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WELL-POSEDNESS OF THE TWO-DIMENSIONAL NONLINEAR

SCHRÖDINGER EQUATION WITH CONCENTRATED NONLINEARITY

RAFFAELE CARLONE, MICHELE CORREGGI, AND LORENZO TENTARELLI

Abstract. We consider a two-dimensional nonlinear Schrödinger equation with concentrated non-
linearity. In both the focusing and defocusing case we prove local well-posedness, i.e., existence and
uniqueness of the solution for short times, as well as energy and mass conservation. In addition,
we prove that this implies global existence in the defocusing case, irrespective of the power of the
nonlinearity, while in the focusing case blowing-up solutions may arise.

Contents

1. Introduction and Main Results 1
1.1. The model 2
1.2. Local well-posedness and conservation laws 5
1.3. Global well-posedness and blow-up alternative 7
2. Proofs 8
2.1. Preliminary results 8
2.2. A derivation of the charge equation 17
2.3. Local well-posedness 19
2.4. Conservation laws 26
2.5. Global well-posedness and blow-up alternative 36
References 37

1. Introduction and Main Results

The nonlinear Schrödinger (NLS) equation plays a relevant role in several sectors of physics,
where it appears very often as an effective evolution equation describing the behavior of a micro-
scopic system on a macroscopic or mesoscopic scale. A typical example is provided by the time
evolution of Bose-Einstein condensates, which is known to be well approximated by a NLS-type
equation going under the name of Gross-Pitaevskii equation [DGPS]. There are however other
examples in which the physical meaning of the NLS equation is totally different, as, e.g., the prop-
agation of light in nonlinear optics, the behavior of water or plasma waves, the signal transmission
through neurons (FitzHugh-Nagumo model), etc. (see, e.g., [Ma] and references therein).

Thanks to its physical relevance, the NLS equation has attracted a lot interest within the
mathematical community as well, and several monographs are devoted to its detailed study (see,
e.g., [C]). Here we focus on the simple but nontrivial case of a nonlinearity affecting the evolution
only at finitely many points, i.e., a NLS equation with concentrated nonlinearity. Roughly speaking
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the model we want to investigate is described by the two-dimensional formal equation

iBtψt “
ˆ

´ ∆ `
Nÿ

j“1

µjδpx ´ yjq
˙
ψt, (1.1)

where any coupling parameter µj “ µjpψtpyjqq depends itself on the value of the function ψt at yj

(see below).
Such a model has been used in physics to describe very different phenomena, mostly related

to solid state physics: the charge accumulation in semiconductor interfaces or heterostructures
can be modelled indeed by nonlinear effects concentrated in a small spatial region [BKB, J-LPC,
J-LPS, MA, N]. The idea is that the nonlinear term takes into account the many-body interaction
effects on the scattering of an electron through a barrier or by an impurity in the medium [MB].
In nonlinear optics similar models arise in the description of the nonlinear propagation in a Kerr-
type medium in presence of localized defects [SKB, S et al, Y], but several other applications are
suggested in acoustic, conventional and high-Tc superconductivity, light propagation in photonic
crystals etc. (see [S et al] and references therein). More recently the nonlinear propagation in
presence of a concentrated defect has been suggested as a dynamic model for the evolution of
Bose-Einstein condensates in optical lattices, where the isolated defect is generated by a focused
laser beam [DM, LKMF].

From the mathematical point of view, the expression between brackets in the above formula is
purely formal, at least in two or more dimensions, and, in order to give it a rigorous meaning,
one can follow different paths, as, e.g., classifying the self-adjoint extensions of suitable symmetric
operators [AGH-KH] or investigating the properties of the associated quadratic forms [DFT1].
The reason why such models (a.k.a. solvable models), involving zero-range or point interactions,
have attracted so much interest in the past is that the time evolution described by (1.1) can
be simplified and in fact reduced to an ODE-type evolution of finitely many complex numbers
named charges (see below), which are proportional to the values of ψt at the singular points.
This was first observed in the corresponding time-dependent linear models [DFT2, SY] (see also
[CD, CDFM, CCF, CCNP, NP] for similar results) and later used also in the nonlinear framework.

Analogous 1 and 3D models have indeed already been studied in details in the literature [A,
AT, ADFT1, ADFT2]: it has been proven that the weak Cauchy problem associated to (1.1) in 1
or 3D (or rather to its rigorous analogue) admits a unique solution in the proper energy space for
short times and that, under additional assumptions of the parameter (e.g., in the defocusing case),
such a solution is in fact global in time (thanks to the mass and energy conservation). Further
results about the possible emergence of blow-up solutions have also been established; so that the
1 and 3D models are basically completely understood. On the opposite, no results about the
well-posedness (neither local nor global) of the 2D equation are available so far, mostly due to
hard technical difficulties emerging in 2D (see the discussion at the end of next Sect.). It is also
worth mentioning that the 1D and 3D analogues of the model above have been rigorously derived
in [CFNT1, CFNT2] from the ordinary NLS equation in a suitable scaling limit of nonlinearity
concentration.

1.1. The model. We specify now more precisely the model we want to investigate. We are
interested in discussing a specific form of 2D NLS equation with concentrated nonlinearities at
finitely many points y1, . . . ,yN P R

2, with yi ‰ yj for i ‰ j. The precise definition of the model
is similar to the 3D one, with some small but relevant modifications mostly due to the peculiar
behavior of the 2D Green function (see below).
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We start by recalling the properties of the linear version of the evolution problem (1.1), which has
been studied in [CCF]: the idea is to reformulate (1.1) as the Schrödinger equation iBtψt “ H

αptqψt

associated to a time-dependent Schrödinger operator H
αptq on L2pR2q, defined as

`
H

αptq ` λ
˘
ψ “ p´∆ ` λqφλ, (1.2)

with domain

D
`
H

αptq
˘

“
"
ψ P L2pR2q

ˇ̌
ψ “ φλ ` 1

2π

Nÿ

j“1

qjptqK0

´?
λ|x ´ yj |

¯
, φλ P H2pR2q,

lim
xÑyj

φλpxq “
´
αjptq ` 1

2π
log

?
λ
2

` γ
2π

¯
qjptq ´ 1

2π

ÿ

k‰j

K0

´?
λ|yj ´ yk|

¯
qkptq

*
, (1.3)

where λ ą 0, K0p
?
λ|x|q denotes the inverse Fourier transform of p|p|2 ` λq´1, i.e., the modified

Bessel function of second kind of order 0 (a.k.a. Macdonald function [AS, Sect. 9.6]), γ is the
Euler constant and the function αptq “ pα1ptq, . . . , αN ptqq is assumed to be of class C1.

Wave functions in the operator domain are thus decomposable into a regular part φλ, belonging
to the domain of the free Laplacian, plus a more singular term proportional to the Green function
of ´∆ ` λ, which shows logarithmic singularities at the points y1, . . . ,yN [CCF]. The interaction
is replaced with a boundary condition linking the values of the regular part φλ at points y1, . . . ,yN

to the coefficients of the singular one.

Remark 1.1 (Domain decomposition).
In the definition of the domain (1.3) a first difference with the 3D case emerges: the operator
domain DpH

αptqq is obviously independent of the parameter λ, but, while in 3D one is allowed to
take λ “ 0 (with some little care about the large |x| decay), the same is not possible in 2D. Due
to its infrared singularity, the 2D Green function actually diverges when λ Ñ 0 and therefore such
a choice is forbidden.

The Cauchy problem for the linear evolution equation, i.e.,
#
iBtψt “ H

αptqψt,

ψt“0 “ ψ0,
(1.4)

with ψ0 P DpH
αp0qq, was studied in [CCF], where it was proven that H

αptq generates a two-
parameter unitary group Upt, sq and therefore, if φ P DpH

αp0qq, then also ψt P DpH
αptqq for any

time t P R.
Equivalently one can consider the quadratic form F

αptq associated to the operator H
αptq,

F
αptqrψs “

ż

R2

dx
!

|∇φλ|2 ` λ |φλ|2 ´ λ|ψ|2
)

`
Nÿ

j“1

´
αjptq ` 1

2π
log

?
λ
2

´ γ
2π

¯
|qj|2

` 1

2π

ÿ

j‰k

q˚
j qkK0p

?
λ |yj ´ yk|q

with time-independent domain

DrFs “
"
ψ P L2pR2q

ˇ̌
ψ “ φλ ` 1

2π

Nÿ

j“1

qjK0

´?
λ|x ´ yj |

¯
, φλ P H1pR2q, qj P C

*
, (1.5)
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and the weaker version of the Cauchy problem (1.4):
#
iBt xχ|ψty “ F

αptqrχ,ψts, @χ P DrFs,
ψt“0 “ ψ0,

(1.6)

where the initial datum ψ0 also belongs to the form domain DrFs, x ¨ | ¨ y stands for the scalar
product in L2pR2q and F

αptqr ¨ , ¨ s is the sesquilinear form associated to F
αptq defined, e.g., by

polarization. The well-posedness of the above Cauchy problem is also proven in [CCF]. Note
that, unlike the operator domain, functions in the form domain DrFs do not have to satisfy any
boundary condition.

A solution to both linear problems (1.4) and (1.6) (see [CCF, Sect. 2.2]) is provided by the
following ansatz

ψtpxq “ pU0ptqψ0q pxq ` i

2π

Nÿ

j“1

ż t

0

dτ U0 pt´ τ ; |x ´ yj|q qjpτq, (1.7)

where U0ptq “ ei∆t denotes the free propagator, whose integral kernel is given by

U0pt; |x|q “ e´ |x|2

4it

2it
, t P R, x P R

2,

and the function qptq “ pq1ptq, . . . , qN ptqq is the solution of a Volterra-type equation of the form

qjptq ` 4π

ż t

0

dτ Ipt´ τq αjpτqqjpτq `
Nÿ

k“1

ż t

0

dτ Kjkpt ´ τq qkpτq “ fjptq (1.8)

(see below for more details).
The nonlinear model we plan to investigate in this article is the analogue of (1.4) (resp. (1.6)),

where the parameters αptq depend themselves on the values of the charge qptq, i.e.,

αjptq “ βj |qjptq|2σj , βj P R, σj P R
`. (1.9)

Hence for any wave function in the nonlinear operator domain, the above nonlinearity can be
translated into N nonlinear boundary conditions, i.e.,

lim
xÑyj

φλpxq “
´
βj |qjptq|2σj ` 1

2π
log

?
λ
2

` γ
2π

¯
qjptq ´ 1

2π

ÿ

k‰j

K0p
?
λ|yj ´ yk|qqkptq. (1.10)

We will show that a weak solution to the Cauchy problem (1.4) (i.e., a solution to (1.6)) with
the nonlinear condition (1.9) is provided by the very same ansatz as in (1.7), i.e.,

ψtpxq “ pU0ptqψ0q pxq ` i

2π

Nÿ

j“1

ż t

0

dτ U0 pt´ τ ; |x ´ yj|q qjpτq,

where qptq is now the solution of the Volterra-type nonlinear equation

qjptq ` 4πβj

ż t

0

dτ Ipt´ τq|qjpτq|2σj qjpτq

`
Nÿ

k“1

ż t

0

dτ Kjkpt´ τqqkpτq “ 4π

ż t

0

dτ Ipt´ τqpU0pτqψ0qpyjq,
(1.11)
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with I denoting the Volterra function of order ´1

Iptq :“
ż 8

0

dτ
tτ´1

Γpτq , (1.12)

and where Kjk, j, k “ 1, . . . , N , is defined by

Kjkptq :“
#

´2
`
log 2 ´ γ ` iπ

4

˘
Iptq, if j “ k,

´IptqRjkptq, if j ‰ k,
(1.13)

with

Rjkptq :“ t e
i|yj´yk|2

4t

Iptq

ż 8

0

dv
1

1 ` vt
I
´

vt2

1`vt

¯
exp

!
i|yj´yk|2v

4

)
. (1.14)

Notice that the choice of the initial time t “ 0 is completely arbitrary: everything we prove in this
paper holds as well if the initial time t “ 0 is replaced with any s ě 0.

For the sake of completeness we also formulate the weak counterpart of the evolution problem
(1.7) and (1.11), which reads as follows: let the initial datum ψ0 belong to the form domain DrFs,
then #

iBt xχ|ψty “ F
αptq

“
χ,ψt

‰ˇ̌
tαjptq“βj |qjptq|2σj , j“1,...,Nu ,

ψt“0 “ ψ0,
(1.15)

for any χ P DrFs.
The form of the Volterra equation (1.11) makes apparent a major difference with the 1 and 3D

cases, which is also one of the main reasons why the 2D one called for a more refined analysis: the
integral operator with kernel Ipt´τq defined in (1.12) is a characteristic feature of the 2D problem
and poses hard technical issues (see, e.g., [CFT]). In 3D (in 1D the equation is even simpler)
the role of I is played by the Abel-1{2 integral operator with kernel 1{

?
t´ τ , which enjoys a lot

of useful regularizing properties, making the investigation of (1.11) much easier. In that case, by
taking smooth enough initial data, the regularity easily propagates to qptq, so that the ansatz (1.7)
belongs to the operator domain and therefore it provides strong solution to the Cauchy problem.
The extension to rougher initial data is then obtained by density. In 2D already the first step, i.e.,
the regularity of qptq for smooth initial data, is challenging and the whole proof strategy has to
be dramatically changed (see Sect. 2).

Moreover, the lack of regularity of qptq prevents the use of any density argument, which is
precisely the route followed in 1 and 3D: indeed, it is impossible in 2D to restrict the set of initial
data, prove the well-posedness and then extend the result to all initial data by density. On the
opposite, our strategy relies on a contraction argument, which does not allow to propagate any
additional regularity from the initial datum to qptq (and then to ψt). In addition, the appropriate

contraction space is H1{2p0, T q, which is known to have a sort of pathological behavior, i.e., failure

of the Hardy inequality, absence of natural extensions to H1{2pRq etc. (see below), and makes the
technical side of the proof really tricky.

1.2. Local well-posedness and conservation laws. The first result we prove concerning the
evolution problem described above is a local well-posedness for initial data in a suitable subset of
the form domain that we define as follows (we set p “ |p| for short)

D :“
!
ψ P DrFs

ˇ̌
ˇ p1 ` pǫq xφλppq P L1pR2q, for some ǫ ą 0

)
, (1.16)

where xφλ stands for the Fourier transform (see (2.2)) of the regular part φλ.
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Theorem 1.1 (Local well-posedness).
Let ψ0 P D and σj ě 1

2
, for any j “ 1, . . . , N . Then, there exists T ą 0 such that there is a unique

solution to (1.15) belonging to DrFs for any t ď T and it is given by (1.7), with qptq the unique

solution to (1.11).

Remark 1.2 (Charge qptq).
The above Theorem contains in fact two results: the most important one is the local well-posedness
of the weak Cauchy problem (1.15), but that result actually follows from the properties of the
solution to the Volterra-type equation (1.11). In fact, once established the existence and uniqueness
of qptq in Cr0, T s X H1{2p0, T q (see Propositions 2.2, 2.3 and 2.4), one can prove that such a
regularity transfers to the wave function defined by (1.7) and then, thanks to the special form of
(1.7), that ψt solves (1.6). It has to be stressed that the regularity of q is, in fact, borderline to
make this argument work and a very fine analysis has to performed.

Remark 1.3 (Uniqueness of ψt).
One could think that the ansatz (1.7) might not be the unique solution of the weak problem (1.15).
However, it is easy to see that this in not the case and ψt is in fact the unique solution of (1.15).

Suppose that, for a given initial datum ψ0 P D , there was another solution ψ̃t. Then, by definition,
it should decompose as

ψ̃t “ φ̃λ,t ` 1

2π

Nÿ

j“1

q̃jptqK0

´?
λ|x ´ yj |

¯
,

for some bounded charge q̃ptq different from qptq. However, one could as well decompose ψ̃t as
(see, e.g., Sect. 2.2)

ψ̃tpxq “ χλ,tpxq ` i

2π

Nÿ

j“1

ż t

0

dτ U0 pt´ τ ; |x ´ yj|q q̃jpτq,

for some function χλ,t. Now, it is not difficult to see (Sect. 2.2) that this function can solve (1.15)
if and only if χλ,t “ U0ptqψ0 and q̃ solves the charge equation (1.11). Uniqueness of the solution of
(1.11) implies then the result. In fact, in Sect. 2.2 the previous argument is carried out in the case
of strong solutions, following the original proof of [A] for the linear problem (and with the extra
assumption qp0q “ 0). However, it is possible to prove that it can be adapted to weak solutions.

Remark 1.4 (Condition on the nonlinearity).
Although not so relevant for most physical applications, it is worth discussing briefly the role of
the condition σj ě 1

2
, for any j. There is no analogue of such a condition in the proof of local

well-posedness for the 1D and 3D models. We believe it is only a technical assumption needed in
a single step of the proof. More precisely it is due to the different strategy we have to follow in the
first part of the proof, i.e., the contraction argument used in the analysis of the charge equation,
which requires to assume σj ě 1

2
(see Lemma 2.1 and Remark 2.1). Obviously, the case σj “ 0,

@j “ 1, . . . , N , is also included, corresponding to the linear evolution problem studied in [CCF].

Remark 1.5 (Condition on the initial state).
We point out that the assumption on the initial state ψ0 P D Ĺ DrFs is more restrictive then
one would expect, since not only φ P DrFs but also the Fourier transform of its regular part must
be in L1pR2q. This, for instance, ensures that the time-evolution of the regular part U0ptqφλ,0 is
a continuous function, in order to be able to evaluate it at the singular points y1, . . . ,yN . The
condition is deeply related to the lack of regularizing properties of the operator I and in this
respect the choice of D is the most reasonable. In fact, the extra regularity assumed on the initial
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state is also an important ingredient of a technical estimate proven in Lemma 2.8. No analogue of
this condition is however present in the 1 and 3D cases and it might as well be that such an extra
assumption is not needed for a weak solution.

In addition, we can claim a conservation result, that also plays a crucial role in the proof of the
global existence of the solutions mentioned above:

Theorem 1.2 (Conservation laws).
Let ψ0 P D , ψt be the wave function defined by (1.7) and (1.11) and T ą 0 the existence time

provided by Theorem 1.1. Then, the mass Mptq “ }ψt}2 and the energy

Eptq “ }φ1,t}2H1pR2q `
Nÿ

j“1

ˆ
βj

σj ` 1
|qjptq|2σj ` γ ´ log 2

2π

˙
|qjptq|2

´ 1

π

Nÿ

kąj“1

K0p|yj ´ yk|q Re
`
q˚
j ptqqkptq

˘
(1.17)

are conserved for every t P r0, T s.
Remark 1.6 (Dependence on T ).
We stress that, as it is, the conservation of the mass and the energy does not actually depend on
T . We claimed that they are conserved quantities only for t P r0, T s, since at this point we know
that ψt P DrFs only for t P r0, T s. However, it is clear that, as one proves that this is true for
every t ě 0, then one immediately extends the conservation to any t ě 0.

Remark 1.7 (Choice of the spectral parameter λ).
The decomposition of functions in the form domain DrFs defined in (1.5) depends on a spectral
parameter λ ą 0, although the domain itself is independent of λ. In (1.17) we have made the
choice to pick λ “ 1 (as suggested in [A]). It is worth recalling that this is an arbitrary choice and
any other choice would imply an equivalent conservation law, but a different decomposition.

Remark 1.8 (Energy form).
Another difference between the 2D case and the 3D one is apparent in the form of the energy
(1.17): instead of the L2 norm of the gradient of the regular part of the wave function, (1.17)
contains (first term) the full H1 norm of φ1,t. This is again a consequence of the impossibility to
choose λ “ 0 as a spectral parameter in the form domain decomposition.

1.3. Global well-posedness and blow-up alternative. As we are going to see, the energy
conservation is the key to prove the global well-posedness of the solution for βj ą 0, j “ 1, . . . , N .
On the opposite, in the focusing case, i.e., if βj ă 0 for some j “ 1, . . . , N , the solution might be
non-global due to a blow-up at finite time. It is important to remark that, unlike the NLS with
concentrated nonlinearity in 3D, one expects that no critical power occurs in the 2D focusing case
and hence, as soon as βj ă 0, a blow-up solution might show up [A]. We plan to deal with this
question in a forthcoming paper.

Theorem 1.3 (Global well-posedness).
Let σj ě 1

2
and βj ą 0, @j “ 1, . . . , N . Then, the solution to (1.15) provided by ψt defined by (1.7)

and (1.11) is global in time, for any initial datum ψ0 P D .

As anticipated, in the focusing case we have a blow-up alternative:

Proposition 1.1 (Blow-up alternative).
Let σj ě 1

2
, βj ă 0 for some j “ 1, . . . , N , and ψ0 P D . Then, the solution to (1.15) provided by

ψt defined by (1.7) and (1.11) is either global in time or it blows-up in a finite time.



8 R. CARLONE, M. CORREGGI, AND L. TENTARELLI

Remark 1.9 (Behavior as t Ñ `8).
In fact the proofs of the Theorem 1.3 and Proposition 1.1 provide more information than what is
contained in the statements. Indeed, while in the defocusing case βj ą 0, for any j, the charge
qptq is uniformly bounded, i.e., lim suptÑ`8 |qptq| ă `8, in the focusing one, i.e., if some βj ă 0,
the global existence of the solution does not imply its boundedness at 8. More precisely it may
happen that the maximal existence time for qptq is `8 but lim suptÑ`8 |qptq| “ `8.

Acknowledgements. The authors acknowledge the support of MIUR through the FIR grant 2013
“Condensed Matter in Mathematical Physics (Cond-Math)” (code RBFR13WAET). The authors
also thank A. Fiorenza (Università “Federico II” di Napoli) and A. Teta (Università degli Studi
di Roma “La Sapienza”) for fruitful discussions about the topic of the paper.

2. Proofs

This Sect. is devoted to the proofs of our main results. We divide this section in five steps:

(i) we point out in Sect. 2.1 some relevant properties of Sobolev spaces of fractional index and
of the integral operator I;

(ii) we present in Sect. 2.2 a justification for the ansatz (1.7) and the charge equation (1.11);
(iii) we prove existence, uniqueness and regularity of the solution of (1.11) and show how this

allows to prove Theorem 1.1 (Sect. 2.3);
(iv) we prove in Sect. 2.4 mass and energy conservation (Theorem 1.2);
(v) we use the conservation laws of Sect. 2.4 to prove global existence and blow-up alternative

(Theorem 1.3 and Proposition 1.1).

We stress that the proof strategy differs very much from the one followed in 1 or 3D. In those
cases the core of the argument heavily relies on the regularizing properties of the Abel operator,
which is involved in the integral version of the charge equation. Such an operator guarantees
the minimal amount of regularity on qptq needed to ensure that the ansatz ψt solves the weak
problem (1.15), at least if the initial datum is regular enough. Unfortunately, the 2D analogue of
the Abel operator is the integral operator I, which does not provide any improvement of regularity
(see Lemma 2.4). Therefore the strategy itself of the proof needs to be modified: the required
regularity of qptq is indeed obtained by applying a suitable contraction argument to the charge
equation. There are however some drawbacks in this approach, taking the form of additional
conditions on the initial state, i.e., ψ0 P D , and on the nonlinearity exponent, i.e., σj ě 1{2.

2.1. Preliminary results. We start by recalling briefly some facts on Sobolev spaces with frac-
tional index. Let ´8 ď a ă b ď `8 and ν P p0, 1q, we denote by Hνpa, bq the Sobolev space
defined by

Hνpa, bq “
!
f P L2pa, bq

ˇ̌
rf s29Hνpa,bq ă 8

)
,

where

rf s29Hνpa,bq :“
ż

ra,bs2
dt dτ

|fptq ´ fpτq|2
|t´ τ |1`2ν

.

The space Hνpa, bq is a Hilbert space with the natural norm

}f}2Hνpa,bq “ }f}2L2pa,bq ` rf s29Hνpa,bq . (2.1)
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When a “ ´8 and b “ `8, HνpRq can be equivalently defined using the Fourier transform pf of
f and, for any f P L2pRdq, we will use the following convention

pfppq :“ 1

p2πqd{2

ż

Rd

dt e´ip¨t fptq. (2.2)

Consistently, the convolution of two functions f, g P L2pRdq is defined as

pf ˚ gq pxq :“ 1

p2πqd{2

ż

Rd

dy fpx ´ yqgpyq. (2.3)

We start by discussing a technical point concerning the extension of functions in H1{2p0, T q: it
is known that if f P Hνp0, T q, for ν ă 1{2 (also for ν ą 1{2 but with the additional assumption
that fp0q “ fpT q “ 0), then 1r0,T sptqfptq P HνpRq (see, e.g., [CFNT2, Lemma 2.1]). However, the
case ν “ 1{2 is very special and not included in the above result because the Hardy inequality,

which is a key ingredient of the proof, fails in H1{2 [KP]. In the Proposition below we show that

if f P H1{2p0, T q is continuous and satisfies an additional condition, then the extension to an H1{2

function of the real line supported on a compact set is possible. We introduce an ad hoc space of
continuous functions: for β ą 0 we set

Clog,βr0, T s :“
!
f P Cr0, T s

ˇ̌
DC ă `8,@t, s P r0, T s, |fptq ´ fpsq| ď C |log |t ´ s||´β

)
. (2.4)

Hence, functions in Clog,β satisfies a sort of “weak” Hölder continuity condition, which is going to
play a very important role in the Proposition below.

Proposition 2.1 (Extension of functions in Clog,β).

Let T ą 0 and β ą 1{2, then for any fptq P Clog,βr0, T s XH1{2p0, T q with fpT q “ 0, the function

feptq :“

$
’&
’%

fptq, if t P r0, T s,
fp´tq, if t P r´T, 0s,
0, otherwise,

(2.5)

belongs to H1{2pRq.

Proof. The function fe is obtained from f by reflecting it in an even way, so that supppfeq “
r´T, T s. Of course feptq “ fptq for t P r0, T s and

}fe}2L2p´T,T q “ 2 }f}2L2p0,T q , rfes29H1{2p´T,T q ď 4 rf s29H1{2p0,T q ,

and therefore, if f P H1{2p0, T q, then fe P H1{2p´T, T q. Also }fe}L2pRq “ }fe}L2p´T,T q. Now a

simple computation yields

rfes29H1{2pRq “ rfes29H1{2p´T,T q ` 2

ż T

´T

dt

ˆ
1

t` T
` 1

T ´ t

˙
|feptq|2, (2.6)

and, if we show that the second term on the r.h.s. is finite, we complete the proof. A direct
inspection of those integrals reveals that the integrand is an integrable function with possibly
some singularity at the boundary of the domain, where we have to verify that it still is integrable.
This request can be easily seen to be that

|feptq|2
T ´ t

“ |fptq|2
T ´ t
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is integrable at t “ T . However, since by assumption fpT q “ 0, the fact that f P Clog,βr0, T s
implies that, for t in a neighborhood of T ,

|fptq| ď C

| logpT ´ tq|β ,

for some β ą 1{2. Hence
|feptq|2
T ´ t

ď C

pT ´ tq| logpT ´ tq|2β ,

which is integrable close to t “ T . �

Another useful result we prove is about the Lipschitz continuity of the map f ÞÑ |f |2σf w.r.t.
to the Hν and L8 norm. Such a result will play an important role when inspecting the regularity
of the solution to the charge equation.

Lemma 2.1.

Let σ ě 1
2
, ν P r0, 1s and T, M ą 0. Assume also that f and g are functions satisfying

}f}L8p0,T q ` }f}Hνp0,T q ď M, }g}L8p0,T q ` }g}Hνp0,T q ď M. (2.7)

Then, there exists a constant C ą 0 independent of f, g, M and T , such that
››|f |2σf ´ |g|2σg

››
L8p0,T q ď CM2σ }f ´ g}L8p0,T q (2.8)

and ››|f |2σf ´ |g|2σg
››
Hνp0,T q ď Cmax

!
1,

?
T
)
M2σ }f ´ g}Hνp0,T q . (2.9)

Proof. Let us first focus on (2.8): denote by ϕ : C Ñ C the function ϕpzq “ |z|2σz. For σ ě 1
2
,

ϕ P C2pR2;Cq, as a function of the real and imaginary parts of z. Moreover for z1, z2 P C,

ϕpz1q ´ ϕpz2q “ pz1 ´ z2qψ1pz1, z2q ` pz2 ´ z1q˚ ψ2pz1, z2q, (2.10)

with

ψ1pz1, z2q “
ż 1

0

ds Bzϕpz1 ` spz2 ´ z1qq, ψ2pz1, z2q “
ż 1

0

ds Bz˚ϕpz1 ` spz2 ´ z1qq.

where Bzϕ “ pσ ` 1q|z|2σ and Bz˚ϕ “ σ|z|2pσ´1qz2. Consequently,

|ψjpz1, z2q| ď C

ż 1

0

ds |z1 ` spz2 ´ z1q|2σ , j “ 1, 2. (2.11)

Thus,

|ϕpz1q ´ ϕpz2q| ď Cmaxt|z1|, |z2|u2σ |z1 ´ z2|
and, then, setting z1 “ fptq and z2 “ gptq, (2.7) immediately entails (2.8).

Let us now consider (2.9). Setting again z1 “ fptq and z2 “ gptq in (2.10), we have that

ϕpfptqq ´ ϕpgptqq “ pfptq ´ gptqqψ1pfptq, gptqq ` pfptq ´ gptqq˚ ψ2pfptq, gptqq.
For any pair of functions f1, f2 P Hνp0, T q X L8p0, T q

}f1f2}Hνp0,T q ď
b

2 }f1}L8p0,T q ` 2 }f2}L8p0,T q }f1 ´ f2}Hνp0,T q ,

as it can be easily seen by exploiting (2.1). Hence, since by (2.7) and (2.11),

}ψjpgptq, fptqq}
L8p0,T q ď CM2σ, j “ 1, 2,
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then, denoting φjptq :“ ψjpfptq, gptqq for short,

}ϕpfptqq ´ ϕpgptqq}Hνp0,T q ď }φ1 ¨ pf ´ gq}Hνp0,T q ` }φ2 ¨ pf ´ gq}Hνp0,T q

ď CmaxtM,M2σu }f ´ g}Hνp0,T q

”
}φ1}Hνp0,T q ` }φ2}Hνp0,T q

ı
. (2.12)

Therefore it remains to verify that φj P Hνp0, T q and estimate its norm: the L2 norm of φj can
be bounded as

}φj}
L2p0,T q ď C

?
T M2σ , j “ 1, 2. (2.13)

Hence, it is left to prove that the semi-norms are also bounded. To this aim one notes that, for
fixed z1, z2, w1, w2 P C, one can write

ψjpz2, w2q ´ ψjpz1, w1q “ ψjpz2, w2q ´ ψjpz2, w1q ` ψjpz2, w1q ´ ψjpz1, w1q, (2.14)

and, arguing as before,

ψjpz2, w2q ´ ψjpz2, w1q “ pw2 ´ w1q
ż 1

0

ds Bzχjpw1 ` spw2 ´ w1qq

` pw2 ´ w1q˚
ż 1

0

ds Bz˚χjpw1 ` spw2 ´ w1qq, (2.15)

where we have set χjpzq :“ ψjpz2, zq. Similarly

ψjpz2, w1q ´ ψjpz1, w1q “ pz2 ´ z1q
ż 1

0

ds Bzξjpz1 ` spz2 ´ z1qq

` pz2 ´ z1q˚
ż 1

0

ds Bz˚ξjpz1 ` spz2 ´ z1qq, (2.16)

with ξjpzq :“ ψjpz, w1q. Now, since

χ1,2pzq “
ż 1

0

ds Bz{z˚ϕpz2 ` spz ´ z2qq, ξ1,2pzq “
ż 1

0

ds Bz{z˚ϕpz ` spz ´ w1qq,

and

B2zϕpzq “ σpσ ` 1q |z|2pσ´1q z˚,

BzBz˚ϕpzq “ σpσ ` 1q |z|2pσ´1q z,

B2z˚ϕpzq “ σpσ ´ 1q |z|2pσ´2q z3,

plugging (2.15) and (2.16) into (2.14), one sees that

|ψjpz2, w2q ´ ψjpz1, w1q| ď Cmaxt|z1|, |z2|, |w1|, |w2|u2σ´1 p|z2 ´ z1| ` |w2 ´w1|q , (2.17)

which yields

rφjs 9Hνp0,T q “ rψjpfptq, gptqqs 9Hνp0,T q ď CM2σ´1
´

rf s 9Hνp0,T q ` rgs 9Hνp0,T q

¯
ď CM2σ.

Thus, combining with (2.13),

}ψjpfptq, gptqq}
Hνp0,T q ď Cmax

!
1,

?
T
)
M2σ,

so that (2.9) is proved. �
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Remark 2.1. (Condition σ ě 1
2
)

We stress that assuming σ ě 1
2
is crucial in the proof (2.9), in particular when assuming that

|z|2σz P C2pR2;Cq or, equivalently, in assuring that the exponent 2σ ´ 1 in (2.17) is positive and
therefore the functions fptq and gptq can be replaced in the upper bound with their suprema.

On the other hand, (2.8) only requires |z|2σz P C1pR2;Cq and hence is valid for σ ě 0. In fact
the estimate (2.12) holds true for σ ě 0 as well, but the stricter request σ ě 1

2
enters into the

derivation of the bounds for φj, as explained above.

In the second part of the section, we investigate some properties of the integral operator I

associated with the Volterra function of order ´1, defined by (1.12), i.e.,

pIfqptq :“
ż t

0

dτ Ipt´ τqfpτq. (2.18)

First, we recall some basic properties of Iptq (for further details we refer to [E1, Sec. 18.3], where
Iptq is denoted by νpt,´1q). One striking relation involving Iptq is the inversion formula of the
Laplace transform [E2, SKM]. Denoting by

pLfqppq “
ż 8

0

dt e´ptfptq

the usual action of the Laplace transform, then

L´1

ˆ
p

logppq

˙
ptq “ Iptq.

We also stress the asymptotic expansions of Iptq as t Ñ 0 and t Ñ 8 (see again [E1]):

Iptq “
tÑ0

1

t log2
`
1
t

˘
”
1 ` Op|log t|´1q

ı
, (2.19)

Iptq “
tÑ8

et ` Opt´1q.

Since I is continuous for t ą 0 the previous expansions entail that

Iptq P L1
locpR`q X L8

locpR`zt0uq
Furthermore, it is also worth to point out some features of the function N , defined as

N ptq :“
ż t

0

dτ Ipτq. (2.20)

Clearly the fact that Iptq P L1
locpR`q implies that the function N is absolutely continuous on any

bounded interval r0, T s, T ą 0, and N p0q “ 0. In addition, as I is strictly positive, N is strictly
increasing on r0,8q and the asymptotic expansion as t Ñ 0 is

N ptq “
tÑ0

ż log t

´8
dx

1

x2

`
1 ` Opx´1q

˘
“ 1

log
`
1
t

˘ ` Op| log t|´2q. (2.21)

Another important property of N ptq is stated in next

Lemma 2.2.

Let N ptq be defined in (2.20), then, for any T ą 0, N ptq P Hνp0, T q, @ν P
“
0, 1

2

‰
, and

lim
TÑ0

}N }Hνp0,T q “ 0. (2.22)
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Proof. The absolute continuity of N ptq in the interval r0, T s implies that N P L2p0, T q, for any
finite T . Consequently it is left to prove that the seminorm rN s 9H1{2p0,T q in bounded. An easy

computation shows that

rN s29H1{2p0,T q “ 2

ż T

0

dt

ż t
2

0

ds

ˇ̌
ˇ̌N ptq ´ N psq

t´ s

ˇ̌
ˇ̌
2

` 2

ż T

0

dt

ż t

t
2

ds

ˇ̌
ˇ̌N ptq ´ N psq

t´ s

ˇ̌
ˇ̌
2

.

Looking at the first integral and recalling that N is increasing, we find
ˇ̌
ˇ̌N ptq ´ N psq

t´ s

ˇ̌
ˇ̌
2

ď 4
N 2ptq
t2

, @s P
`
0, t

2

˘
.

Hence, ż T

0

dt

ż t
2

0

ds

ˇ̌
ˇ̌N ptq ´ N psq

t´ s

ˇ̌
ˇ̌
2

ď 2

ż T

0

dt
N 2ptq
t

ă 8,

since, by (2.21), N 2ptq
t

„ Iptq, when t Ñ 0, and thus is integrable over r0, T s, for any T finite.
Applying Cauchy inequality to the second integral, we get

ż T

0

dt

ż t

t
2

ds

ˇ̌
ˇ̌N ptq ´ N psq

t´ s

ˇ̌
ˇ̌
2

“
ż T

0

dt

ż t

t
2

ds

ˇ̌
ˇ̌ 1

t´ s

ż t

s

dτ Ipτq
ˇ̌
ˇ̌
2

ď
ż T

0

dt

ż t

t
2

ds
1

t´ s

ż t

s

dτ I2pτq.

Furthermore since I is positive and convex (see [CFT]), it is I2pτq ď I2ptq ` I2psq for every
τ P rs, ts, so that

ż T

0

dt

ż t

t
2

ds
1

t´ s

ż t

s

dτ I2pτq ď
ż T

0

dt

ż t

t
2

ds pI2ptq ` I2psqq.

Now, noting that log´4p1{sq ď log´4p1{tq for all s P pt{2, tq and using again (2.19),
ż T

0

dt

ż t

t
2

ds I2psq „
ż T

0

dt

ż t

t
2

ds
1

s2 log4p1
s
q

ď C

ż T

0

dt
1

t log4p1
t
q

ă 8,

whereas, on the other hand,
ż T

0

dt

ż t

t
2

ds I2ptq ď C

ż T

0

dt t I2ptq „ C

ż T

0

dt
1

t log4p1
t
q

ă 8.

Thus ż T

0

dt

ż t

t
2

ds

ˇ̌
ˇ̌N ptq ´ N psq

t´ s

ˇ̌
ˇ̌
2

ă 8.

In conclusion we proved that rN s 9H1{2p0,T q ă 8. The same inequalities also imply (2.22). �

Corollary 2.1.

Let Rjk be defined in (1.14) and set

rNjkptq :“
ż t

0

dτ IpτqRjkpτq, (2.23)

then rNjkptq P Hνp0, T q, @ν P
“
0, 1

2

‰
and j, k “ 1, . . . , N , j ‰ k.
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Proof. The proof is analogue to the proof of Lemma 2.2 and we omit for the sake of brevity. We
point out that boundedness and continuity of Rjkptq as a function of t ě 0 play an important role
as well as the fact that Rjkptq Ñ 0, as t Ñ 0. All these properties can however be proven by direct
inspection of the explicit expression (1.14). �

In [CFT] the operator I is investigated in details and several useful properties are established.
Here, we only show the most relevant ones for our application (we also mention some proofs for
the sake of completeness).

Lemma 2.3.

Let T ą 0 and f P L8p0, T q, then If P Cr0, T s and

}If}L8p0,T q ď CT }f}L8p0,T q , (2.24)

with CT ą 0 independent of f and such that CT ÝÝÝÑ
TÑ0

0.

Proof. Recalling (2.18) and (2.21), (2.24) is immediate. Then, it is left to prove that If is contin-
uous. To this aim, fix t0 P r0, T q and t P pt0, T s. Easy computations yield

Ifptq ´ Ifpt0q “
ż T

0

dτ Ipt´ τq1rt0,tspτqfpτq ´
ż T

0

dτ pIpt0 ´ τq ´ Ipt´ τqq1r0,t0spτqfpτq

and therefore

|Ifptq ´ Ifpt0q| ď
ż T

0

dτ Ipt´ τq1rt0,tspτq|fpτq| `
ż T

0

dτ |Ipt0 ´ τq ´ Ipt´ τq|1r0,t0spτq|fpτq|

ď N pt ´ t0q}f}L8p0,T q ` }f}L8p0,T q

ż t0

0

dτ |Ipτq ´ Ipt´ t0 ` τq| , (2.25)

Therefore, the first term converges to zero by the continuity of N , while the second one tends
to zero by dominated convergence. Indeed, it suffices to bound from above the integrand in the
second term by an integrable function independent of t. Since t varies in a bounded set and Iptq
is bounded for t ą 0 finite, we have

|Ipτq ´ Ipt´ t0 ` τq| ď Ipτq ` sup
δPr0,T s

Ipτ ` δq,

and the r.h.s. is integrable for τ P r0, t0s.
Since the same holds if t ă t0, one has that Ifptq Ñ Ifpt0q as t Ñ t0, which concludes the

proof. �

Lemma 2.4.

Let f P H1{2p0, T q XL8p0, T q, T ą 0, then If P H1{2p0, T q and, in particular, there exists CT ą 0
independent of f and satisfying CT ÝÝÝÑ

TÑ0
0, such that

}If}H1{2p0,T q ď CT

´
}f}L8p0,T q ` }f}H1{2p0,T q

¯
. (2.26)

Proof. Let us divide the proof in two parts: we first estimate the L2 norm of If and then the
semi-norm rIf sH1{2p0,T q.

Let T ą 0 be finite and f P H1{2p0, T q X L8p0, T q. In order to extend the operator I to an
operator on the line, we set feptq :“ 1r0,T sptqfptq and define

pIefqptq :“
ż t

0

dτ Iept ´ τqfepτq, t P R,



WELL-POSEDNESS OF 2D NLSE WITH CONCENTRATED NONLINEARITY 15

where
Ieptq :“ 1r0,T sptqIptq. (2.27)

Since pIefqptq “ pIfqptq for all t P r0, T s,
}If}L2p0,T q “ }Ief}L2p0,T q ď }Ief}L2pRq. (2.28)

Now, applying the Fourier transform on R to Ief and using the identity

1r0,tspτq “ 1R`pτq ´ 1R`pτ ´ tq,
one gets

xIef “ {Ie ˚ p1R`feq ´ {p1R´Ieq ˚ fe “ pIe{1R`fe ´ {1R´Ie pfe “ pIe pfe,
since by construction 1R`ptqfeptq “ feptq and 1R´ptqIeptq “ 0. Hence by (2.28) and the above
identity

}If}2L2p0,T q ď
ż

R

dk
ˇ̌ pIepkq

ˇ̌2 ˇ̌ pfepkq
ˇ̌2
, (2.29)

but | pIepkq| ď CN pT q and therefore

}If}2L2p0,T q ď CN 2pT q }fe}2L2pRq “ CN 2pT q }f}2L2p0,T q , (2.30)

which implies the result via Lemma 2.2.
We now focus on the seminorm rIf s 9H1{2p0,T q. First, we note that, for every 0 ă s ă t ă T ,

pIfqptq ´ pIfqpsq “
ż t

s

dτ Ipτqfpt´ τq `
ż s

0

dτ Ipτqpfpt´ τq ´ fps´ τqq,

so that

rIf s29H1{2p0,T q ď 4

ż T

0

dt

ż t

0

ds

ˇ̌
ˇ̌ 1

t ´ s

ż t

s

dτ Ipτqfpt´ τq
ˇ̌
ˇ̌
2

` 4

ż T

0

dt

ż t

0

ds

ˇ̌
ˇ̌
ż s

0

dτ Ipτqfpt´ τq ´ fps´ τq
t´ s

ˇ̌
ˇ̌
2

. (2.31)

Now, one can easily see that, since f P L8p0, T q,

4

ż T

0

dt

ż t

0

ds

ˇ̌
ˇ̌ 1

t´ s

ż t

s

dτ Ipτqfpt´ τq
ˇ̌
ˇ̌
2

ď 4}f}2L8p0,T q

ż T

0

dt

ż t

0

ds

ˇ̌
ˇ̌N ptq ´ N psq

t´ s

ˇ̌
ˇ̌
2

“ 2}f}2L8p0,T qrN s29H1{2p0,T q ď 2}f}2L8p0,T q}N }2
H1{2p0,T q (2.32)

where the last factor }N }H1{2p0,T q is finite by Lemma 2.2. On the other hand by Cauchy-Schwarz
inequality, monotonicity of N and positivity of I, we have

4

ż T

0

dt

ż t

0

ds

ˇ̌
ˇ̌
ż s

0

dτ Ipτqfpt´ τq ´ fps´ τq
t´ s

ˇ̌
ˇ̌
2

ď 4N pT q
ż T

0

dt

ż t

0

ds

ż s

0

dτ Ipτq
ˇ̌
ˇ̌fpt´ τq ´ fps´ τq

t´ s

ˇ̌
ˇ̌
2

ď 4N pT q
ż T

0

dτ Ipτq
ż T´τ

0

dt

ż t´τ

0

ds

ˇ̌
ˇ̌fptq ´ fpsq

t´ s

ˇ̌
ˇ̌
2

ď 2N 2pT q rf s29H1{2p0,T q

and plugging the above inequality and (2.32) into (2.31),

rIf s29H1{2p0,T q ď Cmax
!

}N }29H1{2p0,T q,N
2pT q

)´
}f}2L8p0,T q ` }f}29H1{2p0,T q

¯
.
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Finally, the above estimate in combination with (2.30) yields

}If} 9H1{2p0,T q ď Cmax
!

}N } 9H1{2p0,T q,N pT q
)´

}f}L8p0,T q ` }f} 9H1{2p0,T q

¯

and, since both N pT q and }N } 9H1{2p0,T q converges to zero as T Ñ 0 by Lemma 2.2, the proof is

complete. �

In view of Corollary 2.1, the results about the operator I proven above can be easily extended
to the operator ´

Ĩjkf
¯

ptq :“
ż t

0

dτ Ipt´ τqRjkpt´ τq fpτq. (2.33)

We state such a result in next

Corollary 2.2.

Let f P H1{2p0, T q X L8p0, T q, T ą 0, then, Ĩjkf P H1{2p0, T q for any j ‰ k, and, in particular,

there exists CT ą 0 independent of f and satisfying CT ÝÝÝÑ
TÑ0

0, such that

›››Ĩjkf
›››
H1{2p0,T q

ď CT

´
}f}L8p0,T q ` }f}H1{2p0,T q

¯
. (2.34)

Finally, we point out some relevant properties of the integral operator J , defined by

pJfqptq :“
ż t

0

dτ J pt´ τqfpτq, J pt´ τq :“ ´γ ´ logpt ´ τq. (2.35)

Lemma 2.5.

For any t P R
` and f P L1p0, tq,

pJIfq ptq “ pIJfq ptq “
ż t

0

dτ fpτq. (2.36)

Proof. We first observe that one has the identity
ż t

0

dτ Ipτq p´γ ´ logpt´ τqq “
ż t

0

dτ Ipt´ τq p´γ ´ log τq “ 1. (2.37)

In [SKM, Lemma 32.1] it is indeed proven that (in the formula stated in the cited Lemma one has
to take α “ 1, h “ 0) ż t

0

dτ plog τ ´ ψp1qq Btνpt ´ τq “ ´1,

where ν here denotes the Volterra function of order 0. However, using [E1, Eq. (12), Sect. 18.3],
one can recognize that Btνptq “ Iptq (and that ψp1q “ ´γ).

Let us then prove the identity involving IJ . The proof of the other one is perfectly analogous
and we omit it for the sake of brevity. First of all, in the expression

pIJfq ptq “
ż t

0

dτ

ż t´τ

0

dσ IpτqJ pt ´ τ ´ σqfpσq,

one can exchange the order of the integration, since
ż t

0

dτ

ż t´τ

0

dσ IpτqJ pt´ σ ´ τqfpσq “
ż t

0

dσ

ż t´σ

0

dτ IpτqJ pt ´ σ ´ τqfpσq.

Using (2.37), we conclude that

pIJfq ptq “
ż t

0

dσ

ż t´σ

0

dτ IpτqJ pt ´ σ ´ τqfpσq “
ż t

0

dσ fpσq.
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�

2.2. A derivation of the charge equation. Before starting to discuss the charge equation, it
is worth making a brief excursus on a heuristic computation, which motivates ansatz (1.7) and
equation (1.11). In the following, we assume for the sake of simplicity that qjp0q “ 0, for every
j “ 1, . . . , N . However, one can prove that such an assumption is not restrictive.

Neglecting any regularity issue, we can compute the time derivative of (1.7) and obtain that, at
least formally,

iBtψtpxq “ p´∆U0ptqψ0qpxq ´ 1

2π

Nÿ

j“1

qjptq ` 1

2π

Nÿ

j“1

ż t

0

dτ BτU0pt´ τ ; |x ´ yj |q qjpτq

“ p´∆U0ptqψ0qpxq ´ 1

2π

Nÿ

j“1

ż t

0

dτ U0pt ´ τ ; |x ´ yj |q 9qjpτq, (2.38)

where we used the fact that (as qjp0q “ 0) ψ0 P H2pR2q and that (by definition) iBtU0ptqψ0 “
´∆U0ptqψ0. Hence, applying the Fourier transform on R

2, the above expression becomes (we set
p “ |p|)

iyBtψtppq “ p2e´ip2txψ0ppq ´ 1

2π

Nÿ

j“1

ż t

0

dτ e´ip¨yje´ip2pt´τq
9qjpτq. (2.39)

The l.h.s. of (2.38) equals (compare with (1.15)), at least in a weak sense, the action of H0 on the
regular part of the wave function ψt (see (1.2) and (1.3)), i.e.,

p2
ˆ
pψtppq ´ 1

2π

Nÿ

j“1

qjptqe´ip¨yj

p2 ` λ

˙
´ λ

2π

Nÿ

j“1

qjptqe´ip¨yj

p2 ` λ

“ p2e´ip2txψ0ppq ` 1

2π

Nÿ

j“1

ż t

0

dτ e´ip¨yjBτ
´
e´ip2pt´τq

¯
qjpτq ´ 1

2π

Nÿ

j“1

qje
´ip¨yj

“ p2e´ip2txψ0ppq ´ 1

2π

Nÿ

j“1

ż t

0

dτ e´ip¨yje´ip2pt´τq
9qjpτq, (2.40)

which is equal to (2.39). Therefore, for any qptq and ψ0 such that the r.h.s. of (2.40) makes sense,
the ansatz (1.7) does solve the time-dependent Schrödinger equation, at least in a weak sense.

Under restrictive assumptions on ψ0, however, the ansatz ψt must belong to the (nonlinear)
operator domain DpH

αptqq, with αj “ βj |qjptq|2σj , j “ 1, . . . , N , i.e., it must satisfy the boundary
conditions (1.10), which can be cast in the form

1

2π

ż

R2

dp eip¨yj yφλ,tppq “
´
βj |qjptq|2σj ` 1

2π
log

?
λ
2

´ γ
2π

¯
qjptq

´ 1

2π

ÿ

k‰j

qkptqK0

´?
λ|yj ´ yk|

¯
, (2.41)

In fact, as we are going to see, the above condition will force qptq to be a solution to the charge
equation (1.11). Indeed, since

φλ,t “ ψt ´ 1

2π

Nÿ

k“1

qkptqK0

´?
λ| ¨ ´yk|

¯
,
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by (1.7),

1

2π

ż

R2

dp eip¨yj

"
e´ip2txψ0ppq ` i

2π

Nÿ

k“1

ż t

0

dτ e´ip¨yke´ip2pt´τq qkpτq ´ 1

2π

Nÿ

k“1

qkptqe´ip¨yk

p2 ` λ

*

“
´
βj |qjptq|2σj ` 1

2π
log

?
λ
2

´ γ
2π

¯
qjptq ´ 1

2π

ÿ

k‰j

qkptqK0

´?
λ|yj ´ yk|

¯
.

The last off-diagonal term cancels exactly and thus the identity becomes

1

2π

ż

R2

dp eip¨yj

"
e´ip2txψ0ppq ` i

2π

Nÿ

k“1

ż t

0

dτ e´ip¨yke´ip2pt´τq qkpτq ´ 1

2π

qjptqe´ip¨yj

p2 ` λ

*

“
´
βj |qjptq|2σj ` 1

2π
log

?
λ
2

` γ
2π

¯
qjptq.

Combining the last diverging term on the l.h.s. with the second one via an integration by parts
(here we implicitly assume that the charge is regular enough), we get

1

2π

ż

R2

dp

"
eip¨yje´ip2txψ0ppq ´ 1

2πpp2 ` λq

ż t

0

dτ e´ip2pt´τq r 9qjpτq ´ iλqjpτqs

` i

2π

ÿ

k‰j

ż t

0

dτ eip¨pyj´ykqe´ip2pt´τq qkpτq
*

“
´
βj |qjptq|2σj ` 1

2π
log

?
λ
2

` γ
2π

¯
qjptq,

The p integral of the second term on the l.h.s. contains an infrared singularity for t “ τ which is
proportional to logpt´ τq: in fact by [GR, Eqs. 3.722.1 & 3.722.3]

´
U0ptqK0

`?
λ ¨

˘¯
p0q “

ż

R2

dp
e´ip2pt´τq

p2 ` λ
“ ´πeiλpt´τq rcipλpt´ τqq ´ i sipλpt´ τqqs

“ ´πeiλpt´τq pγ ` log λ` logpt´ τqq ` eiλpt´τqQpλ; t´ τq, (2.42)

where sip ¨ q and cip ¨ q stand for the sine and cosine integral functions [AS, Eqs. 5.2.1 & 5.2.2] and
(see, e.g., [AS, Eq. 5.2.16])

Qpλ; t ´ τq :“ ´π
ˆ 8ÿ

n“1

ppt ´ τq2λ2qn
2np2nq! ´ i sippt ´ τqλq

˙
(2.43)

(note that Qp0; t ´ τq “ ´ iπ2

2
). Hence, we obtain

pU0ptqψ0q pyjq ` i

2π

ÿ

k‰j

ż t

0

dτ U0pt ´ τ ; |yj ´ yk|q qkpτq ´
´
βj |qjptq|2σj ` 1

2π
log

?
λ
2

` γ
2π

¯
qjptq

“ ´ 1

4π

ż t

0

dτ
`
γ ` logpt ´ τq ` log λ´ 1

π
Qpλ; t´ τq

˘
Bτ

´
eiλpt´τqqjpτq

¯

and taking the limit λ Ñ 0 (notice the exact cancellation of the diverging log λ terms)

pU0ptqψ0qpyjq ` i

2π

ÿ

k‰j

ż t

0

dτ U0pt´ τ ; |yj ´ yk|q qkpτq

´
`
βj |qjptq|2σj ´ 1

2π
log 2 ` γ

2π
´ i

8

˘
qjptq “ ´ 1

4π

ż t

0

dτ pγ ` logpt´ τqq 9qjpτq.
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If we now apply to both sides the integral operator I defined in (2.18) and exploit the property
proven in Lemma 2.5, we find

ż t

0

dτ Ipt´ τqpU0pτqψ0qpyjq ` i

2π

ÿ

k‰j

ż t

0

dτ Ipt´ τq
ż τ

0

dµ U0pτ ´ µ; |yj ´ yk|qqkpµq`

´
ż t

0

dτ Ipt´ τqβj |qjpτq|2σj qjpτq ` 1

2π

`
log 2 ´ γ ` iπ

4

˘ ż t

0

dτ Ipt´ τqqjpτq “ qjptq
4π

.

Now, with the change of variable 1
τ´µ

“ 1
t´µ

` v, one can see that

ż t

0

dτ Ipt´ τq
ż τ

0

dµ U0pτ ´ µ; |yj ´ yk|qqkpµq “ 1

2i

ż t

0

dτ Ipt´ τqRjkpt´ τqqkpτq,

with Rjk defined by (1.14). Then, multiplying each term by 4π and suitably rearranging terms,
one obtains (1.11).

2.3. Local well-posedness. In order to prove Theorem 1.1, the first step is to discuss existence,
uniqueness and Sobolev regularity of any solution of (1.11). We split the results into two separate
Propositions to make the proof strategy clearer: by general arguments about Volterra-type integral
equations and the properties of (1.11), we obtain existence and uniqueness of a continuous solution
qptq up to some maximal existence time T˚, which might as well be `8. Then, in order to derive
the Sobolev regularity of qptq, we use the aforementioned contraction, which works on some a
priori shorter interval r0, T s, T ă T˚. In Proposition 2.4 we will however show how one can extend
such a regularity to the whole existence interval, provided a property of the source term holds true
(it will be proven in Lemma 2.10).

Preliminarily, note that (1.11) can be written in a compact form as

qptq `
ż t

0

dτ

ˆ
gpt, τ,qpτqq ` Kpt, τq qpτq

˙
“ fptq, (2.44)

where K is the matrix of components Kjk defined in (1.13) and g “ pg1, . . . , gN q, f “ pf1, . . . , fN q
are defined respectively by

gjpt, τ,qpτqq “ 4πβjIpt´ τq|qjpτq|2σj qjpτq, j “ 1, . . . , N, (2.45)

fjptq “ 4π

ż t

0

dτ Ipt´ τqpU0pτqψ0qpyjq, j “ 1, . . . , N. (2.46)

Proposition 2.2 (Continuity of qptq).
Let σj ě 1

2
for every j “ 1, . . . , N , and ψ0 P D . Then, there exists T˚ ą 0 such that (2.44) admits

a unique solution qptq P Cr0, T˚q. Moreover either T˚ “ `8, i.e., the solution is global in time,

or T˚ ă `8 and limtÑT˚ |qptq| “ `8.

Proof. The result is obtained by directly applying [Mi, Theorem 1.2]: it claims that there exists
T˚ ą 0 for which (2.44) admits a unique solution q P Cr0, T ˚q, with the claimed properties,
provided

(i) f is continuous on R
`;

(ii) for every t1 ą 0 and every bounded set B Ă C
N , there exists a measurable function mpt, τq

such that

|gpt ´ τ,qq ` Kpt, τqq| ď mpt, τq, @ 0 ď τ ď t ď t1, @q P B,
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with

sup
tPr0,t1s

ż t

0

dτ mpt, τq ă 8,

ż t

0

dτ mpt, τq ÝÝÑ
tÑ0

0;

(iii) for every compact interval I Ă R
`, every continuous function ϕ : I Ñ C

N and every t0 P R
`,

lim
tÑt0

ż

I

dτ rgpt ´ τ,ϕpτqq ´ gpt0 ´ τ,ϕpτqq ` pKpt, τq ´ Kpt0, τqqϕpτqs “ 0; (2.47)

(iv) for every t1 ą 0 and every bounded B Ă C
N , there exists a measurable function hpt, τq such

that

|gpt ´ τ,q1q ´ gpt ´ τ,q2q ` Kpt, τqpq1 ´ q2q| ď hpt, τq |q1 ´ q2| ,
for all 0 ď τ ď t ď t1 and all q1, q2 P B, with hpt, ¨ q P L1p0, tq for all t P r0, t1s and

ż t`ε

t

dτ hpt ` ε, τq ÝÝÝÑ
εÑ0

0.

Let us now verify all the hypothesis. First, consider point (i): since ψ0 P DrFs,

4πpU0pτqψ0qpyjq “ 4π pU0pτqφλ,0q pyjqlooooooooooomooooooooooon
A1pτq

` 2qjp0q
´
U0pτqK0

´?
λ| ¨ ´yj|

¯¯
pyjqlooooooooooooooooooooooomooooooooooooooooooooooon

A2pτq

` 2
ÿ

k‰j

qkp0q
´
U0pτqK0

´?
λ| ¨ ´yk|

¯¯
pyjq

loooooooooooooooooooooooooomoooooooooooooooooooooooooon
A3pτq

. (2.48)

Observing that

A1pτq “ 2

ż

R2

dp eip¨yje´ip2τ yφλ,0ppq

and recalling that yφλ,0 P L1pR2q by assumption, one sees that A1 is bounded and therefore IA1 is
continuous as well by Lemma 2.3. On the other hand, by the definition of Bessel functions, one
has

A3pτq “ 1

π

ÿ

k‰j

qkp0q
ż

R2

dp eip¨pyj´ykq e
´ip2τ

p2 ` λ
“ 2

ÿ

k‰j

qkp0q
ż 8

0

dp p
e´ip2τ

p2 ` λ
J0pp|yj ´ yk|q

“
ÿ

k‰j

qkp0q
ż 8

0

d̺
e´i̺τ

̺` λ
J0p?

̺|yj ´ yk|q “
?
2π |G3p´τq,

where G3p̺q :“ 1r0,`8qp̺qřk‰j qkp0qJ0p?
̺|yj´yk|q
̺`λ

. Consequently,

}A3}2HνpRq “ 2π

ż

R

d̺ p1 ` ̺2qν |G3p´ρq|2 ď C

Nÿ

i“1

|qip0q|2
ÿ

k‰j

ż 8

0

dp p1 ` p4qνp J
2
0 pp|yj ´ yk|q

pp2 ` λq2

ď C
ÿ

k‰j

ż 8

0

dp
p1 ` p4qνp

pp` 1qpp2 ` λq2 ,

which entails that A3 P Hνp0, T q for every ν ă 3
4
. Since by Sobolev embeddings this implies

that A3 is continuous too, then, again by Lemma 2.3, one finds that IA3 is continuous. Finally,
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exploiting (2.35), (2.42) and (2.43),

A2pτq “ 1

π
qjp0q

ż

R2

dp
e´ip2τ

p2 ` λ
“ qjp0q

„
´eiλτ pγ ` log λ ` log τq ` eiλτ

π
Qpλ; τq



“ qjp0q eiλτJ pτqlooomooon
A2,1pτq

`qjp0q eiλτ

π
p´π log λ`Qpλ; τqqlooooooooooooooomooooooooooooooon

A2,2pτq

. (2.49)

Now, it is clear that A2,2pτq is smooth, so that IA2,2 is continuous. Furthermore, by (2.37),

pIA2,1qptq “ 1 `
ż t

0

dτ Ipt´ τqa2,1pτq, a2,1pτq :“
´
eiλτ ´ 1

¯
J pτq.

Since a2,1 is continuous (actually belongs to H1p0, T q), then IA2,1 is continuous too. Summing up,
we have thus shown that fj (defined by (2.46)) is continuous, and so is f .

For every q P B, with B bounded,

|gpt, τ,qq ` Kpt, τqq| ď C Ipt´ τq

and, since I P L1
locpR`q, (ii) is satisfied.

In addition, let I “ ra, bs be an interval, ϕ : I Ñ C
N a continuous function and t0 P R

`. The
integral in (2.47) consists, up to some constants, of terms like

ż b

a

dτ rIpt´ τq ´ Ipt0 ´ τqs
“
βj |ϕjpτq|2σjϕjpτq ´ 2plog 2 ´ γ ` iπ

4
qϕjpτq

‰

or ż b

a

dτ ϕkpτq rIpt´ τqRjkpt ´ τq ´ Ipt0 ´ τqRjkpt0 ´ τqs .

Hence (iii) is satisfied by dominated convergence (see, e.g., the discussion of (2.25)).
Finally, we see that, as q1, q2 P B,

|gpt, τ,q1q ´ gpt, τ,q2q ` Kpt, τqpq1 ´ q2q|

ď CIpt´ τq
Nÿ

j“1

ˇ̌
|q1,j|2σj q1,j ´ |q2,j|2σjq2,j

ˇ̌
` |Kpt, τq||q1 ´ q2| ď C Ipt´ τq|q1 ´ q2|.

Consequently, setting hpt, τq “ C Ipt´ τq, (iv) is satisfied. �

Proposition 2.3 (Sobolev regularity of qptq).
Let σj ě 1

2
for every j “ 1, . . . , N , and ψ0 P D . Then, there exists 0 ă T ă T˚, such that

qptq P H1{2p0, T q.

Proof. The key observation is that, if one proves that the map

Gpqqrts “ fptq ´
ż t

0

dτ

ˆ
gpt, τ,qpτqq ` Kpt, τqqpτq

˙

is a contraction in a suitable subset of Cr0, T s X H1{2p0, T q, for a sufficiently small T P p0, T ˚q,
then (2.44) has a unique solution in this subset. Hence such a solution must coincide with the

unique continuous solution provided by Proposition 2.2, which thus belongs to H1{2p0, T q.
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For fixed 0 ă T ă T ˚, the first point is to investigate the Sobolev regularity of the forcing term
f . We know that 4πpU0pτqψ0qpyjq “ A1pτq `A2pτq `A3pτq, with Ai defined in (2.48). Concerning
A1, we write

A1pτq “ 2

ż

R2

dp eip¨yje´ip2τ yφλ,0ppq “ 2

ż

R2

dp e´ip2τ
´

{T´yj
φλ,0

¯
ppq

“ 2π

ż 8

0

d̺ e´i̺τ
A

{T´yj
φλ,0

E
p?
̺q “ p2πq3{2|G1p´τq

where Ty is the translation operator, i.e., pTyψqpxq :“ ψpx ´ yq,

G1p̺q :“ 1r0,`8qp̺q
A

{T´yj
φλ,0

E
p?
̺q,

and xfy denotes the angular average of a function on R
2, i.e.,

xfy p̺q “ 1

2π

ż 2π

0

dϑ fp̺ cos ϑ, ̺ sinϑq.

Consequently, one finds that

}A1}2HνpRq “ p2πq3
ż

R

d̺
`
1 ` ̺2

˘ν |G1p´̺q|2 “ 16π3
ż 8

0

dp
`
1 ` p4

˘ν
p
ˇ̌
ˇ
A

{T´yj
φλ,0

E
ppq

ˇ̌
ˇ
2

ď C

ż

R2

dp
`
1 ` p4

˘ν ˇ̌ˇ
´

{T´yj
φλ,0

¯
ppq

ˇ̌
ˇ
2

so that A1 P H1{2p0, T q, since φλ,0 P H1pR2q by assumption. As A1 is bounded too we have, by

Lemma 2.4, that IA1 P H1{2p0, T q. On the other hand, we recall that A2 P H1{2p0, T q X Cr0, T s
and thus IA2 P H1{2p0, T q by Lemma 2.4. Finally, since A2,2 is smooth, IA2,2 is smooth as well

and, as IA2,1 “ 1 ` Ia2,1 with a2,1 P H1p0, T q, we have that IA2,1 P H1{2p0, T q. Summing up,

recalling (2.46) and (2.48), we proved that f P H1{2p0, T q.
We introduce now the contraction space: let

AT “
!
q P Cr0, T s XH1{2p0, T q

ˇ̌
}q}L8p0,T q ` }q}H1{2p0,T q ď bT

)
,

with bT “ 2maxt}f}L8p0,T q ` }f}H1{2p0,T q, 1u. The set AT is a complete metric space with the

norm induced by Cr0, T s XH1{2p0, T q, i.e.,
}¨}AT

“ }¨}L8p0,T q ` }¨}H1{2p0,T q .

In order to prove that G defines a contraction on AT , we need to show that G maps AT into itself
and the contraction condition on the norms is satisfied.

We start by proving that GpAT q Ă AT . Letting q P AT , one immediately sees (recalling Step 1)
that Gpqqrts is continuous. Then, we split Gpqqrts into two terms:

G1pqqrts “
ż t

0

dτ gpt, τ,qpτqq, G2pqqrts “
ż t

0

dτ Kpt, τqqpτq.

From (2.8) and (2.9), (2.18), (2.26), one obtains

}G1pqq}H1{2p0,T q ď
Nÿ

j“1

››I |qj |2σjqj
››
AT

ď CT

Nÿ

j“1

››|qj |2σjqj
››
AT

ď CT

Nÿ

j“1

b
2σj

T }qj}AT
ď CTbT

Nÿ

j“1

b
2σj

T
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where, from now on, CT stands for a generic positive constant such that CT Ñ 0, as T Ñ 0, and
which may vary from line to line. In addition, using (2.8) and (2.24), one sees that

}G1pqq}L8p0,T q ď
Nÿ

j“1

››I |qj|2σj qj
››
L8p0,T q ď CT

Nÿ

j“1

››|qj |2σjqj
››
L8p0,T q ď CTbT

Nÿ

j“1

b
2σj

T ,

so that

}G1pqq}AT
ď CTbT

Nÿ

j“1

b
2σj

T . (2.50)

On the other hand, by Corollary 2.1, we find that }G2pqq}H1{2p0,T q ď CT }q}AT
ď CTbT , while,

from (2.24), }G2pqq}L8p0,T q ď CT }q}L8p0,T q ď CTbT . Thus, we have

}G2pqq}AT
ď CT }q}AT

ď CTbT .

Putting it together with (2.50), we finally get

}Gpqq}AT
ď bT

„
1

2
` CT

ˆ
1 `

Nÿ

j“1

b
2σj

T

˙
.

Consequently, as the term in brackets is equal to 1
2

` op1q as T Ñ 0, for T sufficiently small
Gpqq P AT .

Therefore, it is left to prove that G is actually a norm contraction. Given two functions q1, q2 P
AT , we have

Gpq1q ´ Gpq2q “ G1pq1q ´ G1pq2q ` G2pq1 ´ q2q.
Arguing as before, one sees that }G2pq1 ´ q2q}AT

ď CT }q1 ´ q2}AT
. On the other hand, using

again (2.24) and Lemma 2.1 and 2.4,
››I

`
|qj,1|2σj qj,1 ´ |qj,2|2σj qj,2

˘››
AT

ď CT

››|qj,1|2σj qj,1 ´ |qj,2|2σj qj,2
››
AT

ď CTb
2σj

T }qj,1 ´ qj,2}
AT

.

Then, as bT is bounded, }G1pq1q ´ G1pq2q}AT
ď CT }q1 ´ q2}AT

, so that

}Gpq1q ´ Gpq2q}AT
ď CT }q1 ´ q2}AT

.

Hence, since CT Ñ 0 as T Ñ 0, G is a contraction on AT , provided that T is small enough. �

Remark 2.2 (Contraction time).
We stress that the value of T depends on the convolution kernel Ipt ´ τq and its asymptotic
behavior close to 0. In particular, we can apply the contraction argument to the evolution from
s ą 0 to t ą s through (1.11) of an initial datum ψs such that IppU0p¨qψsqpyjqqp¨q belongs to

Crs, ts X H1{2ps, tq. A priori the contraction time might be different in this case (e.g., shorter),
but it can not collapse to 0, since it depends only on the properties of I and the regularity of ψs

which can be proved by a contraction argument on the preceding interval.

The contraction time T provided by Proposition 2.3 is a priori shorter than the maximal existence
time of a continuous solution T˚ given by Proposition 2.2. However, in view of Remark 2.2, we
can aim at extending the Sobolev regularity of qptq up to T˚, as discussed in next

Proposition 2.4 (Regularity extension of qptq).
Let qptq be the solution of (1.11) provided by Proposition 2.3, T˚ the maximal existence time given
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in Proposition 2.2 and T the contraction time given by Proposition 2.3. Assume also that for any

T1 ą 0 such that T ` T1 ă T˚ and, for any j “ 1, . . . , N ,
ż t

0

dτ Ipt´ τq pU0pτqψT q pyjq P Cr0, T1s XH1{2p0, T1q, (2.51)

then qptq P H1{2p0, T q for any T ă T˚.

Proof. The key observation is that, thanks to the assumption (2.51), the contraction argument
can be repeated starting from t “ T . Indeed, we can consider the charge equation with initial
time t “ T and initial datum ψT . The analogue of Proposition 2.2 ensures then the existence of
a unique continuous solution q̃ptq of such an equation for t ă T ` T 1

˚, with T 1
˚ ą 0 its maximal

existence time. Obviously, by taking the limit t Ñ 0 of the charge equation, one gets q̃p0q “ qpT q
and therefore q can be extended continuously to rT, T ` T 1

˚q by setting

qeptq “
#
qptq, if t P r0, T s,
q̃pt ´ T q, if t P rT, T 1

˚q.
Indeed qeptq solves the same equation as q and therefore the uniqueness of the continuous solution
in r0, T˚q implies that qe “ q and T ` T 1

˚ “ T˚. Now, in view of the Remark 2.2 above, q̃ptq P
Cr0, T1s XH1{2p0, T1q, for some T1 ą 0, by a direct repetition of the contraction argument used in
the proof of Proposition 2.3. By a simple bootstrap the result is thus proven. �

At this stage it is useful to sum up the results we have proven on the solution of the charge
equation (1.11). Indeed, there are two positive times T ă T˚ so that there is a unique continuous

solution to (1.11) in r0, T s, for any T ă T˚, and such a solution also belongs to H1{2p0, T q, provided
the property (2.51) holds true (it will actually be proven in Lemma 2.8 to prove the global well-
posedness). Note that T˚ might as well be `8 and the solution be global in time, in which case

it is also H1{2 on any bounded subset of R`.
We can now prove Theorem 1.1, since the existence and uniqueness of the charge qptq will

imply that the ansatz (1.7) is a solution to the weak Cauchy problem (1.15). In order to see that
and make the derivation of the charge equation discussed in Sect. 2.2 correct, we need to handle
integral expressions involving the derivative of qptq. This will be done as explained in the following
Remark.

Remark 2.3 (Integration of 9q – part I).
In the following of the paper we will often manage integrals involving the distributional derivative
of the charge qptq. Clearly, such a notation is purely formal since we do not actually know whether
qptq is an absolutely continuous function. Hence, its derivates might not be integrable in Lebesgue
sense. However, qjptq1r0,T s is a compactly supported distribution belonging to E 1, the dual of

E “ C8pRq. Hence, its distributional derivative is well defined and it still belongs to E 1. On the
other hand, for any continuous function f , one obviously has

9fptq1r0,T s “ d

dt

`
fptq1r0,T s

˘
´ fpT qδpt ´ T q ` fp0qδptq, (2.52)

and since the r.h.s. is in E 1, the same holds for the l.h.s.. Hence we can give a meaning to the
expression ż t

0

dτ gpτq 9qjpτq, (2.53)

whenever g P C8pRq, as the distributional pairing between E 1 and E . Of course the above is not
the Lebesgue integral and we should have used a different symbol. However, in order to avoid a
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too heavy notation, we make a little abuse and keep the same integral symbol. Note that with
such a convention we actually have

ż t

0

dτ 9qpτq “ qptq ´ qp0q, (2.54)

since the function 1 is smooth.
Of course if we knew a priori that q P W 1,1p0, T q, then there would be no problem in the definition
of any integral involving 9q against a continuous function.

Proof of Theorem 1.1. Let ψt be the function defined by (1.7) and (1.11). For the sake of simplicity
we split the proof in two steps. In the former we show that ψt P DrFs, in the latter, we prove that
ψt is a solution of the weak problem (1.15).

In order to prove that ψt P DrFs, it is sufficient to show that

ψtpxq ´ 1

2π

Nÿ

j“1

qjptqK0

´?
λ|x ´ yj|

¯
P H1pR2q. (2.55)

Exploiting (1.7) and the Fourier transform, we can see that the previous expression reads

e´ip2txψ0ppq ` i

2π

Nÿ

j“1

ż t

0

dτ e´ip¨yje´ip2pt´τqqjpτq ´ 1

2π

qjptqe´ip¨yj

p2 ` λ
.

Hence, integrating by parts (in view of Remark 2.3), one finds

e´ip2t

ˆ
xψ0ppq ´

Nÿ

j“1

qjp0qe´ip¨yj

2πpp2 ` λq

˙
´ e´ip¨yj

2πpp2 ` λq
Nÿ

j“1

ż t

0

dτ e´ip2pt´τqp 9qjpτq ´ iλqjpτqq. (2.56)

Note that the integral of 9qj on the r.h.s. has to be understood as explained in Remark 2.3, which

can be done since e´ip2pt´τq is a smooth function of τ .
Now, if this functions belongs to L2pR2, pp2 ` 1qdpq, then (2.55) is fulfilled. For the first term

this is immediate since it represents the Fourier transform of U0ptqφλ,0, which is in H1pR2q, since
φλ,0 does. Concerning the second term, we first set λ “ 1 for the sake of simplicity, and change
variables to get

ż

R2

dp p1 ` p2q
ˇ̌
ˇ̌ e´ip¨yj

2πpp2 ` 1q
Nÿ

j“1

ż t

0

dτ e´ip2pt´τqp 9qjpτq ´ iqjpτqq
ˇ̌
ˇ̌
2

ď C

Nÿ

j“1

ż 8

0

d̺
1

1 ` ̺

„ˇ̌
ˇ̌
ż t

0

dτ ei̺τ 9qjpτq
ˇ̌
ˇ̌
2

`
ˇ̌
ˇ̌
ż t

0

dτ ei̺τ qjpτq
ˇ̌
ˇ̌
2
.

Now, one can check that
ż t

0

dτ ei̺τ 9qjpτq “
?
2π

p9ξjp´̺q,
ż t

0

dτ ei̺τ qjpτq “
?
2π {1r0,tsqjp´̺q,

where

ξjpτq :“

$
’&
’%

qjp0q, if τ ď 0,

qjpτq, if 0 ă τ ă t,

qjptq, if τ ě t.

(2.57)
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Note that 9ξj is a distribution belonging to E 1, as 9qj1r0,T s does, therefore we can define its Fourier
transform, which is in fact a (sufficiently) smooth function. Consequently,

Nÿ

j“1

ż 8

0

d̺
1

1 ` ̺

„ˇ̌
ˇ̌
ż t

0

dτ ei̺τ 9qjpτq
ˇ̌
ˇ̌
2

`
ˇ̌
ˇ̌
ż t

0

dτ ei̺τ qjpτq
ˇ̌
ˇ̌
2

ď 2π
Nÿ

j“1

ż

R

d̺

ˇ̌
ˇp9ξjp̺q

ˇ̌
ˇ
2

1 ` |̺| `
Nÿ

j“1

ż

R

d̺

ˇ̌
ˇ {1r0,tsqjp̺q

ˇ̌
ˇ
2

1 ` |̺| .

Now, since qj P H1{2p0, T q, 9ξj P H´1{2pRq (see [CCF]) and thus the right hand side of the previous
inequality is finite. Summing up, (2.56) belongs to L2pR2, pp2 ` 1qdpq and then (2.55) is satisfied.

Once we know that ψt P DrFs, it just remains to show that it solves the weak Cauchy problem
(1.15). However, once that the function q is fixed by the charge equation (thanks to Propositions
2.2, 2.3 and 2.4) the required computations are completely analogous analogous to those of the
linear non-autonomous problem, provided that one sets αptq “ |qjptq|2σj , and in that case this has
been already proved in [CCF]. �

2.4. Conservation laws. In this section we prove the conservation of mass and energy claimed
in Theorem 1.2, which in turn will be the key to prove the global existence stated in Theorem
1.3. We recall the results proven in Propositions 2.2 and 2.3: there exists some T˚ ą 0 such that
there is a unique continuous solution of (1.11) in r0, T˚q, which also belongs to H1{2p0, T q for some
0 ă T ă T˚.

Before proceeding further, however, another Remark is in order about the use we will make
of the derivative of q. In view of Remark 2.3 it can be “integrated” against smooth functions
by exploiting the distributional pairing. Here we aim at giving a meaning to some more singular
expressions:

Remark 2.4 (Integration of 9qptq – part II).

Thanks to Proposition 2.3, we know that for some T ă T˚, q P H1{2p0, T q. We claim that this is
sufficient to give a rigorous meaning to the expression

ż T

0

dt fptq 9qjptq,

for any function f P Clog,βr0, T s X H1{2p0, T q, β ą 1{2. The idea is to use the pairing provided

by the duality between H1{2pRq and H´1{2pRq, which allows to interpret the integral of f˚g, with
f P H1{2pRq and g P H´1{2pRq, as

ż

R

dt f˚ptqgptq “
ż

R

dp
´a

p2 ` 1 pf˚ppq
¯ˆ

1?
p2`1

pgppq
˙
, (2.58)

where the symbol on the l.h.s. is not the Lebesgue integral, while on the r.h.s. we are integrating
the product of two L2 functions. Note that such a duality fails in general on a compact subset of
the real line.

So, if f P Clog,βr0, T s XH1{2p0, T q, we can rewrite
ż T

0

dt fptq 9qjptq “ fpT q pqjpT q ´ qjp0qq `
ż T

0

dt pfptq ´ fpT qq 9qjpτq

and, since both f and q are continuous, fpT q is well defined as well as qjpT q and qjp0q. Next we
observe that fptq ´ fpT q satisfies the hypothesis of Proposition 2.1 with β ą 1{2 and therefore
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there exists an extension fe P H1{2pRq of fptq ´ fpT q, such that
ż T

0

dt pfptq ´ fpT qq 9qjpτq “
ż

R

dt feptq 9ξjpτq,

where ξj is defined in (2.57). Here we are using that suppp 9ξjq Ă r0, T s. Now, since fe P H1{2pRq
and 9ξj P H´1{2pRq (cfr. [CCF]), then the last integral is meant as in (2.58).

Before attacking the proof, we state a technical Lemma, which is a consequence of the charge
equation (1.11) and which will be used in the derivation of the mass and energy conservation.

Lemma 2.6.

Let qptq be the solution of (1.11) provided by Proposition 2.3 and T˚ the maximal existence time

given in Proposition 2.2, then for every j “ 1, . . . , N

pU0ptqψ0q pyjq “ ´ i

2π

ÿ

k‰j

ż t

0

dτ U0pt ´ τ ; |yj ´ yk|qqkpτq `
ˆ
βj |qjptq|2σj ` γ ´ log 2

2π

˙
qjptq

´ iqjptq
8

` 1

4π

d

dt

ż t

0

dτ p´γ ´ logpt´ τqqqjpτq, (2.59)

for a.e. t P r0, T s with T ă T˚.

Proof. Dividing the charge equation (1.11) by 4π and recalling (1.13) and (1.14), we get

1

4π
qjptq `

ż t

0

dτ Ipt´ τq
`
βj |qjpτq|2σj ` γ´log 2

2π
´ i

8

˘
qjpτq

´ i

2π

ÿ

k‰j

ż t

0

dτ Ipt´ τq
ż τ

0

ds U0 pτ ´ s; |yj ´ yk|q qkpsq “
ż t

0

dτ Ipt´ τqpU0pτqψ0qpyjq

where we used backwards the same change of variable exploited at the end of Sect. 2.2. Hence,
applying to both sides the operator J defined by (2.35) and recalling Lemma 2.5, we obtain

1

4π
pJqjqptq `

ż t

0

dτ

ˆ
βj |qjpτq|2σj ` γ ´ log 2

2π
´ i

8

˙
qjpτq

´ i

2π

ÿ

k‰j

ż t

0

dτ

ż τ

0

ds U0 pτ ´ s; |yj ´ yk|q qkpsq “
ż t

0

dτ pU0pτqψ0qpyjq

and, in particular, that Jqj is absolutely continuous. Then, differentiating in t and rearranging
terms, we obtain (2.59). �

In view of Remark 2.4 the following technical results will prove to be very useful.

Lemma 2.7.

Let qptq be the solution of (1.11) provided by Proposition 2.3 and T˚ the maximal existence time

given in Proposition 2.2, then

qptq P Clog,βr0, T s, @β ď 1, (2.60)

for any T ă T˚.

Proof. Fix T ă T˚. We first remark that, since we are always considering continuous functions on
compact sets, proving that f P Clog,βr0, T s is equivalent to show that

lim
δÑ0

| log δ|β |fps` δq ´ fpsq| ď C ă `8, (2.61)
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for any s P r0, T s (where at the extreme points the limit has to be suitably adjusted).
From the charge equation (1.11), we get

qjptq “ ´4πβj

ż t

0

dτ Ipt´ τq|qjpτq|2σj qjpτq

´
Nÿ

k“1

ż t

0

dτ Kjkpt´ τqqkpτq ` 4π

ż t

0

dτ Ipt´ τqpU0pτqψ0qpyjq, (2.62)

i.e., qjptq “ I1ptq ` I2ptq ` I3ptq (with obvious meaning of the three terms).
Let us consider first I1ptq. The case t “ 0, δ ą 0 is easier to deal with: since qptq is bounded on

r0, T s,

|I1pδq ´ I1p0q| ď C }qj}2σj`1

L8p0,T q

ż δ

0

dτ Ipδ ´ τq ď CN pδq „
δÑ0

C

| log δ|
where we recall the definition of N given by (2.20) and its asymptotic behavior in (2.21). On the
other hand, if we consider the case t P p0, T q, δ ą 0 (δ ă 0 is analogous), then we see that

I1pt` δq ´ I1ptq “
ż t`δ

t

dτ Ipt` δ ´ τq|qjpτq|2σj qjpτq

`
ż t

0

dτ rIpt` δ ´ τq ´ Ipt´ τqs |qjpτq|2σj qjpτq :“ I1,1pδ, tq ` I1,2pδ, tq.

Now, arguing as before, one easily finds that I1,1pδ, tq „ 1
| log δ| as δ Ñ 0. Furthermore, again by

the boundedness of q, one has

|I2,1pδ, tq| ď C

ż t

0

dτ |Ipτ ` δq ´ Ipτq| . (2.63)

Since I is continuous, coercive and strictly convex [CFT, H], it has a unique minimum point
tmin ą 0. If t` δ ď tmin, then

ż t

0

dτ |Ipτ ` δq ´ Ipτq| “ N pδq ` N ptq ´ N pt` δq ď N pδq ` δ sup
τPrt,t`δs

Ipτq „
δÑ0

1

| log δ| .

Thus, combining with (2.63), one has I1,2pδ, tq „ 1
| log δ| as δ Ñ 0. If, on the opposite, t ě tmin (the

case t ă tmin ă t` δ can be excluded for δ small enough), then

ż t

0

dτ |Ipτ ` δq ´ Ipτq| “
ż tmin´δ

0

dτ pIpτq ´ Ipτ ` δqq `
ż tmin

tmin´δ

dτ |Ipτ ` δq ´ Ipτq|

`
ż t

tmin

dτ pIpτ ` δq ´ Ipτqq ď N ptmin ´ δq ´ N ptminq ` N pδq

` N pt` δq ´ N ptq ´ N ptmin ` δq ` N ptminq ` Cδ ď N pt ` δq ´ N ptq ` N pδq ` Cδ

and, arguing as before, we obtain I1,2pδ, tq „ 1
| log δ| , as δ Ñ 0.

Therefore, it is left to investigate the behavior of I2ptq and I3ptq. Exploiting the properties of
Rjk (recall that it a bounded and continuous function), one can easily see that I2ptq can be studied
in the same way as I1ptq. On the contrary, I3ptq requires some further remark, since pU0pτqψ0qpyjq
is not bounded on r0, T s. However, from (2.48) it can be split into the sum of three terms A1,
A2 and A3. The first and the last ones are bounded and hence it is possible to use the previous
strategy to prove that IA1 and IA3 have the needed property. Concerning A2, arguing as in the
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proof of Proposition 2.2, one sees that it can be split, in turn, in two terms A2,1 and A2,2, where
the second one is bounded and the first one satisfies the following property

ż t

0

dτ Ipt´ τqA2,1pτq “ 1 `
ż t

0

dτ Ipt´ τqa2,1pτq (2.64)

with a2,1pτq bounded. Consequently, IA2 can be bounded exactly as above. �

Lemma 2.8.

Let φ P D with D defined in (1.16), then

pU0ptqφ1,0q pxq P Clog,βr0, T s XH1{2p0, T q, @β P R
`, (2.65)

pU0ptqK0p¨ ´ yq pxq P Clog,βp0, T s XH1{2p0, T q, @β P R
`, (2.66)

for any T finite and for all x,y P R
2.

Proof. The fact that pU0ptqφ1,0q pxq P H1{2p0, T q, for any finite T ą 0, was already discussed in
the proof of Proposition 2.3. Hence we have only to verify the other property. By expressing the
quantity using the Fourier transform, we have

|pU0pt` δqφ1,0q pxq ´ pU0ptqφ1,0q pxq| ď
ż

R2

dp
ˇ̌
ˇe´ip2δ ´ 1

ˇ̌
ˇ
ˇ̌
ˇyφ1,0ppq

ˇ̌
ˇ .

Again to show that pU0ptqφ1,0q pxq P Clog,βr0, T s, it suffices to prove that the analogue of (2.61)
holds true, but, for any ǫ ą 0,

| log δ|β
ˇ̌
ˇe´ip2δ ´ 1

ˇ̌
ˇ ď 21´ǫ{2pǫδǫ{2| log δ|β ÝÝÝÑ

δÑ0
0,

for any β finite, and the result is thus a direct consequence of the properties of ψ0 (recall the
definition of D in (1.16)) and dominated convergence.

From (2.49) and smoothness of A2,2, we see that the properties of pU0ptqK0p¨ ´ yq pxq, t ą 0,

are the same as eit log t and log t belongs to H1{2p0, T q, for any finite T ą 0, while eit is a smooth
function and can be dropped. Therefore it suffices to show that log τ P Clog,βp0, T s, but for any
t ą 0,

| log δ|β |logpt` δq ´ log t| ď 1

t
δ| log δ|β ÝÝÝÑ

δÑ0
0,

for any β ą 0. �

Lemma 2.9.

Let qptq be the solution of (1.11) provided by Proposition 2.3 and T˚ the maximal existence time

given in Proposition 2.2, then for every j “ 1, . . . , N ,
ż t

0

dτ p´γ ´ logpt ´ τqq 9qpτq P Clog,βp0, T s XH1{2p0, T q, @β ď 1, (2.67)

for any T ă T˚.

Proof. First of all we notice that, in light of Remark 2.4, the above expression can be given a
meaning using the pairing between H1{2pRq and H´1{2pRq: by replacing 9qj with 9ξj defined in
(2.57), one can extend the integral to the whole real line. A change of variable then yields

ż t

0

dτ p´γ ´ logpt´ τqq 9qjpτq “
ż

R

dτ 1r0,tspτq p´γ ´ logpτqq 9ξjpt ´ τq,
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where the characteristic function of r0, ts can be removed thanks to the definition of ξj . Since

log τ P H1{2p0, T q X Clog,βp0, T s, for any finite T and β ą 0 (see the proof of Lemma 2.8), we can

extend it to a function in H1{2pRq.
By applying the operator J to the charge equation (1.11) and using (2.36), we get

ż t

0

dτ p´γ ´ logpt´ τqq qpτq “ ´4π

ż t

0

dτ |qjpτq|2 qjpτq ` 4πβj

Nÿ

k“1

ż t

0

dτ Yjkpt´ τqqkpτq

` 4π

ż t

0

dτ pU0pτqψ0q pyjq,

where we have set

Yjkptq :“
#
2
`
log 2 ´ γ ` iπ

4

˘
, if j “ k,

Rjkptq, if j ‰ k.
(2.68)

By taking the (weak) derivative of the above identity and observing that

d

dt

ż t

0

dτ p´γ ´ logpt´ τqq qpτq “ ´pγ ` log tqqp0q `
ż t

0

dτ p´γ ´ logpt´ τqq 9qpτq,

we get

ż t

0

dτ p´γ ´ logpt´ τqq 9qpτq “ pγ ` log tqqp0q ` 4π pU0ptqψ0q pyjq

´ 4π |qjptq|2 qjptq ` 4πβj

Nÿ

k“1

Yjkp0qqkptq. (2.69)

Now the claim follows by simply observing that all the terms on r.h.s. enjoy the required properties.
Indeed we have seen that log t P Clog,βp0, T s X H1{2p0, T q for any T finite and β ą 0. Moreover,
thanks to Proposition 2.3 and Lemma 2.8, qj has the needed regularity for any T ă T˚ and β ď 1
and this allows us to deal with the last two terms (recall the boundedness of Rjk). Finally Lemma
2.8 yields the result once applied to the second term. �

Proof of Theorem 1.2. The proof is divided into two parts, where we prove mass and energy con-
servation separately.

Part 1. Let us first consider the mass conservation. Using the Fourier transform, (1.7) reads

pψtppq “ e´ip2txψ0ppq ` i

2π

Nÿ

j“1

e´ip¨yj

ż t

0

dτ e´ip2pt´τqqjpτq.

Hence,

ˇ̌
ˇ pψtppq

ˇ̌
ˇ
2

“
ˇ̌
ˇxψ0ppq

ˇ̌
ˇ
2

` 1

π

Nÿ

j“1

Im

"
eip¨yjxψ0ppq

ż t

0

dτ e´ip2τq˚
j pτq

*

` 1

4π2

Nÿ

j,k“1

eip¨pyk´yjq
ż t

0

dτ

ż t

0

ds e´ip2ps´τqqjpτqq˚
k psq,
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so that, denoting by F´1 the anti-Fourier transform on R
2,

}ψt}2L2pR2q “ }ψ0}2L2pR2q ` 2
Nÿ

j“1

F
´1

"
Im

"
xψ0ppq

ż t

0

dτ e´ip2τq˚
j pτq

**
pyjq

` 1

2π

Nÿ

j,k“1

F
´1

"ż t

0

dτ

ż t

0

ds e´ip2ps´τqqjpτqq˚
k psq

*
pyk ´ yjq “: }ψ0}2L2pR2q ` Ψ ` Φ.

Now, by the properties of the Fourier transform and the definition of U0,

Ψ “ 2
Nÿ

j“1

Im

"ż t

0

dτ q˚
j pτqF´1

 
e´ip2τxψ0ppq

(
pyjq

*
“ 2

Nÿ

j“1

Im

"ż t

0

dτ q˚
j pτqpU0pτqψ0qpyjq

*
,

so that by (2.59) proven in Lemma 2.6,

Ψ “ Ψ1 ` Ψ2 ` Ψ3 :“ ´ 1

π

Nÿ

j“1

ÿ

k‰j

Re

"ż t

0

dτ

ż τ

0

ds q˚
j pτqqkpsqU0 pτ ´ s; |yj ´ yk|q

*

´ 1

4

Nÿ

j“1

ż t

0

dτ |qjpτq|2 ` 1

2π

Nÿ

j“1

Im

"ż t

0

dτ q˚
j pτq d

dτ

ż τ

0

ds p´γ ´ logpτ ´ sqqjpsqq
*
.

On the other hand, Φ can be split into two terms as well:

Φ “ Φ1 ` Φ2 :“
1

2π

Nÿ

j“1

F
´1

"ż t

0

dτ

ż t

0

ds e´ip2ps´τqqjpτqq˚
j psq

*
p0q

` 1

2π

Nÿ

j“1

ÿ

k‰j

F
´1

"ż t

0

dτ

ż t

0

ds e´ip2ps´τqqjpτqq˚
k psq

*
pyk ´ yjq.

One can easily see that Φ2 cancels with Ψ1, since

Φ2 “ 1

π

Nÿ

j“1

ÿ

k‰j

Re

"ż t

0

dτ

ż τ

0

ds q˚
j pτqqkpsqF´1

 
e´ip2pτ´sq(pyj ´ ykq

*

“ 1

π

Nÿ

j“1

ÿ

k‰j

Re

"ż t

0

dτ

ż τ

0

ds q˚
j pτqqkpsqU0 pτ ´ s; |yj ´ yk|q

*
“ ´Ψ1.

Then, it is left to prove that Ψ2 ` Ψ3 ` Φ1 “ 0. First, one sees that

Φ1 “ 1

π

Nÿ

j“1

F
´1

"
Re

"ż t

0

dτ q˚
j pτq

ż τ

0

ds qjpsqe´ip2pτ´sq
**

p0q,

then we compute

ż τ

0

ds qjpsqe´ip2pτ´sq “ i
d

dτ

ż τ

0

ds
e´ip2pτ´sq

p2 ` 1
qjpsq ´ iqjpτq

p2 ` 1
`
ż τ

0

ds
e´ip2pτ´sq

p2 ` 1
qjpsq,
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thus obtaining

Φ1 “ ´ 1

π

Nÿ

j“1

F
´1

#
Im

"ż t

0

dτ q˚
j pτq d

dτ

ż τ

0

ds
e´ip2pτ´sq

p2 ` 1
qjpsq

*+
p0q

` 1

π

Nÿ

j“1

F
´1

#
Re

"ż t

0

dτ q˚
j pτq

ż τ

0

ds
e´ip2pτ´sq

p2 ` 1
qjpsq

*+
p0q.

Hence, using again the properties of the Fourier transform, the above expression can be rewritten
as

Φ1 “ ´ 1

π

Nÿ

j“1

Im

#ż t

0

dτ q˚
j pτqeiτ d

dτ

"
e´iτ

ż τ

0

ds qjpsqF´1

„
e´ip2pτ´sq

p2 ` 1

*
p0q

+

“ ´ 1

2π

Nÿ

j“1

Im

"ż t

0

dτ q˚
j pτqeiτ d

dτ

ż τ

0

ds qjpsqe´isp´γ ´ logpτ ´ sqq
*

´ 1

2π

Nÿ

j“1

Im

"ż t

0

dτ q˚
j pτqeiτ d

dτ

ż τ

0

ds qjpsqe´isQp1; τ ´ sq
*

“: Φ1,1 ` Φ1,2,

where we have made use of (2.42) and (2.43). Now, with some computations, one finds that

Φ1,2 ` Ψ2 “ ´ 1

2π2

Nÿ

j“1

Im

"ż t

0

dτ q˚
j pτq

ż τ

0

ds qjpsqeipτ´sq 9Qp1; τ ´ sq
*

“ ´ 1

2π2

Nÿ

j“1

Im

"ż t

0

dτ q˚
j pτq

ż τ

0

ds qjpsq
eipτ´sq ´ 1

τ ´ s

*
,

since 9Qp1; τ ´ sq “ 1´e´ipτ´sq

τ´s
, as it follows from (2.42) and the definition of the sine and cosine

integral functions [AS, Eqs. 5.2.1 & 5.2.2]. Similarly,

eiτ
d

dτ

ż τ

0

ds qjpsqe´isp´γ ´ logpτ ´ sqq “ d

dτ

ż τ

0

ds qjpsqp´γ ´ logpτ ´ sqq

´
ż τ

0

ds qjpsq
eipτ´sq ´ 1

τ ´ s

leading to Φ1,2 ` Ψ2 ` Φ1,1 “ ´Ψ3 and thus completing the proof of the mass conservation.

Part 2. Let us turn now our attention to energy conservation. Since ψ0 P DrFs, taking λ “ 1,
(1.7) yields

ψtpxq “ pU0ptqφ1,0q pxq ` 1

2π

Nÿ

j“1

qjptqK0p|x ´ yj |q

´ 1

2π

Nÿ

j“1

ż t

0

dτ p 9qjpτq ´ iqjpτqq pU0pt´ τqK0 p| ¨ ´yj |qq pxq, (2.70)

where we have integrated by parts and used the simple formula

d

dτ

”
e´ipt´τq pU0pt´ τqK0q pxq

ı
“ ie´ipt´τqU0pt ´ τ ;xq, (2.71)
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which can be easily verified by rewriting the quantities via Fourier transform. In light of Remark
2.4 and Lemma 2.8, the term involving 9qj has to be understood as discussed in Remark 2.4, i.e.,

as the pairing between a function in H´1{2pRq and another in H1{2pRq. In the very same way we
get

φ1,tpxq “ pU0ptqφ1,0q pxq ´ 1

2π

Nÿ

j“1

ż t

0

dτ p 9qjpτq ´ iqjpτqq pU0pt´ τqK0 p| ¨ ´yj |qq pxq.

Then, we can compute the H1 norm of φ1,t as

}φ1,t}2H1pR2q “ }φ1,0}2H1pR2q ` Ψt ` Φt, (2.72)

where

Ψt “ ´2
Nÿ

j“1

Re

ˆż t

0

dτ p 9qjpτq ´ iqjpτqq˚ pU0pτqφ1,0qpyjq
˙

(2.73)

and Φt can be split in two parts, i.e., Φt “ Φd ` Φod, with

Φd “ 1

4π2

Nÿ

j“1

ż t

0

dτ

ż t

0

ds p 9qjpτq ´ iqjpτqq pU0pτ ´ sqK0 p| ¨ ´yj|qq pyjq p 9qjpsq ´ iqjpsqq˚ , (2.74)

Φof “ 1

4π2

Nÿ

j“1

ÿ

k‰j

ż t

0

dτ

ż t

0

ds p 9qjpτq ´ iqjpτqq

ˆ pU0pτ ´ sqK0 p| ¨ ´yk|qq pyjq p 9qjpsq ´ iqjpsqq˚ . (2.75)

Lemma 2.8 guarantees that the r.h.s. of (2.73)–(2.75) are well defined expressions, which should
be understood as explained in Remark 2.4. On the other hand, using (2.42), we can immediately
rewrite (2.74) and (2.75) as (recall the definition of Qp¨ ; ¨q in (2.43))

Φd “ 1

2π2

Nÿ

j“1

Re

"ż t

0

dτ

ż τ

0

ds p 9qjpτq ´ iqjpτqq˚

ˆ eipτ´sq rQp1; τ ´ sq ´ πpγ ` logpτ ´ sqqs p 9qjpsq ´ iqjpsqq
*
,

Φof “ 1

π

Nÿ

j“1

ÿ

k‰j

Re

"ż t

0

dτ

ż τ

0

ds p 9qjpτq ´ iqjpτqq˚ pU0pτ ´ sqK0 p| ¨ ´yk|qq pyjq p 9qkpsq ´ iqkpsqq
*
.

Now, using again that ψ0 P DrFs and (2.59), we obtain

pU0pτqφ1,0q pyjq “ ´ 1

2π

Nÿ

k“1

qkp0q pU0pτqK0p| ¨ ´yk|qq pyjq

´ i

2π

ÿ

k‰j

ż τ

0

ds U0pτ ´ s; |yj ´ yk|qqkpsq `
ˆ
βj |qjpτq|2σj ` γ ´ log 2

2π

˙
qjpτq ´ iqjpτq

8

` qjp0q
4π

p´γ ´ log τq ` 1

4π

ż τ

0

ds p´γ ´ logpτ ´ sqq 9qjpsq, (2.76)
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where Lemma 2.9 guarantees the well-posedness of last term. Plugging it into the definition of Ψ,
we can split Ψt into five terms as Ψt “ Ψ1 ` Ψ2 ` Ψ3 ` Ψ4 ` Ψ5, where Ψ1 “ Ψ1,d ` Ψ1,od, with

Ψ1,d “ 1

π

Nÿ

j“1

Re

ˆ
qjp0q

ż t

0

dτ p 9qjpτq ´ iqjpτqq˚ pU0pτqK0p| ¨ ´yj|qq pyjq
˙
, (2.77)

Ψ1,od “ 1

π

Nÿ

j“1

ÿ

k‰j

Re

ˆ
qkp0q

ż t

0

dτ p 9qjpτq ´ iqjpτqq˚ pU0pτqK0p| ¨ ´yk|qq pyjq
˙
. (2.78)

Moreover,

Ψ2 “ ´ 1

π

Nÿ

j“1

ÿ

k‰j

Im

ˆż t

0

dτ

ż τ

0

ds p 9qjpτq ´ iqjpτqq˚ U0 pτ ´ s; |yj ´ yk|q qkpsq
˙
, (2.79)

Ψ3 “ ´
Nÿ

j“1

ˆ
βj |qjptq|2σj

σj ` 1
` γ ´ log 2

2π

˙
|qjptq|2 `

Nÿ

j“1

ˆ
βj |qjp0q|2σj

σj ` 1
` γ ´ log 2

2π

˙
|qjp0q|2, (2.80)

where we have used that

2Re
“
p 9qjpτq ´ iqjpτqq˚|qjpτq|2σj qjpτq

‰
“ 1

σj ` 1

d

dτ

`
|qjpτq|2σj`2

˘
,

2Re rp 9qjpτq ´ iqjpτqq˚qjpτqs “ d

dτ
|qjpτq|2;

Ψ4 “ Ψ4,r ` Ψ4,i, with

Ψ4,r “ ´ 1

2π

Nÿ

j“1

Re

ˆ
qjp0q

ż t

0

dτ p 9qjpτq ´ iqjpτqq˚ p´γ ´ log τq
˙
, (2.81)

Ψ4,i “ ´1

4

Nÿ

j“1

Im

ˆż t

0

dτ p 9qjpτq ´ iqjpτqq˚ qjpτq
˙
; (2.82)

and finally

Ψ5 “ ´ 1

2π

Nÿ

j“1

Re

ˆż t

0

dτ

ż τ

0

ds p 9qjpτq ´ iqjpτqq˚p´γ ´ logpτ ´ sqq 9qjpsq
˙
. (2.83)

We stress that all the expressions above (2.77)–(2.83) are well defined thanks to Lemma 2.8 and
Remark 2.4 and therefore the decomposition of Ψt is meaningful as well.

Using the definition of the free propagator U0pτq and (2.42), one sees that

Ψ1,d “ 1

2π

Nÿ

j“1

Re

"
qjp0q

ż t

0

dτ p 9qjpτq ´ iqjpτqq˚ eiτ
“
´γ ´ log τ ´ 1

π
Qp1; τq

‰ *
,

with Q defined by (2.43). Then, summing and subtracting p 9qjpτq ´ iqjpτqq˚p´γ ´ log τq in the
integrand function and defining ℓptq :“ peit ´ 1qp´γ ´ log tq, we have

Ψ1,d ` Ψ4,r “ 1

2π

Nÿ

j“1

Re

"
qjp0q

ż t

0

dτ p 9qjpτq ´ iqjpτqq˚
”
ℓpτq ` eiτ

π
Qp1; τq

ı *
“: R1.
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On the other hand, we observe that Φd ` Ψ5 “ R2 `R3, where

R2 “ 1

2π

Nÿ

j“1

Re

"ż t

0

dτ

ż τ

0

ds p 9qjpτq ´ iqjpτqq˚
9qjpsq

”
ℓpτ ´ sq ` eipτ´sq

π
Qp1; τ ´ sq

ı*
,

R3 “ 1

2π

Nÿ

j“1

Im

"ż t

0

dτ

ż τ

0

ds p 9qjpτq ´ iqjpτqq˚qjpsqeipτ´sq “´γ ´ logpτ ´ sq ` 1
π
Qp1; τ ´ sq

‰*
.

As a consequence, we see that Ψ1,d`Ψ4`Ψ5`Φd “ R1`R2`R3`Ψ4,i “: Γ. Now, an integration
by parts shows that

ż τ

0

ds 9qjpsq
”
ℓpτ ´ sq ` eipτ´sq

π
Qp1; τ ´ sq

ı
“ ´ iπ

2
qjpτq ´ qjp0q

´
ℓpτq ` eiτ

π
Qp1; τq

¯

` i
π

ż τ

0

ds qjpsqeipτ´sqQp1; τ ´ sq `
ż τ

0

ds qjpsq
”

9ℓpτ ´ sq ` eipτ´sq

π
9Qp1; τ ´ sq

ı

and then, plugging into the definition of R2, there results that

Γ “ 1

2π

Nÿ

j“1

Im

"ż t

0

dτ

ż τ

0

ds p 9qjpτq ´ iqjpτqq˚ qjpsqeipτ´sqp´γ ´ logpτ ´ sqq
*

` 1

2π

Nÿ

j“1

Re

"ż t

0

dτ

ż τ

0

ds p 9qjpτq ´ iqjpτqq˚ qjpsq
”

9ℓpτ ´ sq ` eipτ´sq

π
9Qp1; τ ´ sq

ı*

However, easy computations (see (2.42)) exploiting the definition of the trigonometric integral
functions (see, e.g., [AS, GR]) yield

9ℓptq ` eit

π
9Qp1; tq “ ieitp´γ ´ log tq

and therefore Γ “ 0.
It remains then to compute the off-diagonal terms Θ :“ Ψ1,od ` Ψ2 ` Φod. Another integration

by parts yields
ż τ

0

ds p 9qkpsq ´ iqkpsqq pU0pτ ´ sqK0 p| ¨ ´yk|qq pyjq “ qkpτqK0 p|yj ´ yk|q

´ qkp0q pU0pτqK0 p| ¨ ´yk|qq pyjq ´ i

ż τ

0

ds qkpsqU0pτ ´ s; |yj ´ yk|q

and consequently, plugging into the definition of Φod, we find that

Θ “ 1

π

Nÿ

j“1

ÿ

k‰j

K0p|yk ´ yj |q Re
"ż t

0

dτ p 9qj ´ iqjpτqq˚ qkpτq
*

due to the definition of the Macdonald function K0. Moreover, since (see again Remarks 2.3 and
2.4) ż t

0

dτ
`

9q˚
j pτqqkpτq ` 9qjpτqq˚

k pτq
˘

“ Re
“
q˚
j pτqqkpτq ´ q˚

j p0qqkp0q
‰

and

Re

"ż t

0

dτ rp´iqjpτqq˚qkpτq ` p´iqkpτqq˚qjpτqs
*

“ ´Im

"ż t

0

dτ 2Re
“
q˚
j pτqqkpτq

‰ *
“ 0,
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we have

Θ “ 1

π

ÿ

kąj

K0p|yk ´ yj |q Re
“
q˚
j pτqqkpτq ´ q˚

j p0qqkp0q
‰
.

Summing up

}φλ,t}2H1pR2q “ }φλ,t}2H1pR2q ´
Nÿ

j“1

´
βj

σj`1
|qjptq|2σj ` γ´log 2

2π

¯
|qjptq|2

`
Nÿ

j“1

´
βj

σj`1
|qjp0q|2σj ` γ´log 2

2π

¯
|qjp0q|2 ` 1

π

ÿ

kąj

K0p|yk ´ yj |qRe
“
q˚
j pτqqkpτq ´ q˚

j p0qqkp0q
‰
,

so that, in view of (1.17), Eptq “ Ep0q, for any t ď T ă T˚. �

2.5. Global well-posedness and blow-up alternative. Before proving Theorem 1.3 and
Proposition 1.1, we need one final Lemma, which allows us to extended the Sobolev regularity
of qptq to any interval p0, T q, with T ă T˚. We aim at applying Proposition 2.4 and therefore we
need to prove (2.51):

Lemma 2.10.

Let qptq be the solution of (1.11) provided by Proposition 2.3 and T˚ the maximal existence time

given in Proposition 2.2, then for any T ă T˚ and 0 ă T1 ă T˚ ´ T
ż t

0

dτ Ipt´ τq pU0pτqψT q pyjq P Cr0, T1s XH1{2p0, T1q, (2.84)

@j “ 1, . . . , N .

Proof. Using the ansatz (1.7), we see that the above expression splits into two terms:

pU0pτqψT qpyjq “ pU0pτ ` T qψ0q pyjq ` i

2π

Nÿ

k“1

ż T

0

ds U0 pτ ` T ´ s; |yj ´ yk|q qkpsq

and, using the Fourier transform as well as the properties of the unitary group U0pτq, the r.h.s.
becomes

ż

R2

dp e´ip¨yje´ip2pτ`T qxψ0ppq ` i

2π

Nÿ

k“1

ż T

0

ds

ż

R2

dp e´ip¨pyj´ykqe´ip2pτ`T´sq qkpsq

“
ż

R2

dpe´ip¨yje´ip2pτ`T q yφλ,0ppq` i

2π

Nÿ

k“1

ż

R2

dpe´ip¨pyj´ykq
„ż T

0

ds e´ip2pτ`T´sq qkpsq ´ iqkp0q
p2 ` λ


.

The first term is bounded thanks to the hypothesis on ψ0 and therefore its integral with Ipt´ τq
is continuous. The second term can be rewritten as (recall Remark 2.3)

1

2π

Nÿ

k“1

„ż T

0

ds p 9qkpsq ` iλqkpsqq pU0pτ ` T ´ sqK0p¨ ´ ykqq pyjq ´ qkpT q pU0pτqK0p¨ ´ ykqq pyjq

.

The first quantity between brackets is bounded thanks to the properties of qptq (see again Remark
2.4 and Lemma 2.8). The remaining part of the expression is not bounded but, using the properties
of the integral kernel I (see (2.64) and the proof of Proposition 2.2), one can show that, when
integrated against Ipt´ τq, it provides a continuous function.

In order to prove that the expression belongs to H1{2p0, T1q, one can proceed exactly as in the
proof of Proposition 2.3. We omit the details for the sake of brevity. �
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Proof of Theorem 1.3. As a preliminary step, we combine Lemma 2.10 with Proposition 2.4, which
implies that qptq P H1{2p0, T q for any T ă T˚ (recall the maximal existence time T˚ provided by
Proposition 2.2). Hence the energy conservation proven in Theorem 1.2 holds true up to any
T ă T˚. Moreover, it yields that, if βj ą 0, @j “ 1, . . . , N ,

|qptq| ď C ă `8, @t P r0, T s, (2.85)

and any T ă T˚: indeed, by (1.17) we have

Nÿ

j“1

´
βj

σj`1
|qjptq|2σj ` γ´log 2

2π

¯
|qjptq|2 ď C ă `8,

but γ ´ log 2 ă 0. However, if the quantity between brackets is bounded from below by c ą 0 for
any j “ 1, . . . , N , then the result easily follows. On the other hand is for some j˚ the lower bound
on the quantity fails, it means that

βj

σj`1
|qj˚ptq|2σj ď log 2´γ

2π
` c,

which also implies that qj˚ is bounded, since βj˚ ą 0. We can then remove qj˚ from the upper
bound and repeat the argument, so obtaining the result.

Hence, since q remains bounded as t Ñ T by a quantity which is independent of T , it must be
(recall that T˚ is by definition the maximal existence time of qptq)

lim sup
tÑT˚

|qptq| ď C ă `8, (2.86)

which implies that q can be extended to the whole positive half-line and that q is the unique solu-
tion of (1.11) in Cr0,8q, i.e., it is global in time (see [Mi, Theorem 2.3]). In addition, Proposition

2.4 in combination with Lemma 2.10 implies that q P H1{2p0, T q, for every finite T ą 0.
Consequently, arguing as before, one can prove that the function ψt defined by (1.7) and (1.11)

is in DrFs and solves (1.15) for every t ě 0, thus proving Theorem 1.3. �

Proof of Proposition 1.1. If βj ă 0 for some j P t1, . . . , Nu, then we have the following alternative:
either lim suptÑT˚

|qptq| ă `8, which implies that T˚ “ `8 and the solution is global in time, or

lim sup
tÑT˚

|qptq| “ `8.

In this second case we can still have two opposite alternatives: either T˚ “ `8 and, in spite of not
being bounded, the solution is nevertheless global in time, or T˚ ă `8 and the blow-up occurs.
Indeed, by the energy conservation and the diverging limit of q, we obtain

lim sup
tÑT˚

}φλ,t}H1pR2q “ `8,

i.e., ψt blows-up at a finite time. �
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[E2] Erdélyi A., Tables of Integral Transforms, vol. I, McGraw-Hill, 1954.
[GR] Gradshteyn I.S., Ryzhik I.M., Tables of Integrals, Series and Products, Academic Press, San Diego, 2007.
[H] Hardy G.H., Ramanujan. Twelve Lectures on Subjects Suggested by His Life and Work, Cambridge University

Press, Cambridge, 1940.
[J-LPC] Presilla C., Jona-Lasinio G., Capasso F., Nonlinear feedback oscillations in resonant tunneling through

double barriers, Phys. Rev. B 43 (1991), 5200–5203.
[J-LPS] Jona Lasinio G., Presilla C., Sjostrand J., On Schrödinger Equations with Concentrated Nonlineari-

ties, Ann. Phys. 240 (1995), 1–21.
[KP] Kufner A., Persson L.E., Weighted inequalities of Hardy type, World Scientific, Singapore, 2003.
[LKMF] Li K., Kevrekidis P.G., Malomed B.A., Frantzeskakis D.J., Transfer and scattering of wave packets

by a nonlinear trap, Phys. Rev. E 84 (2011), 056609.
[Ma] Malomed B.A., Nonlinear Schrödinger Equations, in Encyclopedia of Nonlinear Science ( Scott A. edt.),

Routledge, New York, 639–643, 2005.
[Mi] Miller R.K., Nonlinear Volterra Integral Equations, W.A. Benjamin Inc., 1971.
[MA] Malomed B.A., Azbel M.Y., Modulational instability of a wave scattered by a nonlinear center, Phys. Rev.

B 47 (1993), 10402–10406.
[MB] Molina M.I., Bustamante C.A., The attractive nonlinear delta-function potential, Amer. J. Phys. 70

(2002), 67–70.
[N] Nier F., The dynamics of some quantum open systems with short-range nonlinearities, Nonlinearity 11 (1998),

1127–1172.
[NP] Noja D., Posilicano A., Wave equations with concentrated nonlinearities, J. Phys. A: Math. Gen. 38 (2005),

5011.
[S et al] Sukhorukov A.A., Kivshar Y.S., Bang O. , Rasmussen J.J., Christiansen P.L., Nonlinearity and

disorder: Classification and stability of nonlinear impurity modes, Phys. Rev. E 63 (2001), 036601.



WELL-POSEDNESS OF 2D NLSE WITH CONCENTRATED NONLINEARITY 39

[SKB] Sukhorukov A.A., Kivshar Y.S., Bang O., Two-color nonlinear localized photonic modes, Phys. Rev. E
60 (1999), R41–R44.

[SKM] Samko S.G., Kilbas A.A., Marichev O.I., Fractional Integrals and Derivatives, Gordon and Breach
Science Publishers, Philadelphia, Pa., USA, 1993.

[SY] Sayapova M.R., Yafaev D.R., The evolution operator for time-dependent potentials of zero radius, Proc.
Steklov Inst. Math. 159 (1984), 173–180.

[Y] Yeh P., Optical Waves in Layered Media, Wiley, New York, 2005.
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