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57.1 τ Branching Fractions
The τ Listings contains 244 entries that correspond to either

a τ partial decay fraction into a specific decay mode (branching
fraction) or a ratio of two τ partial decay fractions (branching
ratio). Experimental information provides values for 147 of these
quantities, upper limits for 61 branching fractions to Lepton Fam-
ily number, Lepton number, or Baryon number violating modes,
and 36 additional upper limits for other modes. A total of 170
measurements of τ branching fraction and branching ratio mea-
surements is used for a global fit that determines 129 quantities.

57.2 The constrained fit to τ branching fractions
The τ branching fractions fit uses the reported values, uncer-

tanties and statistical correlations of the τ branching fractions
and branching ratios measurements. Asymmetric uncertainties
are symmetrized as σ2

symm = (σ2
+ + σ2

−)/2. Additionally, the
most precise experimental inputs are treated according to how
they depend on external parameters on the basis of their docu-
mentation [1]. The τ measurements may depend on parameters
such as the τ pair production cross-section in e+e− annihilations
at the Υ (4S) peak. In some cases, measurements reported in dif-
ferent papers by the same collaboration may depend on common
parameters like the estimate of the integrated luminosity or of
particle identification efficiencies. For all the significant detected
dependencies, the τ measurements and their uncertainties are up-
dated to account for the updated values of the external param-
eters. The dependencies on common systematic effects are also
determined in size and sign, and all the common systematic de-
pendencies of different measurements are used together with the
published statistical and systematic uncertainties and correlations
in order to compute a single all-inclusive variance and covariance
matrix of the experimental inputs of the fit.
The fit procedure parameters correspond to τ quantities that

are fit to the experimental measurements while respecting rela-
tions described by a series of constraint equations. All the experi-
mental inputs and all the constraint equations are reported in the
τ Listings section that follows this review. With respect to the
2016, 2017 and 2018 editions, the fit uses one more experimen-
tal measurement, published by the BaBar collaboration in 2018,
on B(τ → K−K0ντ ) [2]. If only a few measurements are cor-
related, the correlation coefficients are listed in the footnote for
each measurement (see for example Γ (particle− ≥ 0neutrals ≥
0K0ντ (“1-prong”))/Γtotal). If a large number of measurements
are correlated, then the full correlation matrix is listed in the
footnote to the measurement that first appears in the τ Listings.
Footnotes to the other measurements refer to the first one. For
example, the large correlation matrices for the branching frac-
tion or ratio measurements contained in Refs. [3] [4] are listed
in Footnotes to the Γ (e−νeντ )/Γtotal and Γ (h−ντ )/Γtotal mea-
surements respectively. The constraints between the τ branching
fractions and ratios include coefficients that correspond to phys-
ical quantities, like for instance the branching fractions of the η
and ω mesons. All quantities are taken from the 2018 edition of
the Review of Particle Physics. Their uncertainties are neglected
in the fit.
We obtain the branching fraction of τ → a−1 (→ π−γ)ντ us-

ing the ALEPH estimate for B(a−1 → π−γ) [3], which uses the
measurement of Γ (a−1 → π−γ) [5]. In the fit, we assume that
B(τ− → a−1 ντ ) is equal to B(τ → π−π−π+ντ (ex. K0, ω)) +
B(τ → π−2π0ντ (ex. K0)), neglecting the observed but negligi-
ble branching fractions to other modes, including B(a−1 → π−γ).
In some cases, constraints describe approximate relations that

nevertheless hold within the present experimental precision. For
instance, the constraint B(τ → K−K−K+ντ ) = B(τ →
K−φντ )× B(φ→ K+K−) is justified within the current experi-
mental evidence.
In the fit, scale factors are applied to the published uncertainties

of measurements only if significant inconsistency between different
measurements remain after accounting for all relevant uncertain-
ties and correlations. After examining the data and the fit pulls,
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Figure 57.1: Pulls of individual measurements against the respec-
tive fitted quantity. No scale factor is used.

it has been decided to apply just one scale factor of 5.4 on the
measurements of B(τ → K−K−K+ντ ). The scale factor has been
computed and applied according to the standard PDG procedure.
Without the scale factor applied, the χ2 probability of the fit is
about 2%. On a per-measurement basis, the pull distribution in
figure 57.1 indicates that just a few measurements have more than
3σ pulls. (The uncertainties to obtain the pulls are computed us-
ing the measurements variance matrix and the variance matrix
of the result, accounting for the fact that the variance matrix of
the result is obtained from the measurement variance with the
fit.) The pull probability distribution in figure 57.2 is reasonably
flat. With many measurements some entries on the tails of the
normal distribution must be expected. There are 170 pulls, one
per measurement. They are partially correlated, and the effective
number of independent pulls is equal to the number of degrees of
freedom of the fit, 125. Only the τ → K−K−K+ντ decay mode
has a pull that is inconsistent at the level of more than 3σ even
if considered as the largest pull in a set of 125. This confirms the
choice of adopting just that one scale factor.
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Figure 57.2: Probability of individual measurement pulls against
the respective fitted quantity. No scale factor is used.

After scaling the error, the constrained fit has a χ2 of 135 for
125 degrees of freedom, corresponding to a χ2 probability of 26%.
We use 170 measurements and 84 constraints on the branching
fractions and ratios to determine 129 quantities, consisting of
112 branching fractions and 17 branching ratios. A total of 85
quantities have at least one measurement in the fit. The con-
straints include the unitarity constraint on the sum of all the
exclusive τ decay modes, Ball = 1. If the unitarity constraint is
released, the fit result for Ball is consistent with unitarity with
1− Ball = (0.00± 0.10)%.
For the convenience of summarizing the fit results, we list in the

following the values and uncertainties for a set of 46 “basis” decay
modes, from which all remaining branching fractions and ratios
can be obtained using the constraints. The basis decay modes are
not intended to sum up to 1. Since some basis quantities rep-
resent multiple branching fractions that are related by constraint
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equations, they are properly weighted and the unitarity constraint
corresponds to a linear combination whose coefficients are listed
in the following. The correlation matrix between the basis modes
is reported in the τ Listings.

decay mode fit result (%) coefficient
µ−ν̄µντ 17.3937± 0.0384 1.0000
e−ν̄eντ 17.8175± 0.0399 1.0000
π−ντ 10.8164± 0.0512 1.0000
K−ντ 0.6964± 0.0096 1.0000
π−π0ντ 25.4941± 0.0893 1.0000
K−π0ντ 0.4328± 0.0148 1.0000
π−2π0ντ (ex. K0) 9.2595± 0.0964 1.0021
K−2π0ντ (ex. K0) 0.0647± 0.0218 1.0000
π−3π0ντ (ex. K0) 1.0429± 0.0707 1.0000
K−3π0ντ (ex. K0, η) 0.0478± 0.0212 1.0000
h−4π0ντ (ex. K0, η) 0.1118± 0.0391 1.0000
π−K̄0ντ 0.8384± 0.0138 1.0000
K−K0ντ 0.1486± 0.0034 1.0000
π−K̄0π0ντ 0.3817± 0.0129 1.0000
K−π0K0ντ 0.1500± 0.0070 1.0000
π−K̄02π0ντ (ex. K0) 0.0263± 0.0226 1.0000
π−K0

SK
0
Sντ 0.0235± 0.0006 2.0000

π−K0
SK

0
Lντ 0.1081± 0.0241 1.0000

π−π0K0
SK

0
Sντ 0.0018± 0.0002 2.0000

π−π0K0
SK

0
Lντ 0.0325± 0.0119 1.0000

K̄0h−h−h+ντ 0.0247± 0.0199 1.0000
π−π−π+ντ (ex. K0, ω) 8.9868± 0.0513 1.0021
π−π−π+π0ντ (ex. K0, ω) 2.7404± 0.0710 1.0000
h−h−h+2π0ντ (ex. K0, ω, η) 0.0981± 0.0356 1.0000
π−K−K+ντ 0.1435± 0.0027 1.0000
π−K−K+π0ντ 0.0061± 0.0018 1.0000
π−π0ηντ 0.1389± 0.0072 1.0000
K−ηντ 0.0155± 0.0008 1.0000
K−π0ηντ 0.0048± 0.0012 1.0000
π−K̄0ηντ 0.0094± 0.0015 1.0000
π−π+π−ηντ (ex. K0) 0.0220± 0.0013 1.0000
K−ωντ 0.0410± 0.0092 1.0000
h−π0ωντ 0.4085± 0.0419 1.0000
K−φντ 0.0044± 0.0016 0.8320
π−ωντ 1.9494± 0.0645 1.0000
K−π−π+ντ (ex. K0, ω) 0.2927± 0.0068 1.0000
K−π−π+π0ντ (ex. K0, ω, η) 0.0394± 0.0142 1.0000
π−2π0ωντ (ex. K0) 0.0072± 0.0016 1.0000
2π−π+3π0ντ (ex. K0, η, ω, f1) 0.0014± 0.0027 1.0000
3π−2π+ντ (ex. K0, ω, f1) 0.0775± 0.0030 1.0000
K−2π−2π+ντ (ex. K0) 0.0001± 0.0001 1.0000
2π−π+ωντ (ex. K0) 0.0084± 0.0006 1.0000
3π−2π+π0ντ (ex. K0, η, ω, f1) 0.0038± 0.0009 1.0000
K−2π−2π+π0ντ (ex. K0) 0.0001± 0.0001 1.0000
π−f1ντ (f1 → 2π−2π+) 0.0052± 0.0004 1.0000
π−2π0ηντ 0.0195± 0.0038 1.0000

In defining the fit constraints and in selecting the modes that
sum up to one we made some assumptions and choices. We as-
sume that some channels, like τ− → π−K+π− ≥ 0π0ντ and
τ− → π+K−K− ≥ 0π0ντ , have negligible branching fractions as
expected from the Standard Model, even if the experimental lim-
its for these branching fractions are not very stringent. The 95%
confidence level upper limits are B(τ− → π−K+π− ≥ 0π0ντ ) <
0.25% and B(τ− → π+K−K− ≥ 0π0ντ ) < 0.09%, values not so
different from measured branching fractions for allowed 3-prong
modes containing charged kaons. For decays to final states con-
taining one neutral kaon we assume that the branching fraction
with the K0

L are the same as the corresponding one with a K0
S .

On decays with two neutral kaons we assume that the branching
fractions with K0

LK
0
L are the same as the ones with K0

SK
0
S .

57.3 BaBar and Belle measure on average lower
branching fractions and ratios.
We compare the BaBar and Belle measurements with the results

of a fit where all their measurements have been excluded. We find
that that BaBar and Belle measure on average lower τ branching

fractions and ratios than the other experiments. Figures 57.3 and
57.4 show histograms of the 28 normalized differences between
the B-factory measurements and the respective non-B-factory fit
results. The normalization is the uncertainty on the difference.
The average normalized difference between the two sets of mea-
surements is -0.8σ (-0.7σ for the 16 Belle measurements and -0.8σ
for the 12 BaBar measurements).
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Figure 57.3: Distribution of the normalized difference between 12
measurements of branching fractions and ratios published by the
BaBar collaboration and the respective averages computed using
only non-B-factory measurements.
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Figure 57.4: Distribution of the normalized difference between 16
measurements of branching fractions and ratios published by the
Belle collaboration and the respective averages computed using
only non-B-factory measurements.

57.4 Overconsistency of Leptonic Branching
Fraction Measurements.
As observed in the previous editions of this review, measure-

ments of the leptonic branching fractions are more consistent with
each other than expected from the quoted errors on the individual
measurements. The χ2 is 0.34 for Be and 0.08 for Bµ. Assuming
normal errors, the probability of a smaller χ2 is 1.3% for Be and
0.08% for Bµ.

57.5 Technical implementation of the fit
The fit computes a set of quantities denoted with qi by min-

imizing a χ2 while respecting a series of equality constraints on
the qi. The χ2 is computed using the measurements mi and their
covariance matrix Eij as χ2 = (mi − Aikqk)tE−1

ij (mj − Ajlql),
where the model matrix Aij is used to get the vector of the pre-
dicted measurements m′i from the vector of the fit parameters qj
as m′i = Aijqj . In this particular implementation the measure-
ments are grouped by the quantity that they measure, and all
quantities with at least one measurement correspond to a fit pa-
rameter. Therefore, the matrix Aij has one row per measurement
mi and one column per fitted quantity qj , with unity coefficients
for the rows and column that identify a measurement mi of the
quantity qj , respectively. The constraints are equations involving
the fit parameters. The fit does not impose limitations on the
functional form of the constraints. In summary, the fit requires:

min
[
χ2(qk)

]
= min

[
(mi −Aikqk)tE−1

ij (mj −Ajlql)
]
, (57.1)

subjected to fr(qs)− cr = 0 , (57.2)

where the left term of Eq. 57.2 defines the constraint expressions.
Using the method of Lagrange multipliers, a set of equations is
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obtained by taking the derivatives with respect to the fitted quan-
tities qk and the Lagrange multipliers λr of the sum of the χ2 and
the constraint expressions multiplied by the Lagrange multipliers
λr, one for each constraint:

min
[
(Aikqk−mi)tE−1

ij (Ajlql−mj) + 2λr(fr(qs)− cr)
]

=

= min
[
χ̃2(qk, λr)

]
,

(∂/∂qk, ∂/∂λr)
[
χ̃2(qk, λr)

]
= 0 . (57.3)

Eq. 57.3 defines a set of equations for the vector of the unknowns
(qk, λr), some of which may be non-linear, in case of non-linear
constraints. An iterative minimization procedure approximates
at each step the non-linear constraint expressions by their first
order Taylor expansion around the current values of the fitted
quantities, q̄s:

fr(qs)− cr = fr(q̄s) + ∂fr(qs)
∂qs

∣∣∣
q̄s

(qs − q̄s)− cr ,

which can be written as

Brsqs − c′r ,

where c′r are the resulting constant known terms, independent of
qs at first order. After linearization, the differentiation by qk and
λr is trivial and leads to a set of linear equations

AtkiE
−1
ij Ajlql +Btkrλr = AtkiE

−1
ij mj , (57.4)

Brsqs = c′r , (57.5)

which can be expressed as

Fijuj = vi , (57.6)

where uj = (qk, λr) and vi is the vector of the known constant
terms running over the index k and then r in the right terms of
Eq. 57.4 and Eq. 57.5, respectively. Solving the equation set in
Eq. 57.6 by matrix inversion gives the the fitted quantities and
their variance and covariance matrix, using the measurements and
their variance and covariance matrix. The fit procedure starts by
computing the linear approximation of the non-linear constraint
expressions around the quantities seed values. With an iterative
procedure, the unknowns are updated at each step by solving the
equations and the equations are then linearized around the up-
dated values, until the variation of the fitted unknowns is reduced
below a numerically small threshold.
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