rabi frequencies
(detunings) Ωp = Ep · dge/2ℏ on transition |g⟩ ↔ |e⟩ (∆p = ωp − ωeg) and Ωc = Ec · dga/2ℏ
on transition |g⟩ ↔ |a⟩ (∆c = ωc − ωag), being dµν and ωµν dipole moments and resonant
frequencies of relevant transitions. We have also used Γag and Γeg to describe the population decay
rates from levels |a⟩ and |e⟩ to level |g⟩, respectively. To be more concrete, levels |a⟩, |e⟩, and |g⟩
may refer to states |5P3/2, F = 3, mF = 3⟩, |5P1/2, F = 1, mF = 1⟩, and |5S1/2, F = 2, mF = 2⟩ of
87Rb atoms, respectively. This choice ensures that (i) dipole moments |dge | and |dga | take the
largest possible values, which could relax the requirement of a very dense atomic sample for
achieving a high reflectivity contrast; (ii) the control field doesn’t couple level |g⟩ to a fourth
level even in the case of a large |∆c |, because no others except level |a⟩ has mF = 3 on the D2
line of 87Rb atoms. Most importantly, we will assume that the control field is linearly varied in
intensity along the x direction, e.g., by a neutral density filter (NDF). In this case, |Ωc |

2 should
be replaced by |Ωc(x)|2 = x|Ωc0 |

2/L with Ωc0 denoting the maximal Rabi frequency at x = L.
With the electric-dipole and rotating-wave approximations, working in the weak probe limit,

we can solve density matrix equations for the three-level V configuration to attain the steady-state
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Fig. 1. (a) A cold atomic sample illuminated by a control beam Ec(x) along the −y direction
exhibits a strongly asymmetric reflection for a probe beam Ep incident either along the
+x or the −x direction. (b) A three-level atomic system driven by a probe field of Rabi
frequency Ωp (detuning ∆p) and a control field of Rabi frequency Ωc(x) (detuning ∆c) into
the V configuration. (c) A two-level atomic system with a dynamic shift δ(x) of level |g⟩
upon the adiabatic elimination of level |a⟩.

probe susceptibility

χ3(∆p, x) = i
N0 |dge |

2

ε0ℏ
[(γ2

ga + ∆
2
c) + |Ωc(x)|2][γea − i(∆c − ∆p)] − |Ωc(x)|2(γga − i∆c)

[(γ2
ga + ∆

2
c) + |Ωc(x)|2]{[γea − i(∆c − ∆p)](γge − i∆p) + |Ωc(x)|2}

, (1)

where N0 denotes the homogeneous atomic density while γµν is the coherence dephasing rate on
transition |µ⟩ ↔ |ν⟩ with γge = Γeg/2, γga = Γag/2, and γea = (Γag + Γeg)/2. Now we consider
that the control field is far detuned from transition |g⟩ ↔ |a⟩ by requiring ∆c ≫ Ωc0, γga. In
this case, level |a⟩ can be adiabatically eliminated from the three-level V configuration to yield
a two-level system [see Fig. 1(c)], in which level |g⟩ suffers a position-dependent energy shift
δ(x) = |Ωc(x)|2/∆c = xδ0/L with δ0 = |Ωc0 |

2/∆c. Then the probe susceptibility can be cast into
a more compact form as given by

χ2(∆p, x) = i
N0 |dge |

2

ε0ℏ
1

γge − i[∆p + δ(x)]
, (2)

whose real (χ′2) and imaginary (χ′′2 ) parts govern the local dispersive and absorption properties
around the probe resonance, respectively. The possibility to control the effective detuning
∆

eff
p (x) = ∆p + δ(x) by changing the ground level shift δ(x) amounts to a direct mapping from the

spatially linear variation of the control intensity to that of the probe detuning.
The real and imaginary parts of χ2 are well known to be related via the KK relation in the

frequency domain based on the causality principle and Cauchy’s theorem if we set δ(x) ≡ 0 [56].
Thus, for appropriate probe detunings and sufficiently long samples such that the spatial variation
of the effective probe detuning induced by δ(x) is fully developed, as shown by the red solid
lines in Figs. 2(a) and 2(b), the KK relation holds in the space domain and can be defined by the
following Cauchy’s principal value integral

χ′2(∆p, x) =
1
π

P
∫ L

0

χ′′2 (∆p, s)
s − x

ds (3)
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over spatial coordinate s along the x direction, where P indicates the principal part of the integral
after excluding the singular point s = x.

Fig. 2. (a) Real and (b) imaginary parts of susceptibility χ2 against position x with
δ0/γge=100 and ∆p/γge = −50 (red-solid); δ0/γge=20 and ∆p/γge = −10 (blue-dashed).
(c) Real and (d) imaginary parts of susceptibility χ2 against position x and detuning
∆p with δ0/γge=100. Other parameters used in calculations are γge = 2π × 2.87 MHz,
dge = 1.79 × 10−29 C·m, N0 = 2.0 × 1013 cm−3, L = 5.0 µm, and λp = 795 nm.

A medium described by χ2 in Eq. (2) is expected to exhibit asymmetric light transport features,
which can be examined via the standard transfer-matrix method [57–59] as sketched below. First,
the atomic sample is partitioned along the x direction into a large number (J) of slices labeled by
j ∈ [1, J], which exhibit slightly different susceptibilities χ̄j(∆p) = χ2(∆p, jl) but identical length
l = L/J = 10 nm. Second, a 2 × 2 unimodular transfer matrix Mj(∆p, l) characterized by l and
χ̄j(∆p) can be established to describe the propagation of an incident probe field of wavelength λp
through the jth slice by ⎡⎢⎢⎢⎢⎣

E+p (∆p, jl)

E−
p (∆p, jl)

⎤⎥⎥⎥⎥⎦ = Mj(∆p, l)
⎡⎢⎢⎢⎢⎣

E+p (∆p, jl − l)

E−
p (∆p, jl − l)

⎤⎥⎥⎥⎥⎦ , (4)

where E+p and E−
p denote the forward and backward components of the probe field, respectively.

Third, the total transfer matrix of the atomic sample turns out to be M(∆p, L) = MJ(∆p, l) · · ·
Mj(∆p, l) · · · M1(∆p, l) as a multiplication of the individual transfer matrices of all atomic slices.
Finally, we can write the reflectivities (Rl ≠ Rr) and the transmissivities (T = Tl = Tr) as

Rl(∆p, L) =
|︁|︁rl(∆p, L)

|︁|︁2 = |︁|︁|︁|︁M(21)(∆p, L)
M(22)(∆p, L)

|︁|︁|︁|︁2 ,

Rr(∆p, L) =
|︁|︁rr(∆p, L)

|︁|︁2 = |︁|︁|︁|︁M(12)(∆p, L)
M(22)(∆p, L)

|︁|︁|︁|︁2 ,

T(∆p, L) =
|︁|︁t(∆p, L)

|︁|︁2 = |︁|︁|︁|︁ 1
M(22)(∆p, L)

|︁|︁|︁|︁2
(5)
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in terms of the four matrix elements of M(∆p, L). Here the subscripts ‘l’ and ‘r’ have been used
to denote that the weak probe field is incident from the left and right sides along the x and −x
directions, respectively.

3. Results and discussion

In this section, we show via numerical calculations how to implement the spatial KK relation in a
narrow spectral range by tailoring the complex probe susceptibility, and how to implement the
unidirectional reflection of a high reflectivity contrast by utilizing the spatial KK relation. All
numerical calculations will be done with realistic parameters corresponding to the three states of
87Rb atoms chosen above, though our driving configuration can also be realized, e.g., in other
alkali metal atoms.

First, we plot in Figs. 2(a) and 2(b), respectively, the real and imaginary parts of χ2 against
position x for two sets of parameters making the choice ∆p = −δ0/2, which allows the effective
probe detuning ∆eff

p (x) to be in the range of {−δ0/2, δ0/2}. It is clear that χ′2 and χ′′2 show an
odd profile and an even profile, respectively, centered at z = L/2 and practically fully contained
by the atomic sample, so they should satisfy the spatial KK relation described by Eq. (3). We
also can see that smaller (larger) values of δ0/γ12, a key dimensionless parameter in our reduced
two-level system, will result in broader (narrower) spatial profiles of χ′2 and χ′′2 yet without
changing their peak amplitudes. To reveal the frequency-dependent feature, we plot in Figs. 2(c)
and 2(d), respectively, the real and imaginary parts of χ2 against both position x and detuning
∆p instead. The profiles of χ′2 and χ′′2 are found to move simultaneously toward the left (right)
sample end with the increasing (decreasing) of ∆p. Accordingly, the spatial KK relation will be
gradually destroyed because Eq. (3) becomes less and less satisfied.

In order to assess the extent to which the spatial KK relation is satisfied for different probe
detunings in a finite atomic sample, here we propose the following integral

Dkk(∆p) =

∫ L
0

{︂
χ′2(∆p, x) − 1

π P
∫ L
0

χ′′
2 (∆p,s)
s−x ds

}︂
dx|︁|︁|︁∫ L

0 χ
′
2(∆p, x)dx

|︁|︁|︁ (6)

as a figure of merit for the spatial KK relation. In this definition, Dkk = 0 denotes the unbroken
regime where the spatial KK relation is fully satisfied while Dkk = ±1 denote the broken regime
where the spatial KK relation is fully destroyed. According to Eq. (2) and Fig. 2, the spatial
profiles of χ′2 and χ′′2 are well contained within our finite atomic sample only for a small
range of ∆p, so the validity of the spatial KK relation is expected to increasingly deteriorate
(Dkk = 0 → Dkk = ±1) as ∆p is gradually modulated out of this range. This is different from all
previous works on spatial KK relation [5–8,42–49], where the susceptibility or permittivity has
been assumed to be fixed by design, i.e. not tunable.

Then we plot in Fig. 3(a) the reflection and transmission spectra for the parameters used in
Figs. 2(a) and 2(b) based on Eq. (5). It is easy to see that these spectra can be divided into three
regions: (I) where we have Rl = Rr → 0 and T → 1; (II) where Rl ≠ Rr and T are sensitive
to ∆p; (III) where T ≃ 0.05, Rl → 0, but Rr oscillates around 0.2. The generation of three
different regions can be understood by examining in Fig. 3(b) the figure of merit Dkk against probe
detuning ∆p, which clearly shows, as compared to Fig. 3(a), that Dkk governs the relation between
Rl, Rr, and T . The symmetric (I), asymmetric (II), and unidirectional (III) reflection regions
correspond, respectively, to the broken (Dkk = ±1), transitional (0< |Dkk |<1), and unbroken
(Dkk = 0) regimes, and to the cases when the absorption (χ′′2 ) and dispersion (χ′2) profiles move
out of the sample, lie at the sample boundaries, and are well contained by the sample. It is worth
noting that in region (III) a left (right) incident probe beam is reflectionless (partially reflected)
because it first sees the negative (positive) peak of χ′2 [5], and the resonant absorption (χ′′2 ) is
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already strong enough to yield T → 0.0 for forward photons while the dispersion profile (χ′2)
is not too sharp to yield Rr → 1.0 for backward photons. One way for further reducing T and
simultaneously increasing Rr is to produce enhanced absorption profiles and sharper dispersion
profiles in denser atomic samples. The restricted range of densities of cold atoms available in
experiment, however, places a constraint on this approach.

Fig. 3. (a) Reflectivity Rl, reflectivity Rr , and half transmissivity T; (b) figure of merit Dkk
against detuning ∆p. Other parameters used in calculations are the same as in Fig. 2(a,b).

Figure 4(a) further shows the different regimes on a diagram with Dkk plotted against δ0 and ∆p,
in which the green region (Dkk = −1) and the red region (Dkk = 1) refer to the broken regime (I);
the four narrow blue regions (0< |Dkk |<1) refer to the transitional regime (II); the two triangular
yellow regions (Dkk = 0) refer to the unbroken regime (III). It is also clear that the widths of two
yellow regions depend critically on the magnitude of δ0; a broken regime may be converted into
an unbroken regime and vice versa for a given ∆p by changing the sign of δ0. Accordingly, it
is viable to enlarge or reduce the reflectionless frequency band by varying the magnitude of δ0
and convert the sample from left reflectionless to right reflectionless or vice versa by changing
the sign of δ0. This potentially dynamic controllability, a chief feature of our proposal, is well
demonstrated in Figs. 4(b) and 4(c) in terms of reflectivities Rl and Rr.

It is also interesting to examine what could happen for reflectivities Rl and Rr when sample
length L is multiplied while atomic density N0 remains invariant. In this case, we can see from
δ(x) = xδ0/L that the linear variation occurs in a much larger range while its magnitude δ0 is
unchanged. Then, as shown in Fig. 5, the spatially wider/smoother dispersion (χ′2) and absorption
(χ′′2 ), of L-independent maxima and minima, together result in a notable reduction of Rr while Rl
remains vanishing in the unbroken regime. The peak of Rl (Rr) accompanied by Rr → 0 (Rl → 0)
in the transitional regime has a L-independent position because it only appears as the main
profiles of χ′2(x) and χ′′2 (x) approach and even partially leave the left (right) sample end. It is
clearly not a result of the spatial KK relation and allows two probe beams of different frequencies
to be simultaneously reflected or not when they are incident upon the opposite sample ends. The
damped oscillations of Rr against ∆p in the unbroken regime can be understood as a multiple
interference effect due to the discontinuities of the probe susceptibility at the right sample end
and at the resonant position inside the sample. It is clear that stronger (weaker) oscillations occur
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Fig. 4. (a) Figure of merit Dkk, (b) reflectivity Rl, and (c) reflectivity Rr (c) against shift δ0
and detuning ∆p. Other parameters used in calculations are the same as in Figs. 2(a) and (b).

at larger (smaller) values of |∆p | because the resonant position of χ′2(x) and χ′′2 (x) is close to
(far from) the right sample end, yielding thus stronger (weaker) discontinuities. The oscillation
period can be roughly estimated as d∆p ≃ δ0/L · λp/2 by considering that the interval d∆p of
two adjacent maxima corresponds to a 2π phase shift (λp/2 spatial shift) gained by the reflected
photons (χ′2(x) and χ′′2 (x)).

Finally, we note that an experiment may typically have a lower atomic density and a larger
sample length than in simulations presented so far. To overcome this difficulty, we need to find
an alternative way to enhance the nonzero reflectivity in the unbroken regime. This can be done
by loading cold atoms into a 1D optical lattice to create a spatially periodic density Nj(x) as
described in the caption of Fig. 6, yielding thus Bragg scattering incorporated into the spatial
KK relation. As shown in Fig. 6(a) and Fig. 6(b), both dispersion χ′2(x) and absorption χ′′2 (x)
of one-order lower values now exhibit the comb-like spatial profiles while satisfying to a less
extent the spatial KK relation. In this case, we can find from Fig. 6(c) that Rl and Rr are strongly
asymmetric in a much smaller frequency range, e.g., with Rr exhibiting a maximal value up to
0.54 while Rl ≲ 0.01 for −25.5 ≲ ∆p/γge ≲ −11.0. Figure 6(d) further shows that the reflectivity
contrast C = (Rr −Rl)/(Rr +Rl), an important figure of merit on the asymmetric reflection, could
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Fig. 5. Reflectivities (a) Rl and (b) Rr against detuning ∆p for L = 10 µm (black-squares),
L = 15 µm (red-circles), and L = 20 µm (blue-triangles). Other parameters used in
calculations are the same as in Figs. 2(a) and (b). Black (red) curves are shown with a
vertical offset 0.1 (0.05) in both insets.

Fig. 6. Spatial profiles of (a) χ′2 and (b) χ′′2 as well as corresponding spectra of (c)
reflectivities Rl,r and (d) contrast C for an atomic lattice of density Nj(x) = N0e−(x−xj)

2/δx2

in the jth trap of center xj = (j − 1/2)Λ, width δx, and period Λ. Parameters are the same
as in Fig. 2(b) except N0 = 2.0 × 1012 cm−3, L = 60 µm, δ0/γge = 30, Λ = 400 nm, and
δx = Λ/6.
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be up to 0.97 and is over 0.90 for −27.0 ≲ ∆p/γge ≲ −4.5. It is noticeable that the incorporation
of Bragg scattering, typically yielding symmetric reflectivities, has negligible effects on the
vanishing reflectivity but largely enhances the nonzero reflectivity and the reflectivity contrast.
That means, replacing a constant density N0 with a periodic density Nj(x) does not hamper the
implementation of spatial KK relation, which is essential for developing nonreciprocal optical
devices requiring a high reflectivity contrast.

It has been shown that atoms could be trapped and guided using nanofabricated wires and
surfaces to form atom chips [60]. These chips provide a versatile experimental platform with
cold atoms and constitute the basis for wide and robust applications ranging from atom optics to
quantum optics. They have been used, for instance, in diverse experiments involving quantum
simulation, metrology, and information processing [61–63]. We then believe that our proposal is
well poised to atom-chip implementations in integrated optical devices.

4. Conclusions

In summary, we have investigated the spatial KK relation and relevant reflection features in a short
and dense sample of cold 87Rb atoms. This nontrivial relation in regard of the probe susceptibility
is enabled by generating a position-dependent ground level shift δ(x) with a far detuned control
field of intensity linearly varied along the x direction. We find, in particular, that the figure
of merit Dkk characterizing the spatial KK relation may switch from the unbroken regime of
unidirectional reflection, via the transitional regime of asymmetric reflection, to the broken
regime of symmetric reflection, or vice versa. This is attained by increasing the maximal level
shift δ0 from a negative value to a positive value or considering an inverse process, depending on
the sign of probe detuning ∆p. A swapping between the nonzero reflectivity and the vanishing
reflectivity at opposite sample ends is also viable by changing the sign of maximal level shift
δ0. It is of more interest that the nonzero reflectivity can be well enhanced to result in a high
reflectivity contrast for lower densities and larger lengths in a cold atomic lattice, indicating that
Bragg scattering does not hamper or spoil the main effects of spatial KK relation. Such a feasible
scheme may inspire further applications in nonreciprocal optical devices and provide a promising
platform for atom-chip implementations.
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