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“It’s time to try. Defying gravity.

I think I’ll try. Defying gravity.

And you can’t pull me down!”

— Gregory Maguire

‘Wicked: The Life and Times of the Wicked Witch of the West’

1 Introduction

The Einstein’s theory of gravity is known to be rigid. Variety of modifications has been

challenged with diverse motivations, yet no concrete result of success has been reported

so far (for related readings, see e.g. [1–6] and references therein). Recently, two situations

defying the rigidity of Einstein gravity were actively explored. One is the massive modifica-

tion of gravity [7–10], along with numerous variants in three dimensions [11, 12]. Another

is higher-derivative modifications of the gravity [13, 14].
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In this work, we investigate the modification of Einstein gravity to a multi-graviton

theory: the color decoration. In spite of previous negative results [15–18], certain models

of colored gravity can be consistently constructed by introducing other field contents than

massless spin-two fields only. Moreover, the color-decoration we study is not limited to the

Einstein gravity and can be applied to various extensions of it. In particular, all higher-

spin theories formulated in [19–21] can be straightforwardly color-decorated, whose first

steps were conceived in [22–26]. In the companion paper [27], we study a three-dimensional

color-decorated higher-spin gravity.

The color decoration of gravity evokes various conceptual issues. Clearly, the colored

gravity is analogous to Yang-Mills theory were if the Einstein gravity compared to Maxwell

theory. Besides the presence of multiple gauge bosons in the system, the Yang-Mills theory

as color-decorated Maxwell theory has far-reaching consequences that are not shared by the

Maxwell theory.1 Likewise, we anticipate that color-decorated gravity brings out surprising

new features one could not simply guess on a first look. In this paper, we define and

study a version of the color-decorated Einstein gravity in three dimensions, and uncover

remarkable new features not shared by the Einstein gravity itself. Most interestingly, we

will find that this color-decorated gravity admits a number of (A)dS backgrounds with

different cosmological constants as classical vacua.

In anaylzing our model of three-dimensional color-decorated gravity, we shall make

use of both the Chern-Simons formulation [28, 29] and the metric formulation. Various

features of the theory are more transparent in one formulation over the other. For instance,

the existence of multiple (A)dS vacua with different cosmological constants can be under-

stood more intuitively in the metric formulation, whereas consistency of the theory is more

manifest in the Chern-Simons formulation. The latter makes use of the gauge algebra,

g = (gl2 ⊕ gl2)⊗ u(N) , (1.1)

where the u(N) and gl2 ⊕ gl2 correspond respectively to the color gauge algebra and the

extended isometry algebra governing the gravitational dynamics. We stress that, compared

to the usual gravity with sl2 ⊕ sl2 gauge algebra, the color-decorated gravity has two

additional identity generators from each of gl2. They are indispensable for the consistency

of color decoration and correspond to two additional Chern-Simons gauge fields on top of

the graviton. Hence, when colored-decorated, we get a massless spin-two field and two

non-Abelian spin-one fields, both taking adjoint values of u(N). Let us also remark that

compared to the spin-one situation where the Abelian Maxwell theory turns into the non-

Abelian Yang-Mills theory once color-decorated, Einstein gravity is already non-Abelian,

while color decoration enlarges the gauge algebra of the theory.

Re-expressing the theory in metric formulation makes it clear that, among N2 mass-

less spin-two fields, only the singlet one plays the role of genuine graviton, viz. the first

fundamental form, whereas the rest rather behave as colored spinning matter fields with

1The story goes that, during C.N. Yang’s seminar at the Institute for Advanced Study at Princeton in

1953, Wolfgang Pauli commented that he first discovered non-Abelian gauge theory in this manner, but

then immediately dismissed it because vector bosons are massless and hence “unphysical”. We acknowledge

Stanley Deser for straightening us up for details of this history.
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minimal covariant coupling to the gravity as well as to the u(N) gauge fields. We derive the

explicit form of Lagrangian for these colored spinning matter fields and find that they have

a strong self-coupling compared to the gravitational one by the factor of
√
N . Analyzing

the potential of the Lagrangian, we identify all the extrema: there are [N+1
2 ] number of

them and they have different cosmological constants,(
N

N − 2k

)2
Λ , (1.2)

where k = 0, . . . , [N−12 ] is the label of the extrema and Λ is the cosmological constant of

the vacuum with maximum radius (corresponding to k = 0). Note that not only (A)dS

but also any exact gravitational backgrounds such as BTZ black holes [30] lie multiple

times with different cosmological constants (1.2) in the vacua of the colored gravity. All

extrema except the k = 0 vacuum spontaneously break the color symmetry U(N) down to

U(N −k)×U(k). When this symmetry breaking takes place, the corresponding 2 k (N −k)

spin-two Goldstone modes are combined with the gauge fields to become the partially-

massless spin-two fields [31, 32]: the latter spectrum does not have any propagating degrees

of freedom (DoF) similarly to the massless ones. Instead in AdS case, they describe ‘four’

boundary DoF which originate from the boundary modes of the colored massless spin-two

and spin-one fields.

The organization of the paper is as follows. In section 2, we recapitulate the no-go

theorem of interacting theory of multiple massless spin-two fields. In section 3, we define

the color-decorated (A)dS3 gravity in Chern-Simons formulation, and discuss how this

theory evades the no-go theorem. In section 4, we recast the Chern-Simons action into

metric formulation by solving torsion condition and obtain the Lagrangian for the colored

massless spin-two fields. In section 5, we solve the equations of motion and find a class of

classical vacua with varying degrees of color symmetry breaking. We show that these (A)dS

vacua have different cosmological constants. We explicitly investigate the simplest example

of k = 1 vacuum in N = 3 case. In section 6, we expand the theory around a color non-

singlet vacuum and analyze the field spectrum contents. We demonstrate that the fields

corresponding to the broken part of the color symmetry describe the spectrum of partially-

massless spin-two field. Section 7 contains discussions of our results and outlooks. Finally,

appendix A reviews massive and (partially-)massless spin-two fields in three-dimensions.

2 No-go theorem on multiple spin-two theory

Einstein gravity describes the dynamics of massless spin-two field on a chosen vacuum.

Conversely, it can also be verified that the Einstein gravity is the only interacting theory

of a massless spin-two field (see e.g. [33–37]). In this context, one may ask whether there

exists a non-trivial theory of multiple massless spin two fields. This possibility has been

examined in [15–18], leading to a no-go theorem. We shall begin our discussion by reviewing

this result.2

2See also related discussion in [38, 39].
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The no-go theorem asserts that there is no interacting theory of multiple massless spin-

two fields, without inclusion of other fields. The first point to note in this consideration

is that any gauge-invariant two-derivative cubic interactions among the spin-two fields is

in fact equivalent to that of Einstein-Hilbert (EH) action, modulo color-decorated cubic

coupling constants gIJK :

gIJK

(
hIµρ ∂

ρ hJνλ∂
λhK µν + · · ·

)
. (2.1)

Here, hIµν are the massless spin-two fields with color index I, and the tensor structure inside

of the bracket is that of the EH cubic vertex. For the consistency with the color indices, it

is required that the coupling constants are fully symmetric: gIJK = g(IJK). Moreover, the

gauge invariance requires that these constants define a Lie algebra spanned by the colored

isometry generators. For instance, in the Minkowski spacetime, the colored generators P Iµ
and M I

µν obey

[M I
µν , P

J
ρ ] = 2 gIJK ηρ[ν P

K
µ] , [M I

µν , M
J
ρλ ] = 4 gIJK η[ν[ρM

K
λ]µ] . (2.2)

Relating these colored generators to the usual isometry ones as P Iµ = Pµ ⊗ T I and M I
µν =

Mµν ⊗ T I , one can straightforwardly conclude that the color algebra gc generated by

T I must be commutative and associative [15–17]. Moreover, one can even show that gc
necessarily reduces to a direct sum of one-dimensional ideals [18]: T I T J = 0 for I 6= J .

Therefore, in this set-up, the only possibility is the simple sum of several copies of Einstein

gravity which do not interact with each other.

This no-go theorem can be evaded with a slight generalization of the setup. Firstly, if

the isometry algebra can be consistently extended from a Lie algebra to an associative one,

then the commutativity condition on the color algebra gc can be relaxed. The associative

extension of isometry algebra typically requires to include other spectra, such as spin-

one and possibly higher spins [22–26]. Moreover, it is not necessary to require that the

structure constants gIJK of gc be totally symmetric, but sufficient to assume that the

totally symmetric part is non-vanishing, g(IJK) 6= 0, so that massless spin-two fields have

non-trivial interactions among themselves.

Hence, an interacting theory of multiple massless spin-two fields might be viable once

other fields are added and coupled to them. As the next consistency check, one can

examine the fate of the general covariance in such a theory: if there exists a genuine

metric field among these massless spin-two fields, the others should be subject to interact

covariantly with gravity. Moreover, one can also examine whether the multiple massless

spin two fields can be color-decorated bona fide by carrying non-Abelian charges. In

principle, a theory can be made to covariantly interact with gravity or non-Abelian gauge

field by simply replacing all its derivatives by the covariant ones with respect to both the

diffeomorphism transformation and the non-Abelian gauge transformation. However, as

in the diffeomorphism-covariant interactions of higher-spin fields, such replacements spoil

the gauge invariance of the original system [40, 41]. The problematic term in the gauge

variation is proportional to the curvatures, namely, Riemann tensor Rµνρλ or non-Abelian

gauge field strength Fµν . In three-dimensions, fortuitously, this is not a problem as these
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curvatures are just proportional to the field equations of Eintein gravity or Chern-Simons

gauge theory, respectively. In higher dimensions, these terms can be compensated by

introducing a non-trivial cosmological constant, but at the price of adding higher-derivative

interactions [42–44].

So, we conclude that, to have a consistent interacting theory of color-decorated mass-

less spin-two fields, we need an (A)dS isometry gauge algebra which can be extended

to an associative one. An immediate candidate is higher-spin algebra in any dimensions,

since Vasiliev’s higher-spin theory can be consistently color-decorated, as mentioned before.

Other option is to take the isometry algebras of (A)dS3 and (A)dS5 which are isomorphic

to sl2 ⊕ sl2 and sl4 and can be extended to associative ones, gl2 ⊕ gl2 and gl4 by simply

adding unit elements corresponding to spin-one fields.

3 Color-decorated (A)dS3 gravity: Chern-Simons formulation

Let us now move to the explicit construction of a theory of colored gravity. In this paper,

we focus on the case of three-dimensional gravity.

3.1 Color-decorated Chern-Simons gravity

In the uncolored case, it is known that the three-dimensional gravity can be formulated as

a Chern-Simons theory with the action

S[A] =
κ

4π

∫
Tr
(
A ∧ dA+

2

3
A ∧A ∧A

)
, (3.1)

for the gauge algebra sl2 ⊕ sl2. The constant κ is the level of Chern-Simons action. We

are interested in color-decorating this theory. Physically, this can be done by attaching

Chan-Paton factors to the gravitons. Mathematically, this amounts to requiring the fields

to take values in the tensor-product space gi ⊗ gc, where the gi is the isometry part of the

algebra including sl2 ⊕ sl2 and the gc is a finite-dimensional Lie algebra of a matrix group

Gc. For generic Lie algebras gi and gc, their tensor product do not form a Lie algebra, as

is clear from the commutation relations:

[MX ⊗ TI ,MY ⊗ TJ ] =
1

2
[MX ,MY ]⊗ {TI ,TJ }+

1

2
{MX ,MY } ⊗ [TI ,TJ ] . (3.2)

The anticommutators {TI ,TJ} and {MX ,MY } do not make sense within the Lie algebras.

Instead, if we start from associative algebras gi and gc, their direct product gi⊗gc will form

an associative algebra, from which we can also obtain the Lie algebra structure. Hence, in

this paper, we will consider associative algebras for gi and gc. For the color algebra gc, we

take the matrix algebra u(N). For the isometry algebra gi, we take gi = gl2 ⊕ gl2 (instead

of sl2 ⊕ sl2). The trace Tr of (3.1) should be defined also in the tensor product space and

is given by the product of two traces as

Tr(gi ⊗ gc) := Tr(gi) Tr(gc) . (3.3)
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We also need for the fields to obey Hermicity conditions compatible with the real form of

the complex algebra.3

Therefore, our model of colored gravity is the Chern-Simons theory (3.1) where the

one-form gauge field A takes value in

g = (gl2 ⊕ gl2)⊗ u(N) 	 id⊗ I . (3.4)

Notice that we have subtracted the id⊗ I, where id and I are the centers of gl2 ⊕ gl2 and

u(N), respectively: it corresponds to an Abelian vector field (described by Chern-Simons

action) which does not interact with other fields.4 As a complex Lie algebra, g in (3.4) is

in fact isomorphic to sl2N ⊕ sl2N . This can be understood from the fact that the tensor

product of 2× 2 and N ×N matrices gives 2N × 2N matrix. It would be worth to remark

as well that the algebra g necessarily contains elements in id ⊗ su(N) which correspond

to the gauge symmetries of su(N) Chern-Simons theory. In this sense, this su(N) will be

referred to as the color algebra.

It turns out useful5 to decompose the algebra g (3.4) into two orthogonal parts as

g = b⊕ c , such that Tr(b c) = 0 , (3.5)

where b is the subalgebra:

[b, b] ⊂ b , (3.6)

corresponding to the gravity plus gauge sector (mediating gravity and gauge forces),

whereas c corresponds to the matter sector — including all colored spin-two fields —

subject to the covariant transformation,

[b, c] ⊂ c . (3.7)

Corresponding to the decomposition (3.5), the one-form gauge field A can be written as

the sum of two parts

A = B + C , (3.8)

where B and C takes value in b and c, respectively. In terms of B and C, the Chern-Simons

action (3.1) is reduced to

S[B, C] =
κ

4π

∫
Tr

(
B ∧ dB +

2

3
B ∧ B ∧ B + C ∧DB C +

2

3
C ∧ C ∧ C

)
, (3.9)

where DB is the the B-covariant derivative:

DB C = d C + B ∧ C + C ∧ B . (3.10)

This splitting will prove to be a useful guideline in keeping manifest covariance with respect

to the diffeomorphism and the non-Abelian gauge transformation.

3Note that if the isometry algebra gi is not associative — as is the case with Poincaré algebra discussed

in [15–18] — then the requirement of the closure of the algebra is that the color algebra gc be associative (for

the first term in (3.2) to be in the product algebra) and commutative (for the second term in (3.2) to vanish).
4In the Introduction, we sketched our model without taking into account this subtraction for the sake

of simplicity.
5Later, we will take advantage of this decomposition in solving the torsionless condition to convert

Chern-Simons formulation into metric formulation.
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3.2 Basis of algebra

For further detailed analysis, we set our conventions and notations of the associative algebra

involved. The sl2 has three generators J0, J1, J2. Combining them with the center generator

J , one obtains gl2 = Span{J, J0, J1, J2} with the product,

Ja Jb = ηab J + εabc J
c [ a, b, c = 0, 1, 2 ] . (3.11)

The ηab is the flat metric with mostly positive signs and εabc is the Levi-civita tensor of sl2
with sign convention ε012 = +1. The generators of the other gl2 will be denoted by J̃a and

J̃ . In the case of AdS3 background, the real form of the isometry algebra corresponds to

so(2, 2) ' sl(2,R)⊕ sl(2,R), which satisfy

(Ja, J̃a)
† = −(Ja, J̃a) , (J, J̃ )† = (J, J̃ ) . (3.12)

In the case of dS3 background, the real form of the isometry algebra corresponds to

so(1, 3) ' sl(2,C), which satisfy

(Ja, J̃a)
† = −(J̃a, Ja) , (J, J̃ )† = (J̃ , J ) . (3.13)

Defining the Lorentz generator Mab and the translation generator Pa as

Mab =
1

2
εab

c
(
Jc + J̃c

)
, Pa =

1

2
√
σ

(
Ja − J̃a

)
, (3.14)

where σ = +1 for AdS3 and σ = −1 for dS3, we recover the standard commutation relations

[Mab,Mcd] = 2
(
ηd[aMb]c + ηc[bMa]d

)
, [Mab, Pc] = 2 ηc[b Pa] , [Pa, Pb] = σMab , (3.15)

of so(2, 2) and so(1, 3) for σ = +1 and −1, respectively. The reality structure of gl2
determines that of the full algebra g in (3.4). As we remarked before, the latter is isomorphic

to sl2N ⊕ sl2N , hence the conditions (3.12) and (3.13) define which real form of sl2N we are

dealing with.

The color algebra su(N) can be supplemented with the center I to form the associative

algebra u(N), with the product

TI TJ =
1

N
δIJI +

(
gIJ

K + i fIJ
K
)
TK [I, J,K = 1, . . . , N2 − 1] . (3.16)

The totally symmetric and anti-symmetric structure constants gIJK and fIJK are both

real-valued.

We normalize the center generators of both algebras such that their traces are given by6

Tr(J) = 2
√
σ, Tr(J̃) = −2

√
σ, Tr(I) = N . (3.17)

The traces of all other elements vanish. This also defines the trace convention in the Chern-

Simons action (3.1). With the associative product defined in (3.11), these traces yield all

the invariant multilinear forms. For instance, we get the bilinear forms,

Tr(Ja Jb) = 2
√
σ ηab , Tr(J̃a J̃b) = −2

√
σ ηab , Tr(TI TJ) = δIJ , (3.18)

which extract the quadratic part of the action.

6We use the same notation Tr for the traces of both the isometry algebra and the color algebra.
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In the Chern-Simons formulation, the equation of motion is the zero curvature condi-

tion: F = 0 . In searching for classical solutions, we choose to decompose the subspaces b

and c in (3.5) as

b = bGR ⊕ bGauge , c = iso⊗ su(N) . (3.19)

Here, the gravity plus gauge sector corresponds to

bGR = iso⊗ I , bGauge = id⊗ su(N) , (3.20)

in which iso stands for the isometry algebra of the (A)dS3 space:

iso = sl2 ⊕ sl2 . (3.21)

There is a trivial vacuum solution where the connection A is nonzero only for the

color-singlet component:

B =

(
1

2
ωabMab +

1

`
ea Pa

)
I , C = 0 . (3.22)

The zero-curvature condition imposes to ωab and ea the usual zero (A)dS curvature and

zero torsion conditions:

dωab + ωac ∧ ωcb +
σ

`2
ea ∧ eb = 0 , (3.23)

d ea + ωab ∧ eb = 0 , (3.24)

which define the (A)dS3 space with the radius `, or equivalently with the cosmological

constant Λ = −(σ/`2).

For a general solution, we again decompose A = B+C according to (3.19). The gravity

plus gauge sector takes the form

B =

[
1

2

(
ωab +

1

`
Ωab

)
Mab +

1

`
ea Pa

]
I +A+ Ã , (3.25)

where A = AI J TI and Ã = ÃI J̃ TI are two copies of su(N) gauge field with

(A, Ã)† = −

{
(A, Ã) [σ = +1]

(Ã,A) [σ = −1]
. (3.26)

In (3.25), the splitting ωab + 1
`Ω

ab in the gravity part is arbitrary and is purely for later

convenience. The matter sector is composed of

C =
1

`

(
ϕa Ja + ϕ̃a J̃a

)
. (3.27)

Here, the colored massless spin-two fields ϕa = ϕa,I TI and ϕ̃a = ϕ̃a,I TI take value in

su(N) carrying the adjoint representation. They satisfy

(ϕa, ϕ̃a)† = +

{
(ϕa, ϕ̃a) [σ = +1]

(ϕ̃a,ϕa) [σ = −1]
. (3.28)

Note that the above has a sign difference from (3.26).
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We may find solutions by demanding that (3.25) and (3.27) solve for the zero curvature

condition. While this procedure straightfowardly yields nontrivial solutions, for better

physical interpretations, we shall first recast the Chern-Simons formulation to the metric

formulation and then obtain these nontrivial solutions by solving the latter’s field equations.

4 Color-decorated (A)dS3 gravity: metric formulation

So far, we described the theory in terms of the gauge field A, so the fact that we are

dealing with color-decorated gravity is not tangible. For the sake of concreteness and the

advantage of intuitiveness, we shall recast the theory in metric formulation.

We first need to solve the torsionless conditions. This is technically a cumbersome step.

Here, we take a short way out from this problem. The idea is that, instead of solving the

torsionless conditions for all the colored fields, we shall do it only for the singlet graviton,

which we identified above with the metric. This will still allow us to write the action in a

metric form but, apart from the gravity, all other colored fields will be still described by a

first-order Lagrangian.

In three dimensions, any spectrum with spin greater than zero can be written as

a first-order Lagrangian which describes only one helicity mode. If one solves the tor-

sionless conditions for the remaining non-gravity fields, the two fields describing helicity

positive and negative modes will combine to generate a single field with a standard second-

order Lagrangian. However, this last step appears not necessary and even impossible for

certain spectra.

In the following, we will derive the full metric action for the first-order Lagrangian de-

scription. For the second-order Lagrangian description, we shall only identify the potential

term, leaving aside the explicit form of kinetic terms.

4.1 Colored gravity around singlet vacuum

Starting from the Chern-Simons formulation, described in terms of ea, ωab+ Ωab/`, (A, Ã)

and (ϕ, ϕ̃), we construct a metric formulation by solving the torsionless condition of the

gravity sector. This condition is given by

dea +

(
ωab +

1

`
Ωab

)
∧ eb +

√
σ

N `
εabc Tr (ϕb ∧ϕc − ϕ̃b ∧ ϕ̃c) = 0 , (4.1)

where we require ωab to satisfy the standard torsionless condition (3.24) . This forces

Ωab = εabc Ωc to satisfy

Ω[a ∧ eb] −
√
σ

N
Tr
(
ϕa ∧ϕb − ϕ̃a ∧ ϕ̃b

)
= 0 . (4.2)

With the above condition together with the standard torsionless condition (3.24), the

action (3.1) can be recast to the sum of three parts:

S = SGravity + SCS + SMatter . (4.3)

– 9 –
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The first term SGravity is the action for the (A)dS3 gravity, given by7

SGravity[g] =
κN

4π `

∫
εabc e

a ∧
(
dωbc + ωbd ∧ ωdc +

σ

3 `2
eb ∧ ec

)
=

1

16πG

∫
d3x
√
|g|
(
R+

2σ

`2

)
, (4.4)

where the Chern-Simons level is related to the Newton’s constant G, the (A)dS3 radius `

and the rank of the color algebra N by

κ =
`

4N G
. (4.5)

The second term SCS is the Chern-Simons action for su(N)⊕ su(N) gauge algebra:

SCS[AÃ] =
κ
√
σ

2π

∫ [
Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
− Tr

(
Ã ∧ dÃ+

2

3
Ã ∧ Ã ∧ Ã

)]
.

(4.6)

In the uncolored Chern-Simons gravity, it is unclear whether the Chern-Simons level κ

has to be quantized since the gauge group is not compact. However, in the case of col-

ored Chern-Simons gravity, the level κ should take an integer value for the consistency of

SCS (4.6) under a large SU(N)× SU(N) gauge transformation.

The last term SMatter is the action for the colored massless spin-two fields ϕa and ϕ̃a.

To derive it, we use the decompositions (3.25) and (3.27), and simplify by using (4.2).

We get

SMatter[ϕ, ϕ̃] =
1

16πG

∫ [
1

N
L[ϕ, ϕ̃, `]− 1

`2
εabc e

a ∧ Ωb(ϕ, ϕ̃) ∧ Ωc(ϕ, ϕ̃)

]
, (4.7)

where the three-form Lagrangian L[ϕ, ϕ̃; `] is given by

L[ϕ, ϕ̃, `] = L+[ϕ, `]− L−[ϕ̃, `] , (4.8)

L±[ϕ, `] = 2
√
σTr

[
1

`
ϕa ∧Dϕa +

1

`2
εabc

(
±1√
σ
ea ∧ϕb ∧ϕc +

2

3
ϕa ∧ϕb ∧ϕc

)]
.

In this expression, the covariant derivative D is with respect to both the Lorentz transfor-

mation and the su(N) gauge transformation:

Dϕa = dϕa + ωab ∧ϕb +A ∧ϕa +ϕa ∧A ,

D ϕ̃a = d ϕ̃a + ωab ∧ ϕ̃b + Ã ∧ ϕ̃a + ϕ̃a ∧ Ã . (4.9)

The last term in (4.7) is an implicit function of ϕa and ϕ̃a. It is proportional to

εabc e
a ∧ Ωb ∧ Ωc =

1

3
εabc e

a ∧ eb ∧ ec Ω[d
,d Ωe]

,e , (4.10)

where Ωa = Ωb
a eb. From (4.2), they are determined to be

Ωa
b =

1

N
Wa

b(ϕ, ϕ̃) = Ωa
b(ϕ, ϕ̃) , (4.11)

7In our normalization, d3x
√
|g| = 1

6
εabc e

a ∧ eb ∧ ec.
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where Wa
b(ϕ, ϕ̃) is given by

Wa
b(ϕ, ϕ̃) = Wa

b(ϕ)−Wa
b(ϕ̃) ,

Wa
b(ϕ) = 4

√
σTr

(
ϕ[a

bϕc]
c − 1

4
δbaϕ[c

cϕd]
d

)
. (4.12)

Here, ϕb
a are the components of ϕa: ϕa = ϕb

a eb. Notice that only the term (4.10) —

which is quartic in ϕa and ϕ̃a — gives the cross couplings between ϕ’s and ϕ̃’s.

4.2 First-order description

Gathering all above results and replacing the dreibein ea in terms of the metric gµν , the

colored gravity action reads

S = SCS +
1

16πG

∫
d3x
√
|g|
[
R− V (ϕ, ϕ̃) +

2
√
σ

N `
εµνρ Tr

(
ϕµ

λDνϕρλ − ϕ̃µλDνϕ̃ρλ

)]
,

(4.13)

where the covariant derivative is given by

Dµϕνρ = ∇µϕνρ + [Aµ,ϕνρ] (4.14)

and the scalar potential function is given by

V (ϕ, ϕ̃)

= − 1

N `2
Tr
[
2σ I + 4

(
ϕ[µ

µϕν]
ν + ϕ̃[µ

µ ϕ̃ν]
ν
)

+ 8
√
σ
(
ϕ[µ

µϕν
ν ϕρ]

ρ − ϕ̃[µ
µ ϕ̃ν

ν ϕ̃ρ]
ρ
) ]

− 16σ

N2 `2
Tr
(
ϕ[µ

ν ϕρ]
ρ − ϕ̃[µ

ν ϕ̃ρ]
ρ
)

Tr
(
ϕ[ν

µϕλ]
λ − ϕ̃[ν

µ ϕ̃λ]
λ
)

+
6σ

N2 `2

[
Tr
(
ϕ[µ

µϕν]
ν − ϕ̃[µ

µ ϕ̃ν]
ν
) ]2

. (4.15)

The scalar potential function consists of single-trace and double-trace parts. The single-

trace part originates from the Chern-Simons cubic interaction, while the double-trace part

originates from solving the torsionless conditions. For a general configuration, all terms in

the potential have the same order in large N as the other terms in (4.13).

Already at this stage, the content of the colored gravity is clearly demonstrated: it is

a theory of colored massless left-moving and right-moving spin-two fields, as seen from the

kinetic term in (4.8) or (4.13). They interact covariantly with the color singlet gravity and

also with the Chern-Simons color gauge fields. Moreover, they interact with each other

through the potential V (ϕ, ϕ̃). The self-interaction is governed by the constant 1/N . The

single-trace cubic interaction is stronger than the gravitational cubic interaction by the

factor of
√
N . Therefore, at large N and for fixed Newton’s constant, the colored massless

spin-two fields will be strongly coupled to each other.

4.3 Second-order description

In principle, we could also solve the torsionless condition for the colored spin-two fields

and obtain a second-order Lagrangian (although this spoils the minimal interactions to the

su(N) gauge fields A and Ã). It amounts to taking linear combinations

χµν =
√
σ (ϕµν − ϕ̃µν) , τµν = ϕµν + ϕ̃µν , (4.16)
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and integrating out the torsion part τµν , while keeping χµν . The resulting action is given by

S = SCS +
1

16πG

∫
d3x
√
|g|
[
R− V (χ) + LCM(χ,∇χ,A, Ã)

]
. (4.17)

The Lagrangian LCM reads

LCM(χ,∇χ,A, Ã) =
1

N
Tr
(
2χµν ∇2χµν + · · ·

)
, (4.18)

where the ellipses include other tensor contractions together with higher-order terms of the

form, χn (∇χ)2 with n ≥ 1 as well as couplings to the gauge fields A and Ã. We do not

attempt to obtain the complete structure of these derivative terms.

The potential function V (χ) corresponds to the extremum of

V (χ, τ ) = − 2σ

N `2
Tr
(
I + χ[µ

µχν]
ν + σ τ[µ

µ τν]
ν + χ[µ

µχν
ν χρ]

ρ + 3σχ[µ
µ τν

ν τρ]
ρ
)

− 4

N2 `2
Tr
(
χ[µ

ν τρ]
ρ + τ[µ

ν χρ]
ρ
)

Tr
(
χ[ν

µ τλ]
λ + τ[ν

µχλ]
λ
)

+
6

N2 `2
[
Tr
(
χ[µ

µ τν]
ν
)]2

, (4.19)

along the τµν direction. As the extremum equation for τµν is linear in τµν ,

M(χ) · τ = 0 , (4.20)

it must be that the unique solution is τµν = 0 for a generic configuration of χµν .8 Pro-

ceeding with this situation, we end up with the cubic potential for χµν :

V (χ) = − 2σ

N `2
Tr
(
I + χ[µ

µχν]
ν + χ[µ

µχν
ν χρ]

ρ
)
. (4.21)

This potential has a noticeably simple form, but also has rich implications as we shall

discuss in the next sections.

5 Classical vacua of colored gravity

5.1 Identification of vacuum solutions

Having identified the action in metric formulation, we now search for classical vacua that

solve the field equations of motion:

−δLCM

δgµν
= Gµν −

1

2
V (χ) gµν ,

δLCM

δχµν
=
∂V (χ)

∂χµν
, (5.1)

− N

2
√
σ `

δLCM

δAµ
= εµνρ Fνρ , − N

2
√
σ `

δLCM

δÃµ

= εµνρ F̃νρ . (5.2)

In order to find their solutions, we assume that the colored massless spin-two fields are

covariantly constant with the trivial su(N) gauge connection,

A = 0 , Ã = 0 , ∇ρχµν = 0 . (5.3)

8There can also exist nontrivial τµν solutions at special values of χµν , corresponding to kernel of M
in (4.20). They break the parity symmetry spontaneously, and hence of special interest. We relegate

complete classification of these null solutions in a separate paper.
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This can be satisfied by

χµν = gµνX for X = constant ∈ su(N) . (5.4)

Physically, we interpret this as the colored spin-two matter acting as Higgs field. In

Poincaré invairant field theory, the vacuum is Poincaré invariant, so only a scalar field

ϕ (which is proportional to an identity operator ϕ ∝ I) can take a vacuum expectation

value, 〈ϕ〉 = v. On the other hand, fields with nonzero spin cannot develop a nonzero ex-

pectation value since it is incompatible with the Lorentz invariance. In generally covariant

field theory, where the background metric gµν plays the role of first fundamental form, the

spin-2 field χµν can similarly develop a nonzero vacuum expectation value 〈χµν〉 = v gµν
proportional to the metric gµν , while all other fields of higher spin cannot. We thus refer

this phenomenon to as ‘gravitational Higgs mechanism’.

With (5.3) and (5.4), the equations in the second line (5.2) trivialize and the rest

reduce to

Gµν −
1

2
V (X) gµν = 0 and

∂V (X)

∂X
= 0 , (5.5)

where V (X) = V (χµν = gµνX) is given by

V (X) = − 2σ

N `2
Tr
(
I + 3X2 +X3

)
. (5.6)

From (5.5), the extremum of the potential defines the corresponding cosmological constant:

Λ =
1

2
V (X) . (5.7)

Although cubic, being a matrix-valued function, the potential V (X) may admit a large

number of nontrivial extrema that depends on the color algebra su(N). If exists, each of

such extrema will define a distinct vacuum with a different cosmological constant (5.7). As

an illustration of this potential, consider the function f(X) = 1
N Tr

(
I + 3X2 +X3

)
for

the X belonging to su(3). The 3× 3 matrix X can be diagonalized by a SU(3) rotation to

X = a

1 0 0

0 1 0

0 0 −2

+ b

−2 0 0

0 1 0

0 0 1

. (5.8)

We plot the function f(a, b) in figure 1. It clearly exhibits four extremum points: (0, 0),

(2, 0), (0, 2) and (−2,−2). The first point at the origin gives f = 1, whereas the other

three points all give f = 9. In fact, these three points are connected by SU(3) rotation.

We now explicitly identify the extrema of potential function (5.6) for arbitrary value

of N . The extremum points are defined by the equation:

δV (X) = − 6σ

N `2
Tr
[
(2X +X2) δX

]
= 0 . (5.9)

Since X is traceless, it follows that δX is also traceless. Thus, the equation reads

2X +X2 =
1

N
Tr
(
2X +X2

)
I . (5.10)

– 13 –



J
H
E
P
0
4
(
2
0
1
6
)
0
5
5

Figure 1. The shape of the potential function for su(3).

Since Tr (I +X)2 6= 0 — otherwise it would follow from (5.10) that the matrix I +X is

nilpotent while having a non-trivial trace — one can redefine the matrix X in terms of Z:

Z =

√
N

Tr(I +X)2
(I +X) , (5.11)

or equivalently,

X =
N

Tr(Z)
Z − I . (5.12)

This simplifies the equation (5.10) as

Z2 = I . (5.13)

Complete solutions of this equation, up to SU(N) rotations, are given by

Zk =

[
I(N−k)×(N−k) 0

0 −Ik×k

]
, k = 0, 1, . . . ,

[
N−1
2

]
. (5.14)

where the upper bound of k is fixed by [N−12 ] due to the property that XN−k is a SU(N)

rotation of Xk. Notice also that, when N is even, k = N
2 is excluded since it leads to

Tr(Z) = 0 for which X is ill-defined. Plugging the solutions (5.14) to the potential, we

can identify the values of the potential at the extrema as

V (Xk) = −2σ

`2

(
N

Tr (Zk)

)2

= −2σ

`2

(
N

N − 2k

)2

. (5.15)
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Figure 2. Potentials around each rainbow vacua with N = 3. The (a, b) = (0, 0) vacuum is the

minimum/maximum in dS3/AdS3 space. The others, connected by SU(3) transformation, are all

saddle points.

These values play the role of the cosmological constant at the k-th extremum, according

to (5.7).

Let us discuss more on the potential (5.6). Firstly, the cubic form shows that the

potential is not bounded from below or above. Secondly, the overall factor σ shows that

the overall sign of the potential depends whether we consider AdS3 or dS3 background.

Thirdly, we can understand better the stability of the extrema we found by considering the

second variation of the potential,

δ2V (Xk) = − 12σ

(N − 2k) `2
Tr
(
Zk δX

2
)
. (5.16)

The Hessian is not positive(or negative)-definite for an arbitrary δX except the singlet

vacuum k = 0. So, all k 6= 0 vacua are saddle points and the k = 0 vacuum is the

minimum/maximum in dS3/AdS3 space.

5.2 N = 3 example and linearized spectrum

In the standard Higgs mechansim, the gauge fields combine with the Goldstone bosons to

become massive vector fields. In the following, we will analyze the analogous mechanism

in our model of colored gravity. For the concreteness, let us consider the k = 1 vacuum

solution (5.14) in N = 3 case (see figure 2). This solution has a non-zero background for
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the colored matter fields which breaks the SU(3) symmetry down to SU(2) × U(1). We

linearize the colored matter fields (ϕ, ϕ̃) around this vacuum as

ϕµν =
X1

2
√
σ
gµν +ϕfluc

µν , ϕ̃µν = − X1

2
√
σ
gµν + ϕ̃fluc

µν , (5.17)

where the background value of (ϕ, ϕ̃) is proportional to the matrix X1 (5.12), whose

explicit form reads

X1 =

2 0 0

0 2 0

0 0 −4

 . (5.18)

The fluctuation parts of the colored matter fields and the spin-one Cherns-Simons gauge

fields can be decomposed as

ϕfluc
µν =

3√
2
%aµν T

a
su(2) +

√
3

2

(
ψ̃µν − 2ψµν

)
Tu(1) +

3√
2
φiµν T

i
BS ,

ϕ̃fluc
µν =

3√
2
%̃aµν T

a
su(2) +

√
3

2

(
ψµν − 2 ψ̃µν

)
Tu(1) +

3√
2
φ̃iµν T

i
BS , (5.19)

Aµ = Aaµ T
a
su(2) +Aµ Tu(1) +

1√
8
AiµZ1 T

i
BS ,

Ãµ = Ãaµ T
a
su(2) + Ãµ Tu(1) +

1√
8
ÃiµZ1 T

i
BS , (5.20)

in terms of the SU(3) generators:

T asu(2) =
1√
2

[
σa 0

0 0

]
, Tu(1) =

1√
6

1 0 0

0 1 0

0 0 −2

 , (5.21)

T 1
BS =

1√
2

0 0 1

0 0 0

1 0 0

 , T 2
BS =

1√
2

0 0 −i
0 0 0

i 0 0

 , T 3
BS =

1√
2

0 0 0

0 0 1

0 1 0

 , T 4
BS =

1√
2

0 0 0

0 0 −i
0 i 0

 ,
where σ1, σ2, σ3 are the Pauli matrices. Various factors in (5.19) and (5.20) have been

introduced for latter convenience. By plugging (5.19) into the original action (4.13) and

expanding the action up to quadratic order in the fluctuations, we obtain the perturbative

Lagrangian around the k = 1 vacuum. We first expand the potential as

V (ϕ, ϕ̃) = − 2

`21

(
σ + %a[µ

µ %aν]
ν + %̃a[µ

µ %̃aν]
ν − ψ[µ

µ ψν]
ν − ψ̃[µ

µ ψ̃ν]
ν
)

+O(Φ3) , (5.22)

and the kinetic part as

2
√
σ

9 `1
εµνρ Tr

(
ϕµ

λDνϕρλ − ϕ̃µλDνϕ̃ρλ

)
(5.23)

=

√
σ

`1
εµνρ

(
ϕ′aµ

λ∇νϕ′aρλ + ψµ
λ∇νψρλ + φiµ

λ∇νφiρλ +
1√
σ
φiµν A

i
ρ

)
+ c.c+O(Φ3) .
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Here the `1 = `/3 is the radius of the k = 1 (A)dS solution, and O(Φ3) means the cubic-

order terms in the fluctuation fields. Combining (5.22) and (5.23), the colored gravity

action (4.13) becomes

S = SCS +
1

16πG

∫
d3
√
|g|
(
R+

2σ

`21
+ LRS + LBS +O(Φ3)

)
, (5.24)

where the Lagragian for the residual symmetry part is given by

`21 LRS =
√
σ `1 ε

µνρ%aµ
λ∇ν%aρλ + 2 %a[µ

µ %aν]
ν + c.c.

+
√
σ `1 ε

µνρ ψµ
λ∇νψρλ − 2ψ[µ

µ ψν]
ν + c.c. (5.25)

and that for the broken symmetry part by

`21 LBS =
√
σ `1 ε

µνρ

(
φiµ

λ∇νφiρλ +
1√
σ
φiµν A

i
ρ

)
+ c.c. (5.26)

Several remarks are in order:

• In the Lagrangian LRS (5.25), the fields %aµν — associated with the su(2) generators

— describe the standard massless spin-two fields. On the contrary, the field ψµν —

associated with the u(1) generator — describes a ghost massless spin-two due to the

sign flip of the no-derivative term (why this sign determines whether the spectrum is

ghost or not is explained in appendix A).

• In the Lagrangian LBS (5.26) — associated with the broken part of the symmetry

— has an unusual cross term with the spin-one Cherns-Simons gauge field Aiµ. In

fact, Aiµ behaves as a Stueckelberg field hence can be removed by a spin-two gauge

transformation. Let us remark that this gauge choice is analogous to the unitary

gauge in the standard Higgs mechanism. As a result, the Chern-Simons action SCS

reduces from SU(3) to SU(2)×U(1), and the field φiµν inherits the gauge symmetries

of Aiµ as a second-derivative form:

δ φiµν =

(
∇µ∇ν −

σ

`21
gµν

)
ξi . (5.27)

This spectrum clearly combines the massless spin-two mode with the spin-one mode

in an irreducible manner. It actually corresponds to so-called partially-massless spin-

two field [31, 32]. Since our system is after all a Chern-Simons theory, there is

no propagating DoF such as a scalar field. Hence, it is clear that we cannot have

a massive spin-two as a result of symmetry breaking because it would require not

only spin-one but also a scalar mode. We postpone more detailed analysis to the

next section.
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6 Colored gravity around rainbow vacua

We learned that there are [N+1
2 ] many distinct vacua having different cosmological con-

stants. In this section, we study the colored gravity around each of these vacua and analyze

the spectrum. In principle, we can proceed in the same way as we did for the N = 3 ex-

ample in section 5.2, but there is a more systematic way relying on the Chern-Simons

formulation.

6.1 Decomposition of algebra revisited

For an efficient treatment of the colored gravity at each distinct vacuum in the Chern-

Simons formulation, it is important to identify the proper decomposition of the alge-

bra (3.5). For that, we revisit the isometry and the color algebra decompositions. The

isometry algebra can be divided into the rotation part M and the translation part P as

iso =M⊕P , (6.1)

the same as the trivial vacuum. For the color algebra, each vacuum spontaneously breaks

the Chan-Paton su(N) gauge symmetry down to su(N − k)⊕ su(k)⊕ u(1), and hence the

original algebra admits the decomposition:

su(N) ' su(N − k)⊕ su(k)⊕ u(1)⊕ bs . (6.2)

Here, bs is the vector space corresponding to the broken symmetry, spanned by 2k(N − k)

generators. It is important to note that each part commutes or anti-commutes with the

background matrix Zk (5.14) as[
Zk , su(N − k)⊕ su(k)⊕ u(1)

]
= 0 ,

{
Zk , bs

}
= 0 . (6.3)

We now decompose the entire algebra (3.4) according to (3.5) in terms of the gravity

plus gauge sector b and the matter sector c. The former has again two parts similarly to

the singlet vacuum case as b = bGR ⊕ bGauge, but the algebras to which the gravity and

the gauge sectors correspond differ from (3.20). They are

bGR =
(
M⊗ I

)
⊕
(
P ⊗Zk

)
, bGauge = id⊗

(
su(N − k)⊕ su(k)⊕ u(1)

)
. (6.4)

The gauge sector is concerned only with the unbroken part of the color algebra. The

algebra of the gravity sector is deformed by Zk, but still satisfies the same commutation

relations with the generators:

Mab = Mab I , Pa = PaZk . (6.5)

The one-form gauge fields associated with these sectors are given correspondingly by

BGR =
1

2

(
ωab + Ωab

)
Mab +

1

`k
eaPa ,

BGauge = A+ +A− + Ã+ + Ã− +
(
A+ Ã

)
Yk , (6.6)
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where the k-vacuum radius `k is related to the singlet one as

`k :=

(
N − 2k

N

)
` , (6.7)

and Yk is the traceless matrix:

Yk =
k I+ − (N − k) I−

N
. (6.8)

Here again, the spin connection ωab is the standard one satisfying (3.24), whereas Ωab will

be determined in terms of other fields from the torsionless conditions. The gauge fields

A± and Ã± take values in su(N − k) for the subscript + and su(k) for the subscript −,

whereas A and Ã are Abelian gauge fields taking values in u(1).

In the case of non-singlet vacua, the matter sector space has two parts:

c = cCM ⊕ cBS . (6.9)

For the introduction of each elements, let us first define the generators of gl2⊕gl2 deformed

by Zk as

Ja = Ja I+ + J̃a I− , J = J I+ + J̃ I− ,

J̃a = Ja I− + J̃a I+ , J̃ = J I− + J̃ I+ , (6.10)

where I± are the identities associated with u(N − k) and u(k), respectively:

I± =
1

2
(I ±Zk) . (6.11)

These deformed gl2 ⊕ gl2 generators satisfy also the same relation as (3.11), and they are

related to Mab and Pa (6.5) analogously to (3.14) by

Mab =
1

2
εab

c
(
Jc + J̃c

)
and Pa =

1

2
√
σ

(
Ja − J̃a

)
. (6.12)

Therefore, if we define the matter fields using Ja and J̃a, then they will have the standard

interactions with the gravity.

We now introduce each elements of (6.9). The first one cCM is the residual color

symmetry:

cCM = iso⊗
(
su(N − k)⊕ su(k)⊕ u(1)

)
, (6.13)

describing colored spin-two fields associated with the one form

CCM =
1

`k

[(
ϕa+ +ϕa−

)
Ja +

(
ϕ̃a+ + ϕ̃a−

)
J̃a +

(
ψa Ja + ψ̃a J̃a

)
Yk Zk

]
. (6.14)

The fields ϕa+ and ϕ̃a+ take values in su(N − k), whereas ϕa− and ϕ̃a− in su(k), both

transforming in the adjoint representations. The fields ψa and ψ̃a are charged under u(1).

The matrix factor Yk Zk is inserted to ensure Tr(bGR cCM) = 0, equivalently,

Tr
(
J Yk Zk

)
= 0 = Tr

(
J̃ Yk Zk

)
. (6.15)
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The second element cBS is what corresponds to the broken part of the color symmetries:

cBS = (id⊕ iso)⊗ bs . (6.16)

Unlike the fields in CCM, this part does not describe massless spin-two fields. Rather, it

describes so-called partially-massless spin-two fields [31, 32], as we shall demonstrate in the

following. The corresponding one form is given by

CBS =
1

`k

(
φJ + φa Ja + φ̃ J̃ + φ̃a J̃a

)
, (6.17)

where the fields φa, φ, φ̃a and φ̃ take values in bs, carrying the bi-fundamental represen-

tations of su(N − k) and su(k), as well as the representation of u(1). Because these fields

anti-commute with Zk, they also intertwine the left-moving and the right-moving gl2’s.

For instance,

φa Jb = J̃bφ
a . (6.18)

As a consequence, they transform differently under Hermitian conjugate:

(φ,φa, φ̃, φ̃a)† =

{
(−φ̃, φ̃a,−φ,φa) [σ = +1]

(−φ,φa,−φ̃, φ̃a) [σ = −1]
, (6.19)

compared to the massless ones (3.28).

6.2 Colored gravity around non-singlet vacua

With the precise form of the fields (6.6), (6.14), (6.17), we now rewrite the Chern-Simons

action into a metric form. It is given by the sum of three terms as in (4.3). Firstly, we

have the standard gravity action

SGravity =
1

16πG

∫
d3x
√
|g|
(
R+

2σ

`2k

)
, (6.20)

with a k-dependent cosmological constant, set by (6.7). The Chern-Simons action SCS for

the gauge fields A+ for su(N − k), A− for su(k) and A for u(1) are given analogously

to (4.6). Finally, the action for the matter sector takes the following form:

SMatter =
1

16πG

∫
1

N − 2k

(
L[ϕ+, ϕ̃+, `k]− L[ϕ−, ϕ̃−, `k] + LBS[φ, φ̃, `k] + Lcross

)
− k(N − k)

N2
L[ψ, ψ̃, `k]−

1

`2k
εabc e

a ∧ Ωb ∧ Ωc , (6.21)

where L is the massless Lagrangian given in (4.8) whereas LBS is given by

LBS[φ, φ̃, `] =
4
√
σ

`
Tr

[{
φ̃ ∧

(
Dφ− 1√

σ`
ea ∧ φa

)
− φ̃a ∧

(
Dφa − 1√

σ`
ea ∧ φ

)}
Zk

]
.

(6.22)

The covariant derivatives Dφa and Dφ are given by

Dφa = Dωφ
a +

(
Ã+ + Ã− + ÃYk

)
∧ φa − φa ∧ (A+ +A− +AYk) ,

Dφ = dφ +
(
Ã+ + Ã− + ÃYk

)
∧ φ− φ ∧ (A+ +A− +AYk) , (6.23)
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and similarly for the tilde counter parts. The other terms in (6.21) give additional inter-

actions: the last term gives quartic interaction through Ωa
,b:

Ωa
,b =

1

N − 2k

[
W a
b (ϕ+, ϕ̃+)+W a

b (ϕ−, ϕ̃−)+WBS
a
b (φ, φ̃)

]
− 1

k(N − k)
W a
b (ψ, ψ̃) , (6.24)

where W a
b is given by (4.12) and WBS

a
b by

WBS
a
b (φ, φ̃) = 8

√
σTr

[(
φ̃[a

[bφc]
c] − 1

4
δba φ̃[c

cφd]
d

)
Zk

]
. (6.25)

The term Lcross, given by

Lcross =
4
√
σ

`2k
Tr
[ (
ϕa+ −ϕa− + ψa Yk

)
∧
(
φ̃ ∧ φa + φ̃a ∧ φ

)
+

+ εabc

(
ϕa+ ∧ϕb+ +ϕa− ∧ϕb−

)
∧ ψc Yk Zk

]
−
(

[ ]↔ [̃ ]
)
, (6.26)

is the cross terms originating from the Chern-Simons cubic interactions.

In principle, we can further simplify the action as we did in the singlet vacuum case.

However, already at this level, we can extract a lot of physics.

• We have a scalar potential as a function of four fields ϕ±, ψ, φ (and their tilde counter

parts) and the point where all fields vanish correspond to the extremum point whose

potential value gives the cosmological constant −σ/`2k. This potential should be a

shift of the potential V (ϕ, ϕ̃) (4.15) defined around the singlet vacuum, hence it will

admit all other vacua as extrema.

• The interaction strength for each field can be easily read off from the action. The

gravity and gauge interaction have the same strength controlled by G and κ as in

the singlet vacuum case. The interaction of colored spin two fields ϕ± is weakened

— the coefficient changed from N to N − 2k. The same for the broken-symmetry

field φ. Finally, ψ has interaction strength controlled by N2/[k(N − k)]. Therefore,

when the color symmetry is maximally broken, that is N − 2k ∼ 1, the interaction

between all these fields becomes as weak as the gravitational one.

• Let us conclude this section with the summary of the field content around the k-

vacuum. At first, we have the graviton and su(N − k)⊕ su(k)⊕ u(1) Chern-Simons

gauge fields. Next, about the colored matter fields, there are (N − k)2 − 1 fields

for (ϕ+, ϕ̃+), k2 − 1 for (ϕ−, ϕ̃−) and 1 for (ψ, ψ̃). They are all massless spin-two

fields, but (ϕ−, ϕ̃−) and (ψ, ψ̃) — hence k2 fields — are in fact ghost. For the broken

symmetry part, we have 2k(N − k) fields for (φ, φ̃). The latter describes so-called

partially-massless fields and its proper analysis is the subject of the next section.

6.3 Partially massless spectrum associated with broken color symmetry

Around a non-singlet vacuum, the fields ϕ± and ψ both describe massless spin-two fields

having the same quadratic Lagrangian given by (4.8). On the other hand, the fields φ
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corresponding to the broken part of the color symmetries have different quadratic La-

grangian (6.22), hence describe different spectrum. We have already mentioned that they

correspond to partially-massless fields [31, 32]. In this section, we analyze the quadratic

Lagrangian (6.22) to prove this statement. Here, we concentrate on AdS3. To get the dS3

result, it is sufficient to replace ` by i `.

Though the Lagrangian (6.22) has a rather non-standard form involving cross term

between φ and φ̃ together with an insertion of Zk, it can always be diagonalized with the

help of the Hermiticity property (6.19). Therefore, for the spectrum analysis, it will suffice

to consider SBS[φ, φa] taking the following expression:

SBS[φ, φa] =

∫
φ ∧

(
dφ− 1

`
ea ∧ φa

)
− φa ∧

(
Dφa − 1

`
ea ∧ φ

)
, (6.27)

with the AdS dreibein and spin connection (ea, ωab). We first note that this action admits

the gauge symmetries with parameters (ε, εa),

δ φ = d ε− 1

`
ea εa , δ φa = D εa − 1

`
ea ε , (6.28)

which come from the Chern-Simons gauge symmetries.

For a closer look of this action involving three fields hµν = ea(µ φν)a, fµν = ea[µ φν]a
and φµ = eaµ φa, we consider two different but equivalent paths:

• We first derive the equation of motion for one-form fields φa and φ. They are given by

Dφa − 1

`
ea ∧ φ = 0 , dφ− 1

`
ea ∧ φa = 0 . (6.29)

The second equation implies that the antisymmetric field fµν is the field strength of

φµ: fµν = ` ∂[µφν]. Then, by gauge fixing φµ to zero with the gauge parameter εa,

the field fµν decouples from the first equation. We thus end up with only one field

hµν satisfying the equation of motion,

∇[µhν]ρ = 0 , (6.30)

and the gauge symmetry,

δ hµν =

(
∇µ∇ν −

1

`2
gµν

)
ε . (6.31)

This coincides with the gauge symmetry of partially-massless spin-two field [31, 32].

• Instead of first deriving the equation and then gauge fixing to φµ = 0 , one can reverse

the procedure. We first gauge fix and eliminate φµ field in the action and obtain

SPM[φµν ] =

∫
d3x
√
|g| εµνρ φλµ∇ν φρλ , (6.32)

modulo a boundary term. We note that the field φµν contains both of the symmet-

ric part hµν and the antisymmetric part fµν . Only hµν admits the gauge symme-

tries (6.31). The equation of motion is now given by

Cµν,ρ := ∇[µhν]ρ +∇[µfν]ρ = 0 . (6.33)
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The totally anti-symmetric part C[µν,ρ] = ∂[µfνρ] = 0 can be readily solved as fµν =

∂[µ aν]. With the field redefinition hµν → hµν − ∇(µaν), the trace of the above

equation, Cρµ,ρ = 0, gives

aµ =
`2

2
(∇ρhµρ −∇µhρρ) , (6.34)

Taking now a divergence of Cµν,ρ, we arrive at the second-order equation,

∇ρCρ(µ,ν) = Glin
µν +

1

`2
(hµν − gµν hρρ) = 0 , (6.35)

with the linearized Einstein tensor Glin
µν . One can also check that the mass in the

above equation corresponds to that of a partially-massless field. Furthermore, using

Bianchi identity, we deduce that the left-hand side of (6.34) vanishes, so does fµν .

Therefore, we end up with the same equation (6.30).9

7 Discussions

In this paper, we proposed a Chan-Paton color-decorated gravity in three dimensions and

studied its properties. We have shown that the theory describes a gravitational system of

colored massless spin-two matter fields coupled to su(N) gauge fields. These matter fields

have a non-trivial potential whose extrema have [N+1
2 ] different values of cosmological

constant. All the extremum points but the origin spontaneously break the su(N) color

symmetry down to su(N − k) ⊕ su(k) ⊕ u(1). We found that the spin-two Goldstone

modes corresponding to the broken part of the symmetries are combined with the gauge

fields and become partially-massless spin-two fields. In the vacua with large k ∼ N/2, the

interactions of the matter fields are as weak as the gravitational one. In the small k vacua,

their interaction becomes strong by the factor of
√
N .

Considering the dS3 branch, the potential takes a spiral stairwell shape (figure 3) with

[N+1
2 ] many steps, having split cosmological constants that range from Λ = 1/`2 at the

lowest step all the way up to ∼ N2 Λ at the highest step. The spacing gets dense in lower

steps, while sparse in higher steps. If such features continue to hold in higher dimensions,

the colored gravity with large N might be very relevant for the early universe cosmology

in that the universe begins in an inflationary epoch with a large cosmological constant at

a very high stairstep. The colored matter are weakly coupled there, and hence they are

not confined. As the state of the universe decays towards lower stairsteps, the effective

cosmological constant decreases sequentially and eventually exits the inflation. The colored

matter fields start to interact stronger and eventually form heavy color-neutral composites.

It is in this synopsis that the spin-two colored matter fields might play a novel role in the

current paradigm of the inflationary cosmology.

9Strictly speaking, the equation (6.35) alone is weaker than the first-order one (6.30). The former

describes one propagating degrees of freedom, while the latter does not have any bulk mode and corresponds

to the spectrum described by (6.27). Note that the latter partially-massless spectrum is what the three-

dimensional conformal gravity contains analogously to the four-dimensional case [45–47]. To recapitulate, in

three dimensions (not in higher dimensions), there are two kinds of partially-massless fields for the maximal

depth, which includes the spin-two partially-massless spectrum. We shall discuss more about this subtlety

in the companion paper [27].
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Figure 3. Potential of the colored gravity in dS (N = 15): k is the parameter of a curve in su(15)

that passes through the extremum points.

We also speculate on a novel approach to the three-dimensional quantum colored grav-

ity. At large N , the contribution of the O(N/2) multiple vacua in the path integral might

be captured by the su(N) random matrix model given by

ZMM =

∫
dX exp [i c V (X)] . (7.1)

It would be also interesting to explore ab initio definition of the three-dimensional quantum

gravity starting from tensor-field valued matrix models.

This work brings in many open problems worth of further investigation. First of all,

extensions to (higher-spin) supergravity as well as the analysis of the asymptotic symme-

tries [48–50] are imminent. Further extensions to color-decoration of the known higher-

spin gravity in three-dimensional Lifshitz spacetime [51] and flat spacetime [52, 53] are

also straightforward. Extension to higher-dimensional spacetime is also highly interesting.

A version of such situation was already studied in the context of AdS/CFT correspon-

dence [54]. Vasiliev equations for color-decorated higher-spin theories needs to be better

understood, along with higher-dimensional counterpart of the stairstep potential we found

in three dimensions. As the color dynamics is described by Chern-Simons gauge theory,

one might anticipate to formulate colored gravity in any dimensions in terms of a version

of Chern-Simons formulation, perhaps, along the lines of [55] and [56]. Quantum aspects

of color-decorated gravity is an avenue to be explored. In particular, consequences and

implications of strong color interactions among colored spin-two fields. Turning to the in-

flationary cosmology, it would be interesting to understand how the color-decoration mod-
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ifies the infrared dynamics of interacting massless spin-two fields at super-horizon scales.

This brings one to investigate stochastic dynamics of these fields, as would be described

by color-decorated version of the Langevin dynamics [57, 58].
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A Spin-two fields in three dimensions

In this section, we briefly review massive and (partially) massless spin-two field in three

dimensions. Let us begin with the standard Fierz-Pauli massive spin-two action in (A)dSd+1

background,

LFP(χ) = −1

2
∇ρ χµν ∇ρ χµν +∇ν χµν ∇ρ χµρ −∇µ χρρ∇ν χµν +

1

2
∇µ χρρ∇µ χσσ

+
σ

`2

(
χµν χµν +

d− 2

2
χµµ χ

ν
ν

)
− 1

2
m2 (χµν χµν − χµµ χνν) , (A.1)

whose equations of motion reduce to the Fierz system:(
∇2 +

2σ

`2
−m2

)
χµν = 0 , χµµ = 0 = ∇µ χµν . (A.2)

In terms of the lowest energy ∆, the mass parameter m is given as

σ `2m2 = ∆ (∆− d) = µ2 − d2

4
, µ = ∆− d

2
. (A.3)

In AdS, a very massive field corresponds to a large real µ, whereas in dS it corresponds

to a large pure imaginary µ. When the mass term of the action takes a special value, the

action acquires gauge symmetries: there are two such points, m2 = 0 for massless-ness and

m2 = −d−1
`2

σ for partially-massless-ness. Due to the gauge symmetries, these spectra have

smaller number of DoF than the massive one. In particular, partially-massless spin-two

field has the same amount of DoF as massless spin-two and massless spin-one fields. The

basic properties of massless and partially-massless spectra are summarized in table 1.

In three dimensions, any spin-two spectrum can be described in terms of a first-

derivative Lagrangian. Again beginning with the massive Lagrangian (A.1), we can re-

formulate the Lagrangian into

LFD(χ, τ) =
1

2
εµνρ

(
τµ
λ∇ν χρλ + χµ

λ∇ν τρλ
)

+ µ
(
τ[µ

µ τν]
ν +

σ

`2
χ[µ

µ χν]
ν
)
, (A.4)
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Spectrum m2 ∆+ µ Gauge symmetry

Massless 0 d d
2 δ χµν = ∇(µ ξν)

partially-massless −d−1
`2

σ d− 1 d−2
2 δ χµν =

(
∇µ∇ν − σ

`2
gµν
)
ξ

Table 1. Massless and partially-massless spin-two fields.

by introducing an auxiliary field τµν . Here, the tensors χµν and τµν do not have any

symmetry properties. By integrating out τµν — that is by plugging in the solution τµν(χ)

of its own equation — one can show that the antisymmetric part of τµν drops and the

Lagrangian (A.4) reproduces the Fierz-Pauli Lagrangian (A.1) up to a factor :

LFD(χ, τ(χ)) =
1

µ
LFP(χ) . (A.5)

It is more convenient to recast the Lagrangian (A.4) in terms of ϕµν and ϕ̃µν :

χµν =
√
σ ` (ϕµν − ϕ̃µν) , τµν = ϕµν + ϕ̃µν . (A.6)

so that the massive spin-two Lagrangian splits into the parity breaking spin +2 and spin

−2 parts:

LFD(χ, τ) = L+2(ϕ) + L−2(ϕ̃) . (A.7)

Here, the self-dual massive spin ±2 Lagrangian [59] is given by

L±2(ϕ) = ±
√
σ ` εµνρ ϕµ

λ∇ν ϕρλ + 2µϕ[µ
µ ϕν]

ν . (A.8)

Let us remark an unusual feature of this parity breaking massive spin-two Lagrangian

in three dimensions: the sign of the mass-like term actually determines whether the La-

grangian is ghost or not, the positive sign for the unitary case and the negative sign for the

ghost, whereas the sign of the kinetic-like term determines the sign of the spin. These can

be seen, for example, by dualizing the above first-derivative Lagrangian to the second-order

Lagrangian and relating µ to the sign in front of this Lagrangian. For this reason, one can

render a unitary spin-two field to a ghost one by only modifying its mass-like term in the

first order description of three dimensional theories. Throughout this paper, we encounter

three different cases: firstly, the µ = 1 case corresponds to unitary massless spin-two field,

whereas the µ = −1 case gives ghost massless spin-two field. The case of µ = 0 describes

partially-massless spin-two field, which does not admit any two-derivative description as is

clear from (A.4) and (A.5).
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