
WHEN PANIC MAKES YOU BLIND:
A CHAOTIC ROUTE TO SYSTEMIC RISK

PIERO MAZZARISI1,2, FABRIZIO LILLO2, AND STEFANO MARMI1

Abstract. We present an analytical model to study the role of expectation feedbacks and overlapping
portfolios on systemic stability of financial systems. Building on [Corsi et al., 2016], we model a set
of financial institutions having Value-at-Risk capital requirements and investing in a portfolio of risky
assets, whose prices evolve stochastically in time and are endogenously driven by the trading decisions of
financial institutions. Assuming that they use adaptive expectations of risk, we show that the evolution
of the system is described by a slow-fast random dynamical system, which can be studied analytically
in some regimes. The model shows how the risk expectations play a central role in determining the
systemic stability of the financial system and how wrong risk expectations may create panic-induced
reduction or over-optimistic expansion of balance sheets. Specifically, when investors are myopic in
estimating the risk, the fixed point equilibrium of the system breaks into leverage cycles and financial
variables display a bifurcation cascade eventually leading to chaos. We discuss the role of financial
policy and the effects of some market frictions, as the cost of diversification and financial transaction
taxes, in determining the stability of the system in the presence of adaptive expectations of risk.

1. Introduction

Borrowing is an essential aspect of the business of financial institutions operating in financial mar-
kets because of the possibility of leveraging the investment returns by buying on margin. The recent
empirical literature [Adrian and Shin, 2010] captured perfectly this aspect characterizing the leverage
management of the largest investors operating in the market. But financial leverage is directly re-
lated to risk. As several recent papers suggest [Brunnermeier and Pedersen, 2009, Geanakoplos, 2010,
Aymanns and Farmer, 2015, Corsi et al., 2016], financial leverage is probably the most important engine
in driving endogenously the booms and the busts of asset prices in the market.

Regulators try to limit the exacerbated use of leverage by imposing some constraints to financial
institutions in order to make the financial system more robust and resilient to shocks. Value-at-Risk
(VaR) constraint is probably the most popular one, but other more sophisticated ones have been proposed
in recent years by the successive Basel regulations. All the regulators’ constraints require an estimation
of the riskiness of the investments as well as of the dependencies between extreme events of financial
returns. Therefore both the capital requirement constraint and the risk/dependency expectations play
a crucial role in determining the systemic stability of financial markets.

On one hand, as documented by many papers (see for example [Adrian and Shin, 2010]), VaR capi-
tal requirements, as other risk constraints, can induce a perverse demand function: in order to target
leverage, a financial institution will sell more assets if their price drops and viceversa when their price
rises. Thus, a marked-to-market and VaR constrained financial institution will have a positive feedback
effect on the prices of the assets in its portfolio. This fact is known as procyclicality of the Value-at-Risk
constraint which results in amplifications of market movements, especially during the falling period of a
financial crisis. Recently, solutions have been suggested to overcome the problem of procyclicality of the
VaR constraint, e.g. [Aymanns et al., 2016] proposed countercyclical policies to control the dynamics of
the leverage. Furthermore, in a market where many financial institutions are forced to follow similar
risk management rules, the coordinated rebalancing of portfolios composed by illiquid assets creates a
feedback effect which depends on the degree of leverage and diversification. Thus, while diversification
of investment should reduce portfolio risk, a significant overlap (i.e. similarity) of portfolios of many
financial institutions can instead destabilize the market and increase its susceptibility to price shocks
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because of fire sale spillovers, i.e. when asset sales depress prices, in which case one institution’s sales im-
pact other institutions with common exposures. Several models of fire sale spillovers have been proposed
to evaluate the vulnerability of institutions [Greenwood et al., 2015] as well as to construct indexes of
systemic risk in financial markets [Duarte and Eisenbach, 2015, Di Gangi et al., 2018].

On the other hand, the implementation of any capital requirement depends on the expectations
financial institutions have on the risk of the assets in the portfolio and on their statistical depen-
dence. For this reason there is a vast literature on the estimation of risk and dependencies [Tsay, 2005,
Hommes et al., 2007, Heemeijer et al., 2009, Bao et al., 2013], many of them based on the recent history
of prices in a time window of the recent past. The choice of the length of the estimation window is critical,
since there is a tradeoff between choosing a long estimation window to improve statistical significance
and preferring a short window in order to capture a more timely measure of risk. In period of financial
turbulence, when non stationary effects are more likely, investors might prefer to use short estimation
windows. Since trading decisions drive endogenously the market in the presence of illiquid assets and
depend on expectations, the length of the risk estimation window can impact the dynamical properties
of prices. This creates a second feedback effect in addition to the one, described above, due to target
leveraging.

In this paper we present an analytical model of the financial system where both feedbacks mechanisms
are present. Building on [Corsi et al., 2016], a set of financial institutions (banks) investing in a portfolio
of risky and illiquid assets follow a target leveraging strategy to satisfy Value-at-Risk capital requirements.
The estimations of risk of the investment assets, and as a consequence the leverage, are periodically
updated and banks use a backward-looking expectation scheme which considers price returns in a past
time window to build estimates. The two feedback mechanisms are coupled by the price dynamics, which
on one side is used to mark-to-market the portfolio and to estimate risk and correlations, and on the
other one is endogenously affected by the trading activity of financial institutions.

Interestingly, the two feedback mechanisms described above act on different time scales. In our
model the time scale of leverage targeting is shorter than the time scale over which financial institutions
update their risk expectations. This separation of time scales is crucial in our modeling. Since the slow
variables, associated with updates of risk expectations, evolve in time as a function of averages over the
fast variables, associated with leverage targeting, our model can be casted as a discrete time slow-fast
dynamical system1. The ratio between the two time scales is the key parameter determining the type
of mathematical modeling. We show that when this ratio tends to infinity, i.e. financial institutions
are continuously marked-to-market, the dynamics is described by a deterministic map. The window
used to form expectations of risk plays a central role in determining systemic stability and leverage
cycles appear when investors become more myopic relative to past history of asset prices, i.e. the
memory becomes smaller than a given threshold. Our model predicts that the deterministic dynamics
of the financial system becomes chaotic when the memory decreases further and goes below a second
smaller threshold. When the ratio between the two time scales is finite a random slow-fast dynamical
system describes the system. Even if mathematically this is harder to study, because of the joint chaotic
and stochastic dynamics, we show by analytical arguments and numerical simulations that the main
dynamical characteristics remain unchanged.

We are therefore able to characterize the possible dynamical outcomes for the considered financial
system as a function of the memory window used to form expectations, the tail parameter of the Value-
at-Risk, the number of asset classes available for investment, the ratio between the two time scales (related
to the presence of market frictions), and a parameter determining the level of financial innovation. We
show how the breaking of the fixed point equilibrium for the financial system occurs via a period-doubling
bifurcation when any of these parameters are varied and how the dynamics of the financial system may
be intrinsically chaotic in certain parameter regions. Each of these parameters can at least in part be
controlled by regulators, thus our model is able to provide policy recommendation for enhancing financial
stability, as discussed at the end of the paper.
Related literature. Our paper aims to combine several streams of literature: (i) the analysis of portfolio
rebalancing induced by the mark-to-market accounting rules and VaR constraint [Adrian and Shin, 2010,
Adrian and Shin, 2014]; (ii) the investigations on the impact of the imposition of capital requirements
on the behavior of financial institutions and their possible procyclical effects [Danielsson et al., 2004,

1The mathematical framework for slow-fast systems at continuous time is studied in [Kuehn, 2011]. A review about
random dynamical systems is [Bhattacharya and Majumdar, 2003]. The averaging principle can be considered as an ex-
tension of the ergodic theorem: the case of interest for our purposes, where a deterministic dynamical system is coupled
with a random one, is discussed for example in [Dolgopyat, 2004, Dolgopyat, 2005, Kifer, 2014].
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Danielsson et al., 2012a, Tasca and Battiston, 2013, Adrian and Shin, 2014, Corsi et al., 2016]; in par-
ticular, we generalize the model of Corsi et al. by studying how the procyclical effects on asset prices
and risk expectations influence the portfolio decisions about leverage and diversification; (iii) the litera-
ture on distressed selling and its impact on the balance sheets of the financial institutions because of the
overlapping among portfolios [Cont and Wagalath, 2013, Caccioli et al., 2014]; (iv) the research on the
role of expectation feedbacks in financial systems [Hommes, 1994, Hommes, 2000, Farmer et al., 2012,
Hommes, 2013]; in particular, our paper focuses on the role of risk expectations which are formed by
using statistical models of past observations of investment prices; (v) finally our paper contributes to
literature on the application of dynamical systems theory to the problem of systemic risk in financial
markets [Choi and Douady, 2012, Castellacci and Choi, 2014] and, specifically, to the study of the dy-
namics of leverage cycles and its relation with the financial regulation [Brunnermeier and Pedersen, 2009,
Geanakoplos, 2010, Poledna et al., 2014, Aymanns and Farmer, 2015, Aymanns et al., 2016, Halling et al., 2016].
Outline. The remainder of this paper is organized as follows. In Section 2 we briefly review the model
of [Corsi et al., 2016] which represents the background of our study. Then, we introduce the model with
backward-looking risk expectations. In Section 3 we briefly summarize the results of [Corsi et al., 2016]
which represents the limit case of our model without backward-looking expectations. In Section 4 we
analyze the dynamical properties of the model and its policy implications for financial markets in the
limit in which the model is fully analytical. This limit corresponds to study the deterministic skeleton
of the slow-fast random dynamical system. In Section 5, we present an analytical argument to extend
the obtained results also in the random framework, we give more insights into the model via numerical
simulations, and we discuss the role of taxation for financial systemic risk. Section 6 contains some
conclusions.

2. Financial system with expectation feedbacks

Wemodel a financial market consisting of leveraged financial institutions investing in some risky assets.
Financial institutions, here called banks, have capital requirements in the form of VaR constraint and face
costs of diversification in forming a portfolio. We focus on the study of systemic risk in financial markets
from the point of view of indirect contagion of risk. In presence of illiquid assets, losses and distressed
selling propagate indirectly among financial institutions by common investments in their portfolios.

The adopted framework is the one introduced in [Corsi et al., 2016], where authors model a bipartite
network of investment assets and banks. To form a portfolio each bank solves an optimization problem
to determine simultaneously the optimal values of leverage and diversification. Determining the optimal
level for the financial leverage is related to the fulfilment of the VaR constraint. Hence, portfolio decisions
about leverage and diversification depend on the expectations of risk by banks.

[Corsi et al., 2016] are agnostic on the process of expectation formation, since expectations of returns
and risks are described by exogenous parameters. As a consequence, there is no dynamics associated
with the evolving banks’ expectations.

Here we explicitly introduce a process for the formation of risk expectations2 where banks estimate
the risk of their portfolio in the holding period from past price movements [Hommes, 2009]. In our
model, we introduce a simple process for the backward-looking expectations which are characterized
by one parameter related to the memory of expectations. The mechanism of expectation feedbacks
induces a dynamical component in the portfolio decisions: depending on the evolution of market prices,
the perception of risk by banks changes and accordingly also the portfolio decisions about leverage and
diversification. Since asset prices evolve stochastically in time, the market value of the portfolio changes.
By assuming that the liability size remains unchanged in the meanwhile, the exogenous variation of the
leverage occurs in the inverse direction of the portfolio, i.e. if the prices increase, the financial leverage
decreases. As empirically found [Adrian and Shin, 2010, Adrian and Shin, 2014], banks manage actively
their balance sheet by rebalancing periodically the portfolio in order to have the leverage equal to its
optimal level or target value. The time scale associated with the portfolio rebalancing is the time spent
by banks to bring the leverage back to its target value. The frequency of balance sheet adjustments
determines how well the bank is marked-to-market in the portfolio holding period.

In our model, we define the time scale of the dynamics for portfolio decisions as the unit time scale
and n is the number of times a bank rebalances its portfolio for leverage targeting in the unitary holding
period. Hence, the time scale associated with the portfolio rebalancing is 1/n.

2Expected asset returns remain exogenous to the price dynamics. This is consistent with the view of financial institutions
as fundamental traders.
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Figure 1. Timing of of the slow-fast dynamical model describing the financial system.

In the presence of finite liquidity, the trading of assets drives endogenously the dynamics of the price.
Since the price history is used to form expectations of risk, a feedback coupling portfolio decisions and
price dynamics is created.

Below, we briefly review the model of [Corsi et al., 2016]. Then, we will describe our model.

2.1. Baseline model of [Corsi et al., 2016]. The system is composed byN financial institutions (banks)
creating portfolios by investing in some of the M available risky assets. In the following, we adopt the
convention of labeling risky investments as i, j, k, . . . and banks as a, b, c, . . .. All financial institutions
are assumed to be equivalent, that is they have the same initial equity capital and the same capital
requirements, they solve the same portfolio problem and they use the same scheme in forming risk
expectations. This is of course a simplifying assumption in order to achieve analytical tractability.
However, [Corsi et al., 2016] show how heterogeneity does not affect crucially the results of the model.

We assume that banks update their expectations of risk at time intervals of unitary length and
accordingly they make new decisions about leverage and portfolio diversification (see Fig. 1). In the
time interval (t, t + 1] with t ∈ Z, banks rebalance their portfolio to target the leverage, but without
changing the risk expectations. The rebalancing takes place in n time subintervals within (t, t + 1],
i.e. at {t + 1

n , t + 2
n , t + 3

n , ..., t + n
n ≡ t + 1}. 1/n with n ∈ N+ is the time scale associated with the

portfolio rebalancing (the red axis in Figure 1), whereas the unit value is the time scale associated with
the portfolio decisions (the black axis in Figure 1). As clarified below, [Corsi et al., 2016] considered the
case of removing the endogenous process of formation of risk expectations, i.e. portfolio decisions are
taken without consideration on the price dynamics. This is equivalent to optimize the portfolio only
once with exogenous risk expectations and the process of portfolio rebalancing follows without changing
the value of the optimal leverage.
Portfolio decisions. The equity of each financial institution at time t is given by Et = At − Lt, where
Lt (At) represents the liabilities (assets) of the bank at time t. For simplicity banks do not face funding
restrictions and they can decide to increase or to reduce its liabilities according to their needs as long as
they fulfil the VaR constraint. Finally rL is the per dollar average interest expense on the liability side
and the financial leverage is λt = At

Et
.

[Corsi et al., 2016] considered a simplified setting where each bank determines the optimal value for
leverage and diversification. Since all the risky investments are ex-ante statistically equivalent, financial
institutions adopt a simple investment strategy consisting in forming an equally weighted portfolio by ran-
domly selecting m risky investments from the whole collection of M available investment assets. Hence,
banks have to find the optimal number of investment assets in the presence of diversification costs c̄, see

4



[Constantinides, 1986]. The costs of diversification represent all the informational and infrastructural
costs preventing each institution to achieve full diversification of its portfolio.

Banks select also the optimal value for leverage λt, being bounded by the VaR constraint V aR ×
At 6 Et. By assuming a functional shape of the return distribution, V aR is the α-multiple of the
expected holding period volatility of the portfolio σp, i.e. ασp. In the numerical experiments below, the
VaR quantile associated with a PV aR = 5% is given by α = 1.64 because we assume normally distributed
portfolio returns.

Since investments are equivalent, µ is the expected return in the holding period and then the net
interest margin of the financial institutions is µ − rL. Finally, financial institutions correctly perceive
that each risky investment entails both an idiosyncratic (diversifiable) risk component and a systematic
(undiversifiable) risk component, i.e. the expected variance of an investment i is σ2

i,t = Σu,t+Σd,t, where
the first (second) term represents the expected variance of the systematic factor (idiosynchratic noise).

In the following we use the hat, e.g. Σ̂u,t, to indicate an estimation of the variance formed by using
past observations. On the contrary, unlabeled symbols indicate expectations. For example, Σu,t is the
expectation at time t of the systematic risk at time t+ 1.

The expected variance of a portfolio of mt assets is

σ2
p,t =

Σd,t
mt

+ Σu,t. (2.1)

As shown in [Corsi et al., 2016], the portfolio optimization problem is

max
λt,mt

λt(µ− rL)− cmt s.t. ασp,tλt 6 1, (2.2)

where c measures the diversification cost for each investment. The solution in implicit form is

mt = λt
√

Σd,t

√
α

2c

µ− rL
σp,t

, (2.3)

λt =
1

ασp,t
. (2.4)

Given Σd,t and Σu,t, there is only one independent variable in the system of Equations 2.3 and 2.4.
Indeed, it is

mt ≡ mt(λt; Σd,t,Σu,t) =
Σd,t

1
α2λ2

t
− Σu,t

, (2.5)

where λt is the only positive real solution3 of the following quartic equation,

Σ
1
3

d,t

(
α

2
3

(
µ− rL

2c

) 1
3

λt

)−1

−
(

1

α2λ2
t

− Σu,t

) 2
3

= 0. (2.6)

Portfolio rebalancing. As empirically shown by [Adrian and Shin, 2010], financial institutions adopt-
ing target leverage adjust their assets and liabilities rather than raising or redistributing equity capital.
This means that equity changes over time as a consequence of the bank profits and losses, but it is not
actively managed.

Similarly to [Corsi et al., 2016], we model the dynamics of the return of the risky investment i in the
n time steps of length 1/n during the interval (t, t+ 1] as the sum of two components:

ri,t+k/n = εi,t+k/n + ei,t+(k−1)/n, k = 1, 2, ..., n. (2.7)

Note that here the time scale is the fast one, thus we use a fractional time labeling to indicate the
times between t and t + 1 when portfolio rebalancing occurs. The exogenous component εi,t+k/n =
µ1 +ft+k/n+εi,t+k/n is the sum of a drift term representing the expected return plus a systematic market
factor ft+k/n common to all risky investments, plus a noise term εi,t+k/n representing the idiosyncratic
innovation. Without loss of generality, both the noise term and the systematic factor are Gaussian
distributed, i.e. εi,t+k/n ∼ N (0, σ2

ε ) and ft+k/n ∼ N (0, σ2
f ) ∀k = 1, 2, ..., n.

The endogenous component ei,t+(k−1)/n depends on the price impact of the demand for the risky
investment i arising from the portfolio rebalancing. Given a target leverage, when asset prices increase4,
both asset value and equity increase, since liabilities remain constant, and as a consequence the leverage

3It can be shown that Eq. 2.6 has only one positive real solution for λt ∈ R+ in the space of feasible parameters, i.e.
α > 0, c ∈ [0, 1], µ− rL > 0, Σd,t,Σu,t > 0.

4When the asset prices decrease, the sign is simply reverted.
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decreases5. Thus, in order to keep leverage equal to the target value, banks manage their balance sheet
by increasing the liabilities and using the borrowed money for purchasing new assets6. In the presence
of asset illiquidity, buying or selling assets for leverage targeting will move their prices.

In mathematical terms, given at the generic fractional time s = t+k/n with k = 1, 2, ..., n, the desired
asset size for a generic bank a, A∗a,s = λtEa,s, the bank a rebalances the portfolio by trading a quantity
which is the difference between the desired asset size and the current one, A∗a,s−Aa,s, which is given by

A∗a,s −Aa,s = λtEa,s −A∗a,s−1/n(1 + rpa,s) =

= λt(Ea,s−1/n + rpa,sA
∗
a,s−1/n)−A∗a,s−1/n(1 + rpa,s) =

= (λt − 1)A∗a,s−1/nr
p
a,s,

(2.8)

where rpa,s is the portfolio return at time s for the bank a. Eq. 2.8 shows that any profit or loss from
investments in the portfolio (A∗a,s−1/nr

p
a,s) will result in a change in the asset size, amplified by the value

of the financial leverage.
The impact of the portfolio rebalancing by all the banks at time s will affect asset prices at time

s+ 1/n. The total demand of the risky investment i at time s will be the sum of the individual demand
of the banks who picked investment i in their portfolio,

Di,s =

N∑
a=1

Ii∈a
1

mt
(A∗a,s −Aa,s), (2.9)

where Ii∈a is the indicator function which takes value one when investment i is in the portfolio of
institution a and zero otherwise. [Corsi et al., 2016] show that this quantity can be written as

Di,s = (λt − 1)
A∗s−1/n

mt

N

M

ri,s +
mt − 1

M − 1

∑
k 6=i

rk,s

 .

By assuming that price impact is linear in the traded volumes, [Corsi et al., 2016] model the endogenous
component as

ei,s =
1

γ

Di,s

Ci,s
, (2.10)

where γ is a parameter measuring the investment liquidity, Ci,s ≡
∑N
a=1 Ii∈a

A∗
a,s−1/n

mt
is a proxy for

capitalization of investment i at time s. Coherently with the assumption of statistically equivalence
for risky investments, we assume that each investment is characterized by the same liquidity parameter
γ. [Corsi et al., 2016] obtain the following Vector Autoregressive (VAR) dynamics for the vector of
endogenous components,

es = Φtrs = Φt(es−1/n + εs), s = t+ k/n, k = 1, 2, ..., n , (2.11)

where

Φt =
(λt − 1)

γ


1
mt

1
mt

mt−1
M−1 . . . 1

mt
mt−1
M−1

1
mt

mt−1
M−1

1
mt

. . . 1
mt

mt−1
M−1

...
. . .

...
1
mt

mt−1
M−1

1
mt

mt−1
M−1 . . . 1

mt

 . (2.12)

Notice that Φt ≡ Φ(λt,Σd,t,Σu,t) because mt ≡ mt(λt,Σd,t,Σu,t) according to Eq. 2.5. The VAR(1)
process in Eq. 2.11 determines the return process in Eq. 2.7 and completely defines the fast dynamics
of our model between t and t+ 1.

2.2. Formation of risk expectations. Here we generalize the model of [Corsi et al., 2016] by spec-
ifying how banks form risk expectations in Eq. 2.6 to take portfolio decisions. Several empirical and
experimental studies, for example [Hommes, 2009, Bao et al., 2013], have shown that financial agents use
statistical models of past observations of the price to forecast the future, the so-called backward-looking
expectations. Here we introduce a similar expectation scheme which exploits past observed prices in
forecasting future risks.

5E.g. if the profit is equal to δA, we have A+δA
E+δA

< A
E
.

6According to the assumption of statistically equivalence of risky investments, the increment of asset size is equally
distributed over assets in the portfolio [Greenwood et al., 2015].
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Risk estimation. At each portfolio decision time t, banks estimate the covariance matrix of risky
investments between t− 1 and t, that is

Σ̂t =


V̂ ar[Ri,t] Ĉov[Ri,t, Rj,t] · · ·

Ĉov[Ri,t, Rj,t]
. . .

...
... · · · · · ·

 , (2.13)

where V̂ ar[Ri,t] and Ĉov[Ri,t, Rj,t], with i 6= j, are the maximum likelihood estimators of the variance
and covariance of assets’ returns aggregated at the time scale of the portfolio decisions, i.e. Ri,t ≡∑n
k=1 ri,t−1+k/n

7. We assume that banks correctly perceive the return dynamics as evolving according
to the vector autoregressive process VAR(1), see Eqs. 2.7, 2.11 and 2.12, as well as the statistical
equivalence of asset investments. As a consequence, symmetric conditions can be imposed on Σ̂t, namely
the diagonal components of the covariance matrix are equal to each other and the same for the off-diagonal
components. It is

Σ̂t = Σ̂d,tI + Σ̂u,t1, (2.14)

where I is the identity matrix, 1 is the M × M matrix whose entries are equal to one and Σ̂d,t =

V̂ ar[Ri,t]− Ĉov[Ri,t, Rj,t] and Σ̂u,t = Ĉov[Ri,t, Rj,t] ∀i, j = 1, ...,M, i 6= j.
We do not exploit explicitly the maximum likelihood estimators of the variance and covariance of

returns to obtain the results in the next Section. However, we show in Appendix A how to obtain the
explicit formulas for completeness. Here, let us stress that Σ̂d,t and Σ̂u,t are only functions of the fast
variables rt−1+k/n, k = 0, 1, 2, ..., n, i.e.{

Σ̂d,t ≡ Σ̂d,t({ri,t−1+k/n}i=1,...,M
k=0,1,...,n)

Σ̂u,t ≡ Σ̂u,t({ri,t−1+k/n}i=1,...,M
k=0,1,...,n).

Risk expectations. Once banks have estimated the covariance matrix of risky investments, they form
risk expectations of the two independent quantities of the covariance matrix, i.e. Σd,t and Σu,t. We
assume the banks expectation at time t of an element of the covariance matrix is a weighted sum of the
previously adopted expectation for the same element and the current estimation, that is{

Σωd,t = ωΣωd,t−1 + (1− ω)Σ̂d,t

Σωu,t = ωΣωu,t−1 + (1− ω)Σ̂u,t
, (2.15)

where ω ∈ [0, 1] is the memory parameter of the expectation scheme. Eq. 2.15 is also known as
adaptive expectations [Hommes, 2013]. By iterating Eq. 2.15, we can write adaptive expectations as an
Exponentially Weighted Moving Average (EWMA) of past observed risks, that is

Σω·,t = (1− ω)

∞∑
k=0

ωkΣ̂·,t−k = (1− ω)

∞∑
k=0

e−
k
τ Σ̂·,t−k , (2.16)

where τ = (ln 1
ω )−1 corresponds to the ‘effective’ memory of adaptive expectations. The limit ω → 0+

corresponds to naive expectations of risk, i.e. no memory (τ → 0). By increasing ω, the effective memory
τ of the expectation scheme increases.

2.3. Expectation feedback system. By summarizing the building blocks of our model, the dynamics
of the financial system is described by a slow-fast random dynamical system at discrete time which is
specified by the following equations,

(
Σωd,t

) 1
3
(
α

2
3

(
µ−rL

2c

) 1
3 λt

)−1

−
(

1
α2λ2

t
− Σωu,t

) 2
3

= 0

Σωd,t = ωΣωd,t−1 + (1− ω)Σ̂d,t

Σωu,t = ωΣωu,t−1 + (1− ω)Σ̂u,t

(2.17)

rs = εs + Φ(λt−1,Σ
ω
d,t−1,Σ

ω
u,t−1) rs−1/n s = t− 1 + k/n, k = 1, 2, ..., n , (2.18)

where Σ̂d,t and Σ̂u,t are the maximum likelihood estimators of the (diversifiable) variance and covariance
of returns aggregated at the time scale of portfolio decisions and can be obtained as explained in Appendix
A, see Eq. A.19.

7For notational simplicity, we are considering that the asset returns are centered around the mean.
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Eq. 2.17 describes the dynamics of banks’ portfolio decisions, i.e. the slow component of the dynamics
described by the slow variables λt, Σωd,t, and Σωu,t. Eq. 2.18 describes the price evolution of the risky
investments, i.e. the fast component of the dynamics described by the fast variables ri,s.

The model must satisfy a stationarity condition, namely covariance stationarity of the autoregressive
process, which is λ < γ + 18. It is also λ > 1 and 0 6 m 6M , by construction.

Summarizing the main steps of the dynamics: (i) portfolio decisions at time t− 1 determine the value
of leverage depending on risk expectations, see Eqs. 2.17, and (ii) affect the price dynamics between t−1
and t because of the autoregressive coefficient Φ(λt−1,Σ

ω
d,t−1,Σ

ω
u,t−1), of the return process, see Eqs. 2.18;

(iii) at time t, banks estimate asset risks by using past observations of prices, Σ̂d,t({rt−1+k/n}k=1,2,...,n)

and Σ̂u,t({rt−1+k/n}k=1,2,...,n). Then, (iv) banks form new risk expectations Σωd,t and Σωu,t, and (v) make
new portfolio decisions at time t.
One dimensional setting. In the following, we study also a reduced version of the model obtained by
considering one bank and one risky investment. In this setting, the price dynamics is governed by the
autoregressive process in Eq. 2.7 with N = M = 1. We refer to the investment return at time s as rs
and to its variance estimated by using observations {rt−1+k/n}k=1,2,...,n as σ̂2

t . In this setting we lose
the aspect related to the diversification and the portfolio problem reduces to find the optimal value of
the leverage subject to the Value-at-Risk constraint, i.e.

max
λt

λt(µ− rL) s.t. ασωt λt 6 1,

where σωt is the expected volatility of the investment. Then, the equation governing the portfolio decisions
is λt = (ασωt )−1 with (σωt )2 = ω(σωt−1)2 + (1 − ω)σ̂2

t . We can reduce the slow component of the model
dynamics to a single equation representing a one-dimensional map for the dynamic variable λt. The
reduced model is specified as follows,λt =

(
ω 1
λ2
t−1

+ (1− ω) α2 V̂ ar
[∑n

k=1 rt−1+k/n

])− 1
2

rs = εs + λt−1−1
γ rs−1/n s = t− 1 + k/n, k = 1, 2, ..., n

, (2.19)

where

V̂ ar

[
n∑
k=1

rt−1+k/n

]
=

(
1 + 2

φ̂t−1(1− φ̂nt−1)

1− φ̂t−1

− 2
(nφ̂t−1 − n− 1)φ̂n+1

t−1 + φ̂t−1

n(1− φ̂t−1)2

)
nσ̂2

ε

1− φ̂2
t−1

is the maximum likelihood estimator of the variance of the return aggregated at the time scale of the
portfolio decisions for generic n > 1, with

φ̂t−1 =

∑n
k=1 rt−1+k/nrt−1+(k−1)/n∑n

k=1 r
2
t−1+(k−1)/n

σ̂2
ε =

∑n
k=1(rt−1+k/n − φ̂t−1 rt−1+(k−1)/n)2

n

being the maximum likelihood estimators of the autoregressive coefficient φt−1 ≡ λt−1−1
γ and the variance

of the idiosyncratic noise σ2
ε of the AR(1) process.

In Eq. 2.19 covariance stationarity for the AR(1) process is equivalent to the condition λ ∈ [1, γ + 1).
Since the slow variable evolves in time depending on averages over the fast variables, namely the

variance of the random autoregressive process AR(1), this is a slow-fast random dynamical system.
In this setting, we can also consider the case n = 1, i.e. time scale of portfolio decisions coincides with

the one of portfolio rebalancing. In Appendix B, we show that this case is similar to the one presented
in [Aymanns and Farmer, 2015] and, with a further assumption for the asset price dynamics, the two
models coincide.

In the following we will consider three cases.
• Exogenous risk expectations. In the first case, we consider exogenous risk expectations, as

studied in the paper [Corsi et al., 2016], thus we shall only summarize the main results obtained
there.

8The VAR(1) process in Eq. 2.18 is covariance stationary when the largest eigenvalue of the matrix Φ is smaller than
one. This is equivalent to assume λt < γ + 1 as shown in [Corsi et al., 2016].
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• Asymptotic deterministic limit of the slow-fast random dynamics. The second case is
the limit n → ∞, i.e. portfolio are rebalanced very actively between t − 1 and t. In this limit
the model becomes analytically tractable.
• Two generic time scales. The last is the case of finite n and, for simplicity, we consider

the reduced version of the slow-fast random dynamical system. We will present some numerical
results and some analytical approximation.

3. Exogenous risk expectations

We first consider the portfolio decision as completely exogenous, in the sense that expected diversifiable
and systematic risks are exogenous parameters not depending on the past asset price dynamics. This
means removing the process of expectation formation in Eq. 2.17. Since this case has already studied in
[Corsi et al., 2016], we will not consider it in detail here but we summarize the findings.

The authors show how changes in the constraints of the bank portfolio optimization (such as changes
in the cost of diversification or changes in the micro-prudential policies) endogenously drive the dynam-
ics of bank balance sheets, asset prices, and systemic risk. Specifically, a reduction of diversification
costs, by increasing the level of diversification and hence relaxing the VaR constraint, allows the finan-
cial institutions to increase the optimal leverage and it also increases the degree of overlap, and thereby
correlation, between the portfolios of financial institutions. This increases the feedback effects in the
return dynamics that, in turn, increase the risk of investments and may induce steep growths (bubbles)
and plunges (busts) of market prices. The authors provide a full analytical quantification of the mul-
tivariate feedback effects between investment prices and balance sheet dynamics induced by portfolio
rebalancing in the presence of asset illiquidity and show how the results crucially depend on the largest
eigenvalue of the process in Eq. 2.18. From a mathematical point of view, a transition from stationarity
to non stationarity of the price dynamics occurs when the largest eigenvalue of Φ becomes larger than
one and it describes the dynamical instabilities of the financial system with exogenous risk expectations.
Furthermore, the authors show that the bank size heterogeneity does not affect crucially the analytical
results obtained in the homogenous case. On the contrary, bank size heterogeneity makes the financial
system more unstable as compared to the homogeneous case because the maximum eigenvalue is larger
for the heterogenous than for the homogeneous case, making the system closer to the transition between
the stationary and the non stationary dynamics.

4. Asymptotic deterministic limit of the slow-fast random dynamics

We now focus on the limit n→∞ which allows to approach the problem in a fully analytical way. Since
n represents the number of times financial institutions rebalance their portfolios, it is a measure of how
closely they are marked-to-market in the capital structure. The asymptotic limit n → ∞ is equivalent
to consider all financial institutions continuously marked-to-market in their capital structures. For a
VaR constrained financial institution this means that the asset size is equal to the desired position with
respect to the market value of the investments in such a way that the financial leverage is equal to its
target during the portfolio holding period. Very active management of portfolio means frequent trading
in the financial market and thus can be accomplished only in absence of or with very low transaction
costs and other trading frictions. For this reason, we can interpret the limit n→∞ as an ideal market
without trading frictions.

In this limit, the estimator of the covariance matrix, Σ̂t, converges in probability to the covariance
matrix Σ̃ for the returns Ri,t,

Σ̂t
P−→ Σ̃ = Σ̃d(λt−1,Σ

ω
d,t−1,Σ

ω
u,t−1,Σε,Σf )I + Σ̃u(λt−1,Σ

ω
d,t−1,Σ

ω
u,t−1,Σε,Σf )1, (4.1)

where Σε and Σf are the variance of the idiosyncratic noise εi,s and of the factor fs, respectively,
aggregated at the time scale of portfolio decisions9, i.e. Σε = limn→∞ nσ2

ε and Σf = limn→∞ nσ2
f . Σ̃d

and Σ̃u can be computed analytically, exploiting a result in [Corsi et al., 2016], and their expression is
in Eq. A.22 of Appendix A.

9In the limit n → ∞, the time scale of the portfolio rebalancing, i.e. 1/n, goes to zero as well as σ2
ε and σ2

f , but
Σε = limn→∞ n σ2

ε and Σf = limn→∞ n σ2
f remain finite.
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Notation Description Value
M total number of investments 60
N number of banks 30
µ− rL Net Interest Margin of a bank 0.08
γ asset liquidity 100√

Σε exogenous idiosyncratic volatil-
ity at the time scale of portfolio
decisions

0.03

√
Σf
Σε

ratio between exogenous volatil-
ity of systematic factor at the
time scale of portfolio decisions,
i.e. Σf , and Σε

0.1

A0 Initial asset size for each bank 100

E0 Initial equity for each bank A0

λ0

c cost of diversification w.r.t. the
initial equity E0

0.1

α quantile of PV aR 1.64
λ0,Σ

ω
d,0,Σ

ω
u,0 chosen randomly in the domain

Table 1. Simulation parameters for the model. The most important parameters in
our analysis are ω, c and α. We will specify ω below, while α and c are set as in the
Table if it is not specified differently. Since we study the long-run dynamics, the initial
conditions are not relevant. We set the transient time in the simulations of the model
as equal to 100 time steps.

Substituting the estimator with the covariance matrix of Eq. 4.1, the portfolio dynamics is described
by a three-dimensional deterministic map, which in implicit form is:

(
Σωd,t−1

) 1
3
(
α

2
3

(
µ−rL

2c

) 1
3 λt

)−1

−
(

1
α2λ2

t
− Σωu,t−1

) 2
3

= 0

Σωd,t = ωΣωd,t−1 + (1− ω)Σ̃d(λt−1,Σ
ω
d,t−1,Σ

ω
u,t−1,Σε,Σf )

Σωu,t = ωΣωu,t−1 + (1− ω)Σ̃u(λt−1,Σ
ω
d,t−1,Σ

ω
u,t−1,Σε,Σf ).

(4.2)

The map of Eq. 4.2 is the so-called deterministic skeleton of the financial model obtained by removing
the sources of stochasticity.

4.1. Deterministic skeleton of the financial system. We analyze the model in the asymptotic limit
via a dynamical systems approach by investigating the map in Eq. 4.2. Table 1 shows the values of the
parameters used to illustrate numerically the main properties of the model.

A comprehensive insight of the skeleton dynamics is obtained by looking at the bifurcation diagram in
the top panel of Figure 2. The bifurcation diagram of a map shows the long run dynamics after a transient
time has passed as a function of a parameter. For our model we can use as the bifurcation parameter
either the memory parameter ω, or the VaR parameter α, or the diversification cost c. Later, we will
show the model dynamics depending on α and c to have more insights regarding policy implications.

The top panel of figure 2 shows the bifurcation diagram as a function of ω. Decreasing the memory
parameter, a period-doubling cascade to chaos10 occurs. In other words the deterministic skeleton of the
financial system shows cycles of increasing complexity with more and more periods until chaos occurs11.
The signature of the chaotic behavior is the positive Lyapunov exponent associated with it. The bottom
panel of Figure 2 shows the estimated Lyapunov exponent Λ as a function of ω. Positive values of Λ,
observed for small ω, signal the presence of deterministic chaos.

10A dynamical system is often defined as chaotic when three conditions hold [Devaney, 2008]: (i) sensitivity to initial
conditions; (ii) (topological) mixing; (iii) dense periodic orbits. One often also requires, as it is in our case, positivity of
Kolmogorov-Sinai entropy (or, almost equivalently, of Lyapunov exponents). Roughly speaking, it is equivalent to say that
small changes in initial conditions produce large changes in long-term outcomes and any autocorrelation function decays
to zero, resulting in unpredictability of the system dynamics in the long-run.

11In this analytical approach to the study of dynamics of the financial system, the domain for leverage and risk
expectations is {λ,Σωd ,Σ

ω
u} ∈ [1, γ + 1) × R+ × R+. In particular, bounds for leverage are equivalent to the conditions of

stationarity for the process of Eq. 2.18.
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Figure 2. Top panel: bifurcation diagram associated with the leverage λt for the analytical mapping
of Eq. 4.2 as a function of the memory parameter ω. Bottom panel: the largest Lyapunov exponent Λ
associated with the bifurcation diagram. Λ is obtained numerically via the method of the orbits
[Wolf et al., 1985].

Note that the unit of ω in Figure 2 is the inverse of the time scale of the portfolio decisions, see Eq.
2.16. By using as unit the time scale of portfolio rebalancing, the time scale becomes ω̃ = ω

1
n . For

example, if banks rebalance their portfolios at daily frequency but the portfolio decisions are taken once
a month, a memory parameter ω̃ = 0.97 at the daily time scale corresponds to an effective memory of
τ ≈ 33 days. The corresponding value of the memory parameter at the monthly time scale is ω ≈ 0.4.
Thus small values of ω, which in the bifurcation diagram corresponds to cycles or chaos, are associated
with values of ω̃ close to 1.

One can understand the behavior in Figure 2 by considering that, when memory is large enough, banks
learn from past history and, at least in the long-run, they make exact forecasts of future risks. Thus large
memory stabilizes the financial system and leverage and diversification reach a fixed point equilibrium.
When ω decreases below a given threshold, risk expectations with smaller memory break the fixed point
equilibrium by inducing cycles of period two. Indeed, a shorter memory has the potential of creating
panic-induced fall in portfolio holdings reflecting sudden decrease in leverage and diversification. When
the adopted financial leverage and the overlap between banks’ portfolios are high, the price impact of the
portfolio rebalancing increases significantly the observed risks. Small memory in risk expectations tends
to overestimate future risks and as a consequence banks reduce suddenly their positions. Hence, leverage
and diversification suddenly decrease. The opposite situation occurs when leverage and diversification are
small due to previously overestimated risk. The 2-period cycle is characterized by a mismatch between
the expectation and the realization of portfolio volatility and leverage cycles reflect the mismatch between
the banks’ perceived risk and the ‘true’ risk.

When the memory decreases further, our model predicts cycles of larger periods and, eventually, a
chaotic dynamics. Notice that the amplitude of both periodic and chaotic leverage cycles increases by
decreasing ω. When ω > ω∗, λ oscillate within [1, γ + 1) and the covariance stationarity of the return
is guaranteed, while when ω < ω∗ the process becomes non stationary. Hence, ω∗ corresponds to a
transition from stationarity to non stationarity for the model dynamics. In the left panel of Figure 3,
we show the contour map of ω∗ as a function of the square root of the idiosyncratic variance

√
Σε and

the total number of investments M . The larger is
√

Σε, the smaller is the value of ω∗: this means that
larger exogenous risk reduces the value of the financial leverage because of the Value-at-Risk constraint
and, as a consequence, the feedback effects of leverage targeting. More surprisingly, the value of ω∗

11



√

Σǫ

0.025 0.026 0.027 0.028 0.029 0.03 0.031

M

20

30

40

50

60

70

80

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

ω

10
-3

10
-2

10
-1

e
ig

e
n
v
a
lu

e
s

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

ω
2

Figure 3. Left panel: contour map of ω∗ (i.e. the value of the memory parameter ω at which
the transition to non stationarity occurs) as a function of idiosyncratic risk

√
Σε and the number of

investments M . Here the exogenous systematic variance Σf = 0 and the other parameters are specified
as in Table 1. Right panel: eigenvalues of the Jacobian for the map of Eq. 4.2 as a function of the
memory parameter ω (the value of the other parameters are specified as in Table 1).

increases with M , that is introducing financial innovations and new instruments requires investors with
larger memory in forming risk expectations to keep the system in stationary equilibrium.

4.2. Bifurcation analysis. The breaking of fixed point equilibrium occurs by a period-doubling bifur-
cation or flip bifurcation (see for example [Crawford, 1991]). In the case of ω as bifurcation parameter, we
refer to the value of the memory parameter for which the period-doubling bifurcation occurs as ω2. The
type of bifurcation can be analyzed by studying the Jacobian associated with the map of Eq. 4.2. The
map describes a three-dimensional dynamical system but one eigenvalue of the Jacobian is identically
null, suggesting that the two equations associated with the process of expectation formation in Eq. 4.2
are not independent at the first order in the expansion. The positive eigenvalue describes the eigenspace
associated with the independent component of these equations. The dynamics in this eigenspace is char-
acterized by a fixed point, since the corresponding eigenvalue is inside the unit circle for all ω. The
third eigenvalue is instead negative. The right panel of Figure 3 shows the non vanishing eigenvalues of
the Jacobian as a function of ω. When the negative eigenvalue hits the critical value −1 for ω = ω2,
a period-doubling bifurcation occurs. After that, the attractor for the dynamics is not the fixed point
anymore and a new solution appears describing the 2-period cycles. The new solution is the fixed point
for the map of Eq. 4.2 iterated twice. In a self-similar way, the period-doubling bifurcation repeats again
but for the iterated map giving rise to the period-doubling cascade to chaos. The phenomenon is very
general, was noticed for the first time by studying the logistic map [May, 1976] and was described in
[Feigenbaum, 1978].

We also study the stability properties of the financial system by analyzing the value of ω2 as a
function of the other model parameters. In the top left panel of Figure 4, we show the relation between
the value ω2 and the liquidity parameter γ. The larger is the market liquidity of risky investments,
the less important are the effects related to the expectation feedbacks. Hence, the larger is the market
liquidity, the more stable is the dynamics of the financial system. Intuitively, when the price impact of the
portfolio rebalancing to target the financial leverage does not affect significantly the investment prices,
then volatility and portfolios do not fluctuate much. Liquid markets are more stable because endogenous
impact of market players’ strategy affects less the risk [Danielsson et al., 2012a, Danielsson et al., 2012b].
Finally notice that, since the transition values, such as ω2, depend on liquidity, an abrupt change in
liquidity can drive the market from a stable to an unstable regime. In the top right panel of Figure 4,
we show the relation between α and ω2. The decreasing behavior indicates that when Value-at-Risk is
less stringent, the financial market becomes dynamically stable if the memory used by agents to build
expectations is longer.

In the bottom panels of Figure 4 we show the fixed point analysis of the analytical mapping in Eq.
4.2 in the neighbourhood of the first bifurcation point. We compare the case of adaptive expectations
of risk described in Eq. 2.15 with naive expectations, i.e. the case of zero memory (ω = 0 in Eq. 2.15).
The bottom left panel shows the stable points of the map (black dots) for the variable λ when memory is
different from zero, i.e. the fixed point of the map in Eq. 4.2 or the periodic orbit that is the fixed point
for the map iterated twice. When the bifurcation parameter α decreases below the threshold determining
the period-doubling bifurcation, the new solution for the map iterated twice appears and the fixed point

12



γ

80 90 100 110 120 130

ω
2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

α

1 1.2 1.4 1.6 1.8 2

ω
2

0

0.05

0.1

0.15

0.2

0.25

α

1.5 1.51 1.52 1.53 1.54 1.55

λ
*

0

10

20

30

40

50

60

70

80

90

100

α

1.5 1.51 1.52 1.53 1.54 1.55

λ
*

0

10

20

30

40

50

60

70

80

90

100

ω=0
ω=10

-3

Figure 4. Top panels: ω2, i.e. the value of the memory parameter ω corresponding to the first
period-doubling bifurcation, as a function of market liquidity of assets γ (left) and quantile α of the
V aR (right). Bottom panels: fixed point analysis of the analytical mapping in Eq. 4.2. Black dots
represent attractive stable points (fixed points or stable cycles of period 2), while red dots represent
unstable fixed points. Bottom left panel: adaptive expectations with non zero memory (ω = 10−3).
Bottom right panel: naive expectations characterized by zero memory (ω = 0).

of the map becomes unstable (red dots). This behavior holds for any ω different from zero. The bottom
right panel of Figure 4 shows the case of naive expectations of risk. At the bifurcation point, no solutions
for the map iterated twice exist. However, the fixed point is not attractive anymore. In this case, the
dynamics of the system is cyclical but characterized by an amplitude increasing in time12. Hence, when
financial agents behave naively in risk forecasting, the breaking of fixed point equilibrium corresponds
to a transition from stationary to non stationary dynamics for the financial system.

Finally, we focus on the 2D-bifurcation analysis of the model, namely the bifurcation diagram when
two parameters are varied. The 2D-bifurcation diagrams in the (ω, α) and (ω, c) planes are shown in
Figure 5. Results confirm that the dynamics of the model is described by period-doubling bifurcations
leading to chaos, whatever it is the bifurcation parameter. This is further confirmed in Figure 6. However,
it is interesting to notice that numerical simulations suggest the existence of two separate regions in the
parameter space according to a threshold for α (or c) above which the period-doubling cascade to chaos
does not occur. That is, the system is asymptotically in the fixed-point equilibrium independently from
the memory of risk expectations. We investigate analytically this behavior in the reduced version of the
model in Subsection 4.4.

4.3. Policy implications. From the point of view of financial policy, our results can be summarized as
follows.

• Decreasing the parameter of the VaR, thus allowing a less stringent capital constraint, makes
financial system more unstable. For example, in the described financial system characterized by

12Clearly, the map of Eq. 4.2 makes sense as long as the variables are in the domain.
13



Figure 5. 2D-bifurcation analysis for the leverage λ in the (ω, α) (left) and (ω, c) (right) plane.
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Figure 6. Left panel: bifurcation diagram associated with the leverage λt for the analytical mapping
4.2 as a function of VaR parameter α. Right panel: bifurcation diagram for the diversification mt as
a function of the cost of diversification c. In both panels, the value of the memory parameter ω is set
equal to 0.1..

an average investment volatility of 3% in the holding period of the portfolio, diversification costs
about 10% of the equity value and a memory in risk expectations equal to ω = 0.1, relaxing the
probability of loss PV aR from 5% to 6% (α = 1.64 → 1.5) breaks the fixed point equilibrium
inducing leverage cycles. Furthermore, allowing probability of loss associated with Value-at-Risk
of about 7− 8% leads the financial system towards chaotic evolution, see the left panel of Figure
6.

• Decreasing the cost of diversification tends to increase the dynamical instability of the financial
system because of increased coordination of feedback effects due to similarity of bank portfo-
lios. A similar effect is obtained by introducing new financial instruments which increase the
number of available asset investments M . This behavior has been investigated in the recent
literature, e.g. [Wagner, 2008, Brock et al., 2009, Ibragimov et al.,2011], and in the context of
[Corsi et al., 2016] the authors have proved the existence of a region of instability. Specifically,
there exists a stationarity condition for the dynamics of asset returns which defines the maximal
value of the financial leverage, above which the return dynamics governed by portfolio decisions of
banks becomes non stationary and characterized by steep growths (bubbles) and plunges (bursts)
of market prices. However, in [Corsi et al., 2016] the focus is on how financial innovations (mod-
eled by a reduction of c) feed on the price dynamics and, in particular, on the endogenous risk
of assets, without considering how risk expectations change consequently. Here, we study how
increased endogenous risks feed back on risk expectations of financial institutions, and therefore
on portfolio decisions. In particular, we point out that financial innovations can destabilize the
dynamics of portfolio decisions by breaking the fixed-point equilibrium into cycles of increasing
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complexity, eventually leading to a chaotic dynamics of leverage and diversification13, see Figure
6.

• Imposing that financial institutions operate in the market to adopt larger memory in their ex-
pectation schemes for risk forecasting has always a stabilizing effect on market stability. Not
surprisingly, increasing ω means to take into account more information about the system, con-
verging asymptotically to the fixed-point equilibrium. On the contrary, short memory means
overreactions to risk news, especially in the presence of positive feedbacks, which deviate the
system from the equilibrium state. Thus, our analysis suggests that an appropriate financial
policy is necessary to promote a systemic behavior which prefers smooth adjustments driven by
more information to overreactions driven by news14.

Our finding regarding the role of expectations in systemic stability of a financial system
shows similar features with the concepts of equilibrium introduced for nonlinear economic mod-
els [Brock and Hommes, 1997, Hommes and Sorger, 1998, Hommes et al., 2005] where particular
attention is devoted to the problem of asset pricing equilibrium. One of the main findings of these
works concerns the stability of the steady state depending on how much information lies in the ex-
pectations of agents. For instance, in [Brock and Hommes, 1997] the concept of adaptively ratio-
nal equilibrium has been introduced and the authors have studied the stability of the steady state
of a financial system where agents can choose among a finite set of expectations schemes which
weight differently the past observations. In the context of asset pricing models, several exper-
imental studies [Hommes et al., 2008, Heemeijer et al., 2009, Bao et al., 2012, Bao et al., 2013]
have highlighted that expectation feedbacks can have a large impact on whether the market can
reach a steady state and, in fact, trend following strategies may drive the system far away from
equilibrium by amplifying random deviations of price (news) when recent observations are over-
weighted. The role of the memory in the formation of expectations has been investigated in other
works [Chiarella and He, 2003, Hommes et al., 2012] where some conditions for convergence to
the steady state have been established.

These results are in line with what we observe in our model, namely adaptive expectations
with large memory of past observations tend to stabilize the system because they have more
information on system dynamics, resulting in lower prediction errors, at least in the long-run.

4.4. One dimensional analysis. The dynamics of the reduced model in the limit n→∞ is governed
by the following one dimensional map for λt,

λt = f(λt−1;ω, α, γ,Σε) =

ω 1

λ2
t−1

+ (1− ω) α2

(
1 + 2

λt−1 − 1

γ − λt−1 + 1

)
Σε

1−
(
λt−1−1

γ

)2


− 1

2

, (4.3)

where λ ∈ [1, γ+1) and Σε = limn→∞ nσ2
ε is the variance of the idiosyncratic noise at the slow time scale

of portfolio decisions, see Eq. 2.19. In Appendix A, we show how to compute analytically the variance of
the aggregated return

∑n
q=1 rt−1+q/n in the limit n→∞ to obtain Eq. 4.3. The map f in explicit form

provides valuable analytical insights into the dynamical behavior of the system. The fixed point of the
map, i.e. λ∗ = f(λ∗;ω, α, γ,Σε), corresponds to the asymptotic equilibrium when f ′(λ∗;ω, α, γ,Σε) lies
inside the unit circle. When f ′(λ∗;ω, α, γ,Σε) hits the value −1, the period-doubling bifurcation occurs.
The left plot of Figure 7 shows the shape of the map, under the linear transformation x ≡ λ−1

γ , as a
function of ω. Notice that the value of the fixed point does not depend on ω and the maximum of the
map is a decreasing function of ω. Furthermore, the value ω∗ at which the transition to non stationarity
occurs corresponds to the value of ω at which the maximum of f is equal to γ + 1 (or the unit value
when we rescale the invariant interval of the map as in Figure 7).

It is interesting to notice that the complex behavior of the period-doubling cascade to chaos may occur
when the exogenous variance of the idiosyncratic noise is below a threshold value. In the right panel of

13Comparing the outputs of the two models for the same set of parameters one finds that: (i) for large c both models
converge to an equilibrium, (ii) for small values of c the model of [Corsi et al., 2016] is non stationary, while our model
can exhibit periodic or chaotic behavior, in line with the idea that memory delays the transition to the non stationary
phase. Interestingly, there is an intermediate range of c in which our model exhibits a 2-periodic orbit, whereas the model
of [Corsi et al., 2016] has a stationary equilibrium (although at a higher leverage level).

14Regarding the capital requirements for banks’ exposure to market in terms of Value-at-Risk estimations, the Basel
III regulatory framework [Bis.org, 2016] establishes banks are allowed to develop their own internal VaR models, subject
to supervisory approval, but the observation period to be considered in the weighting scheme for historical data must be
at least one year. In the asymptotic limit we consider, τ = 1 year corresponds to ω = 1/e ≈ 0.37, see Eq. 2.16.
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Figure 7. Left panel: shape of the one dimensional map in Eq. 4.3 with domain rescaled to unitary
interval, i.e. we consider the linear transformation x ≡ λ−1

γ
where λ is the financial leverage and γ is

the liquidity parameter. The other parameters in Eq. 4.3 are: α = 1.64 (VaR parameter), γ = 100,√
Σε = 0.005 (exogenous idiosyncratic risk). Right panel: the value of the memory parameter at which

the first period-doubling bifurcation occurs, i.e. ω2 (red line), and the value at which the transition to
non stationarity occurs, i.e. ω∗ (blue line), as a function of

√
Σε. The other parameters are α = 1.64

and γ = 100.

Figure 7 we show ω2 and ω∗ as a function of
√

Σε. When we approach the threshold (black dotted line),
ω2 and ω∗ tend to coincide and both values become arbitrarily low. Above the threshold, no breaking
of the fixed point equilibrium occurs. The curves describing ω2, ω∗, and the threshold partition the
parameter space in regions characterized by specific dynamical properties.

5. Two generic time scales

The results of Section 4 are obtained in the asymptotic limit n → ∞ corresponding to a situation
where financial institutions are continuously marked-to-market in their capital structure. In reality, there
are several types of frictions in trading operations which prevent continuous marking-to-market. It is
interesting to investigate how the results obtained via the dynamical systems approach change when n
is finite. From a policy perspective this corresponds to investigate the role of frictions (e.g. transaction
taxes) on the stability of the financial system.

5.1. Perturbation analysis. For large but finite n, the estimator Σ̂t of the covariance matrix fluctuates
around the covariance matrix Σ̃. These fluctuations in risk estimation affect portfolio decisions about
leverage and diversification and, as a consequence, also the dynamics of the financial system. Here, we
want investigate how much fluctuations in risk estimations affect the deterministic skeleton of financial
system. In the following, we present an analytical argument to answer this question. Then, in Subsection
5.2 we justify it by comparing the analytical results with Monte Carlo simulations of the reduced version
of the model.

The asset return dynamics is governed by the VAR process of Eq. 2.18. By estimating the autore-
gressive process between t − 1 and t when n is finite, financial institutions can obtain the exogenous
components of the VAR (1) process, i.e. the residuals {εi,s, fs}i=1,...,M

s=t−1+k/n, k=1,2,...,n
15. The estimator of

the idiosyncratic and systematic risks at the time scale of portfolio rebalancing is the realized variance
of the residuals,

σ̂2
ε =

1

n− 1

n∑
k=1

ε2i,t−1+k/n ∀i = 1, ...,M , σ̂2
f =

1

n− 1

n∑
k=1

f2
t−1+k/n. (5.1)

Since by assumption residuals are i.i.d. and normal, the quantities (n−1)σ̂2
ε /σ

2
ε and (n−1)σ̂2

f/σ
2
f follow

a chi-squared distribution χ2
n−1 with n− 1 degrees of freedom, and the 90% confidence interval of σ̂2

ε,f is

δσ̂2
ε,f ≡

σ2
ε,f

n− 1
[(χ2

n−1)−1(0.95)− (χ2
n−1)−1(0.05)]. (5.2)

15From a mathematical point of view, the process 2.18 is equivalent to the process for the endogenous components of
returns, see Equation 2.11. As shown in [Corsi et al., 2016], it can be decomposed in M + 1 independent AR(1) process.
The residuals of Eq. 2.18 are simply linear combinations of the residuals associated with the M + 1 AR(1) processes.
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Figure 8. Bifurcation diagram of the leverage as a function of the memory parameter ω and pertur-
bations around the deterministic skeleton of the map 4.2 for different values of n (i.e. how many times
the portfolio is rebalanced before a new optimization) obtained according to the perturbation analysis
described in Subsection 5.1.

We use this confidence interval as a measure of the fluctuations in risk estimation. Let us notice that it
goes to zero when n goes to infinity, as numerically confirmed in the simulation of the model. Fluctuations
in the estimation of the covariance matrix in Eq. 4.1 are obtained according to formulas in Appendix A,
see Eqs. A.5, A.6, A.1616.

Portfolio decisions are directly affected by fluctuations in risk estimation. Through the analytical
mapping of Eq. 4.2 and by using Σε ≡ nσ2

ε and Σf ≡ nσ2
f , we obtain the range of variability of the

leverage as a function of δσ̂2
ε,f . This is the 90% confidence interval of leverage, δλ, with respect to the

skeleton dynamics when n is finite17.
Figure 8 shows the deterministic skeleton and the fluctuations around it when n is finite. When n is

large, the dynamical evolution of the system is very close to its skeleton. By decreasing the value for n,
fluctuations become more and more important. Empirically we observe that δλ is inversely proportional
to n. However, at least for the 2-period cycles, properties of the dynamical model are conserved when n
is of order O(103) or larger.

Notice that the approach presented here cannot be applied to the chaotic dynamics. In dynamical
systems theory, when chaos occurs, it is not possible to describe the system through the linearization
around an equilibrium because there is not anymore a generalized equilibrium point (such as a stable
fixed point or a periodic orbit), see [Eckmann and Ruelle, 1985]. Hence, this analytical argument based
on the perturbation of a generalized equilibrium cannot be applied when the deterministic skeleton is
chaotic.

5.2. Numerical results. In this Subsection we study numerically the model for finite n, i.e. when the
ratio between the slow time scale and the fast one is finite. For tractability, we focus on the reduced
version of the original model by considering one financial institution investing in one risky asset. In the
reduced model, we lose the aspects related to the diversification of the portfolio. In turn, the comparison
of numerical simulations with the theoretical results of the previous Subsection is easily obtained, as it
will be clear below. Finally, this approach via the reduced model focuses more clearly on the role of
n in systemic stability of the financial system. In the numerical simulations, we assume that the bank
correctly perceives the autoregressive dynamics of the asset price and the variance σ̂2

t is obtained by
estimating the AR(1) process on observed returns, see Eq. 2.19. We consider for simplicity the case
of large memory in risk expectations (ω = 0.4) in such a way that the deterministic skeleton is a fixed

16From the point of view of VAR(1) process estimation, model variables λt−1,mt−1 in formulas in Appendix A corre-
spond to parameters of the VAR(1) process, Φt−1 in Equation 2.18. Similarly to the variance of residuals σ̂2

ε and σ̂2
f , in

the ideal process of estimating Φt−1, we obtain in turn the estimator Φ̂t−1 within confidence intervals. For simplicity, we
make mean field approximation by assuming a picked distribution on the real values.

17δλ is obtained by differentiating Eq. 4.2 with respect to λt and σ2
ε,f .
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point equilibrium. The case of 2-period cycles is equivalent from the point of view of the analytical
approximations.
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Figure 9. 90% confidence interval δλ for the leverage λ , see Eq. 5.3, as a function of the number
of intervals n at which the portfolio is rebalanced, for two different values of the memory ω: ω = 0.4

(blue dots) and ω = 0.08 (red dots). Theoretical prevision for ω = 0.4 obtained via Eq. 5.2 in the case
N = M = 1 (reduced model) is represented by the black dots. In the Monte Carlo simulations of the
reduced model, for each value of n we average over 50 seeds to obtain the considered value for δ̂λ and
the error bar represents the standard deviation of the data. The other model parameters are: γ = 100,
α = 1.64, Σε = 0.05, T = 2000.

In Figure 9 we show the fluctuations of the financial leverage δλ as a consequence of the fluctuations
in the estimator of risk. We compare the analytical approximation (black dots) with the result from
Monte Carlo simulations (blue dots). The analytical approximation is obtained via Eq. 5.2 with M = 1

risky investment. Numerically, we obtain δ̂λ in the following way. We simulate the reduced version of
the slow-fast random dynamical system. Then, we collect the data after the initial transient is passed.
Hence we obtain the empirical probability distribution F̂λ associated with a simulated path {λ̂t}t=0,...,T .
Coherently with δλ obtained via the analytical approximation, we determine δ̂λ as the 90% confidence
interval

δ̂λ = F̂−1
λ (0.95)− F̂−1

λ (0.05). (5.3)
The theoretical prediction and the numerical results agree when n > 104.
Discussion: trading costs. In the recent literature on leverage cycles, the possibility of two different
time scales for portfolio decisions and leverage targeting has not been analyzed. We strongly believe that
this aspect deserves more attention since it is directly related to the discussion about the role of taxation
in financial systemic risk [Matheson, 2012, Masciandaro and Passarelli, 2013]. We can interpret n as an
indirect measure of financial transaction taxes (e.g. the Tobin tax) and other trading frictions. Indeed,
n is related to the number of trading operations in the market, because it is equal to the number of
rebalancing operations by a bank to have the balance sheet close to the desired capital structure. Clearly
high transaction taxes decrease the number of operations for a financial institution.

In our analysis, we study how the amplitude of leverage cycles depends on n in the reduced model. In
Figure 9, we show δλ as a function of n. The plot shows the results of Monte Carlo simulations and each
point is obtained by averaging over 50 realizations of the system dynamics with T = 2000. We show
the obtained results for two different values of ω. The case ω = 0.4 is associated with the fixed point
equilibrium in the deterministic skeleton, while the case ω = 0.08 corresponds to the 2-period cycles.
When n � 1 we recover the deterministic skeleton as shown in the previous Section. In this limit, δλ
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tends to zero in the case of fixed point equilibrium because oscillations tend to disappear. When the
deterministic skeleton corresponds to the 2-period cycles, the asymptotic value of δλ corresponds to the
amplitude of the bifurcated 2-period orbit. When n� 1, both simulated and theoretical amplitude of the
leverage cycles tend to coincide, that is a further proof of the consistency of the analytical approximation
introduced previously.

In both cases, we can notice that the amplitude of leverage cycles is a decreasing function of n. The
intuition is that when n is small, leverage oscillations tend to correlate more strongly with the price
movements. Hence, increments in target leverage reflects the increasing of asset size and at the same
time perception of low risks. However, since the bank is not marked-to-market but it has increased
considerably its target leverage, when an exogenous shock for the price occurs, a panic-induced fall in
financial leverage follows. On the contrary, when n is large and the bank is marked-to-market in the
capital structure, the financial system tends to be close to its deterministic skeleton. In the case of fixed
point equilibrium, the leverage cycles tend to disappear because of exact risk previsions, at least in the
long run.

Also when the adopted memory in risk expectations is small and the deterministic skeleton corresponds
to the 2-period orbit, the amplitude of the leverage cycles is smaller for larger n. Furthermore, in this
case the cyclical structure of the dynamics can be easily recognized, e.g. in the autocorrelation functions
of the realized variance. This information can be usefully adopt to improve risk estimations.

Our results suggest that allowing mark-to-market in the capital structure by removing trading frictions
tends to reduce the amplitude of leverage cycles and as a consequence the financial system is closer to
the fixed point equilibrium.

6. Conclusions

In this paper, we study the implications of backward-looking expectations of risk on portfolio decisions
and as a consequence on the stability properties of the financial system. To this end we develop a
model which can be described as a slow-fast random dynamical system. The main characteristics of this
stylized financial market are: (i) financial institutions having capital requirements in the form of the VaR
constraint and following standard mark-to-market and risk management rules; (ii) asset illiquidity; (iii)
indirect contagion of risk mediated by the overlapping of portfolios; (iv) backward-looking expectations
via statistical models of past observations of prices.

In the asymptotic deterministic limit, we are able to study analytically the fixed point equilibrium of
the financial system and how the breaking of systemic stability occurs. The main result of this paper is
the analytical classification of the possible dynamical outcomes for the considered financial system and its
relation with market parameters which are the memory of expectations ω, the probability of Value-at-Risk
defined by α, and the cost of diversification c. We show how the breaking of the fixed point equilibrium for
the financial system occurs via a period-doubling bifurcation which determines the appearing of leverage
cycles. Furthermore, we show that the dynamics of the financial system is chaotic in certain conditions
and, at the best of our knowledge, this paper represents the first analytical proof of the appearing of
chaotic dynamics in this context. Some recent literature, see for example [Aymanns and Farmer, 2015],
has argued the presence of chaotic attractors in models of systemic risk in financial systems by means of
numerical arguments. Then, [Choi and Douady, 2012] proposed a new instability indicator whose goal
is capturing the chaotic dynamics of cash flows among financial institutions during turmoil periods, and
[Castellacci and Choi, 2014] have modeled financial contagion in the Eurozone crisis with a similar aim.

The main goal of this paper is to characterize the policy implications in relation to the dynamical
outcomes of our model. In particular, the results suggest how expectation feedbacks may give rise to
leverage cycles, which can show periodic or chaotic behavior. The period doubling cascade to chaos is
a signal of how much the leverage dynamics might become less and less predictable (and therefore the
assessment of the stability of the financial system becomes harder and harder) when financial innovations
are introduced and/or capital constraints become less stringent. Since the observed dynamics concerns
the portfolio variables, our model suggests that the relevant time scale is the slow one, corresponding in
the real world to the time horizon of portfolios. Hence, in order to capture empirical evidences of the
dynamical effects described here, the ideal dataset should contain complete information on the evolution
of portfolios of financial institutions, including also how many times the portfolio is rebalanced in the
holding period. Having information on when institutions take new decisions depending on their expecta-
tions (slow time scale) and on how fast they rebalance the portfolio (fast time scale), the implementation
of the slow-fast random dynamical model predicts the dynamics of the system and some characteristics
that, in principle, we can observe, e.g. the Lyapunov exponent associated with the orbits of the financial
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leverage. However, this is beyond the scope of this paper. Furthermore, it is important to notice that
the detection of signals of chaotic dynamics is a very hard task when random sources are present, see
[Guegan, 2009] for a discussion.

We study the dynamical outcomes of the model in order to answer the following questions, within this
model:

(1) How do the system’s stability properties depend on expectations of risk formed by banks? Our
answer is that, all else being equal, the larger is the memory ω in the process of expectations
formation, the more stable is the financial system dynamics.

(2) How important is the constraint on financial leverage? In our analysis we show that, whatever
is the ratio between the slow time scale and the fast one, there exists a tipping point for the tail
parameter of the Value-at-Risk (α) which defines a ‘transition’ from the fixed point equilibrium
to a region of instability where the system shows periodic or chaotic behavior. Hence, a more
stringent regulation for the financial leverage is always stabilizing for the market.

(3) What are the consequences of introducing new financial instruments? We find that a market
with a larger number of asset investments requires larger memory in forming risk expectations to
be in dynamical equilibrium. Moreover, financial innovations which tend to increase the portfolio
diversification, lead to an increase of the financial leverage. The combined effects of the larger
overlap of banks’ portfolios with the larger price impact of the leverage targeting make the system
more unstable.

(4) What is the role of market frictions from a systemic risk point of view? Decreasing the cost
of diversification, here represented by c, may appear positive from a microscopic point of view
but may lead to increase coordination of feedback effects due to similarity of banks portfolios,
triggering a transition from a stable dynamics to the unstable one. On the contrary, our analysis
suggests that decreasing transaction costs and removing all trading frictions may induce financial
investors to adopt the strategy of being marked-to-market in their capital structure, i.e. large
values for the control parameter n. Within our model, this represents the control strategy of the
balance sheet which has the consequence of reducing the amplitude of the cycles of leverage.

Finally, we believe that several research questions can be addressed inside the framework we introduced
and will lead to further developments of this work. Among other aspects, we believe that the following
points deserve attention for future outlooks:

(1) the experimental work of [Hommes, 2011] supports the view that heterogeneity is a crucial aspect
of a theory of expectations, first of all because of empirical evidences about different behaviors of
agents in the market. Here, we have assumed adaptive risk expectations with a given memory that
is equal for all banks, i.e. the ‘agents’ of our model. The introduction of different time horizons
in the process of risk expectations formation will represent a first step towards heterogeneity
of expectations. Furthermore, banks might use different heuristics to form their expectations of
risk, such as scenario generation based on historical data or stress-testing on macro factors. More
research in this area is called for to define the conditions for systemic stability as macro-outcome
of the interaction of heterogenous expectations at the micro-level;

(2) another open question is to relax the homogeneity assumptions regarding bank sizes and invest-
ment assets. As already pointed out by [Corsi et al., 2016], bank size heterogeneity does not
affect importantly the dynamics of asset returns, in particular bank size distribution is irrelevant
in determining the largest eigenvalue governing the vector autoregressive process which describes
the asset returns. As a consequence, bank size heterogeneity would not change significantly the
results about the dynamics of portfolio decisions. What is more challenging concerns heterogene-
ity of investments, i.e. a financial system with different asset classes characterized by different
risk and liquidity. Since portfolio decisions drive endogenously the market evolution, fire sales
by an institution may increase the risk perception of investments which were previously char-
acterized by lower levels of risk. Thus, expectation feedbacks amplify further this perception,
contributing to decrease liquidity of these investments in favour of others. Hence, expectation
feedbacks would give rise endogenously to flight-to-liquidity.

(3) the Basel III regulation has established several risk measures to be adopted in risk management
by financial institutions. Some measures, e.g. , have been proposed to overcome the problem
of procyclicality of the Value-at-Risk. Hence, different measures of risk can be implemented as
constraints of the portfolio optimization problem and the role of expectation feedbacks in relation
to each measure can be assessed.
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Appendix A. Covariance matrix of VAR(1) process at the slow time scale

In this Section we show how to find the maximum likelihood estimators of the (diversifiable) variance
and covariance of the VAR(1) process in Eq. 2.17 and how to compute analytically the covariance matrix
in Eq. 4.1. However, before considering the multivariate VAR(1) process, let us focus on the univariate
AR(1) process of the reduced model for which the computation of the variance represents a simpler
problem which could shed light on the subsequent multivariate case.
Variance of the AR(1) process at the slow time scale. Let us consider the process AR(1) in Eq.
2.19, i.e.

rs = εs + φ rs−1/n, s = t− 1 + k/n, k = 1, 2, ..., n , (A.1)
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where εs ∼ N (0, σ2
ε ), ∀s, |φ| < 1 for the assumption of covariance stationarity and starting point rt−1.

The variance of the variable rs is V ar[rs] = E[r2
s ] =

σ2
ε

1−φ2 , see [Tsay, 2005]. The variance of the process
aggregated between t− 1 and t, i.e. V ar[

∑n
k=1 rt−1+k/n], is

E

( n∑
k=1

rt−1+k/n

)2
 = nE[r2

s ] + 2

(
n

n∑
k=1

E[rsrs−k/n]−
n∑
k=1

kE[rsrs−k/n]

)
, (A.2)

where we use the assumption of covariance stationarity between t− 1 and t. It is E[rsrs−k/n] = φkE[r2
s ],

∀s = t− 1 + k/n, k = 1, 2, ..., n, by applying recursively Eq. A.1. By exploiting this result, it is
n∑
k=1

E[rsrs−k/n] = E[r2
s ]

n∑
k=1

φk = E[r2
s ]
φ(1− φn)

1− φ , (A.3)

n∑
k=1

kE[rsrs−k/n] = E[r2
s ]

n∑
k=1

kφk = E[r2
s ]

(nφ− n− 1)φn+1 + φ

(1− φ)2
. (A.4)

By substituting Eqs. A.3 and A.4 in Eq. A.2, we obtain the expression for the variance in Eq. 2.19. In
the limit n → ∞, it is φn → 0 and nφn → 0 because of |φ| < 1. Then, the formula for the variance in
Eq. 4.3.
Multivariate case: VAR(1). Let us focus on the VAR(1) process described in Eq. 2.18 where the
endogenous component follows the VAR(1) process of Eq. 2.11. Let us assume n � 1 for analytical
tractability. At the time scale of the portfolio rebalancing, i.e. 1/n, the variance and the covariance
associated with the endogenous component can be computed analytically (see [Corsi et al., 2016]). When
s = t− 1 + k/n, k = 1, 2, ..., n, it is

V ar[ei,s] = − λ̃2

(γ2 − λ̃2)(m2(γ2(M − 1)2 − λ̃2) + 2− λ̃2mM − λ̃2M2)
×

×
(
m2(σ2

ε (λ̃2 − γ2(M − 1)) + σ2
f (λ̃2 − γ2(M − 1)2))+

+ 2m(M(σ2
ε (γ2 − λ̃2)− λ̃2σ2

f )− γ2σ2
ε )+

+M(M(σ2
ε (λ̃2 − γ2) + λ̃2σ2

f ) + γ2σ2
ε )
)
,

(A.5)

Cov[ei,s, ej,s] = − λ̃2

(γ2 − λ̃2)(m2(γ2(M − 1)2 − λ̃2) + 2− λ̃2mM − λ̃2M2)
×

×
(
m2(σ2

f (λ̃2 − γ2(M − 1)2)− γ2(M − 2)σ2
ε )+

−2m(λ̃2Mσ2
f + γ2σ2

ε ) +M(λ̃2Mσ2
f + γ2σ2

ε )
)
,

(A.6)

where we have defined the excess leverage as λ̃ ≡ λ − 1 and for notational simplicity we do not label λ
and m with the time index t− 1. Hence, at the time scale of the portfolio rebalancing the variance and
the covariance of the returns, ri,s18, are

V ar[ri,s] = σ2
ε + σ2

f + V ar[ei,s] ≡ θ0 (A.7)

Cov[ri,s, rj,s] = σ2
f + Cov[ei,s, ej,s] ≡ ψ0, (A.8)

respectively. The variance and the covariance of the returns at the time scale of the portfolio decisions,
i.e. Ri,t ≡

∑n
k=1 ri,t−1+k/n, are

V ar[Ri,t] = E[(Ri,t)
2] = nE[r2

i,s] + 2(n− 1)E[ri,sri,s−1/n] + 2(n− 2)E[ri,sri,s−2/n] + ... ,

Cov[Ri,t, Rj,t] = E[Ri,tRj,t] = nE[ri,srj,s] + 2(n− 1)E[ri,srj,s−1/n] + 2(n− 2)E[ri,srj,s−2/n] + ..., j 6= i,

because of the stationarity of the return dynamics between t− 1 and t. By defining θk ≡ E[ri,sri,s−k/n]
and ψk ≡ E[ri,srj,s−k/n] with j 6= i, the previous formulas read as

V ar[Ri,t] = n θ0 + 2n

n∑
k=1

θk − 2

n∑
k=1

k θk, (A.9)

18For simplicity, we are assuming that the asset returns are centered around the mean.
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Cov[Ri,t, Rj,t] = n ψ0 + 2n

n∑
k=1

ψk − 2

n∑
k=1

k ψk. (A.10)

In a similar fashion of the univariate case, by applying recursively the VAR(1) process in Eq. 2.18 and
by taking expectation, we obtain two systems of equations whose solutions are the analytical expressions
of the terms

∑n
k=1 θk,

∑n
k=1 k θk,

∑n
k=1 ψk and

∑n
k=1 k ψk in Eqs. A.9 and A.10.

For notational simplicity, let us define

ϕ ≡ λ− 1

γ m
, (A.11)

β ≡ λ− 1

γ m
,
m− 1

M − 1
(A.12)

such that the matrix of autoregressive coefficients in Eq. 2.18 reads as Φ = (ϕ− β)I + β1 where I is the
identity matrix and 1 is the matrix whose entries are equal to one.

It is possible to verify that Θ1 ≡
∑n
k=1 θk and Ψ1 ≡

∑n
k=1 ψk are the solutions of the following linear

system of equations,{
(1− ϕ)Θ1 − β(M − 1)Ψ1 = ϕ θ0 + β(M − 1) ψ0

−β Θ1 + (1− (ϕ+ β(M − 2)))Ψ1 = β θ0 + (ϕ+ β(M − 2)) ψ0,
(A.13)

where we have assumed that θn � 1 and ψn � 1 which holds when n� 1, see [Tsay, 2005].
Similarly, Θ2 ≡

∑n
k=1 k θk and Ψ2 ≡

∑n
k=1 k ψq are the solutions of the following linear system of

equations, {
(1− ϕ)Θ2 − β(M − 1)Ψ2 = ϕΘ1 + β(M − 1) Ψ1

−β Θ2 + (1− (ϕ+ β(M − 2)))Ψ2 = β Θ1 + (ϕ+ β(M − 2)) Ψ1,
(A.14)

where we have assumed θn � 1, n θn � 1, ψn � 1 and n ψn � 1 when n� 1.
According to our assumptions about statistical equivalence of risky investments, the covariance matrix

is a matrix whose diagonal entries are equal to each other, i.e. Σ̄d + Σ̄u ≡ V ar[Ri,t] , ∀i, and the same
for the off-diagonal ones, i.e. Σ̄u ≡ Cov[Ri,t, Rj,t] , ∀i 6= j. Hence, for n � 1 the covariance matrix of
the returns in Eq. 2.18 at the time scale of the portfolio decisions is

Σ̄ = Σ̄dI + Σ̄u1, (A.15)

with {
Σ̄d = n

(
(θ0 − ψ0) + 2(Θ1 −Ψ1)− 2

n (Θ2 −Ψ2)
)

Σ̄u = n
(
ψ0 + 2Ψ1 − 2

nΨ2

) , (A.16)

and by substituting the formulas of Eqs. A.5, A.6, A.7 and A.8 in Eq. A.16, the covariance matrix is
obtained explicitly.
Maximum likelihood estimation. In the ideal procedure of estimating the VAR(1) process in Eq.
2.18, i.e.

rs = Φ rs−1/n + εs, s = t− 1 + k/n, k = 1, 2, ..., n, (A.17)

we can obtain the maximum likelihood estimators of Σ̄d and Σ̄u, i.e. Σ̂d and Σ̂u.
In Eq. A.17, εs ∼ N (0,Σε), ∀s = t− 1 + k/n, k = 1, ..., n where Σε = σ2

ε I + σ2
f1 with σε, σf > 0 and

Φ = (ϕ− β)I + β1 with ϕ and β defined in Eqs. A.11 and A.12.
Given the observations between t− 1 and t, the likelihood of the VAR(1) process is

P[rt−1+1/n, rt−1+2/n, ..., rt|rt−1] =

n∏
k=1

P[rt−1+k/n|rt−1+(k−1)/n] =

n∏
k=1

N (Φrt−1+(k−1)/n, Σε),

because the conditional distribution of the returns is multivariate Gaussian. Hence, the log-likelihood is

L(Φ,Σε) = −n
2

log |Σε| −
1

2

n∑
k=1

(rt−1+k/n −Φ rt−1+(k−1)/n)ᵀΣ−1
ε (rt−1+k/n −Φ rt−1+(k−1)/n) (A.18)
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and the maximum likelihood estimators of parameters, i.e. ϕ̂, β̂, σ̂2
ε and σ̂2

f , can be obtained as solution
of the following system of equations 

∂L(ϕ,β,σε,σf )
∂ϕ = 0

∂L(ϕ,β,σε,σf )
∂β = 0

∂L(ϕ,β,σε,σf )
∂σε

= 0
∂L(ϕ,β,σε,σf )

∂σf
= 0.

Let us notice that the maximum likelihood estimators of parameters are only functions of the observed
fast variables {rt−1+k/n}k=0,1,2,...,n, i.e. ϕ̂ ≡ ϕ̂({rt−1+k/n}k=0,1,2,...,n), β̂ ≡ β̂({rt−1+k/n}k=0,1,2,...,n),
σ̂ε ≡ σ̂ε({rt−1+k/n}k=0,1,2,...,n) and σ̂f ≡ σ̂f ({rt−1+k/n}k=0,1,2,...,n).

Then, according to the following standard result of time series analysis, see [Tsay, 2005],

(θ̂0 − ψ̂0)I + ψ̂01 ≡
∞∑
k=0

Φ̂kΣ̂ε(Φ̂
k)ᵀ,

where Σ̂ε = σ̂2
ε I+ σ̂2

f1 and Φ̂ = (ϕ̂− β̂)I+ β̂1, we are able to compute the maximum likelihood estimators
of the variance and covariance at the fast time scale, i.e. θ̂0 ≡ V̂ ar[ri,s] and ψ̂0 ≡ Ĉov[ri,s, rj,s] with
j 6= i. Hence, by computing Θ̂1 ≡ Θ1(θ̂0, ψ̂0, ϕ̂, β̂), Ψ̂1 ≡ Ψ1(θ̂0, ψ̂0, ϕ̂, β̂), Θ̂2 ≡ Θ2(θ̂0, ψ̂0, ϕ̂, β̂) and
Ψ̂2 ≡ Ψ2(θ̂0, ψ̂0, ϕ̂, β̂), the maximum likelihood estimators of the (diversifiable) variance and covariance
of the return dynamics in Eq. A.17 aggregated at the slow time scale areΣ̂d = n

(
(θ̂0 − ψ̂0) + 2(Θ̂1 − Ψ̂1)− 2

n (Θ̂2 − Ψ̂2)
)

Σ̂u = n
(
ψ̂0 + 2Ψ̂1 − 2

n Ψ̂2

)
.

(A.19)

Asymptotic limit n → ∞. In the limit n → ∞ the last terms in Eq. A.16 are negligible. However,
the terms n ((θ0 − ψ0) + 2(Θ1 −Ψ1)) and n (ψ0 + 2Ψ1) remain finite when n goes to infinity because of
finite Σε = limn→∞ nσ2

ε and Σf = limn→∞ nσ2
f .

By defining

Θ0 ≡ Σε+Σf−
λ̃2

(
m2(Σε(λ̃

2 − γ2(M − 1)) + Σf (λ̃2 − γ2(M − 1)2)) + 2m(M(Σε(γ
2 − λ̃2)− λ̃2Σf )− γ2Σε) +M(M(Σε(λ̃

2 − γ2) + λ̃2Σf ) + γ2Σε)
)

(γ2 − λ̃2)(m2(γ2(M − 1)2 − λ̃2) + 2− λ̃2mM − λ̃2M2)
,

(A.20)

Ψ0 ≡ Σf −
λ̃2

(
m2(Σf (λ̃2 − γ2(M − 1)2)− γ2(M − 2)Σε)− 2m(λ̃2MΣf + γ2Σε) +M(λ̃2MΣf + γ2Σε)

)
(γ2 − λ̃2)(m2(γ2(M − 1)2 − λ̃2) + 2− λ̃2mM − λ̃2M2)

, (A.21)

in the asymptotic limit n→∞, it is{
Σ̃d = Θ0 −Ψ0 + 2 (ϕβ(M−2)+ϕ2−ϕ−β2(M−1))(Θ0−Ψ0)+βΘ0+β(M−1)Ψ0−(M−2)Ψ0

(1+β−ϕ)(β(M−1)+ϕ−1)

Σ̃u = Ψ0 + 2−βΘ0+(ϕβ(M−2)+ϕ2−ϕ−β2(M−1)+ϕβ(M−2))Ψ0

(1+β−ϕ)(β(M−1)+ϕ−1) .
(A.22)

Hence, by substituting Eqs. A.20 and A.21 in Eq. A.22 and since λ̃ ≡ λ̃t−1,mt−1 ≡ mt−1(λt−1,Σd,t−1,Σu,t−1)

according to Eq. 2.5, we obtain the explicit analytical expressions for Σ̃d and Σ̃u in Eq. 4.1.

Appendix B. Single time scale

Here we consider the case n = 1 for the reduced model, i.e. bank updates the risk expectation at the
same frequency of portfolio rebalancing. When the time scales are the same, the process of expectation
formation reduces to model the variance as in IGARCH-type models [Engle and Bollerslev, 1986],

σ2
t = ωσ2

t−1 + (1− ω)r2
t , (B.1)

with memory parameter ω.
This approach is similar to the RiskMetrics one, see [Longerstaey and Spencer, 1996], and, as high-

lighted by [Bauwens et al., 2006], despite the simplicity, this kind of model is usually adopted by prac-
titioners with a decay factor ω equal to 0.94 for daily data and 0.97 for monthly data.

The model specified by Eqs. 2.19 with Eq. B.1 as process of expectation formation is close to the one
presented in [Aymanns and Farmer, 2015] which differs for the price dynamics. Aymanns and Farmer
assume that the equity value is fixed and there is only one investor in the market, thus it is At ≡ pt = λtE
with pt the price of the traded risky investment19. Given the log return rt = log pt

pt−1
and by substituting

19Here, the number of shares is normalized to one.
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Figure 10. Numerical simulation of reduced model with n = 1, i.e. both the fast and the slow time
scales coincide. Top panel: evolution of asset size normalized by the initial value A0. Middle panel:
evolution of equity. Bottom panel: dynamics for the financial leverage. We simulate the model in a
time window T = 300. The other model parameters are: γ = 40 (liquidity parameter), α = 1.64 (VaR
parameter), µ− rL = 0.08 (net interest margin), σε = 0.04 (idiosyncratic volatility), ω = 0.9 (memory).

the price with λtE, a two-dimensional dynamical system is obtained. With this further assumption, the
two models coincide.

Figure 10 shows the simulated dynamics of bank asset, equity and financial leverage of the reduced
model with n = 1. We notice that fluctuations in the value of target leverage are strongly correlated with
fluctuations of the equity value. The changes in the equity value reflects the price movements. Asset
size evolves in such a way to have financial leverage equal to its targeting value. Hence, boom and bust
of the price are driven by leverage cycles which in turn are determined by risk perceptions.

As indicator of dynamical instabilities of the financial system we consider an adimensional measure
of the amplitude of leverage cycles, specifically the standard deviation σλ of target leverage in model
simulations divided by its mean µλ.

In Figure 11 we show the normalized amplitude of leverage oscillations as a function of the VaR
parameter α and of the memory parameter ω. As expected, stringent capital constraints (large α) and
large memory in forecasting risk (large ω) stabilize the dynamics of the financial system. Therefore,
increasing α and ω is followed by smaller leverage oscillations and as a consequence the dynamics of
financial system is close to the fixed point equilibrium. The parameter space for α and ω can be
approximately divided in two regions. A region of instability for small value of α where strong oscillations
occur independently on the memory of risk expectations and a relatively stable region for large α in which
the coefficient σλ

µλ
is smaller. In this region, larger memory tends to stabilize the system. Finally, let

us notice that in the unstable region oscillations in financial leverage disappear for ω → 1−. We do
not fully understand why we observe this but we suppose the reason being the very high inertia in risk
expectations which turns off the leverage oscillations.
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Figure 11. The amplitude of leverage cycles as a function of the parameter of the Value-at-Risk α
and of the memory parameter ω. As measure of the amplitude of leverage cycles we use the standard
deviation of data, σλ, divided by the mean µλ. We run the reduced model for T = 1000 with idiosyn-
cratic risk σ2

ε = 0.05 and liquidity parameter γ = 40 by varying α ∈ [1, 3] and ω ∈ (0, 1). For each point
(ω, α) in the plot, we average over 50 seeds to obtain the considered value for σλ

µλ
.
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