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ABSTRACT

We report the discovery of a high-redshift, massive molecular outflow in the starburst galaxy SPT0346-52 (z = 5.656) via
the detected absorption of high-excitation water transitions (H,O 4,3—4,4 and H,O 3;30—3,;) with the Atacama Large Mil-
limeter/submillimeter Array (ALMA). The host galaxy is one of the most powerful starburst galaxies at high redshift (star for-
mation rate; SFR ~ 3600 M, year™!), with an extremely compact (~320pc) star formation region and a SFR surface density
(Zskr ~ 5500 Mg, year™! kpc™2) five times higher than “maximum” (i.e. Eddington-limited) starbursts, implying a highly transient
phase. The estimated outflow rate is ~500 M, year™!, which is much lower than the SFR, implying that in this extreme starburst the
outflow capabilities saturate and the outflow is no longer capable of regulating star formation, resulting in a runaway process in which
star formation will use up all available gas in less than 30 Myr. Finally, while previous kinematic investigations of this source revealed
possible evidence for an ongoing major merger, the coincidence of the hyper-compact starburst and high-excitation water absorption

indicates that this is a single starburst galaxy surrounded by a disc.
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1. Introduction

Massive galactic outflows in the early universe have been
invoked as a key mechanism to regulate or even quench star
formation in galaxies (e.g. Muratov et al. 2015; Hayward &
Hopkins 2017), and are therefore possibly responsible for the
population of massive, passive, and old galaxies, some of which
are already in place at z ~ 2—4 (e.g. Glazebrook et al. 2017;
Schreiber et al. 2018; Morishita et al. 2019; Merlin et al. 2019;
Santini et al. 2019). Massive, quasar-driven outflows have been
detected at z ~ 6, but they have turned out not to be as effective
as expected (Maiolino et al. 2012; Cicone et al. 2015; Bischetti
et al. 2019). Massive outflows driven by star formation (either
by supernovae or radiation pressure) have been more difficult to
detect at high z. While the ionised component has been detected
in large samples of high-z star forming galaxies, the cold molec-
ular or atomic component (which generally accounts for most of
the mass in the outflows) has been much more difficult to trace
and there are only a few detections at high z reported to date
(George et al. 2014; Spilker et al. 2018).

Cold outflows have been detected in local galaxies using a
number of tracers, including CO (e.g. Cicone et al. 2014, 2015;
Fluetsch et al. 2019), [CII] (e.g. Maiolino et al. 2012; Janssen
et al. 2016; Bischetti et al. 2019), OH (e.g. Fischer et al. 2010;
Sturm et al. 2011; Gonzdlez-Alfonso et al. 2017), and H,O (e.g.
Gonzdlez-Alfonso et al. 2010). Within this context, high-level

* Callibrated datacubes are only available at the CDS via anony-
mous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http:
//cdsarc.u-strashbg. fr/viz-bin/cat/J/A+A/632/L7
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water transitions are particularly interesting, as they trace gas
that must be very dense and warm in order to populate these
levels (e.g. Apostolovski et al. 2019), which are typically found
in the cores of compact starbursts.

In order to explore the dense and warm molecular outflow in
the starburst galaxy SPT 0346-52 at z = 5.656, we used band 7
of the Atacama Large Millimeter/submillimeter Array (ALMA)
to observe the two high-level water transitions HyO 4,344
(Vrest = 2264.14965 GHz, Ey ~ 432 K) and H,0 330—321 (Vrest =
2196.345756 GHz, Ey ~ 410K). SPT-SJ034640-5204.9 (here-
after SPT 0346-52) is a strongly lensed dusty starforming galaxy
(DSFGQG) first studied in the ALMA survey of Weil} et al. (2013)
and Vieira et al. (2013) who targeted bright sources detected by
the South Pole Telescope survey. Detailed lens modelling shows
that the galaxy is magnified by u = 5.6+0.1 (Spilker et al. 2016),
while a source-plane reconstruction reveals indications for either
an ongoing major merger or a disturbed rotating disc (Spilker
et al. 2015). Spectral energy distribution (SED) modelling yields
a massive star formation rate (SFR = 3600 + 300 M year™!; Ma
et al. 2016) and further observations have found substantial [C IT]
(Licy = 5.0+£0.7) x 100 L; Gullberg et al. 2015) and CO
(Lco-1) = (24 £0.2) x 108 Lo; Aravena et al. 2016) emission.
However, X-ray, radio, and H,O observations indicate that this
source is mainly powered by star formation, with no evidence
for a powerful active galactic nucleus (AGN) at any wavelength
(Ma et al. 2016; Apostolovski et al. 2019).

In this work, we present new ALMA observations of
SPT 0346-52 in band 7, further constraining the size of the
compact starburst and revealing H,O 4,3—44 and 330—35,
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absorption, which are interpreted as signatures of massive out-
flows. We assume (Q4, €, h) = (0.692, 0.308, 0.678) through-
out (Planck Collaboration XIII 2016). At this distance, 1 arcsec
corresponds to 6.033 proper kpc at the redshift of SPT 0346-52
(z =5.656).

2. Observations and data reduction

Our ALMA band 7 observations were taken between 4 and 11
October, 2016, using 40-43 antennas in configuration C40-7.
Out of 3.23 h of total observation time, 1.95h were on-source.
The complex gain, bandpass, and flux calibrators were J0425-
5331, J0538-4405, and J0334-4008, respectively. These data
were calibrated by ALMA staff following the standard pipeline.

Our frequency range was covered by two sidebands, each
composed of two spectral windows (SPWs) made of 128 chan-
nels, each of them 15.625MHz wide. Both sidebands are
tuned to the redshifted frequencies of water lines, specifically:
H,O 42’3—41!4 (redshifted to 340.167 GHz) and H,O 33,0—32’1
(redshifted to 329.980 GHz).

Continuum subtraction was performed in wuv-space
(CASA uvcontsub) using all line-free channels (i.e. excluding
+750kms™! from the expected frequency, assuming z = 5.656;
Aravena et al. 2016). While the continuum in each sideband
changes by ~1-2% over its corresponding frequency range,
we still assume a flat continuum. Continuum subtraction that
allowed for a slope in the continuum resulted in nonphysical
slopes, and therefore undersubtraction of continuum. We
emphasise that the water absorption lines in both the northern
and southeastern components are detected clearly regardless of
the continuum subtraction method.

Using the CASA task tclean, the continuum-subtracted data
in each sideband were used to create spectral data cubes with
channels of 15.6 MHz (14 km s~!) and natural weighting in order
to balance the root mean square (RMS) noise level and resolu-
tion. Since the atmospheric transmission varies strongly across
the lower band (i.e. between 0.3 and 0.6 for 2.0 mm precip-
itable water vapour), the RMS noise level per channel ranged
from 0.2 to 0.5 mJy beam™'. The RMS noise level of the upper
band is relatively constant at 0.2mJybeam~' per channel. A
continuum image was created using the line-free channels that
were used for continuum estimation, multifrequency synthesis,
and natural weighting. In order to maximise signal recovery, the
image was cleaned interactively, resulting in a restoring beam of
0.14” x 0.12"” at a position angle of ~ — 50°, and an RMS noise
level of 0.25 mJy beam™!.

3. Results and evidence for molecular outflow

The underlying continuum emission (at At ~ 130 um, due to
emission from warm dust heated by the radiation of young stars)
is clearly detected and resolved in three lensed images (top panel
of Fig. 1), consistent with previous observations (Vieira et al.
2013; Gullberg et al. 2015; Spilker et al. 2015). We detect clear
absorption associated with the two water transitions at the loca-
tion of the two strongest continuum images of the galaxy (i.e. the
northern and southeastern; middle and bottom panels of Fig. 1),
but no absorption feature is detected in the third image, which
however has much lower surface brightness in continuum and
therefore the associated spectrum is more noisy. At the northern
and southeastern component the water absorption is centred on
the peak of the two continuum images and is not resolved.

To ease interpretation of the water absorption line features,
we primarily consider the strongest absorption, H,O 330-3,
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Fig. 1. ALMA Band 7 continuum emission and H,O absorption. Top
panel: ALMA band-7 continuum emission. Contours are in steps of 5 X
(0o = 0.25mJy beam™"). Centre panel: H,O 330—321 and H,O 4,3-4,4
absorption profiles for the northern (strongest) lensed image. The
CO-derived redshift of the host galaxy is denoted by a vertical line.
Bottom panel: H,0 350—3,; and H,O 4,3—4, 4 absorption profiles for
the southeastern lensed image. The RMS noise level spectra are shown
as shaded areas.

in the northern image. The bottom of the absorption feature is
blueshifted by ~170kms~! with respect to the local standard
of rest traced by the centroid of the emission transitions of CO
(Aravena et al. 2016; Dong et al. 2019), [CII] (Litke et al. 2019),
and water emission lines associated with lower-energy transi-
tions, as illustrated in Fig. 2. The data for each of these emis-
sion profiles were taken from the ALMA pipeline products, and
the emission profiles shown here were extracted over an aper-
ture containing all three images, while the water absorption pro-
file was extracted from a compact region. The profile of the
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Fig. 2. Water absorption profile for the northern lensed image com-
pared with the total [CII] 158um (Litke et al. 2019), CO(8-7) (Dong
etal. 2019), CO(2-1) (Aravena et al. 2016), and water emission profiles
integrated over all three images. The H,O 24,—1,; and 2, ;—2¢, emis-
sion profiles were taken from ALMA archival data (2013.1.00722.S
and 2015.1.00117.S, respectively). All spectra were normalised to their
peak/dip and the velocity zero scale is set to zco = 5.6559, shown by
the black dotted line. The minimum of the water trough (z = 5.6522) is
shown by the blue dash-dotted line.

absorption is clearly asymmetric, with a blue wing extending to
—~500km s~! with respect to the absorption dip.

It should be noted that after taking velocity-dependent dif-
ferential lensing into account, the intrinsic CO(8-7) spectrum
was shown to be more symmetric (Dong et al. 2019). How-
ever, this differential lensing effect can only affect the extended,
low-excitation emission lines, but not the compact (unresolved),
high-excitation H,O absorption profile.

An asymmetric blueshifted (by 500 kms~') absorption pro-
file as seen here, especially for a transition that requires extreme
gas conditions (extremely high densities, high temperatures, and
high column densities, which cannot be associated with tidal fea-
tures or satellite galaxies), can only be explained in terms of
a dense molecular outflow along the line of sight (Gonzélez-
Alfonso et al. 2010, 2017; Fischer et al. 2010; Sturm et al. 2011;
Spilker et al. 2018).

4. Analysis
4.1. Hyperstarburst nature of SPT 0346-52

The far-infrared (FIR) continuum emission (tracing star forma-
tion) in the northern image is spatially resolved and has a beam-
deconvolved size of (0.34 = 0.03)” x (0.19 = 0.02)”. Taking the
velocity-independent continuum magnification factor (Spilker
et al. 2016) of g = 5.6 + 0.1 into account, this corresponds to a
source-plane half width at half max (HWHM) of 0.32 +0.02 kpc.
Using the SFR derived from a fit to SED constructed of multi-
ple IR/submillimeter continuum measurements (Ma et al. 2016)
(SFR = (3.6 + 0.3) x 10* Mg year™") and including a factor of
0.5 to scale the total SFR to the fraction of FIR flux contained
within the full width at half max (FWHM)', we find a SFR den-
sity of Zggr = (5.5 + 0.9) x 10° Mg year~! kpc=2. This value

1

This factor of 0.5 was derived by numerically integrating an elliptical
Gaussian with unity amplitude over all space, and dividing this value by
the integral of the same elliptical Gaussian over all space where its value
was >0.5.

is larger than the previously derived ~4.2 x 10> Mg, year™! kpc~>

(Hezaveh et al. 2013) and (1.5 +0.1) x 10° M, year™' kpc™2 (Ma
et al. 2016), due to our new constraints from our high-resolution
imaging. This surface density of star formation is a factor
of five times higher than that of “maximum” (i.e. Eddington-
limited) starbursts (Zspr gL ~ 10° M, year‘1 kpc‘z; Thompson
et al. 2005).

This extreme surface density of SFR may potentially be an
indication that the IR radiation is actually powered by an AGN,
however there is no evidence for an AGN at any wavelength, not
even in the hard X-ray Chandra observations, which at this red-
shift sample energies out to 60keV (Ma et al. 2016). In princi-
ple, the AGN could be completely Compton thick (i.e. absorbed
by a column of gas larger than 10% cm~2). However, the SED,
including IR bands, is better fit using a pure starburst model than
a composite starburst and AGN model (Ma et al. 2016). More-
over, the lack of radio emission is fully consistent with what is
expected by the SFR, and leaves little room for any contribu-
tion to the bolometric luminosity from a heavily Compton thick,
obscured quasar.

4.2. Kinematic nature of SPT 0346-52

Previous observations of the extended [C II], CO, and H,O emis-
sion from SPT 0346-52 (Litke et al. 2019; Dong et al. 2019;
Apostolovski et al. 2019) and their associated source-plane
reconstruction suggested evidence for an ongoing merger of two
galaxies, separated by ~500 kms~! and 1 kpc in the source plane.
Namely, they revealed asymmetric double-peaked emission, a
non-uniform velocity gradient, and a “bridge” of emission con-
necting the two sources.

However, a full multi-channel gravitational lens analysis
revealed that while the CO(8-7) profile appears asymmetric, this
is only due to differential lensing, and it is intrinsically sym-
metric (Dong et al. 2019). In addition, a simple rotating disc is
expected to present two emission peaks at high velocity, with
a lower-significance bridge connecting them (e.g. North et al.
2019). With this in mind, the current kinematics of this source
are not sufficient to distinguish between a double merger and a
single rotator (Bois et al. 2011; Simons et al. 2019).

One point that breaks this degeneracy is the finding that the
very compact continuum emission tracing the hyper-Eddington
starburst is located between the two [C II] peaks (Fig. 3), coinci-
dent with the peak of velocity dispersion. Moreover, our detec-
tion of high-excitation, compact water absorption is coincident
with this continuum peak. The small spatial extent of absorp-
tion requires a compact continuum source. The water absorp-
tion lines detailed in this work (H,O 4,3—4,4 and 3393, ) are
associated with ortho-H,O upper levels that are at an energy
of E,/kg ~ 400K above ground, and therefore they require
high temperatures, high gas densities (ny > 10® cm™3), and high
column densities (Ng > 10%*cm™) to be observable (van der
Tak et al. 2007; Gonzalez-Alfonso et al. 2012). Furthermore,
the lower levels, which must be populated in order to see our
lines in absorption, have E;/kg ~ 300K, underlining the need
for high-excitation gas to be able to see our lines. These con-
ditions (extremely compact source, hyper-Eddington starburst,
and extremely high column densities of warm gas) are seen only
in the cores of some extreme ultra-luminous infrared galaxies
(ULIRGS; Gonzéilez-Alfonso et al. 2010, 2012), and cannot be
associated with a tidal bridge of diffuse gas between two merg-
ing galaxies (Schirm et al. 2016).

These findings show that the merger interpretation cannot
hold. Due to the high redshift and excitation of this source, it
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Fig. 3. Red and blue halves of the [CII] emission in red and blue
contours respectively, together with the rest-frame 158 um continuum
in green and greyscale (Litke et al. 2019). Data were taken from the
ALMA archive and passed through the automatic CASA calibration
pipeline. A flat continuum was fit to the uv-space data using all line-
free channels, and this continuum was subtracted using the CASA task
UVCONTSUB. The continuum image was created with natural weight-
ing using the continuum model subtracted from the full cube, while
the line cube was created with the continuum-free visibilities. No lens-
ing correction has been applied (i.e. images are image-plane). [CII]
contours are shown at 5, 100, where 1o~ = 0.13 Jybeam™! kms~!, and
0.16 Jybeam™' kms™! for red and blue, respectively. Continuum con-
tours are shown at 10, 20, 30,400, where 1o = 0.47 mJy beam™'. The
continuum peak is clearly located between the red and blue [C II] peaks.
The synthesised beam of the continuum image is shown by the filled
green ellipse in the lower left.

is likely a rotating disc undergoing a number of minor merg-
ers, resulting in a galaxy similar to the simulated z = 6.18
“disturbed disk” of Kohandel et al. (2019). This would explain
the strong, compact central continuum emission and central
dense and warm outflow, as associated with the starbursting core
of the galaxy. In addition, the asymmetric double horned profile
(see Fig. 6 of Kohandel et al.), which however becomes sym-
metric when corrected for differential lensing (Dong et al. 2019),
and PV diagrams of [CII] (Litke et al. 2019) can be explained in
terms of a galactic disc (or even a ring).

4.3. Outflow model

In order to interpret the water absorption profile, we created a
simple spherical outflow model and examined its predicted spec-
trum. In this model, a spherical continuum emitter is surrounded
by a shell of outflowing gas which we assume to feature a con-
stant mass outflow rate (i.e. related velocity and density profiles).
The optical depth at each radius is then determined and used
to derive the fraction of emitted photons at a given frequency
blocked by each parcel of gas. By performing this calculation
at all locations in the outflowing shell, we create an absorp-
tion spectrum normalised by the total continuum level. Assum-
ing a range of shell widths and a velocity and density profile,
a Bayesian inference code (MultiNest; Feroz & Hobson 2008)
was used to explore a wide parameter space (i.e. outflow veloc-
ity dispersion, inner optical depth, and launch velocity) to find
the best-fit parameters?.

2 The spherical outflow model used to fit the observed spectrum is
available at https://github.com/gcjones2/SphOut. See appendix
for more details.
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Fig. 4. Molecular outflow rate as a function of SFR for galaxies with
detected molecular outflows. The range and average of best-fit outflow
rates of SPT 0346-52 for three possible shell widths are shown, assum-
ing zco and SFRgep = (3.6 + 0.3) x 10° M, year™! (Ma et al. 2015).
The molecular outflow detected in this work is in the most powerful
starburst. Additional data include both low-redshift sources (Fluetsch
et al. 2019) and the higher-redshift galaxies XID2028 (z = 1.593; Brusa
et al. 2018), SMM J2135 (z = 2.326; George et al. 2014), zC400528
(z = 2.387; Herrera-Camus et al. 2019), APM08279+5255 (z = 3.912;
Feruglio et al. 2017), and SPT2319-55 (z = 5.293; Spilker et al. 2018).
A representative uncertainty for all low-redshift sources (+0.3 dex) is
shown for one such source. Outflows driven by AGNs are shown by
diamonds, while those driven by starbursts are shown by star symbols.
Each object is coloured according to its redshift.

Since the current data suggest that this source is a sin-
gle, rotating galaxy rather than a pair of merging galaxies, we
adopt zco as the source redshift (where zco is taken from the
centroid of the CO profile). Exploring a range of shell widths
(i.e. dR/Rcont = 3, 19, and 10, following the geometries obta-
ined by Gonzdlez-Alfonso et al. (2010, 2012, 2017), and assum-
ing that the CO-based redshift traces the rest-frame of the galaxy,
these parameters yield possible total mass outflow rates in the
range M ~ 100-900 M, year™!, with an average value of M ~
500 M year~!.

When the results are compared to local galaxies and other
high-redshift outflows, it is apparent that the molecular outflow
in SPT 0346-52 is the one observed in the galaxy with the highest
SFR, by a large factor (Fig. 4).

Outflow rate can also be quantified in terms of the ratio of the
rate of mass expelled by the outflow to the SFR (i.e. the outflow
mass loading factor, 7). If we take the zco mass outflow rate val-
ues and assume SFRig = (3.6 + 0.3) x 10° M, year‘1 (Ma et al.
2016), then we find a mass loading factor of n ~ 0.03 — 0.28.
An earlier SED fit (Ma et al. 2015) yielded a larger value of
SFRsep = (4.5 +1.0) x 10> M, year‘l, which would result in an
even smaller mass loading factor of = M/SFR= 0.02 — 0.22.
For all assumed shell widths and SFRs, we find a significant out-
flow, with a mass-loading factor well below unity.

One may argue that, given that the CO, [CII], and (low-level)
H,O emission lines trace the rotating disc, their centroid may not
provide an accurate measurement of the systemic velocity. One
possibility is that the dip of the water absorption traces the sys-
temic velocity of the core of the galaxy. If one adopts the dip
of the water absorption as the rest-frame of the galaxy, then the
inferred outflow rate drops by more than one order of magnitude,
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making an even stronger case that in this galaxy the mass-
loading factor of the starburst-driven outflow is well below unity.

Outflows of local star forming galaxies show a mass-loading
factor of order unity while those hosting a powerful AGN often
have a loading factor significantly higher than unity (Cicone
et al. 2014; Fluetsch et al. 2019), as illustrated in Fig. 4. The
outflow loading factor in SPT 0346-52 is not well constrained
(i.e. n = 0.03 — 0.28, possibly even lower), but it is well below
unity. Most likely, for this hyperstarburst galaxy, whose Xgpr is
more than five times above the Eddington limit, its capability
of driving an outflow has saturated and the outflow rate does not
follow the same scaling with SFR as in other galaxies. The impli-
cation is that the outflow does not have the same “regulatory”
effect as in other less extreme star forming galaxies (lower SFR,
less compact, and lower Xgpgr). As a consequence this galaxy
is probably in a runaway phase, in which star formation is pro-
ceeding at a high rate and high efficiency, consuming all of the
available gas in less than ~30 Myr (Litke et al. 2019). If there is
no accretion of fresh gas from the intergalactic medium (IGM)
then this galaxy will quickly turn into a passive galaxy, which
will evolve into the population of passive galaxies observed to
be already in place at z ~ 2—4.

It is interesting that, contrary to many standard scenarios,
“uneffective” outflows (uneffective in their “ejective” mode)
could be a new route to rapidly quench star formation in a galaxy,
in the sense that this type of outflows allows star formation to
enter into a runaway process and to consume gas at an even
higher rate than usual. The key role of the outflow may how-
ever be to dump energy into the halo, thereby keeping it hot, and
preventing the accretion of fresh cold gas which could restart star
formation.

5. Conclusions

Here we present new ALMA observations in band 7 of
SPT 0346-52, a strongly lensed starburst galaxy at z = 5.656,
characterised by an SFR of 3600 M, year'.

Thanks to our higher angular resolution relative to previous
observations, we can measure more accurately measure the size
of the continuum emission (and therefore of the star forming
region), which turns out to have a half-light radius of 320+20 pc.
This results in an extremely high surface density of star for-
mation rate of Iggg = 5500 M year™! kpc~2, which is more
than five times higher than in a “maximum” starburst (i.e. an
Eddington-limited starburst), indicating that this galaxy must be
in a highly transient phase.

Furthermore, the data reveal H,O 4,3—4;4 and 339—3;
absorption, with asymmetric blueshifted profiles, which are
unambiguous signatures of a massive nuclear outflow, with
velocities up to 500kms~!. Using a spherical outflow model,
we find a mass outflow rate of ~100-900 M, year™!, imply-
ing a mass loading factor 7 much smaller than unity. An out-
flow mass loading factor of unity is what is observed in most
other star forming galaxies and is what is required by models to
“regulate” star formation. In this extreme galaxy the outflow,
despite being very massive, is not vigorous enough to regulate
star formation. As a consequence, star formation will proceed in
arunaway mode, at a high rate and high efficiency, consuming all
of the available gas in less than ~30 Myr, and therefore rapidly
quenching star formation. If not replenished with fresh gas from
the IGM, the galaxy will then evolve into the population of pas-
sive galaxies seen already in place at z ~ 2—4.

Finally, our results show that the previous interpretation of
a major merger for the kinematics of this source is untenable.

The compact continuum with very dense and warm outflowing
gas must be the core of a single compact starburst galaxy, while
emission lines (CO, [CII]) are likely tracing a gaseous disc (or
ring) in the host galaxy.
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Appendix A: Spherical outflow model
A.1. Model overview

In order to convert our observed absorption profile to physical
values (e.g. density, velocity, M), we first consider a spherical
outflow with a set inner radius (Ryy) and thickness (dR) around
a continuum source of radius Rcont. Next, we assume that the
inner continuum source radiates isotropically, with no limb dark-
ening. This results in three types of observed spectral features:
the continuum emission from the inner source, H,O absorption
by shell material between this source and the observer, and H,O
emission from the entire shell.

We require that the mass outflow rate is constant for all posi-
tions in the outflow (i.e. pAv = p4nr’v = constant; Scarlata &
Panagia 2015; Carr et al. 2018), which implies p « 1/(+%v), and
may be stated as:

,\Y

o(r) = v, (E) (A1)
r\ 72

S B A2

p(r) =p (RIN) (A2)

where vy is a constant. Adopting Gaussian units, the optical depth
of an outflow at radius r for a photon of a given transition of
water may be given by (Sobolev 1960; Castor 1970; Prochaska
et al. 2011; Scarlata & Panagia 2015; Carr et al. 2018):

ﬂezﬁu/llupl(r) r e
=2 — | — A3
) mecmy,oldv/dr]| T (RIN) (A-3)
2 u/lu DR
Tozﬂefl my! IN’ (A4)

me CmH2 oloY

where fj, is the oscillator strength, A;, is the wavelength of this
transition, and p;(r) is the number density of water molecules in
the lower state. We note that this form assumes a large velocity
gradient, a central isotropic emitter, and negligible stimulated
emission.

The fraction of photons blocked by a parcel of gas is given
by:
B=1-¢", (A.5)

Each photon from the IR source will only interact with an
H,0O molecule when the Doppler-shifted frequency of the photon
is equal to the resonant frequency of a transition, meaning that
the approaching hemisphere of the outflow will be blueshifted,
and the receding half redshifted. We focus only on the transi-
tion of H,O330—3,,. Because we assume spherical symmetry,
the physical space to explore may be described by only two vari-
ables: the distance from the centre of the IR source, measured in
the plane of the sky (7gy), and the position in the shell, as mea-
sured parallel to our line of sight (zshen). We split the domain
of rgy into small segments, examine each value of zgey, and
use Eq. (A.5) to calculate the fraction of incident radiation that
is absorbed by each cell. We then account for the symmetry of
our model by multiplying this cell radiation fraction by the frac-
tion of the continuum source that is subtended by this value of
Teky (1€ 2rskydr/Rin2), and we add this contribution to the total
spectrum.

Since the outflow is certainly highly turbulent, we also con-
sider a velocity dispersion o, by convolving our continuum-
normalised spectrum with a 1D Gaussian.
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A.2. Model implementation

Due to the arguments in the main text, we believe that the rest-
frame of the redshift is most likely that traced by the CO-based
redshift (zco = 5.656), but will also consider the effects of
assuming the redshift of the red component of [CII] emission
(zicmp.r = 5.6594; Litke et al. 2019).

While any value of y would satisfy mass conservation
(Egs. (A.1) and (A.2)), we require decreasing velocity and den-
sity as a function of radius (i.e. =2 < y < 0), and thus assume
y=-1

While it is also possible to fit for the shell thickness (dR),
these fits yields poor constraints. The resolution of the data
is insufficient to directly observe the spatial extent of the out-
flow. However, detailed modelling of local ULIRGs similar to
SPT 0346-52 (i.e. very compact) suggest dR/Rcont values of
~3 for NGC 4418 and ~19 for Arp 220 (Gonzélez-Alfonso et al.
2017). Since the central cores of both of these sources exhibit
the necessary temperature for the upper level of our transitions
(~350—-400 K), we explore the effects of the value of dRRconT =
3, 19, and the intermediate case of 10.

In order to account for the emission, the four emission
profiles of [CII] 158um (Litke et al. 2019), CO(8-7) (Dong
et al. 2019), CO(2-1) (Aravena et al. 2016), and H,O 2p,-1;
and 2;;-2p» (2013.1.00722.S and 2015.1.00117.S, respec-
tively) were averaged and binned to the same velocity reso-
lution as our observations. This average emission profile was
added to the convolved spectrum, with a scaling factor. How-
ever, this scaling factor was highly uncertain, and was usually
quite small. Because of this, we assume that the emission is
negligible.

There are several additional parameters that we do not con-
sider, including the ratio of the continuum source radius to the
shell inner radius (i.e. the size of the hollow region inside the
shell) and aperture (as a fraction of the total source radius) of
our observations. As the aperture becomes smaller than unity,
the amount of flux that is absorbed at small negative veloci-
ties decreases. Since we observe a large amount of absorption
at these velocities, we assume that both values are unity. In addi-
tion, it is possible to consider a biconic outflow rather than a
spherical outflow, but if azimuthal symmetry is assumed, then
any change in the conic opening angle would result in lower
absorption at small negative velocities. In summary, we assume
that the inner boundary of the shell is coincident with the outer
surface of the continuum source, and consider the entire spheri-
cal outflow shell.

We apply this model to the best spectrum for SPT 0346-52:
H,0 330—3,, for the northern component. Using the Bayesian
inference code MultiNest (Feroz & Hobson 2008) and its python
wrapper (PyMultiNest; Buchner et al. 2014), we fit for the fol-
lowing free parameters: the velocity at the interior surface of the
shell (v,), the optical depth constant (7,,), and the FWHM of the
convolving Gaussian (0,).

Since we have no initial information on the geometry
of the outflow, our prior probability distributions are rela-
tively broad. We adopt log-uniform distributions for v, and
o, (10°~10*>kms™"), and a log-uniform for 7, in the range
1078-10°.

‘We may estimate the mass outflow rate of the shell by assum-
ing the simple form (Rupke et al. 2005):
M = 4nrpv. (A.6)
Due to our assumption of mass conservation in the outflow, this
value is constant for all radii inside the outflow. Next, we may
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estimate the density of water in each lower state by inverting
equation A.4:

ToMeCMH,0loY

A7
ﬂezﬁu/lluRlN ( )

Pr0(RIN) =
Adopting a density ratio of Xu,0 = PH,0/Ptotal and assuming
a Boltzmann distribution (Mangum & Shirley 2015), the total
density can be written as:

5
PH,0 _ PH,0,1Cr0t€ T

Protal = =
Xu,0 Xn,091

(A.8)

where piora 1S the total matter density of the outflow, QO is
the rotational partition function, and g; is the degeneracy of the
lower state. We may determine f;, using (Huber & Sandeman
1986):

fiu = (1.4992)2A,, 2% (A9)
gi

where A is measured in centimetres, g, = ¢g; = 7, and A, =
0.06616s~!. Combining these expressions, we find:

2
v 4RINTomecmHzOUo Qrote
€ fuduXu,09:

Since the water absorption is unresolved, we assume an
upper size limit of the beam size (~0.13” = 0.8 kpc). Adopting
a magnification factor of u = 5.6 = 0.1 (Spilker et al. 2016) for
this compact source, this corresponds to a source-plane radius of
R]N =0.07 kpC

If we assume that the outflow is dominated by H,, then we
may approximate Xpy,0 ~ pm,0/p ~ (mu,0/mu,)(Nu,0/Nn,) ~
9xm,0, where ym,0o = Nu,0/Nu, is the abundance of water
with respect to H,. This abundance varies by environment:
xm,0 ~ 0.5 x 1077 for star forming regions in the Milky Way
(Flagey et al. 2013) and yu,0 ~ 107° for the warm, extended
components of local ULIRGs (Gonzilez-Alfonso et al. 2010,
2012), although these values are model dependent. Much higher
water abundances of ym,0 ~ 107* have been found for shock-
heated gas in protostellar outflows (Melnick et al. 2008), but
lower abundances have been derived for the outflow as a whole
(e.g. xmo ~ 3 X 1077; Karska et al. 2014; Bally 2016). Since
SPT 0346-52 is an extreme ULIRG, we adopt the same abun-
dance inferred for local ULIRGS (yn,0 ~ 1079).

E;/kT

(A.10)
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