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universality of the leading term in the heavy-quark expansion, lifetime
ratios such as τ(B−)/τ(B̄0), τ(B̄0

s )/τ(B̄
0) and τ(Λb)/τ(B̄

0) are
particularly sensitive to the hadronic parameters determining the
power corrections in the expansion. In order to understand these ratios
theoretically, it is necessary to include phase-space enhanced power
corrections of order (ΛQCD/mb)

3 [30,31] as well as short-distance
perturbative effects [32] in the calculation.

A formula analogous to Eq. (16.7) can be derived for differential
distributions in specific inclusive decay processes, assuming that these
distributions are integrated over a sufficiently large region of phase
space to ensure quark-hadron duality. Important examples are the
distributions in the lepton energy and the lepton invariant mass, as
well as moments of the invariant hadronic mass distribution in the
semileptonic processes B̄ → Xu ℓ ν̄ and B̄ → Xc ℓ ν̄. A global fit of
semileptonic decay distributions can be used to determine the CKM
matrix elements |Vub| and |Vcb| along with heavy-quark parameters
such as the masses mb, mc and the hadronic parameters µ2π(B),
µ2G(B). These determinations provide some of the most accurate
values for these parameters [33].

16.2.6. Shape functions and non-local power corrections : In
certain regions of phase space, in which the hadronic final state
in an inclusive heavy-hadron decay is made up of light energetic
partons, the local OPE for inclusive decays must be replaced by a
more complicated expansion involving hadronic matrix elements of
non-local light-ray operators [34,35]. Prominent examples are the
radiative decay B̄ → Xsγ for large photon energy Eγ near mB/2, and
the semileptonic decay B̄ → Xu ℓ ν̄ at large lepton energy or small
hadronic invariant mass. In these cases, the differential decay rates
at leading order in the heavy-quark expansion can be written in the
factorized form dΓ = H J⊗S [36], where the hard function H and the
jet function J are calculable in perturbation theory. The characteristic
scales for these functions are set by mb and (mbΛQCD)

1/2, respectively.
The soft function

S(ω) =

∫
dt

4π
e−iωt 〈B̄(v)| h̄v(tn)Yn(tn)Y †

n (0)hv(0)|B̄(v)〉 (16.8)

is a genuinely non-perturbative object called the shape function [34,35].
Here Yn are soft Wilson lines along a light-like direction n aligned
with the momentum of the hadronic final-state jet. The jet function
and the shape function share a common variable ω ∼ ΛQCD, and the
symbol ⊗ denotes a convolution in this variable.

While the hard functions are different for the decays B̄ → Xsγ and
B̄ → Xu ℓν̄, the jet and soft functions are identical at leading order
in ΛQCD/mQ. This is particularly important for the shape function,
which introduces non-perturbative physics into the theoretical
predictions for the decay rates in the regions of experimental interest.
The fact that both processes depend on the same non-perturbative
function makes it possible to use the measured shape of the B̄ → Xsγ
photon spectrum to reduce the theoretical uncertainties in the
determination of the CKM element |Vub| from semileptonic decays.
In higher orders of the heavy-quark expansion, an increasing number
of subleading jet and soft functions are required to describe the
decay distributions [37]. These have been analyzed in detail at order
1/mb [38–40]. In the case of B̄ → Xsγ, some of these non-local effects
survive in the total decay rate and give rise to irreducible hadronic
uncertainties [41]. The technology for deriving the corresponding
factorization theorems relies on the soft-collinear effective theory, to
which we now turn.

16.3. Soft-Collinear Effective Theory

As discussed in the previous section, soft gluons that bind a heavy
quark inside a heavy meson cannot change the virtuality of that
heavy quark by a significant amount. The ratio ΛQCD/mQ provides
the expansion parameter in HQET, which is a small parameter since
mQ ≫ ΛQCD. This obviously does not work when considering light
quarks. However, if the energy Q of the quarks is large, the ratio
ΛQCD/Q provides a small parameter, which can be used to construct
an effective theory. One major difference to HQET is that light
energetic quarks cannot only emit soft gluons, but they can also

emit collinear gluons (an energetic gluon in the same direction as
the original quark), without parametrically changing their virtuality.
Thus, to fully reproduce the long-distance physics of energetic quarks
requires that one includes their interactions with both soft and
collinear particles. The resulting effective theory is therefore called
soft-collinear effective theory (SCET) [42–44].

A single energetic particle can always be boosted to a frame where
all momentum components have similar size, in which case there is no
small expansion parameter. Thus the presence of energetic particles
must refer to a reference frame defined by external kinematics. SCET
has a wide range of applications; some examples are the production
of energetic, light states in the decay of a heavy particle in its rest
frame, the production of energetic jets in collider environments, and
the scattering of energetic particles off a target at rest. In this brief
review we will outline the main features of this effective theory and
mention a few selected applications.

16.3.1. General idea of the expansion : Consider a quark
with virtuality much less than its energy Q, moving along the
direction ~n. It is convenient to parameterize the momentum pn
of this particle in terms of its light-cone components, defined by
(p−n , p+n , p⊥n ) = (n̄ · pn, n · pn, p⊥n ), where nµ = (1, ~n) and n̄µ = (1,−~n)
are light-like vectors, and n · p⊥n = n̄ · p⊥n = 0. The subscript n on the
momentum indicates the direction of the collinear particle. In terms of
these light-cone components, the virtuality satisfies p2n = p+n p

−
n + p⊥2

n .
The individual components of the momentum obey

(p−n , p
+
n , p

⊥
n ) ∼ Q(1, λ2, λ), (16.9)

where λ2 = p2/Q2 is the expansion parameter of SCET. The virtuality
of such an energetic particle remains parametrically unchanged if it
interacts with energetic particles in the same direction n, or with soft
particles with momentum scaling as

(p−s , p
+
s , p

⊥
s ) ∼ Q(λ2, λ2, λ2). (16.10)

SCET is constructed in such a way as to reproduce the long-distance
dynamics arising from the interactions of collinear and soft degrees of
freedom.

In the above power counting the transverse momenta of soft
degrees of freedom scale as p⊥s ∼ Qλ2, which is much smaller than
the transverse momenta p⊥c ∼ Qλ of collinear fields. This theory is
usually called SCETI. If the external kinematics require that the
transverse momenta of both soft and collinear fields are of the same
size, p⊥c ∼ p⊥s , then the appropriate degrees of freedom have the
scaling pc ∼ Q(1, λ2, λ) and ps ∼ Q(λ, λ, λ). This theory is usually
called SCETII and is required, e.g., for exclusive hadronic decays
such as B̄ → Dπ, where the virtuality of both collinear and soft
degrees of freedom are set by ΛQCD, or for the description of
transverse-momentum distributions at colliders.

16.3.2. Leading-order Lagrangian : The derivation of the SCET
Lagrangian follows similar steps as described for HQET in Sec-
tion 16.2.1. One begins by deriving the Lagrangian for a theory
containing only a single collinear sector. Similar to HQET, one sepa-
rates the full QCD field into two components, qn(x) = ψn(x) + Ξn(x),
where (with n · n̄ = 2)

ψn(x) =
n/n̄/

4
qn(x) , Ξn(x) =

n̄/n/

4
qn(x). (16.11)

The degrees of freedom described by the field Ξn are far off shell and
can therefore be eliminated using its equation of motion. This gives

Ln = ψ̄n(x)

[
in ·D + iD/⊥ 1

in̄ ·DiD/⊥
]
n̄/

2
ψn(x). (16.12)

As a next step, one separates the large and residual momentum
components by decomposing the collinear momentum into a “label”
and a residual momentum, pµ = Pµ + kµ with n · P = 0. One
then performs a phase redefinition on the collinear fields, such that
ψn(x) = eiP ·x ξn(x). Derivatives acting on the fields ξn(x) now only
pick out the residual momentum. Since unlike in HQET the label
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momentum in SCET is not conserved, one defines a label operator
Pµ acting as Pµξn(x) = Pµξn(x) [43], as well as a corresponding
covariant label operator iDµ

n = Pµ + gAµ
n(x). Note that at leading

order in power counting iDµ
n does not contain the soft gluon field.

This leads to the final SCET Lagrangian [43–46]

Ln = ξ̄n(x)

[
in ·Dn + gn ·As + iD/⊥

n
1

in̄ · Dn
iD/⊥

n

]
n̄/

2
ξn(x) + . . . ,

(16.13)
where we have split in ·D into a collinear piece in ·Dn = in ·∂+gn ·An

and a soft piece gn · As. This latter term gives rise to the only
interaction between a collinear quark and soft gluons at leading power
in λ. The ellipses represent higher-order interactions between soft and
collinear particles.

The Lagrangian describing collinear fields in different light-like
directions is simply given by the sum of the Lagrangians for each
direction n, i.e. L =

∑
n Ln. The soft gluons are the same in

each individual Lagrangian. An alternative way to understand the
separation between large and small momentum components is to
derive the Lagrangian of SCET in position space [46]. In this case
no label operators are required, and the dependence on short-distance
effects is contained in non-localities at short distances. An important
difference between SCET and HQET is that the SCET Lagrangian is
not corrected by short distance fluctuations. The physical reason is
that in the construction described above no high-momentum modes
have been integrated out [46]. Such hard modes arise when different
collinear sectors are coupled via some external current (e.g. in jet
production at e+e− or hadron colliders), or when collinear particles
are produced in the rest frame of a decaying heavy object (such as in
B decays). Short-distance effects are then incorporated in the Wilson
coefficients of the external source operators.

16.3.3. Collinear gauge invariance and Wilson lines : An
important aspect of SCET is the implementation of local gauge
invariance. Because the effective field operators describe modes with
certain momentum scalings, the effective Lagrangian respects only
residual gauge symmetries. One of them satisfies the collinear scaling

(n̄ · ∂, n · ∂, ∂⊥)Un(x) ∼ Q(1, λ2, λ)Un(x), (16.14)

and one the soft scaling

(n̄ · ∂, n · ∂, ∂⊥)Us(x) ∼ Q(λ2, λ2, λ2)Us(x). (16.15)

The fact that collinear fields in different directions do not transform
under the same gauge transformations implies that each collinear
sector, containing particles with large momenta along a certain
direction, has to be separately gauge invariant. This requires the
introduction of collinear Wilson lines [43]

Wn(x) = P exp

[
−ig

∫ 0

−∞
ds n̄ ·An(sn̄+ x)

]
, (16.16)

which transform under collinear gauge transformations according to

Wn → UnWn. Thus, the combination χn ≡ W
†
n ψn is gauge invariant.

In a similar manner, one can define the gauge-invariant gluon field

Bµ
n = g−1W †

n iDµ
nWn [47,48]. Collinear operators in SCET are

typically constructed from such gauge-invariant building blocks.

16.3.4. Derivation of factorization theorems : One of the
important applications of SCET is to understand how to factorize cross
sections involving energetic particles moving in different directions
into simpler pieces that can either be calculated perturbatively or
determined from data. Factorization theorems have been around for
much longer than SCET; see [49] for a review. However, the effective
theory allows for a conceptually simpler understanding of certain
classes of factorization theorems [47], since most simplifications
happen already at the level of the Lagrangian. The discussion in this
section is valid to leading order in the power counting of the effective
theory.

As discussed in the previous section, the Lagrangian of SCET
does not involve any couplings between collinear particles moving

in different directions. Soft gluons couple to collinear quarks only
through the term ξ̄n g n ·As(n̄//2) ξn in the effective Lagrangian in
Eq. (16.13). This coupling is similar to the coupling of soft gluons
to heavy quarks in HQET, see Section 16.2.4. It can be removed by
means of the field redefinition [44]

ψn(x) = Yn(x)ψ
(0)
n (x) , Aa

n(x) = Y ab
n (x)A

b(0)
n (x), (16.17)

where Yn and Y ab
n live in the fundamental and adjoint representa-

tions of SU(3), respectively. This fact greatly facilitates proofs of
factorization theorems in SCET. A QCD operator O(x) describing
the interactions of collinear partons moving in different directions can
thus be written as (omitting color indices for simplicity)

〈O(x)〉 = CO(µ) 〈C(0)na (x)C
(0)
nb (x)C

(0)
n1 (x) . . . C

(0)
nN (x)

[YnaYnbYn1 . . .YnN ](x)
〉
µ. (16.18)

Here C(0)ni (x) denotes a gauge-invariant combination of collinear fields
(either quark or gluon fields) in the direction ni. The hard matching
coefficient CO accounts for short-distance effects at the scale Q.
The soft Wilson lines can either be in a color triplet or color octet
representation, and are collectively denoted by Yni . Both the matrix
elements and the coefficient CO depend on the renormalization scale
µ.

Having defined the operator mediating a given process, one can
calculate the cross section by squaring the operator, taking the forward
matrix element and integrating over the phase space of all final-state
particles. The absence of interactions between collinear degrees of
freedom moving along different directions or soft degrees of freedom
implies that the forward matrix element can be factorized as

〈
in
∣∣O(x)O†(0)

∣∣in
〉
= |C0(µ)|2

×
〈
ina

∣∣Cna(x)C†na(0)
∣∣ina

〉
µ

〈
inb

∣∣Cnb(x)C†nb(0)
∣∣inb

〉
µ

×
〈
0
∣∣Cn1(x)C†n1(0)

∣∣0
〉
µ · · ·

〈
0
∣∣CnN (x)C†nN (0)

∣∣0
〉
µ

×
〈
0
∣∣[Yna . . .YnN ](x)[Yna . . .YnN ]†(0)

∣∣0
〉
µ
.

(16.19)
Thus, the matrix element can be written as a product of simpler
structures, each of which can be evaluated separately.

The vacuum matrix elements of the outgoing collinear fields are
determined by jet functions Ji(µ). As long as the relevant scale
(for example the jet mass) is sufficiently large, these functions can
be calculated perturbatively. The matrix elements of the incoming
collinear fields are non-perturbative objects Bp/N (µ) called beam

functions for parton p in nucleon N [50]. For many applications they
can be related perturbatively to the well-known parton distribution
functions. Finally, the vacuum matrix element of the soft Wilson lines
defines a so-called soft function Sab...N (µ). The shared dependence on
x in the above equation implies that in momentum space the various
components of the factorization theorem are convoluted with one
another. Deriving this convolution requires a careful treatment of the
phase-space integration, in particular treating the large and residual
components of each momentum appropriately.

Putting all information together, the differential cross section for a
proton-proton collision with N jet-like objects can schematically be
written as

dσ ∼
∑

ab

Hab(µ)[Ba/P (µ)Bb/P (µ)]⊗ [J1(µ) . . . JN (µ)]⊗ Sab...N (µ).

(16.20)
The hard function is equal to the square of the matching coefficient,
Hab(µ) = |CO(µ)|2. It should be mentioned that the most difficult
part of traditional factorization proofs involves showing that so-called
Glauber gluons do not spoil the above factorization theorem [51].
This question has not yet been fully addressed in the context of SCET.
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16.3.5. Resummation of large logarithms : SCET can be used
to sum the large logarithms arising in perturbative calculations to all
orders in the strong coupling constant αs. In general, perturbation
theory will generate a logarithmic dependence on any ratio of scales
r in a problem. For processes that involve initial or final states with
energy much in excess of their mass, there are two powers of logarithms
for every power of αs. These are referred to as Sudakov logarithms.
For widely separated scales these large logarithms can spoil the
convergence of fixed-order perturbation theory. One thus needs to
reorganize the expansion in such a way that αsL = O(1) is kept fixed,
with L = ln r. More precisely, a proper resummation requires summing
logarithms of the form αn

sL
m with m ≤ n + 1 in the logarithm of a

cross section, by writing lnσ ∼ Lg0(αsL)+ g1(αsL)+αsg2(αsL)+ . . .,
with functions gn(x) that need to be determined.

The important ingredient in achieving this resummation is the fact
that SCET factorizes a given cross section into simpler pieces, each of
which depends on a single physical scale. The only dependence on that
scale can arise through logarithms of its ratio with the renormalization
scale µ. Thus, for each of the components in the factorization
theorem one can choose a renormalization scale µ for which the large
logarithmic terms are absent. Of course, the factorization formula
requires a common renormalization scale µ in all its components, and
one therefore has to use the renormalization group (RG) to evolve the
various component functions from their preferred scale to the common
scale µ. A novel feature of RG equations in SCET, as opposed to
other EFTs, is that the anomalous dimensions entering the evolution
equations of the hard, beam, jet and soft functions in a factorization
formula such as Eq. (16.20) contain a single power of the logarithm of
the relevant energy scale. For example, the anomalous dimension γH
of the hard function has the form

γH(µ) = cH Γcusp(αs) ln
Q2

µ2
+ γ(αs), (16.21)

where cH is a process-dependent coefficient and Γcusp denotes the
so-called cusp anomalous dimension [20,52]. The non-cusp part γ
of the anomalous dimension is process dependent. The presence of
a logarithm in the anomalous dimension is characteristic of Sudakov
problems and arises since the perturbative series contains double
logarithms of scale ratios.

The anomalous dimension γH is known at two-loop order for
arbitrary n-parton amplitudes containing massless or massive external
partons [53–56]. Solving the RG equations one can systematically
resum all large logarithms of scale ratios in the factorized cross section
and express the functions gn(αsL) introduced above in terms of ratios
of running coupling constants. In order to compute the first two terms
Lg0(αsL) + g1(αsL) in lnσ, corresponding to the next-to-leading
logarithmic (NLL) approximation, one needs two-loop expressions for
the cusp anomalous dimension and β function, one-loop expressions
for the non-cusp pieces in the anomalous dimensions, and tree-level
matching conditions for all component functions at their characteristic
scales. To calculate the next term αsg2(αsL) in the expansion,
corresponding to NNLL order, one needs to go one order higher in the
loop expansion, and so on.

16.3.6. Factorization and resummation in SCETII : The
effective theory SCETII contains collinear and soft particles with
momenta scaling as (p−n , p+n , p⊥n ) ∼ Q(1, λ2, λ) and (p−s , p+s , p⊥s ) ∼
Q(λ, λ, λ). They have the same small virtuality (p2n ∼ p2s ∼ Q2λ2)
but differ in their rapidities. An important class of observables, for
which this scaling is relevant, contains cross sections for processes in
which the transverse momenta of particles are constrained by external
kinematics. The prime example are the transverse-momentum
distributions of electroweak gauge bosons or Higgs bosons produced
at hadron colliders. The parton transverse momenta are constrained
by the fact that their vector sum must be equal and opposite to
the transverse momentum qT of the boson. Standard RG evolution
in the effective theory controls the logarithms arising from the fact
that the virtualities of the collinear and soft modes are much smaller
than the hard scale Q in the process (the boson mass). However,
additional large logarithms arise since the rapidities of collinear and
soft modes are parametrically different, such that e|yc−ys| ∼ 1/λ.

These logarithms need to be factorized in the cross section and
resummed by other means.

Two equivalent approaches exist for how to deal with the additional
rapidity logarithms. In the first approach, they are interpreted as a
consequence of a “collinear anomaly” of the effective theory SCETII,
resulting from the fact that a classical rescaling symmetry of the
effective Lagrangian is broken by quantum effects [57]. The extra
large logarithms can be resummed by means of simple differential
equations, which typically state that (in an appropriate space) the
logarithm of the cross section contains only a single logarithm of
λ ∼ qT /Q, to all orders in perturbation theory. An alternative
approach to resum the rapidity logarithms uses the “rapidity
renormalization group”, in which the relevant differential equations
are obtained by considering a new type of scale variation in a
parameter ν, which separates the phase space for collinear and soft
particles along a hyperbola in the (p−, p+) plane [58]. In contrast
to the standard RG, there is no running coupling involved in the ν
evolution, since the different contributions live at the same virtuality.

SCETII also plays an important role in the study of factorization
for a variety of exclusive B meson decays, such as B̄ → πℓν, B̄ → K∗γ
and B̄ → ππ, for which the virtualities of energetic (collinear)
final-state particles are of order ΛQCD, which is also the scale for the
soft light degrees of freedom contained in the initial-state B meson.

16.3.7. Applications : Most of the applications of SCET are either
in flavor physics, where the decay of a heavy B meson can give rise
to energetic light partons, or in collider physics, where the presence
of jets naturally leads to collimated sets of energetic particles. For
many of these applications alternative approaches existed before the
invention of SCET, but the effective theory has opened up alternative
ways to understand the physics of these processes. For several
examples, however, SCET has allowed new insights. The investigation
of heavy-to-light form factors has been instrumental for understanding
factorization in exclusive semileptonic B decays [59]. SCET has also
provided a field-theoretic basis for the QCD factorization approach
to exclusive, non-leptonic decays of B mesons [60]. Using SCET
methods, proofs of factorization were derived for the color-allowed
decay B̄0 → D+π− [61], the color-suppressed decay B̄0 → D0π0 [62],
and the radiative decay B̄ → K∗γ [63]. Further examples are
factorization theorems and the resummation of endpoint logarithms
for quarkonia production [64], the resummation of large logarithmic
terms for the thrust [65] and jet broadening [66] distributions in e+e−

annihilation beyond NLL order, the development of new factorizable
observables to veto extra jets [67], all-orders factorization theorems
for processes containing electroweak Sudakov logarithms [68], and the
resummation of threshold (soft gluon) logarithms for several important
processes at hadron colliders [69–71]. Recently, there has been a
lot of activity describing pT -based resummation at hadron colliders.
Examples are the transverse-momentum distributions of electroweak
bosons [57] and jets [72]. We now describe three applications in more
detail.

Event-shape distributions, in particular the thrust distribution,
have been measured to high accuracy at LEP [73]. They can be used
for a determination of the strong coupling constant αs. SCET has
increased the theoretical accuracy in the calculations of the thrust
and C-parameter distributions significantly. First, it has allowed
to increase the perturbative accuracy of the thrust spectrum. The
resummation of logarithms of τ , which become important for τ ≪ 1,
has been performed to N3LL [65], two orders beyond what was
previously available. Combining this resummation with the known
two-loop spectrum [74,75] gives precise perturbative predictions both
at small and large values of τ . Second, the factorization of the cross
section in SCET has made it possible to include non-perturbative
physics through a shape function, in analogy with the B-physics case
discussed in Section 16.2.6. Comparing the theoretical predictions to
the measured thrust and C-parameter distributions yields a precise
value of the strong coupling constant αs(mZ), which however is
lower than the average value cited in ”Quantum Chromodynamics”
review, Section 9, by several standard deviations [76,77]. For more
discussions on this, see the mentioned ”Quantum Chromodynamics”
review, Section 9.
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The Higgs-boson production cross section in gluon fusion at the
LHC, defined with a jet veto stating that no jet in the final state has
transverse momentum above a threshold pvetoT , can be factorized in
the form [78,79] (see [80] for a corresponding calculation outside the
SCET framework)

σ(pvetoT ) = H(mH , µ)(
νB
νS

)−2Fgg(R,pvetoT ,µ)Sgg(R, pvetoT , µ,
νS

pvetoT

)

×
∫ 1

τ

dz

z
Bg/P (z,R, pvetoT , µ,

νB
mH

)Bg/P (
τ

z
,R, pvetoT , µ,

νB
mH

),

(16.22)
where τ = m2

H/s, and µ ∼ pvetoT is a common factorization scale. The
beam functions Bg/P , the soft function Sgg and the exponent Fgg all
depend on the jet radius R as well as the jet clustering algorithm.
The scale dependence of the hard function H is controlled by standard
RG evolution in SCET. The beam functions can be factorized further
into calculable collinear kernels convoluted with parton distribution
functions. In addition to the renormalization scale µ, the beam and
soft functions depend on two rapidity scales νB ∼ mH and νS ∼ pvetoT ,
respectively. In [78] the default values νB = mH and νS = pvetoT
are used for these scales, and the soft function Sgg is absorbed into
the beam functions. In [79] the exponent Fgg is called −γ

g
ν/2. The

second factor on the right-hand side of the factorization formula
Eq. (16.22), which resums large rapidity logarithms, implies that the
logarithm of the jet-veto cross section contains a single large logarithm
lnσ = −2Fgg(R, pvetoT , µ) ln(mH/pvetoT )+ . . . not contained in the hard
function. Its coefficient can be calculated in fixed-order perturbation
theory.

Obtaining more precise fixed-order calculations has been an
important goal for many years. A major difficulty in these calculations
is the proper handling of the infrared singularities that arise in both
virtual and real contributions. A method based on N -jettiness (TN )
subtraction/slicing to obtain the NNLO result from a much easier NLO
calculation, combined with information about the singular dependence
of the cross section on the TN resolution variable [81,82], has been
used to compute various processes with final states containing up
to one colored particle [83–85]. While the NLO calculations can be
performed using well established techniques, the singular dependence
on TN can be calculated using SCET at NNLO. Calculations of the
leading power corrections in T0/Q [86,87] have helped to improved the
numerical stability for several processes.

16.4. Open issues and perspectives

HQET has successfully passed many experimental tests, and there
are not many open questions that still need to be addressed. One
concept that has not been derived from first principles is the notion
of quark-hadron duality, which underlies the application of HQET
to the description of inclusive decays of B mesons. The validity
of global duality (at energies even lower than those relevant in B
decays) has been tested experimentally using high-precision data on
semileptonic B decays and on hadronic τ decays, and good agreement
between theory and data was found. However, assigning a theoretical
uncertainty due to possible duality violations remains a difficult task.
Another known issue is that the measured values of the CKM element
|Vub| extracted from exclusive or inclusive decays of B mesons differ
from each other by several standard deviations (see ”Semileptonic
Bottom Hadron Decays and the Determination of Vcb and Vub”
review, Section 89). This measurement relies on the heavy-quark
limit, and the uncertainty quoted includes a theoretical estimate
of the effect of power corrections arising from the finite b-quark
mass. It remains an open question whether the discrepancy is due to
underestimated theoretical or experimental uncertainties, or whether
it may hint to the existence of new physics.

SCET, on the other hand, is still an active field of research, and
new results are being obtained regularly. An important example
concerns the understanding of non-global logarithms arising in
hadron-collider processes with jets [88,89]. SCET-based fixed-order
calculations have helped to shed some light on the nature of these
logarithms [90–92]. However, for a long time a fully factorized form
of jet cross sections has not been available, despite significant progress

towards this goal [93,94]. A consistent factorization formula for
non-global jet observables was developed in [95,96]. It requires the
introduction of a new collinear-soft mode in the SCET Lagrangian.
First phenomenological applications of the formalism developed in
these references have been presented in [97]. Another active field
concerns the study of Glauber gluons in SCET [98] and their
relation to the BFKL equation familiar from small-x physics [99]. A
systematic account of Glauber effects in the context of SCET has
been developed in [100]. It sets the basis for a solid understanding
of their impact on factorization proofs. Glauber gluons also play
an important role in SCET-based analysis of jet propagation in
dense QCD media [101–104], which gives rise to the jet-quenching
phenomenon in heavy-ion collisions. An important open question
facing some applications of SCET concerns factorized expressions
containing endpoint-divergent convolution integrals. This problem
arises, for example, in the description of heavy-to-light form factors
such as FB̄→π(q

2) at large recoil [105].

We close this short review by mentioning a particularly nice
application combining the methods of heavy-particle EFTs such
as HQET and non-relativistic QCD with SCET in the context of
describing the interactions of heavy dark matter (with mass M ≫ v)
with SM particles. In [106] it was realized that the interactions of
heavy, weakly interacting massive particles (WIMPs) with nuclear
targets can be described in a model-independent way using heavy-
particle EFTs. The WIMPs are charged under SU(2)L and can
interact with electroweak gauge bosons and the Higgs boson. The
WIMP EFT was later extended by describing the produced, highly
energetic electroweak gauge bosons in terms of soft or collinear fields
in SCET [107–109]. This allows one to systematically separate
all relevant mass scales, resum electroweak Sudakov logarithms
and disentangle the so-called Sommerfeld enhancement from the
short-distance hard annihilation process.
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17. Lattice Quantum Chromodynamics

Updated September 2017 by S. Hashimoto (KEK), J. Laiho (Syracuse
University) and S.R. Sharpe (University of Washington).

Many physical processes considered in the Review of Particle
Properties (RPP) involve hadrons. The properties of hadrons—which
are composed of quarks and gluons—are governed primarily by
Quantum Chromodynamics (QCD) (with small corrections from
Quantum Electrodynamics [QED]). Theoretical calculations of these
properties require non-perturbative methods, and Lattice Quantum
Chromodynamics (LQCD) is a tool to carry out such calculations.
It has been successfully applied to many properties of hadrons.
Most important for the RPP are the calculation of electroweak form
factors, which are needed to extract Cabbibo-Kobayashi-Maskawa
(CKM) matrix elements when combined with the corresponding
experimental measurements. LQCD has also been used to determine
other fundamental parameters of the standard model, in particular
the strong coupling constant and quark masses, as well as to predict
hadronic contributions to the anomalous magnetic moment of the
muon, gµ−2.

This review describes the theoretical foundations of LQCD and
sketches the methods used to calculate the quantities relevant for
the RPP. It also describes the various sources of error that must be
controlled in a LQCD calculation. Results for hadronic quantities are
given in the corresponding dedicated reviews.

17.1. Lattice regularization of QCD

Gauge theories form the building blocks of the Standard Model.
While the SU(2) and U(1) parts have weak couplings and can be
studied accurately with perturbative methods, the SU(3) component—
QCD—is only amenable to a perturbative treatment at high energies.
The growth of the coupling constant in the infrared—the flip-side of
asymptotic freedom—requires the use of non-perturbative methods to
determine the low energy properties of QCD. Lattice gauge theory,
proposed by K. Wilson in 1974 [1], provides such a method, for it gives
a non-perturbative definition of vector-like gauge field theories like
QCD. In lattice regularized QCD—commonly called lattice QCD or
LQCD—Euclidean space-time is discretized, usually on a hypercubic
lattice with lattice spacing a, with quark fields placed on sites and
gauge fields on the links between sites. The lattice spacing plays the
role of the ultraviolet regulator, rendering the quantum field theory
finite. The continuum theory is recovered by taking the limit of
vanishing lattice spacing, which can be reached by tuning the bare
coupling constant to zero according to the renormalization group.

Unlike dimensional regularization, which is commonly used in
continuum QCD calculations, the definition of LQCD does not rely on
the perturbative expansion. Indeed, LQCD allows non-perturbative
calculations by numerical evaluation of the path integral that defines
the theory.

Practical LQCD calculations are limited by the availability of
computational resources and the efficiency of algorithms. Because of
this, LQCD results come with both statistical and systematic errors,
the former arising from the use of Monte-Carlo integration, the latter,
for example, from the use of non-zero values of a. There are also
different ways in which the QCD action can be discretized, and all
must give consistent results in the continuum limit, a → 0. It is
the purpose of this review to provide an outline of the methods of
LQCD, with particular focus on applications to particle physics, and
an overview of the various sources of error. This should allow the
reader to better understand the LQCD results that are presented
in other reviews, primarily those on “Quark Masses”, “Quantum
Chromodynamics”, “CKM quark-mixing matrix”, “Vud, Vus, Cabibbo
angle and CKM Unitarity” and “Semileptonic B-meson decays and
the determination of Vcb and Vub”. For more extensive explanations
the reader should consult the available textbooks or lecture notes, the
most up-to-date of which are Refs. 2–4.

17.1.1. Gauge invariance, gluon fields and the gluon action :

A key feature of the lattice formulation of QCD is that it preserves
gauge invariance. This is in contrast to perturbative calculations,
where gauge fixing is an essential step. The preservation of gauge
invariance leads to considerable simplifications, e.g. restricting the
form of operators that can mix under renormalization.

The gauge transformations of lattice quark fields are just as in
the continuum: q(x) −→ V (x)q(x) and q̄(x) −→ q̄(x)V †(x), with
V (x) an arbitrary element of SU(3). The only difference is that the
Euclidean space-time positions x are restricted to lie on the sites of
the lattice, i.e. x = a(n1, n2, n3, n4) for a hypercubic lattice, with the
nj being integers. Quark bilinears involving different lattice points
can be made gauge invariant by introducing the gluon field Uµ(x).
For example, for adjacent points the bilinear is q̄(x)Uµ(x)q(x+aµ̂),
with µ̂ the unit vector in the µ’th direction. (This form is used
in the construction of the lattice covariant derivative.) This is
illustrated in Fig. 17.1. The gluon field (or “gauge link”) is an
element of the group, SU(3), in contrast to the continuum field Aµ

which takes values in the Lie algebra. The bilinear is invariant if
Uµ transforms as Uµ(x) → V (x)Uµ(x)V

†(x+aµ̂). The lattice gluon
field is naturally associated with the link joining x and x+aµ̂, and
corresponds in the continuum to a Wilson line connecting these two

points, P exp(i
∫ x+aµ̂
x dxµA

cont
µ (x)) (where P indicates a path-ordered

integral, and the superscript on Aµ indicates that it is a continuum
field). The trace of a product of the Uµ(x) around any closed loop is
easily seen to be gauge invariant and is the lattice version of a Wilson
loop.

Figure 17.1: Sketch of a two-dimensional slice through the
µ− ν plane of a lattice, showing gluon fields lying on links and
forming either the plaquette product appearing in the gauge
action or a component of the covariant derivative connecting
quark and antiquark fields.

The simplest possible gauge action, usually called the Wilson gauge
action, is given by the product of gauge links around elementary
plaquettes:

Sg = β
∑

x,µ,ν

[1− 1

3
ReTr[Uµ(x)Uν(x+aµ̂)U†

µ(x+aν̂)U†
ν (x)]] . (17.1)

This is illustrated in Fig. 17.1. For small a, assuming that the fields
are slowly varying, one can expand the action in powers of a using
Uµ(x) = exp(iaAµ(x)). Keeping only the leading non-vanishing term,
and replacing the sum with an integral, one finds the continuum form,

Sg −→
∫

d4x
1

4g2lat
Tr[F 2

µν(x)] , (Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ])

(17.2)
as long as one chooses β = 6/g2lat for the lattice coupling. In
this expression, glat is the bare coupling constant in the lattice
scheme, which can be related (by combining continuum and lattice
perturbation theory) to a more conventional coupling constant such as
that in the MS scheme (see Sec. 17.3.4 below).

In practice, the lattice spacing a is non-zero, leading to discretization
errors. In particular, the lattice breaks Euclidean rotational invariance
(which is the Euclidean version of Lorentz invariance) down to a
discrete hypercubic subgroup. One wants to reduce discretization
errors as much as possible. A very useful tool for understanding and
then reducing discretization errors is the Symanzik effective action:
the interactions of quarks and gluons with momenta low compared
to the lattice cutoff (|p| ≪ 1/a) are described by a continuum action
consisting of the standard continuum terms (e.g. the gauge action
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given in Eq. (17.2)) augmented by higher dimensional operators
suppressed by powers of a [5]. For the Wilson lattice gauge action,
the leading corrections come in at O(a2). They take the form∑

j a
2cjO

(j)
6 , with the sum running over all dimension-six operators

O
(j)
6 allowed by the lattice symmetries, and cj unknown coefficients.

Some of these operators violate Euclidean rotational invariance, and
all of them lead to discretization errors of the form a2Λ2, where
Λ is a typical momentum scale for the quantity being calculated.
These errors can, however, be reduced by adding corresponding
operators to the lattice action and tuning their coefficients to
eliminate the dimension-six operators in the effective action to a
given order in perturbation theory or even non-perturbatively. This
is the idea of the Symanzik improvement program [5]. In the case
of the gauge action, one adds Wilson loops involving six gauge
links (as opposed to the four links needed for the original plaquette
action, Eq. (17.1)) to define the O(a2) improved (or “Symanzik”)
action [6]. In practical implementations, the improvement is either
at tree-level (so that residual errors are proportional to αsa

2, where
the coupling is evaluated at a scale ∼ 1/a), or at one loop order
(errors proportional to α2

sa
2). Another popular choice is motivated by

studies of renormalization group (RG) flow. It has the same terms as
the O(a2) improved action but with different coefficients, and is called
the RG-improved or “Iwasaki” action [7].

17.1.2. Lattice fermions :

Discretizing the fermion action turns out to involve subtle issues, and
the range of actions being used is more extensive than for gauge fields.
Recall that the continuum fermion action is Sf =

∫
d4xq̄[iDµγµ+mq]q,

where Dµ = ∂µ + iAµ is the gauge-covariant derivative. The simplest
discretization replaces the derivative with a symmetric difference:

Dµq(x) −→
1

2a
[Uµ(x)q(x + aµ̂)− Uµ(x − aµ̂)†q(x− aµ̂)] . (17.3)

The factors of Uµ ensure that Dµq(x) transforms under gauge
transformations in the same way as q(x), so that the discretized
version of q̄(x)Dµγµq(x) is gauge invariant. The choice in Eq. (17.3)
leads to the so-called naive fermion action. This, however, suffers
from the fermion doubling problem—in d dimensions it describes
2d equivalent fermion fields in the continuum limit. The appearance
of the extra “doubler” fermions is related to the deeper theoretical
problem of formulating chirally symmetric fermions on the lattice.
This is encapsulated by the Nielsen-Ninomiya theorem [8]: one
cannot define lattice fermions having exact, continuum-like chiral
symmetry without producing doublers. Naive lattice fermions do have
chiral symmetry but at the cost of introducing 15 unwanted doublers
(for d = 4).

There are a number of different strategies for dealing with the
doubling problem, each with their own theoretical and computational
advantages and disadvantages. Wilson fermions [1] add a term
proportional to aq̄∆q to the fermion action (the “Wilson term”—in
which ∆ is a covariant lattice Laplacian). This gives a mass of
O(1/a) to the doublers, so that they decouple in the continuum
limit. The Wilson term, however, violates chiral symmetry, and also
introduces discretization errors linear in a. A commonly used variant
that eliminates the O(a) discretization error is the O(a)-improved
Wilson (or “clover”) fermion [9]. In this application of Symanzik
improvement, methods have been developed to remove O(a) terms
non-perturbatively using auxiliary simulations to tune parameters [10].
Such “non-perturbative improvement” is of great practical importance
as it brings the discretization error from the fermion action down to
the same level as that from the gauge action. It is used by essentially
all simulations using clover fermions.

The advantages of Wilson fermions are their theoretical simplicity
and relatively low computational cost. Their main disadvantage is the
lack of chiral symmetry, which makes them difficult to use in cases
where mixing with wrong chirality operators can occur, particularly
if this involves divergences proportional to powers of 1/a. A related
problem is the presence of potential numerical instabilities due to
spurious near-zero modes of the lattice Dirac operator. There are,
however, recent works that successfully ameliorate these problems and

increase the range of quantities for which Wilson fermions can be used
(see, e.g., Refs. 11–13).

Twisted-mass fermions [14] are a variant of Wilson fermions in
which two flavors are treated together with an isospin-breaking mass
term (the “twisted mass” term). The main advantage of this approach
is that all errors linear in a are automatically removed (without the
need for tuning of parameters) by a clever choice of twisted mass and
operators [15]. A disadvantage is the presence of isospin breaking
effects (such as a splitting between charged and neutral pion masses
even when up and down quarks are degenerate), which, however,
vanish as a2Λ2 in the continuum limit. Strange and charm quarks can
be added as a second pair, with a term added to split their masses.

Staggered fermions are a reduced version of naive fermions in which
there is only a single fermion Dirac component on each lattice site,
with the full Dirac structure built up from neighboring sites [16].
They have the advantages of being somewhat faster to simulate than
Wilson-like fermions, of preserving some chiral symmetry, and of
having discretization errors of O(a2). Their disadvantage is that they
retain some of the doublers (3 for d = 4). The action thus describes
four degenerate fermions in the continuum limit. These are usually
called “tastes”, to distinguish them from physical flavors, and the
corresponding SU(4) symmetry is referred to as the “taste symmetry”.
The preserved chiral symmetry in this formulation has non-singlet
taste. Practical applications usually introduce one staggered fermion
for each physical flavor, and remove contributions from the unwanted
tastes by taking the fourth-root of the fermion determinant appearing
in the path integral. The validity of this “rooting” procedure is not
obvious because taste symmetry is violated for non-zero lattice spacing.
Theoretical arguments, supported by numerical evidence, suggest that
the procedure is valid as long as one takes the continuum limit before
approaching the light quark mass region [17]. Additional issues arise
for the valence quarks (those appearing in quark propagators, as
described in Sec. 17.2 below), where rooting is not possible, and one
must remove the extra tastes by hand [18].

Just as for Wilson fermions, the staggered action can be improved,
so as to reduce discretization errors. The Asqtad (a-squared tadpole
improved) action [19] was used until recently in many large scale
simulations [20]. More recent calculations use the HISQ (highly
improved staggered quark) action, introduced in Ref. 21. At tree-level
it removes both O(a2) errors and, to lowest order in the quark speed
v/c, O([am]4) errors. It also substantially reduces effects caused by
taste-symmetry breaking. This makes it attractive not only for light
quarks, but means that it is also quite accurate for heavy quarks
because it suppresses (am)n errors. It is being used to directly
simulate charm quarks and to approach direct simulations of bottom
quarks.

There is an important class of lattice fermions, “Ginsparg-Wilsons
fermions”, that possess a continuum-like chiral symmetry without
introducing unwanted doublers. The lattice Dirac operator D for
these fermions satisfies the Ginsparg-Wilson relation Dγ5 + γ5D =
aDγ5D [22]. In the continuum, the right-hand-side vanishes, leading
to chiral symmetry. On the lattice, it is non-vanishing, but with a
particular form (with two factors of D) that restricts the violations of
chiral symmetry in Ward-Takahashi identities to short-distance terms
that do not contribute to physical matrix elements [23]. In fact, one
can define a modified chiral transformation on the lattice (by including
dependence on the gauge fields) such that Ginsparg-Wilson fermions
have an exact chiral symmetry for on-shell quantities [24]. The net
result is that such fermions essentially have the same properties under
chiral transformations as do continuum fermions, including the index
theorem [23]. Their leading discretization errors are of O(a2).

Two types of Ginsparg-Wilson fermions are currently being used in
large-scale numerical simulations. The first is Domain-wall fermions
(DWF). These are defined on a five-dimensional space, in which the
fifth dimension is fictitious [25]. The action is chosen so that the
low-lying modes are chiral, with left- and right-handed modes localized
on opposite four-dimensional surfaces. For an infinite fifth dimension,
these fermions satisfy the Ginsparg-Wilson relation. In practice, the
fifth dimension is kept finite, and there remains a small, controllable
violation of chiral symmetry. The second type is Overlap fermions.
These appeared from a completely different context and have an
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explicit form that exactly satisfies the Ginsparg-Wilson relation [26].
Their numerical implementation requires an approximation of the
matrix sign function of a Wilson-like fermion operator, and various
approaches are being used. In fact, it is possible to rewrite these
approximations in terms of a five-dimensional formulation, showing
that the DWF and Overlap approaches are essentially equivalent [27].
Numerically, the five-dimensional approach appears to be more
computationally efficient.

The various lattice fermion formulations are often combined with
the technique of link smearing. Here one couples the fermions to a
smoother gauge link, defined by averaging with adjacent links in a
gauge invariant manner. Several closely related implementations are
being used. All reduce the coupling of fermions to the short-distance
fluctuations in the gauge field, leading to an improvement in the
numerical stability and speed of algorithms. One cannot perform this
smearing too agressively, however, since the smearing may distort
short distance physics and enhance discretization errors.

As noted above, each fermion formulation has its own advantages
and disadvantages. For instance, domain-wall and overlap fermions are
theoretically preferred as they have chiral symmetry without doublers,
but their computational cost is greater than for other choices. If the
physics application of interest and the target precision do not require
near-exact chiral symmetry, there is no strong motivation to use
these expensive formulations. On the other hand, there is a class of
applications (including the calculation of the ∆I = 1/2 amplitude for
K → ππ decays and the S-parameter [28]) where chiral symmetry
plays an essential role and for which the use of Ginsparg-Wilson
fermions is strongly favored.

17.1.3. Heavy quarks on the lattice :

The fermion formulations described in the previous subsection can
be used straightforwardly only for quarks whose masses are small
compared to the lattice cutoff, mq . 1/a. This is because there are
discretization errors proportional to powers of amq, and if amq & 1
these errors are large and uncontrolled. Present LQCD simulations
typically have cutoffs in the range of 1/a = 2 − 4 GeV (corresponding
to a ≈ 0.1 − 0.05 fm). Thus, while for the up, down and strange
quarks one has amq ≪ 1, for bottom quarks (with mb ≈ 4.5 GeV)
one must use alternative approaches. Charm quarks (mc ≈ 1.5 GeV)
are an intermediate case, allowing simulations using both direct and
alternative approaches.

For the charm quark, the straightforward approach is to simulta-
neously reduce the lattice spacing and to improve the fermion action
so as to reduce the size of errors proportional to powers of amc.
This approach has, for example, been followed successfully using the
HISQ and twisted-mass actions [21,29,30]. It is important to note,
however, that reducing a increases the computational cost because an
increased number of lattice points are needed for the same physical
volume. One cannot reduce the spatial size below 2 − 3 fm without
introducing finite volume errors. Present lattices have typical sizes of
∼ 643 × 128 (with the long direction being Euclidean time), and thus
allow a lattice cutoff up to 1/a ∼ 4 GeV.

Alternative approaches for discretizing heavy quarks are motivated
by effective field theories. For a bottom quark in heavy-light hadrons,
one can use Heavy Quark Effective Theory (HQET) to expand about
the infinite quark-mass limit. In this limit, the bottom quark is a static
color source, and one can straightforwardly write the corresponding
lattice action [31]. Corrections, proportional to powers of 1/mb, can
be introduced as operator insertions, with coefficients that can be
determined non-perturbatively using existing techniques [32]. This
method allows the continuum limit to be taken controlling all 1/mb
corrections.

Another way of introducing the 1/mb corrections is to include the
relevant terms in the effective action. This leads to a non-relativistic
QCD (NRQCD) action, in which the heavy quark is described by a
two-component spinor [33]. This approach has the advantage over
HQET that it can also be used for heavy-heavy systems, such as the
Upsilon states. A disadvantage is that some of the parameters in this
effective theory are determined perturbatively (originally at tree-level,
but more recently at one-loop), which limits the precision of the final
results. Although discretization effects can be controlled with good

numerical precision for a range of lattice spacings, these artifacts
cannot be extrapolated away by taking the lattice spacing to zero.
This is because NRQCD is a nonrelativistic effective field theory and
so ceases to work when the cutoff π/a becomes much larger than the
heavy-quark mass.

This problem can be avoided if one uses HQET power counting to
analyze and reduce discretization effects for heavy quarks while using
conventional fermion actions [34]. For instance, one can tune the
parameters of an improved Wilson quark action so that the leading
HQET corrections to the static quark limit are correctly accounted
for. As the lattice spacing becomes finer, the action smoothly goes
over to that of a light Wilson quark action, where the continuum limit
can be taken as usual. In principle, one can improve the action in
the heavy quark regime up to arbitrarily high orders using HQET,
but so far large-scale simulations have typically used clover improved
Wilson quarks, where tuning the parameters of the action corresponds
to including all corrections through next-to-leading order in HQET.
Three different methods for tuning the parameters of the clover action
are being used: the Fermilab [34], Tsukuba [35] and Columbia [36]
approaches. An advantage of this HQET approach is that the c and
b quarks can be treated on the same footing. Parameter tuning has
typically been done perturbatively, as in NRQCD, but recent work
using the Columbia approach has used non-perturbative tuning of
some of the parameters [37,38].

Another approach is the “ratio method” introduced in Ref. 39. Here
one uses quarks with masses lying at, or slightly above, the charm mass
mc, which can be simulated with a relativistic action, and extrapolates
to mb incorporating the behavior predicted by HQET. The particular
implementation relies on the use of ratios. As an example, consider
the B meson decay constant fB . According to HQET, this scales
as 1/

√
mB for mB ≫ ΛQCD, up to a logarithmic dependence that

is calculable in perturbative QCD (but will be suppressed in the
following). Here mB is the B meson mass, which differs from mb by
∼ ΛQCD. One considers the ratio y(λ,mb′) ≡ fB′′

√
mB′′/fB′

√
mB′

for fictitious B mesons containing b quarks with unphysical masses mb′
and mb′′ = λmb′ . HQET implies that y(λ,mb′) approaches unity for
large mb′ and any fixed λ > 1. The ratios are evaluated on the lattice
for the sequence of masses mb′ = mc, λmc, λ

2mc, all well below the
physical mb, and for each the continuum limit is taken. The form of
the ratio for larger values of mb′ is obtained by fitting, incorporating
the constraints implied by HQET. The result for fB

√
mB is then

obtained as a product of y’s with fD
√
mD.

17.1.4. QED on the lattice :

Quarks in nature are electrically charged, and the resultant
coupling to photons leads to shifts in the properties of hadrons that
are generically of O(αEM). Thus, for example, the proton mass is
increased by ∼ 1 MeV relative to that of the neutron due to its
overall charge although this effect is more than compensated for by
the ∼ 2.5 MeV relative decrease due to the up quark being lighter
than the down quark [40]. This example shows that once pure QCD,
isospin-symmetric lattice calculations reach percent level accuracy,
further improvement requires the inclusion of effects due to both
electromagnetism and the up-down mass difference. This level of
accuracy has in fact been obtained for various quantities, e.g. light
hadron masses and decay constants (see Ref. 41), and simulations
including QED in addition to QCD are becoming more common.

The extension of lattice methods to include QED is straightforward,
although some new subtleties arise. The essential change is that the
quark must now propagate through a background field containing
both gluons and photons. The gauge field Uµ that appears in the
covariant derivative of Eq. (17.3) is extended from an SU(3) matrix to

one living in U(3): Uµ → Uµe
iaqeAEM

µ . Here AEM
µ is the photon field,

e the electromagnetic coupling, and q the charge of the quark, e.g.
q = 2/3 for up and −1/3 for down and strange quarks. The lattice
action for the photon that is typically used is a discretized version
of the continuum action Eq. (17.2), rather than the form used for
the gluons, Eq. (17.1). This “non-compact” action has the advantage
that it is quadratic in AEM

µ , which simplifies the QED part of the
generation of configurations.

One subtlety that arises is that Gauss’ law forbids a charged particle
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in a box with periodic boundary conditions. This finite volume effect
can be overcome by including a uniform background charge, and
this can be shown to be equivalent to removing the zero-momentum
mode from the photon field. This is an example of the enhanced
finite-volume effects that arise in the presence of the massless photon.

Simulations including QED have progressed over the last few years,
and now a full inclusion of QED has been achieved with almost
physical quark masses [40,42]. Alternative approaches have also been
used: reweighting the QCD fields a posteriori [43,44], and keeping
only the linear term in an expansion in αEM about the QCD only
case [45]. In addition, some calculations have included QED effects
for the valence quarks but not the sea quarks (the “electroquenched
approximation”)—for a recent example see Ref. 46.

17.1.5. Basic inputs for lattice calculations :

Since LQCD is nothing but a regularization of QCD, the
renormalizability of QCD implies that the number of input parameters
in LQCD is the same as for continuum QCD—the strong coupling
constant αs = g2/(4π), the quark masses for each flavor, and the CP
violating phase θ. The θ parameter is usually assumed to be zero,
while the other parameters must be determined using experimental
inputs.

17.1.5.1. Lattice spacing: In QCD, the coupling constant is a
function of scale. With lattice regularization, this scale is the inverse
lattice spacing 1/a, and choosing the bare coupling constant is
equivalent to fixing the lattice spacing.

In principle, a can be determined using any dimensionful quantity
measured by experiments. For example, using the mass of hadron
H one has a = (amH)lat/m

exp
H . (Of course, one must first tune

the quark masses to their physical values, as discussed below.) In
practice, one chooses quantities that can be calculated accurately on
the lattice, and that are only weakly dependent on the light quark
masses. The latter property minimizes errors from extrapolating or
interpolating to the physical light quark masses or from mistuning of
these masses. Commonly used choices are the spin-averaged 1S-1P or
1S-2S splittings in the Upsilon system, the mass of the Ω− baryon,
and the pion decay constant fπ. Ultimately, all choices must give
consistent results for a, and that this is the case provides a highly
non-trivial check of both the calculational method and of QCD.

17.1.5.2. Light quark masses:

In LQCD simulations, the up, down and strange quarks are usually
referred to as the light quarks, in the sense that mq < ΛQCD.
(The standard definition of ΛQCD is given in the “Quantum
Chromodynamics” review; in this review we are using it only to
indicate the approximate non-perturbative scale of QCD.) This
condition is stronger than that used above to distinguish quarks with
small discretization errors, mq < 1/a. Loop effects from light quarks
must be included in the simulations to accurately represent QCD.
At present, most simulations are done in the isospin symmetric limit
mu = md ≡ mℓ < ms, and are often referred to as “Nf = 2 + 1”
simulations. Increasingly, simulations also include loops of charm
quarks (denoted Nf = 2 + 1 + 1 simulations), although the effect of
charmed sea quarks on low-energy physics is generically expected to
be at the sub-percent level [48]. Precision is now reaching the point
where isospin breaking effects must be included. To do so without
approximation requires simulating with nondegenerate up and down
quarks (leading to Nf = 1+ 1+ 1 or 1 + 1+ 1+ 1 simulations) as well
as including electromagnetism (as described above). This has been
done in Ref. 40. Alternatively, one can use a perturbative approach,
expanding about the isospin symmetric theory and working to linear
order in αEM and mu −md [45,47].

We now describe the tuning of mℓ, ms and mc to their physical
values. (For brevity, we ignore isospin violation in the following
discussion.) The most commonly used quantities for these tunings are,
respectively, mπ, mK and mDs . If the scale is being set by mΩ, then
one adjusts the lattice quark masses until the ratios mπ/mΩ, mK/mΩ
and mDs/mΩ take their physical values. In the past, most calculations
needed to extrapolate to the physical value of mℓ (typically using
forms based on chiral perturbation theory [ChPT]), while simulating

directly at or near to the physical values of ms and mc. Present
calculations are increasingly done with physical or near physical values
of mℓ, requiring at most only a short extrapolation.

17.1.5.3. Heavy quark masses:

The b quark is usually treated only as a valence quark, with no
loop effects included. The errors introduced by this approximation
can be estimated to be ∼ αs(mb)Λ

2
QCD/m

2
b and are likely to be very

small. In the past, the same approximation has been made for the
c quark, leading to errors ∼ αs(mc)Λ

2
QCD/m

2
c . (See Ref. 48 for a

quantitative estimate of the effects of including the charm quark on
some low energy physical quantities, and Ref. 49 for similar estimates
for B-meson matrix elements.) For high precision, however, dynamical
charm quarks are necessary, and some of the most recent simulations
now include them.

The b quark mass can be tuned by setting heavy-heavy (Υ)
or heavy-light (B) meson masses to their experimental values.
Consistency between these two determinations provides an important
check that the determination of parameters in the heavy quark lattice
formulations is being done correctly (see, e.g., Ref. 50).

17.1.6. Sources of systematic error :

Lattice results have statistical and systematic errors that must
be quantified for any calculation in order for the result to be a
useful input to phenomenology. The statistical error is due to the use
of Monte Carlo importance sampling to evaluate the path integral
(a method discussed below). There are, in addition, a number of
systematic errors that are always present to some degree in lattice
calculations, although the size of any given error depends on the
particular quantity under consideration and the parameters of the
ensembles being used. The most common lattice errors are reviewed
below.

Although not strictly a systematic error, it is important to note
that the presence of long autocorrelations in the sequence of lattice
configurations generated by the Monte Carlo method can lead to
underestimates of statistical errors [51]. It is known that the global
topological charge of the gauge fields decorrelates very slowly with
certain algorithms [52]. The effect of poorly sampling topological
charge is expected to be most significant for the pion mass and related
quantities [53,54]. This issue becomes more relevant as the precision
of the final results increases.

17.1.6.1. Continuum limit: Physical results are obtained in the
limit that the lattice spacing a goes to zero. The Symanzik effective
theory determines the scaling of lattice artefacts with a. Most
lattice calculations use improved actions with leading discretizations
errors of O(a2Λ2), O(αsa

2Λ2), or O(αsaΛ), where Λ is a typical
momentum scale in the system. Knowledge of the scaling of the
leading discretization errors allows controlled extrapolation to a = 0
when multiple lattice spacings are available, as in current state-of-the-
art calculations. Residual errors arise from the exclusion of subleading
a dependence from the fits.

For many quantities the typical momentum scale in the system is
∼ ΛQCD ≈ 300 MeV. Discretization errors are expected to be larger
for quantities involving larger scales, for example form factors or
decays involving particles with momenta larger than ΛQCD.

17.1.6.2. Infinite volume limit: LQCD calculations are necessarily
carried out in finite space-time boxes, leading to departures of physical
quantities (masses, decay constants, etc.) from their measured, infinite
volume values. These finite-volume shifts are an important systematic
that must be estimated and minimized.

Typical lattices are asymmetric, with Ns points in the three spatial
directions and Nt in the (Euclidean) temporal direction. The spatial
and temporal sizes in physical units are thus Ls = aNs and Lt = aNt,
respectively. (Anisotropic lattice spacings are also sometimes used, as
discussed below in Sec. 17.2.2.) Typically, Lt ≥ 2Ls, a longer temporal
direction being used to allow excited-state contributions to correlators
to decay. This means that the dominant impact of using finite volume
is from the presence of a finite spatial box.

High-precision LQCD calculations are of quantities involving no
more than a single particle in initial and final states (with the
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exception of the K → ππ decay amplitudes). For such quantities, once
the volume exceeds about 2 fm (so that the particle is not “squeezed”),
the dominant finite-volume effect comes from virtual pions wrapping
around the lattice in the spatial directions. This effect is exponentially
suppressed as the volume becomes large, roughly as ∼ exp(−mπLs),
and has been estimated using ChPT [55] or other methods [56]. The
estimates suggest that finite volume shifts are sub-percent effects when
mπLs& 4, and most large-scale simulations use lattices satisfying this
condition. This becomes challenging as one approaches the physical
pion mass, for which Ls& 5 fm is required. At present, this can only
be achieved by using relatively coarse lattices, a& 0.07 fm.

Finite volume errors are usually determined by repeating the
simulations on two or more different volumes (with other parameters
fixed). If different volumes are not available, the ChPT estimate
can be used, often inflated to account for the fact that the ChPT
calculation is truncated at some order.

In the future, LQCD calculations involving more than a single
hadron will become increasingly precise. Examples include the
calculation of resonance parameters and the above-mentioned K → ππ
amplitudes. Finite volume effects are much larger in these cases, with
power-law terms (e.g. 1/L3

s) in addition to exponential dependence.
Indeed, as will be discussed in Sec. 17.2.4, one can use the volume
dependence to indirectly extract infinite-volume quantities such
as scattering lengths. Doing so, however, requires a set of lattice
volumes satisfying mπLs& 4 and is thus more challenging than for
single-particle quantities.

17.1.6.3. Chiral extrapolation:

Until recently, an important source of systematic error in LQCD
calculations was the need to extrapolate in mu and md (or,
equivalently, in mπ). This extrapolation was usually done using
functional forms based on ChPT, or with analytic functions, with the
difference between different fits used as an estimate of the systematic
error, which was often substantial. Increasingly, however, calculations
work directly at, or very close to, the physical quark masses. This
either removes entirely, or greatly reduces, the uncertainties in the
extrapolation, such that this error is subdominant.

17.1.6.4. Operator matching:

Many of the quantities that LQCD can precisely calculate
involve hadronic matrix elements of operators from the electroweak
Hamiltonian. Examples include the pion and kaon decay constants,
semileptonic form factors and the kaon mixing parameter BK (the
latter defined in Eq. (17.13)). The operators in the lattice matrix
elements are defined in the lattice regularization scheme. To be used
in tests of the Standard Model, however, they must be matched
to the continuum regularization scheme in which the corresponding
Wilson coefficients have been calculated. The only case in which such
matching is not needed is if the operator is a conserved or partially
conserved current. Similar matching is also needed for the conversion
of lattice bare quark masses to those in the continuum MS scheme.

Several methods are used to calculate the matching factors:
perturbation theory (usually to one- or two-loop order), non-
perturbative renormalization (NPR) using Landau-gauge quark and
gluon external states [57], NPR using gauge-invariant methods based
on the Schrödinger functional [58], and NPR using gauge-invariant
hadron correlators [59]. The NPR methods replace truncation errors
(which can only be approximately estimated) by statistical and
systematic errors which can be determined reliably and systematically
reduced.

An issue that arises in some of such calculations (e.g. for quark
masses and BK) is that, using NPR with Landau-gauge quark and
gluon external states, one ends up with operators regularized in a
MOM-like scheme (or a Schrödinger functional scheme), rather than
the MS scheme mostly used for calculating the Wilson coefficients.
To make contact with this scheme requires a purely continuum
perturbative matching calculation. The resultant truncation error
can, however, be minimized by pushing up the momentum scale at
which the matching is done using step-scaling techniques as part
of the NPR calculation [60]. It should also be noted that this
final step in the conversion to the MS scheme could be avoided if

continuum calculations used a MOM-like scheme or if one imposes a
renormalization condition for quantities which are calculable both in
the MS scheme and in LQCD, such as the hadron correlators at short
distances (see, e.g., Ref. 61).

17.2. Methods and status

Once the lattice action is chosen, it is straightforward to define
the quantum theory using the path integral formulation. The
Euclidean-space partition function is

Z =

∫
[dU ]

∏

f

[dqf ][dq̄f ]e
−Sg[U ]−∑

f q̄f (D[U ]+mf )qf , (17.4)

where link variables are integrated over the SU(3) manifold, qf and q̄f
are Grassmann (anticommuting) quark and antiquark fields of flavor
f , and D[U ] is the chosen lattice Dirac operator with mf the quark
mass in lattice units. Integrating out the quark and antiquark fields,
one arrives at a form suitable for simulation:

Z =

∫
[dU ]e−Sg [U ]

∏

f

det(D[U ] +mf ) . (17.5)

The building blocks for calculations are expectation values of
multi-local gauge-invariant operators, also known as “correlation
functions”,

〈O(U, q, q̄)〉 =

(1/Z)

∫
[dU ]

∏

f

[dqf ][dq̄f ]O(U, q, q̄)e−Sg[U ]−∑
f q̄f (D[U ]+mf )qf .

(17.6)
If the operators depend on the (anti-)quark fields qf and q̄f , then
integrating these fields out leads not only to the fermion determinant
but also, through Wick’s theorem, to a series of quark “propagators”,
(D[U ] +mf )

−1, connecting the positions of the fields.

This set-up allows one to choose, by hand, the masses of the
quarks in the determinant (the sea quarks) differently from those in
the propagators (valence quarks). This is called “partial quenching”,
and is used by some calculations as a way of obtaining more data
points from which to extrapolate both sea and valence quarks to their
physical values.

17.2.1. Monte-Carlo method :

Since the number of integration variables U is huge (N3
s ×Nt×4×9),

direct numerical integration is impractical and one has to use
Monte-Carlo techniques. In this method, one generates a Markov
chain of gauge configurations (a “configuration” being the set
of U ’s on all links) distributed according to the probability

measure [dU ]e−Sg[U ]∏
f det(D[U ] +mf ). Once the configurations are

generated, expectation values 〈O(U, q, q̄)〉 are calculated by averaging
over those configurations. In this way the configurations can be used
repeatedly for many different calculations, and there are several large
collections of ensembles of configurations (with a range of values of
a, lattice sizes and quark masses) that are publicly available through
the International Lattice Data Grid (ILDG). As the number of the
configurations, N , is increased, the error decreases as 1/

√
N .

The most challenging part of the generation of gauge configurations
is the need to include the fermion determinant. Direct evaluation
of the determinant is not feasible, as it requires O((N3

s × Nt)
3)

computations. Instead, one rewrites it in terms of “pseudofermion”
fields φ (auxiliary fermion fields with bosonic statistics). For example,
for two degenerate quarks one has

det(D[U ] +mf )
2 =

∫
[dφ]e−φ†(D[U ]+mf )

−2φ . (17.7)

By treating the pseudofermions as additional integration variables in
the path integral, one obtains a totally bosonic representation. The
price one pays is that the pseudofermion effective action is highly
non-local since it includes the inverse Dirac operator (D[U ] +mf )

−1.
Thus, the large sparse matrix (D[U ] +m) has to be inverted every
time one needs an evaluation of the effective action.
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Present simulations generate gauge configurations using the Hybrid
Monte Carlo (HMC) algorithm [62], or variants thereof. This
algorithm combines molecular dynamics (MD) evolution in a fictitious
time (which is also discretized) with a Metropolis “accept-reject”
step. It makes a global update of the configuration, and is made
exact by the Metropolis step. In its original form it can be used only
for two degenerate flavors, but extensions (particularly the rational
HMC [63]) are available for single flavors. Considerable speed-up of
the algorithms has been achieved over the last two decades using a
variety of techniques.

All these algorithms spend the bulk of their computational time
on the repeated inversion of (D[U ] +m) acting on a source (which is
required at every step of the MD evolution). Inversions are done using
a variety of iterative algorithms, e.g. the conjugate gradient algorithm.
In this class of algorithms, computational cost is proportional to the
condition number of the matrix, which is the ratio of maximum and
minimum eigenvalues. For (D[U ] +m) the smallest eigenvalue is ≈ m,
so the condition number and cost are inversely proportional to the
quark mass. This is a major reason why simulations at the physical
quark mass are challenging. Recent algorithmic improvements have
significantly reduced this problem.

A practical concern is the inevitable presence of correlations
between configurations in the Markov chain. These are characterized
by an autocorrelation length in the fictitious MD time. One aims
to use configurations separated in MD time by greater than this
autocorrelation length. In practice, it is difficult to measure this
length accurately, and this leads to some uncertainty in the resulting
statistical errors, as well as the possibility of insufficient equilibration.

For most of the applications of LQCD discussed in this review, the
cost of generating gauge configurations is larger than or similar to
that of performing the “measurements” on those configurations. The
computational cost of gauge generation grows with the lattice volume,
Vlat = N3

sNt, as V 1+δ
lat . Here δ = 1/4 for the HMC algorithm [64]

and can be reduced slightly using modern variants. Such growth with
Vlat provides a (time-dependent) limit on the largest lattice volumes
that can be simulated. At present, the largest lattices being used have
Ns = 144 and Nt = 288. Typically one aims to create an ensemble
of ∼ 103 statistically independent configurations at each choice of
parameters (a, mq and Vlat). For most physical quantities of interest,
this is sufficient to make the resulting statistical errors smaller than or
comparable to the systematic errors.

17.2.2. Two-point functions :

One can extract properties of stable hadrons using two-point

correlation functions, 〈OX (x)O
†
Y (0)〉. Here OX,Y (x) are operators

that have non-zero overlaps with the hadronic state of interest |H〉,
i.e. 〈0|OX,Y (x)|H〉 6= 0. One usually Fourier-transforms in the spatial
directions and considers correlators as a function of Euclidean time:

CXY (t; ~p) =
∑

~x

〈OX (t, ~x)O
†
Y (0)〉e−i~p·~x. (17.8)

(Here and throughout this section all quantities are expressed in
dimensionless lattice units, so that, for example, ~p = a~pphys.) By
inserting a complete set of states having spatial momentum ~p, the
two-point function can be written as

CXY (t; ~p) =
∞∑

i=0

1

2Ei(~p)
〈0|OX(0)|Hi(~p)〉〈Hi(~p)|O†

Y (0)|0〉e−Ei(~p)t,

(17.9)
where the energy of the i-th state Ei(~p) appears as an eigenvalue of
the time evolution operator e−Ht in the Euclidean time direction.
The factor of 1/[2Ei(~p)] is due to the relativistic normalization used
for the states. For large enough t, the dominant contribution is that
of the lowest energy state |H0(~p)〉:

CXY (t)
t→∞−→ 1

2E0(~p)
〈0|OX (0)|H0(~p)〉〈H0(~p)|O†

Y (0)|0〉e−E0(~p)t .

(17.10)
One can thus obtain the energy E0(~p), which equals the hadron
mass mH when ~p = 0, and the product of matrix elements

〈0|OX (0)|Hi(~p)〉〈Hi(~p)|O†
Y (0)|0〉.

This method can be used to determine the masses of all the stable
mesons and baryons by making appropriate choices of operators. For
example, if one uses the axial current, OX = OY = Aµ = d̄γµγ5u, then
one can determine mπ+ from the rate of exponential fall-off, and in
addition the decay constant fπ from the coefficient of the exponential.
A complication arises for states with high spins (j ≥ 4 for bosons)
because the spatial rotation group on the lattice is a discrete subgroup
of the continuum group SO(3). This implies that lattice operators,
even when chosen to lie in irreducible representations of the lattice
rotation group, have overlap with states that have a number of values
of j in the continuum limit [65]. For example j = 0 operators can
also create mesons with j = 4. Methods to overcome this problem in
practice are available [66,67] and have been used successfully.

The expression given above for the correlator CXY (t; ~p) shows how,
in principle, one can determine the energies of the excited hadron
states having the same quantum numbers as the operators OX,Y , by
fitting the correlation function to a sum of exponentials. In practice,
this usually requires using a large basis of operators and adopting
the variational approach such as that of Ref. 68. One can also use
an anisotropic lattice in which at, the lattice spacing in the time
direction, is smaller than its spatial counterpart as. This allows better
separation of the different exponentials. Using a combination of these
and other technical improvements extensive excited-state spectra have
recently been obtained [67,69–71].

17.2.3. Three-point functions :

Hadronic matrix elements needed to calculate semileptonic form
factors and neutral meson mixing amplitudes can be computed from
three-point correlation functions. We discuss here, as a representative
example, the D → K amplitude. As in the case of two-point
correlation functions one constructs operators OD and OK having
overlap, respectively, with the D and K mesons. We are interested in
calculating the matrix element 〈K|Vµ|D〉, with Vµ = c̄γµs the vector
current. To obtain this, we use the three-point correlator

CKVµD(tx, ty; ~p) =
∑

~x,~y

〈OK(tx, ~x)Vµ(0)O
†
D(ty , ~y)〉e−i~p·~x , (17.11)

and focus on the limit tx → ∞, ty → −∞. In this example we
set the D-meson at rest while the kaon carries three-momentum ~p.
Momentum conservation then implies that the weak operator Vµ
inserts three-momentum −~p. Inserting a pair of complete sets of states
between each pair of operators, we find

CKVµD(tx, ty; ~p) =
∑

i,j

1

2mDi
2EKj

(~p)
e
−mDi

tx−EKj
(~p)|ty | ×

〈0|OK(tx, ~x)|Ki(~p)〉〈Ki(~p)|Vµ(0)|Dj(~0)〉〈Dj(~0)|O†
D(0)|0〉. (17.12)

The matrix element 〈Ki(~p)|Vµ(0)|Dj(~0)〉 can then be extracted, since
all other quantities in this expression can be obtained from two-point
correlation functions. Typically one is interested in the weak matrix
elements of ground states, such as the lightest pseudoscalar mesons. In
the limit of large separation between the three operators in Euclidean
time, the three-point correlation function yields the weak matrix
element of the transition between ground states.

17.2.4. Scattering amplitudes and resonances :

The methods described thus far yield matrix elements involving
single, stable particles (where by stable we mean here absolutely
stable to strong interaction decays). Most of the particles listed in
the Review of Particle Properties are, however, unstable—they are
resonances decaying into final states consisting of multiple strongly
interacting particles. LQCD simulations cannot directly calculate
resonance properties, but methods have been developed to do so
indirectly for resonances coupled to two-particle final states in the
elastic regime, starting from the seminal work of Lüscher [72].

The difficulty faced by LQCD calculations is that, to obtain
resonance properties, or, more generally, scattering phase-shifts, one
must calculate multiparticle scattering amplitudes in momentum space
and put the external particles on their mass-shells. This requires
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analytically continuing from Euclidean to Minkowski momenta.
Although it is straightforward in LQCD to generalize the methods
described above to calculate four- and higher-point correlation
functions, one necessarily obtains them at a discrete and finite set of
Euclidean momenta. Analytic continuation to p2E = −m2 is then an
ill-posed and numerically unstable problem. The same problem arises
for single-particle states, but can be largely overcome by picking out
the exponential fall-off of the Euclidean correlator, as described above.
With a multi-particle state, however, there is no corresponding trick,
except for two particles at threshold [73].

What LQCD can calculate are the energies of the eigenstates
of the QCD Hamiltonian in a finite box. The energies of states
containing two stable particles, e.g. two pions, clearly depend on
the interactions between the particles. It is possible to invert this
dependence and, with plausible assumptions, determine the scattering
phase-shifts at a discrete set of momenta from a calculation of the
two-particle energy levels for a variety of spatial volumes [72]. This
is a challenging calculation, but it has recently been carried through
in several channels with quark masses approaching physical values.
Channels studied include ππ (for I = 2, 1 and 0), K̄K, Kπ, KD, DD∗
and Bπ. For a recent comprehensive review see [74]. Extensions
to nucleon interactions are also being actively studied [75]. The
generalization of the formalism to the case of three particles is under
active consideration [76].

It is also possible to extend the methodology to calculate
electroweak decay amplitudes to two particles below the inelastic
threshold, e.g. Γ(K → ππ) [77]. Results for both the ∆I = 3/2 and
1/2 amplitudes with physical quark masses have been obtained [78],
the former now including a controlled continuum limit [79]. First
results for the CP-violating quantity ǫ′ have been obtained [80].

Partial extensions of the formalism above the elastic threshold
have been worked out, in particular for the case of multiple two-
particle channels [81]. Another theoretical extension is to allow
the calculation of form factors between a stable particle and a
resonance [82], and between two resonances [83]. The former has
been used to calculate the γπ → ρ amplitude, albeit for unphysically
large quark masses [84].

While a systematic extension to decays with many multiparticle
channels, e.g. hadronic B decays, has, however, yet to be formulated,
some interesting new ideas have been recently proposed [85].

17.2.5. Recent advances : In some physics applications, one is

interested in the two-point correlation function 〈OX (x)O†
Y (0)〉 for

all values of the separation x, not just its asymptotic form for
large separations (which is used to determine the hadron spectrum
as sketched above). A topical example is the hadronic vacuum
polarization function Πµν(x) = 〈Vµ(x)Vν (0)〉 and its Fourier transform
Πµν(q

2). Since the lattice is in Euclidean space-time, only space-like
momenta, q2 = −Q2 < 0, are accessible. Nevertheless, this quantity
is of significant interest. It is related by a dispersion relation to the
cross section for e+e− → hadrons, and is needed for a first-principles
calculation of the “hadronic vacuum polarization” contribution to the
muon anomalous magnetic moment aµ. This is the contribution with
the largest theoretical uncertainty at present. There are a number of
lattice calculations of this contribution (see, e.g., Refs. 86–95 following
the pioneering work Ref. 96). Since the relevant scale is set by the
muon mass mµ, this quantity is most sensitive to the low-energy
region Q2 ≃ m2

µ of Πµν(−Q2), where the long-range contribution
of multibody states become relevant. The lattice calculation is
challenging because of this and also because the necessary precision is
high (below 1%). Many systematic effects must be carefully studied
and controlled in order to achieve this precision, including finite
volume errors and QED corrections.

Calculations of the light-by-light scattering contribution to aµ are
also underway. These involve the calculations of four-point correlation
functions with various external momenta. Clever ways to sum over
them to evaluate the contribution to aµ are developed and first results
have been reported [97–99]. Another approach to the light-by-light
scattering is to decompose the amplitude to components using ChPT
or phenomenological models, and to calculate the components in

LQCD. Calculations of the π → γ∗γ∗ amplitudes follow similar
directions [100,101].

There are other processes for which lattice calculation can make
significant contribution to establish quantitative understanding. One
example is the long-distance contribution to the neutral kaon mass
splitting, ∆MK . This also requires the evaluation of a four-point
function, constructed from the two-point functions described above
by the insertion of two electroweak Hamiltonians [102]. Rare kaon
decays K → πℓ+ℓ− and K → πνν̄ are also important processes for
which first lattice studies have recently appeared [103–105].

17.2.6. Status of LQCD simulations :

Until the 1990s, most large-scale lattice simulations were limited to
the “quenched” approximation, wherein the fermion determinant is
omitted from the path integral. While much of the basic methodology
was developed in this era, the results obtained had uncontrolled
systematic errors and were not suitable for use in placing precision
constraints on the Standard Model. During the 1990s, more extensive
simulations including the fermion determinant (also known as
simulations with “dynamical” fermions) were begun, but with
unphysically heavy quark masses (mℓ ∼ 50 − 100 MeV), such that
the extrapolation to the physical light quark masses was a source of
large systematic errors [106]. During the 2000s, advances in both
algorithms and computers allowed simulations to reach much smaller
quark masses (mℓ ∼ 10 − 20 MeV) such that LQCD calculations
of selected quantities with all sources of error controlled and small
became available. Their results played an important role in constraints
on the CKM matrix and other phenomenological analyses. In the last
few years, simulations directly at the physical isospin-symmetric light
quark masses have become standard, removing the need for a chiral
extrapolation and thus significantly reducing the overall error. The
present frontier, as noted above, is the inclusion of isospin breaking.
This will be needed to push the accuracy of calculations below the
percent level.

On a more qualitative level, analytic and numerical results from
LQCD have demonstrated that QCD confines color and spontaneously
breaks chiral symmetry. Confinement can be seen as a linearly rising
potential between heavy quark and anti-quark in the absence of
quark loops. Analytically, this can be shown in the strong coupling
limit glat → ∞ [1]. At weaker couplings there are precise numerical
calculations of the potential that clearly show that this behavior
persists in the continuum limit [107–109].

Chiral symmetry breaking was also demonstrated in the strong
coupling limit on the lattice [16,110], and there have been a number of
numerical studies showing that this holds also in the continuum limit.
The accumulation of low-lying modes of the Dirac operator, which is
the analog of Cooper pair condensation in superconductors, has been
observed, yielding a determination of the chiral condensate [111–115].
Many relations among physical quantities that can be derived under
the assumption of broken chiral symmetry have been confirmed by a
number of lattice groups [41].

17.3. Physics applications

In this section we describe the main applications of LQCD that are
both computationally mature and relevant for the determination of
particle properties.

A general feature to keep in mind is that, since there are
many different choices for lattice actions, all of which lead to the
same continuum theory, a crucial test is that results for any given
quantity are consistent. In many cases, different lattice calculations
are completely independent and often have very different systematic
errors. Thus final agreement, if found, is a highly non-trivial check,
just as it is for different experimental measurements.

The number, variety and precision of the calculations has progressed
to the point that an international “Flavour Lattice Averaging Group”
(FLAG) has been formed. The main aims of FLAG include collecting
all lattice results of relevance for a variety of phenomenologically
interesting quantities and providing averages of those results which
pass appropriate quality criteria. The averages attempt to account for
possible correlations between results (which can arise, for example,
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if they use common gauge configurations). The quantities considered
are those we discuss in this section, with the exception of the hadron
spectrum. The most recent FLAG review is from 2016 [41]. The
interested reader can consult this review for very extensive discussions
of the details of the calculations and of the sources of systematic
errors.

We stress that the results we quote below are those obtained using
the physical complement of light quarks (i.e. Nf = 2 + 1 or 2 + 1 + 1
simulations).

17.3.1. Spectrum :

The most basic prediction of LQCD is of the hadron spectrum.
Once the input parameters are fixed as described in Sec. 17.1.5, the
masses or resonance parameters of all other states can be predicted.
This includes hadrons composed of light (u, d and s) quarks,
as well as heavy-light and heavy-heavy hadrons. It also includes
quark-model exotics (e.g. JPC = 1−+ mesons) and glueballs. Thus,
in principle, LQCD calculations should be able to reproduce many of
the experimental results compiled in the Review of Particle Properties.
Doing so would test both that the error budgets of LQCD calculations
are accurate and that QCD indeed describes the strong interactions in
the low-energy domain. The importance of the latter test can hardly
be overstated.

What is the status of this fundamental test? As discussed in Sec.
1.2, LQCD calculations are most straightforward for stable, low-lying
hadrons. Calculations of the properties of resonances that can decay
into only two particles are more challenging, though substantial
progress has been made. First theoretical work on decays to more
than two particles has begun, but the methodology is not yet practical.
It is also more technically challenging to calculate masses of flavor
singlet states (which can annihilate into purely gluonic intermediate
states) than those of flavor non-singlets, although again algorithmic
and computational advances have begun to make such calculations
accessible, although not yet for physical quark masses. The present
status for light hadrons is that fully controlled results are available
for the masses of the octet light baryons, while results with less than
complete control are available for the decuplet baryon resonances,
the vector meson resonances and the η and η′. In addition, it has
been possible to calculate the isospin splitting in light mesons and
baryons (due to the up-down mass difference and the incorporation of
QED) [40]. There are also extensive results for heavy-light (D and B
systems) and heavy-heavy (J/ψ and Υ systems). All present results,
which are discussed in the “Quark Model” review, are consistent with
experimental values, and several predictions have been made. For a
recent extensive review of lattice results see Ref. 116.

17.3.2. Decay constants and bag parameters :

The pseudoscalar decay constants can be determined from two-point
correlation functions involving the axial-vector current, as discussed
in Sec. 17.2.2. The decay constant fP of a meson P is extracted
from the weak matrix element involving the axial-vector current using
the relation 〈0|Aµ(x)|P (~p)〉 = fP pµ exp(−ip · x), where pµ is the
momentum of P and Aµ(x) is the axial-vector current. Since they are
among the simplest quantities to calculate, decay constants provide
good benchmarks for lattice methods, in addition to being important
inputs for flavor physics phenomenology in their own right. Results
from many lattice groups for the pion and kaon decay constants now
have errors at the percent level or better. The decay constants in the
charm and bottom sectors, fD, fDs , fB, and fBs , have also been
calculated to high precision. Lattice results for all of these decay
constants are discussed in detail in the review “Leptonic Decays of
Charged Pseudoscalar Mesons.”

Another important lattice quantity is the kaon bag parameter, BK ,
which is needed to turn the precise measurement of CP-violation in
kaon mixing into a constraint on the Standard Model. It is defined by

8

3
m2

Kf2KBK(µ) = 〈K0|Q∆S=2(µ)|K0〉, (17.13)

where mK is the kaon mass, fK is the kaon decay constant,
Q∆S=2 = sγµ(1−γ5)dsγµ(1−γ5)d is the four-quark operator of
the effective electroweak Hamiltonian and µ is the renormalization

scale. The short distance contribution to the electroweak Hamiltonian
can be calculated perturbatively, but the hadronic matrix element
parameterized by BK must be computed using non-perturbative
methods. In order to be of use to phenomenology, the renormalization
factor of the four-quark operator must be matched to a continuum
renormalization scheme, e.g. to MS, as described in Sec. 17.1.6.4.
Determinations with percent-level precision using different fermion
actions and Nf = 2 + 1 light sea quarks are now available using
DWF [117], staggered fermions [118], DWF valence on staggered
sea quarks [119], and Wilson fermions [12]. The results are all
consistent, and the present FLAG average is B̂K = 0.763(10) [41].

The bag parameters for B and Bs meson mixing are defined
analogously to that for kaon mixing. The B and Bs mesons contain
a valence b-quark so that calculations of these quantities must use
one of the methods for heavy quarks described above. Calculations
with Nf = 2 + 1 light fermions have been done using NRQCD [120],
the Fermilab formalism [49], and static heavy quarks [121].
All results are consistent. The FLAG averages for the quantities
relevant for Bs and B mixing are fBs

√
BBs = 274(8) MeV and

fB
√
BB = 225(9) MeV, with their ratio (which is somewhat better

determined) being ξ = 1.206(7) (quoted from the 2017 web update of
Ref. 41). Note that the errors for quantities involving b quarks are
larger than those for quantities involving only light quarks, although
the difference has decreased over the last two years.

For the K, D and B systems, one can also consider the matrix
elements of four-fermion operators that arise in beyond-the-standard-
model (BSM) theories, which can have a different chiral structure.
Knowledge of these matrix elements allows one to constrain the
parameters of the BSM theories, and is complementary to direct
searches at the LHC. Reliable results are now available from lattice
calculations, and are reviewed by FLAG in the case of kaon
mixing [41]. Complete results for D and B mixing are presented in
Ref. 122 and Ref. 49, respectively.

The results for mixing matrix elements are used in the reviews
“The CKM Quark-Mixing Matrix,” and “B0 − B̄0 Mixing.”

17.3.3. Form factors (K → πℓν, D → Kℓν, B → πℓν,

B → D(∗)ℓν) :

Semileptonic decay rates can be used to extract CKM matrix
elements once the semileptonic form factors are known from lattice
calculations. For example, the matrix element of a pseudoscalar meson
P undergoing semileptonic decay to another pseudoscalar meson D is
mediated by the vector current, and can be written in terms of form
factors as

〈D(pD)|Vµ|P (pP )〉 = f+(q
2)(pD + pP −∆)µ + f0(q

2)∆µ , (17.14)

where q = pD−pP , ∆µ = (m2
D−m2

P )qµ/q
2 and Vµ is the quark vector

current. The shape of the form factor is typically well determined by
experiment, and the value of f+(q

2) at some reference value of q2 is
needed from the lattice in order to extract CKM matrix elements.
Typically f+(q

2) dominates the decay rate, since the contribution
from f0(q

2) is suppressed when the final state lepton is light.

The form factor f+(0) for K → πℓν decays is highly constrained
by the Ademollo-Gatto theorem [123] and chiral symmetry. Old
estimates using chiral perturbation theory combined with quark
models quote sub-percent precision [124], though they suffer from
some model dependence. Utilizing the constraint from the vector
current conservation that f+(0) is normalized to unity in the limit
of degenerate up and strange quark masses, the lattice calculation
can be made very precise and has now matched the precision of the
phenomenological estimates [125–132]. The present FLAG average
(from Nf = 2 + 1 simulations) is f+(0) = 0.968(3) [41].

Charm meson semileptonic decays have been calculated by different
groups using methods similar to those used for charm decay constants,
and results are steadily improving in precision [133,134]. For
semileptonic decays involving a bottom quark, one uses HQET or
NRQCD to control the discretization errors of the bottom quark. The
form factors for the semileptonic decay B → πℓν have been calculated
in unquenched lattice QCD by a number of groups [135–138]. These
B semileptonic form factors are difficult to calculate at low q2,
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i.e. when the mass of the B-meson must be balanced by a large
pion momentum, in order to transfer a small momentum to the
lepton pair. The low q2 region has large discretization errors and
very large statistical errors, while the high q2 region is much more
accessible to the lattice. For experiment, the opposite is true. To
combine lattice and experimental results it has proved helpful to
use the z-parameter expansion [139]. This provides a theoretically
constrained parameterization of the entire q2 range, and allows one to
obtain |Vub| without model dependence [140,141].

The semileptonic decays B → Dℓν and B → D∗ℓν can be used
to extract |Vcb| once the corresponding form factors are known. At
present only one unquenched calculation exists for the B → D∗ℓν
form factor, where the Fermilab formulation of the heavy quark was
adopted [142,143]. This calculation is done at zero-recoil because
that is where the lattice systematic errors are smallest. Calculations
at non-zero recoil in unquenched lattice QCD have been done for the
form factors needed to extract |Vcb| from B → Dℓν decays [144,145].
Semileptonic decays of the Λb baryon can also be used to constrain |Vcb|
and |Vub| using lattice calculations of the relevant form factors [146].

The rare decays B → K(∗)ℓ+ℓ− involve matrix elements similar
to those needed for semileptonic decays, Eq. (17.14), except that
the vector current Vµ is replaced by the operators s̄γµ(1 − γ5)b or
s̄σµν(1 + γ5)b. Lattice calculations of the corresponding form factors
involve similar techniques to those for the semileptonic form factors.
The values of q2 for which lattice calculations can be done are limited
as for B semileptonic decays, and, in addition, the region of cc̄
resonances has to be avoided. Recent lattice calculations [147–149]
have been used to constrain the standard model and new physics
contributions.

The results discussed in this section are used in the reviews “The
CKM Quark-Mixing Matrix,” “Vud, Vus, the Cabibbo Angle and CKM
Unitarity,” and “Vcb and Vub CKM Matrix Elements.”

17.3.4. Strong coupling constant :

As explained in Sec. 17.1.5.1, for a given lattice action, the choice
of bare lattice coupling constant, glat, determines the lattice spacing
a. If one then calculates a as described in Sec. 17.1.5.1, one knows the
strong coupling constant in the bare lattice scheme at the scale 1/a,
αlat = g2lat/(4π). This is not, however, useful for comparing to results
for αs obtained from other inputs, such as deep inelastic scattering or
jet shape variables. This is because the latter results give αs in the MS
scheme, which is commonly used in such analyses, and the conversion
factor between these two schemes is known to converge extremely
poorly in perturbation theory. Instead one must use a method which
directly determines αs on the lattice in a scheme closer to MS.

Several such methods have been used, all following a similar strategy.
One calculates a short-distance quantity K both perturbatively (KPT)
and non-perturbatively (KNP) on the lattice, and requires equality:
KNP = KPT =

∑n
i=0 ciα

i
s. Solving this equation one obtains αs at a

scale related to the quantity being used. Often, αs thus obtained is
not defined in the conventional MS scheme, and one has to convert
among the different schemes using perturbation theory. Unlike for the
bare lattice scheme, the required conversion factors are reasonably
convergent. As a final step, one uses the renormalization group to run
the resulting coupling to a canonical scale (such as MZ).

In the work of the HPQCD collaboration [150], the short-distance
quantities are Wilson loops of several sizes and their ratios. These
quantities are perturbatively calculated to O(α3

s) using the V -scheme
defined through the heavy quark potential. The coefficients of even
higher orders are estimated using the data at various values of a. In
addition, this work obtains a result for αs by matching with αlat in a
tadpole-improved scheme that improves convergence.

Another choice of short-distance quantities is to use current-current
correlators. Appropriate moments of these correlators are ultraviolet
finite, and by matching lattice results to the continuum perturbative
predictions, one can directly extract the MS coupling. The method
can be applied for light meson correlators [151,152] as well as heavy
meson correlators [153–157]. Yet another choice of short-distance
quantity is the static-quark potential, where the lattice result for
the potential is compared to perturbative calculations; this method

was used to compute αs within 2+1 flavor QCD [158–160]. There is
also a determination of αs from a comparison of lattice data for the
ghost-gluon coupling with that of perturbation theory [161].

With a definition of αs given using the Schrödinger functional,
one can non-perturbatively control the evolution of αs to high-energy
scales, such as 100 GeV, where the perturbative expansion converges
very well. This method developed by the ALPHA collaboration [60]
has been applied to 2+1-flavor QCD in Refs. 162–164.

The various lattice methods for calculating αs have significantly
different sources of systematic error. Thus the good agreement
between the approaches (which can be seen in the “Quantum
Chromodynamics” review) provides a strong check on the final result.

17.3.5. Quark masses :

Once the quark mass parameters are tuned in the lattice action,
the remaining task is to convert them to those of the conventional
definition. Since the quarks do not appear as asymptotic states due to
confinement, the pole mass of the quark propagator is not a physical
quantity. Instead, one defines the quark mass after subtracting the
ultra-violet divergences in some particular way. The conventional
choice is again the MS scheme at a canonical scale such as 2 or 3 GeV.
Ratios such as mc/ms and mb/mc are also useful as they are free from
multiplicative renormalization (in a mass-independent scheme).

As discussed in Sec. 17.1.6.4, one must convert the lattice bare
quark mass to that in the MS scheme. Older calculations did so
directly using perturbation theory; most recent calculations use an
intermediate NPR method (e.g. RI/MOM or RI/SMOM) which is
then converted to the MS scheme using perturbation theory.

Alternatively, one can use a definition based on the Schrödinger
functional, which allows one to evolve the quark mass to a high scale
non-perturbatively [165]. In practice, one can reach scales as high
as ∼100 GeV, at which matching to the MS scheme can be reliably
calculated in perturbation theory.

Another approach available for heavy quarks is to match current-
current correlators at short distances calculated on the lattice
to those obtained in continuum perturbation theory in the MS
scheme [153–157]. This has allowed an accurate determination of mc

and is also beginning to be used for mb [154,155].

The ratio method for heavy quarks (discussed earlier) can also be
used to determine mb [166].

Results are summarized in the review of “Quark Masses”.

17.3.6. Other applications :

In this review we have concentrated on applications of LQCD that
are relevant to the quantities discussed in the Review of Particle
Properties. We have not discussed at all several other applications
that are being actively pursued by simulations. Here we list the
major such applications. The reader can consult the aforementioned
texts [2–4] for further details, as well as the proceedings of recent
lattice conferences [167].

LQCD can be used, in principle, to simulate QCD at non-zero
temperature and density, and in particular to study how confinement
and chiral-symmetry breaking are lost as T and µ (the chemical
potential) are increased. This is of relevance to heavy-ion collisions,
the early Universe and neutron-star structure. In practice, finite
temperature simulations are computationally tractable and relatively
mature, while simulations at finite µ suffer from a “sign problem” and
are at a rudimentary stage.

Another topic under active investigation is nucleon structure and
inter-nucleon interactions. The simplest nucleon matrix elements are
calculable with a precision that is now starting to rival that for some
mesonic quantities. Of particular interest are those of the axial current
(leading to gA) and of the scalar density (with 〈N |s̄s|N〉 needed for
dark matter searches).

Finally, we note that there is much recent interest in studying QCD-
like theories with more fermions, possibly in other representations
of the gauge group. The main interest is to find nearly conformal
theories which might be candidates for “walking technicolor” models.
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17.4. Outlook

While LQCD calculations have made major strides in the last
decade, and are now playing an important role in constraining the
Standard Model, there are many calculations that could be done in
principle but are not yet mature due to limitations in computational
resources. As we move to exascale resources (1018 floating point
operations per second), the list of mature calculations will grow.
Examples that we expect to mature in the next few years are results
for excited hadrons, including quark-model exotics, at close to physical
light-quark masses; results for moments of structure functions; results
for the simplest nucleon matrix elements; K → ππ amplitudes
(allowing a prediction of ǫ′/ǫ from the Standard Model); hadronic
vacuum polarization contributions to gµ−2, the running of αEM
and αs; π → γγ and related amplitudes; long-distance contributions
to K ↔ K mixing; the light-by-light contribution to gµ−2; and
determinations of long distance contributions to rare kaon decays such
as K → πνν̄. There will also be steady improvement in the precision
attained for the mature quantities discussed above. As already noted,
this will ultimately require simulations with mu 6= md and including
electromagnetic effects.
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18.1. Deep inelastic scattering

High-energy lepton-nucleon scattering (deep inelastic scattering)
plays a key role in determining the partonic structure of the proton.
The process ℓN → ℓ′X is illustrated in Fig. 18.1. The filled circle in
this figure represents the internal structure of the proton which can be
expressed in terms of structure functions.

k

k

q

P, M W

Figure 18.1: Kinematic quantities for the description of
deep inelastic scattering. The quantities k and k′ are the
four-momenta of the incoming and outgoing leptons, P is the
four-momentum of a nucleon with mass M , and W is the mass
of the recoiling system X . The exchanged particle is a γ, W±,
or Z; it transfers four-momentum q = k − k′ to the nucleon.

Invariant quantities:

ν =
q · P
M

= E −E′ is the lepton’s energy loss in the nucleon rest
frame (in earlier literature sometimes ν = q · P ). Here,
E and E′ are the initial and final lepton energies in the
nucleon rest frame.

Q2 = −q2 = 2(EE′ −−→
k · −→k ′)−m2

ℓ −m2
ℓ′ where mℓ(mℓ′) is the initial

(final) lepton mass. If EE′ sin2(θ/2) ≫ m2
ℓ , m

2
ℓ′ , then

≈ 4EE′ sin2(θ/2), where θ is the lepton’s scattering angle with
respect to the lepton beam direction.

x =
Q2

2Mν
where, in the parton model, x is the fraction of the nucleon’s

momentum carried by the struck quark.

y =
q · P
k · P =

ν

E
is the fraction of the lepton’s energy lost in the nucleon

rest frame.

W 2 = (P + q)2 = M2 + 2Mν −Q2 is the mass squared of the system
X recoiling against the scattered lepton.

s = (k + P )2 =
Q2

xy
+M2 +m2

ℓ is the center-of-mass energy squared

of the lepton-nucleon system.

The process in Fig. 18.1 is called deep (Q2 ≫ M2) inelastic
(W 2 ≫ M2) scattering (DIS). In what follows, the masses of the
initial and scattered leptons, mℓ and mℓ′ , are neglected.

18.1.1. DIS cross sections :

The double-differential cross section for deep inelastic scattering
can be expressed in terms of kinematic variables in several ways.

d2σ

dx dy
= x (s−M2)

d2σ

dx dQ2 =
2π Mν

E′
d2σ

dΩNrest dE′ . (18.1)

In lowest-order perturbation theory, the cross section for the scattering
of polarized leptons on polarized nucleons can be expressed in terms
of the products of leptonic and hadronic tensors associated with the
coupling of the exchanged bosons at the upper and lower vertices
in Fig. 18.1 (see Refs. [1–4])

d2σ

dxdy
=

2πyα2

Q4

∑

j

ηj L
µν
j W j

µν . (18.2)

For neutral-current processes, the summation is over j = γ, Z and
γZ representing photon and Z exchange and the interference between
them, whereas for charged-current interactions there is only W
exchange, j = W . (For transverse nucleon polarization, there is a
dependence on the azimuthal angle of the scattered lepton.) The
lepton tensor Lµν is associated with the coupling of the exchange
boson to the leptons. For incoming leptons of charge e = ±1 and
helicity λ = ±1,

Lγ
µν = 2

(
kµk

′
ν + k′µkν − (k · k′ −m2

ℓ )gµν − iλεµναβk
αk′β

)
,

LγZ
µν =(geV + eλgeA) L

γ
µν , LZ

µν = (geV + eλgeA)
2 Lγ

µν ,

LW
µν =(1 + eλ)2 Lγ

µν , (18.3)

where geV = − 1
2

+ 2 sin2 θW , geA = − 1
2
.

Although here the helicity formalism is adopted, an alternative
approach is to express the tensors in Eq. (18.3) in terms of the
polarization of the lepton.

The factors ηj in Eq. (18.2) denote the ratios of the corresponding
propagators and couplings to the photon propagator and coupling
squared

ηγ = 1 ; ηγZ =

(
GFM

2
Z

2
√
2πα

) (
Q2

Q2 +M2
Z

)
;

ηZ = η2γZ ; ηW = 1
2

(
GFM

2
W

4πα

Q2

Q2 +M2
W

)2

. (18.4)

The hadronic tensor, which describes the interaction of the appropriate
electroweak currents with the target nucleon, is given by

Wµν =
1

4π

∫
d4z eiq·z

〈
P, S

∣∣∣
[
J†
µ(z), Jν(0)

]∣∣∣ P, S
〉
, (18.5)

where S denotes the nucleon-spin 4-vector, with S2 = −M2 and
S · P = 0.

18.2. Structure functions of the proton

The structure functions are defined in terms of the hadronic tensor
(see Refs. [1–3])

Wµν =

(
−gµν +

qµqν

q2

)
F1(x,Q

2) +
P̂µP̂ν

P · q F2(x,Q
2)

− iεµναβ
qαPβ

2P · q F3(x,Q
2)

+ iεµναβ
qα

P · q

[
Sβg1(x,Q

2) +

(
Sβ − S · q

P · q Pβ
)

g2(x,Q
2)

]

+
1

P · q

[
1
2

(
P̂µŜν + ŜµP̂ν

)
− S · q

P · q P̂µP̂ν

]
g3(x,Q

2)

+
S · q
P · q

[
P̂µP̂ν

P · q g4(x,Q
2) +

(
−gµν +

qµqν
q2

)
g5(x,Q

2)

]
(18.6)

where

P̂µ = Pµ − P · q
q2

qµ, Ŝµ = Sµ − S · q
q2

qµ . (18.7)

In [2], the definition of Wµν with µ ↔ ν is adopted, which changes
the sign of the εµναβ terms in Eq. (18.6), although the formulae given
below are unchanged. Ref. [1] tabulates the relation between the
structure functions defined in Eq. (18.6) and other choices available in
the literature.

The cross sections for neutral- and charged-current deep inelastic
scattering on unpolarized nucleons can be written in terms of the
structure functions in the generic form

d2σi

dxdy
=

4πα2

xyQ2
ηi

{(
1 − y − x2y2M2

Q2

)
F i
2

+ y2xF i
1 ∓

(
y − y2

2

)
xF i

3

}
, (18.8)
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where i = NC, CC corresponds to neutral-current (eN → eX) or
charged-current (eN → νX or νN → eX) processes, respectively.
For incoming neutrinos, LW

µν of Eq. (18.3) is still true, but with e, λ
corresponding to the outgoing charged lepton. In the last term of
Eq. (18.8), the − sign is taken for an incoming e+ or ν and the +
sign for an incoming e− or ν. The factor ηNC = 1 for unpolarized e±

beams, whereas∗
ηCC = (1± λ)2ηW (18.9)

with ± for ℓ±; and where λ is the helicity of the incoming lepton and
ηW is defined in Eq. (18.4); for incoming neutrinos ηCC = 4ηW . The
CC structure functions, which derive exclusively from W exchange,
are

FCC
1 = FW

1 , FCC
2 = FW

2 , xFCC
3 = xFW

3 . (18.10)

The NC structure functions F
γ
2 , F

γZ
2 , FZ

2 are, for e±N → e±X , given
by [5],

FNC
2 = F γ

2 − (geV ± λgeA)ηγZF
γZ
2 + (ge 2

V + ge 2
A ± 2λgeV g

e
A) ηZF

Z
2

(18.11)
and similarly for FNC

1 , whereas

xFNC
3 = −(geA ± λgeV )ηγZxF

γZ
3 + [2geV g

e
A ± λ(ge 2

V + ge 2
A )]ηZxF

Z
3 .

(18.12)

The polarized cross-section difference

∆σ = σ(λn = −1, λℓ) − σ(λn = 1, λℓ) , (18.13)

where λℓ, λn are the helicities (±1) of the incoming lepton and
nucleon, respectively, may be expressed in terms of the five structure
functions g1,...5(x,Q

2) of Eq. (18.6). Thus,

d2∆σi

dxdy
=

8πα2

xyQ2
ηi

{
−λℓy

(
2− y − 2x2y2

M2

Q2

)
xgi1 + λℓ4x

3y2
M2

Q2
gi2

+ 2x2y
M2

Q2

(
1− y − x2y2

M2

Q2

)
gi3

−
(
1 + 2x2y

M2

Q2

)[(
1− y − x2y2

M2

Q2

)
gi4 + xy2gi5

]}
(18.14)

with i = NC or CC as before. The Eq. (18.13) corresponds to
the difference of antiparallel minus parallel spins of the incoming
particles for e− or ν initiated reactions, but the difference of parallel
minus antiparallel for e+ or ν initiated processes. For longitudinal
nucleon polarization, the contributions of g2 and g3 are suppressed
by powers of M2/Q2. These structure functions give an unsuppressed
contribution to the cross section for transverse polarization [1], but in
this case the cross-section difference vanishes as M/Q → 0.

Because the same tensor structure occurs in the spin-dependent
and spin-independent parts of the hadronic tensor of Eq. (18.6)
in the M2/Q2 → 0 limit, the differential cross-section difference
of Eq. (18.14) may be obtained from the differential cross section
Eq. (18.8) by replacing

F1 → −g5 , F2 → −g4 , F3 → 2g1 , (18.15)

and multiplying by two, since the total cross section is the average over
the initial-state polarizations. In this limit, Eq. (18.8) and Eq. (18.14)
may be written in the form

d2σi

dxdy
=

2πα2

xyQ2 ηi
[
Y+F

i
2 ∓ Y−xF i

3 − y2F i
L

]
,

d2∆σi

dxdy
=

4πα2

xyQ2
ηi

[
−Y+g

i
4 ∓ Y−2xgi1 + y2giL

]
, (18.16)

with i = NC or CC, where Y± = 1± (1 − y)2 and

F i
L = F i

2 − 2xF i
1 , giL = gi4 − 2xgi5 . (18.17)

In the naive quark-parton model, the analogy with the Callan-Gross
relations [6] F i

L = 0, are the Dicus relations [7] giL = 0. Therefore,
there are only two independent polarized structure functions: g1
(parity conserving) and g5 (parity violating), in analogy with the
unpolarized structure functions F1 and F3.

18.2.1. Structure functions in the quark-parton model :

In the quark-parton model [8,9], contributions to the structure
functions F i and gi can be expressed in terms of the quark distribution
functions q(x,Q2) of the proton, where q = u, u, d, d etc. The quantity
q(x,Q2)dx is the number of quarks (or antiquarks) of designated flavor
that carry a momentum fraction between x and x+ dx of the proton’s
momentum in a frame in which the proton momentum is large.

For the neutral-current processes ep → eX ,

[
F γ
2 , F

γZ
2 , FZ

2

]
= x

∑

q

[
e2q , 2eqg

q
V , g

q 2
V + gq 2

A

]
(q + q) ,

[
F
γ
3 , F

γZ
3 , FZ

3

]
=

∑

q

[
0, 2eqg

q
A, 2g

q
V g

q
A

]
(q − q) ,

[
gγ1 , g

γZ
1 , gZ1

]
= 1

2

∑

q

[
e2q , 2eqg

q
V , gq 2

V + gq 2
A

]
(∆q +∆q) ,

[
gγ5 , g

γZ
5 , gZ5

]
=

∑

q

[
0, eqg

q
A, g

q
V gqA

]
(∆q −∆q) , (18.18)

where g
q
V = ± 1

2
− 2eq sin

2 θW and g
q
A = ± 1

2
, with ± according to

whether q is a u− or d−type quark respectively. The quantity ∆q is
the difference q↑ −q↓ of the distributions with the quark spin parallel
and antiparallel to the proton spin.

For the charged-current processes e−p → νX and νp → e+X , the
structure functions are:

FW−
2 = 2x(u + d+ s+ c . . .) ,

FW−
3 = 2(u− d− s+ c . . .) ,

gW
−

1 = (∆u +∆d+∆s+∆c . . .) ,

gW
−

5 = (−∆u+∆d+∆s−∆c . . .) , (18.19)

where only the active flavors have been kept and where CKM
mixing has been neglected. For e+p → νX and νp → e−X , the

structure functions FW+
, gW

+
are obtained by the flavor interchanges

d ↔ u, s ↔ c in the expressions for FW−
, gW

−
. The structure

functions for scattering on a neutron are obtained from those of
the proton by the interchange u ↔ d. For both the neutral- and
charged-current processes, the quark-parton model predicts 2xF i

1 = F i
2

and gi4 = 2xgi5.

Neglecting masses, the structure functions g2 and g3 contribute
only to scattering from transversely polarized nucleons (for which
S · q = 0), and have no simple interpretation in terms of the
quark-parton model. They arise from off-diagonal matrix elements

〈P, λ′|[J†
µ(z), Jν(0)]|P, λ〉, where the proton helicities satisfy λ′ 6= λ.

In fact, the leading-twist contributions to both g2 and g3 are both
twist-2 and twist-3, which contribute at the same order of Q2. The
Wandzura-Wilczek relation [10] expresses the twist-2 part of g2 in
terms of g1 as

gi2(x) = −gi1(x) +

∫ 1

x

dy

y
gi1(y) . (18.20)

However, the twist-3 component of g2 is unknown. Similarly, there is
a relation expressing the twist-2 part of g3 in terms of g4. A complete
set of relations, including M2/Q2 effects, can be found in [11].

18.2.2. Structure functions and QCD :

One of the most striking predictions of the quark-parton model is
that the structure functions Fi, gi scale, i.e., Fi(x,Q

2) → Fi(x) in the
Bjorken limit that Q2 and ν → ∞ with x fixed [12]. This property
is related to the assumption that the transverse momentum of the
partons in the infinite-momentum frame of the proton is small. In
QCD, however, the radiation of hard gluons from the quarks violates
this assumption, leading to logarithmic scaling violations, which are
particularly large at small x, see Fig. 18.2. The radiation of gluons
produces the evolution of the structure functions. As Q2 increases,
more and more gluons are radiated, which in turn split into qq pairs.
This process leads both to the softening of the initial quark momentum
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distributions and to the growth of the gluon density and the qq sea as
x decreases. For spin-dependent structure functions, data exists for a
more restricted range of Q2 and has lower precision, so that the scaling
violations are not seen so clearly. However, spin-dependent parton
distributions have been extracted by comparison to data; Fig. 18.3
shows several versions (discussed in more detail in Sec. 18.3 below) at
a scale of 2.5 GeV2 compared to the data from semi-inclusive DIS.
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Figure 18.2: The proton structure function F p
2 given at two

Q2 values (6.5 GeV2 and 90 GeV2), which exhibit scaling at
the ‘pivot’ point x ∼ 0.14. See the captions in Fig. 18.8 and
Fig. 18.10 for the references of the data. The various data sets
have been renormalized by the factors shown in brackets in the
key to the plot, which were globally determined in a previous
HERAPDF analysis [13]. The curves were obtained using the
PDFs from the HERAPDF analysis [14]. In practice, data
for the reduced cross section, F2(x,Q

2) − (y2/Y+)FL(x,Q
2),

were fitted, rather than F2 and FL separately. The agreement
between data and theory at low Q2 and x can be improved by a
positive higher-twist correction to FL(x,Q

2) [15,16] (see Fig. 8
of Ref. [16]).

In QCD, the above processes are described in terms of scale-
dependent parton distributions fa(x, µ

2), where a = g or q and,
typically, µ is the scale of the probe Q. For Q2 ≫ M2, the structure
functions are of the form

Fi =
∑

a

Ca
i ⊗ fa, (18.21)

where ⊗ denotes the convolution integral

C ⊗ f =

∫ 1

x

dy

y
C(y) f

(
x

y

)
, (18.22)

and where the coefficient functions Ca
i are given as a power series

in αs. The parton distribution fa corresponds, at a given x, to the
density of parton a in the proton integrated over transverse momentum
kt up to µ. Its evolution in µ is described in QCD by a DGLAP
equation (see Refs. [24–27]) which has the schematic form

∂fa
∂ lnµ2

∼ αs(µ
2)

2π

∑

b

(Pab ⊗ fb) , (18.23)

where the Pab, which describe the parton splitting b → a, are also
given as a power series in αs. Although perturbative QCD can predict,
via Eq. (18.23), the evolution of the parton distribution functions
from a particular scale, µ0, these DGLAP equations cannot predict
them a priori at any particular µ0. Thus they must be measured at a
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Figure 18.3: Distributions of x times the polarized parton distri-
butions ∆q(x) (where q = u, d, u, d, s) using the NNPDF2014 [15],
AAC2008 [16], DSSV2008 [17], and LSS2010 [18] parameter-
izations at a scale µ2 = 2.5 GeV2, showing the blue-shaded
error corridor of the NNPDF2014 set. (SMC [21] and COM-
PASS [22,23]) deep inelastic scattering given at Q2 = 2.5 GeV2.
The SMC results were extracted under the assumption that
∆u(x) = ∆d(x).

starting point µ0 before the predictions of QCD can be compared to
the data at other scales, µ. In general, all observables involving a hard
hadronic interaction (such as structure functions) can be expressed
as a convolution of calculable, process-dependent coefficient functions
and these universal parton distributions, e.g. Eq. (18.21).

It is often convenient to write the evolution equations in terms of
the gluon, non-singlet (qNS) and singlet (qS) quark distributions, such
that

qNS = qi − qi (or qi − qj), qS =
∑

i

(qi + qi) . (18.24)

The non-singlet distributions have non-zero values of flavor quantum
numbers, such as isospin and baryon number. The DGLAP evolution
equations then take the form

∂qNS

∂ lnµ2
=

αs(µ
2)

2π
Pqq ⊗ qNS ,

∂

∂ lnµ2

(
qS

g

)
=

αs(µ
2)

2π

(
Pqq 2nf Pqg

Pgq Pgg

)
⊗

(
qS

g

)
, (18.25)

where P are splitting functions that describe the probability of a
given parton splitting into two others, and nf is the number of
(active) quark flavors. The leading-order Altarelli-Parisi [26] splitting
functions are

Pqq = 4
3

[
1 + x2

(1− x)

]

+
= 4

3

[
1 + x2

(1− x)+

]
+ 2δ(1− x) , (18.26)

Pqg = 1
2

[
x2 + (1 − x)2

]
, (18.27)

Pgq = 4
3

[
1 + (1− x)2

x

]
, (18.28)
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Pgg = 6

[
1− x

x
+ x(1− x) +

x

(1− x)+

]

+

[
11

2
− nf

3

]
δ(1− x), (18.29)

where the notation [F (x)]+ defines a distribution such that for any
sufficiently regular test function, f(x),

∫ 1

0
dxf(x)[F (x)]+ =

∫ 1

0
dx (f(x)− f(1))F (x) . (18.30)

In general, the splitting functions can be expressed as a power
series in αs. The series contains both terms proportional to lnµ2 and
to ln(1/x) and ln(1 − x). The leading-order DGLAP evolution sums
up the (αs lnµ

2)n contributions, while at next-to-leading order (NLO)
the sum over the αs(αs lnµ

2)n−1 terms is included [28,29]. The
NNLO contributions to the splitting functions and the DIS coefficient
functions are also all known [30–32].

In the kinematic region of very small x, one may also sum leading
terms in ln(1/x), independent of the value of lnµ2. At leading
order, LLx, this is done by the BFKL equation for the unintegrated
distributions (see Refs. [33,34]). The leading-order (αs ln(1/x))

n

terms result in a power-like growth, x−ω with ω = (12αsln2)/π,
at asymptotic values of ln 1/x. The next-to-leading ln 1/x (NLLx)
contributions are also available [35,36]. They are so large (and
negative) that the results initially appeared to be perturbatively
unstable. Methods, based on a combination of collinear and small-x
resummations, have been developed which reorganize the perturbative
series into a more stable hierarchy [37–40]. There are some limited
indications that small-x resummations become necessary for sufficient
precision for x . 10−3 at low scales. There is not yet any very
convincing indication for a ‘non-linear’ regime, for Q2 & 2 GeV2,
in which the gluon density would be so high that gluon-gluon
recombination effects would become significant.

Table 18.1: The main processes relevant to global PDF
analyses, ordered in three groups: fixed-target experiments,
HERA and the pp̄ Tevatron / pp LHC. For each process we
give an indication of their dominant partonic subprocesses, the
primary partons which are probed and the approximate range of
x constrained by the data.

Process Subprocess Partons x range

ℓ± {p, n} → ℓ±X γ∗q → q q, q̄, g x & 0.01

ℓ± n/p → ℓ±X γ∗ d/u → d/u d/u x & 0.01

pp → µ+µ−X uū, dd̄ → γ∗ q̄ 0.015 . x . 0.35

pn/pp → µ+µ−X (ud̄)/(uū) → γ∗ d̄/ū 0.015 . x . 0.35

ν(ν̄)N → µ−(µ+)X W ∗q → q′ q, q̄ 0.01 . x . 0.5

ν N → µ−µ+X W ∗s → c s 0.01 . x . 0.2

ν̄ N → µ+µ−X W ∗s̄ → c̄ s̄ 0.01 . x . 0.2

e± p → e±X γ∗q → q g, q, q̄ 10−4 . x . 0.1

e+ p → ν̄ X W+ {d, s} → {u, c} d, s x & 0.01

e±p → e± cc̄X, e± bb̄X γ∗c → c, γ∗g → cc̄ c, b, g 10−4 . x . 0.01

e±p → jet+X γ∗g → qq̄ g 0.01 . x . 0.1

pp̄, pp → jet+X gg, qg, qq → 2j g, q 0.00005 . x . 0.5

pp̄ → (W± → ℓ±ν)X ud → W+, ūd̄ → W− u, d, ū, d̄ x & 0.05

pp → (W± → ℓ±ν)X ud̄ → W+, dū → W− u, d, ū, d̄, g x & 0.001

pp̄(pp) → (Z → ℓ+ℓ−)X uu, dd, ..(uū, ..) → Z u, d, ..(g) x & 0.001

pp → W−c, W+c̄ gs → W−c s, s̄ x ∼ 0.01

pp → (γ∗ → ℓ+ℓ−)X uū, dd̄, .. → γ∗ q̄, g x & 10−5

pp → (γ∗ → ℓ+ℓ−)X uγ, dγ, .. → γ∗ γ x & 10−2

pp → bb̄X, tt̄X gg → bb̄, tt̄ g x & 10−5, 10−2

pp → exclusive J/ψ, Υ γ∗(gg) → J/ψ, Υ g x & 10−5, 10−4

pp → γ X gq → γq, gq̄ → γq̄ g x & 0.005

The precision of the experimental data demands that at least NLO,
and preferably NNLO, DGLAP evolution be used in comparisons
between QCD theory and experiment. Beyond the leading order, it is
necessary to specify, and to use consistently, both a renormalization
and a factorization scheme. The renormalization scheme used almost
universally is the modified minimal subtraction (MS) scheme [41,42].
The most popular choices for the factorization scheme is also MS [43].
However, sometimes the DIS [44] scheme is adopted, in which there
are no higher-order corrections to the F2 structure function. The two
schemes differ in how the non-divergent pieces are assimilated in the
parton distribution functions.

The discussion above relates to the Q2 behavior of leading-twist
(twist-2) contributions to the structure functions. Higher-twist terms,
which involve their own non-perturbative input, exist. These die off
as powers of Q; specifically twist-n terms are damped by 1/Qn−2.
Provided a cut, say W 2 > 15 GeV2 is imposed, the higher-twist terms
appear to be numerically unimportant for Q2 above a few GeV2,
except for x close to 1 [45–47], though it is important to note that they
are likely to be larger in xF3(x,Q

2) than in F2(x,Q
2) (see e.g. [48]).

18.3. Determination of parton distributions

The parton distribution functions (PDFs) can be determined
from an analysis of data for deep inelastic lepton-nucleon scattering
and for related hard-scattering processes initiated by nucleons; see
Refs. [49–53] for reviews. Table 18.1 highlights some of the processes,
where LHC data are playing an increasing role [54], and their
primary sensitivity to PDFs. Fixed-target and collider experiments
have complementary kinematic reach (as is shown in Fig. 18.4), which
enables the determination of PDFs over a wide range in x and Q2. As
more precise LHC data for W±, Z, γ, jet, bb̄, tt̄ and J/ψ production
become available, tighter constraints on the PDFs are expected in a
wider kinematic range.

Figure 18.4: Kinematic domains in x and Q2 probed by
fixed-target and collider experiments. Some of the final states
accessible at the LHC are indicated in the appropriate
regions, where y is the rapidity. The incoming partons have
x1,2 = (M/14 TeV)e±y with Q = M where M is the mass of the
state shown in blue in the figure. For example, exclusive J/ψ
and Υ production at high |y| at the LHC may probe the gluon
PDF down to x ∼ 10−5.
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Recent determinations and releases of the unpolarized PDFs up
to NNLO have been made by six groups: MMHT [55], NNPDF [56],
CT(EQ) [57], HERAPDF [14], ABMP [58] and JR [59]. JR generate
‘dynamical’ PDFs from a valence-like input at a very low starting
scale, Q2

0 = 0.5 GeV2, whereas other groups start evolution at
Q2
0 = 1− 4 GeV2. Most groups use input PDFs of the form

xf = xa(...)(1 − x)b with 14-28 free parameters in total. In these
cases the PDF uncertainties are made available using the “Hessian”
formulation. The free parameters are expanded around their best
fit values, and orthogonal eigenvector sets of PDFs depending on
linear combinations of the parameter variations are obtained. The
uncertainty is then the quadratic sum of the uncertainties arising
from each eigenvector. The NNPDF group combines a Monte Carlo
representation of the probability measure in the space of PDFs
with the use of neural networks. Fits are performed to a number of
“replica” data sets obtained by allowing individual data points to
fluctuate randomly by amounts determined by the size of the data
uncertainties. This results in a set of replicas of unbiased PDF sets.
In this case the best prediction is the average obtained using all PDF
replicas and the uncertainty is the standard deviation over all replicas.
It is now possible to convert the eigenvectors of Hessian-based PDFs
to Monte Carlo replicas [60] and vice versa [61]. The PDFs are made
available in a common format at LHAPDF [62].

In these analyses, the u, d and s quarks are taken to be massless,
but the treatment of the heavy c and b quark masses, mQ, differs,
and has a long history, which may be traced from Refs. [63–74]. The
MSTW, CT, NNPDF and HERAPDF analyses use different variants
of the General-Mass Variable-Flavour-Number Scheme (GM-VFNS).
This combines fixed-order contributions to the coefficient functions
(or partonic cross sections) calculated with the full mQ dependence,
with the all-order resummation of contributions via DGLAP evolution
in which the heavy quarks are treated as massless after starting
evolution at some transition point. Transition matrix elements are
computed, following [66], which provide the boundary conditions
between nf and nf + 1 PDFs. The ABMP and JR analyses use a
FFNS where only the three light (massless) quarks enter the evolution,
while the heavy quarks enter the partonic cross sections with their
full mQ dependence. The GM-VFNS and FFNS approaches yield

different results: in particular αs(M
2
Z) and the large-x gluon PDF

at large Q2 are both significantly smaller in the FFNS. It has been
argued [46,47,73] that the difference is due to the slow convergence of
the lnn(Q2/m2

Q) terms in certain regions in a FFNS.

The most recent determinations of the groups fitting a variety
of data and using a GM-VFNS (MMHT, NNPDF and CT) have
converged, so that now a good agreement has been achieved
between the resulting PDFs. Indeed, the CT [57], MMHT [55], and
NNPDF [56] PDF sets have been combined [75] using the Monte Carlo
approach [60] mentioned above. The single combined set of PDFs is
discussed in detail in Ref. [75].

For illustration, we show in Fig. 18.5 the PDFs obtained in the
NNLO NNPDF analysis [56] at scales µ2 = 10 and 104 GeV2. The
values of αs found by MMHT [76] may be taken as representative of
those resulting from the GM-VFNS analyses

NLO : αs(M
2
Z) = 0.1201± 0.0015,

NNLO : αs(M
2
Z) = 0.1172± 0.0012,

where the error (at 68% C.L.) corresponds to the uncertainties
resulting from the data fitted (the uncertainty that might be expected
from the neglect of higher orders is at least as large), see also
Ref. [77]. The ABMP analysis [58], which uses a FFNS, finds
αs(M

2
Z) = 0.1147± 0.0011 at NNLO.

A recent development has been a vastly increased understanding
of the photon content of the proton. Sets of PDFs with a photon
contribution were first considered in Ref. [80] and then in subsequent
PDF sets [81,82]. However, due to weak data constraints, the
uncertainty was extremely large. Susequently, there has been a much
improved understanding of the separation into elastic and inelastic
contributions [83–85]. This gives much more theoretical precision,
since the elastic contribution, arising from coherent emission of a

photon from the proton, can be directly related to the well-known
proton electric and magnetic form factors; the model dependence of
the inelastic (incoherent) contribution, related to the quark PDFs, is
at the level of tens of percent. A final development directly relating
the entire photon contribution to the proton structure function [86]
resulted in a determination of the photon content of the proton as
precise as that of the light quarks.

Spin-dependent (or polarized) PDFs have been obtained through
NLO global analyses which include measurements of the g1 structure
function in inclusive polarized DIS, ‘flavour-tagged’ semi-inclusive DIS
data, open–charm production in DIS and results from polarized pp
scattering at RHIC. There are recent results on DIS from JLAB [78]
(for gn1 /F

n
1 ) and COMPASS [88,89]. NLO analyses are given in

Refs. [16–18] and [80,91]. Improved parton-to-hadron fragmentation
functions, needed to describe the semi-inclusive DIS data, can
be found in Refs. [82–84]. A recent determination [85], using the
NNPDF methodology, concentrates just on the inclusive polarized
DIS data, and finds the errors on the polarized gluon PDF have been
underestimated in the earlier analyses. An update to this [15], where
jet and W± data from pp collisions and open–charm DIS data have
been included via reweighting, reduces the uncertainty a little and
suggests a positive polarized gluon PDF. The PDFs obtained in the
NLO NNPDF analysis [15] at scales of µ2 = 10 and 104 GeV2 are
shown in Fig. 18.5.
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Figure 18.5: The bands are x times the unpolarized (a,b) parton
distributions f(x) (where f = uv, dv, u, d, s ≃ s̄, c = c̄, b = b̄, g)
obtained in NNLO NNPDF3.0 global analysis [56] at scales
µ2 = 10 GeV2 (left) and µ2 = 104 GeV2 (right), with
αs(M

2
Z) = 0.118. The analogous results obtained in the NNLO

MMHT analysis can be found in Fig. 1 of Ref [55]. The
corresponding polarized parton distributions are shown (c,d),
obtained in NLO with NNPDFpol1.1 [15].

Comprehensive sets of PDFs are available as program-callable
functions from the HepData website [86], which includes comparison
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graphics of PDFs, and from the LHAPDF library [62], which can be
linked directly into a user’s programme to provide access to recent
PDFs in a standard format.

18.4. The hadronic structure of the photon

Besides the direct interactions of the photon, it is possible for it to
fluctuate into a hadronic state via the process γ → qq. While in this
state, the partonic content of the photon may be resolved, for example,
through the process e+e− → e+e−γ∗γ → e+e−X , where the virtual
photon emitted by the DIS lepton probes the hadronic structure of
the quasi-real photon emitted by the other lepton. The perturbative
LO contributions, γ → qq followed by γ∗q → q, are subject to QCD
corrections due to the coupling of quarks to gluons.

Often the equivalent-photon approximation is used to express the
differential cross section for deep inelastic electron–photon scattering
in terms of the structure functions of the transverse quasi-real photon
times a flux factor NT

γ (for these incoming quasi-real photons of
transverse polarization)

d2σ

dxdQ2
= NT

γ
2πα2

xQ4

[(
1 + (1− y)2

)
F
γ
2 (x,Q

2)− y2F
γ
L(x,Q

2)
]
,

where we have used F γ
2 = 2xF γ

T + F γ
L , not to be confused with

F
γ
2 of Sec. 18.2. Complete formulae are given, for example, in the

comprehensive review of [88].

The hadronic photon structure function, F
γ
2 , evolves with increasing

Q2 from the ‘hadron-like’ behavior, calculable via the vector-meson-
dominance model, to the dominating ‘point-like’ behaviour, calculable
in perturbative QCD. Due to the point-like coupling, the logarithmic
evolution of F γ

2 with Q2 has a positive slope for all values of x, see
Fig. 18.15. The ‘loss’ of quarks at large x due to gluon radiation
is over-compensated by the ‘creation’ of quarks via the point-like
γ → qq̄ coupling. The logarithmic evolution was first predicted in the
quark–parton model (γ∗γ → qq̄) [89,90], and then in QCD in the limit
of large Q2 [91]. The evolution is now known to NLO [92–94]. The
NLO data analyses to determine the parton densities of the photon
can be found in Refs. [95–97].

18.5. Diffractive DIS (DDIS)

Some 10% of DIS events are diffractive, γ∗p → X + p, in which
the slightly deflected proton and the cluster X of outgoing hadrons
are well-separated in rapidity. Besides x and Q2, two extra variables
are needed to describe a DDIS event: the fraction xIP of the proton’s
momentum transferred across the rapidity gap and t, the square of
the 4-momentum transfer of the proton. The DDIS data [98,99] are
usually analyzed using two levels of factorization. First, the diffractive
structure function FD

2 satisfies collinear factorization, and can be
expressed as the convolution [100]

FD
2 =

∑

a=q,g

Ca
2 ⊗ fDa/p, (18.31)

with the same coefficient functions as in DIS (see Eq. (18.21)), and
where the diffractive parton distributions fDa/p (a = q, g) satisfy

DGLAP evolution. Second, Regge factorization is assumed [101],

fDa/p(xIP , t, z, µ
2) = fIP/p(xIP , t) fa/IP (z, µ

2), (18.32)

where fa/IP are the parton densities of the Pomeron, which itself

is treated like a hadron, and z ∈ [x/xIP , 1] is the fraction of the
Pomeron’s momentum carried by the parton entering the hard
subprocess. The Pomeron flux factor fIP/p(xIP , t) is taken from Regge
phenomenology. There are also secondary Reggeon contributions to
Eq. (18.32). A sample of the t-integrated diffractive parton densities,
obtained in this way, is shown in Fig. 18.6.

Although collinear factorization holds as µ2 → ∞, there are
non-negligible corrections for finite µ2 and small xIP . Besides the
resolved interactions of the Pomeron, the perturbative QCD Pomeron
may also interact directly with the hard subprocess, giving rise to an

inhomogeneous evolution equation for the diffractive parton densities
analogous to the photon case. The results of the MRW analysis [104],
which includes these contributions, are also shown in Fig. 18.6.
Unlike the inclusive case, the diffractive parton densities cannot be
directly used to calculate diffractive hadron-hadron cross sections,
since account must first be taken of “soft” rescattering effects.
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Figure 18.6: Diffractive parton distributions, xIP zfDa/p,

obtained from fitting to the ZEUS data with Q2 > 5 GeV2 [102],
H1 data with Q2 > 8.5 GeV2 assuming Regge factorization [103],
and from MRW2006 [104] using a more perturbative QCD
approach [104]. Only the Pomeron contributions are shown and
not the secondary Reggeon contributions, which are negligible
at the value of xIP = 0.003 chosen here. The H1 2007 Jets
distribution [105] is similar to H1 2006 Fit B.

18.6. Generalized parton distributions

The parton distributions of the proton of Sec. 18.3 are given by
the diagonal matrix elements 〈P, λ|Ô|P, λ〉, where P and λ are the
4-momentum and helicity of the proton, and Ô is a twist-2 quark or
gluon operator. However, there is new information in the so-called
generalised parton distributions (GPDs) defined in terms of the
off-diagonal matrix elements 〈P ′, λ′|Ô|P, λ〉; see Refs. [106–110] for
reviews. Unlike the diagonal PDFs, the GPDs cannot be regarded as
parton densities, but are to be interpreted as probability amplitudes.

The physical significance of GPDs is best seen using light-cone
coordinates, z± = (z0 ± z3)/

√
2, and in the light-cone gauge, A+ = 0.

It is conventional to define the generalised quark distributions in terms
of quark operators at light-like separation

Fq(x, ξ, t) =

1

2

∫
dz−

2π
eixP̄

+z− 〈P ′|ψ̄(−z/2)γ+ψ(z/2)|P 〉
∣∣∣∣
z+=z1=z2=0

(18.33)

=
1

2P̄+

(
Hq(x, ξ, t) ū(P ′)γ+u(P ) + Eq(x, ξ, t) ū(P ′)

iσ+α∆α

2m
u(P )

)

(18.34)
with P̄ = (P + P ′)/2 and ∆ = P ′ − P , and where we have suppressed
the helicity labels of the protons and spinors. We now have two extra
kinematic variables:

t = ∆2, ξ = −∆+/(P + P ′)+. (18.35)

We see that −1 ≤ ξ ≤ 1. Similarly, we may define GPDs H̃q and Ẽq

with an additional γ5 between the quark operators in Eq. (18.33); and
also an analogous set of gluon GPDs, Hg, Eg , H̃g and Ẽg. After a
Fourier transform with respect to the transverse components of ∆, we
are able to describe the spatial distribution of partons in the impact
parameter plane in terms of GPDs [111,112].
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For P ′ = P, λ′ = λ the matrix elements reduce to the ordinary
PDFs of Sec. 18.2.1

Hq(x, 0, 0) = q(x), Hq(−x, 0, 0) = −q̄(x), Hg(x, 0, 0) = xg(x),
(18.36)

H̃q(x, 0, 0) = ∆q(x), H̃q(−x, 0, 0) = ∆q̄(x), H̃g(x, 0, 0) = x∆g(x),
(18.37)

where ∆q = q ↑ −q ↓ as in Eq. (18.18). No corresponding relations
exist for E, Ẽ as they decouple in the forward limit, ∆ = 0.

The functions Hg, Eg are even in x, and H̃g, Ẽg are odd functions
of x. We can introduce valence and ‘singlet’ quark distributions which
are even and odd functions of x respectively. For example

HV
q (x, ξ, t) ≡ Hq(x, ξ, t) +Hq(−x, ξ, t) = HV

q (−x, ξ, t), (18.38)

HS
q (x, ξ, t) ≡ Hq(x, ξ, t)−Hq(−x, ξ, t) = −HS

q (−x, ξ, t). (18.39)

All the GPDs satisfy relations of the form

H(x,−ξ, t) = H(x, ξ, t) and H(x,−ξ, t)∗ = H(x, ξ, t),
(18.40)

and so are real-valued functions. Moreover, the moments of GPDs,
that is the x integrals of xnHq etc., are polynomials in ξ of order n+1.
Another important property of GPDs are Ji’s sum rules [106]

1

2

∫ 1

−1
dx x

(
Hq(x, ξ, t) + Eq(x, ξ, t)

)
= Jq(t), (18.41)

where Jq(0) is the total angular momentum carried by quarks and
antiquarks of flavour q, with a similar relation for gluons.

Figure 18.7: Schematic diagrams of the three distinct kinematic
regions of the imaginary part of Hq. The proton and quark
momentum fractions refer to P̄+, and x covers the interval
(-1,1). In the ERBL domain the GPDs are generalisations
of distribution amplitudes which occur in processes such as
pp̄ → J/ψ.

To visualize the physical content of Hq, we Fourier expand ψ
and ψ̄ in terms of quark, antiquark creation (b, d) and annihilation
(b†, d†) operators, and sketch the result in Fig. 18.7. There are
two types of domain: (i) the time-like or ‘annihilation’ domain,
with |x| < |ξ|, where the GPDs describe the wave functions of
a t-channel qq̄ (or gluon) pair and evolve according to modified
ERBL equations [113,114]; (ii) the space-like or ‘scattering’ domain,
with |x| > |ξ|, where the GPDs generalise the familiar q̄, q (and
gluon) PDFs and describe processes such as ‘deeply virtual Compton
scattering’ (γ∗p → γp), γp → J/ψp, etc., and evolve according to
modified DGLAP equations. The splitting functions for the evolution
of GPDs are known to NLO [115].

GPDs describe new aspects of proton structure and must be
determined from experiment. We can parametrise them in terms of
‘double distributions’ [116,117], which reduce to diagonal PDFs as
ξ → 0. With an additional physically reasonable ‘Regge’ assumption
of no extra singularity at ξ = 0, GPDs at low ξ are uniquely given in
terms of diagonal PDFs to O(ξ), and have been used [118] to describe
γp → J/ψp data. Alternatively, flexible SO(3)-based parametrisations
have been used to determine GPDs from DVCS data [119]; a more
recent summary may be found in Ref. [120].

∗ The value of ηCC deduced from [1] is found to be a factor of two
too small; ηCC of Eq. (18.9) agrees with Refs. [2,3].

References:
1. J. Blümlein and N. Kochelev, Nucl. Phys. B498, 285 (1997).
2. S. Forte et al., Nucl. Phys. B602, 585 (2001).
3. M. Anselmino et al., Z. Phys. C64, 267 (1994).
4. M. Anselmino et al., Phys. Rep. 261, 1 (1995).
5. M. Klein and T. Riemann, Z. Phys. C24, 151 (1984).
6. C.G. Callan and D.J. Gross, Phys. Rev. Lett. 22, 156 (1969).
7. D.A. Dicus, Phys. Rev. D5, 1367 (1972).
8. J.D. Bjorken and E.A. Paschos, Phys. Rev. 185, 1975 (1969).
9. R.P. Feynman, Photon Hadron Interactions (Benjamin, New

York, 1972).
10. S. Wandzura and F. Wilczek, Phys. Rev. B72, 195 (1977).
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NOTE: THE FIGURES IN THIS SECTION ARE INTENDED TO SHOW THE REPRESENTATIVE DATA.
THEY ARE NOT MEANT TO BE COMPLETE COMPILATIONS OF ALL THE WORLD’S RELIABLE DATA.
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Figure 18.8: The proton structure function F
p
2 measured in electromagnetic scattering of electrons and positrons on protons (collider

experiments H1 and ZEUS for Q2 ≥ 2 GeV2), in the kinematic domain of the HERA data (see Fig. 18.10 for data at smaller x and Q2),
and for electrons (SLAC) and muons (BCDMS, E665, NMC) on a fixed target. Statistical and systematic errors added in quadrature are
shown. The H1+ZEUS combined values are obtained from the measured reduced cross section and converted to F

p
2 with a HERAPDF

NLO fit, for all measured points where the predicted ratio of F p
2 to reduced cross-section was within 10% of unity. The data are plotted as

a function of Q2 in bins of fixed x. Some points have been slightly offset in Q2 for clarity. The H1+ZEUS combined binning in x is used in
this plot; all other data are rebinned to the x values of these data. For the purpose of plotting, F

p
2 has been multiplied by 2ix , where ix is

the number of the x bin, ranging from ix = 1 (x = 0.85) to ix = 24 (x = 0.00005). References: H1 and ZEUS—H. Abramowicz et al.,
Eur. Phys. J. C75, 580 (2015) (for both data and HERAPDF parameterization); BCDMS—A.C. Benvenuti et al., Phys. Lett. B223,
485 (1989) (as given in [86]); E665—M.R. Adams et al., Phys. Rev. D54, 3006 (1996); NMC—M. Arneodo et al., Nucl. Phys. B483, 3
(1997); SLAC—L.W. Whitlow et al., Phys. Lett. B282, 475 (1992).
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Figure 18.9: The deuteron structure function F d
2 measured in electromagnetic scattering of electrons (SLAC) and muons (BCDMS,

E665, NMC) on a fixed target, shown as a function of Q2 for bins of fixed x. Statistical and systematic errors added in quadrature are
shown. For the purpose of plotting, F d

2 has been multiplied by 2ix , where ix is the number of the x bin, ranging from 1 (x = 0.85) to 29
(x = 0.0009). References: BCDMS—A.C. Benvenuti et al., Phys. Lett. B237, 592 (1990). E665, NMC, SLAC—same references as
Fig. 18.8.
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Figure 18.10: a) The deuteron structure function F2 measured in deep inelastic scattering of muons on a fixed target (NMC) is compared
to the structure function F2 from neutrino-iron scattering (CCFR and NuTeV) using F

µ
2 = (5/18)F ν

2 − x(s + s)/6, where heavy-target

effects have been taken into account. The data are shown versus Q2, for bins of fixed x. The NMC data have been rebinned to CCFR and
NuTeV x values. For the purpose of plotting, a constant c(x) = 0.05ix is added to F2, where ix is the number of the x bin, ranging from
0 (x = 0.75) to 7 (x = 0.175). For ix = 8 (x = 0.125) to 11 (x = 0.015), 2c(x) has been added. References: NMC—M. Arneodo et al.,
Nucl. Phys. B483, 3 (1997); CCFR/NuTeV—U.K. Yang et al., Phys. Rev. Lett. 86, 2741 (2001); NuTeV—M. Tzanov et al., Phys.
Rev. D74, 012008 (2006).

b) The proton structure function F
p
2 mostly at small x and Q2, measured in electromagnetic scattering of electrons and positrons (H1,

ZEUS), electrons (SLAC), and muons (BCDMS, NMC) on protons. Lines are ZEUS Regge and HERAPDF parameterizations for lower
and higher Q2, respectively. The width of the bins can be up to 10% of the stated Q2. Some points have been slightly offset in x for
clarity. The H1+ZEUS combined values for Q2 ≥ 3.5 GeV2 are obtained from the measured reduced cross section and converted to F p

2
with a HERAPDF NLO fit, for all measured points where the predicted ratio of F p

2 to reduced cross-section was within 10% of unity. A

turn-over is visible in the low-x points at medium Q2 (3.5 GeV2 and 6 GeV2) for the H1+ZEUS combined values. In order to obtain F
p
2

from the measured reduced cross-section, FL must be estimated; for the points shown, this estimate is obtained from HERAPDF2.0. No
FL value consistent with the HERA data can eliminate the turn-over. This may indicate that at low x and Q2 there are contributions to
the structure functions that cannot be described in standard DGLAP evolution.

References: H1 and ZEUS—F.D. Aaron et al., JHEP 1001, 109 (2010) (data for Q2 < 3.5 GeV2), H. Abramowicz et al., Eur. Phys.
J. C75, 580 (2015) (data for Q2 ≥ 3.5 GeV2 and HERAPDF parameterization); ZEUS—J. Breitweg et al., Phys. Lett. B487, 53 (2000)
(ZEUS Regge parameterization); BCDMS, NMC, SLAC—same references as Fig. 18.8.

Statistical and systematic errors added in quadrature are shown for both plots.
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Figure 18.11: a) The charm-quark structure function F cc
2 (x), i.e. that part of the inclusive structure function F p

2 arising from the
production of charm quarks, measured in electromagnetic scattering of positrons on protons (H1, ZEUS) and muons on iron (EMC). For the
purpose of plotting, a constant c(Q) = 0.07iQ

1.7 is added to F cc
2 where iQ is the number of the Q2 bin, ranging from 1 (Q2 = 2.5 GeV2) to

12 (Q2 = 2000 GeV2). References: H1 and ZEUS run I combination—H. Abramowicz et al., Eur. Phys. J. C73, 2311 (2013); ZEUS
run II—H. Abramowicz et al., JHEP 05, 023 (2013); H. Abramowicz et al., JHEP 05, 097 (2013); H. Abramowicz et al., JHEP 09, 127
(2014); EMC—J.J. Aubert et al., Nucl. Phys. B213, 31 (1983).

b) The bottom-quark structure function F bb
2 (x). For the purpose of plotting, a constant c(Q) = 0.01i1.6Q is added to F bb

2 where iQ

is the number of the Q2 bin, ranging from 1 (Q2 = 5 GeV2) to 12 (Q2 = 2000 GeV2). References: ZEUS—S. Chekanov et al., Eur.
Phys. J. C65, 65 (2010); H. Abramowicz et al., Eur. Phys. J. C69, 347 (2010); H. Abramowicz et al., Eur. Phys. J. C71, 1573 (2011);
H. Abramowicz et al., JHEP 09, 127 (2014); H1—F.D. Aaron et al., Eur. Phys. J. C65, 89 (2010).

For both plots, statistical and systematic errors added in quadrature are shown. The data are given as a function of x in bins of Q2.
Points may have been slightly offset in x for clarity. Some data have been rebinned to common Q2 values. Also shown is the MMHT2014
parameterization given at several Q2 values (L. A. Harland-Lang et al., Eur. Phys. J. C75, 204 (2015)).
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Figure 18.12: The structure function xF
γZ
3 measured in electroweak scattering of a) electrons on protons (H1 and ZEUS) and b) muons

on carbon (BCDMS). The line in a) is the HERAPDF parameterization. References: H1 and ZEUS—H. Abramowicz et al., Eur. Phys.
J. C75, 580 (2015) (for both data and HERAPDF parameterization); BCDMS—A. Argento et al., Phys. Lett. B140, 142 (1984).
c) The structure function xF3 of the nucleon measured in ν-Fe scattering. The data are plotted as a function of Q2 in bins of fixed x. For
the purpose of plotting, a constant c(x) = 0.5(ix − 1) is added to xF3, where ix is the number of the x bin as shown in the plot. The
NuTeV and CHORUS points have been shifted to the nearest corresponding x bin as given in the plot and slightly offset in Q2 for clarity.
References: CCFR—W.G. Seligman et al., Phys. Rev. Lett. 79, 1213 (1997); NuTeV—M. Tzanov et al., Phys. Rev. D74, 012008 (2006);
CHORUS—G. Önengüt et al., Phys. Lett. B632, 65 (2006).

Statistical and systematic errors added in quadrature are shown for all plots.
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Figure 18.13: Top panels: The longitudinal structure function FL as a function of x in bins of fixed Q2 measured on the proton (except
for the SLAC data which also contain deuterium data). BCDMS, NMC, and SLAC results are from measurements of R (the ratio of
longitudinal to transverse photon absorption cross sections) which are converted to FL by using the BDCMS parameterization of F2

(A.C. Benvenuti et al., Phys. Lett. B223, 485 (1989)). It is assumed that the Q2 dependence of the fixed-target data is small within a
given Q2 bin. Some of the other data may have been rebinned to common Q2 values. Some points have been slightly offset in x for clarity.
Also shown is the MSTW2008 parameterization given at three Q2 values (A.D. Martin et al., Eur. Phys. J. C63, 189 (2009)). References:
H1—V. Andreev et al., Eur. Phys. J. C74, 2814 (2014); ZEUS—S. Chekanov et al., Phys. Lett. B682, 8 (2009); H. Abramowicz et al.,
Phys. Rev. D90, 072002 (2014); BCDMS—A. Benvenuti et al., Phys. Lett. B223, 485 (1989); NMC—M. Arneodo et al., Nucl. Phys.
B483, 3 (1997); SLAC—L.W. Whitlow et al., Phys. Lett. B250, 193 (1990) and numerical values from the thesis of L.W. Whitlow
(SLAC-357).

Bottom panel: The longitudinal structure function FL as a function of Q2. Some points have been slightly offset in Q2 for clarity.
References: H1—V. Andreev et al., Eur. Phys. J. C74, 2814 (2014); ZEUS—H. Abramowicz et al., Phys. Rev. D90, 072002 (2014).

The results shown in the bottom plot require the assumption of the validity of the QCD form for the F2 structure function in order to
extract FL. Statistical and systematic errors added in quadrature are shown for both plots.
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EMC data given at Q2 = 10.7 GeV2 and E155 data given at Q2 = 5 GeV2). Note that gn1 (x) may also be extracted by taking the difference

between gd1(x) and gp1(x), but these values have been omitted in the bottom plot for clarity. Statistical and systematic errors added in
quadrature are shown. References: EMC—J. Ashman et al., Nucl. Phys. B328, 1 (1989); E142—P.L. Anthony et al., Phys. Rev. D54,
6620 (1996); E143—K. Abe et al., Phys. Rev. D58, 112003 (1998); SMC—B. Adeva et al., Phys. Rev. D58, 112001 (1998), B. Adeva et al.,
Phys. Rev. D60, 072004 (1999) and Erratum-Phys. Rev. D62, 079902 (2000); HERMES—A. Airapetian et al., Phys. Rev. D75, 012007
(2007) and K. Ackerstaff et al., Phys. Lett. B404, 383 (1997); E154—K. Abe et al., Phys. Rev. Lett. 79, 26 (1997); E155—P.L. Anthony
et al., Phys. Lett. B463, 339 (1999) and P.L. Anthony et al., Phys. Lett. B493, 19 (2000); Jlab-E99-117—X. Zheng et al., Phys. Rev.
C70, 065207 (2004); COMPASS—E.S. Ageev et al., Phys. Lett. B647, 330 (2007), M.G. Alekseev et al., Phys. Lett. B690, 466 (2010),
C. Adolph, et al., Phys. Lett. B753, 18 (2016) and C. Adolph, et al., Phys. Lett. B769, 34 (2017); CLAS—K.V. Dharmawardane et al.,
Phys. Lett. B641, 11 (2007) (which also includes resonance region data not shown on this plot — there is also low W 2 CLAS data in
Y. Prok et al., Phys. Rev. C90, 025212 (2014) and N. Guler et al., Phys. Rev. C92, 055201 (2015)).



18. Structure functions 333

Q2 (GeV2)

F
2 

γ  (
x,

Q
2 )/

α 
+ 

c(
x)

ALEPH
DELPHI
L3
OPAL
AMY
JADE
PLUTO
TASSO
TOPAZ
TPC

0

2

4

6

8

10

12

14

10
-1

1 10 10
2

10
3

Figure 18.15: The hadronic structure function of the photon F γ
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Revised August 2017 by O. Biebel (Ludwig-Maximilians-Universität,
Munich, Germany), D. de Florian (ICAS, ECyT-UNSAM, San Mart́ın,
Argentina), D. Milstead (Fysikum, Stockholms Universitet, Sweden),
and A. Vogt (Dep. of Mathematical Sciences, University of Liverpool,
UK).

19.1. Introduction to fragmentation

The term ‘fragmentation functions’ is widely used for two conceptually
different (albeit related) sets of functions describing final-state
single particle energy distributions in hard scattering processes (see
Refs. [1,2] for introductory reviews, and Refs. [3,4] for summaries of
experimental and theoretical research in this field).

The first are cross-section observables such as the functions
FT,L,A(x, s) in semi-inclusive e+e− annihilation at center-of-mass

(CM) energy
√
s via an intermediate photon or Z-boson, e+e− →

γ/Z → h+X , given by

1

σ0

d 2σh

dx d cos θ
=

3

8
(1 + cos2 θ)Fh

T (x, s) +
3

4
sin2 θ Fh

L(x, s) +
3

4
cos θ Fh

A (x, s) . (19.1)

Here x = 2Eh/
√
s ≤ 1 is the scaled energy of the hadron h (in practice

the approximation x ≃ xp = 2ph/
√
s or x ≃ p/pmax is often used), and

θ is its angle relative to the electron beam in the CM frame. Eq. (19.1)
is the most general form for unpolarized inclusive single-particle
production via vector bosons [5]. The transverse and longitudinal
fragmentation functions FT and FL represent the contributions from
γ/Z polarizations transverse or longitudinal with respect to the
direction of motion of the hadron. The parity-violating term with the
asymmetric fragmentation function FA arises from the interference
between vector and axial-vector contributions. Normalization factors
σ0 used in the literature range from the total cross section σtot for
e+e− → hadrons, including all weak and QCD contributions, to
σ0 = 4πα2Nc/3s with Nc = 3, the lowest-order QED cross section for
e+e− → µ+µ− times the number of colors Nc . LEP1 measurements
of all three fragmentation functions are shown in Fig. 19.1.

Integration of Eq. (19.1) over θ yields the total fragmentation
function Fh = Fh

T + Fh
L ,

1

σ0

dσh

dx
= Fh(x, s) =

∑

i

∫ 1

x

dz

z
Ci(z, αs(µ),

s

µ2
)Dh

i (
x

z
, µ2) + O(

1√
s
) (19.2)

with i = u, ū, d, d̄, . . . , g. Here the second set of functions mentioned
in the first paragraph has been introduced, the parton fragmentation
functions (or fragmentation densities) Dh

i . These functions are the
final-state analogue of the initial-state parton distribution functions
(pdf) addressed in Section 18 of this Review. Due to the different sign
of the squared four-momentum q2 of the intermediate gauge boson
these two sets of fragmentation distributions are also referred to as
the timelike (e+e− annihilation, q2 > 0) and spacelike (deep-inelastic
scattering (DIS), q2 < 0) parton distribution functions. The function
Dh

i (z, µ
2) describes the probability that the parton i fragments into

a hadron h carrying a probability that the parton i fragments into a
hadron h carrying a fraction z of the parton’s momentum. Beyond
the leading order (LO) of perturbative QCD these universal functions
are factorization-scheme dependent, with ‘reasonable’ scheme choices
retaining certain quark-parton-model [6] (QPM) constraints such as
the momentum sum rule

∑

h

∫ 1

0
dz z Dh

i (z, µ
2) = 1 . (19.3)

The dependence of the functions Dh
i on the factorization scale µ2 is

discussed in Section 19.2. Like in Eq. (19.2) and below, this scale is
often taken to be equal to the factorization or renomalization scale,
but this equivalence is not required in the theory.
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Figure 19.1: LEP1 measurements of total transverse
(FT ), longitudinal (FL), and asymmetric (FA) fragmentation
functions [7–9]. Data points with relative errors greater than
100% are omitted.

The second ingredient in Eq. (19.2), and analogous expressions
for the functions FT,L,A , are the observable-dependent coefficient
functions Ci. At the zeroth order in the strong coupling αs the
coefficient functions Cg for gluons are zero, while for (anti-) quarks
Ci = gi(s) δ(1 − z) except for FL, where gi(s) is the appropriate
electroweak coupling. In particular, gi(s) is proportional to the
squared charge of the quark i at s ≪ M 2

Z , when weak effects can
be neglected. The full electroweak prefactors gi(s) can be found in
Ref. [5]. The power corrections in Eq. (19.2) arise from quark and
hadron mass terms and from non-perturbative effects.

Measurements of fragmentation in lepton-hadron and hadron-
hadron scattering are complementary to those in e+e− annihilation.
The former are affected by contributions, in summary called the
hadron remnant, arising from the partons of the initial-state
hadron which are collaterally involved in the hard lepton-parton
or parton-parton collision. The latter provides a clean environment
(no initial-state hadron remnant) and stringent constraints on the
combinations Dh

qi
+ Dh

q̄i
. However e+e− annihilation is far less

sensitive to Dh
g and insensitive to the charge asymmetries Dh

qi
−Dh

q̄i
.

These quantities are best constrained in proton–(anti-)proton and
electron-proton scattering, respectively. Especially the latter provides
a more complicated environment with which it is possible to study
the influence on the fragmentation process from initial-state QCD
radiation, the partonic and spin structure of the hadron target, and
the target remnant system (see Ref. [10] for a comprehensive review
of the measurements and models of fragmentation in lepton-hadron
scattering).

Moreover, unlike e+e− annihilation where q2 = s is fixed by the
collider energy, lepton-hadron scattering has two independent scales,
Q2 = −q2 and the invariant mass W 2 of the hadronic final state,
which both can vary by several orders of magnitudes for a given
CM energy, thus allowing the study of fragmentation in different
environments by a single experiment. E.g., in photoproduction the
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exchanged photon is quasi-real (Q2 ≈ 0) leading to processes akin to
hadron-hadron scattering. In DIS (Q2 ≫ 1 GeV2), using the QPM,
the hadronic fragments of the struck quark can be directly compared
with quark fragmentation in e+e− in a suitable frame. Results from
lepton-hadron experiments quoted in this report primarily concern
fragmentation in the DIS regime. Studies performed by lepton-hadron
experiments of fragmentation with photoproduction data containing
high transverse momentum jets or particles are also reported, when
these are directly comparable to DIS and e+e− results.

Fragmentation studies in lepton-hadron collisions are usually
performed in one of two frames in which the target hadron and the
exchanged boson are collinear. The hadronic center-of-mass frame
(HCMS) is defined as the rest system of the exchanged boson and
incoming hadron, with the z∗-axis defined along the direction of
the exchanged boson. The positive z∗ direction defines the so-called
current region. Fragmentation measurements performed in the HCMS
often use the Feynman-x variable xF = 2p∗z/W , where p∗z is the
longitudinal momentum of the particle in this frame. As W is the
invariant mass of the hadronic final state, xF ranges between −1 and
1.

The Breit system [11] is connected to the HCMS by a longitudinal
boost such that the time component of q vanishes, i.e, q = (0, 0, 0,−Q).
In the QPM, the struck parton then has the longitudinal momentum
Q/2 which becomes −Q/2 after the collision. As compared with
the HCMS, the current region of the Breit frame is more closely
matched to the partonic scattering process, and is thus appropriate for
direct comparisons of fragmentation functions in DIS with those from
e+e− annihilation. The variable xp = 2p∗/Q is used at HERA for
measurements in the Breit frame, ensuring rather directly comparable
DIS and e+e− results, where p∗ is the particle’s momentum in the
current region of the Breit frame.

19.2. Scaling violation

The simplest parton-model approach would predict scale-independent
x-distributions (‘scaling’) for both the fragmentation function Fh and
the parton fragmentation functions Dh

i . Perturbative QCD corrections
lead, after factorization of the final-state collinear singularities for light
partons, to logarithmic scaling violations via the evolution equations
[12]

∂

∂ lnµ2
Di(x, µ

2) =
∑

j

∫ 1

x

dz

z
Pji(z, αs(µ

2))Dj(
x

z
, µ2) , (19.4)

where the splitting functions Pij(z, αs(µ
2)) describe in leading order

the probability to find parton i with a longitudinal momentum fraction
z in parton j. Usually this system of equations is decomposed into a
2×2 flavour-singlet sector comprising gluon and the sum of all quark
and antiquark fragmentation functions, and scalar (‘non-singlet’)
equations for quark-antiquark and flavour differences. The singlet
splitting-function matrix is now Pji , rather than Pij as for the initial-
state parton distributions, since Dj represents the fragmentation of
the final parton.

The splitting functions in Eq. (19.4) have perturbative expansion of
the form

Pji(z, αs) =
αs

2π
P
(0)
ji (z)+

(αs

2π

)2
P
(1)
ji (z)+

(αs

2π

)3
P
(2)
ji (z)+. . . (19.5)

where the leading-order (LO) functions P (0)(z) [12,13] are the same
as those for the initial-state parton distributions. The next-to-leading
order (NLO) corrections P (1)(z) have been calculated in Refs. [14–18]
(there are well-known misprints in the journal version of Ref. [15]).
Ref. [18] also includes the spin-dependent case. These functions are
different from, but related to their space-like counterparts, see also
Ref. [19]. These relations have facilitated recent calculations of the

next-to-next-to-leading order (NNLO) quantities P
(2)
qq (z) and P

(2)
gg (z)

in Eq. (19.5) [20,21]. The corresponding off-diagonal quantities

P
(2)
qg and P

(2)
gq were recently obtained in Ref. [22] by using similar

relations supplemented with constrains from the momentum sum rule
Eq. (19.3) [21] and from the limit of CA = CF = nf for which QCD

becomes supersymmetric. An uncertainty, which does not affect the
logarithmic behaviour at small and large momentum fractions, still

remains on the P
(2)
qg kernel. All these results refer to the standard MS

scheme, with the exception of Refs. [17], with a fixed number nf of

light flavours. Fragmentation functions change when in the course of
energy evolution the threshold for the production of a heavier quark
flavour is crossed. The NLO treatment of these flavour thresholds in
the evolution has been addressed in Ref. [23].

The QCD parts of the coefficient functions for FT,L,A(x, s) in

Eq. (19.1) and the total fragmentation function Fh
2 ≡ Fh in Eq. (19.2)

are given by

Ca,i(z, αs) = (1− δaL) δiq +
αs

2π
c
(1)
a,i (z)+

(αs

2π

)2
c
(2)
a,i (z)+ . . . . (19.6)

The first-order corrections have been calculated in Refs. [24], and the
second-order terms in Ref. 25. The latter results have been verified
(and some typos corrected) in Refs. [20,26]. The coefficient functions
are known to NNLO except for FL where the leading contribution is
of order αs.

The effect of the evolution is similar in the timelike and spacelike
cases: as the scale increases, one observes a scaling violation in which
the x-distribution is shifted towards lower values. This can be seen
from Fig. 19.2 where a large amount of measurements of the total
fragmentation function in e+e− annihilation are summarized. QCD
analyses of these data are discussed in Section 19.5 below.
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Figure 19.2: The e+e− fragmentation function for all
charged particles is shown [9,27–44] (a) for different CM energies√
s versus x and (b) for various ranges of x versus

√
s. For

the purpose of plotting (a), the distributions were scaled by
c(
√
s) = 10i with i ranging from i = 0 (

√
s = 12 GeV) to i = 13

(
√
s = 202 GeV).

Unlike the splitting functions in Eq. (19.5), see Refs. [19–21],
the coefficient functions for F2,T,A in Eq. (19.6) show a threshold

enhancement with terms up to αn
s (1−z)−1 ln 2n−1(1−z). Such

logarithms can be resummed to all orders in αs using standard
soft-gluon techniques [45–47]. Recently this resummation has been
extended to the subleading (and for FL leading) class αn

s ln k(1−z) of
large-x logarithms [48,49].

In Refs. [24] the NLO coefficient functions have been calculated
also for single hadron production in lepton-proton scattering,
ep → e + h + X . More recently corresponding results have been
obtained for the case that a non-vanishing transverse momentum is
required in the HCMS frame [50].

Scaling violations in DIS are shown in Fig. 19.3 for both HCMS and
Breit frame. In Fig. 1.3(a) the distribution in terms of xF = 2p∗z/W
shows a steeper slope in ep data than for the lower-energy µp data
for xF > 0.15, indicating the scaling violations. At smaller values of
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xF in the current jet region, the multiplicity of particles substantially
increases with W owing to the increased phase space available for
the fragmentation process. The EMC data access both the current
region and the region of the fragmenting target remnant system. At
higher values of |xF |, due to the extended nature of the remnant, the
multiplicity in the target region far exceeds that in the current region.
For acceptance reasons the remnant hemisphere of the HCMS is only
accessible by the lower-energy fixed-target experiments.

(a)

10
-2

10
-1

1

10

10 2

-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1

ep (H1) <W>=117 GeV
ep (ZEUS) <W>=120 GeV

µN (E665)  <W2>1/2=20.5 GeV
µp (EMC) <W>=14 GeV

xF

1/
N

 d
n

/d
x F

(b)
10

-2

10
-1

1

10

10 2

10 3

10 4

10 10
2

ep (ZEUS)
ep (H1)
e+e-

xp range
0.0-0.2
(x 50)

0.02-0.05
(x 10)

0.05-0.10
(x 5)

0.10-0.20
(x 3)

0.20-0.30

0.30-0.40
0.40-0.50

0.50-0.70

0.70-1.0

Q, √s /GeV

1/
N

 d
n

/d
x p

Figure 19.3: (a) The distribution 1/N · dN/dxF for all
charged particles in DIS lepton-hadron experiments at different
values of W , and measured in the HCMS [52–55]. (b) Scaling
violations of the fragmentation function for all charged particles
in the current region of the Breit frame of DIS [56,61] and in
e+e− interactions [37,62]. The data are shown as a function of√
s for e+e− results, and as a function of Q for the DIS results,

each within the same indicated intervals of the scaled momentum
xp. The data for the four lowest intervals of xp are multiplied by
factors 50, 10, 5, and 3, respectively for clarity.

Using hadrons from the current hemisphere in the Breit frame,
measurements of fragmentation functions and the production
properties of particles in ep scattering have been made by Refs. [56–61].
Fig. 19.3(b) compares results from ep scattering and e+e− experiments,
the latter results are halved as they cover both event hemispheres. The
agreement between the DIS and e+e− results is fairly good. However,
processes in DIS which are not present in e+e− annihilation, such as
boson-gluon fusion and initial-state QCD radiation, can depopulate
the current region. These effects become most prominent at low values
of Q and xp. Hence, when compared with e+e− annihilation data at√
s = 5.2, 6.5 GeV [63] not shown here, the DIS particle rates tend

to lie below those from e+e− annihilation. A ZEUS study [64] finds
that the direct comparability of the ep data to e+e− results at low
scales is improved if twice the energy in the current hemisphere of
the Breit frame, 2E cr

B , is used instead of Q/2 as the fragmentation
scale. Choosing 2 ·E cr

B for the fragmentation scale approximates QCD
radiation effects relevant at low scales as detailed in Ref. [65].

19.3. Fragmentation functions for small particle
momenta

The higher-order timelike splitting functions in Eq. (19.5) are
very singular at small x. They show a double-logarithmic (LL)
enhancement with leading terms of the form αn

s ln2n−2x corresponding
to poles αn

s (N − 1)1−2n for the Mellin moments

P (n)(N) =

∫ 1

0
dx xN−1 P (n)(x) . (19.7)

Despite large cancellations between leading and non-leading logarithms
at non-asymptotic value of x, the resulting small-x rise in the timelike
splitting functions dwarfs that of their spacelike counterparts for the
evolution of the parton distributions in Section 18 of this Review,
see Fig. 1 of Ref. [21]. Consequently the fixed-order approximation
to the evolution breaks down orders of magnitude in x earlier in
fragmentation than in DIS.

The pattern of the known coefficients and other considerations
suggest that the LL terms sum to all-order expressions without any
pole at N = 1 such as [66,67]

PLL
gg (N) = −1

4
(N − 1−

√
(N − 1)2 · 24αs/π ) . (19.8)

Keeping the first three terms in the resulting expansion of Eq. (19.4)
around N = 1 yields a Gaussian in the variable ξ = ln(1/x) for the
small-x fragmentation functions,

xD(x, s) ∝ exp

[
− 1

2σ2
(ξ − ξp)

2
]
, (19.9)

with the peak position and width varying with the energy as [68] (see
also Ref. [2])

ξp ≃ 1

4
ln
( s

Λ2

)
, σ ∝

[
ln
( s

Λ2

)]3/4
. (19.10)

Next-to-leading logarithmic corrections to the above predictions have
been calculated [69]. In the method of Ref. [70], see also Refs. [71,72],
the corrections are included in an analytical form known as the
‘modified leading logarithmic approximation’ (MLLA). Alternatively
they can be used to compute higher-moment corrections to the shape
in Eq. (19.9) [73]. The small-x resummation of the coefficient functions
for semi-inclusive e+e− annihilation and the timelike spitting functions
in the standard MS scheme was recently extended in Refs. [74,75]
and has reached fully analytic next-to-next-to-leading logarithmic
accuracy. First applications of these results to gluon and quark jet
multiplicities have been presented in Refs. [76].

Fig. 19.4 shows the ξ distribution for charged particles produced in
the current region of the Breit frame in DIS and in e+e− annihilation.
Consistent with Eq. (19.9) (the ‘hump backed plateau’) and Eq. (19.10)
the distributions have a Gaussian shape with the peak position and
area increasing with the CM energy (e+e−) and Q2 (DIS).

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6
ξ=ln(1/xp)

1/
σ 

dσ
/d

ξ

ZEUS* 10-20 GeV2
H1*      12-100 GeV2
ZEUS* 40-80 GeV2
ZEUS* 80-160 GeV2
H1*      100-8000 GeV2

DIS:
TASSO 22 GeV

TASSO 35 GeV

TASSO 44 GeV

TOPAZ 58 GeV

LEP 91 GeV

LEP 133 GeV

LEP 189 GeV

LEP 206 GeV
e+e−:

Figure 19.4: Distribution of ξ = ln(1/xp) at several CM
energies (e+e−) [28–29,34–37,77–80] and intervals of Q2

(DIS) [59,60]. At each energy only one representative mea-
surement is displayed. For clarity some measurements at
intermediate CM energies (e+e−) or Q2 ranges (DIS) are not
shown. The DIS measurements (∗) have been scaled by a factor
of 2 for direct comparability with the e+e− results. Fits of
simple Gaussian functions are overlaid for illustration.
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The predicted energy dependence Eq. (19.10) of the peak in the ξ
distribution is explained by soft gluon coherence (angular ordering),
i.e., the destructive interference of the color wavefunction of low
energy gluon radiation, which correctly predicts the suppression of
hadron production at small x. Of course, a decrease at very small x
is expected on purely kinematical grounds, but this would occur at
particle energies proportional to their masses, i.e., at x ∝ m/

√
s and

hence ξ ∼ 1
2 ln s. Thus, if the suppression were purely kinematic, the

peak position ξp would vary twice as rapidly with the energy, which is
ruled out by the data in Fig. 19.5. The e+e− and DIS data agree well
with each other, demonstrating the universality of hadronization, and
the MLLA prediction. Measurements of the higher moments of the ξ
distribution in e+e− [37,80–82] and DIS [60] have also been performed
and show consistency with each other.
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Figure 19.5: Evolution of the peak position, ξp, of the
ξ distribution with the CM energy

√
s. The MLLA QCD

prediction using αS(s = M2
Z) = 0.118 is superimposed to the

data of Refs. [28–30,33–37,58,59,78,79,82–90].

The average charged particle multiplicity is another observable
sensitive to fragmentation functions for small particle momenta.
Perturbative predictions using both NLO [91] and MLLA [92,94] have
been obtained from solving Eq. (19.4) yielding

〈
nG(Q

2)
〉
∝ αb

S(Q
2) · exp

[
c

4πb0
√
αS(Q2)

·
(
1 + 6a2

αS(Q
2)

π

)]

(19.11)

where b =
1

4
+

10

27

nf
4πb0

, c =
√
96π, with b0 = (33 − 2nf )/(12π), cp.

Section 9 of this Review, for nf contributing quark flavours. Higher
order corrections to Eq. (19.11) are known up to next-to-next-to-
next-to-leading order (3NLO), for details and references see [95].
The term proportional to a2 ≈ −0.502 + 0.0421nf − 0.00036n2f in

Eq. (19.11) is the contribution due to NNLO corrections [96]. The
quantity 〈nG(Q2)〉 strictly refers to the average number of gluons,
while for quarks a correction factor r = 〈nG〉/〈nq〉 weakly depending
on Q2 is required due to the different color factors in quark and gluon
couplings, respectively. Higher order corrections up to 3NLO on the
asymptotic value r = CA/CF = 9/4 [97] are quoted in [95].

Employing the hypothesis of ‘Local Parton-Hadron Duality’
(LPHD) [92], i.e., that the color charge of partons is balanced locally
in phase space and, hence, their hadronization occurs locally such that
(Mellin transformed) parton and hadron inclusive distributions directly
correspond, Eq. (19.11) can be applied to describe average charged
particle multiplicities obtained in e+e− annihilation. The equation can
also be applied to e±p scattering if the current fragmentation region
of the Breit frame is considered for measuring the average charged
particle multiplicity. Fig. 19.6 shows corresponding data and fits of
Eq. (19.11) where apart from a LPHD normalization factor a constant
offset has been allowed for, that is 〈nch(Q)〉 = KLHPD ·〈nG(Q)〉/r+n0.

In hadron-hadron collisions beam remnants, e.g. from single-
diffractive (SD) scattering where one colliding proton is negligibly
deflected while hadrons are related with the other colliding proton are

well-separated in rapidity from the former proton, contribute to the
measurement of the hadron multiplicity from a hard parton-parton
scattering, making interpretation of the data more model dependent.
Experimental results are usually given for inelastic processes or
for non-single diffractive processes (NSD). Due to the large beam
particle momenta at Tevatron and LHC, not all final state particles
can be detected within the limited detector acceptance. Therefore,
experiments at Tevatron and LHC quote particle multiplicities for
limited ranges of pseudo-rapidity η = − ln tan(ϑ/2) or at central
rapidity, i.e. η = 0, shown in Fig. 19.6.
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Figure 19.6: Average charged particle multiplicity 〈nch〉 as
a function of

√
s or Q for e+e− and pp annihilations, and

pp and ep collisions. The indicated errors are statistical and
systematic uncertainties added in quadrature, except when no
systematic uncertainties are given. All NNLO QCD curves are
Eq. (19.11) with fitted normalization, KLHPD, and offset, n0,
using a fixed αS(M

2
Z) = 0.1184 [93] and for e+e− annihilation

data nf = 3, 4, or 5 depending on
√
s, else nf = 3. e+e− :

Contributions from K0
S and Λ decays included. Data compiled

from Refs. [8,9,28,34,35,40,79,85,98–108]. e±p : Multiplicities
have been measured in the current fragmentation region of
the Breit frame. Data compiled from Refs. [59,60,64,109,110].

p(p) : Measured values above 20 GeV refer to non-single
diffractive (NSD) processes. Central pseudorapidity multiplicities
(dn/dη)||η|... refer to either |η| < 2.5 (CMS: |η| < 2.4) or

|η| = 0 (UA5, CMS, ALICE: |η| < 0.5). Data compiled from
Refs. [111–126].

An universality of the average particle multiplicities in e+e− and
p(p) processes has been reported in Ref. [127] when considering an

effective collision energy Qeff =
√
s/k in p(p) reduced by a factor

of k ≈ 3 plus a constant offset of n0 ≈ 2. A more detailed review
is available in Ref. [128]. According to investigations presented
in Ref. [129] the universality of the energy dependence of average
particle multiplicities also applies to hadron-hadron and nucleus-
nucleus collisions for both full and central rapidity multiplicities.
Evidence for this universality is given by the good agreement for the
energy dependence of Eq. (19.11) when fit to the p(p) data as shown
in Fig. 19.6.
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19.4. Fragmentation models

Although the scaling violation can be calculated perturbatively, the
actual form of the parton fragmentation functions is non-perturbative.
Perturbative evolution gives rise to a shower of quarks and gluons
(partons). Multi-parton final states from leading and higher order
matrix element calculations are linked to these parton showers using
factorization prescriptions, also called matching schemes, see Ref. [130]
for an overview. Phenomenological schemes are then used to model the
carry-over of parton momenta and flavor to the hadrons. Implemented
in Monte Carlo event generators (see Section 41 of this Review),
these schemes have been tuned using e+e− data and provide good
description of hadron collisions as well, thus providing evidence of the
universality of the fragmentation functions.

19.5. Quark and gluon fragmentation functions

The fragmentation functions are solutions to the evolution equations
Eq. (19.4), but need to be parametrized at some initial scale µ20
(usually around 1 GeV2 for light quarks and gluons and m2

Q for heavy

quarks). A usual parametrization for light hadrons is [139–146]

Dh
i (x, µ

2
0) = Nxα(1 − x)β

(
1 + γ(1− x)δ

)
, (19.12)

where the normalization N , and the parameters α, β, γ and δ in
general depend on the energy scale µ20, and also on the type of the
parton, i, and the hadron, h. Frequently the term involving γ and δ
is left out [141–144]. Heavy flavor fragmentation into heavy mesons is
discussed in Sec. 19.9. The parameters of Eq. (19.12) (see [139–144])
are obtained by performing global fits to data on various hadron
types for different combinations of partons and hadrons in e+e−,
lepton-hadron and hadron-hadron collisions.

Sets of fragmentation functions are available for pions, kaons,
protons, neutrons, etas, Lambdas and charged hadrons [139–149].

Data from e+e− annihilation present the cleanest experimental
source for the measurement of fragmentation functions, but can
not contribute to disentangle quark from antiquark distributions.
Since the bulk of the e+e− annihilation data is obtained at the
mass of the Z-boson, where the electroweak couplings are roughly
the same for the different partons, it provides the most precise
determination of the flavor-singlet quark fragmentation. Flavor tagged
results [150], distinguishing between the light quark, charm and bottom
contributions are of particular value for flavor decomposition, even
though those measurements can not be unambiguously interpreted in
perturbative QCD. It is worth noticing that recent NNLO analysis
of fragmentation functions [147,148], so far restricted to e+e−
annihilation data, show an improvement in the theoretical description
of the observable.

The most relevant source for quark-antiquark (and also flavor)
separation is provided by data from semi-inclusive DIS (SIDIS).
Semi-inclusive measurements are usually performed at much lower
scales than for e+e− annihilation. The inclusion of SIDIS data
in global fits allows for a wider coverage in the evolution of the
fragmentation functions, resulting at the same time in a stringent test
of the universality of these distributions. Charged-hadron production
data in hadronic collisions also presents a sensitivity on (anti-)quark
fragmentation functions.

The gluon fragmentation function Dg(x) can be extracted, in
principle, from the longitudinal fragmentation function FL in
Eq. (19.2), as the coefficient functions CL,i for quarks and gluons are

comparable at order αs. However at NLO, i.e., including the O(α2
s )

coefficient functions C
(2)
L,i [25], quark fragmentation is dominant in

FL over a large part of the kinematic range, reducing the sensitivity
on Dg. This distribution could be determined also analyzing the
evolution of the fragmentation functions. This possibility is limited
by the lack of sufficiently precise data at energy scales away from the
Z-resonance and the dominance of the quark contributions and at
medium and large values of x.

Dg can also be deduced from the fragmentation of three-jet events
in which the gluon jet is identified, for example, by tagging the other

two jets with heavy quark decays. To leading order, the measured
distributions of x = Ehad/Ejet for particles in gluon jets can be
identified directly with the gluon fragmentation function Dg(x).
At higher orders the theoretical interpretation of this observable is
ambiguous.

A comparison of recent fits of NLO fragmentation functions for
π+ + π− obtained by DSS14 [146], AKK08 [140] and HKNS07 [144] is
shown in Fig. 19.7. Differences between the sets are large especially
for the gluon fragmentation function over the full range of x
and for the quark distribution at large momentum fractions. The
differences are even larger for other species of hadrons like kaons and
protons [139,140,144]. Recent analyses [144,146,151] estimate the
uncertainties involved in the extraction of fragmentation functions.

A direct constraint on Dg is provided by pp, pp̄ → hX data.
At variance with e+e− annihilation and SIDIS, for this process
gluon fragmentation starts to contribute at the lowest order in
the coupling constant, introducing a strong sensitivity on Dg. At
large x & 0.5, where information from e+e− is sparse, data from
hadronic colliders facilitate significantly improved extractions of
Dg [139,140,146]. Recent LHC data has been included in the latest
update for pion-fragmentation functions in [146], see Sec.(17.7) for
more details.
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Figure 19.7: Comparison of up, strange, charm and gluon
NLO fragmentation functions for π+ + π− at the mass of the Z.
The different lines correspond to the result of the most recent
analyses performed in Refs. [140,144,146].

Photonic fragmentation functions play a relevant role in the
theoretical understanding of inclusive photon production in (leptonic
and hadronic) high energy processes. Similar to the analogy of parton
fragmentation functions and parton distributions in deep inelastic
scattering, also photonic fragmentation functions are analogous to
the photon structure function F γ

2 (see review on structure fuctions in
Section 18 of this Review). Since photons have a pointlike coupling
to quarks [152], the corresponding fragmentation functions obey
inhomogeneous evolution equations and are generally decomposed
into a perturbative and a non-perturbative component [143,153,154].
The hadronic part, sometimes approximated by the Vector Meson
Dominance Model, can be obtained by performing global analysis to
the available prompt photon data [7,30,33,37–39,87,155,187].

19.6. Identified particles in e+e− and semi-inclusive
DIS

A great wealth of measurements of e+e− fragmentation into
identified particles exists. A collection of references for data on
fragmentation into identified particles is given on Table 51.1 of this
Review. Representative of this body of data is Fig. 19.8 which shows
fragmentation functions as the scaled momentum spectra of charged
particles at several CM energies.

Quantitative results of studies of scaling violation in e+e−

fragmentation have been reported in [7,39,157,158]. The values of αs

obtained are consistent with the world average (see review on QCD in
Section 9 of this Review).
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Figure 19.8: Scaled momentum spectra of (a) π±, (b) K±,
and (c) p/p at

√
s = 10, 29, and 91 GeV [42–44,87,155,156].

Many studies have been made of identified particles produced in
lepton-hadron scattering, although fewer particle species have been
measured than in e+e− collisions. References [159–166] and [167–173]
are representative of the data from fixed target and ep collider
experiments, respectively.

QCD calculations performed at NLO provide an overall good
description of the HERA data [55,56,60,173–175] for both SIDIS [176]
and the hadron transverse momentum distribution [50] in the
kinematic regions in which the calculations are predictive. A first step
towards a NNLO calculation for SIDIS has been presented in [51].

Fig. 19.9(a) compares lower-energy fixed-target and HERA data
on strangeness production, showing that the HERA spectra have
substantially increased multiplicities, albeit with insufficient statistical
precision to study scaling violations. The fixed-target data show that
the Λ rate substantially exceeds the Λ rate in the remnant region,
owing to the conserved baryon number from the baryon target.
Fig. 19.9(b) shows neutral and charged pion fragmentation functions
1/N · dn/dz, where z is defined as the ratio of the pion energy to
that of the exchanged boson, both measured in the laboratory frame.
Results are shown from HERMES and the EMC experiments, where
HERMES data have been evolved with NLO QCD to 〈Q2〉 = 25 GeV2

in order to be consistent with the EMC. Each of the experiments uses
various kinematic cuts to ensure that the measured particles lie in
the region which is expected to be associated with the struck quark.
In the DIS kinematic regime accessed at these experiments, and over
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Figure 19.9: (a) 1/N · dn/dxF for identified strange particles
in DIS at various values of W [159,162,167]. (b) 1/N ·
dn/dz for measurements of pions from fixed-target DIS
experiment [160,163,166].

the range in z shown in Fig. 19.9, the z and xF variables have similar
values [52]. The precision data on identified particles can be used in
the study of the quark flavor content of the proton [177].

Data on identified particle production can aid the investigation of
the universality of jet fragmentation in e+e− and DIS. The strangeness
suppression factor γs, as derived principally from tuning the Lund
string model [132] within JETSET [133], is typically found to be
around 0.3 in e+e− experiments [77], although values closer to 0.2 [178]
have also been obtained. A number of measurements of so-called
V 0-particles (K0, Λ0) and the relative rates of V 0’s and inclusively
produced charged particles have been performed at HERA [167–169]
and fixed target experiments [159]. These typically favour a stronger
suppression (γs ≈ 0.2) than usually obtained from e+e− data although
values close to 0.3 have also been obtained [179,180].

However, when comparing the description of QCD-based models
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for lepton-hadron interactions and e+e− collisions, it is important to
note that the overall description by event generators of inclusively
produced hadronic final states is more accurate in e+e− collisions
than lepton-hadron interactions [181]. Predictions of particle rates
in lepton-hadron scattering are affected by uncertainties in the
modelling of the parton composition of the proton and photon,
the extended target remnant, and initial and final-state QCD
radiation. Furthermore, the tuning of event generators for e+e−

collisions is typically based on a larger set of parameters and uses
more observables [77] than are used when optimizing models for
lepton-hadron data [182].

19.7. Fragmentation in hadron-hadron collisions

An extensive set on high-transverse momentum (pT ) single-inclusive
hadron data has been collected in h1h2 → hX scattering processes,
both at high energy colliders and fixed-target experiments [183–202].
Only the transverse momentum pT is considered in hadron-
hadron collisions because of lack of knowledge of the longitudinal
momentum of the hard subprocess. Fig. 19.10 shows the cross
section (which is proportional to the particle number) density
d3σ

dp3
=

d3σ

dpxdpydpz
=

E

πm2

d2σ

dyd(p2T )
for a compilation of neutral pion

and charged hadron production data for energies in the range
√
s ≈ 23

- 7000 GeV. More data for different hadron species has been recently
obtained at high energy colliders [203–207].
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Figure 19.10: Selection of inclusive (a) π0 and (b) charged-
hadron production data from pp [121,191,195,199–202] and
pp̄ [183,186,189] collisions.

The differential cross-section for high-transverse momentum
distributions has been computed to next-to-leading order accuracy in
perturbative QCD [208]. The factorization, µf , and renomalization,

µ, scales of these calculations typical range from p2T /4 ≤ µ2f , µ
2 ≤ 4p2T .

NLO calculations significantly under-predict the cross-section for
several fixed-target energy data sets [209,210]. Different strategies
have been developed to ameliorate the theoretical description
at fixed-target energies. A possible phenomenological approach
involves the introduction of a non-perturbative intrinsic partonic
transverse momentum [202,211,212]. From the perturbative side,
the resummation of the dominant higher order corrections at
threshold produces an enhancement of the theoretical calculation that
significantly improves the description of the data [213,214].

Data collected at high energy colliders are either included in global
fit analyses or used as a test for the universality of fragmentation
functions. Certain tension has been observed between data sets from
lower-energy (RHIC) and higher-energy (LHC) collisions [215]. The
tension can be largely resolved by excluding from the analysis data
with transverse momentum smaller than ≈ 5 − 10 GeV, where fixed
order pQCD calculations are not expected to provide an accurate
description of the process. Still, after removing the smallish pT values

where the data sets appear to be mutually exclusive in the global fit,
lower-energy collisions data show a preference towards harder gluon
fragmentation at large z than LHC data [146].

Measurements of hadron production in longitudinally polarized pp
collisions are used mainly in the determination of the polarized gluon
distribution in the proton [216,217].

Hadron production provides a critical observable for probing
the high energy-density matter produced in heavy-ion collisions.
Measurements at colliders show a suppression of inclusive hadron
yields at high transverse momentum for AA collisions compared to
pp scattering, indicating the formation of a dense medium opaque to
quark and gluons, see e.g. [218].

19.8. Spin-dependent fragmentation

Measurements of charged-hadron production in unpolarized lepton-
hadron scattering provide a unique tool to perform a flavor-separation
determination of polarized parton densities from DIS interactions with
longitudinally polarized targets [219–223].

Polarized scattering presents the possibility to measure the spin
transfer from the struck quark to the final hadron, and thus
develop spin-dependent fragmentation functions [224,225]. Early
measurements of the longitudinal spin transfer to Lambda hyperons
have been presented in [226,227]. This process is also useful in the
study of the quark transversity distribution [228], which describes
the probability of finding a transversely polarized quark with its
spin aligned or anti-aligned with the spin of a transversely polarized
nucleon. The transversity function is chiral-odd, and therefore not
accessible through measurements of inclusive lepton-hadron scattering.
Semi-inclusive DIS, in which another chiral-odd observable may be
involved, provides a valuable tool to probe transversity. The Collins
fragmentation function [229] relates the transverse polarization of the
quark to that of the final hadron. It is chiral-odd and naive T-odd,
leading to a characteristic single spin asymmetry in the azimuthal
angular distribution of the produced hadron in the hadron scattering
plane. Azimuthal angular distributions in semi-inclusive DIS can also
be produced by other processes requiring non-polarized fragmentation
functions, like the Sivers mechanism [230].

A number of experiments have measured these asymme-
tries [231–241]. Collins and Sivers asymmetries have been shown
experimentally to be non zero by the HERMES measurements on
transversely polarized proton targets [232–234]. Independent infor-
mation on the Collins function has been provided by the BELLE
Collaboration [235–236]. Measurements performed by the COMPASS
collaboration on deuteron targets show results compatible with zero
for both asymmetries [237–239].

19.9. Heavy quark fragmentation

It was recognized very early [242] that a heavy flavored meson
should retain a large fraction of the momentum of the primordial
heavy quark, and therefore its fragmentation function should be much
harder than that of a light hadron. In the limit of a very heavy quark,
one expects the fragmentation function for a heavy quark to go into
any heavy hadron to be peaked near x = 1.

When the heavy quark is produced at a momentum much larger
than its mass, one expects important perturbative effects, enhanced by
powers of the logarithm of the transverse momentum over the heavy
quark mass, to intervene and modify the shape of the fragmentation
function. In leading logarithmic order (i.e., including all powers
of αs logmQ/pT ), the total (i.e., summed over all hadron types)
perturbative fragmentation function is simply obtained by solving the
leading evolution equation for fragmentation functions, Eq. (19.4),
with the initial condition due to the finite mass of the heavy quark
given by DQ(z, µ

2)
∣∣
µ2=m2

Q
= δ(1 − z) and Di(z, µ

2)
∣∣
µ2=m2

Q
= 0 for

i 6= Q (here Di(z, µ
2), stands for the probability to produce a heavy

quark Q from parton i with a fraction z of the parton momentum).

Several extensions of the leading logarithmic result have appeared
in the literature. Next-to-leading-log (NLL) order results for the
perturbative heavy quark fragmentation function have been obtained
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in [243]. The resummation of the dominant logarithmic contributions
at large z was performed in [45] to next-to-leading-log accuracy.
Fixed-order calculations of the fragmentation function at order α2

s in
e+e− annihilation have appeared in [244] while the initial condition
for the perturbative heavy quark fragmentation function has been
extended to NNLO in [245].

Inclusion of non-perturbative effects in the calculation of the heavy-
quark fragmentation function is done by convoluting the perturbative
result with a phenomenological non-perturbative form. This form
follows from the simple kinematical consideration that the formation
of a hadron by attaching light quarks/anti-quarks to the heavy quark
will slightly decelerate the heavy quark. Thus its shape will show a
peak which becomes increasingly centered next to z = 1 the higher the
quark mass. Among the most popular parametrizations we have the
following:

Peterson et al. [246] : Dnp(z) ∝
1

z

(
1− 1

z
− ǫ

1− z

)−2

,(19.13)

Kartvelishvili et al. [247] : Dnp(z) ∝zα(1 − z) , (19.14)

Collins&Spiller [248] : Dnp(z) ∝
(
1− z

z
+

(2− z)ǫC
1− z

)
×

(1 + z2)

(
1− 1

z
− ǫC

1− z

)−2

(19.15)

Colangelo&Nason [249] : Dnp(z) ∝(1− z)αzβ (19.16)

Bowler [250] : Dnp(z) ∝z
−(1+bm2

h,⊥)

(1 − z)a exp

(
−
bm2

h,⊥
z

)
(19.17)

Braaten et al. [251] : (see Eq. (31), (32) in [251]) (19.18)

where ǫ, ǫC , a, bm2
h,⊥, α, and β are non-perturbative parameters,

depending upon the heavy hadron considered. The parameters
entering the non-perturbative forms are fitted together with some
model of hard radiation, which can be either a shower Monte Carlo, a
leading-log or NLL calculation (which may or may not include Sudakov
resummation), or a fixed order calculation. In [244], for example, the
Peterson et al. [246] ǫ parameter for charm and bottom production
is fitted from the measured distributions of refs. [252,265] for charm,
and of [270] for bottom. If the leading-logarithmic approximation
(LLA) is used for the perturbative part, one finds ǫc ≈ 0.05 and
ǫb ≈ 0.006; if a second order calculation is used one finds ǫc ≈ 0.035
and ǫb ≈ 0.0033; if a NLL improved fixed order O(α2

S) calculation
is used instead of NLO O(αS) one finds ǫc ≈ 0.022 and ǫb ≈ 0.0023.
The larger values found in the LL approximation are consistent with
what is obtained in the context of parton shower models [254], as
expected. The ǫ parameter for charm and bottom scales roughly with
the inverse square of the heavy flavour mass. This behaviour can be
justified by several arguments [242,255,256]. It can be used to relate
the non-perturbative parts of the fragmentation functions of charm
and bottom quarks [244,249,257].

A more conventional approach [258] involves the introduction of a
unique set of heavy quark fragmentation functions of non-perturbative
nature that obey the usual massless evolution equations in Eq. (19.4).
Finite mass terms of the form (mQ/pT )

n are kept in the corresponding
short distance coefficient function for each scattering process. Within
this approach, the initial condition for the perturbative fragmentation
function provides the term needed to define the correct subtraction
scheme to match the massless limit for the coefficient function (see
e.g. [259]) . Such implementation is in line with the variable flavor
number scheme introduced for parton distributions functions, as
described in Section 18 of this Review.

High statistics data for charmed mesons production near the
Υ resonance (excluding decay products of B mesons) have been
published [260,261]. They include results for D and D∗, Ds (see
also [262,263]) and Λc. Shown in Fig. 19.11(a) are the CLEO and
BELLE inclusive cross-sections times branching ratio B, s · Bdσ/dxp,
for the production of D0 and D∗+. The variable xp approximates the
light-cone momentum fraction z, but is not identical to it. The two
measurements are consistent with each other.
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Figure 19.11: (a) Efficiency-corrected inclusive cross-
section measurements for the production of D0 and D∗+ in
e+e− measurements at

√
s ≈ 10.6 GeV, excluding B decay

products [260,261]. (b) Measured e+e− fragmentation function
of b quarks into B hadrons at

√
s ≈ 91 GeV [271].

The branching ratio B represents D0 → K−π+ for the D0 results
and for the D∗+ the product branching fraction: D∗+ → D0π+,
D0 → K−π+. Given the high precision of CLEO’s and BELLE’s data,
a superposition of different parametric forms for the non-perturbative
contribution is needed to obtain a good fit [23]. Older studies are
reported in Refs. [264–266]. Charmed meson spectra on the Z peak
have been published by OPAL and ALEPH [138,267].

Charm quark production has also been extensively studied at
HERA by the H1 and ZEUS collaborations. Measurements have been
made of D∗±, D±, and D±

s mesons and the Λc baryon. See, for
example, Refs. [268,269].

Experimental studies of the fragmentation function for b quarks,
shown in Fig. 19.11(b), have been performed at LEP and
SLD [270–272]. Commonly used methods identify the B meson
through its semileptonic decay or based upon tracks emerging from the
B secondary vertex. Heavy flavour contributions from gluon splitting
are usually explicitly removed before fitting for the fragmentation
functions. The studies in [271] fit the B spectrum using a Monte Carlo
shower model supplemented with non-perturbative fragmentation
functions yielding consistent results.

The experiments measure primarily the spectrum of B mesons.
This defines a fragmentation function which includes the effect of
the decay of higher mass excitations, like the B∗ and B∗∗. In the
literature (cf. details in Ref. [274]) , there is sometimes ambiguity
in what is defined to be the bottom fragmentation function. Instead
of using what is directly measured (i.e., the B meson spectrum)
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corrections are applied to account for B∗ or B∗∗ production in some
cases.

Heavy-flavor production in e+e− collisions is the primary source
of information for the role of fragmentation effects in heavy-flavor
production in hadron-hadron and lepton-hadron collisions. The QCD
calculations tend to underestimate the data in certain regions of phase
space. Some experimental results from LHC summarized in [275] show
such deviations e.g. at high transverse jet momentum and also at
low di-jet separation angles, see [276] for details, and were already
theoretically investigated in [277].

Both bottomed- and charmed-mesons spectra have been measured
at the Tevatron with unprecedented accuracy [278]. The measured
spectra are in good agreement with QCD calculations (including
non-perturbative fragmentation effects inferred from e+e− data [279]).

The HERA collaborations have produced a number of measurements
of beauty production; see, for example, Refs. [268,280–283]. As for the
Tevatron data, the HERA results are described well by QCD-based
calculations using fragmentation models optimised with e+e− data.

Besides degrading the fragmentation function by gluon radiation,
QCD evolution can also generate soft heavy quarks, increasing in the
small x region as

√
s increases. Several theoretical studies are available

on the issue of how often bb̄ or cc̄ pairs are produced indirectly, via
a gluon splitting mechanism [284–286]. Experimental results from
studies on charm and bottom production via gluon splitting, given
in [267,287–291], yield weighted averages of ng→cc = 3.05± 0.45% and
ng→bb = 0.277± 0.072%, respectively.
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T. Sjöstrand, Comp. Phys. Comm. 82, 74 (1994).
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Einstein’s theory of General Relativity (GR), the current “standard”
theory of gravitation, describes gravity as a universal deformation of
the Minkowski metric:

gµν(x
λ) = ηµν+hµν(x

λ) , where ηµν = diag(−1,+1,+1,+1) . (20.1)

GR is classically defined by two postulates. One postulate
states that the Lagrangian density describing the propagation and
self-interaction of the gravitational field is

LEin[gαβ ] =
c4

16πGN

√
ggµνRµν(gαβ) , (20.2)

where GN is Newton’s constant, g = − det(gµν), g
µν is the matrix

inverse of gµν , and where the Ricci tensor Rµν ≡ Rα
µαν is the only

independent trace of the curvature tensor

Rα
µβν = ∂βΓ

α
µν − ∂νΓ

α
µβ + Γα

σβΓ
σ
µν − Γα

σνΓ
σ
µβ , (20.3)

Γλ
µν = 1

2
gλσ(∂µgνσ + ∂νgµσ − ∂σgµν) , (20.4)

A second postulate states that gµν couples universally, and minimally,
to all the fields of the Standard Model by replacing everywhere the
Minkowski metric ηµν . Schematically (suppressing matrix indices and
labels for the various gauge fields and fermions and for the Higgs
doublet),

LSM[ψ,Aµ, H, gµν ] = − 1
4

∑√
ggµαgνβF a

µνF
a
αβ −

∑√
g ψ γµDµψ

− 1
2

√
ggµνDµHDνH −√

g V (H)

−
∑

λ
√
g ψHψ , (20.5)

where γµγν + γνγµ = 2gµν , and where the covariant derivative
Dµ contains, besides the usual gauge field terms, a spin-dependent
gravitational contribution. From the total action follow Einstein’s
field equations,

Rµν − 1
2
Rgµν =

8πGN

c4
Tµν . (20.6)

Here R = gµνRµν , Tµν = gµαgνβT
αβ , and Tµν = (2/

√
g)δLSM/δgµν

is the (symmetric) energy-momentum tensor of the Standard
Model matter. The theory is invariant under arbitrary coordinate
transformations: x′µ = fµ(xν). To solve the field equations Eq. (20.6),
one needs to fix this coordinate gauge freedom. E.g., the “harmonic
gauge” (which is the analogue of the Lorenz gauge, ∂µA

µ = 0, in
electromagnetism) corresponds to imposing the condition ∂ν(

√
ggµν) =

0.

In this Review, we only consider the classical limit of gravitation
(i.e. classical matter and classical gravity). Quantum gravitational
effects are expected (when considered at low energy) to correct the
classical action Eq. (20.3) by additional terms involving quadratic and
higher powers of the curvature tensor. This suggests that the validity
of classical gravity extends (at most) down to length scales of order the

Planck length LP =
√
~GN/c3 ≃ 1.62× 10−33 cm, i.e. up to energy

scales of order the Planck energy EP =
√
~c5/GN ≃ 1.22× 1019 GeV.

Considering quantum matter in a classical gravitational background
also poses interesting challenges, notably the possibility that the
zero-point fluctuations of the matter fields generate a nonvanishing
vacuum energy density ρvac, corresponding to a term −√

g ρvac in
LSM [1]. This is equivalent to adding a “cosmological constant”
term +Λ gµν on the left-hand side of Einstein’s equations Eq. (20.6),
with Λ = 8πGN ρvac/c

4. Recent cosmological observations (see the
following Reviews) suggest a positive value of Λ corresponding to
ρvac ≈ (2.3 × 10−3eV)4. Such a small value has a negligible effect on
the non cosmological tests discussed below.

20.1. Experimental tests of the matter-gravity
coupling

The universality of the coupling between gµν and the Standard
Model matter postulated in Eq. (20.5) (“Equivalence Principle”) has
many observable consequences. First, it predicts that the outcome
of a local non-gravitational experiment, referred to local standards,
does not depend on where, when, and in which locally inertial
frame, the experiment is performed. This means, for instance, that
local experiments should neither feel the cosmological evolution of
the universe (constancy of the “constants”), nor exhibit preferred
directions in spacetime (isotropy of space, local Lorentz invariance).
These predictions are consistent with many experiments and
observations. Stringent limits on a possible time variation of the
basic coupling constants have been obtained by analyzing a natural
fission reactor phenomenon which took place at Oklo, Gabon, two
billion years ago [2,3]. These limits are at the 1× 10−8 level for the
fractional variation of the fine-structure constant αem [3], and at
the 4 × 10−9 level for the fractional variation of the ratio mq/ΛQCD
between the light quark masses and ΛQCD [4]. The determination
of the lifetime of Rhenium 187 from isotopic measurements of some
meteorites dating back to the formation of the solar system (about
4.6 Gyr ago) yields comparably strong limits [5]. Measurements of
absorption lines in astronomical spectra also give stringent limits on
the variability of both αem and µ = mp/me at cosmological redshifts.
E.g.

∆αem/αem = (1.2± 1.7stat ± 0.9sys)× 10−6 (20.7)

at redshifts z = 1.0–2.4 [6], and

|∆µ/µ| < 4× 10−7(95% C.L.) , (20.8)

at a redshift z = 0.88582 [7]. There are also strong limits on the
variation of αem and µ = mp/me at redshift z ∼ 103 from cosmic
microwave background data, e.g. ∆αem/αem = (3.6± 3.7)× 10−3 [8].
Direct laboratory limits (based on monitoring the frequency ratio of
several different atomic clocks) on the present time variation of αem,
µ = mp/me, and mq/ΛQCD have reached the levels [9]:

d ln(αem)/dt = (−2.5± 2.6)× 10−17yr−1,

d ln(µ)/dt = (−1.5± 3.0)× 10−16yr−1,

d ln(mq/ΛQCD)/dt = (7.1± 4.4)× 10−15yr−1. (20.9)

There are also experimental limits on a possible dependence of
coupling constants on the gravitational potential [9,10].

The highest precision tests of the isotropy of space have been
performed by looking for possible quadrupolar shifts of nuclear energy
levels [11]. The (null) results can be interpreted as testing the fact
that the various pieces in the matter Lagrangian Eq. (20.5) are indeed
coupled to one and the same external metric gµν to the 10−29 level.
For astrophysical constraints on possible Planck-scale violations of
Lorentz invariance, see Ref. 12.

The universal coupling to gµν postulated in Eq. (20.5) implies that
two (electrically neutral) test bodies dropped at the same location
and with the same velocity in an external gravitational field fall
in the same way, independently of their masses and compositions.
The universality of the acceleration of free fall has been verified, for
laboratory bodies, both on the ground [13,14]( at the 10−13 level)
and, in space [15]( at the 10−14 level):

(∆a/a)BeTi = (0.3± 1.8)× 10−13 ,

(∆a/a)BeAl = (−0.7± 1.3)× 10−13 ,

(∆a/a)TiPt = (−1± 9stat ± 9sys)× 10−15 . (20.10)

The universality of free fall has also been verified when comparing the
fall of classical and quantum objects (6× 10−9 level [16]) , or of two
quantum objects (5× 10−7 level [17]) . The gravitational accelerations
of the Earth and the Moon toward the Sun have also been verified to
agree [18],

(∆a/a)EarthMoon = (−0.8± 1.3)× 10−13 . (20.11)
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The latter result constrains not only how gµν couples to matter, but
also how it couples to itself [19]( “strong equivalence principle”).

Finally, Eq. (20.5) also implies that two identically constructed
clocks located at two different positions in a static external Newtonian
potential U(x) =

∑
GNm/r exhibit, when intercompared by means

of electromagnetic signals, the (apparent) difference in clock rate,
τ1/τ2 = ν2/ν1 = 1 + [U(x1)− U(x2)]/c

2 +O(1/c4), independently of
their nature and constitution. This universal gravitational redshift
of clock rates has been verified at the 10−4 level by comparing a
hydrogen-maser clock flying on a rocket up to an altitude ∼ 10, 000
km to a similar clock on the ground [20]. The redshift due to a height
change of only 33 cm has been detected by comparing two optical
clocks based on 27Al+ ions [21].

20.2. Tests of the dynamics of the gravitational field
in the weak field regime

The effect on matter of one-graviton exchange, i.e., the interaction
Lagrangian obtained when solving Einstein’s field equations Eq. (20.6)
written in, say, the harmonic gauge at first order in hµν ,

hµν = −16πGN

c4
(Tµν − 1

2
Tηµν) + O(h2) +O(hT ) , (20.12)

reads −(8πGN/c4)Tµν −1(Tµν − 1
2
Tηµν). For a system of N moving

point masses, with free Lagrangian L(1) =
N∑

A=1

−mAc
2
√
1− v2A/c

2,

this interaction, expanded to order v2/c2, reads (with rAB ≡ |xA−xB |,
nAB ≡ (xA − xB)/rAB)

L(2) = 1
2

∑

A 6=B

GN mAmB

rAB

[
1 +

3

2c2
(v2A + v2B)− 7

2c2
(vA · vB)

− 1

2c2
(nAB · vA)(nAB · vB) +O

(
1

c4

)]
. (20.13)

The two-body interactions, Eq. (20.13), exhibit v2/c2 corrections
to Newton’s 1/r potential induced by spin-2 exchange (“gravito-
magnetism”). Consistency at the “post-Newtonian” level v2/c2 ∼
GN m/rc2 requires that one also considers the three-body interactions
induced by some of the three-graviton vertices and other nonlinearities
(terms O(h2) and O(hT ) in Eq. (20.12)),

L(3) = −1

2

∑

B 6=A 6=C

G2
N mAmB mC

rAB rAC c2
+O

(
1

c4

)
. (20.14)

All currently performed gravitational experiments in the solar
system, including perihelion advances of planetary orbits, the bending
and delay of electromagnetic signals passing near the Sun, and very
accurate ranging data to the Moon obtained by laser echoes, are
compatible with the post-Newtonian results Eqs. (20.12)–(20.14).
The “gravito-magnetic” interactions ∝ vAvB contained in Eq. (20.13)
are involved in many of these experimental tests. They have been
particularly tested in lunar laser ranging data [18], in the combined
LAGEOS-LARES satellite data [22,23], and in the dedicated Gravity
Probe B mission [24].

Similar to what is done in discussions of precision electroweak
experiments, it is useful to quantify the significance of precision
gravitational experiments by parametrizing plausible deviations from
GR. Here, we shall focus on the simplest, and most conservative
deviations from Einstein’s pure spin-2 theory defined by adding
new, bosonic light or massless, macroscopically coupled fields. The
possibility of new gravitational-strength couplings leading (on small,
and possibly large, scales) to deviations from Einsteinian (and
Newtonian) gravity is suggested by String Theory [25], and by Brane
World ideas [26]. Experiments have set limits on non-Newtonian
forces down to the micrometer range [27].

Here, we shall focus on the parametrization of long-range deviations
from relativistic gravity obtained by adding a strictly massless (i.e.

without self-interaction V (ϕ) = 0) scalar field ϕ coupled to the trace of
the energy-momentum tensor T = gµνT

µν [28,29]. The most general
such theory contains an arbitrary function a(ϕ) of the scalar field, and
can be defined by the Lagrangian

Ltot[gµν , ϕ, ψ,Aµ, H ] =
c4

16πG

√
g(R(gµν)− 2gµν∂µϕ∂νϕ)

+LSM[ψ,Aµ, H, g̃µν ] , (20.15)

where G is a “bare” Newton constant, and where the Standard
Model matter is coupled not to the “Einstein” (pure spin-2) metric
gµν , but to the conformally related (“Jordan-Fierz”) metric g̃µν =
exp(2a(ϕ))gµν . The scalar field equation gϕ = −(4πG/c4)α(ϕ)T
displays α(ϕ) ≡ ∂a(ϕ)/∂ϕ as the basic (field-dependent) coupling
between ϕ and matter [29,30]. The one-parameter (ω) Jordan-Fierz-
Brans-Dicke theory [28] is the special case a(ϕ) = α0ϕ leading to
a field-independent coupling α(ϕ) = α0 (with α0

2 = 1/(2ω + 3)).
The addition of a self-interaction term V (ϕ) in Eq. (20.15)
introduces new phenomenological possibilities; notably the “chameleon
mechanism” [31].

In the weak-field slow-motion limit appropriate to describing
gravitational experiments in the solar system, the addition of ϕ
modifies Einstein’s predictions only through the appearance of two
“post-Einstein” dimensionless parameters: γ = −2α2

0/(1 + α2
0) and

β = + 1
2
β0α

2
0/(1 + α2

0)
2, where α0 ≡ α(ϕ0), β0 ≡ ∂α(ϕ0)/∂ϕ0, ϕ0

denoting the vacuum expectation value of ϕ. These parameters show
up also naturally (in the form γPPN = 1 + γ, βPPN = 1 + β) in
phenomenological discussions of possible deviations from GR [32]. The
parameter γ measures the admixture of spin 0 to Einstein’s graviton,
and contributes an extra term + γ(vA−vB)2/c2 in the square brackets
of the two-body Lagrangian Eq. (20.13). The parameter β modifies
the three-body interaction Eq. (20.14) by an overall multiplicative
factor 1 + 2β. Moreover, the combination η ≡ 4β − γ parametrizes
the lowest order effect of the self-gravity of orbiting masses by
modifying the Newtonian interaction energy terms in Eq. (20.13) into
GABmAmB/rAB , with a body-dependent gravitational “constant”
GAB = GN [1 + η(Egrav

A /mAc
2 + Egrav

B /mBc
2) + O(1/c4)], where

GN = G exp[2a(ϕ0)](1+α2
0) and where Egrav

A denotes the gravitational
binding energy of body A.

The best current limits on the post-Einstein parameters γ and β
are (at the 68% confidence level):

γ = (2.1± 2.3)× 10−5 , (20.16)

deduced from the additional Doppler shift experienced by radio-wave
beams connecting the Earth to the Cassini spacecraft when they
passed near the Sun [33], and

|β| < 7× 10−5 , (20.17)

from a study of the global sensitivity of planetary ephemerides
to post-Einstein parameters [34]. More stringent limits on γ are
obtained in models (e.g., string-inspired ones [25]) where scalar
couplings violate the Equivalence Principle.

20.3. Tests of the dynamics of the gravitational field
in the radiative and/or strong field regimes:
pulsars

The discovery of pulsars (i.e., rotating neutron stars emitting
a beam of radio noise) in gravitationally bound orbits [35,36] has
given us our first experimental handle on the regime of radiative
and/or strong gravitational fields. In these systems, the finite velocity
of propagation of the gravitational interaction between the pulsar
and its companion generates damping-like terms at order (v/c)5 in
the equations of motion [37]. These damping forces are the local
counterparts of the gravitational radiation emitted at infinity by the
system (“gravitational radiation reaction”). They cause the binary
orbit to shrink and its orbital period Pb to decrease. The remarkable
stability of pulsar clocks has allowed one to measure the corresponding
very small orbital period decay Ṗb ≡ dPb/dt ∼ −(v/c)5 ∼ −10−12
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in several binary systems, thereby giving us a direct experimental
confirmation of the propagation properties of the gravitational field,
and, in particular, an experimental confirmation that the speed of
propagation of gravity cg is equal to the velocity of light c to better
than a part in a thousand. In addition, the surface gravitational
potential of a neutron star h00(RNS) ≃ 2Gm/c2RNS ≃ 0.4 being
a factor ∼ 108 higher than the surface potential of the Earth,
and a mere factor 2.5 below the black hole limit (h00(RBH) = 1),
pulsar data have allowed one to obtain several accurate tests of the
strong-gravitational-field regime, as we discuss next.

Binary pulsar timing data record the times of arrival of successive
electromagnetic pulses emitted by a pulsar orbiting around the
center of mass of a binary system. After correcting for the Earth
motion around the Sun and for the dispersion due to propagation
in the interstellar plasma, the time of arrival of the Nth pulse tN
can be described by a generic, parametrized “timing formula” [38]
whose functional form is common to the whole class of tensor-scalar
gravitation theories:

tN − t0 = F [TN (νp, ν̇p, ν̈p) ; {pK} ; {pPK}] . (20.18)

Here, TN is the pulsar proper time corresponding to the Nth turn
given by N/2π = νpTN + 1

2
ν̇pT

2
N + 1

6
ν̈pT

3
N (with νp ≡ 1/Pp the spin

frequency of the pulsar, etc.), {pK} = {Pb, T0, e, ω0, x} is the set of
“Keplerian” parameters (notably, orbital period Pb, eccentricity e,
periastron longitude ω0 and projected semi-major axis x = a sin i/c),
and {pPK} = {k, γtiming, Ṗb, r, s, δθ, ė, ẋ} denotes the set of (separately
measurable) “post-Keplerian” parameters. Most important among
these are: the fractional periastron advance per orbit k ≡ ω̇Pb/2π,
a dimensionful time-dilation parameter γtiming, the orbital period

derivative Ṗb, and the “range” and “shape” parameters of the
gravitational time delay caused by the companion, r and s.

Without assuming any specific theory of gravity, one can
phenomenologically analyze the data from any binary pulsar by
least-squares fitting the observed sequence of pulse arrival times to
the timing formula Eq. (20.18). This fit yields the “measured” values
of the parameters {νp, ν̇p, ν̈p}, {pK}, {pPK}. Now, each specific

relativistic theory of gravity predicts that, for instance, k, γtiming, Ṗb,
r and s (to quote parameters that have been successfully measured
from some binary pulsar data) are some theory-dependent functions
of the Keplerian parameters and of the (unknown) masses m1, m2 of
the pulsar and its companion. For instance, in GR, one finds (with
M ≡ m1 +m2, n ≡ 2π/Pb)

kGR(m1,m2) =3(1− e2)−1(GNMn/c3)2/3 ,

γGR
timing(m1,m2) =en−1(GNMn/c3)2/3m2(m1 + 2m2)/M

2 ,

ṖGR
b (m1,m2) =− (192π/5)(1− e2)−7/2

(
1 + 73

24
e2 + 37

96
e4
)

× (GNMn/c3)5/3m1m2/M
2 ,

r(m1,m2) =GNm2/c
3 ,

s(m1,m2) =nx(GNMn/c3)−1/3M/m2 . (20.19)

In tensor-scalar theories, each of the functions ktheory(m1,m2),

γ
theory
timing(m1,m2), Ṗ

theory
b (m1,m2), etc., is modified by quasi-static

strong field effects (associated with the self-gravities of the pulsar

and its companion), while the particular function Ṗ
theory
b (m1,m2)

is further modified by radiative effects (associated with the spin 0
propagator) [30,39,40].

Let us give some highlights of the current experimental situation.
In the first discovered binary pulsar PSR 1913+16 [35,36], it
has been (recently [41]) possible to measure five post-Keplerian
parameters: k, γtiming, Ṗb, and (with less accuracy) r and s. [Even
more post-Keplerian parameters have been recently measured [41],
but they cannot be currently used to test gravity theories.] The five

equations kmeasured = ktheory(m1,m2), γ
measured
timing = γ

theory
timing(m1,m2),

Ṗmeasured
b = Ṗ theory

b (m1,m2), r
measured = rtheory(m1,m2),

smeasured = stheory(m1,m2), determine, for each given theory,
five curves in the two-dimensional mass plane. [The less accurate

measurements of r and s determine strips rather than thin curves.]
This yields three tests of the specified theory, according to whether the
five curves (or strips) have one point in common, as they should. After
subtracting a small (∼ 10−14 level in Ṗ obs

b = (−2.423±0.001)×10−12),
but significant, “galactic” perturbing effect (linked to galactic
accelerations and to the pulsar proper motion) [42], one finds that
GR passes these three (combined radiative/strong-field) tests with
flying colors. The most accurate of these three tests involves the three
quantities (k − γtiming − Ṗb)1913+16, and is passed with complete

success at the 10−3 level [36,43,41]

[
Ṗ obs
b − Ṗ

gal
b

ṖGR
b [kobs, γobstiming]

]

1913+16

= 0.9983± 0.0016 . (20.20)

Here ṖGR
b [kobs, γobstiming] is the result of inserting in ṖGR

b (m1,m2)

the values of the masses predicted by the two equations kobs =
kGR(m1,m2), γobstiming = γGR

timing(m1,m2). This yields experimental
evidence for the reality of gravitational radiation damping forces at
the (−1.7± 1.6)× 10−3 level.

In the binary pulsar PSR 1534+12 [44] one has measured
five post-Keplerian parameters: k, γtiming, r, s, and (with less

accuracy)Ṗb [45,46]. This yields three more tests of relativistic
gravity. Two among these tests accurately probe strong field gravity,
without mixing of radiative effects [45]. General Relativity passes
all these tests within the measurement accuracy. The most precise
of the pure strong-field tests is the one obtained by combining the
measurements of k, γtiming, and s. Using the most recent data [46],

one finds agreement at the (2± 2)× 10−3 level:

[
sobs

sGR[kobs, γobstiming]

]

1534+12

= 1.002± 0.002 . (20.21)

In the binary pulsar PSR J1141−6545 [47]( whose companion
is probably a white dwarf) one has measured four observable
parameters: k, γtiming, Ṗb [48,49], and the parameter s [50,49]. The
latter parameter (which is equal to the sine of the inclination angle,
s = sin i) was consistently measured in two ways: from a scintillation
analysis [50], and from timing measurements [49]. GR passes all the
corresponding tests within measurement accuracy. See Fig. 20.1 which
uses the (more precise) scintillation measurement of s = sin i.

The discovery of the remarkable double binary pulsar PSR
J0737−3039 A and B [51,52] has led to the measurement of seven
independent parameters [53,54,55]: five of them are the post-
Keplerian parameters k, γtiming, r, s and Ṗb entering the relativistic
timing formula of the fast-spinning pulsar PSR J0737−3039 A, a sixth
is the ratio R = xB/xA between the projected semi-major axis of
the more slowly spinning companion pulsar PSR J0737−3039 B, and
that of PSR J0737−3039 A. [The theoretical prediction for the ratio
R = xB/xA, considered as a function of the (inertial) masses m1 = mA
and m2 = mB, is Rtheory = m1/m2 + O((v/c)4) [38], independently
of the gravitational theory considered.] Finally, the seventh parameter
ΩSO,B is the angular rate of (spin-orbit) precession of PSR
J0737−3039 B around the total angular momentum [54,55]. These
seven measurements give us five tests of relativistic gravity [53,56,57].
GR passes all those tests with flying colors (see Fig. 20.1). Let us
highlight here two of them (from [57]) .

One test is a new confirmation of the reality of gravitational
radiation at the 10−3 level

[
Ṗ obs
b

ṖGR
b [kobs, Robs]

]

0737−3039

= 1.000± 0.001 . (20.22)

Another one is a new, 5× 10−4 level, strong-field confirmation of GR:

[
sobs

sGR[kobs, Robs]

]

0737−3039

= 1.0000± 0.0005 . (20.23)
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Figure 20.1: Illustration of the thirteen tests of relativistic
gravity obtained in the four different binary pulsar systems
PSR1913+16 (3 tests), PSR1534+12 (3 tests), PSR J1141−6545
(2 tests), and PSR J0737−3039 A,B (5 tests). Each curve (or
strip) in the mass plane corresponds to the interpretation, within
GR, of some observable parameter among: Ṗb, k ≡ ω̇Pb/2π,
γtiming, r, s = sin i, ΩSO,B and R. The shaded regions
are excluded because they would correspond (in GR) to
s = | sin i| > 1. (Figure updated from [71]; courtesy of G.
Esposito-Farèse.)

Fig. 20.1 illustrates the thirteen tests of strong-field and radiative
gravity derived from the above-mentioned binary pulsars: (5 − 2 =)
3 tests from PSR1913+16, (5 − 2 =) 3 tests from PSR1534+12,
(4 − 2 =) 2 tests from PSR J1141−6545, and (7 − 2 =) 5 tests from
PSR J0737−3039. [See, also, [58] for additional, less accurate, and
partially discrepant, tests of relativistic gravity.]

Data from several nearly circular binary systems (made of a neutron
star and a white dwarf) have also led to strong-field confirmations (at
the 4.6× 10−3 level) of the ‘strong equivalence principle,’ i.e., the fact
that neutron stars and white dwarfs fall with the same acceleration in
the gravitational field of the Galaxy [59,60,61]. The measurements of
Ṗb in some pulsar-white dwarf systems lead to strong constraints on
the variation of Newton’s GN , and on the existence of gravitational
dipole radiation [62,63,64,66,67]. In addition, arrays of millisecond
pulsars are sensitive detectors of ultra low frequency gravitational
waves (f ∼ 10−9 − 10−8 Hz) [68,69]. Such waves might be generated
by supermassive black-hole binary systems, by cosmic strings and/or
during the inflationary era. Pulsar timing arrays have recently put
strong constraints on current models of supermassive black-hole
binaries by finding no evidence for a background of gravitational waves
with periods between ∼ 1 and ∼ 10 years [70].

The constraints on tensor-scalar theories provided by the various
binary-pulsar “experiments” have been analyzed in [45,40,64,65,71,72]
and shown to exclude a large portion of the parameter space allowed
by solar-system tests. Some of the most stringent tests follow from
the measurement of the orbital period decay Ṗb of low-eccentricity
pulsar-white dwarf systems (notably PSR J1738+0333 [64]) . Indeed,
asymmetric binary systems are strong emitters of dipolar gravitational
radiation in tensor-scalar theories, with Ṗb scaling (modulo matter-
scalar couplings) like m1m2/(m1 + m2)

2(v/c)3, instead of the
parametrically smaller quadrupolar radiation Ṗb ∼ (v/c)5 [32,30].
As a result the basic matter-scalar coupling α2

0 is more strongly
constrained, over most of the parameter space, than the best current

solar-system limits Eq. (20.16), Eq. (20.17) (namely below the 10−5

level) [64,65].

Measurements over several years of the pulse profiles of various
pulsars have detected secular profile changes compatible with the
prediction [73] that the general relativistic spin-orbit coupling
should cause a secular change in the orientation of the pulsar
beam with respect to the line of sight (“geodetic precession”). Such
confirmations of general-relativistic spin-orbit effects were obtained
in PSR 1913+16 [74], PSR B1534+12 [46], PSR J1141−6545 [75],
PSR J0737−3039 [54,55] and PSR J1906+0746 [76]. In some cases
(notably PSR 1913+16 and PSR J1906+0746) the secular change
in the orientation of the pulsar beam is expected to lead to the
disappearance of the beam (as seen on the Earth) on a human time
scale (the second pulsar in the double system PSR J0737−3039 has
already disappeared in March 2008 and is expected to reappear around
2035 [55]) .

20.4. Tests of the dynamics of the gravitational
field in the radiative and strong field regimes:
gravitational waves

The observation, by the US-based Laser Interferometer Gravita-
tional -wave Observatory (LIGO), later joined by the Europe-based
Virgo detector, of gravitational-wave (GW) signals [77,78,79,80,81],
has opened up a novel testing ground for relativistic gravity. The four
transient signals GW150914, GW151226, GW170104 and GW170814,
are most readily interpreted as the GW signals emitted (& 400 Mpc
away) by the last inspiralling orbits and the merger of binary black
holes. The longer (∼ 100 s) and louder (signal-to-noise ratio [SNR]
∼ 32) signal GW170817 is most readily interpreted as coming from
a binary neutron star inspiral (∼ 40 Mpc away), and was associated
with a subsequent γ-ray burst, followed by transient counterparts
across the electromagnetic spectrum [82]. Thanks to the rather high
SNRs, respectively, ∼ 24, ∼ 13, ∼ 13, ∼ 18, ∼ 32, of the LIGO-Virgo
observations, one could test consistency with GR in several ways.

For the binary black hole events, a first level of consistency check
follows from the good global agreement between the full observed signal
and the signal predicted by both analytical [83] and numerical [84]
calculations of the gravitational waveform emitted by coalescing
black holes. In particular, the noise-weighted correlation between
the observed strain signal GW150914 and the best-fit GR-predicted
waveform was found to be ≥ 96% [85]. In other words, GR-violation
effects that cannot be reabsorbed in a redefinition of physical
parameters are limited (in a noise-weighted sense) to less than 4%. A
perturbed black hole has characteristic ringing GW modes [86], whose
frequencies and decay times are functions of the mass and spin of the
black hole. The final black hole (with mass Mf and dimensionless

spin parameter af = Jf/(GNM2
f )) formed by the coalescence of the

two initial black holes emits, just after merger, a superposition of such
(rapidly decaying) ringing GW modes. Currently, only GW150914
has allowed one to test the consistency between the observed signal
and the (separately considered) GR predictions for the inspiral signal
(up to the GW frequency fend inspiral = 132 Hz), the post-inspiral
one (fGW ≥ f end inspiral), and also, to some extent, the post-merger
signal (merger being defined as the moment where the GW amplitude
hµν reaches a maximum). First, the joint posterior distribution for
Mf and af , obtained by separately best fitting to the corresponding
GR predictions either the inspiral signal or the post-inspiral one, have
been found to be consistent (see Fig. 4 in [85]) . A second, less
accurate, check has found consistency between the measurement of
the frequency and decay time of the first (least-damped) ringing mode
from the latish post-merger signal, and the values inferred (using GR
predictions) from fitting the entire signal (see Fig. 5 in [85]) .

Quantitatively more precise tests have been obtained from
GW151226, which features a much longer signal (∼ 55 GW
cycles). The most accurate test has consisted in phenomenologically
allowing the numerical coefficient ϕ3 (parametrizing the contribution

proportional to f
−2/3
GW in the frequency evolution of the Fourier-domain

phase of the GW signal during the early inspiral) to vary [87,88].
[This contribution is physically related to “tail” effects in the curved
spacetime propagation of the GW signal.] The 90 % credible limit
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on the fractional variation of ϕ3 obtained from GW151226 data is
∆ϕ3/ϕ3 ≤ 0.1 [88]. The three-detector observation of GW170814
has allowed one to probe the polarization content of the GW signal:
the data were found to strongly favor the GR-predicted pure tensor
polarization of GWs [80].

GR predicts that GWs are non dispersive, and propagate at
the same velocity as light. One can phenomenologically modify the
GR-predicted GW phase evolution by adding the putative effect of
an anomalous dispersion relation of the form E2 = p2c2 + Apαcα.
GW data have been used to set bounds on the anomalous coefficient
A for various values of the exponent α (see Fig. 5 in [79]) .
The case α = 0 is equivalent to assuming that gravitons disperse
as a massive particle [89]. Combined GW data lead to the
following phenomenological limit on the graviton mass: mg ≤
7.7 × 10−23eV/c2 [79]. [See [90] for other graviton mass bounds.]
Finally, the observed time delay of ∼ 1.7 s between GW170817 and
the associated γ-ray burst constrains the fractional difference between
the speed of GWs and the speed of light to be between −3 × 10−15

and +7× 10−16 [91].

Contrary to the solar-system, and binary-pulsar, tests, the
phenomenological GW emission tests deduced from black hole merger
signals do not directly constrain the most conservative class of
theoretical deviations from GR obtained by adding a light scalar field
ϕ, as in Eq. (20.15). Indeed, the no-hair properties of (4-dimensional)
black holes mean that ϕ does not couple to black holes, so that, when
neglecting large-scale external gradients (or fine-tuned initial data),
light scalar fields have no effect on either the dynamics or the GW
emission of black hole binaries.

20.5. Conclusions

All present experimental tests are compatible with the predictions
of the current “standard” theory of gravitation: Einstein’s General
Relativity. The universality of the coupling between matter and
gravity (Equivalence Principle) has been verified around the 10−14

level. Solar system experiments have tested the weak-field predictions
of Einstein’s theory at the few 10−5 level. The propagation properties
(in the near zone) of relativistic gravity, as well as several of its
static strong-field aspects, have been verified at the 10−3 level (or
better) in several binary pulsar experiments. Interferometric detectors
of gravitational radiation have given direct observational proofs of the
existence, and properties, of gravitational waves (in the wave zone),
and of the existence of coalescing black holes, and they have started
to explore several dynamic aspects of strong-field gravity. Recent
laboratory experiments have set strong constraints on sub-millimeter
modifications of Newtonian gravity. Quantitative confirmations of
GR have also been obtained on astrophysical scales. The GR action
on light and matter of an external gravitational field has been
verified in many gravitational lensing systems [92]. Some tests on
cosmological scales are also available [93]. Beyond the quantitative
limits on various parametrized theoretical models discussed in the
latter reference, one should remember the striking (strong-field-type)
qualitative verification of GR embodied in the fact that relativistic
cosmological models give an accurate picture of the Universe over
a period during which the spatial metric has been blown up by a
gigantic factor, say (1 + z)2 ∼ 1019 between Big Bang nucleosynthesis
and now (though a skeptic might wish to keep in mind the two “dark
clouds” of current cosmology, namely the need to assume dark matter
and a cosmological constant).
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J. Guéna et al., Phys. Rev. Lett. 109, 080801 (2012);
R. M. Godun et al., Phys. Rev. Lett. 113, 210801 (2014).

10. T.M. Fortier et al., Phys. Rev. Lett. 98, 070801 (2007);
S. Blatt et al., Phys. Rev. Lett. 100, 140801 (2008);
T. Dent, Phys. Rev. Lett. 101, 041102 (2008).

11. M. Smiciklas et al., Phys. Rev. Lett. 107, 171604 (2011).

12. S. Liberati, J. Phys. Conf. Ser. 631, no. 1, 012011 (2015).

13. S. Schlamminger et al., Phys. Rev. Lett. 100, 041101 (2008).

14. T.A. Wagner et al., Class. Quantum Grav. 29, 184002 (2012).

15. P. Touboul et al., Phys. Rev. Lett. , in press.

16. S. Merlet et al., Metrologia, 47, L9-L11 (2010).

17. D. Schlippert et al., Phys. Rev. Lett. 112, 203002 (2014).

18. J.G. Williams, S.G. Turyshev, and D.H. Boggs, Class. Quantum
Grav. 29, 184004 (2012);
J. Müller, F. Hofmann, and L. Biskupek, Class. Quantum Grav.
29, 184006 (2012).

19. K. Nordtvedt, Phys. Rev. 170, 1186 (1968).

20. R.F.C. Vessot and M.W. Levine, Gen. Rel. Grav. 10, 181 (1978);
R.F.C. Vessot et al., Phys. Rev. Lett. 45, 2081 (1980).

21. C.W. Chou et al., Science 329, 1630 (2010).

22. I. Ciufolini and E.C. Pavlis, Nature 431, 958 (2004).

23. I. Ciufolini et al., Eur. Phys. J. C 76, no. 3, 120 (2016).

24. C.W.F. Everitt et al., Phys. Rev. Lett. 106, 221101 (2011).

25. T.R. Taylor and G. Veneziano, Phys. Lett. B213, 450 (1988);
T. Damour and A.M. Polyakov, Nucl. Phys. B423, 532 (1994);
S. Dimopoulos and G. Giudice, Phys. Lett. B379, 105 (1996);
I. Antoniadis, S. Dimopoulos, and G. Dvali, Nucl. Phys. B516,
70 (1998).

26. V.A. Rubakov, Phys. Usp 44, 871 (2001);
R. Maartens and K. Koyama, Living Rev. Rel. 13, 5 (2010).

27. D. J. Kapner et al., Phys. Rev. Lett. 98, 021101 (2007);
A. O. Sushkov et al., Phys. Rev. Lett. 107, 171101 (2011).

28. P. Jordan, Schwerkraft und Weltall (Vieweg, Braunschweig,
1955);
M. Fierz, Helv. Phys. Acta 29, 128 (1956);
C. Brans and R.H. Dicke, Phys. Rev. 124, 925 (1961).

29. R. V. Wagoner, Phys. Rev. D 1, 3209 (1970).

30. T. Damour and G. Esposito-Farèse, Class. Quantum Grav. 9,
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(1986);
T. Damour and J.H. Taylor, Phys. Rev. D45, 1840 (1992).

39. C.M. Will and H.W. Zaglauer, Astrophys. J. 346, 366 (1989).

40. T. Damour and G. Esposito-Farèse, Phys. Rev. D54, 1474
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Revised September 2017 by K.A. Olive (University of Minnesota) and
J.A. Peacock (University of Edinburgh).

21.1. Introduction to Standard Big-Bang Model

The observed expansion of the Universe [1–3] is a natural (almost
inevitable) result of any homogeneous and isotropic cosmological
model based on general relativity. However, by itself, the Hubble
expansion does not provide sufficient evidence for what we generally
refer to as the Big-Bang model of cosmology. While general relativity
is in principle capable of describing the cosmology of any given
distribution of matter, it is extremely fortunate that our Universe
appears to be homogeneous and isotropic on large scales. Together,
homogeneity and isotropy allow us to extend the Copernican Principle
to the Cosmological Principle, stating that all spatial positions in the
Universe are essentially equivalent.

The formulation of the Big-Bang model began in the 1940s with the
work of George Gamow and his collaborators, Alpher and Herman.
In order to account for the possibility that the abundances of the
elements had a cosmological origin, they proposed that the early
Universe which was once very hot and dense (enough so as to allow
for the nucleosynthetic processing of hydrogen), and has expanded
and cooled to its present state [4,5]. In 1948, Alpher and Herman
predicted that a direct consequence of this model is the presence
of a relic background radiation with a temperature of order a few
K [6,7]. Of course this radiation was observed 16 years later as the
microwave background radiation [8]. Indeed, it was the observation
of the 3 K background radiation that singled out the Big-Bang model
as the prime candidate to describe our Universe. Subsequent work on
Big-Bang nucleosynthesis further confirmed the necessity of our hot
and dense past. (See Sec. 21.3.7 for a brief discussion of BBN and
the review on BBN—Sec. 23 of this Review for a detailed discussion
of BBN.) These relativistic cosmological models face severe problems
with their initial conditions, to which the best modern solution is
inflationary cosmology, discussed in Sec. 21.3.5 and in —Sec. 22 of
this Review. If correct, these ideas would strictly render the term ‘Big
Bang’ redundant, since it was first coined by Hoyle to represent a
criticism of the lack of understanding of the initial conditions.

21.1.1. The Robertson-Walker Universe :

The observed homogeneity and isotropy enable us to describe
the overall geometry and evolution of the Universe in terms of two
cosmological parameters accounting for the spatial curvature and
the overall expansion (or contraction) of the Universe. These two
quantities appear in the most general expression for a space-time
metric which has a (3D) maximally symmetric subspace of a 4D
space-time, known as the Robertson-Walker metric:

ds2 = dt2 −R2(t)

[
dr2

1− kr2
+ r2 (dθ2 + sin2 θ dφ2)

]
. (21.1)

Note that we adopt c = 1 throughout. By rescaling the radial
coordinate, we can choose the curvature constant k to take only the
discrete values +1, −1, or 0 corresponding to closed, open, or spatially
flat geometries. In this case, it is often more convenient to re-express
the metric as

ds2 = dt2 −R2(t)
[
dχ2 + S2

k(χ) (dθ
2 + sin2 θ dφ2)

]
, (21.2)

where the function Sk(χ) is (sinχ, χ, sinhχ) for k = (+1, 0,−1). The
coordinate r [in Eq. (21.1)] and the ‘angle’ χ (in Eq. (21.2)) are
both dimensionless; the dimensions are carried by R(t), which is
the cosmological scale factor which determines proper distances in
terms of the comoving coordinates. A common alternative is to define
a dimensionless scale factor, a(t) = R(t)/R0, where R0 ≡ R(t0) is
R at the present epoch. It is also sometimes convenient to define
a dimensionless or conformal time coordinate, η, by dη = dt/R(t).
Along constant spatial sections, the proper time is defined by the time
coordinate, t. Similarly, for dt = dθ = dφ = 0, the proper distance is
given by R(t)χ. For standard texts on cosmological models see e.g.,
Refs. [9–16].

21.1.2. The redshift :

The cosmological redshift is a direct consequence of the Hubble
expansion, determined by R(t). A local observer detecting light from a
distant emitter sees a redshift in frequency. We can define the redshift
as

z ≡ ν1 − ν2
ν2

≃ v12 , (21.3)

where ν1 is the frequency of the emitted light, ν2 is the observed
frequency and v12 is the relative velocity between the emitter and the
observer. While the definition, z = (ν1− ν2)/ν2 is valid on all distance
scales, relating the redshift to the relative velocity in this simple way
is only true on small scales (i.e., less than cosmological scales) such
that the expansion velocity is non-relativistic. For light signals, we
can use the metric given by Eq. (21.1) and ds2 = 0 to write

v12 = Ṙ δr =
Ṙ

R
δt =

δR

R
=

R2 −R1

R1
, (21.4)

where δr(δt) is the radial coordinate (temporal) separation between
the emitter and observer. Noting that physical distance, D, is Rδr or
δt, Eq. (21.4) gives us Hubble’s law, v = HD. In addition, we obtain
the simple relation between the redshift and the scale factor

1 + z =
ν1
ν2

=
R2

R1
. (21.5)

This result does not depend on the non-relativistic approximation.

21.1.3. The Friedmann equations of motion :

The cosmological equations of motion are derived from Einstein’s
equations

Rµν − 1
2gµνR = 8πGNTµν + Λgµν . (21.6)

Gliner [17] and Zeldovich [18] have pioneered the modern view, in
which the Λ term is set on the rhs and interpreted as an effective
energy–momentum tensor Tµν for the vacuum of Λgµν/8πGN. It is
common to assume that the matter content of the Universe is a perfect
fluid, for which

Tµν = −pgµν + (p+ ρ)uµuν , (21.7)

where gµν is the space-time metric described by Eq. (21.1), p is the
isotropic pressure, ρ is the energy density and u = (1, 0, 0, 0) is the
velocity vector for the isotropic fluid in co-moving coordinates. With
the perfect fluid source, Einstein’s equations lead to the Friedmann
equations

H2 ≡
(
Ṙ

R

)2

=
8π GN ρ

3
− k

R2
+

Λ

3
, (21.8)

and
R̈

R
=

Λ

3
− 4πGN

3
(ρ+ 3p) , (21.9)

where H(t) is the Hubble parameter and Λ is the cosmological
constant. The first of these is sometimes called the Friedmann
equation. Energy conservation via Tµν

;µ = 0, leads to a third useful

equation [which can also be derived from Eq. (21.8) and Eq. (21.9)]

ρ̇ = −3H (ρ+ p) . (21.10)

Eq. (21.10) can also be simply derived as a consequence of the first
law of thermodynamics.

Eq. (21.8) has a simple classical mechanical analog if we neglect
(for the moment) the cosmological term Λ. By interpreting −k/R2

Newtonianly as a ‘total energy’, then we see that the evolution of the
Universe is governed by a competition between the potential energy,
8πGNρ/3, and the kinetic term (Ṙ/R)2. For Λ = 0, it is clear that
the Universe must be expanding or contracting (except at the turning
point prior to collapse in a closed Universe). The ultimate fate of
the Universe is determined by the curvature constant k. For k = +1,
the Universe will recollapse in a finite time, whereas for k = 0,−1,
the Universe will expand indefinitely. These simple conclusions can
be altered when Λ 6= 0 or more generally with some component with
(ρ+ 3p) < 0.



21. Big-Bang cosmology 353

21.1.4. Definition of cosmological parameters :

In addition to the Hubble parameter, it is useful to define several
other measurable cosmological parameters. The Friedmann equation
can be used to define a critical density such that k = 0 when Λ = 0,

ρc ≡
3H2

8π GN
= 1.88× 10−26 h2 kg m−3

= 1.05× 10−5 h2 GeV cm−3 ,

(21.11)

where the scaled Hubble parameter, h, is defined by

H ≡ 100 h km s−1 Mpc−1

⇒ H−1 = 9.78 h−1 Gyr

= 2998 h−1 Mpc .

(21.12)

The cosmological density parameter Ωtot is defined as the energy
density relative to the critical density,

Ωtot = ρ/ρc . (21.13)

Note that one can now rewrite the Friedmann equation as

k/R2 = H2(Ωtot − 1) . (21.14)

From Eq. (21.14), one can see that when Ωtot > 1, k = +1 and the
Universe is closed, when Ωtot < 1, k = −1 and the Universe is open,
and when Ωtot = 1, k = 0, and the Universe is spatially flat.

It is often necessary to distinguish different contributions to
the density. It is therefore convenient to define present-day density
parameters for pressureless matter (Ωm) and relativistic particles (Ωr),
plus the quantity ΩΛ = Λ/3H2. In more general models, we may wish
to drop the assumption that the vacuum energy density is constant,
and we therefore denote the present-day density parameter of the
vacuum by Ωv. The Friedmann equation then becomes

k/R2
0 = H2

0 (Ωm +Ωr +Ωv − 1) , (21.15)

where the subscript 0 indicates present-day values. Thus, it is the
sum of the densities in matter, relativistic particles, and vacuum that
determines the overall sign of the curvature. Note that the quantity
−k/R2

0H
2
0 is sometimes referred to as Ωk. This usage is unfortunate:

it encourages one to think of curvature as a contribution to the energy
density of the Universe, which is not correct.

21.1.5. Standard Model solutions :

Much of the history of the Universe in the standard Big-Bang model
can be easily described by assuming that either matter or radiation
dominates the total energy density. During inflation and again today
the expansion rate for the Universe is accelerating, and domination
by a cosmological constant or some other form of dark energy should
be considered. In the following, we shall delineate the solutions to
the Friedmann equation when a single component dominates the
energy density. Each component is distinguished by an equation of
state parameter w = p/ρ. We concentrate on solutions that expand
at early times, the Friedmann equation also permits a time-reversed
contracting solution.

21.1.5.1. Solutions for a general equation of state:

Let us first assume a general equation of state parameter for a
single component, w which is constant. In this case, Eq. (21.10) can
be written as ρ̇ = −3(1 + w)ρṘ/R and is easily integrated to yield

ρ ∝ R−3(1+w) . (21.16)

Note that at early times when R is small, the less singular curvature
term k/R2 in the Friedmann equation can be neglected so long as
w > −1/3. Curvature domination occurs at rather late times (if a
cosmological constant term does not dominate sooner). For w 6= −1,
one can insert this result into the Friedmann equation Eq. (21.8), and
if one neglects the curvature and cosmological constant terms, it is
easy to integrate the equation to obtain,

R(t) ∝ t2/[3(1+w)] . (21.17)

21.1.5.2. A Radiation-dominated Universe:

In the early hot and dense Universe, it is appropriate to assume an
equation of state corresponding to a gas of radiation (or relativistic
particles) for which w = 1/3. In this case, Eq. (21.16) becomes
ρ ∝ R−4. The ‘extra’ factor of 1/R is due to the cosmological redshift;
not only is the number density of particles in the radiation background
decreasing as R−3 since volume scales as R3, but in addition, each
particle’s energy is decreasing as E ∝ ν ∝ R−1. Similarly, one can
substitute w = 1/3 into Eq. (21.17) to obtain

R(t) ∝ t1/2 ; H = 1/2t . (21.18)

21.1.5.3. A Matter-dominated Universe:

At relatively late times, non-relativistic matter eventually dominates
the energy density over radiation (see Sec. 21.3.8). A pressureless gas
(w = 0) leads to the expected dependence ρ ∝ R−3 from Eq. (21.16)
and, if k = 0, we get

R(t) ∝ t2/3 ; H = 2/3t . (21.19)

21.1.5.4. A Universe dominated by vacuum energy:

If there is a dominant source of vacuum energy, V0, it would
act as a cosmological constant with Λ = 8πGNV0 and equation of
state w = −1. In this case, the solution to the Friedmann equation
when curvature is neglected is particularly simple and leads to an
exponential expansion of the Universe:

R(t) ∝ e
√

Λ/3 t . (21.20)

More generally we could write

a(t) = sinh2/3(
√
3Λt/2), (21.21)

which describes a flat universe containing both matter and vacuum
energy, with a(t) being the scale factor normalized to unity when both
components are equal.

A key parameter is the equation of state of the vacuum,
w ≡ p/ρ: this need not be the w = −1 of Λ, and may not even be
constant [19–21]. There is now much interest in the more general
possibility of a dynamically evolving vacuum energy, for which
the name ‘dark energy’ has become commonly used. A variety of
techniques exist whereby the vacuum density as a function of time
may be measured, usually expressed as the value of w as a function
of epoch [22,23]. The best current measurement for the equation
of state (assumed constant, but without assuming zero curvature) is
w = −1.01± 0.04 [24]. Unless stated otherwise, we will assume that
the vacuum energy is a cosmological constant with w = −1 exactly.

The presence of vacuum energy can dramatically alter the fate of
the Universe. For example, if Λ < 0, the Universe will eventually
recollapse independent of the sign of k. For large values of Λ > 0
(larger than the Einstein static value needed to halt any cosmological
expansion or contraction), even a closed Universe will expand forever.
One way to quantify this is the deceleration parameter, q0, defined as

q0 = − RR̈

Ṙ2

∣∣∣∣∣
0

=
1

2
Ωm +Ωr +

(1 + 3w)

2
Ωv . (21.22)

This equation shows us that w < −1/3 for the vacuum may lead
to an accelerating expansion. To the continuing astonishment of
cosmologists, such an effect has been observed; one piece of direct
evidence is the Supernova Hubble diagram [25–30] (see Fig. 21.1
below); current data indicate that vacuum energy is indeed the largest
contributor to the cosmological density budget, with Ωv = 0.692±0.012
and Ωm = 0.308± 0.012 if k = 0 is assumed (Planck) [31].

The existence of this constituent is without doubt the greatest
puzzle raised by the current cosmological model; the final section of
this review discusses some of the ways in which the vacuum-energy
problem is being addressed. For more details, see the review on Dark
Energy—Sec. 27.
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21.2. Introduction to Observational Cosmology

21.2.1. Fluxes, luminosities, and distances :

The key quantities for observational cosmology can be deduced
quite directly from the metric.

(1) The proper transverse size of an object seen by us to subtend
an angle dψ is its comoving size dψ Sk(χ) times the scale factor at the
time of emission:

dℓ = dψ R0Sk(χ)/(1 + z) . (21.23)

(2) The apparent flux density of an object is deduced by allowing
its photons to flow through a sphere of current radius R0Sk(χ); but
photon energies and arrival rates are redshifted, and the bandwidth
dν is reduced. The observed photons at frequency ν0 were emitted
at frequency ν0(1 + z), so the flux density is the luminosity at this
frequency, divided by the total area, divided by 1 + z:

Sν(ν0) =
Lν([1 + z]ν0)

4πR2
0S

2
k(χ)(1 + z)

. (21.24)

These relations lead to the following common definitions:

angular-diameter distance: DA = (1 + z)−1R0Sk(χ)

luminosity distance: DL = (1 + z) R0Sk(χ) .
(21.25)

These distance-redshift relations are expressed in terms of
observables by using the equation of a null radial geodesic (R(t)dχ =
dt) plus the Friedmann equation:

R0dχ =
1

H(z)
dz =

1

H0

[
(1−Ωm − Ωv −Ωr)(1 + z)2

+ Ωv(1 + z)3+3w + Ωm(1 + z)3 +Ωr(1 + z)4
]−1/2

dz .

(21.26)

The main scale for the distance here is the Hubble length, 1/H0.

The flux density is the product of the specific intensity Iν and
the solid angle dΩ subtended by the source: Sν = Iν dΩ. Combining
the angular size and flux-density relations thus gives the relativistic
version of surface-brightness conservation:

Iν(ν0) =
Bν([1 + z]ν0)

(1 + z)3
, (21.27)

where Bν is surface brightness (luminosity emitted into unit solid
angle per unit area of source). We can integrate over ν0 to obtain the
corresponding total or bolometric formula:

Itot =
Btot

(1 + z)4
. (21.28)

This cosmology-independent form expresses Liouville’s Theorem:
photon phase-space density is conserved along rays.

21.2.2. Distance data and geometrical tests of cosmology :

In order to confront these theoretical predictions with data, we have
to bridge the divide between two extremes. Nearby objects may have
their distances measured quite easily, but their radial velocities are
dominated by deviations from the ideal Hubble flow, which typically
have a magnitude of several hundred km s−1. On the other hand,
objects at redshifts z >∼ 0.01 will have observed recessional velocities
that differ from their ideal values by <∼ 10%, but absolute distances are
much harder to supply in this case. The traditional solution to this
problem is the construction of the distance ladder: an interlocking set
of methods for obtaining relative distances between various classes of
object, which begins with absolute distances at the 10 to 100 pc level,
and terminates with galaxies at significant redshifts. This is reviewed
in the review on Cosmological Parameters—Sec. 24 of this Review.

By far the most exciting development in this area has been the
use of type Ia Supernovae (SNe), which now allow measurement of
relative distances with 5% precision. In combination with improved
Cepheid data from the HST and a direct geometrical distance to the

Figure 21.1: The type Ia supernova Hubble diagram, based
on over 1200 publicly available supernova distance estimates
[28–30]. The first panel shows that for z ≪ 1 the large-scale
Hubble flow is indeed linear and uniform; the second panel shows
an expanded scale, with the linear trend divided out, and with
the redshift range extended to show how the Hubble law becomes
nonlinear. (Ωr = 0 is assumed.) Larger points with errors show
median values in redshift bins. Comparison with the prediction
of Friedmann models appears to favor a vacuum-dominated
Universe.

maser galaxy NGC4258, an improved measurement of the distance
to the LMC, SNe results extend the distance ladder to the point
where deviations from uniform expansion are negligible, leading to
the best existing direct value for H0: 73.24± 1.74 km s−1Mpc−1 [32].
Better still, the analysis of high-z SNe has allowed a simple and
direct test of cosmological geometry to be carried out: as shown
in Fig. 21.1 and Fig. 21.2, supernova data and measurements of
microwave-background anisotropies strongly favor a k = 0 model
dominated by vacuum energy. It is worth noting that there is some
tension ( 2.8 σ ) between the local and CMB determinations of H0

(the latter is 67.8 ± 0.9 [31]. It is nevertheless remarkable that
the two very different methods give such similar results. (See the
review on Cosmological Parameters—Sec. 24 of this Review for a more
comprehensive review of Hubble parameter determinations.)

21.2.3. Age of the Universe :

The most striking conclusion of relativistic cosmology is that the
Universe has not existed forever. The dynamical result for the age of
the Universe may be written as

H0t0 =

∫ ∞

0

dz

(1 + z)H(z)

=

∫ ∞

0

dz

(1 + z) [(1 + z)2(1 + Ωmz)− z(2 + z)Ωv]
1/2

, (21.29)

where we have neglected Ωr and chosen w = −1. Over the range
of interest (0.1 <∼ Ωm <∼ 1, |Ωv| <∼ 1), this exact answer may be
approximated to a few % accuracy by

H0t0 ≃ 2
3 (0.7Ωm + 0.3− 0.3Ωv)

−0.3 . (21.30)
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For the special case that Ωm +Ωv = 1, the integral in Eq. (21.29) can
be expressed analytically as

H0t0 =
2

3
√
Ωv

ln
1 +

√
Ωv√

1−Ωv
(Ωm < 1) . (21.31)

The most accurate means of obtaining ages for astronomical objects
is based on the natural clocks provided by radioactive decay. The use
of these clocks is complicated by a lack of knowledge of the initial
conditions of the decay. In the Solar System, chemical fractionation
of different elements helps pin down a precise age for the pre-Solar
nebula of 4.6 Gyr, but for stars it is necessary to attempt an a
priori calculation of the relative abundances of nuclei that result from
supernova explosions. In this way, a lower limit for the age of stars in
the local part of the Milky Way of about 11 Gyr is obtained [34,35].

The other major means of obtaining cosmological age estimates
is based on the theory of stellar evolution. In principle, the
main-sequence turnoff point in the color-magnitude diagram of a
globular cluster should yield a reliable age. However, these have been
controversial owing to theoretical uncertainties in the evolution model,
as well as observational uncertainties in the distance, dust extinction,
and metallicity of clusters. The present consensus favors ages for the
oldest clusters of about 13 Gyr [36].

These methods are all consistent with the age deduced from
studies of structure formation, using the microwave background and
large-scale structure: t0 = 13.80 ± 0.04 Gyr [31], where the extra
accuracy comes at the price of assuming the Cold Dark Matter model
to be true.

Figure 21.2: Likelihood-based probability densities on the
plane ΩΛ (i.e., Ωv assuming w = −1) vs Ωm. The colored
locus derives from Planck [31] and shows that the CMB alone
requires a flat universe Ωv + Ωm ≃ 1 if the Hubble constant is
not too high. The SNe Ia results [33] very nearly constrain the
orthogonal combination Ωv − Ωm, and the intersection of these
constraints directly favors a flat model with Ωm ≃ 0.3, as does
the measurement of the Baryon Acoustic Oscillation lengthscale
(for which a joint constraint is shown on this plot). The CMB
alone is capable of breaking the degeneracy with H0 by using
the measurements of gravitational lensing that can be made with
modern high-resolution CMB data.

21.2.4. Horizon, isotropy, flatness problems :

For photons, the radial equation of motion is just c dt = Rdχ. How
far can a photon get in a given time? The answer is clearly

∆χ =

∫ t2

t1

dt

R(t)
≡ ∆η , (21.32)

i.e., just the interval of conformal time. We can replace dt by dR/Ṙ,
which the Friedmann equation says is ∝ dR/

√
ρR2 at early times.

Thus, this integral converges if ρR2 → ∞ as t1 → 0, otherwise it
diverges. Provided the equation of state is such that ρ changes faster
than R−2, light signals can only propagate a finite distance between
the Big Bang and the present; there is then said to be a particle
horizon. Such a horizon therefore exists in conventional Big-Bang
models, which are dominated by radiation (ρ ∝ R−4) at early times.

At late times, the integral for the horizon is largely determined by
the matter-dominated phase, for which

DH = R0 χH ≡ R0

∫ t(z)

0

dt

R(t)
≃ 6000√

Ωmz
h−1Mpc (z ≫ 1) .

(21.33)
The horizon at the time of formation of the microwave background
(‘last scattering’: z ≃ 1100) was thus of order 100 Mpc in size,
subtending an angle of about 1◦. Why then are the large number
of causally disconnected regions we see on the microwave sky all at
the same temperature? The Universe is very nearly isotropic and
homogeneous, even though the initial conditions appear not to permit
such a state to be constructed.

A related problem is that the Ω = 1 Universe is unstable:

Ω(a)− 1 =
Ω− 1

1−Ω+ Ωva2 +Ωma−1 +Ωra−2
, (21.34)

where Ω with no subscript is the total density parameter, and
a(t) = R(t)/R0. This requires Ω(t) to be unity to arbitrary precision
as the initial time tends to zero; a universe of non-zero curvature
today requires very finely tuned initial conditions.

21.3. The Hot Thermal Universe

21.3.1. Thermodynamics of the early Universe :

As alluded to above, we expect that much of the early Universe can
be described by a radiation-dominated equation of state. In addition,
through much of the radiation-dominated period, thermal equilibrium
is established by the rapid rate of particle interactions relative to the
expansion rate of the Universe (see Sec. 21.3.3 below). In equilibrium,
it is straightforward to compute the thermodynamic quantities, ρ, p,
and the entropy density, s. In general, the energy density for a given
particle type i can be written as

ρi =

∫
Ei dnqi , (21.35)

with the density of states given by

dnqi =
gi
2π2

(
exp[(Eqi − µi)/Ti]± 1

)−1
q2i dqi , (21.36)

where gi counts the number of degrees of freedom for particle type i,
E2
qi

= m2
i + q2i , µi is the chemical potential, and the ± corresponds to

either Fermi or Bose statistics. Similarly, we can define the pressure
of a perfect gas as

pi =
1

3

∫
q2i
Ei

dnqi . (21.37)

The number density of species i is simply

ni =

∫
dnqi , (21.38)

and the entropy density is

si =
ρi + pi − µini

Ti
. (21.39)

In the Standard Model, a chemical potential is often associated
with baryon number, and since the net baryon density relative to
the photon density is known to be very small (of order 10−10),
we can neglect any such chemical potential when computing total
thermodynamic quantities.

For photons, we can compute all of the thermodynamic quantities
rather easily. Taking gi = 2 for the 2 photon polarization states, we
have (in units where ~ = kB = 1)

ργ =
π2

15
T 4 ; pγ =

1

3
ργ ; sγ =

4ργ
3T

; nγ =
2ζ(3)

π2
T 3 , (21.40)
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with 2ζ(3)/π2 ≃ 0.2436. Note that Eq. (21.10) can be converted
into an equation for entropy conservation. Recognizing that ṗ = sṪ ,
Eq. (21.10) becomes

d(sR3)/dt = 0 . (21.41)

For radiation, this corresponds to the relationship between expansion
and cooling, T ∝ R−1 in an adiabatically expanding universe. Note
also that both s and nγ scale as T 3.

21.3.2. Radiation content of the Early Universe :

At the very high temperatures associated with the early Universe,
massive particles are pair produced, and are part of the thermal
bath. If for a given particle species i we have T ≫ mi, then we can
neglect the mass in Eq. (21.35) to Eq. (21.39), and the thermodynamic
quantities are easily computed as in Eq. (21.40). In general, we can
approximate the energy density (at high temperatures) by including
only those particles with mi ≪ T . In this case, we have

ρ =

(∑

B

gB +
7

8

∑

F

gF

)
π2

30
T 4 ≡ π2

30
N(T )T 4 , (21.42)

where gB(F) is the number of degrees of freedom of each boson

(fermion) and the sum runs over all boson and fermion states with
m ≪ T . The factor of 7/8 is due to the difference between the
Fermi and Bose integrals. Eq. (21.42) defines the effective number of
degrees of freedom, N(T ), by taking into account new particle degrees
of freedom as the temperature is raised. This quantity calculated
from high temperature lattice QCD is plotted in Fig. 21.3 [37].
Near the QCD transition, there is a slight difference between the
coefficient of T 4 for ρ and the coefficient of T 3 for the entropy density
s = (2π2/45)Ns(T )T

3 as seen in the figure [38].

The value of N(T ) at any given temperature depends on the
particle physics model. In the standard SU(3)× SU(2)×U(1) model,
we can specify N(T ) up to temperatures of O(100) GeV. The change
in N (ignoring mass effects) can be seen in the table below.

Temperature New Particles 4N(T )

T < me γ’s + ν’s 29
me < T < mµ e± 43
mµ < T < mπ µ± 57

mπ < T < T †
c π’s 69

Tc < T < mstrange π’s + u, ū, d, d̄ + gluons 205
ms < T < mcharm s, s̄ 247
mc < T < mτ c, c̄ 289
mτ < T < mbottom τ± 303
mb < T < mW,Z b, b̄ 345

mW,Z < T < mHiggs W±, Z 381

mH < T < mtop H0 385
mt < T t, t̄ 427

†Tc corresponds to the confinement-deconfinement transition between
quarks and hadrons.

At higher temperatures, N(T ) will be model-dependent. For
example, in the minimal SU(5) model, one needs to add 24 states to
N(T ) for the charged and colored X and Y gauge bosons, another 24
from the adjoint Higgs, and another 6 scalar degrees of freedom (in
addition to the 4 associated with the complex Higgs doublet already
counted in the longitudinal components of W± and Z, and in H) from
the 5 of Higgs. Hence for T > mX in minimal SU(5), N(T ) = 160.75.
In a supersymmetric model this would at least double, with some
changes possibly necessary in the table if the lightest supersymmetric
particle has a mass below mt.

In the radiation-dominated epoch, Eq. (21.10) can be integrated
(neglecting the T -dependence of N) giving us a relationship between
the age of the Universe and its temperature

t =

(
90

32π3GNN(T )

)1/2

T−2 . (21.43)

Put into a more convenient form

t T 2
MeV = 2.4[N(T )]−1/2 , (21.44)

where t is measured in seconds and TMeV in units of MeV.

Figure 21.3: The effective numbers of relativistic degrees
of freedom as a function of temperature. The sharp drop
corresponds to the quark-hadron transition. The solid curve
assume a QCD scale of 150 MeV, while the dashed curve assumes
450 MeV.

21.3.3. Neutrinos and equilibrium : Due to the expansion of
the Universe, certain rates may be too slow to either establish or
maintain equilibrium. Quantitatively, for each particle i, as a minimal
condition for equilibrium, we will require that some rate Γi involving
that type be larger than the expansion rate of the Universe or

Γi > H . (21.45)

Recalling that the age of the Universe is determined by H−1, this
condition is equivalent to requiring that on average, at least one
interaction has occurred over the lifetime of the Universe.

A good example for a process which goes in and out of equilibrium
is the weak interactions of neutrinos. On dimensional grounds, one
can estimate the thermally averaged scattering cross section:

〈σv〉 ∼ O(10−2)T 2/m4
W (21.46)

for T <∼ mW. Recalling that the number density of leptons is n ∝ T 3,
we can compare the weak interaction rate, Γwk ∼ n〈σv〉, with the
expansion rate,

H =

(
8πGNρ

3

)1/2

=

(
8π3

90
N(T )

)1/2

T 2/MP

∼ 1.66N(T )1/2T 2/MP,

(21.47)

where the Planck mass MP = G
−1/2
N = 1.22× 1019 GeV.

Neutrinos will be in equilibrium when Γwk > H or

T > (500m4
W/MP)

1/3 ∼ 1 MeV . (21.48)

However, this condition assumes T ≪ mW; for higher temperatures,
we should write 〈σv〉 ∼ O(10−2)/T 2, so that Γ ∼ 10−2T . Thus, in the
very early stages of expansion, at temperatures T >∼ 10−2MP/

√
N ,

equilibrium will not have been established.

Having attained a quasi-equilibrium stage, the Universe then cools
further to the point where the interaction and expansion timescales
match once again. The temperature at which these rates are equal
is commonly referred to as the neutrino decoupling or freeze-out
temperature and is defined by Γwk(Td) = H(Td). For T < Td,
neutrinos drop out of equilibrium. The Universe becomes transparent
to neutrinos and their momenta simply redshift with the cosmic
expansion. The effective neutrino temperature will simply fall with
T ∼ 1/R.

Soon after decoupling, e± pairs in the thermal background begin to
annihilate (when T <∼ me). Because the neutrinos are decoupled, the
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energy released due to annihilation heats up the photon background
relative to the neutrinos. The change in the photon temperature can
be easily computed from entropy conservation. The neutrino entropy
must be conserved separately from the entropy of interacting particles.
A straightforward computation yields

Tν = (4/11)1/3 Tγ ≃ 1.9 K . (21.49)

The total entropy density is therefore given by the contribution from
photons and 3 flavors of neutrinos

s =
4

3

π2

30

(
2 +

21

4
(Tν/Tγ)

3
)
T 3
γ =

4

3

π2

30

(
2 +

21

11

)
T 3
γ = 7.04nγ .

(21.50)
Similarly, the total relativistic energy density is given by

ρr =
π2

30

[
2 +

21

4
(Tν/Tγ)

4
]
T 4
γ ≃ 1.68ργ . (21.51)

In practice, a small correction is needed to this, since neutrinos
are not totally decoupled at e± annihilation: the effective number of
massless neutrino species is 3.046, rather than 3 [39].

This expression ignores neutrino rest masses, but current oscillation
data require at least one neutrino eigenstate to have a mass exceeding
0.05 eV. In this minimal case, Ωνh

2 = 5 × 10−4, so the neutrino
contribution to the matter budget would be negligibly small (which
is our normal assumption). However, a nearly degenerate pattern
of mass eigenstates could allow larger densities, since oscillation
experiments only measure differences in m2 values. Note that a
0.05-eV neutrino has kTν = mν at z ≃ 297, so the above expression
for the total present relativistic density is really only an extrapolation.
However, neutrinos are almost certainly relativistic at all epochs where
the radiation content of the Universe is dynamically significant.

21.3.4. Field Theory and Phase transitions :

It is very likely that the Universe has undergone one or more phase
transitions during the course of its evolution [40–43]. Our current
vacuum state is described by SU(3)c× U(1)em, which in the Standard
Model is a remnant of an unbroken SU(3)c× SU(2)L× U(1)Y gauge
symmetry. Symmetry breaking occurs when a non-singlet gauge field
(the Higgs field in the Standard Model) picks up a non-vanishing
vacuum expectation value, determined by a scalar potential. For
example, a simple (non-gauged) potential describing symmetry
breaking is V (φ) = 1

4λφ
4 − 1

2µ
2φ2 + V (0). The resulting expectation

value is simply 〈φ〉 = µ/
√
λ.

In the early Universe, finite temperature radiative corrections
typically add terms to the potential of the form φ2T 2. Thus, at very
high temperatures, the symmetry is restored and 〈φ〉 = 0. As the
Universe cools, depending on the details of the potential, symmetry
breaking will occur via a first order phase transition in which the field
tunnels through a potential barrier, or via a second order transition in
which the field evolves smoothly from one state to another (as would
be the case for the above example potential).

The evolution of scalar fields can have a profound impact on the
early Universe. The equation of motion for a scalar field φ can be
derived from the energy-momentum tensor

Tµν = ∂µφ∂νφ− 1

2
gµν∂ρφ∂

ρφ− gµνV (φ) . (21.52)

By associating ρ = T00 and p = R−2(t)Tii we have

ρ =
1

2
φ̇2 +

1

2
R−2(t)(∇φ)2 + V (φ)

p =
1

2
φ̇2 − 1

6
R−2(t)(∇φ)2 − V (φ) ,

(21.53)

and from Eq. (21.10) we can write the equation of motion (by
considering a homogeneous region, we can ignore the gradient terms)

φ̈+ 3Hφ̇ = −∂V/∂φ . (21.54)

21.3.5. Inflation :

In Sec. 21.2.4, we discussed some of the problems associated with
the standard Big-Bang model. However, during a phase transition,
our assumptions of an adiabatically expanding universe are generally
not valid. If, for example, a phase transition occurred in the early
Universe such that the field evolved slowly from the symmetric state
to the global minimum, the Universe may have been dominated by
the vacuum energy density associated with the potential near φ ≈ 0.
During this period of slow evolution, the energy density due to
radiation will fall below the vacuum energy density, ρ ≪ V (0). When
this happens, the expansion rate will be dominated by the constant
V(0), and we obtain the exponentially expanding solution given in
Eq. (21.20). When the field evolves towards the global minimum it will
begin to oscillate about the minimum, energy will be released during
its decay, and a hot thermal universe will be restored. If released fast
enough, it will produce radiation at a temperature NTR

4 <∼ V (0). In
this reheating process, entropy has been created and the final value of
RT is greater than the initial value of RT . Thus, we see that, during
a phase transition, the relation RT ∼ constant need not hold true.
This is the basis of the inflationary Universe scenario [44–46].

If, during the phase transition, the value of RT changed by a
factor of O(1029), the cosmological problems discussed above would
be solved. The observed isotropy would be generated by the immense
expansion; one small causal region could get blown up, and thus our
entire visible Universe would have been in thermal contact some time
in the past. In addition, the density parameter Ω would have been
driven to 1 (with exponential precision). Density perturbations will
be stretched by the expansion, λ ∼ R(t). Thus it will appear that
λ ≫ H−1 or that the perturbations have left the horizon, where in fact
the size of the causally connected region is now no longer simply H−1.
However, not only does inflation offer an explanation for large scale
perturbations, it also offers a source for the perturbations themselves
through quantum fluctuations.

Problems with early models of inflation based on a either first
order [47] or second order [48,49] phase transition of a Grand
Unified Theory led to models invoking a completely new scalar field:
the inflaton, φ. The potential of this field, V (φ), needs to have a
very low gradient and curvature in order to match observed metric
fluctuations. For a more thorough discussion of the problems of early
models and a host of current models being studying see the review
on inflation—Sec. 22 of this Review. In most current inflation models,
reheated bubbles typically do not percolate, so inflation is ‘eternal’ and
continues with exponential expansion in the region outside bubbles.
These causally disconnected bubble universes constitute a ‘multiverse’,
where low-energy physics can vary between different bubbles. This
has led to a controversial ‘anthropic’ approach to cosmology [50–52],
where observer selection within the multiverse can be introduced as a
means of understanding e.g. why the observed level of vacuum energy
is so low (because larger values suppress growth of structure).

21.3.6. Baryogenesis :

The Universe appears to be populated exclusively with matter
rather than antimatter. Indeed antimatter is only detected in
accelerators or in cosmic rays. However, the presence of antimatter
in the latter is understood to be the result of collisions of primary
particles in the interstellar medium. There is in fact strong evidence
against primary forms of antimatter in the Universe. Furthermore, the
density of baryons compared to the density of photons is extremely
small, η ∼ 10−10.

The production of a net baryon asymmetry requires baryon number
violating interactions, C and CP violation and a departure from
thermal equilibrium [53]. The first two of these ingredients are
expected to be contained in grand unified theories as well as in the
non-perturbative sector of the Standard Model, the third can be
realized in an expanding universe where as we have seen interactions
come in and out of equilibrium.

There are several interesting and viable mechanisms for the
production of the baryon asymmetry. While we can not review any of
them here in any detail, we mention some of the important scenarios.
In all cases, all three ingredients listed above are incorporated.
One of the first mechanisms was based on the out of equilibrium
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decay of a massive particle such as a superheavy GUT gauge of
Higgs boson [54,55]. A novel mechanism involving the decay of flat
directions in supersymmetric models is known as the Affleck-Dine
scenario [56]. There is also the possibility of generating the baryon
asymmetry at the electro-weak scale using the non-perturbative
interactions of sphalerons [57]. Because these interactions conserve
the sum of baryon and lepton number, B + L, it is possible to first
generate a lepton asymmetry (e.g., by the out-of-equilibrium decay of
a superheavy right-handed neutrino), which is converted to a baryon
asymmetry at the electro-weak scale [58]. This mechanism is known
as lepto-baryogenesis.

21.3.7. Nucleosynthesis :

An essential element of the standard cosmological model is Big-Bang
nucleosynthesis (BBN), the theory which predicts the abundances of
the light element isotopes D, 3He, 4He, and 7Li. Nucleosynthesis takes
place at a temperature scale of order 1 MeV. The nuclear processes
lead primarily to 4He, with a primordial mass fraction of about 25%.
Lesser amounts of the other light elements are produced: about 10−5

of D and 3He and about 10−10 of 7Li by number relative to H.
The abundances of the light elements depend almost solely on one
key parameter, the baryon-to-photon ratio, η. The nucleosynthesis
predictions can be compared with observational determinations of the
abundances of the light elements. Consistency between theory and
observations driven primarily by recent D/H measurements [59] leads
to a range of

5.8× 10−10 < η < 6.6× 10−10 . (21.55)

η is related to the fraction of Ω contained in baryons, Ωb

Ωb = 3.66× 107η h−2 , (21.56)

or 1010η = 274Ωbh
2. The Planck result [31] for Ωbh

2 of 0.0223 ±
0.0002 translates into a value of η = 6.09 ± 0.06. This result can be
used to ‘predict’ the light element abundance which can in turn be
compared with observation [60]. The resulting D/H abundance is in
excellent agreement with that found in quasar absorption systems. It
is in reasonable agreement with the helium abundance observed in
extra-galactic HII regions (once systematic uncertainties are accounted
for), but is in poor agreement with the Li abundance observed
in the atmospheres of halo dwarf stars [61]. (See the review on
BBN—Sec. 23 of this Review for a detailed discussion of BBN or
references [62,63,64].)

21.3.8. The transition to a matter-dominated Universe :

In the Standard Model, the temperature (or redshift) at which
the Universe undergoes a transition from a radiation dominated to
a matter dominated Universe is determined by the amount of dark
matter. Assuming three nearly massless neutrinos, the energy density
in radiation at temperatures T ≪ 1 MeV, is given by

ρr =
π2

30

[
2 +

21

4

(
4

11

)4/3
]
T 4 . (21.57)

In the absence of non-baryonic dark matter, the matter density can be
written as

ρm = mNη nγ , (21.58)

where mN is the nucleon mass. Recalling that nγ ∝ T 3 [cf.
Eq. (21.40)], we can solve for the temperature or redshift at the
matter-radiation equality when ρr = ρm,

Teq = 0.22mN η or (1 + zeq) = 0.22 η
mN

T0
, (21.59)

where T0 is the present temperature of the microwave background.
For η = 6.1 × 10−10, this corresponds to a temperature Teq ≃ 0.13
eV or (1 + zeq) ≃ 550. A transition this late is very problematic for
structure formation (see Sec. 21.4.5).

The redshift of matter domination can be pushed back significantly
if non-baryonic dark matter is present. If instead of Eq. (21.58), we
write

ρm = Ωmρc

(
T

T0

)3

, (21.60)

we find that

Teq = 0.9
Ωmρc

T 3
0

or (1 + zeq) = 2.4× 104Ωmh2 . (21.61)

21.4. The Universe at late times

21.4.1. The CMB :

One form of the infamous Olbers’ paradox says that, in Euclidean
space, surface brightness is independent of distance. Every line of
sight will terminate on matter that is hot enough to be ionized and so
scatter photons: T >∼ 103 K; the sky should therefore shine as brightly
as the surface of the Sun. The reason the night sky is dark is entirely
due to the expansion, which cools the radiation temperature to 2.73 K.
This gives a Planck function peaking at around 1 mm to produce the
microwave background (CMB).

The CMB spectrum is a very accurate match to a Planck
function [65]. (See the review on CBR–Sec. 28 of this Review.) The
COBE estimate of the temperature is [66]

T = 2.7255± 0.0006K . (21.62)

The lack of any distortion of the Planck spectrum is a strong physical
constraint. It is very difficult to account for in any expanding universe
other than one that passes through a hot stage. Alternative schemes
for generating the radiation, such as thermalization of starlight by dust
grains, inevitably generate a superposition of temperatures. What is
required in addition to thermal equilibrium is that T ∝ 1/R, so that
radiation from different parts of space appears identical.

Although it is common to speak of the CMB as originating
at ‘recombination’, a more accurate terminology is the era of
‘last scattering’. In practice, this takes place at z ≃ 1100, almost
independently of the main cosmological parameters, at which time the
fractional ionization is very small. This occurred when the age of the
Universe was about 370,000 years. But the CMB photons themselves
were not generated at this point, and were the result of thermalization
at z ∼ 107. (See the review on CBR–Sec. 28 of this Review for a full
discussion of the CMB.)

21.4.2. Matter in the Universe :

One of the main tasks of cosmology is to measure the density of the
Universe, and how this is divided between dark matter and baryons.
The baryons consist partly of stars, with 0.002 <∼ Ω∗ <∼ 0.003 [67] but
mainly inhabit the intergalactic medium (IGM). One powerful way in
which this can be studied is via the absorption of light from distant
luminous objects such as quasars. Even very small amounts of neutral
hydrogen can absorb rest-frame UV photons (the Gunn-Peterson
effect), and should suppress the continuum by a factor exp(−τ), where

τ ≃ 104.62h−1
[

nHI(z)/m
−3

(1 + z)
√
1 + Ωmz

]
, (21.63)

and this expression applies while the Universe is matter dominated
(z >∼ 1 in the Ωm = 0.3 Ωv = 0.7 model). At z < 6, the dominant
effect on quasar spectra is a ‘forest’ of narrow absorption lines, which
produce a mean τ = 1 in the Lyα forest at about z = 3, and so we have
ΩHI ≃ 10−6.7h−1. This is such a small number that the IGM must be
very highly ionized at these redshifts apart from a few high-density
clumps. But at z > 6 there is good evidence for a ‘reionization’ era at
which the general IGM is not so strongly ionized [68]. As discussed
below, this ionized IGM at low z is also detectable via the secondary
Compton scattering of CMB photons.

The Lyα forest is of great importance in pinning down the
abundance of deuterium. Because electrons in deuterium differ in
reduced mass by about 1 part in 4000 compared to hydrogen, each
absorption system in the Lyα forest is accompanied by an offset
deuterium line. By careful selection of systems with an optimal HI
column density, a measurement of the D/H ratio can be made.
This has now been done with high accuracy in 10 quasars, with
consistent results [59]. Combining these determinations with the
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theory of primordial nucleosynthesis yields a baryon density of
Ωbh

2 = 0.021−0.023 (95% confidence) in excellent agreement with the
Planck result. (See also the review on BBN—Sec. 23 of this Review.)

Ionized IGM can also be detected in emission when it is
densely clumped, via bremsstrahlung radiation. This generates the
spectacular X-ray emission from rich clusters of galaxies. Studies
of this phenomenon allow us to achieve an accounting of the total
baryonic material in clusters. Within the central ≃ 1 Mpc, the masses
in stars, X-ray emitting gas and total dark matter can be determined
with reasonable accuracy (perhaps 20% rms), and this allows a
minimum baryon fraction to be determined [69,70]:

Mbaryons

Mtotal

>∼ 0.009 + (0.066± 0.003)h−3/2 . (21.64)

Because clusters are the largest collapsed structures, it is reasonable to
take this as applying to the Universe as a whole. This equation implies
a minimum baryon fraction of perhaps 12% (for reasonable h), which
is too high for Ωm = 1 if we take Ωbh

2 ≃ 0.02 from nucleosynthesis.
This is therefore one of the more robust arguments in favor of
Ωm ≃ 0.3. (See the review on Cosmological Parameters—Sec. 24 of
this Review.) This argument is also consistent with the inference on
Ωm that can be made from Fig. 21.2.

This method is much more robust than the older classical technique
for weighing the Universe: ‘L × M/L’. The overall light density of
the Universe is reasonably well determined from redshift surveys of
galaxies, so that a good determination of mass M and luminosity L for
a single object suffices to determine Ωm – but only if the mass-to-light
ratio were universal.

21.4.3. Gravitational lensing :

A robust method for determining masses in cosmology is to
use gravitational light deflection. Most systems can be treated as
a geometrically thin gravitational lens, where the light bending is
assumed to take place only at a single distance. Simple geometry then
determines a mapping between the coordinates in the intrinsic source
plane (S) and the observed image plane (I):

α(DLθI) =
DS

DLS
(θI − θS) , (21.65)

where the angles θI, θS and α are in general two-dimensional vectors
on the sky. The distances DLS etc. are given by an extension of the
usual distance-redshift formula:

DLS =
R0Sk(χS − χL)

1 + zS
. (21.66)

This is the angular-diameter distance for objects on the source plane
as perceived by an observer on the lens.

Solutions of this equation divide into weak lensing, where the
mapping between source plane and image plane is one-to-one, and
strong lensing, in which multiple imaging is possible. For circularly-
symmetric lenses, an on-axis source is multiply imaged into a ‘caustic’
ring, whose radius is the Einstein radius:

θE =

(
4GM

DLS

DLDS

)1/2

=

(
M

1011.09M⊙

)1/2 (
DLDS/DLS

Gpc

)−1/2

arcsec .

(21.67)

The observation of ‘arcs’ (segments of near-perfect Einstein rings)
in rich clusters of galaxies has thus given very accurate masses
for the central parts of clusters—generally in good agreement with
other indicators, such as analysis of X-ray emission from the cluster
IGM [71,72].

Gravitational lensing has also developed into a particularly
promising probe of cosmological structure on 10 to 100 Mpc scales.
Weak image distortions manifest themselves as an additional ellipticity
of galaxy images (‘shear’), which can be observed by averaging many
images together (the corresponding flux amplification is less readily

detected). The result is a ‘cosmic shear’ field of order 1% ellipticity,
coherent over scales of around 30 arcmin, which is directly related to
the cosmic mass field, without any astrophysical uncertainties. For
this reason, weak lensing is seen as potentially the cleanest probe of
matter fluctuations, next to the CMB. Already, impressive results
have been obtained in measuring cosmological parameters, based on
survey data from only ∼ 450 deg2 [73]. A particular strength of
lensing is its ability to measure the amplitude of mass fluctuations;
this can be deduced from the amplitude of CMB fluctuations, but
only with low precision on account of the poorly-known optical depth
due to Compton scattering after reionization. However, the effect of
weak lensing on the CMB map itself can be detected via the induced
non-Gaussian signal, and this gives the CMB greater internal power
[74].

21.4.4. Density Fluctuations :

The overall properties of the Universe are very close to being
homogeneous; and yet telescopes reveal a wealth of detail on scales
varying from single galaxies to large-scale structures of size exceeding
100 Mpc. The existence of these structures must be telling us
something important about the initial conditions of the Big Bang, and
about the physical processes that have operated subsequently. This
motivates the study of the density perturbation field, defined as

δ(x) ≡ ρ(x) − 〈ρ〉
〈ρ〉 . (21.68)

A critical feature of the δ field is that it inhabits a universe that
is isotropic and homogeneous in its large-scale properties. This
suggests that the statistical properties of δ should also be statistically
homogeneous—i.e., it is a stationary random process.

It is often convenient to describe δ as a Fourier superposition:

δ(x) =
∑

δke
−ik·x . (21.69)

We avoid difficulties with an infinite universe by applying periodic
boundary conditions in a cube of some large volume V . The cross-
terms vanish when we compute the variance in the field, which is just
a sum over modes of the power spectrum

〈δ2〉 =
∑

|δk|2 ≡
∑

P (k) . (21.70)

Note that the statistical nature of the fluctuations must be isotropic,
so we write P (k) rather than P (k). The 〈. . .〉 average here is a volume
average. Cosmological density fields are an example of an ergodic
process, in which the average over a large volume tends to the same
answer as the average over a statistical ensemble.

The statistical properties of discrete objects sampled from the
density field are often described in terms of N -point correlation
functions, which represent the excess probability over random for
finding one particle in each of N boxes in a given configuration. For the
2-point case, the correlation function is readily shown to be identical
to the autocorrelation function of the δ field: ξ(r) = 〈δ(x)δ(x + r)〉.

The power spectrum and correlation function are Fourier conjugates,
and thus are equivalent descriptions of the density field (similarly,
k-space equivalents exist for the higher-order correlations). It is
convenient to take the limit V → ∞ and use k-space integrals, defining
a dimensionless power spectrum, which measures the contribution to
the fractional variance in density per unit logarithmic range of scale,
as ∆2(k) = d〈δ2〉/d lnk = V k3P (k)/2π2:

ξ(r) =

∫
∆2(k)

sinkr

kr
d ln k; ∆2(k) =

2

π
k3

∫ ∞

0
ξ(r)

sinkr

kr
r2 dr .

(21.71)

For many years, an adequate approximation to observational data
on galaxies was ξ = (r/r0)

−γ , with γ ≃ 1.8 and r0 ≃ 5 h−1Mpc.
Modern surveys are now able to probe into the large-scale linear regime
where unaltered traces of the curved post-recombination spectrum can
be detected [75–77].
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Figure 21.4: A plot of transfer functions for various models.
For adiabatic models, Tk → 1 at small k, whereas the opposite
is true for isocurvature models. For dark-matter models, the
characteristic wavenumber scales proportional to Ωmh2. The
scaling for baryonic models does not obey this exactly; the
plotted cases correspond to Ωm = 1, h = 0.5.

21.4.5. Formation of cosmological structure :

The simplest model for the generation of cosmological structure
is gravitational instability acting on some small initial fluctuations
(for the origin of which a theory such as inflation is required). If the
perturbations are adiabatic (i.e., fractionally perturb number densities
of photons and matter equally), the linear growth law for matter
perturbations is simple:

δ ∝
{
a2(t) (radiation domination; Ωr = 1)
a(t) (matter domination; Ωm = 1) .

(21.72)

For low-density universes, the growth is slower:

d ln δ/d lna ≃ Ωγ
m(a), (21.73)

where the parameter γ is close to 0.55 independent of the vacuum
density [78,79].

The alternative perturbation mode is isocurvature: only the
equation of state changes, and the total density is initially unperturbed.
These modes perturb the total entropy density, and thus induce
additional large-scale CMB anisotropies [80]. Although the character
of perturbations in the simplest inflationary theories are purely
adiabatic, correlated adiabatic and isocurvature modes are predicted
in many models; the simplest example is the curvaton, which is a
scalar field that decays to yield a perturbed radiation density. If the
matter content already exists at this time, the overall perturbation
field will have a significant isocurvature component. Such a prediction
is inconsistent with current CMB data [81], and most analyses of
CMB and large scale structure (LSS) data assume the adiabatic case
to hold exactly.

Linear evolution preserves the shape of the power spectrum.
However, a variety of processes mean that growth actually depends on
the matter content:

(1) Pressure opposes gravity effectively for wavelengths below the
horizon length while the Universe is radiation dominated. The
comoving horizon size at zeq is therefore an important scale:

DH(zeq) =
2(
√
2− 1)

(Ωmzeq)1/2H0
=

16.0

Ωmh2
Mpc . (21.74)

(2) At early times, dark matter particles will undergo free streaming
at the speed of light, and so erase all scales up to the horizon—a
process that only ceases when the particles go nonrelativistic. For
light massive neutrinos, this happens at zeq; all structure up to the
horizon-scale power-spectrum break is in fact erased. Hot(cold)
dark matter models are thus sometimes dubbed large(small)-scale
damping models.

(3) A further important scale arises where photon diffusion can erase
perturbations in the matter–radiation fluid; this process is named
Silk damping.

The overall effect is encapsulated in the transfer function, which
gives the ratio of the late-time amplitude of a mode to its initial value
(see Fig. 21.4). The overall power spectrum is thus the primordial
scalar-mode power law, times the square of the transfer function:

P (k) ∝ kns T 2
k . (21.75)

The most generic power-law index is ns = 1: the ‘Zeldovich’ or
‘scale-invariant’ spectrum. Inflationary models tend to predict a small
‘tilt:’ |ns − 1| <∼ 0.03 [12,13]. On the assumption that the dark
matter is cold, the power spectrum then depends on 5 parameters:
ns, h, Ωb, Ωc (≡ Ωm − Ωb) and an overall amplitude. The latter is
often specified as σ8, the linear-theory fractional rms in density when
a spherical filter of radius 8h−1Mpc is applied in linear theory. This
scale can be probed directly via weak gravitational lensing, and also
via its effect on the abundance of rich galaxy clusters. The favored
value from the latter is approximately [82]

σ8 ≃ [0.746± 0.012 (stat)± 0.022 (sys)] (Ωm/0.3)−0.47, (21.76)

which is rather similar to the normalization inferred from weak lensing:
σ8 ≃ [0.745 ± 0.039](Ωm/0.3)−0.5 [73]. These figures are in > 2σ
tension with the Planck values of (σ8,Ωm) = (0.815± 0.009, 0.308±
0.012). If real, such a discrepancy could indicate interesting new
physics; but the current evidence is not strong enough to make such a
claim.

A direct measure of mass inhomogeneity is valuable, since the
galaxies inevitably are biased with respect to the mass. This means
that the fractional fluctuations in galaxy number, δn/n, may differ
from the mass fluctuations, δρ/ρ. It is commonly assumed that the two
fields obey some proportionality on large scales where the fluctuations
are small, δn/n = bδρ/ρ, but even this is not guaranteed [83].

The main shape of the transfer function is a break around the
horizon scale at zeq, which depends just on Ωmh when wavenumbers
are measured in observable units (hMpc−1). For reasonable baryon
content, weak oscillations in the transfer function are also expected,
and these BAOs (Baryon Acoustic Oscillations) have been clearly
detected [84,85]. As well as directly measuring the baryon fraction,
the scale of the oscillations directly measures the acoustic horizon
at decoupling; this can be used as an additional standard ruler for
cosmological tests, and the BAO signature has become one of the
most important applications of large galaxy surveys. Overall, current
power-spectrum data [75–77] favor Ωmh ≃ 0.20 and a baryon fraction
of about 0.15 for ns = 1 (see Fig. 21.5).

In principle, accurate data over a wide range of k could determine
both Ωmh and n, but in practice there is a strong degeneracy between
these. In order to constrain ns itself, it is necessary to examine data
on anisotropies in the CMB.

21.4.6. CMB anisotropies :

The CMB has a clear dipole anisotropy, of magnitude 1.23× 10−3.
This is interpreted as being due to the Earth’s motion, which is
equivalent to a peculiar velocity for the Milky Way of

vMW ≃ 600 km s−1 towards (ℓ, b) ≃ (270◦, 30◦) . (21.77)

All higher-order multipole moments of the CMB are however much
smaller (of order 10−5), and interpreted as signatures of density
fluctuations at last scattering (≃ 1100). To analyze these, the sky
is expanded in spherical harmonics as explained in the review on
CBR–Sec. 28 of this Review. The dimensionless power per ln k or
‘bandpower’ for the CMB is defined as

T 2(ℓ) =
ℓ(ℓ+ 1)

2π
Cℓ . (21.78)

This function encodes information from the three distinct mechanisms
that cause CMB anisotropies:

(1) Gravitational (Sachs–Wolfe) perturbations. Photons from high-
density regions at last scattering have to climb out of potential
wells, and are thus redshifted.
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Figure 21.5: The galaxy power spectrum from the SDSS BOSS
survey [77]. The solid points with error bars show the power
estimate. The solid line shows a standard ΛCDM model with
Ωbh

2 ≃ 0.02 and Ωmh ≃ 0.2. The inset amplifies the region
where BAO features are visible. The fact that these perturb the
power by ∼ 20% rather than order unity is direct evidence that
the matter content of the universe is dominated by collisionless
dark matter.

(2) Intrinsic (adiabatic) perturbations. In high-density regions, the
coupling of matter and radiation can compress the radiation also,
giving a higher temperature.

(3) Velocity (Doppler) perturbations. The plasma has a non-zero
velocity at recombination, which leads to Doppler shifts in
frequency and hence shifts in brightness temperature.

Because the potential fluctuations obey Poisson’s equation, ∇2Φ =
4πGρδ, and the velocity field satisfies the continuity equation
∇ · u = −δ̇, the resulting different powers of k ensure that the
Sachs-Wolfe effect dominates on large scales and adiabatic effects on
small scales.

The relation between angle and comoving distance on the last-
scattering sphere requires the comoving angular-diameter distance
to the last-scattering sphere; because of its high redshift, this is
effectively identical to the horizon size at the present epoch, DH:

DH =
2

ΩmH0
(Ωv = 0)

DH ≃ 2

Ω0.4
m H0

(flat : Ωm +Ωv = 1) .
(21.79)

These relations show how the CMB is strongly sensitive to curvature:
the horizon length at last scattering is ∝ 1/

√
Ωm, so that this

subtends an angle that is virtually independent of Ωm for a flat model.
Observations of a peak in the CMB power spectrum at relatively
large scales (ℓ ≃ 225) are thus strongly inconsistent with zero-Λ
models with low density: current CMB + BAO + lensing data require
Ωm+Ωv = 1.000±0.005 (95%) [31]. (See e.g., Fig. 21.2). This result
is unchanged when SN data and the prior on H0 are included.

In addition to curvature, the CMB encodes information about
several other key cosmological parameters. Within the compass of
simple adiabatic CDM models, there are 9 of these:

ωc, ωb, Ωtot, h, τ, ns, nt, r, Q . (21.80)

The symbol ω denotes the physical density, Ωh2: the transfer
function depends only on the densities of CDM (ωc) and baryons
(ωb). Transcribing the power spectrum at last scattering into an
angular power spectrum brings in the total density parameter
(Ωtot ≡ Ωm+Ωv = Ωc+Ωb+Ωv) and h: there is an exact geometrical
degeneracy [86] between these that keeps the angular-diameter
distance to last scattering invariant, so that models with substantial
spatial curvature and large vacuum energy cannot be ruled out

without prior knowledge of the Hubble parameter. Alternatively, the
CMB alone cannot measure the Hubble parameter without taking into
account foreground effects.

A further possible degeneracy involves the tensor contribution
to the CMB anisotropies. These are important at large scales (up
to the horizon scales); for smaller scales, only scalar fluctuations
(density perturbations) are important. Each of these components is
characterized by a spectral index, n, and a ratio between the power
spectra of tensors and scalars (r). See the review on Cosmological
Parameters—Sec. 24 of this Review for a technical definition of
the r parameter. Finally, the overall amplitude of the spectrum
must be specified (Q), together with the optical depth to Compton
scattering owing to recent reionization (τ). Adding a large tensor
contribution reduces the contrast between low ℓ and the peak at
ℓ ≃ 225 (because the tensor spectrum has no acoustic component).
The previous relative height of the peak can be recovered by increasing
ns to increase the small-scale power in the scalar component; this
in turn over-predicts the power at ℓ ∼ 1000, but this effect can be
counteracted by raising the baryon density [87]. This approximate
3-way degeneracy is broken as we increase the range of multipoles
sampled.

The reason the tensor component is introduced, and why it is so
important, is that it is the only non-generic prediction of inflation.
Slow-roll models of inflation involve two dimensionless parameters:

ǫ ≡ M2
P

16π

(
V ′

V

)2

η ≡ M2
P

8π

(
V ′′

V

)
, (21.81)

where V is the inflaton potential, and dashes denote derivatives with
respect to the inflation field. In terms of these, the tensor-to-scalar
ratio is r ≃ 16ǫ, and the spectral indices are ns = 1 − 6ǫ + 2η
and nt = −2ǫ. The natural expectation of inflation is that the
quasi-exponential phase ends once the slow-roll parameters become
significantly non-zero, so that both ns 6= 1 and a significant tensor
component are expected. These predictions can be avoided in some
models, but it is undeniable that observation of such features would
be a great triumph for inflation. Cosmology therefore stands at a
fascinating point given that the most recent CMB data reject the
zero-tensor ns = 1 model at almost 6σ: ns = 0.968± 0.006 [31]. This
rejection is strong enough that it is also able to break the tensor
degeneracy, so that no model with ns = 1 is acceptable, whatever the
value of r.

The current limit on r is < 0.07 at 95% confidence [88]. In
conjunction with the measured value of ns, this upper limit sits
close to the prediction of a linear potential (i.e. |η| ≪ |ǫ|). Any
further reduction in the limit on r will force η to be negative – i.e.
a convex potential at the point where LSS scales were generated
(sometimes called a ‘hilltop’), in contrast to simple early models
such as V (φ) = m2φ2 or λφ4, which are now excluded. Examples of
models which are currently in excellent agreement with the Planck
results are the Starobinsky model of R + R2 gravity [89], or
the Higgs-inflation model where the Higgs field is non-minimally
coupled [90]. Assuming 55 e-foldings of inflation, these models
predict ns = 0.965 and r = 0.0035. Assuming that no systematic error
in the CMB data can be identified, cosmology has passed a critical
hurdle in rejecting scale-invariant fluctuations. The years ahead will
be devoted to the task of searching for the tensor fluctuations – for
which the main tool will be the polarization of the CMB [14].

21.4.6.1. CMB foregrounds:

As the quality of CMB data improves, there is a growing interest
in effects that arise along the line of sight. The CMB temperature is
perturbed by dark-matter structures and by Compton scattering from
ionized gas. In the former case, we have the Integrated Sachs-Wolfe
effect, which is sensitive to the time derivative of the gravitational
potential. In the linear regime, this is damped when the universe
becomes Λ-dominated, and this is an independent way of detecting
Λ [91]. The potential also causes gravitational lensing of the
CMB: structures at z ∼ 1 − 2 displace features on the CMB sky by
about 2 arcmin over coherent degree-scale patches. Detection of these
distortions allows a map to be made of overdensity projected from
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z = 0 to 1100 [74]. This is a very powerful calibration for direct
studies of gravitational lensing using galaxies. Finally, Comptonization
affects the CMB in two ways: the thermal Sunyaev-Zeldovich effect
measures the blurring of photon energies by hot gas; the kinetic
Sunyaev-Zeldovich effect is sensitive to the bulk velocity of the
gas. Both these effects start to dominate over the intrinsic CMB
fluctuations at multipoles ℓ >∼ 2000 [92].

21.4.7. Probing dark energy and the nature of gravity :

The most radical element of our current cosmological model is the
dark energy that accelerates the expansion. The energy density of
this component is approximately (2.2meV)4 (for w = −1, Ωv = 0.68,
h = 0.67), or roughly 10−123M4

P, and such an un-naturally small
number is hard to understand. Various quantum effects (most simply
zero-point energy) should make contributions to the vacuum energy
density: these may be truncated by new physics at high energy, but
this presumably occurs at > 1TeV scales, not meV; thus the apparent
energy scale of the vacuum is at least 1015 times smaller than its
natural value. A classic review of this situation is given in [50], which
lists extreme escape routes – especially the multiverse viewpoint,
according to which low values of Λ are rare, but high values suppress
the formation of structure and observers. It is certainly impressive
that Weinberg used such reasoning to predict the value of Λ before
any data strongly indicated a non-zero value.

But it may be that the phenomenon of dark energy is entirely
illusory. The necessity for this constituent arises from using the
Friedmann equation to describe the evolution of the cosmic expansion;
if this equation is incorrect, it would require the replacement of
Einstein’s relativistic theory of gravity with some new alternative.
A frontier of current cosmological research is to distinguish these
possibilities [93,94]. We also note that it has been suggested that
dark energy might be an illusion even within general relativity, owing
to an incorrect treatment of averaging in an inhomogeneous Universe
[95,96]. Most would argue that a standard Newtonian treatment of
such issues should be adequate inside the cosmological horizon, but
debate on this issue continues.

Dark Energy can differ from a classical cosmological constant in
being a dynamical phenomenon [97,98], e.g., a rolling scalar field
(sometimes dubbed ‘quintessence’). Empirically, this means that it is
endowed with two thermodynamic properties that astronomers can
try to measure: the bulk equation of state and the sound speed. If the
sound speed is close to the speed of light, the effect of this property
is confined to very large scales, and mainly manifests itself in the
large-angle multipoles of the CMB anisotropies [99]. The equation
of state parameter governs the rate of change of the vacuum density:
d ln ρv/d lna = −3(1 + w), so it can be accessed via the evolving
expansion rate, H(a). This can be measured most cleanly by using
the inbuilt natural ruler of large-scale structure: the Baryon Acoustic
Oscillation horizon scale [100]:

DBAO ≃ 147 (Ωmh2/0.13)−0.25(Ωbh
2/0.023)−0.08 Mpc . (21.82)

H(a) is measured by radial clustering, since dr/dz = c/H ; clustering
in the plane of the sky measures the integral of this. The expansion
rate is also measured by the growth of density fluctuations, where
the pressure-free growth equation for the density perturbation is
δ̈ + 2H(a)δ̇ = 4πGρ0 δ. Thus, both the scale and amplitude of density
fluctuations are sensitive to w(a) – but only weakly. These observables
change by only typically 0.2% for a 1% change in w. Current
constraints [31] place a constant w to within 5-10% of −1, depending
on the data combination chosen. A substantial improvement in this
precision will require us to limit systematics in data to a few parts in
1000.

Testing whether theories of gravity require revision can also be
done using data on cosmological inhomogeneities. Two separate issues
arise, concerning the metric perturbation potentials Ψ and Φ, which
affect respectively the time and space parts of the metric. In Einstein
gravity, these potentials are both equal to the Newtonian gravitational
potential, which satisfies Poisson’s equation: ∇2Φ/a2 = 4πGρ̄δ.
Empirically, modifications of gravity require us to explore a change
with scale and with time of the ‘slip’ (Ψ/Φ) and the effective G

on the rhs of the Poisson equation. The former aspect can only be
probed via gravitational lensing, whereas the latter can be addressed
on 10-100 Mpc scales via the growth of clustering. Various schemes
for parameterising modified gravity exist, but a practical approach is
to assume that the growth rate can be tied to the density parameter:
d ln δ/d ln a = Ωγ

m(a) [78,79]. The parameter γ is close to 0.55 for
standard relativistic gravity, but can differ by around 0.1 from this
value in many non-standard models. Clearly this parameterization
is incomplete, since it explicitly rejects the possibility of early dark
energy (Ωm(a) → 1 as a → 0), but it is a convenient way of capturing
the power of various experiments. Current data are consistent with
standard ΛCDM [101], and exclude variations in slip or effective G of
larger than a few times 10%.

Current planning envisages a set of satellite probes that, a decade
hence, will pursue these fundamental tests via gravitational lensing
measurements over thousands of square degrees, > 108 redshifts, and
photometry of > 1000 supernovae (WFIRST in the USA, Euclid
in Europe) [22,23]. These experiments will measure both w and
the perturbation growth rate to an accuracy of around 1%. The
outcome will be either a validation of the standard relativistic
vacuum-dominated big bang cosmology at a level of precision far
beyond anything attempted to date, or the opening of entirely new
directions in cosmological models. For a more complete discussion of
dark energy and future probes see the review on Dark Energy—Sec. 27
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Written August 2017 by J. Ellis (King’s College London; CERN) and
D. Wands (U. of Portsmouth).

22.1. Motivation and Introduction

The standard Big-Bang model of cosmology provides a successful
framework in which to understand the thermal history of our Universe
and the growth of cosmic structure, but it is essentially incomplete.
As described in Sec. 21.2.4 in “Big Bang Cosmology” review, Big-Bang
cosmology requires very specific initial conditions. It postulates
a uniform cosmological background, described by a spatially-flat,
homogeneous and isotropic Robertson-Walker (RW) metric (Eq. (21.1)
in “Big Bang Cosmology” review), with scale factor R(t). Within this
setting, it also requires an initial almost scale-invariant distribution of
primordial density perturbations as seen, for example, in the cosmic
microwave background (CMB) radiation (described in Chap. 28,
“Cosmic Microwave Background” review), on scales far larger than
the causal horizon at the time the CMB photons last scattered.

The Hubble expansion rate, H ≡ Ṙ/R, in a Robertson-Walker
cosmology is given by the Friedmann constraint equation (Eq. (21.8)
in “Big Bang Cosmology” review)

H2 =
8πρ

3M2
P

+
Λ

3
− k

R2 , (22.1)

where k/R2 is the intrinsic spatial curvature. We use natural units
such that the speed of light c = 1 and hence we have the Planck

mass MP = G
−1/2
N ≃ 1019 GeV (see “Astrophysical Constants and

Parameters”). A cosmological constant, Λ, of the magnitude required
to accelerate the Universe today (see Chap. 27, “Dark Energy” review)
would have been completely negligible in the early Universe where the
energy density ρ ≫ M2

PΛ ∼ 10−12(eV)4. The standard early Universe
cosmology, described in Sec. 21.1.5 in “Big Bang Cosmology” review,
is thus dominated by non-relativistic matter (pm = 0) or radiation
(pr = ρr/3 for an isotropic distribution). This leads to a decelerating
expansion with R̈ < 0.

The hypothesis of inflation [1,2] postulates a period of accelerated
expansion, R̈ > 0, in the very early Universe, preceding the standard
radiation-dominated era, which offers a physical model for the origin
of these initial conditions, as reviewed in [3,4,5,6,7]. Such a period
of accelerated expansion (i) drives a curved RW spacetime (with
spherical or hyperbolic spatial geometry) towards spatial flatness, and
(ii) it also expands the causal horizon beyond the present Hubble
length, so as to encompass all the scales relevant to describe the
large-scale structure observed in our Universe today, via the following
two mechanisms.

(i) A spatially-flat universe with vanishing spatial curvature, k = 0,
has the dimensionless density parameter Ωtot = 1, where we define
(Eq. (21.13) in “Big Bang Cosmology” review; see Chap. 24,
“Cosmological Parameters” review for more complete definitions)

Ωtot ≡
8πρtot

3M2
PH

2
, (22.2)

with ρtot ≡ ρ+ΛM2
P /8π. If we re-write the Friedmann constraint

(Eq. (22.1)) in terms of Ωtot we have

1−Ωtot = − k

Ṙ2
. (22.3)

Observations require |1 − Ωtot,0| < 0.005 today [8], where
the subscript 0 denotes the present-day value. Taking the time
derivative of Eq. (22.3) we obtain

d

dt
(1−Ωtot) = −2

R̈

Ṙ
(1− Ωtot) . (22.4)

Thus in a decelerating expansion, Ṙ > 0 and R̈ < 0, any small
initial deviation from spatial flatness grows, (d/dt)|1 − Ωtot| > 0.
A small value such as |1 − Ωtot,0| < 0.005 today requires an

even smaller value at earlier times, e.g., |1 −Ωtot| < 10−5 at the

last scattering of the CMB, which appears unlikely, unless for
some reason space is exactly flat. However, an extended period of
accelerated expansion in the very early Universe, with Ṙ > 0 and
R̈ > 0 and hence (d/dt)|1 − Ωtot| < 0, can drive Ωtot sufficiently
close to unity, so that |1 − Ωtot,0| remains unobservably small
today, even after the radiation- and matter-dominated eras, for a
wide range of initial values of Ωtot.

(ii) The comoving distance (the present-day proper distance) traversed
by light between cosmic time t1 and t2 in an expanding universe
can be written, (see Eq. (21.32) in “Big Bang Cosmology” review),
as

D0(t1, t2) = R0

∫ t2

t1

dt

R(t)
= R0

∫ lnR2

lnR1

d(lnR)

Ṙ
. (22.5)

In standard decelerated (radiation- or matter-dominated)
cosmology the integrand, 1/Ṙ, decreases towards the past, and
there is a finite comoving distance traversed by light (a particle
horizon) since the Big Bang (R1 → 0). For example, the comoving
size of the particle horizon at the CMB last-scattering surface
(R2 = Rlss) corresponds to D0 ∼ 100Mpc, or approximately 1◦

on the CMB sky today (see Sec. 21.2.4 in “Big Bang Cosmology”
review). However, during a period of inflation, 1/Ṙ increases
towards the past, and hence the integral (Eq. (22.5)) diverges as
R1 → 0, allowing an arbitrarily large causal horizon, dependent
only upon the duration of the accelerated expansion. Assuming
that the Universe inflates with a finite Hubble rate H∗ at t1 = t∗,
ending with Hend < H∗ at t2 = tend, we have

D0(t∗, tend) >
(

R0

Rend

)
H−1

∗
(
eN∗ − 1

)
, (22.6)

where N∗ ≡ ln(Rend/R∗) describes the duration of inflation,
measured in terms of the logarithmic expansion (or “e-folds”)
from t1 = t∗ up to the end of inflation at t2 = tend, and R0/Rend
is the subsequent expansion from the end of inflation to the
present day. If inflation occurs above the TeV scale, the comoving
Hubble scale at the end of inflation, (R0/Rend)H

−1
end, is less than

one astronomical unit (∼ 1011 m), and a causally-connected patch
can encompass our entire observable Universe today, which has a
size D0 > 30 Gpc, if there were more than 40 e-folds of inflation
(N∗ > 40). If inflation occurs at the GUT scale (1015 GeV) then
we require more than 60 e-folds.

Producing an accelerated expansion in general relativity requires
an energy-momentum tensor with negative pressure, p < −ρ/3 (see
Eq. (21.9) in “Big Bang Cosmology” review and Chap. 27, “Dark
Energy” review), quite different from the hot dense plasma of
relativistic particles in the hot Big Bang. However a positive vacuum
energy V > 0 does exert a negative pressure, pV = −ρV . The work
done by the cosmological expansion must be negative in this case
so that the local vacuum energy density remains constant in an
expanding universe, ρ̇V = −3H(ρV + pV ) = 0. Therefore, a false
vacuum state can drive an exponential expansion, corresponding to a
de Sitter spacetime with a constant Hubble rate H2 = 8πρV /3M2

P on
spatially-flat hypersurfaces.

A constant vacuum energy V , equivalent to a cosmological constant
Λ in the Friedmann equation Eq. (22.1), cannot provide a complete
description of inflation in the early Universe, since inflation must
necessarily have come to an end in order for the standard Big-Bang
cosmology to follow. A phase transition to the present true vacuum is
required to release the false vacuum energy into the energetic plasma of
the hot Big Bang and produce the large total entropy of our observed
Universe today. Thus we must necessarily study dynamical models
of inflation, where the time-invariance of the false vacuum state is
broken by a time-dependent field. A first-order phase transition would
produce a very inhomogeneous Universe [9] unless a time-dependent
scalar field leads to a rapidly changing percolation rate [10,11,12].
However, a second-order phase transition [13,14], controlled by a
slowly-rolling scalar field, can lead to a smooth classical exit from the
vacuum-dominated phase.

As a spectacular bonus, quantum fluctuations in that scalar
field could provide a source of almost scale-invariant density
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fluctuations [15,16], as detected in the CMB (see Chap. 28), which are
thought to be the origin of the structures seen in the Universe today.

Accelerated expansion and primordial perturbations can also be
produced in some modified gravity theories (e.g., [1,17]) , which
introduce additional non-minimally coupled degrees of freedom. Such
inflation models can often be conveniently studied by transforming
variables to an ‘Einstein frame’ in which Einstein’s equations apply
with minimally coupled scalar fields [18,19,20].

In the following we will review scalar field cosmology in general
relativity and the spectra of primordial fluctuations produced during
inflation, before studying selected inflation models.

22.2. Scalar Field Cosmology

The energy-momentum tensor for a canonical scalar field φ with
self-interaction potential V (φ) is given in Eq. (21.52) in “Big Bang
Cosmology” review. In a homogeneous background this corresponds
to a perfect fluid with density

ρ =
1

2
φ̇2 + V (φ) , (22.7)

and isotropic pressure

p =
1

2
φ̇2 − V (φ) , (22.8)

while the 4-velocity is proportional to the gradient of the field,
uµ ∝ ∇µφ.

A field with vanishing potential energy acts like a stiff fluid with
p = ρ = φ̇2/2, whereas if the time-dependence vanishes we have
p = −ρ = −V and the scalar field is uniform in time and space. Thus
a classical, potential-dominated scalar-field cosmology, with p ≃ −ρ,
can naturally drive a quasi-de Sitter expansion; the slow time-evolution
of the energy density weakly breaks the exact O(1, 3) symmetry of
four-dimensional de Sitter spacetime down to a Robertson-Walker
(RW) spacetime, where the scalar field plays the role of the cosmic
time coordinate.

In a scalar-field RW cosmology the Friedmann constraint equation
(Eq. (22.1)) reduces to

H2 =
8π

3M2
P

(
1

2
φ̇2 + V

)
− k

R2 , (22.9)

while energy conservation (Eq. (21.10) in “Big Bang Cosmology”
review) for a homogeneous scalar field reduces to the Klein-Gordon
equation of motion (Eq. (21.54) in “Big Bang Cosmology” review)

φ̈ = −3Hφ̇− V ′(φ) . (22.10)

The evolution of the scalar field is thus driven by the potential
gradient V ′ = dV/dφ, subject to damping by the Hubble expansion
3Hφ̇.

If we define the Hubble slow-roll parameter

ǫH ≡ − Ḣ

H2 , (22.11)

then we see that inflation (R̈ > 0 and hence Ḣ > −H2) requires
ǫH < 1. In this case the spatial curvature decreases relative to the
scalar field energy density as the Universe expands. Hence in the
following we drop the spatial curvature and consider a spatially-flat
RW cosmology, assuming that inflation has lasted sufficiently long
that our observable universe is very close to spatially flatness.
However, we note that bubble nucleation, leading to a first-order phase
transition during inflation, can lead to homogeneous hypersurfaces
with a hyperbolic (‘open’) geometry, effectively resetting the spatial
curvature inside the bubble [21]. This is the basis of so-called open
inflation models [22,23,24], where inflation inside the bubble has a
finite duration, leaving a finite negative spatial curvature.

In a scalar field-dominated cosmology (Eq. (22.11)) gives

ǫH =
3φ̇2

2V + φ̇2
, (22.12)

in which case we see that inflation requires a potential-dominated
expansion, φ̇2 < V .

22.2.1. Slow-Roll Inflation :

It is commonly assumed that the field acceleration term, φ̈, in
(Eq. (22.10)) can be neglected, in which case one can give an
approximate solution for the inflationary attractor [25]. This slow-
roll approximation reduces the second-order Klein-Gordon equation
(Eq. (22.10)) to a first-order system, which is over-damped, with
the potential gradient being approximately balanced against to the
Hubble damping:

3Hφ̇ ≃ −V ′ , (22.13)

and at the same time that the Hubble expansion (Eq. (22.9)) is
dominated by the potential energy

H2 ≃ 8π

3M2
P

V (φ) , (22.14)

corresponding to ǫH ≪ 1.

A necessary condition for the validity of the slow-roll approximation
is that the potential slow-roll parameters

ǫ ≡ M2
P

16π

(
V ′

V

)2

, η ≡ M2
P

8π

(
V ′′

V

)
, (22.15)

are small, i.e., ǫ ≪ 1 and |η| ≪ 1, requiring the potential to be
correspondingly flat. If we identify V ′′ with the effective mass of
the field, we see that the slow-roll approximation requires that the
mass of the scalar field must be small compared with the Hubble
scale. We note that the Hubble slow-roll parameter coincides with the
potential slow-roll parameter, ǫH ≃ ǫ, to leading order in the slow-roll
approximation.

The slow-roll approximation allows one to determine the Hubble
expansion rate as a function of the scalar field value, and vice versa.
In particular, we can express, in terms of the scalar field value during
inflation, the total logarithmic expansion, or number of “e-folds”:

N∗ ≡ ln

(
Rend

R∗

)
=

∫ tend

t∗
Hdt ≃ −

∫ φend

φ∗

√
4π

ǫ

dφ

MP
for V ′ > 0 .

(22.16)
Given that the slow-roll parameters are approximately constant during
slow-roll inflation, dǫ/dN ≃ 2ǫ(η − 2ǫ) = O(ǫ2), we have

N∗ ≃ 4√
ǫ

∆φ

MP
. (22.17)

Since we require N > 40 to solve the flatness, horizon and entropy
problems of the standard Big Bang cosmology, we require either very
slow roll, ǫ < 0.01, or a large change in the value of the scalar field
relative to the Planck scale, ∆φ > MP .

22.2.2. Reheating :

Slow-roll inflation can lead to an exponentially large universe, close
to spatial flatness and homogeneity, but the energy density is locked
in the potential energy of the scalar field, and needs to be converted
to particles and thermalised to recover a hot Big Bang cosmology at
the end of inflation [26,27]. This process is usually referred to as
reheating, although there was not necessarily any preceding thermal
era. Reheating can occur when the scalar field evolves towards the
minimum of its potential, converting the potential energy first to
kinetic energy. This can occur either through the breakdown of the
slow-roll condition in single-field models, or due to an instability
triggered by the inflaton reaching a critical value, in multi-field models
known as hybrid inflation models [28].

Close to a simple minimum, the scalar field potential can be
described by a quadratic function, V = m2φ2/2, where m is the mass
of the field. We can obtain slow-roll inflation in such a potential at
large field values, φ ≫ MP . However, for φ ≪ MP the field approaches
an oscillatory solution:

φ(t) ≃ MP√
3π

sin(mt)

mt
. (22.18)

For |φ| < MP the Hubble rate drops below the inflaton mass, H < m,
and the field oscillates many times over a Hubble time. Averaging
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over several oscillations, ∆t ≫ m−1, we find 〈φ̇2/2〉∆t ≃ 〈m2φ2/2〉∆t
and hence

〈ρ〉∆t ≃
M2

P

6πt2
, 〈p〉∆t ≃ 0 . (22.19)

This coherent oscillating field corresponds to a condensate of non-
relativistic massive inflaton particles, driving a matter-dominated era
at the end of inflation, with scale factor R ∝ t2/3.

The inflaton condensate can lose energy through perturbative
decays due to terms in the interaction Lagrangian, such as

Lint ⊂ −λiσφχ
2
i − λjφψ̄jψj (22.20)

that couple the inflation to scalar fields χi or fermions ψj , where σ
has dimensions of mass and the λi are dimensionless couplings. When
the mass of the inflaton is much larger than the decay products, the
decay rate is given by [29]

Γi =
λ2i σ

2

8πm
, Γj =

λ2jm

8π
. (22.21)

These decay products must in turn thermalise with Standard Model
particles before we recover conventional hot Big Bang cosmology.
An upper limit on the reheating temperature after inflation is given
by [27]

Trh = 0.2

(
100

g∗

)1/4√
MPΓtot , (22.22)

where g∗ is the effective number of degrees of freedom and Γtot is the
total decay rate for the inflaton, which is required to be less than m
for perturbative decay.

The baryon asymmetry of the Universe must be generated after
the main release of entropy during inflation, which is an important
constraint on possible models. Also, the fact that the inflaton mass
is much larger than the mass scale of the Standard Model opens up
the possibility that it may decay into massive stable or metastable
particles that could be connected with dark matter, constraining
possible models. For example, in the context of supergravity models
the reheat temperature is constrained by the requirement that
gravitinos are not overproduced, potentially destroying the successes
of Big Bang nucleosynthesis. For a range of gravitino masses one must
require Trh < 109 GeV [30,31].

The process of inflaton decay and reheating can be significantly
altered by interactions leading to space-time dependences in the
effective masses of the fields. In particular, parametric resonance can
lead to explosive, non-perturbative decay of the inflaton in some cases,
a process often referred to as preheating [32,26]. For example, an
interaction term of the form

Lint ⊂ −λ2φ2χ2 , (22.23)

leads to a time-dependent effective mass for the χ field as the inflaton
φ oscillates. This can lead to non-adiabatic particle production if
the bare mass of the χ field is small for large couplings or for rapid
changes of the inflaton field. The process of preheating is highly
model-dependent, but it highlights the possible role of non-thermal
particle production after and even during inflation.

22.3. Primordial Perturbations from Inflation

Although inflation was originally discussed as a solution to the
problem of initial conditions required for homogeneous and isotropic
hot Big Bang cosmology, it was soon realised that inflation also
offered a mechanism to generate the inhomogeneous initial conditions
required for the formation of large-scale structure [15,16,17,33].

22.3.1. Metric Perturbations :

In a homogeneous classical inflationary cosmology driven by a scalar
field, the inflaton field is uniform on constant-time hypersurfaces,
φ = φ0(t). However, quantum fluctuations inevitably break the spatial
symmetry leading to an inhomogeneous field:

φ(t, xi) = φ0(t) + δφ(t, xi) . (22.24)

At the same time, one should consider inhomogeneous perturbations
of the RW spacetime metric (see, e.g., [34,35,36]) :

ds2 = (1+2A)dt2−2RBidtdx
i−R2 [(1 + 2C)δij + ∂i∂jE + hij

]
dxidxj ,
(22.25)

where A, B, E and C are scalar perturbations while hij represents
transverse and tracefree, tensor metric perturbations. Vector metric
perturbations can be eliminated using Einstein constraint equations in
a scalar field cosmology.

The tensor perturbations remain invariant under a temporal gauge
transformation t → t + δt(t, xi), but both the scalar field and the
scalar metric perturbations transform. For example, we have

δφ → δφ− φ̇0δt , C → C −Hδt . (22.26)

However, there are gauge invariant combinations, such as [37]

Q = δφ− φ̇0
H

C , (22.27)

which describes the scalar field perturbations on spatially-flat (C = 0)
hypersurfaces. This is simply related to the curvature perturbation on
uniform-field (δφ = 0) hypersurfaces:

R = C − H

φ̇0
δφ = −H

φ̇0
Q , (22.28)

which coincides in slow-roll inflation, ρ ≃ ρ(φ), with the curvature
perturbation on uniform-density hypersurfaces [16]

ζ = C − H

ρ̇0
δρ . (22.29)

Thus scalar field and scalar metric perturbations are coupled by the
evolution of the inflaton field.

22.3.2. Gravitational waves from inflation :

The tensor metric perturbation, hij in Eq. (22.25), is gauge-
invariant and decoupled from the scalar perturbations at first order.
This represents the free excitations of the spacetime, i.e., gravitational
waves, which are the simplest metric perturbations to study at linear
order.

Each tensor mode, with wavevector ~k, has two linearly-independent
transverse and trace-free polarisation states:

hij(~k) = h~kqij + h̄~k q̄ij . (22.30)

The linearised Einstein equations then yield the same evolution
equation for the amplitude as that for a massless field in RW
spacetime:

ḧ~k + 3Hḣ~k +
k2

R2
h~k = 0 , (22.31)

(and similarly for h̄~k). This can be re-written in terms of the conformal

time, η =
∫
dt/R, and the conformally rescaled field:

u~k =
MPRh~k√

32π
. (22.32)

This conformal field then obeys the wave equation for a canonical
scalar field in Minkowski spacetime with a time-dependent mass:

u′′~k +

(
k2 − R′′

R

)
u~k = 0 . (22.33)

During slow-roll
R′′

R
≃ (2− ǫ)R2H2 . (22.34)

This makes it possible to quantise the linearised metric fluctuations,
u~k → û~k, on sub-Hubble scales, k2/R2 ≫ H2, where the background
expansion can be neglected.

Crucially, in an inflationary expansion, where R̈ > 0, the comoving
Hubble length H−1/R = 1/Ṙ decreases with time. Thus all modes
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start inside the Hubble horizon and it is possible to take the initial
field fluctuations to be in a vacuum state at early times or on small
scales:

〈u~k1u~k2〉 =
i

2
(2π)3δ(3)

(
~k1 + ~k2

)
. (22.35)

In terms of the amplitude of the tensor metric perturbations, this
corresponds to

〈h~k1h~k2〉 =
1

2

Pt(k1)

4πk31
(2π)3δ(3)

(
~k1 + ~k2

)
, (22.36)

where the factor 1/2 appears due to the two polarisation states that
contribute to the total tensor power spectrum:

Pt(k) =
64π

M2
P

(
k

2πR

)2

. (22.37)

On super-Hubble scales, k2/R2 ≪ H2, we have the growing mode
solution to Eq. (22.33), u~k ∝ R, corresponding to h~k → constant, i.e.,
tensor modes are frozen-in on super-Hubble scales, both during and
after inflation. Thus, connecting the initial vacuum fluctuations on
sub-Hubble scales to the late-time power spectrum for tensor modes
at Hubble exit during inflation, k = R∗H∗, we obtain

Pt(k) ≃
64π

M2
P

(
H∗
2π

)2

. (22.38)

In the de Sitter limit, ǫ → 0, the Hubble rate becomes time-
independent and the tensor spectrum on super-Hubble scales becomes
scale-invariant [38]. However slow-roll evolution leads to weak time
dependence of H∗ and thus a scale-dependent spectrum on large
scales, with a spectral tilt

nt ≡
d lnPT

d ln k
≃ −2ǫ∗ . (22.39)

22.3.3. Density Perturbations from single-field inflation :

The inflaton field fluctuations on spatially-flat hypersurfaces are
coupled to scalar metric perturbations at first order, but these can
be eliminated using the Einstein constraint equations to yield an
evolution equation

Q̈~k
+ 3HQ̇~k

+

[
k2

R2 + V ′′ − 8π

3M2
P

d

dt

(
R3φ̇2

H

)]
Q~k

= 0 . (22.40)

Terms proportional to M−2
P represent the effect on the field

fluctuations of gravity at first order. As can be seen, this vanishes in
the limit of a constant background field, and hence is suppressed in
the slow-roll limit, but it is of the same order as the effective mass,
V ′′ = 3ηH2, so must be included if we wish to model deviations from
exact de Sitter symmetry.

This wave equation can also be written in the canonical form for a
free field in Minkowski spacetime if we define [37]

v~k ≡ RQ~k
, (22.41)

to yield

v′′~k +

(
k2 − z′′

z

)
v~k = 0 , (22.42)

where we define

z ≡ Rφ̇

H
,

z′′

z
≃ (2 + 5ǫ− 3η)R2H2 , (22.43)

where the last approximate equality holds to leading order in the
slow-roll approximation.

As previously done for gravitational waves, we quantise the
linearised field fluctuations v~k → v̂~k on sub-Hubble scales, k2/R2 ≫
H2, where the background expansion can be neglected. Thus we
impose

〈v~k1v
′
~k2
〉 = i

2
δ(3)

(
~k1 + ~k2

)
. (22.44)

In terms of the field perturbations, this corresponds to

〈Q~k1
Q~k2

〉 = PQ(k1)

4πk31
(2π)3δ(3)

(
~k1 + ~k2

)
, (22.45)

where the power spectrum for vacuum field fluctuations on sub-Hubble
scales, k2/R2 ≫ H2, is simply

PQ(k) =

(
k

2πR

)2

, (22.46)

yielding the classic result for the vacuum fluctuations for a massless
field in de Sitter at Hubble exit, k = R∗H∗:

PQ(k) ≃
(
H

2π

)2

∗
. (22.47)

In practice there are slow-roll corrections due to the small but finite
mass (η) and field evolution (ǫ) [39].

Slow-roll corrections to the field fluctuations are small on sub-
Hubble scales, but can become significant as the field and its
perturbations evolve over time on super-Hubble scales. Thus it is
helpful to work instead with the curvature perturbation, ζ defined
in equation (Eq. (22.29)), which remains constant on super-Hubble
scales for adiabatic density perturbations both during and after
inflation [16,40]. Thus we have an expression for the primordial
curvature perturbation on super-Hubble scales produced by single-field
inflation:

Pζ(k) =

[(
H

φ̇

)2

PQ(k)

]

∗
≃ 4π

M2
P

[
1

ǫ

(
H

2π

)2
]

∗
. (22.48)

Comparing this with the primordial gravitational wave power
spectrum (Eq. (22.38)) we obtain the tensor-to-scalar ratio for
single-field slow-roll inflation

r ≡ Pt

Pζ
≃ 16ǫ∗ . (22.49)

Note that the scalar amplitude is boosted by a factor 1/ǫ∗ during
slow-roll inflation, because small scalar field fluctuations can lead
to relatively large curvature perturbations on hypersurfaces defined
with respect to the density if the potential energy is only weakly
dependent on the scalar field, as in slow-roll. Indeed, the de Sitter
limit is singular, since the potential energy becomes independent of
the scalar field at first order, ǫ → 0, and the curvature perturbation
on uniform-density hypersurfaces becomes ill-defined.

We note that in single-field inflation the tensor-to-scalar ratio and
the tensor tilt (Eq. (22.39)) at the same scale are both determined
by the first slow-roll parameter at Hubble exit, ǫ∗, giving rise to an
important consistency test for single-field inflation:

nt = − r

8
. (22.50)

This may be hard to verify if r is small, making any tensor tilt nt
difficult to measure. On the other hand, it does offer a way to rule
out single-field slow-roll inflation if either r or nt is large.

Given the relatively large scalar power spectrum, it has proved
easier to measure the scalar tilt, conventionally defined as ns − 1.
Slow-roll corrections lead to slow time-dependence of both H∗ and ǫ∗,
giving a weak scale-dependence of the scalar power spectrum:

ns − 1 ≡ d lnPζ

d ln k
≃ −6ǫ∗ + 2η∗ , (22.51)

and a running of this tilt at second-order in slow-roll:

dns
d ln k

≃ −8ǫ∗(3ǫ∗ − 2η∗)− 2ξ2∗ , (22.52)

where the running introduces a new slow-roll parameter at second-
order:

ξ2 =
M4

P

64π2
V ′V ′′′

V 2
. (22.53)
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22.3.4. Observational Bounds :

The observed scale-dependence of the power spectrum makes it
necessary to specify the comoving scale, k, at which quantities are
constrained and hence the Hubble-exit time, k = a∗H∗, when the
corresponding theoretical quantities are calculated during inflation.
This is usually expressed in terms of the number of e-folds from the
end of inflation [41]:

N∗(k) ≃ 67−ln

(
k

a0H0

)
+
1

4
ln

(
V 2∗

M4
P ρend

)
+

1

12
ln

(
ρrh
ρend

)
− 1

12
ln(g∗),

(22.54)
where H−1

0 /a0 is the present comoving Hubble length. Different
models of reheating and and thus different reheat temperatures and
densities, ρrh in Eq. (22.54), lead to a range of possible values for N∗
corresponding to a fixed physical scale, and hence we have a range
of observational predictions for a given inflation model, as seen in
Fig. 22.1.

The Planck 2015 temperature and polarisation data (see Chap. 28,
“Cosmic Microwave Background” review) are consistent with a smooth
featureless power spectrum over a range of comoving wavenumbers,
0.008 h−1 Mpc−1 ≤ k ≤ 0.1 h Mpc−1. In the absence of running, the
data measure the the spectral index

ns = 0.968± 0.006 , (22.55)

corresponding to a deviation from scale-invariance exceeding the 5σ
level. If running of the spectral tilt is included in the model, this is
constrained to be

dns
d ln k

= −0.003± 0.007 . (22.56)

A recent analysis of the BICEP2/Keck Array, Planck and other
data places an upper bound on the tensor-to-scalar ratio at
k = 0.05 Mpc−1 [42]

r < 0.07 (22.57)

at the 95% CL.

These observational bounds can be converted into bounds on the
slow-roll parameters and hence the potential during slow-roll inflation.
Setting higher-order slow-roll parameters (beyond second-order in
horizon-flow parameters [43]) to zero the Planck collaboration obtain
the following bounds [44]

ǫ < 0.012 , (22.58)

η = −0.0080+0.0088
−0.0146 , (22.59)

ξ2 = 0.0070+0.0045
−0.0069 , (22.60)

which can be used to constrain models, as discussed in the next
Section.

Fig. 22.1, which is taken from [44], compares observational CMB
constraints on the tilt, ns, in the spectrum of scalar perturbations

Figure 22.1: The marginalized joint 68 and 95% CL regions
for the tilt in the scalar perturbation spectrum, ns, and the
relative magnitude of the tensor perturbations, r, obtained from
the Planck 2015 data and their combinations with BICEP2/Keck
Array and/or BAO data, confronted with the predictions of some
of the inflationary models discussed in this review. This figure is
taken from [44].

and the ratio, r, between the magnitudes of tensor and scalar
perturbations. Important rôles are played by data from the Planck
satellite, the BICEP2/Keck Array (BKP) and measurements of
baryon acoustic oscillations (BAO). The reader is referred to [44]
for technical details. These experimental constraints are compared
with the predictions of some of the inflationary models discussed
in this review. Generally speaking, models with a concave potential
are favoured over those with a convex potential, and models with
power-law inflation, as opposed to de Sitter-like (quasi-)exponential
expansion, are now excluded.

22.4. Models

22.4.1. Pioneering Models :

The paradigm of the inflationary Universe was proposed in [2],
where it was pointed out that an early period of (near-)exponential
expansion, in addition to resolving the horizon and flatness problems
of conventional Big-Bang cosmology as discussed above (the possibility
of a de Sitter phase in the early history of the Universe was also
proposed in the non-minimal gravity model of [1], with the
motivation of avoiding an initial singularity), would also dilute the
prior abundance of any unseen heavy, (meta-)stable particles, as
exemplified by monopoles in grand unified theories (GUTs; see
Chap. 114, “Grand Unified Theories” review). The original proposal
was that this inflationary expansion took place while the Universe
was in a metastable state (a similar suggestion was made in [45,46],
where in [45] it was also pointed out that such a mechanism could
address the horizon problem) and was terminated by a first-order
transition due to tunnelling though a potential barrier. However, it
was recognized already in [2] that this ‘old inflation’ scenario would
need modification if the transition to the post-inflationary universe
were to be completed smoothly without generating unacceptable
inhomogeneities.

This ‘graceful exit’ problem was addressed in the ‘new inflation’
model of [13]( see also [14] and footnote [39] of [2]) , which studied
models based on an SU(5) GUT with an effective potential of the
Coleman-Weinberg type (i.e., dominated by radiative corrections),
in which inflation could occur during the roll-down from the local
maximum of the potential towards a global minimum. However, it
was realized that the Universe would evolve to a different minimum
from the Standard Model [47], and it was also recognized that density
fluctuations would necessarily be too large [15], since they were
related to the GUT coupling strength.

These early models of inflation assumed initial conditions
enforced by thermal equilibrium in the early Universe. However,
this assumption was questionable: indeed, it was not made in the
model of [1], in which a higher-order gravitational curvature term
was assumed to arise from quantum corrections, and the assumption of
initial thermal equilibrium was jettisoned in the ‘chaotic’ inflationary
model of [48]. These are the inspirations for much recent inflationary
model building, so we now discuss them in more detail, before
reviewing contemporary models.

In this section we will work in natural units where we set the
reduced Planck mass to unity, i.e., 8π/M2

P = 1. All masses are thus
relative to the reduced Planck scale.

22.4.2. R2 Inflation :

The first-order Einstein-Hilbert action, (1/2)
∫
d4x

√−gR, where R
is the Ricci scalar curvature, is the minimal possible theory consistent
with general coordinate invariance. However, it is possible that there
might be non-minimal corrections to this action, and the unique
second-order possibility is

S =
1

2

∫
d4x

√−g

(
R+

R2

6M2

)
. (22.61)

It was pointed out in [1] that an R2 term could be generated by
quantum effects, and that (Eq. (22.61)) could lead to de Sitter-like
expansion of the Universe. Scalar density perturbations in this model
were calculated in [17]. Because the initial phase was (almost) de
Sitter, these perturbations were (approximately) scale-invariant, with
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magnitude ∝ M . It was pointed out in [17] that requiring the scalar
density perturbations to lie in the range 10−3 to 10−5, consistent with
upper limits at that time, would require M ∼ 10−3 to 10−5 in Planck
units, and it was further suggested in that these perturbations could
lead to the observed large-scale structure of the Universe, including
the formation of galaxies.

Although the action (Eq. (22.61)) does not contain an explicit scalar
field, [17] reduced the calculation of density perturbations to that of
fluctuations in the scalar curvature R, which could be identified (up
to a factor) with a scalar field of mass M . The formal equivalence of
R2 gravity (Eq. (22.61)) to a theory of gravity with a massive scalar φ
had been shown in [18], see also [19]. The effective scalar potential
for what we would nowadays call the ‘inflaton’ [49] takes the form

S =
1

2

∫
d4x

√−g

[
R+ (∂µφ)

2 − 3

2
M2(1 − e−

√
2/3φ)2

]
(22.62)

when the action is written in the Einstein frame, and the potential is
shown as the solid black line in Fig. 22.2. Using (Eq. (22.48)), one
finds that the amplitude of the scalar density perturbations in this
model is given by

∆R =
3M2

8π2
sinh4

(
φ√
6

)
, (22.63)

The measured magnitude of the density fluctuations in the CMB
requires M ≃ 1.3× 10−5 in Planck units (assuming N∗ ≃ 55), so one
of the open questions in this model is why M is so small. Obtaining
N∗ ≃ 55 also requires an initial value of φ ≃ 5.5, i.e., a super-Planckian
initial condition, and another issue for this and many other models is
how the form of the effective potential is protected and remains valid
at such large field values. Using Eq. (22.51) one finds that ns ≃ 0.965
for N∗ ≃ 55 and using (Eq. (22.49)) one finds that r ≃ 0.0035. These
predictions are consistent with the present data from Planck and other
experiments, as seen in Fig. 22.1.

Figure 22.2: The inflationary potential V in the R2 model
(solid black line) compared with its form in various no-scale
models discussed in detail in [50]( dashed coloured lines).

22.4.3. Chaotic Models with Power-Law Potentials :

As has already been mentioned, a key innovation in inflationary
model-building was the suggestion to abandon the questionable
assumption of a thermal initial state, and consider ‘chaotic’ initial
conditions with very general forms of potential [48]. (Indeed, the
R2 model discussed above can be regarded as a prototype of this
approach.) The chaotic approach was first proposed in the context of
a simple power-law potential of the form µ4−αφα, and the specific
example of λφ4 was studied in [48]. Such models make the following
predictions for the slow-roll parameters ǫ and η:

ǫ =
1

2

(
α

φ

)2

, η =
α(α− 1)

φ2
, (22.64)

leading to the predictions

r ≈ 4α

N∗
, ns − 1 ≈ −α+ 2

2N∗
, (22.65)

which are shown in Fig. 22.1 for some illustrative values of α. We
note that the prediction of the original φ4 model lies out of the frame,
with values of r that are too large and values of ns that are too small.
The φ3 model has similar problems, and would in any case require
modification in order to have a well-defined minimum. The simplest
possibility is φ2, but this is now also disfavoured by the data, at the
95% CL if only the Planck data are considered, and more strongly
if other data are included, as seen in Fig. 22.1. (For non-minimal
models of quadratic inflation that avoid this problem, see, e.g., [51]. )

Indeed, as can be seen in Fig. 22.1, all single-field models with a
convex potential (i.e., one curving upwards) are disfavoured compared

to models with a concave potential. Thus, a model with a φ2/3

potential may just be compatible with the data at the 68% CL,
whereas linear and φ4/3 potentials are allowed only at about the 95%
CL.

22.4.4. Hilltop Models :

This preference for a concave potential motivates interest in ‘hilltop’
models [52], whose starting-point is a potential of the form

V (φ) = Λ4
[
1−

(
φ

µ

)p

+ . . .

]
, (22.66)

where the . . . represent extra terms that yield a positive semi-definite
potential. To first order in the slow-roll parameters, when x ≡ φ/µ is
small, one has

ns ≃ 1− p(p− 1)µ−2 xp−2

(1− xp)
− 3

8
r , r ≃ 8p2µ−2 x2p−2

(1 − xp)2
.

(22.67)
As seen in Fig. 22.1, a hilltop model with p = 4 can be compatible
with the Planck and other measurements, if µ ≫ MP .

22.4.5. D-Brane Inflation :

Many scenarios for inflation involving extra dimensions have been
proposed, e.g., the possibility that observable physics resides on a
three-dimensional brane, and that there is an inflationary potential
that depends on the distance between our brane and an antibrane,
with a potential of the form [53]

V (φ) = Λ4
[
1−

(
µ

φ

)p

+ . . .

]
. (22.68)

In this scenario the effective potential vanishes in the limit φ → ∞,
corresponding to complete separation between our brane and the
antibrane. The predictions for ns and r in this model can be obtained
from (Eq. (22.67)) by exchanging p ↔ −p, and are also consistent
with the Planck and other data.

22.4.6. Natural Inflation :

Also seen in Fig. 22.1 are the predictions of ‘natural inflation’ [54],
in which one postulates a non-perturbative shift symmetry that
suppresses quantum corrections, so that a hierarchically small scale
of inflation, H ≪ MP , is technically natural. In the simplest models,
there is a periodic potential of the form

V (φ) = Λ4
[
1 + cos

(
φ

f

)]
, (22.69)

where f is a dimensional parameter reminiscent of an axion decay
constant (see the next subsection) [55], which must have a value
> MP . Natural inflation can yield predictions similar to quadratic
inflation (which are no longer favoured, as already discussed), but can
also yield an effective convex potential. Thus, it may lead to values of
r that are acceptably small, but for values of ns that are in tension
with the data, as seen in Fig. 22.1.
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22.4.7. Axion Monodromy Models :

The effective potentials in stringy models [56,57] motivated by
axion monodromy may be of the form

V (φ) = µ4−αφα + Λ4e
−C

(
φ

φ0

)pΛ

cos

[
γ +

φ

f

(
φ

φ0

)pf+1
]
, (22.70)

where µ,Λ, f and φ0 are parameters with the dimension of mass,
and C, p, pΛ, pf and γ are dimensionless constants, generalizing the
potential ( [54]) in the simplest models of natural inflation. The
oscillations in (Eq. (22.70)) are associated with the axion field,
and powers pΛ, pf 6= 0 may arise from φ-dependent evolutions of
string moduli. Since the exponential prefactor in (Eq. (22.70)) is
due to non-perturbative effects that may be strongly suppressed, the
oscillations may be unobservably small. Specific string models having
φα with α = 4/3, 1 or 2/3 have been constructed in [56,57], providing
some motivation for the low-power models mentioned above.

As seen in Fig. 22.1, the simplest axion monodromy models with
these values of the power α are compatible with all the available data
at the 95% CL, though not at the 68% CL. The Planck Collaboration
has also searched for characteristic effects associated with the second
term in (Eq. (22.70)), such as a possible drift in the modulation
amplitude (setting pΛ = C = 0), and a possible drifting frequency
generated by pf 6= 0, without finding any compelling evidence [44].

22.4.8. Higgs Inflation :

Since the energy scale during inflation is commonly expected to
lie between the Planck and TeV scales, it may serve as a useful
bridge with contacts both to string theory or some other quantum
theory of gravity, on the one side, and particle physics on the other
side. However, as the above discussion shows, much of the activity
in building models of inflation has been largely independent of
specific connections with these subjects, though some examples of
string-motivated models of inflation were mentioned above.

The most economical scenario for inflation might be to use as
inflaton the only established scalar field, namely the Higgs field (see
Chap. 11, “Status of Higgs boson physics” review). A specific model
assuming a non-minimal coupling of the Higgs field h to gravity was
constructed in [58]. Its starting-point is the action

S =

∫
d4x

√−g

[
M2 + ξh2

2
R+

1

2
∂µh∂

µh− λ

4
(h2 − v2)2

]
, (22.71)

where v is the Higgs vacuum expectation value. The model requires
ξ ≫ 1, in which case it can be rewritten in the Einstein frame as

S =

∫
d4x

√−g

[
1

2
R+

1

2
∂µχ∂

µχ− U(χ)

]
, (22.72)

where the effective potential for the canonically-normalized inflaton
field χ has the form

U(χ) =
λ

4ξ2

[
1 + exp

(
− 2χ√

6MP

)]−2

, (22.73)

which is similar to the effective potential of the R2 model at
large field values. As such, the model inflates successfully if
ξ ≃ 5 × 104 mh/(

√
2v), with predictions for ns and r that are

indistinguishable from the predictions of the R2 model shown in
Fig. 22.1.

This model is very appealing, but must confront several issues.
One is to understand the value of ξ, and another is the possibility
of unitarity violation. However, a more fundamental issue is whether
the effective quartic Higgs coupling is positive at the scale of the
Higgs field during inflation. Extrapolations of the effective potential
in the Standard Model using the measured values of the masses of the
Higgs boson and the top quark indicate that probably λ < 0 at this
scale [59], though there are still significant uncertainties associated
with the appropriate input value of the top mass and the extrapolation
to high renormalization scales.

22.4.9. Supersymmetric Models of Inflation :

Supersymmetry [60] is widely considered to be a well-motivated
possible extension of the Standard Model that might become apparent
at the TeV scale. It is therefore natural to consider supersymmetric
models of inflation. These were originally proposed because of the
problems of the the new inflationary theory [13,14] based on the
one-loop (Coleman-Weinberg) potential for breaking SU(5). Several of
these problems are related to the magnitude of the effective potential
parameters: in any model of inflation based on an elementary scalar
field, some parameter in the effective potential must be small in natural
units, e.g., the quartic coupling λ in a chaotic model with a quartic
potential, or the mass parameter µ in a model of chaotic quadratic
inflation. These parameters are renormalized multiplicatively in a
supersymmetric theory, so that the quantum corrections to small
values would be under control. Hence it was suggested that inflation
cries out for supersymmetry [61], though non-supersymmetric
resolutions of the problems of Coleman-Weinberg inflation are also
possible: see, e.g., Ref. [62].

In the Standard Model there is only one scalar field that could be a
candidate for the inflaton, namely the Higgs field discussed above, but
even the minimal supersymmetric extension of the Standard Model
(MSSM) contains many scalar fields. However, none of these is a
promising candidate for the inflaton. The minimal extension of the
MSSM that may contain a suitable candidate is the supersymmetric
version of the minimal seesaw model of neutrino masses, which
contains the three supersymmetric partners of the heavy singlet (right-
handed) neutrinos. One of these singlet sneutrinos ν̃ could be the
inflaton [63]: it would have a quadratic potential, the mass coefficient
required would be ∼ 1013 GeV, very much in the expected ball-park
for singlet (right-handed) neutrino masses, and sneutrino inflaton
decays also could give rise to the cosmological baryon asymmetry via
leptogenesis. However, as seen in Fig. 22.1 and already discussed, a
purely quadratic inflationary potential is no longer favoured by the
data. This difficulty could in principle be resolved in models with
multiple sneutrinos [64], or by postulating a trilinear sneutrino
coupling and hence a superpotential of Wess-Zumino type [65], which
can yield successful inflation with predictions intermediate between
those of natural inflation and hilltop inflation in Fig. 22.1.

Finally, we note that it is also possible to obtain inflation via
supersymmetry breaking, as in the model [66] whose predictions are
illustrated in Fig. 22.1.

22.4.10. Supergravity Models :

Any model of early-Universe cosmology, and specifically inflation,
must necessarily incorporate gravity. In the context of supersymmetry
this requires an embedding in some supergravity theory [67,68]. An
N = 1 supergravity theory is specified by three functions: a Hermitian
function of the matter scalar fields φi, called the Kähler potential K,
that describes its geometry, a holomorphic function of the superfields,
called the superpotential W , which describes their interactions, and
another holomorphic function fαβ , which describes their couplings to
gauge fields Vα [69].

The simplest possibility is that the Kähler metric is flat:

K = φiφ∗i , (22.74)

where the sum is over all scalar fields in the theory, and the simplest
inflationary model in minimal supergravity had the superpotential [70]

W = m2(1− φ)2 , (22.75)

Where φ is the inflaton. However, this model predicts a tilted
scalar perturbation spectrum, ns = 0.933, which is now in serious
disagreement with the data from Planck and other experiments shown
in Fig. 22.1.

Moreover, there is a general problem that arises in any supergravity
theory coupled to matter, namely that, since its effective scalar
potential contains a factor of eK , scalars typically receive squared
masses ∝ H2 ∼ V , where H is the Hubble parameter [71], an issue
called the ‘η problem’. The theory given by (Eq. (22.75)) avoids this
η problem, but a generic supergravity inflationary model encounters
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this problem of a large inflaton mass. Moreover, there are additional
challenges for supergravity inflation associated with the spontaneous
breaking of local supersymmetry [72,73,74].

Various approaches to the η problem in supergravity have been
proposed, including the possibility of a shift symmetry [75], and one
possibility that has attracted renewed attention recently is no-scale
supergravity [76,77]. This is a form of supergravity with a Kähler
potential that can be written in the form [78]

K = −3 ln

(
T + T ∗ −

∑
i |φi|2
3

)
, (22.76)

which has the special property that it naturally has a flat potential, at
the classical level and before specifying a non-trivial superpotential.
As such, no-scale supergravity is well-suited for constructing models of
inflation. Adding to its attraction is the feature that compactifications
of string theory to supersymmetric four-dimensional models yield
effective supergravity theories of the no-scale type [79]. There are
many examples of superpotentials that yield effective inflationary
potentials for either the T field (which is akin to a modulus field in
some string compactification) or a φ field (generically representing
matter) that are of the same form as the effective potential of the
R2 model (Eq. (22.62)) when the magnitude of the inflaton field
≫ 1 in Planck units, as required to obtain sufficiently many e-folds
of inflation, N∗ [80,81]. This framework also offers the possibility
of using a suitable superpotential to construct models with effective
potentials that are similar, but not identical, to the R2 model, as
shown by the dashed coloured lines in Fig. 22.2.

22.4.11. Other Exponential Potential Models :

This framework also offers the possibility [80] of constructing
models in which the asymptotic constant value of the potential at
large inflaton field values is approached via a different exponentially-
suppressed term:

V (φ) = A
[
1− δe−Bφ +O(e−2Bφ)

]
, (22.77)

where the magnitude of the scalar density perturbations fixes A, but
δ and B are regarded as free parameters. In the case of R2 inflation
δ = 2 and B =

√
2/3. In a model such as (Eq. (22.77)), one finds at

leading order in the small quantity e−Bφ that

ns = 1− 2B2δe−Bφ ,

r = 8B2δ2e−2Bφ ,

N∗ =
1

B2δ
e+Bφ . (22.78)

yielding the relations

ns = 1− 2

N∗
, r =

8

B2N2∗
. (22.79)

This model leads to the class of predictions labelled by ‘α attrac-
tors’ [82] in Fig. 22.1. There are generalizations of the simplest
no-scale model (Eq. (22.76)) with prefactors before the ln(. . .) that
are 1 or 2, leading to larger values of B =

√
2 or 1, respectively, and

hence smaller values of r than in the R2 model.

22.5. Model Comparison

Given a particular inflationary model, one can obtain constraints
on the model parameters, informed by the likelihood, corresponding to
the probability of the data given a particular choice of parameters (see
Chap. 39, “Statistics” review). In the light of the detailed constraints
on the statistical distribution of primordial perturbations now inferred
from high-precision observations of the cosmic microwave background,
it is also possible to make quantitative comparison of the statistical
evidence for or against different inflationary models. This can be done
either by comparing the logarithm of the maximum likelihood that
can be obtained for the data using each model, i.e., the minimum
χ2 (with some correction for the number of free parameters in each

model), or by a Bayesian model comparison [83]( see also Sec. 39.3.3
in “Statistics” review).

In such a Bayesian model comparison one computes [7] the
evidence, E(D|MA) for a model, MA, given the data D. This
corresponds to the likelihood, L(θAj) = p(D|θAj ,MA), integrated
over the assumed prior distribution, π(θAj |MA), for all the model
parameters θAj :

E(D|MA) =

∫
L(θAj)π(θAj |MA)dθAj . (22.80)

The posterior probability of the model given the data follows from
Bayes’ theorem

p(MA|D) =
E(D|MA)π(MA)

p(D)
, (22.81)

where the prior probability of the model is given by π(MA). Assuming
that all models are equally likely a priori, π(MA) = π(MB), the
relative probability of model A relative to a reference model, in the
light of the data, is thus given by the Bayes factor

BA,ref =
E(D|MA)

E(D|Mref )
. (22.82)

Computation of the multi-dimensional integral (Eq. (22.80)) is a
challenging numerical task. Even using an efficient sampling algorithm
requires hundreds of thousands of likelihood computations for each
model, though slow-roll approximations can be used to calculate
rapidly the primordial power spectrum using the APSIC numerical
library [7] for a large number of single-field, slow-roll inflation models.

The change in χ2 for selected slow-roll models relative to a baseline
ΛCDM model is given in Table 22.1 (taken from [44]) . All the
inflation models require some amplitude of tensors and so have an
increased χ2 with respect to the baseline ΛCDM model with a scalar
tilt but no tensors. Table 22.1 also shows the Bayesian evidence
for (lnBA,ref > 0) or against (lnBA,ref < 0) a selection of inflation

models using the Planck analysis priors [44]. The Starobinsky R2

inflationary model may be chosen as a reference [44] that provides
a good fit to current data. Higgs inflation [58] is indistinguishable
using current data, making the model comparison “inconclusive” on
the Jeffrey’s scale (| lnBA,ref | < 1). (Recall, though, that this model
is disfavoured by the measured values of the Higgs and top quark
masses [59]. ) On the other hand, there is now moderate evidence
(| lnBA,ref | > 2.5) against large-field models such as chaotic inflation
with a quadratic potential and strong evidence (| lnBA,ref | > 5)
against chaotic inflation with a quartic potential. Indeed, over 30%
of the slow-roll inflation models considered in Ref. [7] are strongly
disfavoured by the Planck data.

Table 22.1: Observational evidence for and against selected
inflation models: ∆χ2 is determined relative to a baseline
ΛCDM model, and the Bayes factors are calculated rela-
tive to Starobinsky R2 inflation. Results from Planck 2015
analysis [44].

Model ∆χ2 lnBA,ref

R2 inflation +0.8 0

Power-law potential φ2/3 +6.5 −2.4

Power-law potential φ2 +8.6 −4.7

Power-law potential φ4 +43.3 −23.3
Natural inflation +7.2 −2.4
SUSY α-attractor +0.7 −1.8

The Bayes factors for a wide selection of slow-roll inflationary
models are displayed in Fig. 22.3, which is adapted from Fig. 3 in [84],
where more complete descriptions of the models and the calculations
of the Bayes factors are given. Models discussed in this review are
highlighted in yellow, and numbered as follows: (1) R2 inflation
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(Sec. 22.4) and models with similar predictions, such as Higgs inflation
(Sec. 22.4) and no-scale supergravity inflation (Sec. 22.4); chaotic
inflation models (2) with a φ2 potential; (3) with a φ4 potential;

(4) with a φ2/3 potential, and (5) with a φp potential marginalising
over p ∈ [0.2, 6] (Sec. 22.4); hilltop inflation models (6) with p = 2;
(7) with p = 4 and (8) marginalising over p (Sec. 22.4); (9) brane
inflation (Sec. 22.4); (10) natural inflation (Sec. 22.4); (11) exponential
potential models such as α-attractors (Sec. 22.4). As seen in Fig. 22.3
and discussed in the next Section, constraints on reheating are starting
to provide additional information about models of inflation.

Figure 22.3: The Bayes factors calculated in [84] for a large
sample of inflationary models. Those highlighted in yellow are
featured in the this review, according tothe numbers listed in the
text.

22.6. Constraints on Reheating

One connection between inflation and particle physics is provided
by inflaton decay, whose products are expected to have thermalized
subsequently. As seen in (Eq. (22.54)), the number of e-folds required
during inflation depends on details of this reheating process, including
the matter density upon reheating, denoted by ρth, which depends
in turn on the inflaton decay rate Γφ. We see in Fig. 22.1 that,
within any specific inflationary model, both ns and particularly r are
sensitive to the value of N∗. In particular, the one-σ uncertainty in
the experimental measurement of ns is comparable to the variation in
many model predictions for N∗ ∈ [50, 60]. This implies that the data
start to constrain scenarios for inflaton decay in many models. For
example, it is clear from Fig. 22.1 that N∗ = 60 would be preferred
over N∗ = 50 in a chaotic inflationary model with a quadratic
potential.

As a specific example, let us consider R2 models and related models
such as Higgs and no-scale inflation models that predict small values of
r [85]. As seen in Fig. 22.1, within these models the combination of
Planck, BICEP2/Keck Array and BAO data would require a limited
range of ns, corresponding to a limited range of N∗, as seen by
comparing the left and right vertical axes in Fig. 22.4:

N∗ & 52 (68% CL), N∗ & 44 (95% CL) . (22.83)

Within any specific model for inflaton decay, these bounds can
be translated into constraints on the effective decay coupling. For
example, if one postulates a two-body inflaton decay coupling y, the
bounds (Eq. (22.83)) can be translated into bounds on y. This is
illustrated in Fig. 22.4, where any value of N∗ (on the left vertical
axis), projected onto the diagonal line representing the correlation
predicted in R2-like models, corresponds to a specific value of the

inflaton decay rate Γφ/m (lower horizontal axis) and hence y (upper
horizontal axis):

y & 10−5 (68% CL), y & 10−15 (95% CL) . (22.84)

These bounds are not very constraining – although the 68% CL lower
bound on y is already comparable with the electron Yukawa coupling
– but can be expected to improve significantly in the coming years and
thereby provide significant information on the connections between
inflation and particle physics.

Figure 22.4: The values of N∗ (left axis) and ns (right axis) in
R2 inflation and related models for a wide range of decay rates,
Γφ/m, (bottom axis) and corresponding two-body couplings, y
(top axis). The diagonal red line segment shows full numerical
results over a restricted range of Γφ/m (which are shown in more
detail in the insert), while the diagonal blue strip represents
an analytical approximation described in [85]. The difference
between these results is indistinguishable in the main plot, but is
visible in the insert. The horizontal yellow and blue lines show
the 68 and 95% CL lower limits from the Planck 2015 data [44],
and the vertical coloured lines correspond to specific models of
inflaton decay. Figure taken from [85].

22.7. Beyond Single-Field Slow-Roll Inflation

There are numerous possible scenarios beyond the simplest single-
field models of slow-roll inflation. These include theories in which
non-canonical fields are considered, such as k-inflation [86] or DBI
inflation [87], and multiple-field models, such as the curvaton
scenario [88]. As well as altering the single-field predictions for
the primordial curvature power spectrum (Eq. (22.48)) and the
tensor-scalar ratio (Eq. (22.49)), they may introduce new quantities
that vanish in single-field slow-roll models, such as isocurvature
matter perturbations, corresponding to entropy fluctuations in the
photon-to-matter ratio, at first order:

Sm =
δnm
nm

− δnγ
nγ

=
δρm
ρm

− 3

4

δργ
ργ

. (22.85)

Another possibility is non-Gaussianity in the distribution of the
primordial curvature perturbation (see Chap. 28, “Cosmic Microwave
Background” review), encoded in higher-order correlators such as the
primordial bispectrum [89]

〈ζ(k)ζ(k′)ζ(k′′)〉 ≡ (2π)3δ(k+ k′ + k′′)Bζ(k, k
′, k′′) , (22.86)

which is often expressed in terms of a dimensionless non-linearity
parameter fNL ∝ Bζ(k, k

′, k′′)/Pζ(k)Pζ(k
′). The three-point function

(Eq. (22.86)) can be thought of as defined on a triangle whose sides are
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k,k′,k′′, of which only two are independent, since they sum to zero.
Further assuming statistical isotropy ensures that the bispectrum
depends only on the magnitudes of the three vectors, k, k′ and
k′′. The search for fNL and other non-Gaussian effects was a prime
objective of the Planck data analysis [90].

22.7.1. Effective Field Theory of Inflation :

Since slow-roll inflation is a phase of accelerated expansion with
an almost constant Hubble parameter, one may think of inflation in
terms of an effective theory where the de Sitter spacetime symmetry is
spontaneously broken down to RW symmetry by the time-evolution of
the Hubble rate, Ḣ 6= 0. There is then a Goldstone boson, π, associated
with the spontaneous breaking of time-translation invariance, which
can be used to study model-independent properties of inflation. The
Goldstone boson describes a spacetime-dependent shift of the time
coordinate, corresponding to an adiabatic perturbation of the matter
fields:

δφi(t, ~x) = φi(t+ π(t, ~x))− φi(t) . (22.87)

Thus adiabatic field fluctuations can be absorbed into the spatial
metric perturbation, R in Eq. (22.28) at first order, in the comoving
gauge:

R = −Hπ , (22.88)

where we define π on spatially-flat hypersurfaces. In terms of inflaton
field fluctuations, we can identify π ≡ δφ/φ̇, but in principle this
analysis is not restricted to inflation driven by scalar fields.

The low-energy effective action for π can be obtained by writing
down the most general Lorentz-invariant action and expanding in
terms of π. The second-order effective action for the free-field wave
modes, πk, to leading order in slow roll is then

S
(2)
π = −

∫
d4x

√−g
M2

P Ḣ

c2s

[
π̇2k − c2s

R2
(∇π)2

]
, (22.89)

where ǫH is the Hubble slow-roll parameter (Eq. (22.11)). We identify
c2s with an effective sound speed, generalising canonical slow-roll
inflation, which is recovered in the limit c2s → 1.

The scalar power spectrum on super-Hubble scales (Eq. (22.48)) is
enhanced for a reduced sound speed, leading to a reduced tensor-scalar
ratio (Eq. (22.49))

Pζ(k) ≃
4π

M2
P

1

c2sǫ

(
H

2π

)2

∗
, r ≃ 16(c2sǫ)∗ . (22.90)

At third perturbative order and to lowest order in derivatives, one
obtains [91]

S
(3)
π =

∫
d4x

√−g
M2

P (1− c2s)Ḣ

c2s

[
π̇(∇π)2

R2 −
(
1 +

2

3

c̃3
c2s

)
π̇3

]
.

(22.91)
Note that this expression vanishes for canonical fields with c2s = 1.
For c2s 6= 1 the cubic action is determined by the sound speed and
an additional parameter c̃3. Both terms in the cubic action give rise
to primordial bispectra that are well approximated by equilateral
bispectra. However, the shapes are not identical, so one can find a
linear combination for which the equilateral bispectra of each term
cancel, giving rise to a distinctive orthogonal-type bispectrum [91].

Analysis based on Planck 2015 temperature and polarisation data
has placed bounds on several bispectrum shapes including equilateral
and orthogonal shapes [90]:

f
equil
NL = −4± 43 , f

orthog
NL = −26± 21 (68% CL) . (22.92)

For the simplest case of a constant sound speed, and marginalising
over c̃3, this provides a bound on the inflaton sound speed [90]

cs ≥ 0.024 (95% CL) . (22.93)

For a specific model such as DBI inflation [87], corresponding to
c̃3 = 3(1− c2s)/2, one obtains a tighter bound [90]:

cDBI
s ≥ 0.087 (95% CL) . (22.94)

The Planck team have analysed a wide range of non-Gaussian
templates from different inflation models, including tests for deviations
from an initial Bunch-Davies vacuum state, direction-dependent
non-Gaussianity, and feature models with oscillatory bispectra [90].
No individual feature or resonance is above the three-σ significance
level after accounting for the look-elsewhere effect. These results are
consistent with the simplest canonical, slow-roll inflation models, but
do not rule out most alternative models; rather, bounds on primordial
non-Gaussianity place important constraints on the parameter space
for non-canonical models.

22.7.2. Multi-Field Fluctuations :

There is a very large literature on two- and multi-field models of
inflation, most of which lies beyond the scope of this review [92].
However, two important general topics merit being mentioned here,
namely residual isocurvature perturbations and the possibility of
non-Gaussian effects in the primordial perturbations.

One might expect that other scalar fields besides the inflaton might
have non-negligible values that evolve and fluctuate in parallel with
the inflaton, without necessarily making the dominant contribution to
the energy density during the inflationary epoch. However, the energy
density in such a field might persist beyond the end of inflation before
decaying, at which point it might come to dominate (or at least make a
non-negligible contribution to) the total energy density. In such a case,
its perturbations could end up generating the density perturbations
detected in the CMB. This could occur due to a late-decaying scalar
field [88] or a field fluctuation that modulates the end of inflation [93]
or the inflaton decay [94].

22.7.2.1. Isocurvature Perturbations:

Primordial perturbations arising in single-field slow-roll inflation
are necessarily adiabatic, i.e., they affect the overall density
without changing the ratios of different contributions, such as the
photon-matter ratio, δ(nγ/nm)/(nγ/nm). This is because inflaton
perturbations represent a local shift of the time, as described in
section Sec. 22.7:

π =
δnγ
ṅγ

=
δnm
ṅm

. (22.95)

However, any light scalar field (i.e., one with effective mass less
than the Hubble scale) acquires a spectrum of nearly scale-invariant
perturbations during inflation. Fluctuations orthogonal to the inflaton
in field space are decoupled from the inflaton at Hubble-exit, but
can affect the subsequent evolution of the density perturbation. In
particular, they can give rise to local variations in the equation
of state (non-adabatic pressure perturbations) that can alter the
primordial curvature perturbation ζ on super-Hubble scales. Since
these fluctuations are statistically independent of the inflaton
perturbations at leading order in slow-roll [95], non-adiabatic
field fluctuations can only increase the scalar power spectrum with
respect to adiabatic perturbations at Hubble exit, while leaving
the tensor modes unaffected at first perturbative order. Thus the
single-field result for the tensor-scalar ratio (Eq. (22.49)) becomes an
inequality [96]

r ≤ 16ǫ∗ . (22.96)

Hence an observational upper bound on the tensor-scalar ratio does
not bound the slow-roll parameter ǫ in multi-field models.

If all the scalar fields present during inflation eventually decay
completely into fully thermalized radiation, these field fluctuations
are converted fully into adiabatic perturbations in the primordial
plasma [97]. On the other hand, non-adiabatic field fluctuations can
also leave behind primordial isocurvature perturbations (Eq. (22.85))
after inflation. In multi-field inflation models it is thus possible
for non-adiabatic field fluctuations to generate both curvature
and isocurvature perturbations leading to correlated primordial
perturbations [98].

The amplitudes of any primordial isocurvature perturbations
(Eq. (22.85)) are strongly constrained by the current CMB data,
especially on large angular scales. Using temperature and low-ℓ
polarisation data yields the following bound on the amplitude of cold
dark matter isocurvature perturbations at scale k = 0.002h−1Mpc−1
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(marginalising over the correlation angle and in the absence of
primordial tensor perturbations) [44]:

PSm

Pζ + PSm
< 0.020 at 95% CL . (22.97)

For fully (anti-)correlated isocurvature perturbations, corresponding to
a single isocurvature field providing a source for both the curvature and
residual isocurvature perturbations, the bounds become significantly
tighter [44]:

PSm

Pζ + PSm
< 0.0013 at 95% CL, correlated , (22.98)

PSm

Pζ + PSm
< 0.0008 at 95% CL, anti− correlated . (22.99)

22.7.2.2. Local-Type Non-Gaussianity:

Since non-adiabatic field fluctuations in multi-field inflation may
lead the to evolution of the primordial curvature perturbation at all
orders, it becomes possible to generate significant non-Gaussianity in
the primordial curvature perturbation. Non-linear evolution on super-
Hubble scales leads to local-type non-Gaussianity, where the local
integrated expansion is a non-linear function of the local field values
during inflation, N(φi). While the field fluctuations at Hubble exit,
δφi∗, are Gaussian in the slow-roll limit, the curvature perturbation,
ζ = δN , becomes a non-Gaussian distribution [99]:

ζ =
∑

i

∂N

∂φi
δφi +

1

2

∑

i,j

∂2N

∂φi∂φj
δφiδφj + . . . (22.100)

with non-vanishing bispectrum in the squeezed limit (k1 ≈ k2 ≫ k3):

Bζ(k1, k2, k3) ≈
12

5
f localNL

Pζ(k1)

4πk31

Pζ(k3)

4πk33
, (22.101)

where

6

5
f localNL =

∑
i,j

∂2N
∂φi∂φj(∑

i
∂N
∂φi

)2 . (22.102)

Both equilateral and orthogonal bispectra, discussed above in the
context of generalised single field inflation, vanish in the squeezed
limit, enabling the three types of non-Gaussianity to be distinguished
by observations, in principle.

Non-Gaussianity during multi-field inflation is highly model
dependent, though f localNL can often be smaller than unity in multi-field
slow-roll inflation [100]. Scenarios where a second light field plays a
role during or after inflation can make distinctive predictions for f localNL ,

such as f localNL = −5/4 in some curvaton scenarios [99,101] or f localNL = 5
in simple modulated reheating scenarios [94,102]. By contrast the
constancy of ζ on super-Hubble scales in single-field slow-roll inflation
leads to a very small non-Gaussianity [103,104], and in the squeezed
limit we have the simple result f localNL = 5(1− nS)/12 [105,106].

A combined analysis of the Planck temperature and polarization
data yields the following range for f localNL defined in (Eq. (22.102)):

f localNL = 0.8± 5.0 (95% CL) . (22.103)

This sensitivity is sufficient to rule out parameter regimes giving
rise to relatively large non-Gaussianity, but insufficient to probe
f localNL = O(ǫ), as expected in single-field models, or the range

f localNL = O(1) found in the simplest two-field models.

Local-type primordial non-Gaussianity can also give rise to a
striking scale-dependent bias in the distribution of collapsed dark
matter halos and thus the galaxy distribution [107,108]. However,
bounds from high-redshift galaxy surveys are not yet competitive with
the best CMB constraints.

22.8. Pre-Inflation and Anomalies in the CMB

Most work on inflation is done in the context of RW cosmology,
which already assumes a high degree of symmetry, or small
inhomogeneous perturbations (usually first order) about an RW
cosmology. The isotropic RW spacetime is an attractor for many
homogeneous, but anisotropic cosmologies in the presence of a
false vacuum energy density [109] or a scalar field with suitable
self-interaction potential energy [110,111]. However it is much harder
to establish the range of highly inhomogeneous initial conditions that
yield a successful RW Universe, with only limited studies to date (see,
e.g., [112,113,114]) .

One of the open questions in inflation is the nature of the
pre-inflationary state that should have provided suitable initial
conditions for inflation. This would need to have satisfied non-trivial
homogeneity and isotropy conditions, and one may ask how these
could have arisen and whether there may be some observable signature
of the pre-inflationary state. In general, one would expect any such
effects to appear at large angular scales, i.e., low multipoles ℓ.

Indeed, various anomalies have been noted in the large-scale CMB
anisotropies, also discussed in Chap. 28, “Cosmic Microwave Back-
ground” review, including a possible suppression of the quadrupole
and other very large-scale anisotropies, an apparent feature in the
range ℓ ≈ 20 to 30, and a possible hemispheric asymmetry. None
of these are highly statistically significant in view of the limitations
due to cosmic variance [44], and they cannot yet be regarded as
signatures of some pre-inflationary dynamics such as string theory or
the multiverse. However, is a hot topic for present and future analysis.

22.9. Prospects for Future Probes of Inflation

When inflation was first proposed [1,2] there was no evidence
for the existence of scalar fields or the accelerated expansion of
the universe. The situation has changed dramatically in recent
years with the observational evidence that the cosmic expansion is
currently accelerating and with the discovery of a scalar particle,
namely the Higgs boson (see Chap. 11, “Status of Higgs boson
physics” review). These discoveries encourage interest in the idea
of primordial accelerated expansion driven by a scalar field, i.e.,
cosmological inflation. In parallel, successive CMB experiments have
been consistent with generic predictions of inflationary models,
although without yet providing irrefutable evidence.

Prospective future CMB experiments, both ground- and space-based
are reviewed in the separate PDG “Cosmic Microwave Background”
review, Chap. 28. The main emphasis in CMB experiments in the
coming years will be on ground-based experiments providing improved
measurements of B-mode polarization and greater sensitivity to the
tensor-to-scalar ratio r, and more precise measurements at higher
ℓ that will constrain ns better. As is apparent from Fig. 22.1 and
the discussion of models such as R2 inflation, there is a strong
incentive to reach a 5-σ sensitivity to r ∼ 3 to 4 × 10−3. This
could be achieved with a moderately-sized space mission with large
sky coverage [115], improvements in de-lensing and foreground
measurements. The discussion in Sec. 22.3 (see also Fig. 22.4), also
brought out the importance of reducing the uncertainty in ns, as
a way to constrain post-inflationary reheating and the connection
to particle physics. CMB temperature anisotropies probe primordial
density perturbations down to comoving scales of order 50 Mpc,
beyond which scale secondary sources of anisotropy dominate. CMB
spectral distortions could potentially constrain the amplitude and
shape of primordial density perturbations on comoving scales from
Mpc to kpc due to distortions caused by the Silk damping of pressure
waves in the radiation dominated era, before the last scattering of the
CMB photons but after the plasma can be fully thermalised [116].

Improved sensitivity to non-Gaussianities is also a priority. In
addition to CMB measurements, future large-scale structure surveys
will also have roles to play as probes into models of inflation, for
which there are excellent prospects. High-redshift galaxy surveys are
sensitive to local-type non-Gaussianity due to the scale-dependent
bias induced on large scales. Current surveys such as eBOSS, probing
out to redshift z ∼ 2, can reach a precision ∆fNL ∼ 15, from
measurements of the galaxy power spectrum, or possibly ∆fNL ∼ 10,
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if the galaxy bias can be determined independently [117]. Upcoming
surveys such as DESI may reach ∆fNL ∼ 4 [118] comparable with
the Planck sensitivity. In the future, radio surveys such as SKA will
measure large-scale structure out to redshift z ∼ 3 [119], initially
through mapping the intensity of the neutral hydrogen 21-cm line, and
eventually through radio galaxy surveys which will probe local-type
non-Gaussianity to fNL ∼ 1.

Galaxy clustering using DESI and Euclid satellite data could also
constrain the running of the scalar tilt to a precision of ∆αs ≈ 0.0028,
a factor of 2 improvement on Planck constraints, or a precision of
0.0016 using LSST data [118].

The proposed SPHEREx satellite mission [120] will use measure-
ments of the galaxy power spectrum to target a measurement of the
running of the scalar spectral index with a sensitivity ∆αs ∼ 10−3 and
local-type primordial non-Gaussianity, ∆fNL ∼ 1. Including informa-
tion from the galaxy bispectrum one might reduce the measurement
error on non-Gaussianity to ∆fNL ∼ 0.2, making it possible to
distinguish between single-field slow-roll models and alternatives such
as the curvaton scenario for the origin of structure, which generate
fNL ∼ 1.
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Big-Bang nucleosynthesis (BBN) offers the deepest reliable probe
of the early Universe, being based on well-understood Standard Model
physics [1]. Predictions of the abundances of the light elements, D,
3He, 4He, and 7Li, synthesized at the end of the ‘first three minutes,’
are in good overall agreement with the primordial abundances inferred
from observational data, thus validating the standard hot Big-Bang
cosmology (see [2–5] for reviews). This is particularly impressive
given that these abundances span nine orders of magnitude – from
4He/H ∼ 0.08 down to 7Li/H ∼ 10−10 (ratios by number). Thus BBN
provides powerful constraints on possible deviations from the standard
cosmology, and on new physics beyond the Standard Model [6–9].

23.1. Theory

The synthesis of the light elements is sensitive to physical conditions
in the early radiation-dominated era at a temperature T ∼ 1 MeV,
corresponding to an age t ∼ 1 s. At higher temperatures, weak
interactions were in thermal equilibrium, thus fixing the ratio of
the neutron and proton number densities to be n/p = e−Q/T ,
where Q = 1.293 MeV is the neutron-proton mass difference.
As the temperature dropped, the neutron-proton inter-conversion
rate per nucleon, Γn↔p ∼ G2

FT
5, fell faster than the Hubble

expansion rate, H ∼ √
g∗GN T 2, where g∗ counts the number

of relativistic particle species determining the energy density in
radiation (see ‘Big Bang Cosmology’ Chapter 21 of this Review).
This resulted in departure from chemical equilibrium (‘freeze-out’) at

Tfr ∼ (g∗GN/G
4
F)

1/6 ≃ 1 MeV. The neutron fraction at this time,

n/p = e−Q/Tfr ≃ 1/6, is thus sensitive to every known physical
interaction, since Q is determined by both strong and electromagnetic
interactions while Tfr depends on the weak as well as gravitational
interactions. Moreover, the sensitivity to the Hubble expansion rate
affords a probe of, e.g., the number of relativistic neutrino species [10].
After freeze-out, the neutrons were free to β-decay, so the neutron
fraction dropped to n/p ≃ 1/7 by the time nuclear reactions began.
A simplified analytic model of freeze-out yields the n/p ratio to an
accuracy of ∼ 1% [11,12].

The rates of these reactions depend on the density of baryons
(strictly speaking, nucleons), which is usually expressed normalized
to the relic blackbody photon density as η ≡ nb/nγ . As we
shall see, all the light-element abundances can be explained
with η10 ≡ η × 1010 in the range 5.8–6.6 (95% CL). With nγ
fixed by the present CMB temperature 2.7255K (see ‘Cosmic
Microwave Background’ Chapter 28 of this Review), this can be
stated as the allowed range for the baryon mass density today,
ρb = (3.9–4.6) × 10−31 g cm−3, or as the baryonic fraction of the
critical density, Ωb = ρb/ρcrit ≃ η10h

−2/274 = (0.021–0.024)h−2,
where h ≡ H0/100 km s−1Mpc−1 is the present Hubble parameter
(see Cosmological Parameters review Chapter 24).

The nucleosynthesis chain begins with the formation of deuterium
in the process p(n, γ)D. However, photo-dissociation by the high
number density of photons delays production of deuterium (and other
complex nuclei) until well after T drops below the binding energy

of deuterium, ∆D = 2.23 MeV. The quantity η−1e−∆D/T , i.e., the
number of photons per baryon above the deuterium photo-dissociation
threshold, falls below unity at T ≃ 0.1 MeV; nuclei can then begin
to form without being immediately photo-dissociated again. Only
2-body reactions, such as D(p, γ)3He and 3He(D, p)4He are important
because the density by this time has become rather low – comparable
to that of air!

Nearly all neutrons end up bound in the most stable light element
4He. Heavier nuclei do not form in any significant quantity both
because of the absence of stable nuclei with mass number 5 or 8
(which impedes nucleosynthesis via n4He, p4He or 4He4He reactions),
and the large Coulomb barriers for reactions such as 3He(4He, γ)7Li
and 3He(4He, γ)7Be. Hence the primordial mass fraction of 4He,
Yp ≡ ρ(4He)/ρb, can be estimated by the simple counting argument

Yp =
2(n/p)

1 + n/p
≃ 0.25 . (23.1)

There is little sensitivity here to the actual nuclear reaction rates,
which are, however, important in determining the other ‘left-over’
abundances: D and 3He at the level of a few times 10−5 by number
relative to H, and 7Li/H at the level of about 10−10 (when η10
is in the range 1–10). These values can be understood in terms
of approximate analytic arguments [12,13]. The experimental
parameter most important in determining Yp is the neutron lifetime,
τn, which normalizes (the inverse of) Γn↔p. Its value has recently been
significantly revised downwards to τn = 880.2± 1.0 s (see N Baryons
Listing).

The elemental abundances shown in Fig. 23.1 as a function of η10
were calculated [14] using an updated version [15] of the Wagoner
code [1]; other versions [16–18] too are publicly available. The 4He
curve includes small corrections due to radiative processes at zero and
finite temperatures [19], non-equilibrium neutrino heating during e±

annihilation [20], and finite nucleon mass effects [21]; the range
primarily reflects the 2σ uncertainty in the neutron lifetime. The
spread in the curves for D, 3He, and 7Li corresponds to the 2σ
uncertainties in nuclear cross sections, as estimated by Monte Carlo
methods [15, 22–24]. The input nuclear data have been carefully
reassessed [14, 24–28], leading to improved precision for the abundance
predictions. In particular, the uncertainty in 7Li/H at interesting
values of η has been reduced recently by a factor ∼ 2, a consequence
of a similar reduction in the error budget [29] for the dominant
mass-7 production channel 3He(4He, γ)7Be. Polynomial fits to the
predicted abundances and the error correlation matrix have been given
in refs. [23,30]. The boxes in Fig. 23.1 show the observationally
inferred primordial abundances with their associated uncertainties, as
discussed below.

Figure 23.1: The primordial abundances of 4He, D, 3He,
and 7Li as predicted by the standard model of Big-Bang
nucleosynthesis — the bands show the 95% CL range [5].
Boxes indicate the observed light element abundances. The
narrow vertical band indicates the CMB measure of the cosmic
baryon density, while the wider band indicates the BBN D+4He
concordance range (both at 95% CL).

The nuclear reaction cross sections important for BBN have all been
measured at the relevant energies. Recently however there have been
substantial advances in the precision of light element observations
(e.g., D/H) and in the determination of cosmological parameters (e.g.,
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from Planck). This motivates corresponding improvement in BBN
predictions and thus in the key reaction cross sections. For example,
it has been suggested [31,32] that d(p, γ)3He measurements may
suffer from systematic errors and be inferior to ab initio theory; if so,
this could alter D/H abundances at a level that is now significant.
Ongoing low-background cross section measurements should resolve
this issue [33].

23.2. Light Element Abundances

BBN theory predicts the universal abundances of D, 3He, 4He,
and 7Li, which are essentially fixed by t ∼ 180 s. Abundances are,
however, observed at much later epochs, after stellar nucleosynthesis
has commenced. This produces heavy elements such as C, N, O, and
Fe (“metals”), while the ejected remains of this stellar processing
alters the light element abundances from their primordial values.
Thus, one seeks astrophysical sites with low metal abundances in order
to measure light element abundances that are closer to primordial.
For all light elements, systematic errors are the dominant limitation
to the precision with which primordial abundances can be inferred.

BBN is the only significant source of deuterium, which is entirely
destroyed when it is cycled into stars [34]. Thus, any detection
provides a lower limit to primordial D/H, and an upper limit on η10; for
example, the local interstellar value of D/H = (1.56± 0.40)× 10−5 [35]
requires η10 ≤ 9. The best proxy to the primordial value of D is its
measure in distant and chemically unprocessed matter, where stellar
processing (astration) is minimal [34]. This has become possible with
the advent of large telescopes, but after two decades of observational
efforts we have only around a dozen determinations [36–49]. The
available D measurements are for systems with metallicities of
(0.001− 0.03)× Solar where no significant astration is expected [37].

High-resolution spectra reveal the presence of D in high-redshift,
low-metallicity quasar absorption systems via its isotope-shifted
Lyman-α absorption features, though, unfortunately, these are usually
obscured or contaminated by the Lyman-α forest of hydrogen features.

Damped Lyman-α systems (DLAs: N(H) > 5 × 1020 cm−2)
correspond to sightlines through dense regions in high-z galaxies.
These systems make possible a precise measure of the hydrogen column
density by means of the Lorentzian damping wings of Lyman-α and
Lyman-β (if relatively uncontaminated by Lyman-α clouds)[36, 38].
Systems with a simple kinematic structure are desirable to avoid
uncertainties with complex, only partially resolved components. A
few DLA systems show D lines resolved up to the higher members of
the Lyman series. Recent determinations [40, 42], and reanalyses [41,
49], provide strikingly improved precision over earlier work. There
are now 10 good measurements which provide a weighted mean of
log(D/H) = −4.590± 0.004, i.e.:

D/H|p = (2.569± 0.027)× 10−5. (23.2)

D/H shows no correlation with metallicity, redshift, or the hydrogen
column density N(H) (=

∫
los nH ds) integrated over the line-of-sight

through the absorber. This is consistent with the measured D/H
being representative of the primordial value. By contrast, D/H
measurements in the Galaxy are scattered by a factor of ∼ 2 [50],
with a bimodal distribution as well as being anti-correlated with
metal abundances. This suggests that interstellar D not only suffers
stellar astration but also partly resides in dust particles that evade
gas-phase observations. However, in the DLA used for deuterium the
dust content is apparently quite small as implied by Solar proportions
of the abundances of refractory and non refractory elements.

The primordial 4He abundance is best determined through
recombination emission lines of He and H in the most metal-poor
extragalactic H II (ionized) regions, viz. blue compact galaxies,
generally found at low redshift. There is now a large body of data
on 4He and CNO in these galaxies, with over 1000 such systems in
the Sloan Digital Sky Survey alone [51, 59]. These data confirm that
the small stellar contribution to the helium abundance is positively
correlated with metal production, so extrapolation to zero metallicity
gives the primordial 4He abundance Yp. However, H II regions are
complex systems and several physical parameters enter in the He/H

determination, notably the electron density and temperature, as well
as reddening. Thus systematic effects dominate the uncertainties in
the abundance determination [51, 52]. A major step forward has
been the inclusion of the He λ10830 infrared emission line which
shows a strong dependence on the electron density and is thus useful
to break the degeneracy with the temperature, allowing for a more
robust helium abundance determination. In recent work that has
accounted for the underlying 4He stellar absorption, and/or the newly
derived values of the HeI-recombination and H-excitation-collisional
coefficients, the 4He abundances have increased significantly. Recent
results are Yp = 0.2446± 0.0029 [54], Yp = 0.2449± 0.0040 [57] and
Yp = 0.2551± 0.0022 [58]- – see Ref. [59] and references therein for
previous determinations. Our recommended 4He abundance is

Yp = 0.245± 0.003, (23.3)

but the matter is far from settled given that the measurements are
only marginally consistent.

As we will see in more detail below, the primordial abundance
of 7Li now plays a central role in BBN, and possibly points to new
physics. The systems best suited for Li observations are metal-poor
(“Pop II”) stars in the spheroid of the Galaxy, which have metallicities
going down to perhaps 10−5 of the solar value [62]. Observations
have long shown [63–66] that Li does not vary significantly in Pop II
stars with metallicities <∼ 1/30 of Solar — the “Spite plateau” [63].
However, there are systematic uncertainties due to different techniques
used to determine the physical parameters (e.g., the temperature)
of the stellar atmosphere in which the Li absorption line is formed.
Different analyses and in some cases different stars and stellar
systems (globular clusters), yield Li/H|p = (1.7 ± 0.3)× 10−10 [66],
Li/H|p = (2.19±0.28)×10−10 [67], and Li/H|p = (1.86±0.23)×10−10

[68].

Recent observations find a puzzling drop in Li/H in metal-poor stars
with [Fe/H] ≡ log10[(Fe/H)/(Fe/H)⊙] < −3.0 [69, 71] particularly at
the very low metallicity end. Li is not detected at all, or is well below
the Spite Plateau, in all the 5 extremely metal poor dwarfs with
metallicities [Fe/H] <∼ −4.5, where it ought to be present. The reason
is not known and the same effect(s) may also produce the ‘melting’
of the Li plateau at metallicities [Fe/H ≈ −3.0 [70, 71], thus making
quite uncertain any primordial Li value extracted by extrapolating to
zero metallicity. To estimate the primordial value it is therefore safer
to consider stars with −2.8 < [Fe/H] < −1.5 [71], which yields

Li/H|p = (1.6± 0.3)× 10−10. (23.4)

However, the evidence that something is depleting Li at the low
metallicity end suggests that its abundance may also be modified in
halo stars with moderate metallicity. The observed abundance should
thus be considered a lower bound rather than a measure of primordial
Li. In fact, Li in Pop II stars may have been partially destroyed due
to mixing of the outer layers with the hotter interior [75]. Such
processes can be constrained by the absence of significant scatter in
Li versus Fe [65], but Li depletion by a factor as large as ∼ 1.8
may have occured [76]. A recent model [74] predicts that Li is
significantly destroyed in the pre-main-sequence phase by overshoot
mixing and then partially restored by late accretion of fresh non-Li
depleted material; the Spite plateau is recovered starting from an
initial Li/H|p = 5.3 × 10−10 which corresponds to the baryon density
indicated by both the CMB and the D abundance [73, 74].

Stellar determination of Li abundances typically sum over both
stable isotopes 6Li and 7Li. Recent high-precision measurements are
sensitive to the tiny isotopic shift in Li absorption (which manifests
itself in the shape of the blended, thermally broadened line) and
indicate 6Li/7Li ≤ 0.05 [77, 78], thus confirming that 7Li is dominant.
A 6Li plateau (analogous to the 7Li plateau) has also been claimed
[77]. This has, however, been challenged by new observations and
analyses [78, 79, 80], which show that stellar convective motions can
generate asymmetries in the line shape that mimic the presence of
6Li. Hence the deduced ratio in the best studied stars should be
interpreted as an upper limit on the 6Li abundance [78].

Turning to 3He, the only data available are from the Solar system
and (high-metallicity) H II regions in our Galaxy [81]. This makes
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inferring the primordial abundance difficult, a problem compounded
by the fact that stellar nucleosynthesis models for 3He are in conflict
with observations [82]. Consequently, it is inappropriate to use 3He
or D+3He as cosmological probes; instead, one might hope to turn the
problem around and constrain stellar astrophysics using the predicted
primordial 3He abundance [83].

23.3. Concordance, Dark Matter, and the CMB

We now use the observed light element abundances to test the
theory. We first consider standard BBN, which is based on Standard
Model physics alone, so Nν = 3 and the only free parameter is
the baryon-to-photon ratio η. (The implications of BBN for physics
beyond the Standard Model will be considered below, Section 23.5).
Thus, any abundance measurement determines η, and additional
measurements overconstrain the theory and thereby provide a
consistency check.

While the η ranges spanned by the boxes in Fig. 23.1 do not
all overlap, they are all within a factor ∼ 2 of each other. In
particular, the lithium abundance corresponds to η values that are
inconsistent with that of the (now very precise) D/H abundance as
well as the less-constraining 4He abundance. This discrepancy marks
the ‘lithium problem.’ The problem could simply reflect difficulty
in determining the primordial lithium abundance, or could hint at
a more fundamental omission in the theory. The possibility that
lithium reveals new physics is addressed in detail in the next section.
If however we exclude the lithium constraint because its inferred
abundance may suffer from systematic uncertainties, then D/H and
4He are in agreement. The concordant η range is essentially that
implied by D/H, namely

5.8 ≤ η10 ≤ 6.6 (95% CL). (23.5)

Despite the lithium problem, the overall concordance remains remark-
able: using only well-established microphysics we can extrapolate back
to t ∼ 1 s to predict light element abundances spanning nine orders
of magnitude, in approximate agreement with observation. This is a
major success for the standard cosmology, and inspires confidence in
extrapolation back to still earlier times.

This concordance provides a measure of the baryon content:

0.021 ≤ Ωbh
2 ≤ 0.024 (95% CL), (23.6)

a result that plays a key role in our understanding of the matter
budget of the Universe. First we note that Ωb ≪ 1, i.e., baryons
cannot close the Universe [85]. Furthermore, the cosmic density
of (optically) luminous matter is Ωlum ≃ 0.0024h−1 [86], so that
Ωb ≫ Ωlum: most baryons are optically dark, probably in the form
of a diffuse intergalactic medium [87]. Finally, given that Ωm ∼ 0.3
(see Dark Matter and Cosmological Parameters reviews, Chapter 26
Chapter 24), we infer that most matter in the Universe is not only
dark, but also takes some non-baryonic (more precisely, non-nucleonic)
form.

The BBN prediction for the cosmic baryon density can be tested
through precision measurements of CMB temperature fluctuations
(see Cosmic Microwave Background review, Chapter 28). One can
determine η from the amplitudes of the acoustic peaks in the CMB
angular power spectrum [88], making it possible to compare two
measures of η using very different physics, at two widely separated
epochs. In the standard cosmology, there is no change in η between
BBN and CMB decoupling, thus, a comparison of ηBBN and ηCMB
is a key test. Agreement would endorse the standard picture, while
disagreement could point to new physics during/between the BBN
and CMB epochs.

The analysis described in the Cosmic Microwave Background
review, based on Planck 2015 data, yields Ωbh

2 = 0.0223 ± 0.0002
which corresponds to η10 = 6.09 ± 0.06 [61]. This result depends
weakly on the primordial helium abundance, and the fiducial Planck
analysis uses BBN theory to fix Yp(η). As shown in Fig. 23.1,
this CMB estimate of the baryon density (narrow vertical band) is
consistent with the BBN range, i.e., in good agreement with the value

inferred from high-redshift D/H measurements [39] and local 4He
determinations; together these observations span diverse environments
from redshifts z ∼ 1000 to the present [89].

The CMB damping tail is sensitive to the primordial 4He abundance
and this is independent of both BBN and local 4He measurements
[60]. The Planck 2015 analysis using TT+lowP but not lensing yields
Yp = 0.253+0.041

−0.042 [61], i.e., consistent with the H II region helium
abundance determination. Moreover, this value is consistent with the
Standard (Nν = 3) BBN prediction for Yp with the Planck-determined
baryon density. This concordance represents a successful CMB-only
test of BBN.

The precision determination of the baryon density using the CMB
motivates using this as an input to BBN calculations. Within the
context of the Standard Model, BBN then becomes a zero-parameter
theory, and the light element abundances are completely determined
to within the uncertainties in ηCMB and the BBN theoretical errors.
Comparison with the observed abundances then can be used to test the
astrophysics of post-BBN light element evolution [90]. Alternatively,
one can consider possible physics beyond the Standard Model (e.g.,
which might change the expansion rate during BBN) and then use all
of the abundances to test such models; this is discussed in Section 23.5.

23.4. The Lithium Problem

As Fig. 23.1 shows, stellar Li/H measurements are inconsistent
with the CMB (and D/H), given the error budgets we have quoted.
Recent updates in nuclear cross sections and stellar abundance
systematics increase the discrepancy to over 5σ, depending on the
stellar abundance analysis adopted [14].

The question then becomes pressing as to whether this mismatch
comes from systematic errors in the observed abundances, and/or
uncertainties in stellar astrophysics or nuclear inputs, or whether
there might be new physics at work [9]. Nuclear inputs (cross
sections) for BBN reactions are constrained by extensive laboratory
measurements; to increase 7Be destruction requires enhancement of
otherwise subdominant processes that can be attained by missed
resonances in a few reactions such as 7Be(d, p)2α if the compound
nuclear state properties are particularly favorable [91]. However,
experimental searches have now closed off these possibilities [92],
making a “nuclear fix” increasingly unlikely.

Another conventional means to solve the lithium problem is by in
situ destruction over the long lifetimes of the host halo stars. Stellar
depletion mechanisms include diffusion, rotationally induced mixing,
or pre-main-sequence depletion. These effects certainly occur, but
to reduce lithium to the required levels generally requires some ad
hoc mechanism and fine tuning of the initial stellar parameters [73,
74, 93]. A putative signature of diffusion has been reported for the
globular clusters NGC 6397 and NGC 6752, where the “turnoff” stars
exhibit slightly lower (by a factor ∼ 1.3) abundances of Fe II, Ti II,
Sc II, Ca I and Mg I, than in more evolved stars [76,94]. General
features of diffusive models are a dispersion in the Li abundances
and a pronounced downturn in the Li abundances at the hot end of
the Li plateau. Some extra turbulence needs to be invoked to limit
diffusion in the hotter stars and to restore uniform Li abundance
along the Spite plateau [93]. In the framework of these models (and
also assuming identical initial stellar rotation) depletion by at most a
factor ∼ 1.8 is conceivable [76, 94].

As nuclear and astrophysical solutions to the lithium problem
become increasingly constrained (even if difficult to rule out
definitively), the possibility of new physics arises. Nucleosynthesis
models in which the baryon-to-photon ratio is inhomogeneous can alter
abundances for a given ηBBN, but will overproduce

7Li [95]. Entropy
generation by some non-standard process could have decreased η
between the BBN era and CMB decoupling, however the lack of
spectral distortions in the CMB rules out any significant energy
injection upto a redshift z ∼ 107 [96]. The most intriguing resolution
of the lithium problem thus involves new physics during BBN [7–9].

We summarize the general features of such solutions here, and later
consider examples in the context of specific particle physics models.
Many proposed solutions introduce perturbations to light-element
formation during BBN; while all element abundances may suffer
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perturbations, the interplay of 7Li and D is often the most important
i.e. observations of D often provide the strongest constraints on the
allowed perturbations to 7Li. In this connection it is important to note
that the new, very precise determination of D/H [39] will significantly
constrain the ability of such models to ameliorate or solve the lithium
problem.

A well studied class of models invokes the injection of suprathermal
hadronic or electromagnetic particles due to decays of dark matter
particles. The effects are complex and depend on the nature of the
decaying particles and their branchings and spectra. However, the
models that most successfully solve the lithium problem generally
feature non-thermal nucleons, which dissociate all light elements.
Dissociation of even a small fraction of 4He introduces a large
abundance of free neutrons, which quickly thermalize. The thermal
neutrons drive the 7Be(n, p)7Li conversion of 7Be. The resulting 7Li
has a lower Coulomb barrier relative to 7Be and is readily destroyed via
7Li(p, α)4He [84, 97]. But 4He dissociation also produces D directly as
well as via nonthermal neutron n(p, γ)d reactions. This introduces a
tension between Li/H reduction and D/H enhancement that becomes
increasingly restrictive with the increasing precision of deuterium
observations. Indeed, this now forces particle injection scenarios to
make very small 7Li perturbations — far short of the level needed. An
exception is a recent model wherein MeV-scale decays by construction
avoid 4He dissociation and associated D/H overproduction, instead
“borrowing” neutrons by dissociating only deuterons [98].

Another important class of models retains the standard cosmic
particle content, but changes their interactions via time variations
in the fundamental constants [99]. Here too, the details are
model-dependent, but scenarios that solve or alleviate the lithium
problem often feature perturbations to the deuteron binding energy.
A weaker D binding leads to the D bottleneck being overcome later,
so that element formation commences at a lower temperature and
lower density. This leads in turn to slower nuclear rates that freeze
out earlier. The net result is a higher final D/H, due to less efficient
processing into 4He, but also lower Li, due to suppressed production
via 3He(α, γ)7Be.

The lithium problem remains an unresolved issue in BBN.
Nevertheless, the remarkable concordance between the CMB and the
D (as well as 4He) abundance, is a non-trivial success, and provides
important constraints on the early Universe.

23.5. Beyond the Standard Model

Given the simple physics underlying BBN, it is remarkable that
it still provides the most effective test for the cosmological viability
of ideas concerning physics beyond the Standard Model. Although
baryogenesis and inflation must have occurred at higher temperatures
in the early Universe, we do not as yet have ‘standard models’ for
these, so BBN still marks the boundary between the established and
the speculative in Big Bang cosmology. It might appear possible to
push the boundary back to the quark-hadron transition at T ∼ ΛQCD,
or electroweak symmetry breaking at T ∼ 1/

√
GF; however, so far

no observable relics of these epochs have been identified, either
theoretically or observationally. Thus, although the Standard Model
provides a precise description of physics up to the Fermi scale,
cosmology cannot be traced in detail before the BBN era.

Limits on new physics come mainly from the observational bounds
on the 4He abundance. This is proportional to the n/p ratio when
the weak-interaction rate falls behind the Hubble expansion rate at
Tfr ∼ 1 MeV. The presence of additional neutrino flavors (or of any
other relativistic species) at this time increases g∗, hence the expansion
rate, leading to a larger value of Tfr, n/p, and therefore Yp [10,100].

In the Standard Model at T = 1 MeV, g∗ = 5.5 + 7
4Nν , where Nν

is the effective number of (nearly) massless neutrino flavors (see Big
Bang Cosmology review Chapter 21). The helium curves in Fig. 23.1
were computed taking Nν = 3; small corrections for non-equilibrium
neutrino heating [20] are included in the thermal evolution and
lead to an effective Nν = 3.04 compared to assuming instantaneous
neutrino freezeout (Chapter 21). The computed 4He abundance scales
as ∆Yp ≃ 0.013∆Nν [11]. Clearly the central value for Nν from
BBN will depend on η, which is independently determined (with

weaker sensitivity to Nν) by the adopted D or 7Li abundance. For
example, if the best value for the observed primordial 4He abundance
is 0.249, then, for η10 ∼ 6, the central value for Nν is very close to
3. A maximum likelihood analysis on η and Nν based on the above
4He and D abundances finds the (correlated) 95% CL ranges to be
5.6 < η10 < 6.6 and 2.3 < Nν < 3.4 [5]. Identical results are obtained
using a simpler method to extract such bounds based on χ2 statistics,
given a set of input abundances [101].

The CMB power spectrum in the damping tail is independently
sensitive to Nν (e.g. [102]) . The CMB value NCMB

ν probes the
cosmic radiation content at (re)combination, so a discrepancy would
imply new physics or astrophysics. Indeed, observations by the
South Pole Telescope implied NCMB

ν = 3.85± 0.62 [103], prompting
discussion of “dark radiation” such as sterile neutrinos [104].
However, Planck 2015 results give NCMB

ν = 3.13 ± 0.31 when using
the BBN Yp(η), a result quite consistent with the Standard Model
neutrinos [61]. If we assume that η did not change between BBN
and (re)combination, the constraint can be improved by including
the recent D/H and astrophysical Yp measurements, which yields
Nν = 2.88± 0.16 [5].

Just as one can use the measured helium abundance to place
limits on g∗ [100], any changes in the strong, weak, electromagnetic,
or gravitational coupling constants, arising e.g., from the dynamics
of new dimensions, can be similarly constrained [105], as can any
speed-up of the expansion rate in, e.g., scalar-tensor theories of
gravity [106].

The limits on Nν can be translated into limits on other types
of particles or particle masses that would affect the expansion
rate of the Universe during nucleosynthesis. For example, consider
‘sterile’ neutrinos with only right-handed interactions of strength
GR < GF. Such particles would decouple at higher temperature than
(left-handed) neutrinos, so their number density (∝ T 3) relative to
neutrinos would be reduced by any subsequent entropy release, e.g.,
due to annihilations of massive particles that become non-relativistic
between the two decoupling temperatures. Thus (relativistic) particles
with less than full strength weak interactions contribute less to the
energy density than particles that remain in equilibrium up to the
time of nucleosynthesis [107]. If we impose Nν < 4 as an illustrative
constraint, then the three right-handed neutrinos must have a
temperature 3(TνR/TνL)

4 < 1. Since the temperature of the decoupled
νR is determined by entropy conservation (see Big Bang Cosmology

review, Chapter 21), TνR/TνL = [(43/4)/g∗(Td)]1/3 < 0.76, where Td
is the decoupling temperature of the νR. This requires g∗(Td) > 24,
so decoupling must have occurred at Td > 140 MeV. The decoupling
temperature is related to GR through (GR/GF)

2 ∼ (Td/3MeV)−3,
where 3 MeV is the decoupling temperature for νLs. This yields a limit
GR

<∼ 10−2GF. The above argument sets lower limits on the masses
of new Z ′ gauge bosons to which right-handed neutrinos would be
coupled in models of superstrings [108], or extended technicolour [109].
Similarly a Dirac magnetic moment for neutrinos, which would allow
the right-handed states to be produced through scattering and thus
increase g∗, can be significantly constrained [110], as can any new
interactions for neutrinos that have a similar effect [111]. Right-
handed states can be populated directly by helicity-flip scattering if
the neutrino mass is large enough, and this property has been used to
infer a bound of mντ

<∼ 1 MeV (taking Nν < 4) [112]. If there is
mixing between active and sterile neutrinos then the effect on BBN is
more complicated [113].

BBN limits on the cosmic expansion rate constrain supersymmetric
scenarios in which the neutralino or gravitino are very light, so
that they contribute to g∗ [114]. A gravitino in the mass range
∼ 10−4− 10 eV will affect the expansion rate of the Universe similarly
to a light neutralino (which is however now probably ruled out by
collider data, especially the decays of the Higgs-like boson). The net
contribution to Nν then ranges between 0.74 and 1.69, depending on
the gravitino and slepton masses [115].

The limit on the expansion rate during BBN can also be translated
into bounds on the mass/lifetime of non-relativistic particles that
decay during BBN. This results in an even faster speed-up rate,
and typically also changes the entropy [116]. If the decays include
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Standard Model particles, the resulting electromagnetic [117–118]
and/or hadronic [119] cascades can strongly perturb the light elements,
which leads to even stronger constraints. Such arguments have been
applied to rule out an MeV mass for ντ , which decays during
nucleosynthesis [120].

Decaying-particle arguments have proved very effective in probing
supersymmetry. Light-element abundances generally are complemen-
tary to accelerator data in constraining SUSY parameter space, with
BBN reaching to values kinematically inaccessible to the LHC. Much
recent interest has focused on the case in which the next-to-lightest
supersymmetric particle is metastable and decays during or after
BBN. The constraints on unstable particles discussed above imply
stringent bounds on the allowed abundance of such particles [119]; if
the metastable particle is charged (e.g., the stau), then it is possible
for it to form atom-like electromagnetic bound states with nuclei, and
the resulting impact on light elements can be quite complex [121].
Moreover, SUSY decays can destroy 7Li and/or produce 6Li, leading
to a possible supersymmetric solution to the lithium problems noted
above [122]( see [7] for a review).

These arguments impose powerful constraints on supersymmetric
inflationary cosmology [118–119], particularly thermal leptogene-
sis [123]. These limits can be evaded only if the gravitino is massive
enough to decay before BBN, i.e., m3/2

>∼ 50 TeV [124]( which would

be unnatural), or if it is in fact the lightest supersymmetric particle
and thus stable [118,125]. Similar constraints apply to moduli – very
weakly coupled fields in string theory that obtain an electroweak-scale
mass from supersymmetry breaking [126].

Finally, we mention that BBN places powerful constraints on the
possibility that there are new large dimensions in nature, perhaps
enabling the scale of quantum gravity to be as low as the electroweak
scale [127]. Thus, Standard Model fields may be localized on a
‘brane,’ while gravity alone propagates in the ‘bulk.’ It has been
further noted that the new dimensions may be non-compact, even
infinite [128], and the cosmology of such models has attracted
considerable attention. The expansion rate in the early Universe can
be significantly modified, so BBN is able to set interesting constraints
on such possibilities [129].
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24.1. Parametrizing the Universe

Rapid advances in observational cosmology have led to the
establishment of a precision cosmological model, with many of the
key cosmological parameters determined to one or two significant
figure accuracy. Particularly prominent are measurements of cosmic
microwave background (CMB) anisotropies, with the highest precision
observations being those of the Planck Satellite [1,2] which supersede
the iconic WMAP results [3,4]. However the most accurate model of
the Universe requires consideration of a range of observations, with
complementary probes providing consistency checks, lifting parameter
degeneracies, and enabling the strongest constraints to be placed.

The term ‘cosmological parameters’ is forever increasing in its
scope, and nowadays often includes the parameterization of some
functions, as well as simple numbers describing properties of the
Universe. The original usage referred to the parameters describing
the global dynamics of the Universe, such as its expansion rate and
curvature. Also now of great interest is how the matter budget of
the Universe is built up from its constituents: baryons, photons,
neutrinos, dark matter, and dark energy. We need to describe the
nature of perturbations in the Universe, through global statistical
descriptors such as the matter and radiation power spectra. There
may also be parameters describing the physical state of the Universe,
such as the ionization fraction as a function of time during the era
since recombination. Typical comparisons of cosmological models with
observational data now feature between five and ten parameters.

24.1.1. The global description of the Universe :

Ordinarily, the Universe is taken to be a perturbed Robertson–
Walker space-time with dynamics governed by Einstein’s equations.
This is described in detail in the Big-Bang Cosmology chapter in
this volume. Using the density parameters Ωi for the various matter
species and ΩΛ for the cosmological constant, the Friedmann equation
can be written ∑

i

Ωi +ΩΛ − 1 =
k

R2H2
, (24.1)

where the sum is over all the different species of material in the
Universe. This equation applies at any epoch, but later in this article
we will use the symbols Ωi and ΩΛ to refer to the present-epoch
values.

The complete present-epoch state of the homogeneous Universe
can be described by giving the current-epoch values of all the
density parameters and the Hubble constant h (the present-day
Hubble parameter being written H0 = 100h kms−1Mpc−1). A typical
collection would be baryons Ωb, photons Ωγ , neutrinos Ων , and
cold dark matter Ωc (given charge neutrality, the electron density is
guaranteed to be too small to be worth considering separately and is
effectively included with the baryons). The spatial curvature can then
be determined from the other parameters using Eq. (24.1). The total
present matter density Ωm = Ωc+Ωb may be used in place of the cold
dark matter density Ωc.

These parameters also allow us to track the history of the Universe,
at least back until an epoch where interactions allow interchanges
between the densities of the different species; this is believed to
have last happened at neutrino decoupling, shortly before Big Bang
Nucleosynthesis (BBN). To probe further back into the Universe’s
history requires assumptions about particle interactions, and perhaps
about the nature of physical laws themselves.

The standard neutrino sector has three flavors. For neutrinos of
mass in the range 5 × 10−4 eV to 1MeV, the density parameter in
neutrinos is predicted to be

Ωνh
2 =

∑
mν

93.14 eV
, (24.2)

where the sum is over all families with mass in that range (higher
masses need a more sophisticated calculation). We use units with c = 1
throughout. Results on atmospheric and Solar neutrino oscillations [5]
imply non-zero mass-squared differences between the three neutrino

flavors. These oscillation experiments cannot tell us the absolute
neutrino masses, but within the simple assumption of a mass hierarchy
suggest a lower limit of approximately 0.06 eV for the sum of the
neutrino masses (see the Neutrino chapter).

Even a mass this small has a potentially observable effect on the
formation of structure, as neutrino free-streaming damps the growth
of perturbations. Analyses commonly now either assume a neutrino
mass sum fixed at this lower limit, or allow the neutrino mass sum
as a variable parameter. To date there is no decisive evidence of
any effects from either neutrino masses or an otherwise non-standard
neutrino sector, and observations impose quite stringent limits; see the
Neutrinos in Cosmology section. However, we note that the inclusion
of the neutrino mass sum as a free parameter can affect the derived
values of other cosmological parameters.

24.1.2. Inflation and perturbations :

A complete model of the Universe should include a description of
deviations from homogeneity, at least in a statistical way. Indeed,
some of the most powerful probes of the parameters described above
come from the evolution of perturbations, so their study is naturally
intertwined with the determination of cosmological parameters.

There are many different notations used to describe the perturba-
tions, both in terms of the quantity used to describe the perturbations
and the definition of the statistical measure. We use the dimensionless
power spectrum ∆2 as defined in the Big Bang Cosmology section
(also denoted P in some of the literature). If the perturbations
obey Gaussian statistics, the power spectrum provides a complete
description of their properties.

From a theoretical perspective, a useful quantity to describe the
perturbations is the curvature perturbation R, which measures the
spatial curvature of a comoving slicing of the space-time. A simple
case is the Harrison–Zeldovich spectrum, which corresponds to a
constant ∆2

R. More generally, one can approximate the spectrum by
a power-law, writing

∆2
R(k) = ∆2

R(k∗)
[
k

k∗

]ns−1

, (24.3)

where ns is known as the spectral index, always defined so that
ns = 1 for the Harrison–Zeldovich spectrum, and k∗ is an arbitrarily
chosen scale. The initial spectrum, defined at some early epoch of the
Universe’s history, is usually taken to have a simple form such as this
power law, and we will see that observations require ns close to one.
Subsequent evolution will modify the spectrum from its initial form.

The simplest mechanism for generating the observed perturbations
is the inflationary cosmology, which posits a period of accelerated
expansion in the Universe’s early stages [6,7]. It is a useful
working hypothesis that this is the sole mechanism for generating
perturbations, and it may further be assumed to be the simplest class
of inflationary model, where the dynamics are equivalent to that of a
single scalar field φ with canonical kinetic energy slowly rolling on a
potential V (φ). One may seek to verify that this simple picture can
match observations and to determine the properties of V (φ) from the
observational data. Alternatively, more complicated models, perhaps
motivated by contemporary fundamental physics ideas, may be tested
on a model-by-model basis (see more in the Inflation chapter in this
volume).

Inflation generates perturbations through the amplification of
quantum fluctuations, which are stretched to astrophysical scales by
the rapid expansion. The simplest models generate two types, density
perturbations that come from fluctuations in the scalar field and its
corresponding scalar metric perturbation, and gravitational waves that
are tensor metric fluctuations. The former experience gravitational
instability and lead to structure formation, while the latter can
influence the CMB anisotropies. Defining slow-roll parameters, with
primes indicating derivatives with respect to the scalar field, as

ǫ =
m2

Pl

16π

(
V ′

V

)2

, η =
m2

Pl

8π

V ′′

V
, (24.4)

which should satisfy ǫ, |η| ≪ 1, the spectra can be computed using the
slow-roll approximation as

∆2
R(k) ≃ 8

3m4
Pl

V

ǫ

∣∣∣∣∣
k=aH

, ∆2
t (k) ≃

128

3m4
Pl

V

∣∣∣∣∣
k=aH

. (24.5)
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In each case, the expressions on the right-hand side are to be evaluated
when the scale k is equal to the Hubble radius during inflation. The
symbol ‘≃’ here indicates use of the slow-roll approximation, which is
expected to be accurate to a few percent or better.

From these expressions, we can compute the spectral indices [8]:

ns ≃ 1− 6ǫ+ 2η ; nt ≃ −2ǫ . (24.6)

Another useful quantity is the ratio of the two spectra, defined by

r ≡ ∆2
t (k∗)

∆2
R(k∗)

. (24.7)

We have
r ≃ 16ǫ ≃ −8nt , (24.8)

which is known as the consistency equation.

One could consider corrections to the power-law approximation,
which we discuss later. However, for now we make the working
assumption that the spectra can be approximated by such power laws.
The consistency equation shows that r and nt are not independent
parameters, and so the simplest inflation models give initial conditions
described by three parameters, usually taken as ∆2

R, ns, and r, all
to be evaluated at some scale k∗, usually the ‘statistical center’ of
the range explored by the data. Alternatively, one could use the
parametrization V , ǫ, and η, all evaluated at a point on the putative
inflationary potential.

After the perturbations are created in the early Universe, they
undergo a complex evolution up until the time they are observed in
the present Universe. When the perturbations are small, this can
be accurately followed using a linear theory numerical code such as
CAMB or CLASS [9]. This works right up to the present for the CMB,
but for density perturbations on small scales non-linear evolution is
important and can be addressed by a variety of semi-analytical and
numerical techniques. However the analysis is made, the outcome of
the evolution is in principle determined by the cosmological model and
by the parameters describing the initial perturbations, and hence can
be used to determine them.

Of particular interest are CMB anisotropies. Both the total
intensity and two independent polarization modes are predicted to
have anisotropies. These can be described by the radiation angular
power spectra Cℓ as defined in the CMB article in this volume, and
again provide a complete description if the density perturbations are
Gaussian.

24.1.3. The standard cosmological model :

We now have most of the ingredients in place to describe the
cosmological model. Beyond those of the previous subsections, we
need a measure of the ionization state of the Universe. The Universe is
known to be highly ionized at low redshifts (otherwise radiation from
distant quasars would be heavily absorbed in the ultra-violet), and the
ionized electrons can scatter microwave photons, altering the pattern
of observed anisotropies. The most convenient parameter to describe
this is the optical depth to scattering τ (i.e., the probability that a
given photon scatters once); in the approximation of instantaneous
and complete reionization, this could equivalently be described by the
redshift of reionization zion.

As described in Sec. 24.4, models based on these parameters are
able to give a good fit to the complete set of high-quality data available
at present, and indeed some simplification is possible. Observations
are consistent with spatial flatness, and the inflation models so far
described automatically generate negligible spatial curvature, so we
can set k = 0; the density parameters then must sum to unity, and so
one of them can be eliminated. The neutrino energy density is often
not taken as an independent parameter. Provided that the neutrino
sector has the standard interactions, the neutrino energy density,
while relativistic, can be related to the photon density using thermal
physics arguments, and a minimal assumption takes the neutrino mass
sum to be that of the lowest mass solution to the neutrino oscillation
constraints, namely 0.06 eV. In addition, there is no observational
evidence for the existence of tensor perturbations (though the upper
limits are fairly weak), and so r could be set to zero. This leaves seven

parameters, which is the smallest set that can usefully be compared
to the present cosmological dataset. This model is referred to by
various names, including ΛCDM, the concordance cosmology, and the
standard cosmological model.

Of these parameters, only Ωγ is accurately measured directly. The
radiation density is dominated by the energy in the CMB, and the
COBE satellite FIRAS experiment determined its temperature to be
T = 2.7255± 0.0006K [10], ‡ corresponding to Ωγ = 2.47× 10−5h−2.
It typically need not be varied in fitting other data. Hence the
minimum number of cosmological parameters varied in fits to data
is six, though as described below there may additionally be many
‘nuisance’ parameters necessary to describe astrophysical processes
influencing the data.

In addition to this minimal set, there is a range of other parameters
that might prove important in future as the data-sets further improve,
but for which there is so far no direct evidence, allowing them to be
set to a specific value for now. We discuss various speculative options
in the next section. For completeness at this point, we mention one
other interesting parameter, the helium fraction, which is a non-zero
parameter that can affect the CMB anisotropies at a subtle level.
It is usually fixed in microwave anisotropy studies, but the data
are approaching a level where allowing its variation may become
mandatory.

Most attention to date has been on parameter estimation, where a
set of parameters is chosen by hand and the aim is to constrain them.
Interest has been growing towards the higher-level inference problem
of model selection, which compares different choices of parameter sets.
Bayesian inference offers an attractive framework for cosmological
model selection, setting a tension between model predictiveness and
ability to fit the data [11].

24.1.4. Derived parameters :

The parameter list of the previous subsection is sufficient to
give a complete description of cosmological models that agree with
observational data. However, it is not a unique parameterization,
and one could instead use parameters derived from that basic set.
Parameters that can be obtained from the set given above include the
age of the Universe, the present horizon distance, the present neutrino
background temperature, the epoch of matter–radiation equality, the
epochs of recombination and decoupling, the epoch of transition to
an accelerating Universe, the baryon-to-photon ratio, and the baryon
to dark matter density ratio. In addition, the physical densities of
the matter components, Ωih

2, are often more useful than the density
parameters. The density perturbation amplitude can be specified in
many different ways other than the large-scale primordial amplitude,
for instance, in terms of its effect on the CMB, or by specifying a
short-scale quantity, a common choice being the present linear-theory
mass dispersion on a scale of 8 h−1Mpc, known as σ8.

Different types of observation are sensitive to different subsets of
the full cosmological parameter set, and some are more naturally
interpreted in terms of some of the derived parameters of this
subsection than on the original base parameter set. In particular,
most types of observation feature degeneracies whereby they are
unable to separate the effects of simultaneously varying specific
combinations of several of the base parameters.

24.2. Extensions to the standard model

At present, there is no positive evidence in favor of extensions of
the standard model. These are becoming increasingly constrained by
the data, though there always remains the possibility of trace effects
at a level below present observational capability.

‡ Unless stated otherwise, all quoted uncertainties in this article are
one-sigma/68% confidence and all upper limits are 95% confidence.
Cosmological parameters sometimes have significantly non-Gaussian
uncertainties. Throughout we have rounded central values, and espe-
cially uncertainties, from original sources, in cases where they appear
to be given to excessive precision.
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24.2.1. More general perturbations :

The standard cosmology assumes adiabatic, Gaussian perturbations.
Adiabaticity means that all types of material in the Universe share a
common perturbation, so that if the space-time is foliated by constant-
density hypersurfaces, then all fluids and fields are homogeneous
on those slices, with the perturbations completely described by the
variation of the spatial curvature of the slices. Gaussianity means
that the initial perturbations obey Gaussian statistics, with the
amplitudes of waves of different wavenumbers being randomly drawn
from a Gaussian distribution of width given by the power spectrum.
Note that gravitational instability generates non-Gaussianity; in this
context, Gaussianity refers to a property of the initial perturbations,
before they evolve.

The simplest inflation models, based on one dynamical field, predict
adiabatic perturbations and a level of non-Gaussianity that is too
small to be detected by any experiment so far conceived. For present
data, the primordial spectra are usually assumed to be power laws.

24.2.1.1. Non-power-law spectra:

For typical inflation models, it is an approximation to take the
spectra as power laws, albeit usually a good one. As data quality
improves, one might expect this approximation to come under
pressure, requiring a more accurate description of the initial spectra,
particularly for the density perturbations. In general, one can expand
ln∆2

R as

ln∆2
R(k) = ln∆2

R(k∗)+(ns,∗−1) ln
k

k∗
+
1

2

dns
d ln k

∣∣∣∣
∗
ln2

k

k∗
+· · · , (24.9)

where the coefficients are all evaluated at some scale k∗. The term
dns/d ln k|∗ is often called the running of the spectral index [12].
Once non-power-law spectra are allowed, it is necessary to specify the
scale k∗ at which the spectral index is defined.

24.2.1.2. Isocurvature perturbations:

An isocurvature perturbation is one that leaves the total density
unperturbed, while perturbing the relative amounts of different
materials. If the Universe contains N fluids, there is one growing
adiabatic mode and N − 1 growing isocurvature modes (for reviews
see Ref. 7 and Ref. 13). These can be excited, for example, in
inflationary models where there are two or more fields that acquire
dynamically-important perturbations. If one field decays to form
normal matter, while the second survives to become the dark matter,
this will generate a cold dark matter isocurvature perturbation.

In general, there are also correlations between the different modes,
and so the full set of perturbations is described by a matrix giving the
spectra and their correlations. Constraining such a general construct
is challenging, though constraints on individual modes are beginning
to become meaningful, with no evidence that any other than the
adiabatic mode must be non-zero.

24.2.1.3. Seeded perturbations:

An alternative to laying down perturbations at very early epochs
is that they are seeded throughout cosmic history, for instance
by topological defects such as cosmic strings. It has long been
excluded that these are the sole original of structure, but they
could contribute part of the perturbation signal, current limits being
just a few percent [14]. In particular, cosmic defects formed in a
phase transition ending inflation is a plausible scenario for such a
contribution.

24.2.1.4. Non-Gaussianity:

Multi-field inflation models can also generate primordial non-
Gaussianity (reviewed, e.g., in Ref. 7). The extra fields can either
be in the same sector of the underlying theory as the inflaton, or
completely separate, an interesting example of the latter being the
curvaton model [15]. Current upper limits on non-Gaussianity are
becoming stringent, but there remains strong motivation to push down
those limits and perhaps reveal trace non-Gaussianity in the data.
If non-Gaussianity is observed, its nature may favor an inflationary
origin, or a different one such as topological defects.

24.2.2. Dark matter properties :

Dark matter properties are discussed in the Dark Matter chapter
in this volume. The simplest assumption concerning the dark matter
is that it has no significant interactions with other matter, and that
its particles have a negligible velocity as far as structure formation
is concerned. Such dark matter is described as ‘cold,’ and candidates
include the lightest supersymmetric particle, the axion, and primordial
black holes. As far as astrophysicists are concerned, a complete
specification of the relevant cold dark matter properties is given by
the density parameter Ωc, though those seeking to detect it directly
are as interested in its interaction properties.

Cold dark matter is the standard assumption and gives an excellent
fit to observations, except possibly on the shortest scales where
there remains some controversy concerning the structure of dwarf
galaxies and possible substructure in galaxy halos. It has long been
excluded for all the dark matter to have a large velocity dispersion,
so-called ‘hot’ dark matter, as it does not permit galaxies to form;
for thermal relics the mass must be above about 1 keV to satisfy this
constraint, though relics produced non-thermally, such as the axion,
need not obey this limit. However, in future further parameters might
need to be introduced to describe dark matter properties relevant to
astrophysical observations. Suggestions that have been made include
a modest velocity dispersion (warm dark matter) and dark matter
self-interactions. There remains the possibility that the dark matter is
comprized of two separate components, e.g., a cold one and a hot one,
an example being if massive neutrinos have a non-negligible effect.

24.2.3. Relativistic species :

The number of relativistic species in the young Universe (omitting
photons) is denoted Neff . In the standard cosmological model only the
three neutrino species contribute, and its baseline value is assumed
fixed at 3.045 (the small shift from 3 is because of a slight predicted
deviation from a thermal distribution [16]) . However other species
could contribute, for example an extra neutrino, possibly of sterile
type, or massless Goldstone bosons or other scalars. It is hence
interesting to study the effect of allowing this parameter to vary,
and indeed although 3.045 is consistent with the data, most analyses
currently suggest a somewhat higher value (e.g., Ref. 17).

24.2.4. Dark energy :

While the standard cosmological model given above features a
cosmological constant, in order to explain observations indicating that
the Universe is presently accelerating, further possibilities exist under
the general headings of ‘dark energy’ and ‘modified gravity’. These
topics are described in detail in the Dark Energy chapter in this
volume. This article focuses on the case of the cosmological constant,
as this simple model is a good match to existing data. We note that
more general treatments of dark energy/modified gravity will lead to
weaker constraints on other parameters.

24.2.5. Complex ionization history :

The full ionization history of the Universe is given by the ionization
fraction as a function of redshift z. The simplest scenario takes the
ionization to have the small residual value left after recombination
up to some redshift zion, at which point the Universe instantaneously
reionizes completely. Then there is a one-to-one correspondence
between τ and zion (that relation, however, also depending on other
cosmological parameters). An accurate treatment of this process will
track separate histories for hydrogen and helium. While currently
rapid ionization appears to be a good approximation, as data improve
a more complex ionization history may need to be considered.

24.2.6. Varying ‘constants’ :

Variation of the fundamental constants of Nature over cosmological
times is another possible enhancement of the standard cosmology.
There is a long history of study of variation of the gravitational
constant GN, and more recently attention has been drawn to the
possibility of small fractional variations in the fine-structure constant.
There is presently no observational evidence for the former, which is
tightly constrained by a variety of measurements. Evidence for the
latter has been claimed from studies of spectral line shifts in quasar
spectra at redshift z ≈ 2 [18], but this is presently controversial and
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in need of further observational study. See constraints from the CMB
in the Planck 2015 papers.

24.2.7. Cosmic topology :

The usual hypothesis is that the Universe has the simplest topology
consistent with its geometry, for example that a flat Universe extends
forever. Observations cannot tell us whether that is true, but they can
test the possibility of a non-trivial topology on scales up to roughly the
present Hubble scale. Extra parameters would be needed to specify
both the type and scale of the topology, for example, a cuboidal
topology would need specification of the three principal axis lengths.
At present, there is no evidence for non-trivial cosmic topology [19].

24.3. Cosmological Probes

The goal of the observational cosmologist is to utilize astronomical
information to derive cosmological parameters. The transformation
from the observables to the parameters usually involves many
assumptions about the nature of the objects, as well as of the dark
sector. Below we outline the physical processes involved in each of the
major probes, and the main recent results. The first two subsections
concern probes of the homogeneous Universe, while the remainder
consider constraints from perturbations.

In addition to statistical uncertainties we note three sources
of systematic uncertainties that will apply to the cosmological
parameters of interest: (i) due to the assumptions on the cosmological
model and its priors (i.e., the number of assumed cosmological
parameters and their allowed range); (ii) due to the uncertainty in
the astrophysics of the objects (e.g., light curve fitting for supernovae
or the mass–temperature relation of galaxy clusters); and (iii) due to
instrumental and observational limitations (e.g., the effect of ‘seeing’
on weak gravitational lensing measurements, or beam shape on CMB
anisotropy measurements).

These systematics, the last two of which appear as ‘nuisance
parameters’, pose a challenging problem to the statistical analysis. We
attempt to fit the whole Universe with 6 to 12 parameters, but we might
need to include hundreds of nuisance parameters, some of them highly
correlated with the cosmological parameters of interest (for example
time-dependent galaxy biasing could mimic the growth of mass
fluctuations). Fortunately, there is some astrophysical prior knowledge
on these effects, and a small number of physically-motivated free
parameters would ideally be preferred in the cosmological parameter
analysis.

24.3.1. Direct measures of the Hubble constant :

In 1929, Edwin Hubble discovered the law of expansion of the
Universe by measuring distances to nearby galaxies. The slope of the
relation between the distance and recession velocity is defined to be
the Hubble constant, H0. Astronomers argued for decades about the
systematic uncertainties in various methods and derived values over
the wide range 40 kms−1Mpc−1 <∼ H0

<∼ 100 kms−1Mpc−1.

One of the most reliable results on the Hubble constant came
from the Hubble Space Telescope Key Project [20]. This study used
the empirical period–luminosity relation for Cepheid variable stars,
and calibrated a number of secondary distance indicators—Type Ia
Supernovae (SNe Ia), the Tully–Fisher relation, surface-brightness
fluctuations, and Type II Supernovae. A recent derivation based
on this approach utilizes the maser-based distance to NGC4258
to re-calibrate its Cepheid distance scale to obtain H0 = 73.2 ±
1.7 km s−1Mpc−1 [21]. The major sources of uncertainty in this
result are due to the heavy element abundance of the Cepheids and
the distance to the fiducial nearby galaxy, the Large Magellanic Cloud,
relative to which all Cepheid distances are measured.

The indirect determination of H0 by the Planck Collaboration [2]
found a lower value, H0 = 67.8± 0.9 km s−1Mpc−1. As discussed in
that paper, there is strong degeneracy of H0 with other parameters,
e.g., Ωm and the neutrino mass. The tension between the H0 from
Planck and the traditional cosmic distance-ladder methods is under
investigation.

24.3.2. Supernovae as cosmological probes :

Empirically, the peak luminosity of SNe Ia can be used as an
efficient distance indicator (e.g., Ref. 22), thus allowing cosmology
to be constrained via the distance–redshift relation. The favorite
theoretical explanation for SNe Ia is the thermonuclear disruption of
carbon–oxygen white dwarfs. Although not perfect ‘standard candles’,
it has been demonstrated that by correcting for a relation between the
light-curve shape, color, and luminosity at maximum brightness, the
dispersion of the measured luminosities can be greatly reduced. There
are several possible systematic effects that may affect the accuracy of
the use of SNe Ia as distance indicators, e.g., evolution with redshift
and interstellar extinction in the host galaxy and in the Milky Way.

Two major studies, the Supernova Cosmology Project and the
High-z Supernova Search Team, found evidence for an accelerating
Universe [23], interpreted as due to a cosmological constant or
a dark energy component. When combined with the CMB data
(which indicate flatness, i.e., Ωm + ΩΛ = 1), the best-fit values were
Ωm ≈ 0.3 and ΩΛ ≈ 0.7. Most results in the literature are consistent
with the w = −1 cosmological constant case. A recent study [24]
deduced, from a sample of 740 spectroscopically-confirmed SNe Ia,
that Ωm = 0.295 ± 0.034 (stat+sym) for an assumed flat ΛCDM
model. This is consistent with the latest CMB measurements. Future
experiments will aim to set constraints on the cosmic equation of state
w(z).

24.3.3. Cosmic microwave background :

The physics of the CMB is described in detail in the CMB chapter
in this volume. Before recombination, the baryons and photons are
tightly coupled, and the perturbations oscillate in the potential
wells generated primarily by the dark matter perturbations. After
decoupling, the baryons are free to collapse into those potential
wells. The CMB carries a record of conditions at the time of last
scattering, often called primary anisotropies. In addition, it is affected
by various processes as it propagates towards us, including the effect
of a time-varying gravitational potential (the integrated Sachs–Wolfe
effect), gravitational lensing, and scattering from ionized gas at low
redshift.

The primary anisotropies, the integrated Sachs–Wolfe effect, and
the scattering from a homogeneous distribution of ionized gas, can
all be calculated using linear perturbation theory. Available codes
include CAMB and CLASS [9], the former widely used embedded
within the analysis package CosmoMC [25] and in higher-level analysis
packages such as CosmoSIS [26] and CosmoLike [27]. Gravitational
lensing is also calculated in these codes. Secondary effects such as
inhomogeneities in the reionization process, and scattering from
gravitationally-collapsed gas (the Sunyaev–Zeldovich (SZ) effect),
require more complicated, and more uncertain, calculations.

The upshot is that the detailed pattern of anisotropies depends
on all of the cosmological parameters. In a typical cosmology, the
anisotropy power spectrum [usually plotted as ℓ(ℓ + 1)Cℓ] features
a flat plateau at large angular scales (small ℓ), followed by a series
of oscillatory features at higher angular scales, the first and most
prominent being at around one degree (ℓ ≃ 200). These features,
known as acoustic peaks, represent the oscillations of the photon–
baryon fluid around the time of decoupling. Some features can be
closely related to specific parameters—for instance, the location in
multipole space of the set of peaks probes the spatial geometry, while
the relative heights of the peaks probe the baryon density—but many
other parameters combine to determine the overall shape.

The 2015 data release from the Planck satellite [1] gives the
most powerful results to date on the spectrum of CMB temperature
anisotropies, with a precision determination of the temperature power
spectrum to beyond ℓ = 2000. The Atacama Cosmology Telescope
(ACT) and South Pole Telescope (SPT) experiments extend these
results to higher angular resolution, though without full-sky coverage.
Planck and the WMAP satellite final (9-year) data release [3] give
the state of the art in measuring the spectrum of E-polarization
anisotropies and the correlation spectrum between temperature and
polarization (those spectra having first been detected by DASI [28])
. These are consistent with models based on the parameters we
have described, and provide accurate determinations of many of
those parameters [2]. Primordial B-mode polarization has not been
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detected (although the gravitational lensing effect on B-mode has
been measured).

The data provide an exquisite measurement of the location of the
set of acoustic peaks, determining the angular-diameter distance of the
last-scattering surface. In combination with other data this strongly
constrains the spatial geometry, in a manner consistent with spatial
flatness and excluding significantly-curved Universes. CMB data give
a precision measurement of the age of the Universe. The CMB also
gives a baryon density consistent with, and at higher precision than,
that coming from BBN. It affirms the need for both dark matter and
dark energy. It shows no evidence for dynamics of the dark energy,
being consistent with a pure cosmological constant (w = −1). The
density perturbations are consistent with a power-law primordial
spectrum, and there is no indication yet of tensor perturbations. The
current best-fit for the reionization optical depth from CMB data,
τ = 0.066, is in line with models of how early structure formation
induces reionization.

Planck has also made the first all-sky map of the CMB lensing field,
which probes the entire matter distribution in the Universe and adds
some additional constraining power to the CMB-only data-sets. ACT
previously announced the first detection of gravitational lensing of the
CMB from the four-point correlation of temperature variations [29].
These measurements agree with the expected effect in the standard
cosmology.

24.3.4. Galaxy clustering :

The power spectrum of density perturbations depends on the
nature of the dark matter. Within the ΛCDM model, the power
spectrum shape depends primarily on the primordial power spectrum
and on the combination Ωmh, which determines the horizon scale at
matter–radiation equality, with a subdominant dependence on the
baryon density. The matter distribution is most easily probed by
observing the galaxy distribution, but this must be done with care
since the galaxies do not perfectly trace the dark matter distribution.
Rather, they are a ‘biased’ tracer of the dark matter [30]. The need
to allow for such bias is emphasized by the observation that different
types of galaxies show bias with respect to each other. In particular,
scale-dependent and stochastic biasing may introduce a systematic
effect on the determination of cosmological parameters from redshift
surveys [31]. Prior knowledge from simulations of galaxy formation
or from gravitational lensing data could help to quantify biasing.
Furthermore, the observed 3D galaxy distribution is in redshift space,
i.e., the observed redshift is the sum of the Hubble expansion and
the line-of-sight peculiar velocity, leading to linear and non-linear
dynamical effects that also depend on the cosmological parameters.
On the largest length scales, the galaxies are expected to trace
the location of the dark matter, except for a constant multiplier
b to the power spectrum, known as the linear bias parameter. On
scales smaller than 20 h−1 Mpc or so, the clustering pattern is
‘squashed’ in the radial direction due to coherent infall, which depends
approximately on the parameter β ≡ Ω0.6

m /b (on these shorter scales,
more complicated forms of biasing are not excluded by the data). On
scales of a few h−1 Mpc, there is an effect of elongation along the line
of sight (colloquially known as the ‘finger of God’ effect) that depends
on the galaxy velocity dispersion.

24.3.4.1. Baryonic acoustic oscillations:

The power spectra of the 2-degree Field (2dF) Galaxy Redshift
Survey and the Sloan Digital Sky Survey (SDSS) are well fit by a
ΛCDM model and both surveys showed evidence for baryon acoustic
oscillations (BAOs) [32,33]. The Baryon Oscillation Spectroscopic
Survey (BOSS) of Luminous Red Galaxies (LRGs) in the SDSS found
consistency with the dark energy equation of state w = −1 [34].
Similar results for w were obtained by the WiggleZ survey [35].

24.3.4.2. Redshift distortion:

There is renewed interest in the ‘redshift distortion’ effect.
This distortion depends on cosmological parameters [36] via the
perturbation growth rate in linear theory f(z) = d ln δ/d ln a ≈ Ωγ(z),
where γ ≃ 0.55 for the ΛCDM model and may be different for modified
gravity models. By measuring f(z) it is feasible to constrain γ and rule
out certain modified gravity models [37,38]. We note the degeneracy

of the redshift-distortion pattern and the geometric distortion (the
so-called Alcock–Paczynski effect [39]) , e.g., as illustrated by the
WiggleZ survey [40] and the BOSS Survey [41].

24.3.4.3. Limits on neutrino mass from galaxy surveys and other
probes:

Large-scale structure data place constraints on Ων due to the
neutrino free-streaming effect [42]. Presently there is no clear
detection, and upper limits on neutrino mass are commonly estimated
by comparing the observed galaxy power spectrum with a four-
component model of baryons, cold dark matter, a cosmological
constant, and massive neutrinos. Such analyses also assume that the
primordial power spectrum is adiabatic, scale-invariant, and Gaussian.
Potential systematic effects include biasing of the galaxy distribution
and non-linearities of the power spectrum. An upper limit can also
be derived from CMB anisotropies alone, while combination with
additional cosmological data-sets can improve the results.

The most recent results on neutrino mass upper limits and other
neutrino properties are summarised in the Neutrinos in Cosmology
chapter in this volume. While the latest cosmological data do not
yet constrain the sum of neutrino masses to below 0.2 eV, since the
lower limit on this sum from oscillation experiments is 0.06 eV it
is expected that future cosmological surveys will soon detect effects
from the neutrino mass. Also, current cosmological datasets are in
good agreement with the standard value for the effective number of
neutrino species Neff = 3.045.

24.3.5. Clustering in the inter-galactic medium :

It is commonly assumed, based on hydrodynamic simulations, that
the neutral hydrogen in the inter-galactic medium (IGM) can be
related to the underlying mass distribution. It is then possible to
estimate the matter power spectrum on scales of a few megaparsecs
from the absorption observed in quasar spectra, the so-called Lyman-α
forest. The usual procedure is to measure the power spectrum of
the transmitted flux, and then to infer the mass power spectrum.
Photo-ionization heating by the ultraviolet background radiation and
adiabatic cooling by the expansion of the Universe combine to give a
simple power-law relation between the gas temperature and the baryon
density. It also follows that there is a power-law relation between the
optical depth τ and ρb. Therefore, the observed flux F = exp(−τ) is
strongly correlated with ρb, which itself traces the mass density. The
matter and flux power spectra can be related by a biasing function
that is calibrated from simulations. The BOSS survey has been
used to detect and measure the BAO feature in the Lyman-α forest
fluctuation at redshift z = 2.4, with a result impressively consistent
with the standard ΛCDM model [43,44]. The Lyman-α flux power
spectrum has also been used to constrain the nature of dark matter,
for example constraining the amount of warm dark matter [45].

24.3.6. Gravitational lensing :

Images of background galaxies are distorted by the gravitational
effect of mass variations along the line of sight. Deep gravitational
potential wells such as galaxy clusters generate ‘strong lensing’,
leading to arcs, arclets and multiple images, while more moderate
perturbations give rise to ‘weak lensing’. Weak lensing is now widely
used to measure the mass power spectrum in selected regions of
the sky (see Ref. 46 for reviews). As the signal is weak, the image
of deformed galaxy shapes (the ‘shear map’) must be analyzed
statistically to measure the power spectrum, higher moments, and
cosmological parameters. There are various systematic effects in the
interpretation of weak lensing, e.g., due to atmospheric distortions
during observations, the redshift distribution of the background
galaxies, the intrinsic correlation of galaxy shapes, and non-linear
modeling uncertainties.

24.3.7. Other probes :

Other probes that have been used to constrain cosmological
parameters, but that are not presently competitive in terms of
accuracy, are the integrated Sachs–Wolfe effect [47,48], the number
density or composition of galaxy clusters [49], and galaxy peculiar
velocities which probe the mass fluctuations in the local universe [50].
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24.4. Bringing probes together

Although it contains two ingredients—dark matter and dark
energy—which have not yet been verified by laboratory experiments,
the ΛCDM model is almost universally accepted by cosmologists as
the best description of the present data. The approximate values of
some of the key parameters are Ωb ≈ 0.05, Ωc ≈ 0.25, ΩΛ ≈ 0.70,
and a Hubble constant h ≈ 0.70. The spatial geometry is very close
to flat (and usually assumed to be precisely flat), and the initial
perturbations Gaussian, adiabatic, and nearly scale-invariant.

The most powerful data source is the CMB, which on its own
supports all these main tenets. Values for some parameters, as given in
Ref. 2, are reproduced in Table 24.1. These particular results presume
a flat Universe. The constraints are somewhat strengthened by adding
additional data-sets such as BAO and supernovae, as shown in the
Table, though most of the constraining power resides in the CMB
data. Similar constraints were previously obtained by the WMAP
collaboration; the additional precision of Planck data versus WMAP
is only really apparent when considering larger parameter sets.

Table 24.1: Parameter constraints reproduced from Ref. 2
(Table 4), with some additional rounding. Both columns assume
the ΛCDM cosmology with a power-law initial spectrum, no
tensors, spatial flatness, a cosmological constant as dark energy,
and the sum of neutrino masses fixed to 0.06 eV. Above the
line are the six parameter combinations actually fit to the data
(θMC is a measure of the sound horizon at last scattering);
those below the line are derived from these. The first column
uses Planck primary CMB data, restricting polarization data
to low multipoles as currently recommended by the Planck
collaboration, plus the Planck measurement of CMB lensing.
This column gives our present recommended values. The second
column adds additional data and is included to show that the
effect of its inclusion is modest; the extra data are the Hubble
parameter, BAO measurements from the SDSS, BOSS, and 6dF
surveys, and supernova constraints from the JLA analysis. The
perturbation amplitude ∆2

R (denoted As in the original paper)

is specified at the scale 0.05Mpc−1. Uncertainties are shown at
68% confidence.

Planck TT+lowP+lensing Planck TT+lowP+lensing+ext

Ωbh
2 0.02226± 0.00023 0.02227± 0.00020

Ωch
2 0.1186± 0.0020 0.1184± 0.0012

100 θMC 1.0410± 0.0005 1.0411± 0.0004

ns 0.968± 0.006 0.968± 0.004

τ 0.066± 0.016 0.067± 0.013

ln(1010∆2
R) 3.062± 0.029 3.064± 0.024

h 0.678± 0.009 0.679± 0.006

σ8 0.815± 0.009 0.815± 0.009

Ωm 0.308± 0.012 0.306± 0.007

ΩΛ 0.692± 0.012 0.694± 0.007

If the assumption of spatial flatness is lifted, it turns out that the
CMB on its own only weakly constrains the spatial curvature, due to
a parameter degeneracy in the angular-diameter distance. However,
inclusion of other data readily removes this. For example, adding the
usual non-CMB data-sets, plus the assumption that the dark energy
is a cosmological constant, yields a 68% confidence constraint on
Ωtot ≡ ∑

Ωi + ΩΛ = 1.0002 ± 0.0026 [2]. Results of this type are
normally taken as justifying the restriction to flat cosmologies.

One derived parameter that is very robust is the age of the
Universe, since there is a useful coincidence that for a flat Universe
the position of the first peak is strongly correlated with the age.
The CMB data give 13.80± 0.04 Gyr (assuming flatness). This is in

good agreement with the ages of the oldest globular clusters and with
radioactive dating.

The baryon density Ωb is now measured with high accuracy from
CMB data alone, and is consistent with and much more precise than
the determination from BBN. The value quoted in the Big Bang
Nucleosynthesis chapter in this volume is 0.021 ≤ Ωbh

2 ≤ 0.024 (95%
confidence).

A somewhat smaller value of the optical depth, τ = 0.055± 0.009,
has been found in more recent Planck collaboration analyses, as
described in the CMB chapter in this volume. However these have
not yet been propogated into simultaneous measurements of all the
cosmological parameters.

While ΩΛ is measured to be non-zero with very high confidence,
there is no evidence of evolution of the dark energy density. As
described in the Dark Energy chapter in this volume, from a
compilation of CMB, SN and BAO measurements, assuming a flat
universe, Ref. 52 found w = −1.01 ± 0.04, consistent with the
cosmological constant case w = −1. Allowing more complicated forms
of dark energy weakens the limits.

The data provide strong support for the main predictions of the
simplest inflation models: spatial flatness and adiabatic, Gaussian,
nearly scale-invariant density perturbations. But it is disappointing
that there is no sign of primordial gravitational waves, with an
upper limit r < 0.07 at 95% confidence [53] (weakening if running is
allowed). The spectral index is clearly required to be less than one by
current data, though the strength of that conclusion can weaken if
additional parameters are included in the model fits.

Tests have been made for various types of non-Gaussianity, a
particular example being a parameter fNL that measures a quadratic
contribution to the perturbations. Various non-Gaussian shapes
are possible (see Ref. 51 for details), and current constraints on
the popular ‘local’, ‘equilateral’, and ‘orthogonal’ types combining

temperature and polarization data are f localNL = 1±5, f
equil
NL = −4±43,

and forthoNL = −26 ± 21 respectively (these look weak, but prominent
non-Gaussianity requires the product fNL∆R to be large, and ∆R is
of order 10−5). Clearly none of these give any indication of primordial
non-gaussianity.

While the above results come from the CMB alone, other probes
are becoming competitive (especially when considering more complex
cosmological models), and so combination of probes is of growing
importance. We note that it has become fashionable to combine
probes at the level of power-spectrum data vectors, taking into
account nuisance parameters in each probe. Recent examples include
KiDS+GAMA [54] and Dark Energy Survey (DES) Year 1 [55].
For example, the DES analysis includes galaxy position–position
clustering, galaxy–galaxy lensing, and weak lensing shear. Discussions
on ‘tension’ in resulting cosmological parameters depend on the
statistical approaches used. Commonly the cosmology community
works within the Bayesian framework, and assesses agreement
amongst data sets with respect to a model via Bayesian Evidence,
essentially the denominator in Bayes’s theorem. As an example of
results, combining DES Y1 with Planck, Baryonic Acoustic Oscillation
measurements from SDSS, 6dF, and BOSS, and type Ia supernovae
from the Joint Lightcurve Analysis (JLA) dataset has shown the
datasets to be mutually compatible and yields very tight constraints
on cosmological parameters: S8 ≡ σ8(Ωm/0.3)0.5 = 0.799+0.014

−0.009, and

Ωm = 0.301+0.006
−0.008 in ΛCDM, and w = −1.00+0.04

−0.05 in wCDM [55].
The combined measurement of the Hubble constant h within ΛCDM
gives h = 0.682 ± 0.006, still leaving some level of tension with the
local measurements described earlier. Future analyses and the next
generation of surveys will test for deviations from ΛCDM, for example
epoch-dependent w(z) and modifications to General Relativity.

24.5. Outlook for the future

The concordance model is now well established, and there seems
little room left for any dramatic revision of this paradigm. A measure
of the strength of that statement is how difficult it has proven to
formulate convincing alternatives.

Should there indeed be no major revision of the current paradigm,
we can expect future developments to take one of two directions.
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Either the existing parameter set will continue to prove sufficient
to explain the data, with the parameters subject to ever-tightening
constraints, or it will become necessary to deploy new parameters.
The latter outcome would be very much the more interesting, offering
a route towards understanding new physical processes relevant to
the cosmological evolution. There are many possibilities on offer for
striking discoveries, for example:

• the cosmological effects of a neutrino mass may be unambiguously
detected, shedding light on fundamental neutrino properties;

• detection of primordial non-Gaussianities would indicate that
non-linear processes influence the perturbation generation
mechanism;

• detection of variation in the dark-energy density (i.e., w 6= −1)
would provide much-needed experimental input into its nature.

These provide more than enough motivation for continued efforts
to test the cosmological model and improve its accuracy. Over the
coming years, there are a wide range of new observations that will
bring further precision to cosmological studies. Indeed, there are far
too many for us to be able to mention them all here, and so we will
just highlight a few areas.

The CMB observations will improve in several directions. A current
frontier is the study of polarization, for which power spectrum
measurements have now been made by several experiments. Detection
of primordial B-mode anisotropies is the next major goal and a variety
of projects are targeting this, though theory gives little guidance as to
the likely signal level.

An impressive array of comology surveys are already operational,
under construction, or proposed, including the ground-based Dark
Energy Survey (DES), Hyper Suprime Camera (HSC) and Large
Synoptic Survey Telescope (LSST), imaging surveys, spectroscopic
surveys such as the Dark Energy Spectroscopic Instrument (DESI),
and space missions Euclid and the Wide-Field Infrared Survey
(WFIRST).

An exciting area for the future is radio surveys of the redshifted
21-cm line of hydrogen. Because of the intrinsic narrowness of this
line, by tuning the bandpass the emission from narrow redshift slices
of the Universe will be measured to extremely high redshift, probing
the details of the reionization process at redshifts up to perhaps 20, as
well as measuring large scale features such as the BAOs. LOFAR is
the first instrument able to do this and has begun its operations. In
the longer term, the Square Kilometre Array (SKA) will take these
studies to a precision level.

The development of the first precision cosmological model is a
major achievement. However, it is important not to lose sight of
the motivation for developing such a model, which is to understand
the underlying physical processes at work governing the Universe’s
evolution. On that angle, progress has been much less dramatic. For
instance, there are many proposals for the nature of the dark matter,
but no consensus as to which is correct. The nature of the dark energy
remains a mystery. Even the baryon density, now measured to an
accuracy of a percent, lacks an underlying theory able to predict it
within orders of magnitude. Precision cosmology may have arrived,
but at present many key questions remain to motivate and challenge
the cosmology community.
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25. Neutrinos in Cosmology

Written August 2017 by J. Lesgourgues (RWTH Aachen U.) and L.
Verde (U. of Barcelona & ICREA).

25.1. Standard neutrino cosmology

Neutrino properties leave detectable imprints on cosmological
observations that can then be used to constrain neutrino properties.
This is a great example of the remarkable interconnection and interplay
between nuclear physics, particle physics, astrophysics and cosmology
(for general reviews see e.g., [1,2,3,4]) . Present cosmological data
are already providing constraints on neutrino properties not only
complementary but also competitive with terrestrial experiments; for
instance, upper bounds on the total neutrino mass have shrinked by
a factor of about 10 in the past 15 years. Forthcoming cosmological
data may soon provide key information, not obtainable in other ways
like e.g., a measurement of the absolute neutrino mass scale. This new
section is motivated by this exciting prospect.

A relic neutrino background pervading the Universe (the Cosmic
Neutrino background, CνB) is a generic prediction of the standard
hot Big Bang model (see Big Bang Nucleosynthesis – Chap. 23 of
this Review). While it has not yet been detected directly, it has been
indirectly confirmed by the accurate agreement of predictions and
observations of: a) the primordial abundance of light elements (see
Big Bang Nucleosynthesis – Chap. 23) of this Review; b) the power
spectrum of Cosmic Microwave Background (CMB) anisotropies (see
Cosmic Microwave Background – Chap. 28 of this Review); and c) the
large scale clustering of cosmological structures. Within the hot Big
Bang model such good agreement would fail dramatically without a
CνB with properties matching closely those predicted by the standard
neutrino decoupling process (i.e., involving only weak interactions).

We will illustrate below that cosmology is sensitive to the following
neutrino properties: their density, related to the number of active
(i.e., left-handed, see Neutrino Mass, Mixing, and Oscillations -
Chap. 14 of this Review) neutrino species, and their masses. At first
order, cosmology is sensitive to the total neutrino mass, but is blind
to the mixing angles and CP violation phase as discussed in Neutrino
Mass, Mixing, and Oscillations (Chap. 14 of this Review). This makes
cosmological constraints nicely complementary to measurements from
terrestrial neutrino experiments.

The minimal cosmological model, ΛCDM, currently providing a
good fit to most cosmological data sets (up to moderate tensions
discussed in The Cosmological Parameters Chap. 24 of this Review),
assumes that the only massless or light (sub-keV) relic particles since
the Big Bang Nucleosynthesis (BBN) epoch are photons and active
neutrinos. Extended models with light sterile neutrinos, light thermal
axions or other light relics –sometimes referred to as “dark radiation”–
would produce effects similar to, and potentially degenerate with, those
of active neutrinos. Thus neutrino bounds are often discussed together
with limits on such scenarios. In case of anomalies in cosmological
data, it might not be obvious to discriminate between interpretation
in terms of active neutrinos with non-standard decoupling, additional
production mechanisms, non-standard interactions, etc., or in terms of
some additional light particles. At the moment, such extensions are,
however, not required by the cosmological data at any significant level.

Hence neutrino density and mass bounds can be derived under the
assumption of no additional massless or light relic particles, and the
neutrino density measured in that way provides a test of standard
(i.e., involving only weak interactions) neutrino decoupling.

In that model, the three active neutrino types thermalize in the
early Universe, with a negligible leptonic asymmetry. Then they can
be viewed as three propagating mass eigenstates sharing the same
temperature and identical Fermi-Dirac distributions, thus with no
visible effects of flavour oscillations. Neutrinos decouple gradually
from the thermal plasma at temperatures T ∼ 2MeV. In the
instantaneous neutrino decoupling limit, i.e., assuming that neutrinos
were fully decoupled at the time when electron-positrons annihilate
and release entropy in the thermal bath, the neutrino-to-photon
density ratio between the time of electron-positron annihilation and
the non-relativistic transition of neutrinos would be given by

ρν
ργ

=
7

8
Neff

(
4

11

)4/3

, (25.1)

with Neff = 3, and the last factor comes from the fourth power of
the temperature ratio Tν/Tγ = (4/11)1/3 (see Big Bang Cosmology
– Chap. 21 in this Review). In the above formula, Neff is called
the effective number of neutrino species because it can be viewed
as a convenient parametrisation of the relativistic energy density of
the Universe beyond that of photons, in units of one neutrino in
the instantaneous decoupling limit. Precise simulations of neutrino
decoupling and electron-positron annihilation, taking into account
flavor oscillations, provide precise predictions for the actual phase-
space distribution of relic neutrinos [5,6,7,8]. These distributions
differ from the instantaneous decoupling approximation through a
combination of a small shift in the photon temperature and small
non-thermal distortions, all at the percent level. The final result
for the density ratio ρν/ργ in the relativistic regime can always be
expressed as in Eq. (25.1), but with a different value of Neff . The
most recent analysis, that includes the effect of neutrino oscillations
with the present values of the mixing parameters and an improved
calculation of the collision terms, gives Neff = 3.045 [8]. The precise
number density ratio nν/nγ can also be derived from such studies,
and is important for computing the ratio Ωνh

2/
∑

imi (ratio of the
physical density of neutrinos in units of the critical density to the sum
of neutrino masses) in the non-relativistic regime.

The neutrino temperature today, T 0
ν ≃ 1.7 × 10−4 eV ≃ 1.9

K, is smaller than at least two of the neutrino masses, since the
two squared-mass differences are |∆m2

31|1/2 > |∆m2
21|1/2 > T 0

ν (see
Neutrino mass, Mixing, and oscillations – Chap. 14 of this Review).
Thus at least two neutrino mass eigenstates are non-relativistic
today and behave as a small “hot” fraction of the total dark matter
(they cannot be all the dark matter, as explained in Chap. 26 in
this Review). This fraction of hot dark matter can be probed by
cosmological experiments, for two related reasons, as we now describe.

First, neutrinos are the only known particles behaving as radiation
at early times (during the CMB acoustic oscillations) and dark
matter at late times (during structure formation), which has
consequences on the background evolution. Neutrinos become non-
relativistic when their mass is equal to their average momentum,
given for any Fermi-Dirac-distributed particle by 〈p〉 = 3.15T .
Thus the redshift of the non-relativistic transition is given by
znri = mi/(3.15T

0
ν ) − 1 = mi/[0.53meV] − 1 for each eigenstate

of mass mi, giving for instance znri = 110 for mi = 60meV,
corresponding to a time deep inside the matter-dominated regime.
Second, until the non-relativistic transition, neutrinos travel at
the speed of light, and later on they move at a typical velocity
〈vi/c〉 = 3.15Tν(z)/mi = 0.53(1 + z)meV/mi, which is several orders
of magnitude larger than that of the dominant cold (or even of possibly
warm) dark matter component(s). This brings their characteristic
diffusion scale, called the “free-streaming length”, to cosmological
relevant values, with consequences on gravitational clustering and the
growth of structure.

Once neutrinos are non-relativistic, their energy density is given
by ρν ≃ ∑

mini. Since the number densities ni are equal to each
other (up to negligible corrections coming from flavour effects in
the decoupling phase), the total mass (

∑
mν) = m1 +m2 +m3 can

be factorized out. It is possible that the lightest neutrino is still
relativistic today, in which case this relation is slightly incorrect, but
given that the total density is always strongly dominated by that
of non-relativistic neutrinos, the error made is completely negligible.
Using the expression for ni/nγ obtained from precise neutrino
decoupling studies, and knowing nγ from the measurement of the
CMB temperature, one can compute ρ0ν , the total neutrino density
today, in units of the critical density ρ0crit [7]:

Ων =
ρ0ν
ρ0crit

=

∑
mν

93.14h2 eV
, (25.2)

and the total neutrino average number density today: n0ν =339.5 cm−3.
Here h is the Hubble constant in units of 100 km s−1 Mpc−1.
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Figure 25.1: Ratio of the CMB CTT
ℓ (left, including lensing

effects) and matter power spectrum P (k) (right, computed
for each model in units of (h−1Mpc)3) for different values of
∆Neff ≡ Neff − 3.045 over those of a reference model with
∆Neff = 0. In order to minimize and better characterise the
effect of Neff on the CMB, the parameters that are kept fixed
are {zeq, zΛ, ωb, τ} and the primordial spectrum parameters.
Fixing {zeq, zΛ} is equivalent to fixing the fractional density
of total radiation, of total matter and of cosmological constant
{Ωr,Ωm,ΩΛ} while increasing the Hubble parameter as a
function of Neff . The statistical errors on the Cℓ are ∼ 1% for
a band power of ∆ℓ = 30 at ℓ ∼ 1000. The error on P (k) is
estimated to be of the order of 5%.

25.2. Effects of neutrino properties on cosmological
observables

As long as they are relativistic, i.e., until some time deep
inside the matter-dominated regime for neutrinos with a mass
mi ≪ 3.15T eq

ν ∼ 1.5 eV (see Big Bang Cosmology, Chap. 21 in this
Review), neutrinos enhance the density of radiation: this effect is
parameterised by Neff and can be discussed separately from the effect
of the mass that will be described later in this section. Increasing
Neff impacts the observable spectra of CMB anisotropies and matter
fluctuations through background and perturbation effects.

25.2.1. Effect of Neff on the CMB : The background effects
depend on what is kept fixed when increasing Neff . If the densities
of other species are kept fixed, a higher Neff implies a smaller
redshift of radiation-to-matter equality, with very strong effects
on the CMB spectrum: when the amount of expansion between
radiation-to-matter equality and photon decoupling is larger, the
CMB peaks are suppressed. This effect is not truly characteristic of
the neutrino density, since it can be produced by varying several other
parameters. Hence, to characterise the effect of Neff , it is more useful
and illuminating to enhance the density of total radiation, of total
matter and of Λ by exactly the same amount, in order to keep the

redshift of radiation-to-matter equality zeq and matter-to-Λ equality
zΛ fixed [9,10,4]. The primordial spectrum parameters, the baryon
density ωb ≡ Ωbh

2 and the optical depth to reionization τ can be
kept fixed at the same time, since we can simply vary Neff together
with the Hubble parameter h with fixed {ωb, Ωc, ΩΛ}. The impact of
such a transformation is shown in Fig. 25.1 for the CMB temperature
spectrum CTT

ℓ (defined in Chap. 28 in this Review) and for the matter
power spectrum P (k) (defined in Chap. 21 in this Review) for several
representative values of Neff . These effects are within the reach of
cosmological observations given current error bars, as discussed in
Section 25.3 (for instance, with the Planck satellite data, the statistical
error on the Cℓ’s is of the order of one per cent for a band power of
∆ℓ = 30 at ℓ ∼ 1000).

With this transformation, the main background effect of Neff is
an increase in the diffusion scale (or Silk damping scale, see Cosmic
Microwave Background – Chap. 28 in this Review) at the time of
decoupling, responsible for the decrease in CTT

ℓ at high ℓ, plus
smaller effects coming from a slight increase in the redshift of photon
decoupling [4,9,10]. At the level of perturbations, a higher Neff
implies that photons feel gravitational forces from a denser neutrino
component; this tends to decrease the acoustic peaks (because
neutrinos are distributed in a smoother way than photons) and to
shift them to larger scales / smaller multipoles (because photon
perturbations traveling at the speed of sound in the photon-baryon
fluid feel some dragging effect from neutrino perturbations travelling at
the speed of light) [9,4,11]. The combination of these effects is truly
characteristic of the radiation density parameter Neff and cannot be
mimicked by other parameters; thus Neff can be accurately measured
from the CMB alone. However, there are correlations between Neff
and other parameters. In particular, we have seen (Fig. 25.1) that in
order to minimise the effect of Neff on the CMB spectrum, one should
vary h at the same time, hence there is a correlation between Neff and
h, which implies that independent measurements reducing the error
bar on h also reduce that on Neff . Note that this correlation is not
equivalent to a perfect degeneracy, so both parameters can anyway be
constrained with CMB data alone.

25.2.2. Effect of Neff on the matter spectrum : We have dis-
cussed the effect of increasing Neff while keeping zeq and ωb fixed,
because the latter two quantities are very accurately constrained by
CMB data. This implies that ωc increases with Neff , and that the ratio
ωb/ωc = Ωb/Ωc decreases. However, the ratio of baryonic-to-dark
matter has a strong impact on the shape of the matter power
spectrum, because until the time of decoupling of the baryons from the
photons, CDM experiences gravitational collapse, while baryons are
kept smoothly distributed by photon pressure and affected by acoustic
oscillations. The decrease of Ωb/Ωc following from the increase of
Neff gives more weight to the most clustered of the two components,
namely the dark matter one, and produces an enhancement of the
small-scale matter power spectrum and a damping of the amplitude of
baryon acoustic oscillations (BAOs), clearly visible in Fig. 25.1 (right
plot). The scale of BAOs is also slightly shifted.

The increase in the small-scale matter power spectrum is also
responsible for a last effect on the CMB spectra : the CMB last
scattering surface is slightly more affected by weak lensing from
large-scale structures. This tends to smooth the maxima, the minima,
and the damping scale of the CMB spectra [12].

25.2.3. Effect of neutrino masses on the CMB : Neutrino
eigenstates with a mass mi ≪ 0.57 eV become non-relativistic
after photon decoupling. They contribute to the non-relativistic
matter budget today, but not at the time of equality or recombination.
If we increase the neutrino mass while keeping fixed the density of
baryons and dark matter (ωb and ωc), the early cosmological evolution
remains fixed and independent of the neutrino mass, until the time of
the non-relativistic transition. Thus one might expect that the CMB
temperature and polarisation power spectra are left invariant. This is
not true for four reasons.

First, the neutrino density enhances the total non-relativistic
density at late times, ωm = ωb+ωc+ων , where ων ≡ Ωνh

2 is given as
a function of the total mass

∑
mν by Eq. (25.2). The late background

evolution impacts the CMB spectrum through the relation between



392 25. Neutrinos in cosmology

101 102 103
Multipole ℓ

0.85

0.90

0.95

1.00

C
TT ℓ
/C

TT ℓ
(Σ
m

ν
=
0)

Σmν=0.25eV
Σmν=0.5eV
Σmν=0.75eV
Σmν=1eV

10−4 10−3 10−2 10−1 100
k [h−1Mpc]

0.2

0.4

0.6

0.8

1.0

P(
k)
/P
(k
)(Σ

m
ν
=
0)

Σmν=0.25eV
Σmν=0.5eV
Σmν=0.75eV
Σmν=1eV

Figure 25.2: Ratio of the CMB CTT
ℓ and matter power

spectrum P (k) (computed for each model in units of (h−1Mpc)3)
for different values of

∑
mν over those of a reference model with

massless neutrinos. In order to minimize and better characterise
the effect of

∑
mν on the CMB, the parameters that are kept

fixed are ωb, ωc, τ , the angular scale of the sound horizon θs and
the primordial spectrum parameters (solid lines). This implies
that we are increasing the Hubble parameter h as a function of∑

mν . For the matter power spectrum, in order to single out
the effect of neutrino free-streaming on P (k), the dashed lines
show the spectrum ratio when {ωm, ωb,ΩΛ} are kept fixed. For
comparison, the error on P (k) is of the order of 5% with current
observations, and the fractional Cℓ errors are of the order of
1/

√
ℓ at low ℓ.

scales on the last scattering surface and angles on the sky, and through
the late ISW effect (see Cosmic Microwave Background – Chap. 28
of this Review). These two effects depend respectively on the angular
diameter distance to recombination, dA(zrec), and on the redshift
of matter-to-Λ equality. Increasing

∑
mν tends to modify these two

quantities. By playing with h and ΩΛ, it is possible to keep one of
them fixed, but not both at the same time. Since the CMB measures
the angular scale of acoustic oscillations with exquisite precision, and
is only loosely sensitive to the late ISW effect due to cosmic variance,
we choose in Fig. 25.2 to play with the Hubble parameter in order
to maintain a fixed scale dA(zrec). With such a choice, an increase
in neutrino mass comes together with a decrease in the late ISW
effect explaining the depletion of the CMB spectrum for l ≤ 20. The
fact that both

∑
mν and h enter the expression of dA(zrec) implies

that measurements of the neutrino mass from CMB data are strongly
correlated with h. Second, the non-relativistic transition of neutrinos
affects the total pressure-to-density ratio of the universe, and causes
a small variation of the metric fluctuations. If this transition takes
place not too long after photon decoupling, this variation is observable
through the early ISW effect [4,13,14]. It is responsible for the dip
seen in Fig. 25.2 for 20 ≤ ℓ ≤ 200. Third, when the neutrino mass is
higher, the CMB spectrum is less affected by the weak lensing effect
induced by the large-scale structure at small redshift. This is due

to a decrease in the matter power spectrum described in the next
paragraphs. This reduced lensing effect is responsible for most of the
oscillatory patterns visible in Fig. 25.2 (left plot) for ℓ ≥ 200. Fourth,
the neutrinos with the smallest momenta start to be non-relativistic
earlier than the average ones. The photon perturbations feel this
through their gravitational coupling with neutrinos. This leads to a
small enhancement of CTT

l for ℓ ≥ 500, hardly visible on Fig. 25.2
because it is balanced by the lensing effect.

25.2.4. Effect of neutrino masses on the matter spectrum
: The physical effect of neutrinos on the matter power spectrum is
related to their velocity dispersion. Neutrinos free-stream over large
distances without falling into small potential wells. The free-streaming
scale is roughly defined as the distance travel by neutrinos over a
Hubble time scale tH = (a/ȧ), and approximates the scale below
which neutrinos remain very smooth. On larger scales, they cluster
in the same way as cold dark matter. The power spectrum of total
matter fluctuations, related to the squared fluctuation δ2m with
δm ≡ δb + δc + δν , gets a negligible contribution from the neutrino
component on small scales, and is reduced by a factor (1 − 2fν),
where fν = ων/ωm. Additionally, on scales below the free-streaming
scale, the growth of ordinary cold dark matter and baryon fluctuations
is modified by the fact that neutrinos contribute to the background
density, but not to the density fluctuations. This changes the balance
between the gravitational forces responsible for clustering, and the
Hubble friction term slowing it down. Thus the growth rate of CDM
and baryon fluctuations is reduced [15]. This results today in an
additional suppression of the small-scale linear matter power spectrum
by approximately (1 − 6fν). These two effects sum up to a factor
(1 − 8fν) [16] (more precise approximations can be found in [2,4]).
The non-linear spectrum is even more suppressed on mildly non-linear
scales [17,18,19,20,21,3].

This effect is often illustrated by plots of the matter power spectrum
ratio with fixed parameters {ωm, ωb,ΩΛ} and varying fν , i.e., with
the CDM density adjusted to get a fixed total dark matter density
[2,4,16]( see Fig. 25.2, right plot, dashed lines). This transformation
does not leave the redshift of equality zeq invariant, and has very large
effects on the CMB spectra. If one follows the logic of minimizing
CMB variations and fixing zeq like in the previous paragraphs, the
increase in

∑
mν must take place together with an increase of h, which

tends to suppress the large-scale power spectrum, by approximately
the same amount as the neutrino free-streaming effect [22]. In that
case, the impact of neutrino masses on the matter power spectrum
appears as an overall amplitude suppression, which can be seen in
Fig. 25.2 (right plot, solid lines). The oscillations on intermediate
wavenumbers come from a small shift in the BAO scale [22]. This
global effect is not degenerate with a variation of the primordial
spectrum amplitude As, because it only affects the matter power
spectrum, and not the CMB spectra. However, the amplitude of
the CMB temperature and polarization spectrum is given by the
combination Ase

−2τ . Hence a measurement of τ is necessary in order
to fix As from CMB data, and avoid a parameter degeneracy between∑

mν and As [22,23,24].

A few of the neutrino mass effects described above–free-streaming
scale, early ISW– depend on individual masses mi, but most of them
depend only on the total mass through fν –suppression of the matter
power spectrum, CMB lensing, shift in angular diameter distance–.
Because the latter effects are easier to measure, cosmology is primarily
sensitive to the total mass

∑
mν [25,26]. The possibility that future

data sets might be able to measure individual masses or the mass
hierarchy, despite systematic errors and parameter degeneracies, has
recently become a subject of investigation [27,28].

25.3. Cosmological Constraints on neutrino
properties

In this review we focus on cosmological constraints on the
abundance and mass of ordinary active neutrinos. Several stringent
but model-dependent constraints on non-standard neutrinos (e.g.,
sterile neutrinos, active neutrinos with interactions beyond the weak
force, unstable neutrinos with invisible decay, etc.) can also be found
in the literature.
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25.3.1. Neutrino abundance :

Table 25.1 shows a list of constraints on Neff obtained with
several combination of data sets. ‘Pl15’ denotes the Planck 2015
data, composed of a high-ℓ temperature likelihood (TT), low-
ℓ temperature+polarization likelihood (lowP) and CMB lensing
spectrum likelihood (lensing) based on lensing extraction from
quadratic estimators [29]. ‘BAO’ refers to measurements of the BAO
scale (and hence of the angular diameter distance) from various recent
data sets, described in detail in the references given in the table.
‘JLA’ refers to the supernovae luminosity distance measurements [30].
‘HST’ refers to the direct measurement of the Hubble scale from
cepheids and supernovae [31].

Within the framework of a 7-parameter cosmological model
(ΛCDM+Neff ), the most conservative constraint on Neff comes from
the Planck 2015 data release with robust temperature and large-angle
polarization information: Neff = 3.13 ± 0.32 (68%CL). This number
is perfectly compatible with the prediction of the standard neutrino
decoupling model, Neff = 3.045, and can be viewed as a proof of
self-consistency of the cosmological model.

The bounds can be tightened by adding more CMB polarization
data, but the Planck Collaboration warns that there might be some
unremoved systematics in the full TT,TE,EE likelihood; or, more
conservatively, by adding information on the low-redshift background
expansion from BAOs, supernovae or direct H0 measurements.
Finally, one can also add information on large scale structure (LSS),
i.e., on the growth rate and clustering amplitude of matter as a
function of scale. However, LSS data are not very constraining for the
Neff parameter, and the only LSS data included in Table 25.1 is the
measurement of the CMB lensing spectrum.

Combinations of Planck 2015 data with BAO, supernovae or CMB
lensing constraints, all return measurements consistent with the
standard expectation.

The situation is different with the inclusion of the direct
measurement of H0 heavily relying on the Hubble Space Telescope
(HST) data, [31], known to be in tension with Planck in
the ΛCDM framework. As explained in Section 25.2, the positive
correlation between Neff and h means that inclusion of the H0

measurement pushes Neff to higher values, Neff = 3.41± 0.22 (68%CL,
Pl15[TT+lowP+lensing] + BAO + JLA + HST), but still compatible
with the standard expectation at the 1.7σ level. It remains to be seen
whether the 3.2σ tension between CMB data and direct measurements
of H0 results from systematics, or from a departure from the ΛCDM
model [33].

The error bars on Neff degrade when the data are analysed in the
context of more extended cosmological scenarios. Adding the neutrino
mass as an 8th free parameter, the Pl15[TT+lowP+lensing]+BAO
data set of Ref. [29] returns Neff = 3.2 ± 0.5 instead of 3.07 ± 0.23
(68%CL). The authors of Ref. [34] take an extreme point of view
and fit a 12-parameter model to Pl15[TT,TE,EE+lowP+lensing]
data; they obtain Neff = 2.93+0.51

−0.48 (95%CL), showing that it is very
difficult with current cosmological data to accommodate shifts of
more than 0.5 from the standard Neff value, and to obtain good
fits with, for instance, a fourth (sterile) thermalized neutrino. This
is interesting since the anomalies in some oscillation data could be
interpreted as evidence for at least one sterile neutrino with a large
mixing angle, which would need to be thermalised unless non-standard
interactions come into play [36]. In other words cosmology disfavours
the explanation of the oscillations anomalies in terms of 1 or more
extra neutrinos if they are thermalized.

25.3.2. Are they really neutrinos, as expected? : While a value
of Neff significantly different from zero (at more than 10σ) and
consistent with the expected number 3.045 yields a powerful indirect
confirmation of the CνB, departures from standard Neff could be
caused by any ingredient affecting the early-time expansion rate
of the Universe. Extra relativistic particles (either decoupled, self-
interacting, or interacting with a dark sector), a background of
gravitational waves, an oscillating scalar field with quartic potential,
departures from Einstein gravity, or large extra dimensions are some
of the possibilities for such ingredients. In principle one could even
assume that the cosmic neutrino background never existed or has

Table 25.1: Summary of Neff constraints.

Model 68%CL Ref.

CMB alone

Pl15[TT+lowP] ΛCDM+Neff 3.13± 0.32 [29]
Pl15[TT+lowP] ΛCDM+Neff+

∑
mν 3.08± 0.31 [35]

CMB + probes of background evolution

Pl15[TT+lowP] + BAO ΛCDM+Neff 3.15± 0.23 [29]

Pl15[TT+lowP] + BAO ΛCDM+Neff+
∑

mν 3.18+0.24
−0.27 [35]

CMB + probes of background evolution + LSS

Pl15[TT+lowP+lensing] + BAO ΛCDM+Neff 3.08+0.22
−0.24 [35]

” + BAO + JLA + HST ΛCDM+Neff 3.41± 0.22 [31]
” + BAO ΛCDM+Neff+

∑
mν 3.2± 0.5 [29]

Pl15[TT,TE,EE+lowP+lensing] ΛCDM+Neff+5-params. 2.93+0.51
−0.48 [34]

decayed (like in the “neutrinoless universe” model of [37]) while
another dark radiation component is responsible for Neff . At least,
cosmological data allow to narrow the range of possible interpretations
of Neff ≃ 3 to the presence of decoupled relativistic relics like
standard neutrinos. Indeed, free-streaming particles leave specific
signatures, especially in the CMB, because their density and pressure
perturbations, bulk velocities and anisotropic stress also source the
metric perturbations. These signatures can be tested in several ways.

A first approach consists of introducing a self-interaction term in
the neutrino equations. Refs [38,39] find that the Pl15+BAO data are
compatible with no self-interactions. The upper limits to the effective
coupling constant Geff for a Fermi-like four-fermions interaction at
95% confidence is log10(GeffMeV2) < −3.5(−2.7) for Planck CMB
temperature data only [38]( +BAO [39]) .

A second approach consists of introducing two phenomenological
parameters, ceff and cvis (see e.g., [40,41,42]): c2eff generalizes the
linear relation between isotropic pressure perturbations and density
perturbations, while c2vis modifies the neutrino anisotropic stress

equation. While relativistic free-streaming species have (c2eff , c
2
vis)

= (1/3, 1/3), a perfect relativistic fluid would have (c2eff , c
2
vis) =

(1/3, 0). Other values do not necessarily refer to a concrete model,
but make it possible to interpolate between these limits. The latest
Planck data strongly suggests (c2eff , c

2
vis) = (1/3, 1/3) [43,29]. Finally,

Ref. [11] shows that Planck data are precise enough to detect the
“neutrino drag” effect mentioned in Sec. 25.2, caused by gravitational
interactions between neutrino and photon perturbations, and shifting
the CMB peaks towards larger angular scales. These findings show
that current cosmological data are able to detect not just the average
density of some relativistic relics, but also their anisotropies.

25.3.3. Neutrino masses :

Table 25.2 shows a list of constraints on
∑

mν obtained with several
combinations of data sets. The acronyms “Pl15”, “BAO”, “JLA”,
and “HST” have been described in the previous subsection. “Pl16”
refers to Planck intermediate results from 2016 in which the high-ℓ
and lensing likelihood are identical to the 2015 version, but the low-ℓ
temperature+polarization likelihood based on the Low Frequency
Instrument (lowP) data is replaced by a newer version based on the
High Frequency Instrument (SimLow) [32]. There “P(k)” refers to
the several measurements of the matter power spectrum shape (and
hence of the growth rate and of the clustering amplitude as function
of scale) for “WZ”, by the WiggleZ survey [44], for “DR7”, from the
Data Release 7 of the Sloan Digital Sky Survey [45], and for “DR12”,
from the Data Release 12 of the Baryon Oscillation Spectroscopic
Survey (BOSS) [46,47]. “Lyα” refers to the BOSS measurement of
the Lyman-α flux power spectrum in quasar spectra [48].

Given that most determinations of Neff are compatible with the
standard prediction, Neff = 3.045, it is reasonable to adopt this value
as a theoretical prior and to investigate neutrino mass constraints in
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Table 25.2: Summary of
∑

mν constraints.

Model 95% CL (eV) Ref.

CMB alone

Pl15[TT+lowP] ΛCDM+
∑

mν < 0.72 [29]
Pl15[TT+lowP] ΛCDM+

∑
mν+Neff < 0.73 [35]

Pl16[TT+SimLow] ΛCDM+
∑

mν < 0.59 [32]

CMB + probes of background evolution

Pl15[TT+lowP] + BAO ΛCDM+
∑

mν < 0.21 [29]
Pl15[TT+lowP] + JLA ΛCDM+

∑
mν < 0.33 [35]

Pl15[TT+lowP] + BAO ΛCDM+
∑

mν+Neff < 0.27 [35]

CMB + probes of background evolution + LSS

Pl15[TT+lowP+lensing] ΛCDM+
∑

mν < 0.68 [29]
Pl15[TT+lowP+lensing] + BAO ΛCDM+

∑
mν < 0.25 [35]

Pl15[TT+lowP] + P(k)DR12 ΛCDM+
∑

mν < 0.30 [50]
Pl15[TT,TE,EE+lowP] + BAO+ P(k)WZ ΛCDM+

∑
mν < 0.14 [52]

Pl15[TT,TE,EE+lowP] + BAO+ P(k)DR7 ΛCDM+
∑

mν < 0.13 [52]
Pl15[TT+lowP+lensing] + Lyα ΛCDM+

∑
mν < 0.12 [48]

Pl16[TT+SimLow+lensing] + BAO ΛCDM+
∑

mν < 0.17 [48]
Pl15[TT+lowP+lensing] + BAO ΛCDM+

∑
mν+Ωk < 0.37 [35]

Pl15[TT+lowP+lensing] + BAO ΛCDM+
∑

mν+w < 0.37 [35]
Pl15[TT+lowP+lensing] + BAO ΛCDM+

∑
mν+Neff < 0.32 [29]

Pl15[TT,TE,EE+lowP+lensing] ΛCDM+
∑

mν+5-params. < 0.66 [34]

the context of a minimal 7-parameter model, ΛCDM+
∑

mν . Under
this assumption, the most robust constraints come from Planck
temperature data and large-angle polarization information:

∑
mν <

0.72 eV (95%CL) using the 2015 low-ℓ polarization likelihood [29],
or

∑
mν < 0.59 eV (95%CL) using the one from 2016 [32] (see also

Ref. [49]). The high-ℓ polarization likelihood from Planck 2015, which
should be used with caution, pushes the bound to

∑
mν < 0.34 eV

(95%CL). Among the four effects of neutrino masses on the CMB
spectra described before, current bounds are dominated by the
first and the third effects (modified late background evolution, and
distorsions of the temperature and polarisation spectra through weak
lensing).

Adding data on BAO scales is crucial, since the measurement
of the angular diameter distance at small redshift allows us to
break parameter degeneracies, for instance between

∑
mν and h.

Combined with conservative Planck 2015 data, BAO experiments
give

∑
mν < 0.21 eV (95%CL). Supernovae data are less constraining

than BAO data for the neutrino mass determination. Because the
parameter correlation between

∑
mν and H0 is negative, the inclusion

of HST data provides stronger bounds on neutrinos masses, down to∑
mν < 0.11 eV (95% CL) when including LSS [52], but such bounds

are subject to caution, since they come from a combination of slightly
discrepant data sets (at the 3.2σ level).

It is interesting to add LSS data sets, sensitive to the small-
scale suppression of the matter power spectrum due to neutrino
free-streaming. The inclusion of the Planck 2015 CMB lensing
likelihood is not very constraining. Overall, adding CMB lensing
to conservative Planck 2015 data gives stronger bounds, but only
marginally (from

∑
mν < 0.72 eV to

∑
mν < 0.68 eV at 95%CL). The

inclusion of several matter power spectrum determinations, listed in
Table 25.2, also provides rather marginal improvements: the constraint∑

mν < 0.17 eV (95%CL) from Pl15[TT,TE,EE+lowP]+BAO is only
pushed down to 0.14 eV (0.13 eV, 0.16 eV) when adding matter power
spectrum data from WiggleZ (blue galaxies) [50]( SDSS-DR7 [52],
BOSS-DR12 [52], red galaxies). The Lyman-α power spectrum data
from BOSS are more constraining, since this leads to

∑
mν < 0.12 eV

(95% CL) in the absence of BAO or high-ℓ polarization data, but only
with Pl15[TT+lowP+lensing] [48]. However, it is often stressed that
the bounds coming from Lyman-α data involve more modelling of
non-linear effects that the other techniques presented in this summary.

Upper bounds on neutrino masses become weaker when the data
are analysed in the context of extended cosmological models, but
not considerably weaker. For instance, one can see in Table 25.2
that bounds from Pl15[TT+lowP+lensing] + BAO tend to degrade
from 0.25 eV to 0.37 eV (95% CL) when introducing an 8th free
parameter accounting for spatial curvature or dynamical dark energy.
In the extreme case considered by Ref. [34], with 12 free cosmological
parameters, the bound from Pl15[TT,TE,EE+lowP+lensing] increases
from 0.59 eV to 0.66 eV (95% CL). This shows that current
cosmological data are precise enough to disentangle the effect of
several extended cosmological parameters, and that neutrino mass
bounds are becoming increasingly robust.

25.4. Future prospects and outlook

The cosmic neutrino background has been detected indirectly at
very high statistical significance. Direct detection experiments are
now being planned, e.g., at the Princeton Tritium Observatory for
Light, Early-universe, Massive-neutrino Yield (PTOLEMY) [53]. The
detection prospects crucially depend on the exact value of neutrino
masses and on the enhancement of their density at the location of
the Earth through gravitational clustering in the Milky Way and its
sub-halos – an effect however expected to be small [54,55,56].

Over the past few years the upper limit on the sum of neutrino
masses has become increasingly stringent, first indicating that
the mass ordering is hierarchical and recently putting the inverted
hierarchy under pressure and favouring the normal hierarchy (although
quantitative estimates of how disfavoured the inverted hierarchy is vary
depending on assumptions, see e.g. [57,58]) which has consequences
for planning future double beta decay experiments.

Neutrino mass and density bounds are expected to keep improving
significantly over the next years, thanks to new LSS experiments like
DES [59], Euclid [60], LSST [61], and SKA [62], or possible new CMB
experiments like CMB-S4 [63], Pixie [65], CMBPol or CORE [64].
If the ΛCDM model is confirmed, and if neutrinos have standard
properties, the total neutrino mass should be detected at the level of at
least 3–4σ even at the minimum level allowed by oscillations. This is
the conclusion reached by several independent studies, using different
dataset combinations (see e.g., [66,67,68,69,70,71]). One should note
that at the minimum level allowed by oscillations

∑
mν ∼ 0.06,

neutrinos constitute ∼ 0.5% of the Universe matter density, and
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their effects on the matter power spectrum is only at the 5% level,
implying that exquisite control of systematic errors will be crucial to
achieve the required accuracy. At this level, the information coming
from the power spectrum shape is more powerful than that coming
from geometrical measurements (e.g., BAO). But exploiting the shape
information requires improved understanding of the non-linear regime,
and of galaxy bias for galaxy surveys. The fact that different surveys
and different data set combinations have enough statistical power to
reach this level, offers a much needed redundancy and the possibility
to perform consistency checks which in turns helps immensely with the
control of systematic errors and in making the measurement robust.
Using the entire Universe as a particle detector, the on-going and
future observational efforts hold the exciting prospect to provide a
measurement of the sum of neutrino masses and possibly indication of
their mass hierarchy.
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26. DarkMatter

Revised September 2017 by M. Drees (Bonn University) and G.
Gerbier (Queen’s University, Canada).

26.1. Theory

26.1.1. Evidence for Dark Matter :

The existence of Dark (i.e., non-luminous and non-absorbing)
Matter (DM) is by now well established [1,2]. The earliest, and
perhaps still most convincing, evidence for DM came from the
observation that various luminous objects (stars, gas clouds, globular
clusters, or entire galaxies) move faster than one would expect if
they only felt the gravitational attraction of other visible objects. An
important example is the measurement of galactic rotation curves.
The rotational velocity v of an object on a stable Keplerian orbit with
radius r around a galaxy scales like v(r) ∝

√
M(r)/r, where M(r)

is the mass inside the orbit. If r lies outside the visible part of the
galaxy and mass tracks light, one would expect v(r) ∝ 1/

√
r. Instead,

in most galaxies one finds that v becomes approximately constant out
to the largest values of r where the rotation curve can be measured;
in our own galaxy, v ≃ 240 km/s at the location of our solar system,
with little change out to the largest observable radius. This implies
the existence of a dark halo, with mass density ρ(r) ∝ 1/r2, i.e.,
M(r) ∝ r; at some point ρ will have to fall off faster (in order to
keep the total mass of the galaxy finite), but we do not know at what
radius this will happen. This leads to a lower bound on the DM mass
density, ΩDM

>∼ 0.1, where ΩX ≡ ρX/ρcrit, ρcrit being the critical
mass density (i.e., Ωtot = 1 corresponds to a flat Universe).

The observation of clusters of galaxies tends to give somewhat
larger values, ΩDM ≃ 0.2. These observations include measurements
of the peculiar velocities of galaxies in the cluster, which are a measure
of their potential energy if the cluster is virialized; measurements of
the X-ray temperature of hot gas in the cluster, which again correlates
with the gravitational potential felt by the gas; and—most directly—
studies of (weak) gravitational lensing of background galaxies on the
cluster.

A particularly compelling example involves the bullet cluster
(1E0657-558) which recently (on cosmological time scales) passed
through another cluster. As a result, the hot gas forming most of
the clusters’ baryonic mass was shocked and decelerated, whereas
the galaxies in the clusters proceeded on ballistic trajectories.
Gravitational lensing shows that most of the total mass also moved
ballistically, indicating that DM self-interactions are indeed weak [1].

Many cosmologists consider the existence of old galaxies (detected
at redshift z ∼ 10) to be the strongest argument for the existence of
DM. Observations of the cosmic microwave background (CMB) show
that density perturbations at z ≃ 1, 300 were very small, δρ/ρ < 10−4.
Since (sub–horizon sized) density perturbations grow only in the
matter–dominated epoch, and matter domination starts earlier in the
presence of DM, density perturbations start to grow earlier when
DM is present, therefore allowing an earlier formation of the first
galaxies [3].

All these arguments rely on Einsteinian, or Newtonian, gravity.
One might thus ask whether the necessity to postulate the existence
of DM, sometimes perceived to be ad hoc, could be avoided by
modifying the theory of gravity. Indeed, the so–called Modified
Newtonian Dynamics (MOND) allows to reproduce many observations
on galactic scales, in particular galactic rotation curves, without
introducing DM [4]. However, MOND is a purely non–relativistic
theory. Attempts to embed it into a relativistic field theory require the
existence of additional fields (e.g. a vector field or a second metric),
and introduce considerably arbitrariness [4]. Moreover, the correct
description of large–scale structure formation seems to require some
sort of DM even in these theories [5]. In contrast, successful models
of particle DM (see below) can be described in the well established
language of quantum field theory, and do not need any modification
of General Relativity, which has passed a large number of tests with
flying colors [6].

The currently most accurate, if somewhat indirect, determination
of ΩDM comes from global fits of cosmological parameters to a variety
of observations; see the Section on Cosmological Parameters for

details. For example, using measurements of the anisotropy of the
cosmic microwave background (CMB) and of the spatial distribution
of galaxies, Ref. 7 finds a density of cold, non-baryonic matter

Ωnbmh2 = 0.1186± 0.0020 , (26.1)

where h is the Hubble constant in units of 100 km/(s·Mpc). Some
part of the baryonic matter density [7],

Ωbh
2 = 0.02226± 0.00023 , (26.2)

may well contribute to (baryonic) DM, e.g., MACHOs [8] or cold
molecular gas clouds [9].

The DM density in the “neighborhood” of our solar system is also
of considerable interest. This was first estimated as early as 1922 by
J.H. Jeans, who analyzed the motion of nearby stars transverse to the
galactic plane [2]. He concluded that in our galactic neighborhood,
the average density of DM must be roughly equal to that of luminous
matter (stars, gas, dust). Remarkably enough, a recent estimate finds
a quite similar result for the smooth component of the local Dark
Matter density [10]:

ρlocalDM = (0.39± 0.03) · (1.2± 0.2) · (1± δtriax)
GeV

cm3 . (26.3)

The first term on the right-hand side of Eq. (26.3) gives the average
Dark Matter density at a point one solar distance from the center of
our galaxy. The second factor accounts for the fact that the baryons
in the galactic disk, in which the solar system is located, also increase
the local DM density [11]. The third factor in Eq. (26.3) corrects
for possible deviations from a purely spherical halo; according to [12],
δtriax ≤ 0.2. Small substructures (minihaloes, streams) are not likely
to change the local DM density significantly [1]. Note that the first
factor in Eq. (26.3) has been derived by fitting a complete model of
our galaxy to a host of data, including the galactic rotation curve. A
“purely local” analysis, only using the motion of nearby stars, gives a
consistent result, with an error three times as large [13].

26.1.2. Candidates for Dark Matter :

Analyses of structure formation in the Universe indicate that most
DM should be “cold” or “cool”, i.e., should have been non-relativistic
at the onset of galaxy formation (when there was a galactic mass inside
the causal horizon) [1]. This agrees well with the upper bound [7] on
the contribution of light neutrinos to Eq. (26.1),

Ωνh
2 ≤ 0.0062 95% CL . (26.4)

Candidates for non-baryonic DM in Eq. (26.1) must satisfy several
conditions: they must be stable on cosmological time scales (otherwise
they would have decayed by now), they must interact very weakly
with electromagnetic radiation (otherwise they wouldn’t qualify as
dark matter), and they must have the right relic density. Candidates
include primordial black holes, axions, sterile neutrinos, and weakly
interacting massive particles (WIMPs).

Primordial black holes (PBHs) must have formed before the era
of Big-Bang nucleosynthesis, since otherwise they would have been
counted in Eq. (26.2) rather than Eq. (26.1). Such an early creation
of a large number of black holes is possible only in certain somewhat
contrived cosmological models [14]. Moreover, a large number of
astrophysical observations constrain PBH DM, leaving at best a
narrow range of masses [15].

The existence of axions [16] was first postulated to solve the strong
CP problem of QCD; they also occur naturally in superstring theories.
They are pseudo Nambu-Goldstone bosons associated with the
(mostly) spontaneous breaking of a new global “Peccei-Quinn” (PQ)
U(1) symmetry at scale fa; see the Section on Axions in this Review
for further details. Although very light, axions would constitute cold
DM, since they were produced non-thermally. At temperatures well
above the QCD phase transition, the axion is massless, and the axion
field can take any value, parameterized by the “misalignment angle”
θi. At T <∼ 1 GeV, the axion develops a mass ma ∼ fπmπ/fa due
to instanton effects. Unless the axion field happens to find itself at
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the minimum of its potential (θi = 0), it will begin to oscillate once
ma becomes comparable to the Hubble parameter H . These coherent
oscillations transform the energy originally stored in the axion field
into physical axion quanta. The contribution of this mechanism to the
present axion relic density is [1]

Ωah
2 = κa

(
fa/10

12 GeV
)1.175

θ2i , (26.5)

where the numerical factor κa lies roughly between 0.5 and a few.
If θi ∼ O(1), Eq. (26.5) will saturate Eq. (26.1) for fa ∼ 1011 GeV,
comfortably above laboratory and astrophysical constraints [16]; this
would correspond to an axion mass around 0.1 meV. However, if
the post-inflationary reheat temperature TR > fa, cosmic strings will
form during the PQ phase transition at T ≃ fa. Their decay will give
an additional contribution to Ωa, which is often bigger than that in
Eq. (26.5) [1], leading to a smaller preferred value of fa, i.e., larger
ma. On the other hand, values of fa near the Planck scale become
possible if θi is for some reason very small.

“Sterile” SU(2) × U(1)Y singlet neutrinos with keV masses [17]
could alleviate the “cusp/core problem” [1] of cold DM models. If
they were produced non-thermally through mixing with standard
neutrinos, they would eventually decay into a standard neutrino and a
photon or into three neutrinos.

Weakly interacting massive particles (WIMPs) χ are particles with
mass roughly between 10 GeV and a few TeV, and with cross sections
of approximately weak strength. Within standard cosmology, their
present relic density can be calculated reliably if the WIMPs were in
thermal and chemical equilibrium with the hot “soup” of Standard
Model (SM) particles after inflation. In this case, their density would
become exponentially (Boltzmann) suppressed at T < mχ. The
WIMPs therefore drop out of thermal equilibrium (“freeze out”) once
the rate of reactions that change SM particles into WIMPs or vice
versa, which is proportional to the product of the WIMP number
density and the WIMP pair annihilation cross section into SM particles
σA times velocity, becomes smaller than the Hubble expansion rate of
the Universe. After freeze out, the co-moving WIMP density remains
essentially constant; if the Universe evolved adiabatically after WIMP
decoupling, this implies a constant WIMP number to entropy density
ratio. Their present relic density is then approximately given by
(ignoring logarithmic corrections) [3]

Ωχh
2 ≃ const. · T 3

0

M3
Pl〈σAv〉

≃ 0.1 pb · c
〈σAv〉

. (26.6)

Here T0 is the current CMB temperature, MPl is the Planck mass, c is
the speed of light, σA is the total annihilation cross section of a pair
of WIMPs into SM particles, v is the relative velocity between the
two WIMPs in their cms system, and 〈. . .〉 denotes thermal averaging.
Freeze out happens at temperature TF ≃ mχ/20 almost independently
of the properties of the WIMP. This means that WIMPs are already
non-relativistic when they decouple from the thermal plasma; it also
implies that Eq. (26.6) is applicable if TR > TF . Notice that the 0.1
pb in Eq. (26.6) contains factors of T0 and MPl; it is, therefore, quite
intriguing that it “happens” to come out near the typical size of weak
interaction cross sections.

The seemingly most obvious WIMP candidate is a heavy neutrino.
However, an SU(2) doublet neutrino will have too small a relic density
if its mass exceeds MZ/2, as required by LEP data. One can suppress
the annihilation cross section, and hence increase the relic density, by
postulating mixing between a heavy SU(2) doublet and some sterile
neutrino. However, one also has to require the neutrino to be stable; it
is not obvious why a massive neutrino should not be allowed to decay.

The currently best motivated WIMP candidate is, therefore, the
lightest superparticle (LSP) in supersymmetric models [18] with exact
R-parity (which guarantees the stability of the LSP). Searches for
exotic isotopes [19] imply that a stable LSP has to be neutral. This
leaves basically two candidates among the superpartners of ordinary
particles, a sneutrino, and a neutralino. The negative outcome of
various WIMP searches (see below) rules out “ordinary” sneutrinos
as primary component of the DM halo of our galaxy. The most

widely studied WIMP is therefore the lightest neutralino. Detailed
calculations [1] show that the lightest neutralino will have the desired
thermal relic density Eq. (26.1) in at least four distinct regions
of parameter space. χ could be (mostly) a bino or photino (the
superpartner of the U(1)Y gauge boson and photon, respectively), if
both χ and some sleptons have mass below ∼ 150 GeV, or if mχ is
close to the mass of some sfermion (so that its relic density is reduced
through co-annihilation with this sfermion), or if 2mχ is close to the
mass of the CP-odd Higgs boson present in supersymmetric models.
Finally, Eq. (26.1) can also be satisfied if χ has a large higgsino or
wino component.

Many non-supersymmetric extensions of the Standard Model also
contain viable WIMP candidates [1]. Examples are the lightest
T−odd particle in “Little Higgs” models with conserved T−parity, or
“techni-baryons” in scenarios with an additional, strongly interacting
(“technicolor” or similar) gauge group.

Although thermally produced WIMPs are attractive DM candidates
because their relic density naturally has at least the right order of
magnitude, non-thermal production mechanisms have also been
suggested, e.g., LSP production from the decay of some moduli
fields [20], from the decay of the inflaton [21], or from the
decay of “Q−balls” (non-topological solitons) formed in the wake of
Affleck-Dine baryogenesis [22]. Although LSPs from these sources
are typically highly relativistic when produced, they quickly achieve
kinetic (but not chemical) equilibrium if TR exceeds a few MeV [23]
(but stays below mχ/20). They therefore also contribute to cold DM.
Finally, if the WIMPs aren’t their own antiparticles, an asymmetry
between WIMPs and antiWIMPs might have been created in the early
Universe, possibly by the same (unknown) mechanism that created the
baryon antibaryon asymmetry. In such “asymmetric DM” models [24]
the WIMP antiWIMP annihilation cross section 〈σAv〉 should be
significantly larger than 0.1 pb · c, cf Eq. (26.6).

The absence of signals at the LHC for physics beyond the Standard
Model, as well as the discovery of an SM-like Higgs boson with mass
near 125 GeV, constrains many well-motivated WIMP models. For
example, in constrained versions of the minimal supersymmetrized
Standard Model (MSSM) both the absence of supersymmetric signals
and the relatively large mass of the Higgs boson favor larger WIMP
masses and lower scattering cross sections on nucleons. However,
constraints from “new physics” searches apply most directly to
strongly interacting particles. Many WIMP models therefore can
still accommodate a viable WIMP for a wide range of masses. For
example, in supersymmetric models where the bino mass is not related
to the other gaugino masses a bino with mass as small as 15 GeV
can still have the correct thermal relic density [25]. Even lighter
supersymmetric WIMPs can be realized in models with extended
Higgs sector [26].

The lack of signals at the LHC may have weakened the argument
for WIMPs being embedded in a larger theory that addresses the
hierarchy problem. This, and the increasingly stronger limits from
direct and indirect WIMP searches (see below), has spawned a
plethora of new models of particle DM. For example, particles with
masses in the MeV to GeV range still naturally form cold DM, but
are difficult to detect with current methods. These models typically
require rather light “mediator” particles in order to achieve the correct
thermal relic density. Light bosons coupling to (possibly quite heavy)
DM particles have also been invoked in order to greatly increase the
annihilation cross section of the latter at small velocities, through the
so-called Sommerfeld enhancement [27]. Several collider and fixed
target experiments have searched for such light mediators, but no
signal has been found [28].

Another mechanism to achieve the correct thermal relic density
is based on 2 ↔ 3 reactions purely within the dark sector. This
requires quite large self interactions between the DM particles, which
have therefore been dubbed SIMPs (strongly interacting massive
particles) [29]. The SIMP-SIMP elastic scattering cross section σ
might even be large enough to affect cosmological structure formation,
which roughly requires σ/mχ > 0.1 b/GeV, where mχ is the mass of
the SIMP; this is considerably larger than the elastic scattering cross
section of protons. Scalar SIMPs could interact with ordinary matter
via Higgs exchange.
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Primary black holes (as MACHOs), axions, sterile neutrinos, and
WIMPs are all (in principle) detectable with present or near-future
technology (see below). There are also particle physics DM candidates
which currently seem almost impossible to detect, unless they decay;
the present lower limit on their lifetime is of order 1025 to 1026

s for 100 GeV particles. These include the gravitino (the spin-3/2
superpartner of the graviton), states from the “hidden sector” thought
responsible for supersymmetry breaking, and the axino (the spin-1/2
superpartner of the axion) [1].

26.2. Experimental detection of Dark Matter

26.2.1. The case of baryonic matter in our galaxy :

The search for hidden galactic baryonic matter in the form of
MAssive Compact Halo Objects (MACHOs) has been initiated
following the suggestion that they may represent a large part of the
galactic DM and could be detected through the microlensing effect [8].
The MACHO, EROS, and OGLE collaborations have performed a
program of observation of such objects by monitoring the luminosity of
millions of stars in the Large and Small Magellanic Clouds for several
years. EROS concluded that MACHOs cannot contribute more than
8% to the mass of the galactic halo [30], while MACHO observed
a signal at 0.4 solar mass and put an upper limit of 40%. Overall,
this strengthens the need for non-baryonic DM, also supported by the
arguments developed above.

26.2.2. Axion searches :

Axions can be detected by looking for a → γ conversion in a
strong magnetic field [1]. Such a conversion proceeds through the
loop-induced aγγ coupling, whose strength gaγγ is an important
parameter of axion models. There is currently only one experiment
searching for axionic DM: the ADMX experiment [31], originally
situated at the LLNL in California but now running at the University
of Washington, started taking data in the first half of 1996. It employs
a high quality cavity, whose “Q factor” enhances the conversion rate
on resonance, i.e., for ma(c

2 + v2a/2) = ~ωres. One then needs to
scan the resonance frequency in order to cover a significant range
in ma or, equivalently, fa. ADMX now uses SQUIDs as first-stage
amplifiers; their extremely low noise temperature (1.2 K) enhances
the conversion signal. Published results [32], combining data taken
with conventional amplifiers and SQUIDs, exclude axions with mass
between 1.9 and 3.53 µeV, corresponding to fa ≃ 4 · 1013 GeV, for
an assumed local DM density of 0.45 GeV/cm3, if gaγγ is near the
upper end of the theoretically expected range. About five times better
limits on gaγγ were achieved [33] for 1.98 µeV ≤ ma ≤ 2.18 µeV as
well as for 3.3 µeV ≤ ma ≤ 3.65 µeV, if a large fraction of the local
DM density is due to a single flow of axions with very low velocity
dispersion. The ADMX experiment is being upgraded by reducing the
cavity and SQUID temperature from the current 1.2 K to about 0.1 K.
This should increase the frequency scanning speed for given sensitivity
by more than two orders of magnitude, or increase the sensitivity for
fixed observation time.

Recently several new DM axion search experiments have been
proposed and are in various stages of development; see ref. [34] for
brief descriptions and further references. However, none of them has
produced any limits yet.

26.2.3. Searches for keV Neutrinos :

Relic keV neutrinos νs can only be detected if they mix with the
ordinary neutrinos. This mixing leads to radiative νs → νγ decays,
with lifetime τνs ≃ 1.8 · 1021 s · (sin θ)−2 · (1 keV/mνs)

5, where θ is
the mixing angle [17]. This gives rise to a flux of mono-energetic
photons with Eγ = mνs/2, which might be observable by X-ray
satellites. In the simplest case the relic νs are produced only by
oscillations of standard neutrinos. Assuming that all lepton-antilepton
asymmetries are well below 10−3, the νs relic density can then be
computed uniquely in terms of the mixing angle θ and the mass mνs .
The combination of lower bounds on mνs from analyses of structure
formation (in particular, the Lyα “forest”) and upper bounds on
X-ray fluxes from various (clusters of) galaxies exclude this scenario
if νs forms all of DM. This conclusion can be evaded if νs forms

only part of DM, and/or if there is a lepton asymmetry ≥ 10−3 (i.e.
some 7 orders of magnitude above the observed baryon-antibaryon
asymmetry), and/or if there is an additional source of νs production
in the early Universe, e.g. from the decay of heavier particles [17].

Recently some evidence for a weak X-ray line at ∼ 3.5 keV has been
found in data released by the XMM-Newton satellite [35]. However,
the existence of this line was not confirmed by data from the Suzaku
and (very short-lived) Hitomi missions [36]. Although this line has
been interpreted in terms of decaying keV DM particles, e.g. sterile
neutrinos with mass mνs ≃ 7 keV, it might also be due to certain
inner-shell transitions of highly ionized K atoms [37].

26.2.4. Basics of direct WIMP search :

As stated above, WIMPs should be gravitationally trapped inside
galaxies and should have the adequate density profile to account for
the observed rotational curves. These two constraints determine the
main features of experimental detection of WIMPs, which have been
detailed in the reviews in [1].

Their mean velocity inside our galaxy relative to its center is
expected to be similar to that of stars, i.e., a few hundred kilometers
per second at the location of our solar system. For these velocities,
WIMPs interact with ordinary matter through elastic scattering on
nuclei. With expected WIMP masses in the range 10 GeV to 10 TeV,
typical nuclear recoil energies are of order of 1 to 100 keV.

The shape of the nuclear recoil spectrum results from a convolution
of the WIMP velocity distribution, usually taken as a Maxwellian
distribution in the galactic rest frame, shifted into the Earth rest
frame, with the angular scattering distribution, which is isotropic
to first approximation but forward-peaked for high nuclear mass
(typically higher than Ge mass) due to the nuclear form factor.
Overall, this results in a roughly exponential spectrum. The higher
the WIMP mass, the higher the mean value of the exponential. This
points to the need for low nuclear recoil energy threshold detectors.

On the other hand, expected interaction rates depend on the
product of the local WIMP flux and the interaction cross section.
The first term is fixed by the local density of dark matter, taken as
0.39 GeV/cm3 [see Eq. (26.3)], the mean WIMP velocity, typically
220 km/s, the galactic escape velocity, typically 544 km/s [38] and
the mass of the WIMP. The expected interaction rate then mainly
depends on two unknowns, the mass and cross section of the WIMP
(with some uncertainty [10] due to the halo model). This is why the
experimental observable, which is basically the scattering rate as a
function of energy, is usually expressed as a contour in the WIMP
mass–cross section plane.

The cross section depends on the nature of the couplings. For
non-relativistic WIMPs, one in general has to distinguish spin-
independent and spin-dependent couplings. The former can involve
scalar and vector WIMP and nucleon currents (vector currents are
absent for Majorana WIMPs, e.g., the neutralino), while the latter
involve axial vector currents (and obviously only exist if χ carries
spin). Due to coherence effects, the spin-independent cross section
scales approximately as the square of the mass of the nucleus, so
higher mass nuclei, from Ge to Xe, are preferred for this search. For
spin-dependent coupling, the cross section depends on the nuclear spin
factor; used target nuclei include 19F, 23Na, 73Ge, 127I, 129Xe, 131Xe,
and 133Cs.

Cross sections calculated in MSSM models [39] induce rates of
at most 1 evt day−1 kg−1 of detector, much lower than the usual
radioactive backgrounds. This indicates the need for underground
laboratories to protect against cosmic ray induced backgrounds, and
for the selection of extremely radio-pure materials.

The typical shape of exclusion contours can be anticipated from this
discussion: at low WIMP mass, the sensitivity drops because of the
detector energy threshold, whereas at high masses, the sensitivity also
decreases because, for a fixed mass density, the WIMP flux decreases
∝ 1/mχ. The sensitivity is best for WIMP masses near the mass of
the recoiling nucleus.

Two important points are to be kept in mind when comparing
exclusion curves from various experiments between them or with
positive indications of a signal.
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For an experiment with a fixed nuclear recoil energy threshold,
the lower is the considered WIMP mass, the lower is the fraction
of the spectrum to which the experiment is sensitive. This fraction
may be extremely small in some cases. For illustration, some figures
from some early experiments are used in the following. CoGeNT [40],
using a Germanium detector with an energy threshold of around 2
keV, is sensitive to about 10 % of the total recoil spectrum of a 7
GeV WIMP, while for XENON100 [41], using a liquid Xenon detector
with a threshold of 8.4 keV, this fraction is only 0.05 % (that is the
extreme tail of the distribution), for the same WIMP mass. The two
experiments are then sensitive to very different parts of the WIMP
velocity distribution.

A second important point to consider is the energy resolution
of the detector. Again at low WIMP mass, the expected roughly
exponential spectrum is very steep and when the characteristic energy
of the exponential becomes of the same order as the energy resolution,
the energy smearing becomes important. In particular, a significant
fraction of the expected spectrum below effective threshold is smeared
above threshold, increasing artificially the sensitivity. For instance,
a Xenon detector with a threshold of 8 keV and infinitely good
resolution is actually insensitive to a 7 GeV mass WIMP, because the
expected energy distribution has a cut-off at roughly 5 keV. When
folding in the experimental resolution of XENON100 (corresponding
to a photostatistics of 0.5 photoelectron per keV), then around 1 % of
the signal is smeared above 5 keV and 0.05 % above 8 keV. Setting
reliable cross section limits in this mass range thus requires a complete
understanding of the response of the detector at energies well below
the nominal threshold.

Two experimental signatures are predicted for WIMP signals. One
is a strong daily forward/backward asymmetry of the nuclear recoil
direction, due to the alternate sweeping of the WIMP cloud by the
rotating Earth. Detection of this effect requires gaseous detectors,
anisotropic response scintillators (stilbene) or extremely fine grain
solid state detector (emulsion). The second is a few percent annual
modulation of the recoil rate due to the Earth speed adding to or
subtracting from the speed of the Sun. This tiny effect can only be
detected with large masses; nuclear recoil identification should also
be performed, as the otherwise much larger background may also be
subject to seasonal modulation.

26.2.5. Status and prospects of direct WIMP searches :

Given the intense activity of the field, readers interested in more
details than the ones given below may refer to [1], to presentations at
recent conferences [31] and to the previous versions of this review.

The first searches have been performed with ultra-pure semicon-
ductors installed in pure lead and copper shields in underground
environments. Combining a priori excellent energy resolutions and
very pure detector material, they produced the first limits on WIMP
searches (Heidelberg-Moscow, IGEX, COSME-II, HDMS) [1]. Planned
experiments using several tens of kg to a ton of Germanium run at
liquid nitrogen temperature (designed for double-beta decay search) –
GERDA, MAJORANA – are based in addition on passive reduction
of the external and internal electromagnetic and neutron background
by using Point Contact detectors (discussed below), minimal detector
housing, close electronics, pulse shape discrimination and large liquid
nitrogen or argon shields. Their sensitivity to WIMP interactions will
depend on their ability to lower the energy threshold sufficiently, while
keeping the background rate small.

Development of so called Point Contact Germanium detectors, with
a very small capacitance allowed one to reach sub-keV thresholds,
though performance seems to stall now at around 400 eV. The CoGeNT
collaboration was first operating a single 440 g Germanium detector
with an effective threshold of 400 eV in the Soudan Underground
Laboratory for 56 days [40]. No new result has been published these
last two years. A possible excess that had originally been observed
has been understood, while a possible annual modulation in the data
fell short of being significant as well.

The CDEX collaboration has also operated a single Point Contact
detector in the Jinping underground laboratory, with a 475 eV
threshold and a background rate too high to lead to a competitive
limit [42]. The next step is CDEX-10, an array with a total mass of

10 kg, planned to be immersed in a ton-scale liquid argon chamber as
active shield.

In order to make progress in the reliability of any claimed signal,
active background rejection and signal identification questions have to
be addressed. Active background rejection in detectors relies on the
relatively small ionization in nuclear recoils due to their low velocity.
This induces a reduction (“quenching”) of the ionization/scintillation
signal for nuclear recoil signal events relative to e or γ induced
backgrounds of the same energy. Energies calibrated with gamma
sources are then called “electron equivalent energies” (keVee unit
used below). This effect has been both calculated and measured [1].
It is exploited in cryogenic detectors described later. In scintillation
detectors, it induces in addition a difference in decay times of pulses
induced by e/γ events vs nuclear recoils. In most cases, due to the
limited resolution and discrimination power of this technique at low
energies, this effect allows only a statistical background rejection. It
has been used in NaI(Tl) (DAMA, LIBRA, NAIAD, Saclay NaI), in
CsI(Tl) (KIMS), and Xe (ZEPLIN-I) [1,31]. In liquid argon, pulse
shape discrimination applied to the pulse of primary scintillation light
is particularly efficient and allows an event by event discrimination,
however, at some high energy, roughly above 20 keVee (see later in
this review).

The DAMA collaboration is the only group in the community
claiming a signal at more than 5 σ level, observed now for 14 years.
The claim results from a total of 7 years exposure with the LIBRA
phase involving 250 kg of detectors, plus the earlier 6 years exposure
of the original DAMA/NaI experiment with 100 kg of detectors [43],
for a total exposure of 1.33 t·y. They observe an annual modulation of
the signal in the 2 to 6 keVee bin, with the expected period (1 year)
and phase (maximum around June 2), at 9.3 σ level. If interpreted
within the standard halo model described above, two possible solutions
have been proposed: a WIMP with m ≃ 50 GeV and σχp ≃ 7 · 10−6

pb (central values) or at low mass, in the 6 to 16 GeV range with
σχp ≃ 2 · 10−4 pb; the cross section could be somewhat lower if there
is a significant channeling effect [1]. No new result has been reported
by DAMA over the two last years.

Interpreting these observations as positive WIMP signal raises
several issues of internal consistency. First, the proposed WIMP
solutions would induce a sizable fraction of nuclear recoils in the
total measured rate in the 2 to 6 keVee bin. No pulse shape analysis
has been reported by the authors to check whether the unmodulated
signal was detectable this way. Secondly, the residual e/γ-induced
background, inferred by subtracting the signal predicted by the WIMP
interpretation from the data, has an unexpected shape [44], starting
near zero at threshold and quickly rising to reach its maximum
near 3 to 3.5 keVee; from general arguments one would expect the
background (e.g. due to electronic noise) to increase towards the
threshold. Finally, the amplitude of the annual modulation shows a
tendency to decrease with time [45].

Under standard assumptions, many experiments – see below –
exclude both the high and low mass DAMA/LIBRA solutions by
increasingly many orders of magnitude. In particular, the large
WIMP mass (60 GeV) interpretation of the DAMA/LIBRA signal
induced by scattering on Iodine nuclei is excluded directly by the
Korean collaboration KIMS. It has conducted an experiment in the
underground Yangyang laboratory in South Korea using CsI(Tl), i.e.
the identical nucleus of Iodine, and set an upper limit on the cross
section roughly two orders of magnitude below that required to explain
the DAMA signal [46]. On the other hand, no convincing non-WIMP
explanation of the annual modulation of the DAMA/LIBRA signal
has yet been put forward.

The last few years have seen a growing number of projects using
NaI(Tl) scintillators (SABRE, COSINE; and DM-ICE, KIMS and
ANAIS now taking data). Some of them have now reached the needed
maturity to test the DAMA result. Thanks to the progress in powder
selection and reduction of key contaminants, the background rate at
low energy obtained by COSINE is only about a factor 2 higher than
DAMA’s. Moreover, they obtained a light yield two times higher than
the ones previously achieved. This opens the possibility of a significant
nuclear recoil-electron recoil discrimination at energies down to 2 keV
[47]. The COSINE team is now operating 100 kg of detectors and
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prepares a second phase of 200 kg.

DM-ICE has published results [48] of a 3.6 y run with 18 kg
operated within the Ice Cube neutrino Telescope, at a threshold of 4
keV. Not surprisingly, no modulation was observed.

SABRE plans to run NaI(Tl) detectors immersed in liquid
scintillatior in two similar set-ups at LNGS and in the Southern
hemisphere, in the new underground laboratory site STAWELL in
Australia (in a gold mine 240 km west of Melbourne) in order to test
for a possible shift of the phase of the annual modulation. Such a
shift would be expected if the modulation is somehow related to the
seasons on Earth, whereas a WIMP induced annual modulation should
have the same phase in both hemispheres. SABRE has conducted an
R&D program to improve the radiopurity of their crystals and light
detectors and will soon start first proof of principle measurements at
LNGS.

Liquid noble gas (Xe, Ar) detectors have achieved tremendous
progress. Due to their relatively easy scalability they currently have
the highest sensitivity for “high mass” WIMPs (masses above ∼ 10
GeV). Dual (liquid and gas) phase detectors allow one to measure
both the primary scintillation S1 and the ionization electrons drifted
through the liquid, amplified in the gas and giving rise to a second
scintillation pulse S2. S1 and S2 are used to discriminate between
nuclear and electron recoils as well as 3D position reconstruction
within the detector. In the single phase mode (DEAP, XMASS), only
S1 is measured; discrimination is then ensured by the pulse shape
analysis in the case of Argon and by the self shielding in the case of
Xenon.

The suite of XENON-n detectors [31] are operated at the Gran
Sasso laboratory. After XENON10, XENON 100 in 2012 was the
first to clearly show the supremacy of liquid noble gas detectors for
high mass WIMP searches. Recently the last avatar, Xenon1t, has
delivered its first results [49]. With a fiducial mass of 1042 kg and 32
days of operating time, they set the best limit on the cross section for
spin-independent interactions at 7.7× 10−11 pb for a WIMP mass of
35 GeV.

This result surpasses the most recent limit set by LUX, a 370 kg
double phase Xenon detector installed in a large water shield, operated
in the SURF (previously Homestake) laboratory in the US. Thanks to
a total exposure of 33500 kg·d, a limit is set at 1.1× 10−10 pb for a
WIMP mass of 50 GeV [50]. This data set provides the best published
limit for spin dependent WIMPs with pure neutron couplings at all
masses [51]. LUX is now preparing the next phase, LZ, which will
operate several tons of Xenon.

PandaX, another double phase liquid Xenon based project, has
been quickly evolving in the Chinese Jinping lab. From a first phase
of 54 kg, the detector has been upgraded within about one year to a
mass of 500 kg. The latest result was obtained by PandaX-II with a
fiducial mass of 364 kg and a running time of 77 days [52]. Combined
with previous data, the total exposure of 54 000 kg·d allows one to set
a limit of 8.6× 10−11 pb for a WIMP mass of 40 GeV [53]. There is
now a strong competition between these three experiments.

XMASS [31], a single-phase 800 kg Xenon detector (100 kg fiducial
mass, allowing a strong self shielding) operated in Japan at the
SuperKamiokande site, has seen its detector repaired. The observed
spectrum is consistent with the expected background and allows to
set limits about 2 orders of magnitude higher than the other, double
phase, detectors. The next phase of XMASS is XMASS-1.5 with a 1.5
ton fiducial mass.

The ArDM-1t detector [31], an Argon detector with a total mass of
1.1 t installed at the Canfranc laboratory, is still in the commissioning
phase.

DarkSide50, installed in LNGS, is a two phase liquid argon TPC
with fiducial mass of 46 kg. The detector is immersed in a spherical
vessel containing 30 t of liquid scintillator, which in turn is immersed
in a tank containing one kiloton of pure water. Results from the
first use of Argon from underground sources, which is depleted
in the radioactive isotope 39Ar, have been published recently [54].
Combined with previous results obtained with natural Argon, the
obtained limit is 2.0× 10−8 pb for a WIMP mass of 100 GeV.

DEAP-3600 [31], designed to operate in single phase mode in
spherical geometry, started operating at SNOLAB 3600 kg of Argon,
the so far largest mass of liquid noble gas for dark matter search. A
short data taking run of 4.2 days in August 2016 resulted in a sizable
exposure of 9 870 kg·d in which no candidate event was observed in
the region of interest, allowing to set a limit of 1.2 × 10−8 pb for a
WIMP mass of 100 GeV [55]. This is currently the best limit for
an Argon based detector. However, in the background free regime,
even with a fiducial mass a factor 2 higher than Xenon1t, the rate
of increase in sensitivity per unit time of DEAP is around a factor 6
lower than Xenon1t. This is due to the high threshold of DEAP and
the lower enhancement factor for spin independent interactions on
Argon compared to Xenon. The final ”winner” will then be the one
with the lowest ultimate background, which DEAP projects to be.

Candidates for the next generation of multiton Ar and Xe detectors
are XENONnT, DARWIN, DEAP-50T, and DarkSide-20k.

At mK temperature, the simultaneous measurement of the phonon
and ionization signals in semiconductor detectors permits event by
event discrimination between nuclear and electronic recoils down to
few keV recoil energy. This feature is being used by the CDMS [31]
and EDELWEISS [31] collaborations. Surface interactions, exhibiting
incomplete charge collection, are an important residual background.
Both experiments now use an interleaved ionization read-out electrodes
scheme in order to control this background. On the other hand, the
cryogenic experiment CRESST [31] in the Gran Sasso laboratory uses
scintillating crystals as detectors and thus employs the scintillation
signal as second variable for background discrimination.

Somewhat paradoxically, all three cryogenic experiments now tend
to turn their efforts towards a mode of operating their detectors which
gives up their discrimination power. Indeed, given the overwhelming
progress of liquid noble gas detectors for WIMP masses above 10
GeV, cryogenic detectors are now tuned towards access to low mass
WIMPs, by decreasing their thresholds. Given that the current limits
on cross sections below a WIMP mass of 10 GeV are rather high, the
detector mass required to get significant improvements does not need
to be large, and discrimination against electron recoils is less crucial.
Typically, in the present situation, the current limits on scattering
cross sections of 3 GeV WIMPs are 5 orders of magnitude higher than
at 30 GeV, which means that a detector mass of about 100 g is enough
to gain in sensitivity at a WIMP mass of 3 GeV. In order to reach
the “neutrino floor” due to the irreducible background rate from the
elastic scattering of (mostly solar) neutrinos off the target nuclei [56]
in the 7 GeV region, that is 10−8 pb for the WIMP–proton cross
section, a detector mass of 50 to 200 kg would be needed.

The SuperCDMS collaboration has now stopped operations at
Soudan and is preparing to install its large cryostat, able to house up
to 200 kg of detectors, at SNOLAB. They reported recently the results
from the majority of the Soudan data set, involving 15 Germanium
IZIP detectors and an exposure of 1690 kg·d. A new spin-independent
WIMP nucleon cross sections limit is set at 1.4× 10−8 pb, at 90% CL
for a 46 GeV WIMP [57]. This is a 20% improvement relative to the
2015 result involving 612 kg·d . Combining both results provides a
limit of 1.0×10−8 pb at 90% CL for a 46 GeV WIMP. For comparison,
the best limit at the same WIMP mass set by Xenon detectors is
around 0.8× 10−11 pb, i.e. two orders of magnitude lower.

Some detectors at Soudan have been operated with ”high” voltage
(i.e. 70 V instead of 6 to 8 V) across the electrodes measuring
the ionization. The phonons generated by the ionization electrons
traveling inside the crystal – the so-called Neganov Luke effect – then
give a stronger phonon signal than the normal phonon pulse induced
by the initial interaction. This is equivalent to an amplification of
the ionization pulse, but at the expense of losing the discrimination
between electron and nuclear recoils. This running mode allowed to
lower the energy threshold to 50 to 70 eVee [58]. The sensitivity is
then determined by the counting rate at the threshold. A significant
improvement of the cross section limit, to 2.0 × 10−5 pb, has been
obtained at around 3 GeV of WIMP mass. A projection paper [59]
details expected performances for the SNOLAB set-up. A typical
figure for the sensitivity goal is 4.0 × 10−8 pb for a 3 GeV WIMP.
Calculated sensitivities down to a WIMP mass of 1 GeV rely on the
extrapolation of knowledge of the radioactive background down to 10
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eVee and of the quenching factor down to 50 eVNR.

The EDELWEISS collaboration [31] also operates cryogenic
Germanium detectors (so-called FID800 detectors, featuring a
complete coverage of the crystal with annular electrodes, and better
rejection of non-nuclear recoil events) in the Laboratoire Souterrain
de Modane. Two new results based on the same data set have been
published. From an exposure of 496 kg·d obtained with 8 detectors
selected out of 24 detectors for their very low threshold [60], a profile
likelihood analysis has been applied and provided limits ranging from
1.6 × 10−3 pb at around 4 GeV to 7.0 × 10−8 pb at 30 GeV, all
limits being higher than the ones obtained by SuperCDMS in similar
mass ranges. A strategy paper [61] details expected performances
under various hypothesis of R&D outcomes and running conditions.
An improvement of a factor 3 over the current SuperCDMS result is
anticipated at a WIMP mass of 3 GeV in 2018. The route towards
the detection of solar 8B neutrinos, involving several hundred kg of
discrimination detectors in the SNOLAB SuperCDMS set-up, assumes
an improvement in ionization channel energy rms resolution of 50
eVee, which is considered to be at hand. The solar neutrinos would
be detected by elastic (coherent) scattering off the Germanium nuclei;
coherent neutrino–nucleus scattering has very recently been detected
experimentally for the first time [62].

The cryogenic experiment CRESST [31] in the Gran Sasso
laboratory uses the scintillation of CaWO4 crystals as second variable
for background discrimination. CRESST puts focus on lowering the
energy threshold in order to access low mass WIMPs, by implementing
a new generation of detectors with improved vetoing of low energy
surface events induced by external alpha particles. Results [63] from
a single detector show a quite low threshold of 0.31 keVNR, allowing
one to set a limit on WIMP–proton cross section for spin independent
couplings of 3×10−4 pb for a WIMP mass around 3 GeV and 10−2 pb
at 1 GeV, assuming interactions on the Oxygen nuclei in the target.
Interestingly, the obtained limit excludes the signals reported by the
same collaboration two years before, which are now believed to have
been caused by an inadequate description of the background from
external alpha particles. Low mass 20 g detectors with thresholds of
around 100 eV are now being operated. As illustration of the shift
towards extremely low threshold, 1 g detectors with 20 eV threshold
have been operated at the surface in order to set limits on MeV mass
particles [64].

The two following experiments also aim to search for very low
mass WIMPs, that is down to 0.1 GeV. DAMIC [31], using CCDs
at SNOLAB, obtained a threshold of around 100 eV. Thanks to a
series of exposures of 2.9 g CCDS in different conditions adding to 0.6
kg·d, an exclusion limit [65] has been produced, ranging from 1 pb at
1.5 GeV to 1 × 10−3 pb at 3 GeV, above the limits set by CRESST.
The DAMIC100 project will use 16 CCDs of 5.8 g each. The renamed
NEWS-G collaboration [31] exploits an unconventional gas detector,
based on a spherical geometry, able to achieve a very low energy
threshold, down to a single ionization electron. A 60 cm diameter
prototype, SEDINE, has being operated in the Fréjus laboratory with
Neon gas at a pressure of 3.1 bars for 42 days. With a 150 eV analysis
threshold, a quite competitive limit [66] of 4.4 × 10−1 pb is set at a
WIMP mass of 0.5 GeV. The NEWS-SNO project involving a 1.4 m
diameter spherical detector has been accepted at SNOLAB, and will
allow to reach sensitivity to WIMP masses down to 0.1 GeV thanks
to the use of Helium and Hydrogen targets.

Detectors based on metastable liquids or gels have the advantage of
being insensitive to electromagnetic interactions, and the drawback of
being threshold yes/no detectors. PICO, the merging of the Picasso
and COUPP collaborations, has operated at SNOLAB a series of
bubble chamber type detectors with compounds rich in Fluorine,
therefore orienting their search towards spin dependent interactions.
Spectacular progress has been achieved in the last two years thanks
to the removal of particulates responsible for anomalous nuclear recoil
like events. Using PICO60, filled with 54 kg of C3F8, no single scatter
compatible with a nuclear recoil has been observed in an exposure
of 1167 kg·d, allowing to set a limit on the spin dependent proton
cross section of 3.4 × 10−5 pb for a 30 GeV WIMP, a gain of almost
a factor 20 relative to the previous limit. This experiment has the
best sensitivity worldwide for spin dependent couplings at all WIMP

masses, similar to the ones derived from the bound on WIMP-induced
muon neutrinos from the Sun (see below). The collaboration has
submitted the PICO-500 project, a ton scale detector, which has been
funded and will be operated at SNOLAB.

If a hint for a signal is observed in calorimetric detectors, the only
convincing way to prove the galactic origin of a possible signal would
be to show that the direction of nuclear recoils is indeed compatible
with that of the expected WIMP wind on Earth. Until recently the
low pressure Time Projection Chamber technique seemed the only
feasible way to measure tracks [1]. The DRIFT collaboration [31]
has operated a 1 m3 volume detector filled with CS2 in the UK
Boulby mine. Results from a 55 days run with a partial pressure of
10 torr of CF4 did not show any candidate event but the extracted
limit of 0.28 pb at 100 GeV WIMP mass is 5 orders of magnitude
higher than the limit set by PICO. The MIMAC collaboration [31],
who operates an unshielded 2.5 l 1000 channel prototype in the
Laboratoire Souterrain de Modane, did not conduct any WIMP
search. Other groups developing similar techniques, though with
lower sensitivity, are DMTPC in the US and NewAge in Japan. A
newcomer in the WIMP directional measurement hunt, NEWSdm, an
Italo-Japanese collaboration building on know-how acquired with the
emulsion technique in the OPERA experiment, proposes to measure
the expected 0.1 micron long nuclear tracks in an extremely finely
grained emulsion. R&D is ongoing and proponents aim at operating
a target mass of 1 kg, with a final sensitivity expected to be at
around the DAMA signal, i.e. well above current limits set by most
calorimetric experiments.

To complete this review about direct detection of dark matter, it is
certainly worth mentioning a growing wave of ideas for new avenues
towards detection of dark matter particles with ever lower masses,
ranging from MeV down to the meV mass scale. Suggested methods
include scattering on nuclei, scattering on electrons, absorption of
bosonic particles by electrons, and chemical bond breaking. Since
these proposals have the potential to explore new territories, small
scale experiments can quickly cover orders of magnitude in mass and
sensitivity of new parameter space.

Figure 26.1: WIMP cross sections (normalized to a single
nucleon) for spin-independent coupling versus mass. The
DAMA/LIBRA [72], and CDMS-Si enclosed areas are regions
of interest from possible signal events. References to the
experimental results are given in the text. For context, the black
contour shows a scan of the parameter space of 4 typical SUSY
models, CMSSM, NUHM1, NUHM2, pMSSM10 [73], which
integrates constraints set by ATLAS Run 1.

Figures 26.1 and 26.2 illustrate the limits and positive claims
for WIMP scattering cross sections, normalized to scattering on a
single nucleon, for spin independent and spin dependent couplings,
respectively, as functions of WIMP mass. Only the two or three
currently best limits are presented. Also shown are constraints from
indirect observations (see the next section) and a typical region of a
SUSY model after the LHC run-1 results.
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Figure 26.2: WIMP cross sections for spin dependent coupling
versus mass. (a) interactions with the neutron; (b) interactions
with the proton. References to the experimental results are given
in the text. Indirect detection results are from SuperKamiokande
(annihilation into bb̄ and τ+τ− channels) together with IceCube
(annihilation into W+W−); for details see the indirect WIMP
searches section below.

Table 25.1 summarizes the best experimental performances in
terms of the upper limit on cross sections for spin independent and
spin dependent couplings, at the optimized WIMP mass of each
experiment. Also included are some new significant results (using
Argon for example).

In summary, the confused situation at low WIMP mass has largely
been cleared up (with the notable exception of the DAMA claim).
Liquid noble gas detectors have achieved large progress in sensitivity
to spin independent coupling WIMPs without seeing any hint of
a signal. A lot of progress has also been achieved by the PICO
experiment for spin dependent couplings. Many new projects focus
on the very low mass range of 0.1-10 GeV. Sensitivities down to σχp
of 10−13 pb, as needed to probe nearly all of the MSSM parameter
space [39] at WIMP masses above 10 GeV and to saturate the limit of
the irreducible neutrino-induced background [56], will be reached with
Ar and/or Xe detectors of multi-ton masses, assuming nearly perfect
background discrimination capabilities. For WIMP masses below 10
GeV, this cross section limit is set by the solar neutrinos, inducing an
irreducible background at an equivalent cross section around 10−9 pb,
which is accessible with less massive low threshold detectors [31].

26.2.6. Status and prospects of indirect WIMP searches :

WIMPs can annihilate and their annihilation products can be
detected; these include neutrinos, gamma rays, positrons, antiprotons,
and antinuclei [1]. These methods are complementary to direct
detection and might be able to explore higher masses and different
coupling scenarios. “Smoking gun” signals for indirect detection are
GeV neutrinos coming from the center of the Sun or Earth, and
monoenergetic photons from WIMP annihilation in space.

WIMPs can be slowed down, captured, and trapped in celestial
objects like the Earth or the Sun, thus enhancing their density and

Table 26.1: Summary of performances of the best direct
detection experiments, for spin independent and spin dependent
couplings. For the “low mass” section, in most cases, there is
no minimum in the exclusion curve and a best “typical” WIMP
mass cross section point has been chosen.

Target Fiducial Cross WIMP Ref.
Mass [kg] section [pb] mass [GeV]

Spin independent high mass (>10 GeV)

Xenon1t Xe 1042 7.7× 10−11 35 [49]
PANDAX II Xe 364 8.6× 10−11 40 [53]
LUX Xe 118 1.1× 10−10 50 [50]
SuperCDMS Ge 12 1.0× 10−8 46 [57]
DEAP Ar 2000 1.2× 10−8 100 [55]

Spin independent low mass (<10 GeV)

LUX Xe 118 2× 10−9 10 [50]
Xenon1t Xe 1042 2× 10−9 10 [49]
PANDAX II Xe 364 2× 10−9 10 [53]
PICO60 C3F8 - F 46 2× 10−7 10 [67]
SuperCDMS Ge HV 0.6 3× 10−5 3 [58]
CRESST CaWO4 - O 0.25 1× 10−2 1 [63]
NEWS-G Ne 0.3 6× 10−2 1 [66]

Spin dependent p

PICO60 C3F8 - F 54 3.4× 10−5 30 [67]

Spin dependent n

LUX Xe 118 1.6× 10−5 35 [51]

their probability of annihilation. This is a source of muon neutrinos
which can interact in the Earth. Upward going muons can then be
detected in large neutrino telescopes such as MACRO, BAKSAN,
SuperKamiokande, Baikal, AMANDA, ANTARES, NESTOR, and the
large sensitive area IceCube [1]. For standard halo velocity profiles,
only the limits from the Sun, which mostly probe spin-dependent
couplings, are competitive with direct WIMP search limits.

The best upper limit for low WIMP masses comes from Su-
perKamiokande [31]. By including events where the muon is
produced inside the detector, in addition to the upgoing events used
in earlier analyses, they have been able to extend the sensitivity
to the few GeV regime. For example, for WIMPs annihilating into
bb̄ pairs, the resulting upper limit on the spin-dependent scattering
cross section on protons is about 1.5 (2.3) fb for mχ = 10 (50) GeV;
for WIMPs annihilating exclusively into τ+τ− pairs the bounds are
about one order of magnitude stronger [74]. These upper bounds are
more than two orders of magnitude below the cross sections required
to explain the DAMA signal through spin-dependent scattering on
protons.

For heavier WIMPs, giving rise to more energetic muons, the
best bounds have been derived from IceCube/DeepCore data. These
supersede the SuperKamiokande limits for mχ > 40 (100) GeV if
WIMPs annihilate into τ+τ− (bb̄) pairs. For example, the upper
bound on the spin-dependent scattering cross section on protons for a
1 TeV WIMP annihilating into W+W− is about 0.02 fb; for WIMPs
exclusively annihilating into bb̄ the bound is about 30 to 100 times
weaker [75]. The corresponding upper bounds on spin-independent
scattering cross section on protons are about three orders of magnitude
stronger; however, they are still at least one order of magnitude weaker
than those derived from direct WIMP searches.

WIMP annihilation in the halo can give a continuous spectrum
of gamma rays and (at one-loop level) also monoenergetic photon
contributions from the γγ and γZ channels. These channels also
allow to search for WIMPs for which direct detection experiments
have little sensitivity, e.g., almost pure higgsinos. The size of this
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signal depends strongly on the halo model, but is expected to be
most prominent near the galactic center. The central region of our
galaxy hosts a strong TeV point source discovered [76] by the H.E.S.S.
Cherenkov telescope [31]. Moreover, Fermi-LAT [31] data revealed a
new extended source of GeV photons near the galactic center above
and below the galactic plane, the so-called Fermi bubbles [77], as well
as several dozen point sources of GeV photons in the inner kpc of our
galaxy [77]. These sources are very likely of (mostly) astrophysical
origin. The presence of these unexpected backgrounds makes it more
difficult to discover WIMPs in this channel.

Nevertheless analyses of publicly available Fermi-LAT data claimed
an excess of events in the few GeV range from an extended
region around the center of our galaxy, consistent with several
WIMP interpretations [78]. A recent analysis by the Fermi-LAT
collaboration [77] indeed found evidence for emission of GeV photons
from this region not accounted for by their modeling of astrophysical
sources. However, the size, spectrum and morphology of the fitted
“excess” depend strongly on the details of the fits. For example,
assumptions about the selected region of interest; the template used
to model the inverse Compton background; the existence of cosmic
ray sources in the inner galaxy; the extension of the “Fermi bubbles”
into the galactic center; and about the template for point sources,
each can modify the overall flux of the “excess” by a factor & 2.
The latter two sources of background might each describe the entire
“excess” for Eγ ≥ 10 GeV. Note also that most photons detected
from directions around the galactic center actually originate from
astrophysical foregrounds, not from the central region, and this
foreground is not well understood. As a result, a possible signal
from WIMP annihilation can contribute at most about 5% of the
total photon flux from the direction of the galactic center. Moreover,
fitting “WIMP annihilation” templates at different locations around
the galactic disk can give even larger “signal-to-background” ratios
than that for the galactic center [77]; these “signals” cannot be due
to WIMP annihilation, but are due to imperfections of the model
used. Fermi-LAT therefore does not claim a signal, but uses these
data to constrain a possible contribution from WIMP annihilation.
The derived upper bound on the annihilation cross section depends
sensitively on the assumed distribution of WIMPs near the galactic
center, but is not far worse than the best current bound.

Due to the large astrophysical background near the galactic
center, the best bound on WIMPs annihilating into photons in today’s
universe comes from a combination of Fermi-LAT observations of dwarf
galaxies [79]. It excludes WIMPs annihilating either hadronically or
into τ+τ− pairs with the standard cross section needed for thermal
relics, if the WIMP mass is below ∼ 100 GeV; the main assumption
is annihilation from an S−wave initial state. Only slightly weaker
limits can be derived from detailed analyses of the CMB by the
Planck satellite [80]. The CMB bound assumes otherwise standard
cosmology, but also holds if WIMPs dominantly annihilate into light
charged leptons.

Antiparticles arise as additional WIMP annihilation products in
the halo. To date the best measurements of the antiproton flux come
from the PAMELA satellite and the AMS-02 experiment [31] on the
International Space Station, and cover kinetic energies between 60
MeV and 350 GeV [81]. The result is in fair to good agreement
with secondary production and propagation models. These data
exclude WIMP models that attempt to explain the “e± excesses” (see
below) via annihilation into W± or Z0 boson pairs; however, largely
due to systematic uncertainties they do not significantly constrain
conventional WIMP models. The AMS-02 data are sufficiently precise
to look for subdominant contributions from WIMP annihilation. Two
analyses [82] found statistically quite significant features that could be
explained by WIMP annihilation. However, these fits are “suspiciously
good”. For example, Cuoco et al.quote an overall χ2 of 46 for 163
degrees of freedom. The probability for obtaining this small a χ2 is
below 10−20. The same analysis quotes a χ2 of 71 for 165 degrees
of freedom without a WIMP component. One possible explanation
for these anomalously small values of χ2 are correlations between the
experimental errors that have not been accounted for.

The best measurements of the positron (and electron) flux at
energies of tens to hundreds GeV also come from AMS02 [83] and

PAMELA [84], showing a rather marked rise of the positron fraction
between 10 and 200 GeV; the AMS02 data are compatible with a
flattening of the positron fraction at the highest energies. While the
observed positron spectrum falls within the one order of magnitude
span (largely due to differences in the propagation model used) of
fluxes predicted by secondary production models [85], the increase
of the positron fraction is difficult to reconcile with the rather hard
electron spectrum measured by PAMELA [86], if all positrons were
due to secondary interactions of cosmic ray particles. Measurements
of the total electron+positron energy spectrum by ATIC [87], Fermi-
LAT [88] and H.E.S.S. [89] between 100 and 2000 GeV also exceed the
predicted purely secondary spectrum, but with very large dispersion of
the magnitude of these excesses. These observations can in principle
be explained through WIMP annihilation. However, this requires
cross sections well above that indicated by Eq. (26.6) for a thermal
WIMP. This tension can be resolved only in somewhat baroque WIMP
models. Most of these models have by now been excluded by the
stringent bounds from Fermi-LAT and from analyses of the CMB on
the flux of high energy photons due to WIMP annihilation. This is
true also for models trying to explain the leptonic excesses through
the decay of WIMPs with lifetime of the order of 1026 s. In contrast,
viable astrophysical explanations of these excesses introducing new
primary sources of electrons and positrons, e.g. pulsars [90] or a
nearby supernova that exploded about two million years ago [91],
have been suggested. On the other hand, the high quality of the
AMS02 data on the positron fraction, which does not show any marked
features, allows one to impose stringent bounds on WIMPs with mass
below 300 GeV annihilating directly into leptons [92]. However, for
energies between 100 GeV and 1 TeV the latest Fermi-LAT result for
the summed electron+positron flux is significantly above that from
AMS-02.

Last but not least, an antideuteron signal [1], as potentially
observable by AMS02 or PAMELA, could constitute a signal for
WIMP annihilation in the halo.

An interesting comparison of respective sensitivities to MSSM
parameter space of future direct and various indirect searches has
been performed with the DARKSUSY tool [93]. A web-based
up-to-date collection of results from direct WIMP searches, theoretical
predictions, and sensitivities of future experiments can be found
in [71]. Also, the web page [94] allows to make predictions for WIMP
signals in various experiments, within a variety of SUSY models and to
extract limits from simply parameterized data. Integrated analysis of
all data from direct and indirect WIMP detection, and also from LHC
experiments should converge to a comprehensive approach, required
to fully unravel the mysteries of dark matter.
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27.1. Repulsive Gravity and Cosmic Acceleration

In the first modern cosmological model, Einstein [1] modified
his field equation of General Relativity (GR), introducing a
“cosmological term” that enabled a solution with time-independent,
spatially homogeneous matter density ρm and constant positive
space curvature. Although Einstein did not frame it this way, one
can view the “cosmological constant” Λ as representing a constant
energy density of the vacuum [2], whose repulsive gravitational effect
balances the attractive gravity of matter and thereby allows a static
solution. After the development of dynamic cosmological models [3,4]
and the discovery of cosmic expansion [5], the cosmological term
appeared unnecessary, and Einstein and de Sitter [6] advocated
adopting an expanding, homogeneous and isotropic, spatially flat,
matter-dominated universe as the default cosmology until observations
dictated otherwise. Such a model has matter density equal to the
critical density, Ωm ≡ ρm/ρc = 1, and negligible contribution from
other energy components [7].

By the mid-1990s, the Einstein-de Sitter model was showing
numerous cracks, under the combined onslaught of data from the
cosmic microwave background (CMB), large-scale galaxy clustering,
and direct estimates of the matter density, the expansion rate (H0),
and the age of the Universe. As noted in a number of papers from this
time, introducing a cosmological constant offered a potential resolution
of many of these tensions, yielding the most empirically successful
version of the inflationary cold dark matter scenario. In the late 1990s,
supernova surveys by two independent teams provided direct evidence
for accelerating cosmic expansion [8,9], establishing the cosmological
constant model (with Ωm ≃ 0.3, ΩΛ ≃ 0.7) as the preferred alternative
to the Ωm = 1 scenario. Shortly thereafter, CMB evidence for a
spatially flat universe [10,11], and thus for Ωtot ≃ 1, cemented the
case for cosmic acceleration by firmly eliminating the free-expansion
alternative with Ωm ≪ 1 and ΩΛ = 0. Today, the accelerating universe
is well established by multiple lines of independent evidence from a
tight web of precise cosmological measurements.

As discussed in the Big Bang Cosmology article of this Review
(Sec. 21), the scale factor R(t) of a homogeneous and isotropic universe
governed by GR grows at an accelerating rate if the pressure p < −1

3ρ
(in c = 1 units). A cosmological constant has ρΛ = constant and
pressure pΛ = −ρΛ (see Eq. 21.10), so it will drive acceleration if it
dominates the total energy density. However, acceleration could arise
from a more general form of “dark energy” that has negative pressure,
typically specified in terms of the equation-of-state-parameter w = p/ρ
(= −1 for a cosmological constant). Furthermore, the conclusion that
acceleration requires a new energy component beyond matter and
radiation relies on the assumption that GR is the correct description
of gravity on cosmological scales. The title of this article follows the
common but inexact usage of “dark energy” as a catch-all term for
the origin of cosmic acceleration, regardless of whether it arises from a
new form of energy or a modification of GR. Our account here draws
on the much longer review of cosmic acceleration by Ref. [12], which
provides background explanation and extensive literature references
for most of the points in this article, but is less up to date in its
description of current empirical constraints.

Below we will use the abbreviation ΛCDM to refer to a model
with cold dark matter, a cosmological constant, inflationary initial
conditions, standard radiation and neutrino content, and a flat
universe with Ωtot = 1 (though we will sometimes describe this model
as “flat ΛCDM” to emphasize this last restriction). We will use
wCDM to denote a model with the same assumptions but a free,
constant value of w. Models with the prefix “o” (e.g., owCDM) allow
non-zero space curvature.

27.2. Theories of Cosmic Acceleration

27.2.1. Dark Energy or Modified Gravity? :

A cosmological constant is the mathematically simplest, and
perhaps the physically simplest, theoretical explanation for the

accelerating universe. The problem is explaining its unnaturally small
magnitude, as discussed in Sec. 21.4.7 of this Review. An alternative
(which still requires finding a way to make the cosmological constant
zero or at least negligibly small) is that the accelerating cosmic
expansion is driven by a new form of energy such as a scalar field [13]
with potential V (φ). The energy density and pressure of the field
φ(x) take the same forms as for inflationary scalar fields, given in
Eq. (21.52) of the Big Bang Cosmology article. In the limit that
1
2 φ̇

2 ≪ |V (φ)|, the scalar field acts like a cosmological constant, with
pφ ≃ −ρφ. In this scenario, today’s cosmic acceleration is closely
akin to the epoch of inflation, but with radically different energy and
timescale.

More generally, the value of w = pφ/ρφ in scalar field models
evolves with time in a way that depends on V (φ) and on the initial
conditions (φi, φ̇i); some forms of V (φ) have attractor solutions in
which the late-time behavior is insensitive to initial values. Many
forms of time evolution are possible, including ones where w is
approximately constant and broad classes where w “freezes” towards
or “thaws” away from w = −1, with the transition occurring when
the field comes to dominate the total energy budget. If ρφ is even
approximately constant, then it becomes dynamically insignificant at
high redshift, because the matter density scales as ρm ∝ (1 + z)3.
“Early dark energy” models are ones in which ρφ is a small but not
negligible fraction (e.g., a few percent) of the total energy throughout
the matter- and radiation-dominated eras, tracking the dominant
component before itself coming to dominate at low redshift.

Instead of introducing a new energy component, one can attempt
to modify gravity in a way that leads to accelerated expansion [14].
One option is to replace the Ricci scalar R with a function R+ f(R)
in the gravitational action [15]. Other changes can be more radical,
such as introducing extra dimensions and allowing gravitons to
“leak” off the brane that represents the observable universe (the
“DGP” model [16]) . The DGP example has inspired a more general
class of “galileon” and massive gravity models. Constructing viable
modified gravity models is challenging, in part because it is easy
to introduce theoretical inconsistencies (such as “ghost” fields with
negative kinetic energy), but above all because GR is a theory with
many high-precision empirical successes on solar system scales [17].
Modified gravity models typically invoke screening mechanisms that
force model predictions to approach those of GR in regions of high
density or strong gravitational potential. Screening offers potentially
distinctive signatures, as the strength of gravity (i.e., the effective
value of GN) can vary by order unity in environments with different
gravitational potentials.

More generally, one can search for signatures of modified gravity
by comparing the history of cosmic structure growth to the history of
cosmic expansion. Within GR, these two are linked by a consistency
relation, as described below (Eq. (27.2)). Modifying gravity can change
the predicted rate of structure growth, and it can make the growth
rate dependent on scale or environment. In some circumstances,
modifying gravity alters the combinations of potentials responsible for
gravitational lensing and the dynamics of non-relativistic tracers (such
as galaxies or stars) in different ways (see Sec. 21.4.7 in this Review),
leading to order unity mismatches between the masses of objects
inferred from lensing and those inferred from dynamics in unscreened
environments.

At present there are no fully realized and empirically viable modified
gravity theories that explain the observed level of cosmic acceleration.
The constraints on f(R) models now force them so close to GR
that they cannot produce acceleration without introducing a separate
dark energy component [18]. The DGP model is empirically ruled
out by several tests, including the expansion history, the integrated
Sachs-Wolfe effect, and redshift-space distortion measurements of the
structure growth rate [19]. The elimination of these models should
be considered an important success of the program to empirically test
theories of cosmic acceleration. However, it is worth recalling that
there was no fully realized gravitational explanation for the precession
of Mercury’s orbit prior to the completion of GR in 1915, and the fact
that no complete and viable modified gravity theory exists today does
not mean that one will not arise in the future. In the meantime, we
can continue empirical investigations that can tighten restrictions on
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such theories or perhaps point towards the gravitational sector as the
origin of accelerating expansion.

27.2.2. Expansion History and Growth of Structure :

The main line of empirical attack on dark energy is to measure
the history of cosmic expansion and the history of matter clustering
with the greatest achievable precision over a wide range of redshift.
Within GR, the expansion rate H(z) is governed by the Friedmann
equation (see the articles on Big Bang Cosmology and Cosmological
Parameters—Secs. 21 and 24 in this Review). For dark energy with an
equation of state w(z), the cosmological constant contribution to the
expansion, ΩΛ, is replaced by a redshift-dependent contribution. The
evolution of the dark energy density follows from Eq. (21.10),

Ωde
ρde(z)

ρde(z = 0)
= Ωde exp

[
3

∫ z

0
[1 + w(z′)]

dz′

1 + z′

]
= Ωde(1+ z)3(1+w),

(27.1)
where the second equality holds for constant w. If Ωm, Ωr, and the
present value of Ωtot are known, then measuring H(z) pins down
w(z). (Note that Ωde is the same quantity denoted Ωv in Sec. 21, but
we have adopted the de subscript to avoid implying that dark energy
is necessarily a vacuum effect.)

While some observations can probe H(z) directly, others measure
the distance-redshift relation. The basic relations between angular
diameter distance or luminosity distance and H(z) are given in
Ch. 21 —and these are generally unaltered in time-dependent
dark energy or modified gravity models. For convenience, in later
sections, we will sometimes refer to the comoving angular distance,
DA,c(z) = (1 + z)DA(z).

In GR-based linear perturbation theory, the density contrast
δ(x, t) ≡ ρ(x, t)/ρ̄(t) − 1 of pressureless matter grows in proportion
to the linear growth function G(t) (not to be confused with the
gravitational constant GN), which follows the differential equation

G̈+ 2H(z)Ġ− 3

2
ΩmH2

0 (1 + z)3G = 0 . (27.2)

To a good approximation, the logarithmic derivative of G(z) is

f(z) ≡ − d lnG

d ln(1 + z)
≃

[
Ωm(1 + z)3

H2
0

H2(z)

]γ
, (27.3)

where γ ≃ 0.55 for relevant values of cosmological parameters [20].
In an Ωm = 1 universe, G(z) ∝ (1 + z)−1, but growth slows when
Ωm drops significantly below unity. One can integrate Eq. (27.3)
to get an approximate integral relation between G(z) and H(z),
but the full (numerical) solution to Eq. (27.2) should be used for
precision calculations. Even in the non-linear regime, the amplitude of
clustering is determined mainly by G(z), so observations of non-linear
structure can be used to infer the linear G(z), provided one has good
theoretical modeling to relate the two.

In modified gravity models the growth rate of gravitational
clustering may differ from the GR prediction. A general strategy to
test modified gravity, therefore, is to measure both the expansion
history and the growth history to see whether they yield consistent
results for H(z) or w(z).

27.2.3. Parameters :

Constraining a general history of w(z) is nearly impossible, because
the dark energy density, which affects H(z), is given by an integral
over w(z), and distances and the growth factor involve a further
integration over functions of H(z). Oscillations in w(z) over a range
∆z/(1 + z) ≪ 1 are therefore extremely difficult to constrain. It has
become conventional to phrase constraints or projected constraints on
w(z) in terms of a linear evolution model,

w(a) = w0 + wa(1 − a) = wp + wa(ap − a), (27.4)

where a ≡ (1 + z)−1, w0 is the value of w at z = 0, and wp is
the value of w at a “pivot” redshift zp ≡ a−1

p − 1, where it is
best constrained by a given set of experiments. For typical data
combinations, zp ≃ 0.5. This simple parameterization can provide a

good approximation to the predictions of many physically motivated
models for observables measured with percent-level precision. A widely
used “Figure of Merit” (FoM) for dark energy experiments [21] is the
projected combination of errors [σ(wp)σ(wa)]

−1. Ambitious future
experiments with 0.1–0.3% precision on observables can constrain
richer descriptions of w(z), which can be characterized by principal
components.

There has been less convergence on a standard parameterization
for describing modified gravity theories. Deviations from the GR-
predicted growth rate can be described by a deviation ∆γ in the index
of Eq. (27.3), together with an overall multiplicative offset relative to
the G(z) expected from extrapolating the CMB-measured fluctuation
amplitude to low redshift. However, these two parameters may not
accurately capture the growth predictions of all physically interesting
models. Another important parameter to constrain is the ratio of the
gravitational potentials governing space curvature and the acceleration
of non-relativistic test particles. The possible phenomenology of
modified gravity models is rich, which enables many consistency tests
but complicates the task of constructing parameterized descriptions.

The more general set of cosmological parameters is discussed
elsewhere in this Review (Sec. 24), but here we highlight a few that
are particularly important to the dark energy discussion:

• The dimensionless Hubble parameter h ≡ H0/100 km s−1Mpc−1

determines the present day value of the critical density and the
overall scaling of distances inferred from redshifts.

• Ωm and Ωtot affect the expansion history and the distance-redshift
relation.

• The sound horizon rs =
∫ trec
0 cs(t)dt/a(t), the comoving distance

that pressure waves can propagate between t = 0 and recombina-
tion, determines the physical scale of the acoustic peaks in the
CMB and the baryon acoustic oscillation (BAO) feature in low
redshift matter clustering [22].

• The amplitude of matter fluctuations, conventionally represented
by the quantity σ8(z), scales the overall amplitude of growth
measures such as weak lensing or redshift-space distortions
(discussed in the next section).

Specifically, σ8(z) refers to the rms fluctuation of the matter
overdensity ρ/ρ̄ in spheres of radius 8 h−1Mpc, computed from the
linear theory matter power spectrum at redshift z, and σ8 on its own
refers to the value at z = 0 (just like our convention for Ωm).

While discussions of dark energy are frequently phrased in terms of
values and errors on quantities like wp, wa, ∆γ, and Ωtot, parameter
precision is the means to an end, not an end in itself. The underlying
goal of empirical studies of cosmic acceleration is to address two
physically profound questions:

1. Does acceleration arise from a breakdown of GR on cosmological
scales or from a new energy component that exerts repulsive
gravity within GR?

2. If acceleration is caused by a new energy component, is its
energy density constant in space and time, as expected for a
fundamental vacuum energy, or does it show variations that
indicate a dynamical field?

Substantial progress towards answering these questions, in particular
any definitive rejection of the cosmological constant “null hypothesis,”
would be a major breakthrough in cosmology and fundamental
physics.

27.3. Observational Probes

We briefly summarize the observational probes that play the
greatest role in current constraints on dark energy. Further discussion
can be found in other articles of this Review, in particular
Secs. 24 (Cosmological Parameters) and 28 (The Cosmic Microwave
Background), and in Ref. [12], which provides extensive references
to background literature. Recent observational results from these
methods are discussed in 27.4.
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27.3.1. Methods, Sensitivity, Systematics :

Cosmic Microwave Background Anisotropies: Although CMB
anisotropies provide limited information about dark energy on
their own, CMB constraints on the geometry, matter content, and
radiation content of the Universe play a critical role in dark energy
studies when combined with low redshift probes. In particular, CMB
data supply measurements of θs = rs/DA,c(zrec), the angular size
of the sound horizon at recombination, from the angular location
of the acoustic peaks, measurements of Ωmh2 and Ωbh

2 from the
heights of the peaks, and normalization of the amplitude of matter
fluctuations at zrec from the amplitude of the CMB fluctuations
themselves. Planck data yield a 0.3% determination of rs, which scales
as (Ωmh2)−0.25 for cosmologies with standard matter and radiation
content. The uncertainty in the matter fluctuation amplitude is 1−2%.
Improvements in the measurement of the electron scattering optical
depth τ , with future analyses of Planck polarization maps, would
reduce this uncertainty further. Secondary anisotropies, including the
Integrated Sachs-Wolfe effect, the Sunyaev-Zeldovich (SZ, [23]) effect,
and gravitational lensing of primary anisotropies provide additional
information about dark energy by constraining low-redshift structure
growth.

Type Ia Supernovae (SN): Type Ia supernovae, produced by the
thermonuclear explosions of white dwarfs, exhibit 10 − 15% scatter
in peak luminosity after correction for light curve duration (the time
to rise and fall) and color (which is a diagnostic of dust extinction).
Since the peak luminosity is not known a priori, supernova surveys
constrain ratios of luminosity distances at different redshifts. If one
is comparing a high redshift sample to a local calibrator sample
measured with much higher precision (and distances inferred from
Hubble’s law), then one essentially measures the luminosity distance
in h−1Mpc, constraining the combination hDL(z). With distance
uncertainties of 5–8% per well observed supernova, a sample of around
100 SNe is sufficient to achieve sub-percent statistical precision. The
1–2% systematic uncertainties in current samples are dominated
by uncertainties associated with photometric calibration and dust
extinction corrections plus the observed dependence of luminosity
on host galaxy properties. Another potential systematic is redshift
evolution of the supernova population itself, which can be tested by
analyzing subsamples grouped by spectral properties or host galaxy
properties to confirm that they yield consistent results.

Baryon Acoustic Oscillations (BAO): Pressure waves that propagate
in the pre-recombination photon-baryon fluid imprint a characteristic
scale in the clustering of matter and galaxies, which appears
in the galaxy correlation function as a localized peak at the
sound horizon scale rs, or in the power spectrum as a series of
oscillations. Since observed galaxy coordinates consist of angles
and redshifts, measuring this “standard ruler” scale in a galaxy
redshift survey determines the angular diameter distance DA(z) and
the expansion rate H(z), which convert coordinate separations to
comoving distances. Errors on the two quantities are correlated,
and in existing galaxy surveys the best determined combination is
approximately DV(z) = [czD2

A,c(z)/H(z)]1/3. As an approximate rule
of thumb, a survey that fully samples structures at redshift z over
a comoving volume V , and is therefore limited by cosmic variance
rather than shot noise, measures DA,c(z) with a fractional error of

0.005(V/10Gpc3)−1/2 and H(z) with a fractional error 1.6− 1.8 times
higher. The most precise BAO measurements to date come from large
galaxy redshift surveys probing z < 0.8, and these will be extended
to higher redshifts by future projects. At redshifts z > 2, BAO can
also be measured in the Lyman-α forest of intergalactic hydrogen
absorption towards background quasars, where the fluctuating
absorption pattern provides tens or hundreds of samples of the
density field along each quasar sightline. For Lyman-α forest BAO,
the best measured parameter combination is more heavily weighted
towards H(z) because of strong redshift-space distortions that enhance
clustering in the line-of-sight direction. Radio intensity mapping,
which maps large-scale structure in redshifted 21cm hydrogen emission
without resolving individual galaxies, offers a potentially promising
route to measuring BAO over large volumes at relatively low cost,
but the technique is still under development. Photometric redshifts in
optical imaging surveys can be used to measure BAO in the angular

direction, though the typical distance precision is a factor of 3 − 4
lower compared to a well sampled spectroscopic survey of the same
area, and angular BAO measurements do not directly constrain H(z).
BAO distance measurements complement SN distance measurements
by providing absolute rather than relative distances (with precise
calibration of rs from the CMB) and by having greater achievable
precision at high redshift thanks to the increasing comoving volume
available. Theoretical modeling suggests that BAO measurements
from even the largest feasible redshift surveys will be limited by
statistical rather than systematic uncertainties.

Weak Gravitational Lensing: Gravitational light bending by a
clustered distribution of matter shears the shapes of higher redshift
background galaxies in a spatially coherent manner, producing a
correlated pattern of apparent ellipticities. By studying the weak
lensing signal for source galaxies binned by photometric redshift
(estimated from broad-band colors), one can probe the history of
structure growth. For a specified expansion history, the predicted
signal scales approximately as σ8Ω

α
m, with α ≃ 0.3–0.5. The predicted

signal also depends on the distance-redshift relation, so weak lensing
becomes more powerful in concert with SN or BAO measurements
that can pin this relation down independently. The most challenging
systematics are shape measurement biases, biases in the distribution of
photometric redshifts, and intrinsic alignments of galaxy orientations
that could contaminate the lensing-induced signal. Predicting the
large-scale weak lensing signal is straightforward in principle, but
the number of independent modes on large scales is small, and the
inferences are therefore dominated by sample variance. Exploiting
small-scale measurements, for tighter constraints, requires modeling
the effects of complex physical processes such as star formation and
feedback on the matter power spectrum. Strong gravitational lensing
can also provide constraints on dark energy, either through time delay
measurements that probe the absolute distance scale, or through
measurements of multiple-redshift lenses that constrain distance ratios.
The primary uncertainty for strong lensing constraints is modeling the
mass distribution of the lens systems.

Clusters of Galaxies: Like weak lensing, the abundance of massive dark
matter halos probes structure growth by constraining σ8Ω

α
m, where

α ≃ 0.3–0.5. These halos can be identified as dense concentrations of
galaxies or through the signatures of hot (107–108K) gas in X-ray
emission or SZ distortion of the CMB. The critical challenge in
cluster cosmology is calibrating the relation P (Mhalo|O) between the
halo mass as predicted from theory and the observable O used for
cluster identification. Measuring the stacked weak lensing signal from
clusters has emerged as a promising approach to achieve percent-level
accuracy in calibration of the mean relation, which is required for
clusters to remain competitive with other growth probes. This method
requires accurate modeling of completeness and contamination of
cluster catalogs, projection effects on cluster selection and weak
lensing measurements, and possible baryonic physics effects on the
mass distribution within clusters.

Redshift-Space Distortions (RSD) and the Alcock-Paczynksi (AP)
Effect: Redshift-space distortions of galaxy clustering, induced
by peculiar motions, probe structure growth by constraining the
parameter combination f(z)σ8(z), where f(z) is the growth rate
defined by Eq. (27.3). Uncertainties in theoretical modeling of
non-linear gravitational evolution and the non-linear bias between
the galaxy and matter distributions currently limit application of
the method to large scales (comoving separations r >∼ 10 h−1Mpc or
wavenumbers k <∼ 0.2hMpc−1). A second source of anisotropy arises
if one adopts the wrong cosmological metric to convert angles and
redshifts into comoving separations, a phenomenon known as the
Alcock-Paczynksi effect [24]. Demanding isotropy of clustering at
redshift z constrains the parameter combination H(z)DA(z). The
main challenge for the AP method is correcting for the anisotropy
induced by peculiar velocity RSD.

Direct Determination of H0: The value of H0 sets the current
value of the critical density ρc = 3H2

0/8πGN, and combination with
CMB measurements provides a long lever arm for constraining the
evolution of dark energy. The challenge in direct H0 measurements
is establishing distances to galaxies that are “in the Hubble flow,”
i.e., far enough away that their peculiar velocities are small compared
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Table 27.1: A selection of major dark energy experiments, based
on Ref. [25]. Abbreviations in the “Data” column refer to optical
(Opt) or near-infrared (NIR) imaging (I) or spectroscopy (S). For
spectroscopic experiments, the “Spec-z” column lists the primary
redshift range for galaxies (gals), quasars (QSOs), or the Lyman-α
forest (LyαF). Abbreviations in the “Methods” column are weak
lensing (WL), clusters (CL), supernovae (SN), baryon acoustic
oscillations (BAO), and redshift-space distortions (RSD).

Project Dates Area/deg2 Data Spec-z Range Methods

BOSS 2008-2014 10,000 Opt-S 0.3− 0.7 (gals) BAO/RSD

2− 3.5 (LyαF)

DES 2013-2018 5000 Opt-I —— WL/CL

SN/BAO

eBOSS 2014-2020 7500 Opt-S 0.6− 2.0 (gal/QSO) BAO/RSD

2− 3.5 (LyαF)

SuMIRE 2014-2024 1500 Opt-I WL/CL

Opt/NIR-S 0.8− 2.4 (gals) BAO/RSD

HETDEX 2014-2019 300 Opt-S 1.9 < z < 3.5 (gals) BAO/RSD

DESI 2019-2024 14,000 Opt-S 0− 1.7 (gals) BAO/RSD

2− 3.5 (LyαF)

LSST 2020-2030 20,000 Opt-I —— WL/CL

SN/BAO

Euclid 2020-2026 15,000 Opt-I WL/CL

NIR-S 0.7− 2.2 (gals) BAO/RSD

WFIRST 2024-2030 2200 NIR-I WL/CL/SN

NIR-S 1.0− 3.0 (gals) BAO/RSD

to the expansion velocity v = H0d. This can be done by building a
ladder of distance indicators tied to stellar parallax on its lowest rung,
or by using gravitational lens time delays or geometrical measurements
of maser data to circumvent this ladder.

27.3.2. Dark Energy Experiments :

Most observational applications of these methods now take place in
the context of large cosmological surveys, for which constraining dark
energy and modified gravity theories is a central objective. Table 27.1
lists a selection of current and planned dark energy experiments, taken
from the Snowmass 2013 Dark Energy Facilities review [25], which
focused on projects in which the U.S. has either a leading role or
significant participation. References and links to further information
about these projects can be found in Ref. [25].

Beginning our discussion with imaging surveys, the Dark Energy
Survey (DES) is covering 1/8 of the sky to an eventual depth roughly
2 magnitudes deeper than the Sloan Digital Sky Survey (SDSS),
enabling weak lensing measurements with unprecedented statistical
precision, cluster measurements calibrated by weak lensing, and
angular BAO measurements based on photometric redshifts. With
repeat imaging over a smaller area, DES will identify thousands of
Type Ia SNe, which together with spectroscopic follow-up data will
enable significant improvements on the current state-of-the-art for
supernova (SN) cosmology. Cosmological results from weak lensing
and galaxy clustering analyses of the first year DES data have
recently been announced [26] and are discussed further below. The
Hyper-Suprime Camera (HSC) on the Subaru 8.2-meter telescope
is carrying out a similar type of optical imaging survey, probing a
smaller area than DES but to greater depth. A number of results
based on early HSC data have appeared recently, but cosmological
weak lensing analyses are still underway. The HSC survey is one
component of the Subaru Measurement of Images and Redshifts
(SuMIRE) project. Beginning in the early 2020s, the dedicated Large
Synoptic Survey Telescope (LSST) will scan the southern sky to
SDSS-like depth every four nights. LSST imaging co-added over its
decade-long primary survey will reach extraordinary depth, enabling
weak lensing, cluster, and photometric BAO studies from billions of
galaxies. LSST time-domain monitoring will identify and measure
light curves for thousands of Type Ia SNe per year.

Turning to spectroscopic surveys, the Baryon Oscillation Spectro-
scopic Survey (BOSS) and its successor eBOSS use fiber-fed optical
spectrographs to map the redshift-space distributions of millions of
galaxies and quasars. These 3-dimensional maps enable BAO and RSD
measurements, and Lyman-α forest spectra of high-redshift quasars
extend these measurements to redshifts z > 2. As discussed below, the
BOSS Collaboration has now published BAO and RSD analyses of its
final data sets, and eBOSS has released the first BAO measurements
from quasar clustering at z = 1 − 2. The Hobby-Eberly Telescope
Dark Energy Experiment (HETDEX) uses integral field spectrographs
to detect Lyman-α emission-line galaxies at z ≃ 1.9 − 3.5, probing
a small sky area but a substantial comoving volume. The Dark
Energy Spectroscopic Instument (DESI) follows a strategy similar to
BOSS/eBOSS but on a much grander scale, using a larger telescope
(4-meter vs. 2.5-meter) and a much higher fiber multiplex (5000 vs.
1000) to survey an order-of-magnitude more galaxies. A new Prime
Focus Spectrograph (PFS) for the Subaru telescope will enable the
spectroscopic component of SuMIRE, with the large telescope aperture
and wavelength sensitivity that extends to the near-infrared (NIR)
allowing it to probe a higher redshift galaxy population than DESI,
over a smaller area of sky.

Compared to ground-based observations, space observations afford
higher angular resolution and a far lower NIR sky background. The
Euclid and WFIRST (Wide Field Infrared Survey Telescope) missions
will exploit these advantages, conducting large area imaging surveys
for weak lensing and cluster studies and slitless spectroscopic surveys
of emission-line galaxies for BAO and RSD studies. WFIRST also
incorporates an imaging and spectrophotometric supernova (SN)
survey, extending to redshift z ≃ 1.7. Survey details are likely to
evolve prior to launch, but in the current designs one can roughly
characterize the difference between the Euclid and WFIRST dark
energy experiments as “wide vs. deep,” with planned survey areas
of 15,000 deg2 and 2200 deg2, respectively. For weak lensing shape
measurements, Euclid uses a single wide optical filter, while WFIRST
uses three NIR filters. The Euclid galaxy redshift survey covers a large
volume at relatively low space density, while the WFIRST survey
provides denser sampling of structure in a smaller volume. There
are numerous synergies among the LSST, Euclid, and WFIRST dark
energy programs, as discussed in Ref. [27].
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27.4. Current Constraints on Expansion, Growth,
and Dark Energy

The last decade has seen dramatic progress in measurements
of the cosmic expansion history and structure growth, leading
to much tighter constraints on the parameters of dark energy
models. CMB data from the WMAP and Planck satellites and
from higher resolution ground-based experiments have provided an
exquisitely detailed picture of structure at the recombination epoch
and the first CMB-based measures of low redshift structure through
lensing and SZ cluster counts. Cosmological supernova samples have
increased in size from tens to many hundreds, with continuous
coverage from z = 0 to z ≃ 1.4, alongside major improvements
in data quality, analysis methods, and detailed understanding of
local populations. BAO measurements have advanced from the first
detections to 1− 2% precision at multiple redshifts, with increasingly
sophisticated methods for testing systematics, fitting models, and
evaluating statistical errors. Advances in X-ray, SZ, and weak lensing
observations of large samples of galaxy clusters allow a multi-faceted
approach to mass calibration, improving statistical precision but also
revealing sources of astrophysical uncertainty. Cluster constraints
have been joined by the first precise matter clustering constraints
from cosmic shear weak lensing and galaxy-galaxy lensing, and by
redshift-space distortion measurements that probe different aspects of
structure growth at somewhat lower precision. The precision of direct
H0 measurements has sharpened from the roughly 10% error of the
HST Key Project [28] to 2–4% in some recent analyses.

Figure 27.1: Distance-redshift relation measured from Type Ia
SNe and BAO compared to the predictions (black curve) of a
flat ΛCDM model with Ωm = 0.308 and h = 0.678, the best-fit
parameters inferred from Planck CMB data [29]. Circles show
binned luminosity distances from the JLA SN sample [30],
multiplied by (1 + z)−1 to convert to comoving angular diameter
distance. Red squares show BAO distance measurements from
the 6dFGS, SDSS-II, BOSS, and eBOSS surveys (see text for
details and references). The lower panel plots residuals from the
ΛCDM prediction, with dashed and dotted curves that show the
effect of changing w by ±0.1 while all other parameters are held
fixed. Note that the SN data points can be shifted up or down by
a constant factor to account for freedom in the peak luminosity,
while the BAO points are calibrated to 0.3% precision by the
sound horizon scale computed from Planck data. The errors on
the BAO data points are approximately independent. In the
upper panel, error bars are plotted only at z > 0.7 to avoid
visual confusion.

As an illustration of current measurements of the cosmic expansion
history, Fig. 27.1 compares distance-redshift measurements from SN

and BAO data to the predictions for a flat universe with a cosmological
constant. SN cosmology relies on compilation analyses that try to
bring data from different surveys probing distinct redshift ranges to
a common scale. Here we use the “joint light curve analysis” (JLA)
sample of Ref. [30], who carried out a careful intercalibration of
the 3-year Supernova Legacy Survey (SNLS3, [31]) and the full
SDSS-II Supernova Survey [32] data in combination with several local
supernova samples and high-redshift supernovae from HST. Results
from the Union2.1 sample [33], which partly overlaps JLA but
has different analysis procedures, would be similar. For illustration
purposes, we have binned the JLA data in redshift and plotted the
diagonal elements of the covariance matrix as error bars, and we
have converted the SN luminosity distances to an equivalent comoving
angular diameter distance. Because the peak luminosity of a fiducial
SN Ia is an unknown free parameter, the SN distance measurements
could all be shifted up and down by a constant multiplicative factor;
cosmological information resides in the relative distances as a function
of redshift. The normalization used here corresponds to a Hubble
parameter h = 0.678.

The z < 2 BAO data points come from the 6-degree-Field Galaxy
Survey 6dFGS survey [34], the SDSS-II Main Galaxy Sample [35],
the final galaxy clustering data set from BOSS [36], and the first
BAO measurement from quasar clustering in eBOSS [37]. For the
6dFGS, SDSS-II, and eBOSS data points, values of DV have been
converted to DA,c. The BOSS analysis measures DA,c directly; we
have taken values from the “BAO only” column of table 7 of Ref. [36].
At z = 2.4 we plot DA,c measured from the BAO analysis of the
BOSS Lyman-α forest auto-correlation and cross-correlation with
quasars [38]. The BAO measurements are converted to absolute
distances using the sound horizon scale rs = 147.60 Mpc from Planck
2015 CMB data, whose 0.29% uncertainty is small compared to the
current BAO measurement errors. The BOSS galaxy and Lyman-α
forest analyses also measure H(z) at the same redshifts, providing
further leverage on expansion history that is not captured in Fig. 27.1.

The plotted cosmological model has Ωm = 0.308 and h = 0.678,
the best-fit values from Planck (TT+lowP+lensing) assuming w = −1
and Ωtot = 1 [29]. The SN, BAO, and CMB data sets, probing a
wide range of redshifts with radically different techniques, are for the
most part mutually consistent with the predictions of a flat ΛCDM
cosmology. Other curves in the lower panel of Fig. 27.1 show the
effect of changing w by ±0.1 with all other parameters held fixed.
However, such a single-parameter comparison does not capture the
impact of parameter degeneracies or the ability of complementary
data sets to break them, and if one instead forced a match to CMB
data by changing h and Ωm when changing w then the predicted BAO
distances would diverge at z = 0 rather than converging there.

As discussed by [38], the Lyman-α forest BAO measurements of
DA,c(z) and H(z) at z = 2.4 deviate from the Planck ΛCDM model
predictions by about 2.3σ, but the ensemble of BAO measurements
(including the Lyman-α forest points)) yields a statistically acceptable
χ2 of 14.8 for 12 data points. The analyses in [38] examine a wide
range of possible systematic errors but find none that are comparable
in magnitude to the statistical errors. Simple extensions of the
ΛCDM model (including w 6= −1, non-zero curvature, decaying
dark matter, early dark energy, massive neutrinos, and additional
relativistic species) do not remove the tension with the Lyman-α
forest data points [39]. The lack of a plausible alternative model,
and the acceptable total χ2 when all data points are considered
equally, suggests that the discrepancy with Lyman-α forest BAO
is either a statistical fluke or a still unrecognized systematic bias
in the measurement. This remains an interesting area for future
investigation, as a tightening of error bars without a change in central
value would imply a breakdown of this entire class of dark energy
models at z ≃ 2 − 3, or an unanticipated astrophysical effect on the
imprint of BAO in the Lyman-α forest.

Figure 27.2, taken from [36], presents constraints on models that
allow a free but constant value of w with non-zero space curvature
(owCDM, left panel) or the evolving equation of state of Eq. (27.4) in a
flat universe (w0waCDM, right panel). Green contours show constraints
from the combination of Planck 2015 CMB data and the JLA
supernova sample. Gray contours show the combination of Planck
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Figure 27.2: Constraints on dark energy model parameters
from combinations of CMB, BAO, galaxy clustering, and
supernova (SN) data, taken from Ref. [36]. The top panel
shows 68% and 95% confidence contours in the owCDM model,
with constant equation-of-state parameter w and non-zero space
curvature ΩK ≡ 1 − Ωtot. Green and gray contours show the
combination of Planck CMB data with SN or BAO data,
respectively. Red contours combine CMB, BAO, and the full
shape (FS) of redshift-space galaxy clustering. Blue contours
add SN data to this combination. The bottom panel shows
confidence contours for the same data combinations in the
w0waCDM model, which assumes a flat universe and an evolving
equation of state with w(a) = w0 + wa(1− a).

with BAO measurements from BOSS, 6dFGS, and SDSS-II. Red
contours adopt a more aggressive analysis of the BOSS galaxy data
that uses the full shape (FS) of the redshift-space power spectrum
and correlation function, modeled via perturbation theory, in addition
to the measurement of the BAO scale itself. The full shape analysis
improves the constraining power of the data, primarily because
measurement of the Alcock-Paczynski effect on sub-BAO scales helps
to break degeneracy between DA,c(z) and H(z). Blue contours show

constraints from the full combination of CMB, BAO+FS, and SN
data. Supernovae provide fine-grained relative distance measurements
with good bin-by-bin precision at z < 0.7 (see Fig. 27.1), which is
complementary to BAO for constraining redshift evolution of w. In
both classes of models, the flat ΛCDM parameters (w = w0 = −1,
ΩK = wa = 0) lie within the 68% confidence contour.

The precision on dark energy parameters depends, of course, on
both the data being considered and the flexibility of the model being
assumed. For the owCDM model and the Planck+BAO+FS+SN data
combination, Ref. [36] finds

w = −1.01± 0.04 , (27.5)

which we consider a reasonable characterization of current
knowledge about the dark energy equation of state. The use of full
shape clustering information at this level of precision is relatively
new, and with the more conservative Planck+BAO combination [36]
find w = −1.05± 0.08 for owCDM. Similar values and uncertainties are
found for similar data and model combinations by Ref. [29]. In the
w0waCDM model there is strong degeneracy between w0 and wa, as one
can see in Fig. 27.2. However, the value of w at the pivot redshift
zp = 0.29 is well constrained by the Planck+BAO+FS+SN data
combination, with wp = −1.05 ± 0.06 [36]. The constraint on the
evolution parameter, by contrast, remains poor even with this data
combination, wa = −0.39 ± 0.34. For examinations of a wide range
of dark energy, dark matter, neutrino content, and modified gravity
models, see Refs. [36,29,40].

A flat ΛCDM model fit to Planck CMB data alone predicts
H0 = 67.8 ± 0.9 kms−1Mpc−1 (see Chapter 28 of this Review).
This is lower than most recent determinations of H0 that use HST
observations of Cepheid variables in external galaxies to calibrate
secondary distance indicators, particularly Type Ia SNe, which can in
turn measure distances to galaxies in the Hubble flow. With analyses
of the same underlying data sets but different choices about data
selection, calibration, and treatments of outliers and systematics,
Refs. [41], [42], and [43] all found central values of H0 above
70 kms−1Mpc−1, but with different error estimates implying varying
levels of disagreement with Planck-normalized ΛCDM. Recently
Ref. [44] analyzed a larger Cepheid and supernova data set and
addressed several of the issues raised in earlier papers, finding
H0 = 73.24±1.74 km s−1Mpc−1, a ∼ 2.5σ discrepancy. Gravitational
lensing time delays provide an alternative route to H0 that is
independent of the Cepheid distance ladder, and a recent combination
of results from three systems analyzed with a consistent underlying
approach yields H0 = 71.9+2.4

−3.1 km s−1Mpc−1 [45]. With the current
uncertainties, this result is consistent with both the Cepheid distance
ladder and Planck ΛCDM values, but analysis of additional systems
should shrink the error bars in the near future.

The precise inference of H0 from Planck CMB data relies on the
assumption of a flat ΛCDM model, and the uncertainties in H0

become much larger once curvature or w 6= −1 are allowed. However,
this is no longer the case once BAO and SN data are included.
Ref. [39] presents an “inverse distance ladder” measurement of H0

that uses Planck data only to constrain the sound horizon scale
rs. BOSS BAO measurements then provide ∼ 1% determinations of
the absolute distance scale at z = 0.3 − 0.6, and JLA supernovae
provide precise relative distances that transfer these measurements
to z = 0, using empirical data instead of an adopted dark energy
model. Even allowing very flexible dark energy parameterizations
and non-zero space curvature, Ref. [39] obtains 1.7% precision
on H0, with a value H0 = 67.3 ± 1.1 km s−1Mpc−1 in excellent
agreement with the Planck+ΛCDM prediction. These measurements
could be reconciled with H0 ≥ 70 km s−1Mpc−1 by altering the
pre-recombination physics of the standard model in a way that shrinks
the BAO standard ruler, for instance by adding extra relativistic
degrees of freedom, or perhaps by rapidly accelerating expansion
at very low redshift. The former solution is increasingly disfavored
by the CMB measurements themselves, which constrain the energy
density at recombination through its impact on the damping tail
of the anisotropy spectrum. The latter solution would require dark
energy dynamics more extreme than allowed by the parameterizations
considered to date. Alternatively, the “H0 tension” may reflect a
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systematic bias, or at least an underestimated level of observational
uncertainty, in one or more of the data sets that leads to it.

The amplitude of CMB anisotropies is proportional to the amplitude
of density fluctuations present at recombination, and by assuming
GR and a specified dark energy model one can extrapolate the
growth of structure forward to the present day to predict σ8. Probes
of low redshift structure yield constraints in the (σ8,Ωm) plane,
which can be summarized in terms of the parameter combination
S8 ≡ σ8(Ωm/0.3)0.5. As discussed in the 2014 and 2016 editions of
this Review, and in more detail by [39], most but not all weak lensing
and cluster studies to date yield S8 values lower than those predicted
for Planck-normalized ΛCDM. The most recent developments in this
active field come from weak lensing measurements based on the first
450 deg2 of the Kilo Degree Survey (KiDS-450) or the Year 1 data of
the Dark Energy Survey (DES Y1).

Planck TT+lowP+lensing data predict S8 = 0.825 ± 0.016 after
marginalizing over ΛCDM parameter uncertainties, tightening to S8 =
0.824± 0.012 when BAO and SN data are added [46]. Cosmic shear
analysis of KiDS-450 yields S8 = 0.745± 0.039 [47], and combination
with galaxy-galaxy lensing and galaxy clustering in overlapping
2dFLens and BOSS data gives the slightly tighter constraint
S8 = 0.742±0.035 [48]. However, a similar analysis combining KiDS-
450 with the GAMA redshift survey yields S8 = 0.801 ± 0.032 [49],
which is statistically compatible with the other KiDS-450 analyses but
in much better agreement with the Planck ΛCDM prediction. The
DES Y1 analysis combines cosmic shear, galaxy-galaxy lensing, and
galaxy clustering in the DES data set to obtain S8 = 0.797±0.022 [46],
intermediate between the KiDS-450 cosmic shear result and the Planck
ΛCDM prediction, and compatible with either. On smaller scales [50]
find that mock catalogs of the BOSS CMASS galaxy sample with
Planck ΛCDM cosmological parameters overpredict measurements
of CMASS galaxy-galaxy lensing, by about 20% over the projected
separation range 0.4 − 4 h−1Mpc and a larger factor at smaller
separations. This discrepancy is large compared to the statistical
errors and to any recognized systematics in the measurement, but
interpreting its significance requires more comprehensive theoretical
investigation of non-linear galaxy-galaxy lensing and of astrophysical
effects on the small-scale mass distribution.

In sum, current data do not provide strong evidence for a
discrepancy between measured matter clustering and predictions of
the CMB-normalized ΛCDM cosmology, but the mild tension between
them has not disappeared. The situation should evolve rapidly over
the next two years with multiple weak lensing data sets reaching the
few-percent level of statistical precision, improvements in non-linear
modeling of galaxy-galaxy lensing, and sharpened predictions from
the final Planck analysis and new CMB data from the SPT and
ACT experiments (see Chapter 28 of this review). CMB lensing and
Lyman-α forest measurements imply that deviation from GR-predicted
structure growth, if it occurs, must set in mainly at z < 2. A low
redshift onset would not necessarily be surprising, however, as it would
coincide with the era of cosmic acceleration.

27.5. Summary and Outlook
Figure 27.2 focuses on model parameter constraints, but as

a description of the observational situation it is most useful to
characterize the precision, redshift range, and systematic uncertainties
of the basic expansion and growth measurements. At present,
supernova surveys constrain distance ratios at the 1–2% level in
redshift bins of width ∆z = 0.1 over the range 0 < z < 0.6, with larger
but still interesting error bars out to z ≃ 1.3. These measurements
are currently limited by systematics tied to photometric calibration,
dust reddening, host galaxy correlations, and possible evolution of the
SN population. BAO surveys have measured the absolute distance
scale (calibrated to the sound horizon rs) to 4% at z = 0.15, 1% at
z = 0.38 and z = 0.61, and 2% at z = 2.4. Multiple studies have
used clusters of galaxies or weak lensing cosmic shear or galaxy-galaxy
lensing to measure a parameter combination σ8Ω

α
m with α ≃ 0.3–0.5.

The estimated errors of the most recent studies, including both
statistical contributions and identified systematic uncertainties, are
3–5%. RSD measurements constrain the combination f(z)σ8(z), with
recent determinations spanning the redshift range 0 < z < 0.9 with

typical estimated errors of about 10%. These errors are dominated
by statistics, but shrinking them further will require improvements
in modeling non-linear effects on small scales. Direct distance-
ladder estimates of H0 now span a small range (using overlapping
data but distinct treatments of key steps), with individual studies
quoting uncertainties of 2–5%, with similar statistical and systematic
contributions. Planck data and higher resolution ground-based
experiments now measure CMB anisotropy with exquisite precision;
for example, CMB measurements now constrain the physical size of
the BAO sound horizon to 0.3% and the angular scale of the sound
horizon to 0.01%.

A flat ΛCDM model with standard radiation and neutrino content
can fit the CMB data and the BAO and SN distance measurements
to within their estimated uncertainties, excepting a moderately
significant discrepancy for Lyman-α forest BAO at z = 2.4. However
the CMB+BAO parameters for this model are in approximately 2σ
tension with some of the direct H0 measurements and many but not
all of the cluster and weak lensing analyses, disagreeing by 5–10%
in each case. Agreement of the “inverse distance ladder” value of
H0 with the Planck+ΛCDM value suggests that the current direct
measurements are systematically high. Alternatively, a change to
pre-recombination physics (such as extra relativistic energy density)
could shrink the BAO standard ruler and raise the inferred H0, but
changes large enough to allow H0 ≥ 70 kms−1Mpc−1 might run afoul
of the observed CMB power spectrum. CMB lensing and Lyman-α
forest measurements show good agreement with ΛCDM-predicted
structure growth at z ≃ 2 − 4, so if the discrepancies with lower
redshift measurements are real then the deviations in growth must set
in at late times. At present, none of the tensions in the data provide
compelling evidence for new physics. Moving forward, the community
will have to balance the requirement of strong evidence for interesting
claims (such as w 6= −1 or deviations from GR) against the danger
of confirmation bias, i.e., discounting observations or error estimates
when they do not overlap simple theoretical expectations.

There are many ongoing projects that should lead to improvement
in observational constraints in the near-term and over the next 15
years, as summarized above in Table 27.1. Final analyses of Planck
temperature, polarization, and CMB lensing maps will improve
estimates of the electron scattering optical depth and tighten other
parameter constraints, thus sharpening tests based on structure
growth. Preliminary results suggest a small reduction in the inferred
σ8, which goes in the direction of reducing tensions. eBOSS is
measuring BAO in the previously unexplored redshift range 1 < z < 2,
and it will improve the precision of BOSS BAO measurements
at lower and higher redshifts. The HETDEX project will measure
BAO with Lyman-α emission line galaxies at z = 2–3, providing
an independent check on Lyman-α forest results with completely
different structure tracers. The same galaxy surveys carried out for
BAO also provide data for RSD measurements of structure growth
and AP measurements of cosmic geometry. With improved theoretical
modeling there is potential for significant precision gains over current
constraints from these methods. Analyses of Year 1 DES data already
provide the tightest constraints on low redshift matter clustering, and
analyses of the 3-year data (in hand) and the final 5-year data sets
should yield substantial further improvements. DES is also obtaining
a sample of several thousand Type Ia SNe, enabling smaller statistical
errors and division of the sample into subsets for cross-checking
evolutionary effects and other systematics. Weak lensing surveys from
HSC on the Subaru telescope will be smaller in area than DES
but deeper, with a comparable number of lensed galaxies. These
new weak lensing data sets hold the promise of providing structure
growth constraints at the same (roughly 1%) level of precision as
the best current expansion history constraints, allowing a much
more comprehensive test of cosmic acceleration models. Controlling
measurement and modeling systematics at the level demanded by these
surveys’ statistical power will be a major challenge, but the payoff
in improved precision is large. Uncertainties in direct determinations
of H0 should be reduced by further observations with HST and, in
the longer run, by Cepheid parallaxes from the Gaia mission, by the
ability of the James Webb Space Telescope to discover Cepheids in
more distant SN Ia calibrator galaxies, and by independent estimates



27. Dark energy 413

from larger samples of maser galaxies and gravitational lensing time
delays.

A still more ambitious period begins late in this decade and
continues through the 2020s, with experiments that include DESI,
Subaru PFS, LSST, and the space missions Euclid and WFIRST.
DESI and PFS both aim for major improvements in the precision
of BAO, RSD, and other measurements of galaxy clustering in the
redshift range 0.8 < z < 2, where large comoving volume allows
much smaller cosmic variance errors than low redshift surveys like
BOSS. LSST will be the ultimate ground-based optical weak lensing
experiment, measuring several billion galaxy shapes over 20,000 deg2

of the southern hemisphere sky, and it will detect and monitor
many thousands of SNe per year. Euclid and WFIRST also have
weak lensing as a primary science goal, taking advantage of the high
angular resolution and extremely stable image quality achievable from
space. Both missions plan large spectroscopic galaxy surveys, which
will provide better sampling at high redshifts than DESI or PFS
because of the lower infrared sky background above the atmosphere.
WFIRST is also designed to carry out what should be the ultimate
supernova cosmology experiment, with deep, high resolution, near-IR
observations and the stable calibration achievable with a space
platform.

Performance forecasts necessarily become more uncertain the
further ahead we look, but collectively these experiments are likely
to achieve 1–2 order of magnitude improvements over the precision
of current expansion and growth measurements, while simultaneously
extending their redshift range, improving control of systematics, and
enabling much tighter cross-checks of results from entirely independent
methods. The critical clue to the origin of cosmic acceleration could
also come from a surprising direction, such as laboratory or solar
system tests that challenge GR, time variation of fundamental
“constants,” or anomalous behavior of gravity in some astronomical
environments. Experimental advances along these multiple axes
could confirm today’s relatively simple, but frustratingly incomplete,
“standard model” of cosmology, or they could force yet another radical
revision in our understanding of energy, or gravity, or the spacetime
structure of the Universe.
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28.1. Introduction

The energy content in radiation from beyond our Galaxy is
dominated by the cosmic microwave background (CMB), discovered in
1965 [1]. The spectrum of the CMB is well described by a blackbody
function with T = 2.7255K. This spectral form is a main supporting
pillar of the hot Big Bang model for the Universe. The lack of any
observed deviations from a blackbody spectrum constrains physical
processes over cosmic history at redshifts z ∼< 107 (see earlier versions
of this review).

Currently the key CMB observable is the angular variation in
temperature (or intensity) correlations, and now to some extent
polarization [2]. Since the first detection of these anisotropies by the
Cosmic Background Explorer (COBE) satellite [3] , there has been
intense activity to map the sky at increasing levels of sensitivity and
angular resolution by ground-based and balloon-borne measurements.
These were joined in 2003 by the first results from NASA’s Wilkinson
Microwave Anisotropy Probe (WMAP) [4], which were improved
upon by analyses of the 3-year, 5-year, 7-year, and 9-year WMAP
data [5,6,7,8]. In 2013 we had the first results [9] from the third
generation CMB satellite, ESA’s Planck mission [10,11], which were
enhanced by results from the the 2015 Planck data release [12,13].
Additionally, CMB anisotropies have been extended to smaller
angular scales by ground-based experiments, particularly the Atacama
Cosmology Telescope (ACT) [14] and the South Pole Telescope
(SPT) [15] . Together these observations have led to a stunning
confirmation of the ‘Standard Model of Cosmology.’ In combination
with other astrophysical data, the CMB anisotropy measurements
place quite precise constraints on a number of cosmological parameters,
and have launched us into an era of precision cosmology. With the
study of the CMB passing the half-century mark, the program to map
temperature anisotropies is effectively wrapping up, and attention
is increasingly focussing on polarization measurements as the future
arena in which to test fundamental physics.

28.2. CMB Spectrum

It is well known that the spectrum of the microwave background
is very precisely that of blackbody radiation, whose temperature
evolves with redshift as T (z) = T0(1 + z) in an expanding universe.
As a direct test of its cosmological origin, this relationship has been
tested by measuring the strengths of emission and absorption lines in
high-redshift systems [16].

Measurements of the spectrum are consistent with a blackbody
distribution over more than three decades in frequency (there is
a claim by ARCADE [17] of a possible unexpected extragalactic
emission signal at low frequency, but the interpretation is debated [18]
). All viable cosmological models predict a very nearly Planckian
spectrum to within the current observational limits. Because of this,
measurements of deviations from a blackbody spectrum have received
little attention in recent years, with only a few exceptions. However,
that situation will eventually change, since proposed experiments
(such as PIXIE [19]) have the potential to dramatically improve the
constraints on energy release in the early Universe. It now seems
feasible to probe spectral distortion mechanisms that are required in
the standard picture, such as those arising from the damping and
dissipation of relatively small primordial perturbations, or the average
effect of inverse Compton scattering. A more ambitious goal would
be to reach the precision needed to detect the residual lines from the
cosmological recombination of hydrogen and helium and hence test
whether conditions at z ∼> 1000 accurately follow those in the standard
picture [20].

28.3. Description of CMB Anisotropies

Observations show that the CMB contains temperature anisotropies
at the 10−5 level and polarization anisotropies at the 10−6 (and
lower) level, over a wide range of angular scales. These anisotropies
are usually expressed by using a spherical harmonic expansion of the
CMB sky:

T (θ, φ) =
∑

ℓm

aℓmYℓm(θ, φ)

(with the linear polarization pattern written in a similar way using the
so-called spin-2 spherical harmonics). Increasing angular resolution
requires that the expansion goes to higher and higher multipoles.
Because there are only very weak phase correlations seen in the CMB
sky and since we notice no preferred direction, the vast majority of
the cosmological information is contained in the temperature 2-point
function, i.e., the variance as a function only of angular separation.
Equivalently, the power per unit ln ℓ is ℓ

∑
m |aℓm|2 /4π.

28.3.1. The Monopole :

The CMB has a mean temperature of Tγ = 2.7255 ± 0.0006K
(1σ) [21] , which can be considered as the monopole component of
CMB maps, a00. Since all mapping experiments involve difference
measurements, they are insensitive to this average level; monopole
measurements can only be made with absolute temperature devices,
such as the FIRAS instrument on the COBE satellite [22] . The
measured kTγ is equivalent to 0.234meV or 4.60 × 10−10mec

2.
A blackbody of the measured temperature has a number density
nγ = (2ζ(3)/π2)T 3

γ ≃ 411 cm−3, energy density ργ = (π2/15)T 4
γ ≃

4.64 × 10−34 g cm−3 ≃ 0.260 eV cm−3, and a fraction of the critical
density Ωγ ≃ 5.38× 10−5.

28.3.2. The Dipole :

The largest anisotropy is in the ℓ = 1 (dipole) first spherical
harmonic, with amplitude 3.3645 ± 0.0020mK [12] . The dipole is
interpreted to be the result of the Doppler boosting of the monopole
caused by the solar system motion relative to the nearly isotropic
blackbody field, as broadly confirmed by measurements of the radial
velocities of local galaxies (e.g., Ref. [23] ); the intrinsic part of
the signal is expected to be 2 orders of magnitude smaller (and
fundamentally difficult to distinguish). The motion of an observer
with velocity β ≡ v/c relative to an isotropic Planckian radiation field
of temperature T0 produces a Lorentz-boosted temperature pattern

T (θ) = T0(1− β2)1/2/(1− β cos θ)

≃ T0

[
1 + β cos θ +

(
β2/2

)
cos 2θ +O

(
β3

)]
.

At every point in the sky, one observes a blackbody spectrum, with
temperature T (θ). The spectrum of the dipole has been confirmed to
be the differential of a blackbody spectrum [24]. At higher order there
are additional effects arising from aberration and from modulation of
the anisotropy pattern, which have also been observed [25].

The implied velocity for the solar system barycenter is v =
370.09 ± 0.22 kms−1, assuming a value T0 = Tγ , towards (l, b) =
(264.00◦ ± 0.03◦, 48.24◦ ± 0.02◦) [12] . Such a solar system motion
implies a velocity for the Galaxy and the Local Group of galaxies
relative to the CMB. The derived value is vLG = 627 ± 22 kms−1

towards (l, b) = (276◦ ± 3◦, 30◦ ± 3◦) [26], where most of the error
comes from uncertainty in the velocity of the solar system relative to
the Local Group.

The dipole is a frame-dependent quantity, and one can thus
determine the ‘absolute rest frame’ as that in which the CMB dipole
would be zero. Our velocity relative to the Local Group, as well as
the velocity of the Earth around the Sun, and any velocity of the
receiver relative to the Earth, is normally removed for the purposes of
CMB anisotropy study. The dipole is now routinely used as a primary
calibrator for mapping experiments, either via the time-varying orbital
motion of the Earth, or through the cosmological dipole measured by
satellite experiments.

28.3.3. Higher-Order Multipoles :

The variations in the CMB temperature maps at higher multipoles
(ℓ ≥ 2) are interpreted as being mostly the result of perturbations
in the density of the early Universe, manifesting themselves at the
epoch of the last scattering of the CMB photons. In the hot Big
Bang picture, the expansion of the Universe cools the plasma so that
by a redshift z ≃ 1100 (with little dependence on the details of the
model), the hydrogen and helium nuclei can bind electrons into neutral
atoms, a process usually referred to as recombination [27]. Before this
epoch, the CMB photons were tightly coupled to the baryons, while
afterwards they could freely stream towards us. By measuring the
aℓms we are thus learning directly about physical conditions in the
early Universe.
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A statistically isotropic sky means that all ms are equivalent, i.e.,
there is no preferred axis, so that the temperature correlation function
between two positions on the sky depends only on angular separation
and not orientation. Together with the assumption of Gaussian
statistics (i.e., no correlations between the modes), the variance of the
temperature field (or equivalently the power spectrum in ℓ) then fully
characterizes the anisotropies. The power summed over all ms at each
ℓ is (2ℓ+1)Cℓ/(4π), where Cℓ ≡

〈
|aℓm|2

〉
. Thus averages of aℓms over

m can be used as estimators of the Cℓs to constrain their expectation
values, which are the quantities predicted by a theoretical model. For
an idealized full-sky observation, the variance of each measured Cℓ
(i.e., the variance of the variance) is [2/(2ℓ + 1)]C2

ℓ . This sampling
uncertainty (known as ‘cosmic variance’) comes about because each Cℓ
is χ2 distributed with (2ℓ + 1) degrees of freedom for our observable
volume of the Universe. For fractional sky coverage, fsky, this variance
is increased by 1/fsky and the modes become partially correlated.

It is important to understand that theories predict the expectation
value of the power spectrum, whereas our sky is a single realization.
Hence the cosmic variance is an unavoidable source of uncertainty
when constraining models; it dominates the scatter at lower ℓs, while
the effects of instrumental noise and resolution dominate at higher
ℓs [28].

Theoretical models generally predict that the aℓm modes are
Gaussian random fields to high precision, matching the empirical
tests, e.g., standard slow-roll inflation’s non-Gaussian contribution
is expected to be at least an order of magnitude below current
observational limits [29]. Although non-Gaussianity of various forms
is possible in early Universe models, tests show that Gaussianity is
an extremely good simplifying approximation [30]. The only current
indications of any non-Gaussianity or statistical anisotropy are some
relatively weak signatures at large scales, seen in both WMAP [31]
and Planck data [32], but not of high enough significance to reject the
simplifying assumption. Nevertheless, models that deviate from the
inflationary slow-roll conditions can have measurable non-Gaussian
signatures. So while the current observational limits make the power
spectrum the dominant probe of cosmology, it is worth noting that
higher-order correlations are beginning to be a tool for constraining
otherwise viable theories.

28.3.4. Angular Resolution and Binning :

There is no one-to-one conversion between multipole ℓ and the
angle subtended by a particular spatial scale projected onto the sky.
However, a single spherical harmonic Yℓm corresponds to angular
variations of θ ∼ π/ℓ. CMB maps contain anisotropy information from
the size of the map (or in practice some fraction of that size) down
to the beam-size of the instrument, σ (the standard deviation of the
beam, in radians). One can think of the effect of a Gaussian beam as

rolling off the power spectrum with the function e−ℓ(ℓ+1)σ2 .

For less than full sky coverage, the ℓ modes become correlated.
Hence, experimental results are usually quoted as a series of ‘band
powers,’ defined as estimators of ℓ(ℓ + 1)Cℓ/2π over different ranges
of ℓ. Because of the strong foreground signals in the Galactic Plane,
even ‘all-sky’ surveys, such as WMAP and Planck involve a cut sky.
The amount of binning required to obtain uncorrelated estimates of
power also depends on the map size.

28.4. Cosmological Parameters

The current ‘Standard Model’ of cosmology contains around 10
free parameters (see The Cosmological Parameters—Sec. 24 of this
Review). The basic framework is the Friedmann-Robertson-Walker
(FRW) metric (i.e., a universe that is approximately homogeneous and
isotropic on large scales), with density perturbations laid down at early
times and evolving into today’s structures (see Big-Bang cosmology—
Sec. 21 of this Review). The most general possible set of density
variations is a linear combination of an adiabatic density perturbation
and some isocurvature perturbations. Adiabatic means that there is
no change to the entropy per particle for each species, i.e., δρ/ρ
for matter is (3/4)δρ/ρ for radiation. Isocurvature means that the
set of individual density perturbations adds to zero, for example,
matter perturbations compensate radiation perturbations so that the
total energy density remains unperturbed, i.e., δρ for matter is −δρ
for radiation. These different modes give rise to distinct (temporal)

phases during growth, with those of the adiabatic scenario looking
exactly like the data. Models that generate mainly isocurvature type
perturbations (such as most topological defect scenarios) are no longer
considered to be viable. However, an admixture of the adiabatic mode
with up to about 4% isocurvature contribution (depending on details
of the mode) is still allowed [33,34].

28.4.1. Initial Condition Parameters :

Within the adiabatic family of models, there is, in principle, a free
function describing the variation of comoving curvature perturbations,
R(x, t). The great virtue of R is that it is constant in time for a
purely adiabatic perturbation. There are physical reasons to anticipate
that the variance of these perturbations will be described well by
a power law in scale, i.e., in Fourier space

〈
|R|2k

〉
∝ kns−4, where

k is wavenumber and ns is the usual definition of spectral index.
So-called ‘scale-invariant’ initial conditions (meaning gravitational
potential fluctuations that are independent of k) correspond to
ns = 1. In inflationary models [35] (see Inflation—Sec. 22 of this
Review), perturbations are generated by quantum fluctuations, which
are set by the energy scale of inflation, together with the slope
and higher derivatives of the inflationary potential. One generally
expects that the Taylor series expansion of lnRk(ln k) has terms of
steadily decreasing size. For the simplest models, there are thus two
parameters describing the initial conditions for density perturbations,
namely the amplitude and slope of the power spectrum. These can be
explicitly defined, for example, through:

∆2
R ≡ (k3/2π2)

〈
|R|2k

〉
≃ As (k/k0)

ns−1 ,

with As ≡ ∆2
R(k0) and k0 = 0.05Mpc−1, say. There are many

other equally valid definitions of the amplitude parameter (see also
Secs. 21, 24, and 22 of this Review), and we caution that the
relationships between some of them can be cosmology-dependent. In
‘slow roll’ inflationary models, this normalization is proportional to
the combination V 3/(V ′)2, for the inflationary potential V (φ). The
slope ns also involves V ′′, and so the combination of As and ns can
constrain potentials.

Inflation generates tensor (gravitational wave) modes, as well as
scalar (density perturbation) modes. This fact introduces another
parameter, measuring the amplitude of a possible tensor component, or
equivalently the ratio of the tensor to scalar contributions. The tensor
amplitude is At ∝ V , and thus one expects a larger gravitational wave
contribution in models where inflation happens at higher energies.
The tensor power spectrum also has a slope, often denoted nt, but
since this seems unlikely to be measured in the near future, it is
sufficient for now to focus only on the amplitude of the gravitational
wave component. It is most common to define the tensor contribution
through r, the ratio of tensor to scalar perturbation spectra at some
small value of k (e.g., k = 0.002Mpc−1, although sometimes it is
defined in terms of the ratio of contributions at ℓ = 2). Different
inflationary potentials will lead to different predictions, e.g., for
50 e-folds λφ4 inflation gives r = 0.32 and m2φ2 inflation gives
r = 0.16 (both now disfavored by the data), while other models can
have arbitrarily small values of r. In any case, whatever the specific
definition, and whether they come from inflation or something else,
the ‘initial conditions’ give rise to a minimum of three parameters, As,
ns, and r.

28.4.2. Background Cosmology Parameters :

The FRW cosmology requires an expansion parameter (the Hubble
Constant, H0, often represented through H0 = 100 h kms−1Mpc−1)
and several parameters to describe the matter and energy content of
the Universe. These are usually given in terms of the critical density,
i.e., for species ‘x,’ Ωx ≡ ρx/ρcrit, where ρcrit ≡ 3H2

0/8πG. Since

physical densities ρx ∝ Ωxh
2 ≡ ωx are what govern the physics of the

CMB anisotropies, it is these ωs that are best constrained by CMB
data. In particular CMB, observations constrain Ωbh

2 for baryons
and Ωch

2 for cold dark matter (with ρm = ρc + ρb for the sum).

The contribution of a cosmological constant Λ (or other form
of dark energy, see Dark Energy—Sec. 27) is usually included via
a parameter that quantifies the curvature, ΩK ≡ 1 − Ωtot, where
Ωtot = Ωm + ΩΛ. The radiation content, while in principle a free
parameter, is precisely enough determined by the measurement of Tγ
that it can be considered fixed, and makes a < 10−4 contribution to
Ωtot today.
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Figure 28.1: Theoretical CMB anisotropy power spectra, using
the best-fitting ΛCDM model from Planck, calculated using
CAMB. The panel on the left shows the theoretical expectation
for scalar perturbations, while the panel on the right is for
tensor perturbations, with an amplitude set to r = 0.1 for
illustration. Note that the x-axis is logarithmic here. For the
well-measured scalar TT spectrum, the regions, each covering
roughly a decade in ℓ, are labeled as in the text: the ISW rise;
Sachs-Wolfe plateau; acoustic peaks; and damping tail. The TE
cross-correlation power spectra change sign, and that has been
indicated by plotting the absolute value, but switching color for
the negative parts.

Astrophysical processes at relatively low redshift can also affect the
Cℓs, with a particularly significant effect coming through reionization.
The Universe became reionized at some redshift zi, long after
recombination, affecting the CMB through the integrated Thomson
scattering optical depth:

τ =

∫ zi

0
σTne(z)

dt

dz
dz,

where σT is the Thomson cross-section, ne(z) is the number density
of free electrons (which depends on astrophysics), and dt/dz is fixed
by the background cosmology. In principle, τ can be determined from
the small-scale matter power spectrum, together with the physics of
structure formation and radiative feedback processes; however, this
is a sufficiently intricate calculation that in practice τ needs to be
considered as a free parameter.

Thus, we have eight basic cosmological parameters: As, ns, r,
h, Ωbh

2, Ωch
2, Ωtot, and τ . One can add additional parameters

to this list, particularly when using the CMB in combination with
other data sets. The next most relevant ones might be: Ωνh

2, the
massive neutrino contribution; w (≡ p/ρ), the equation of state
parameter for the dark energy; and dns/d ln k, measuring deviations
from a constant spectral index. To these 11 one could of course add
further parameters describing additional physics, such as details of
the reionization process, features in the initial power spectrum, a
sub-dominant contribution of isocurvature modes, etc.

As well as these underlying parameters, there are other (dependent)
quantities that can be obtained from them. Such derived parameters
include the actual Ωs of the various components (e.g., Ωm), the
variance of density perturbations at particular scales (e.g., σ8), the
angular scale of the sound horizon (θ∗), the age of the Universe today
(t0), the age of the Universe at recombination, reionization, etc. (see
The Cosmological Parameters—Sec. 24).

28.5. Physics of Anisotropies

The cosmological parameters affect the anisotropies through the
well understood physics of the evolution of linear perturbations within
a background FRW cosmology. There are very effective, fast, and
publicly available software codes for computing the CMB anisotropy,
polarization, and matter power spectra, e.g., CMBFAST [36], CAMB [37],
and CLASS [38]. These have been tested over a wide range of
cosmological parameters and are considered to be accurate to much
better than the 1% level [39], so that numerical errors are less than
10% of the parameter uncertainties for Planck [9].

For pedagogical purposes, it is easiest to focus on the temperature
anisotropies, before moving to the polarization power spectra. A
description of the physics underlying the CTT

ℓ s can be separated into
four main regions (the first two combined below), as shown in the top
left part of Fig. 28.1.

28.5.1. The ISW Rise, ℓ ∼< 10, and Sachs-Wolfe Plateau,
10 ∼< ℓ ∼< 100 :

The horizon scale (or more precisely, the angle subtended by
the Hubble radius) at last scattering corresponds to ℓ ≃ 100.
Anisotropies at larger scales have not evolved significantly, and hence
directly reflect the ‘initial conditions.’ Temperature variations are
δT/T = −(1/5)R(xLSS) ≃ (1/3)δφ/c2, where δφ is the perturbation
to the gravitational potential, evaluated on the last scattering surface
(LSS). This is a result of the combination of gravitational redshift and
intrinsic temperature fluctuations, and is usually referred to as the
Sachs-Wolfe effect [40].

Assuming that a nearly scale-invariant spectrum of curvature
and corresponding density perturbations was laid down at early
times (i.e., ns ≃ 1, meaning equal power per decade in k), then
ℓ(ℓ + 1)Cℓ ≃ constant at low ℓs. This effect is hard to see unless the
multipole axis is plotted logarithmically (as in Fig. 28.1, and part of
Fig. 28.2).

Time variation of the potentials (i.e., time-dependent metric
perturbations) leads to an upturn in the Cℓs in the lowest several
multipoles; any deviation from a total equation of state w = 0
has such an effect. So the dominance of the dark energy at low
redshift (see Dark Energy—Sec. 27) makes the lowest ℓs rise above
the plateau. This is sometimes called the integrated Sachs-Wolfe
effect (or ISW rise), since it comes from the line integral of φ̇; it
has been confirmed through correlations between the large-angle
anisotropies and large-scale structure [41]. Specific models can also
give additional contributions at low ℓ (e.g., perturbations in the dark
energy component itself [42]), but typically these are buried in the
cosmic variance.

In principle, the mechanism that produces primordial perturbations
could generate scalar, vector, and tensor modes. However, the vector
(vorticity) modes decay with the expansion of the Universe. The
tensors (transverse trace-free perturbations to the metric) generate
temperature anisotropies through the integrated effect of the locally
anisotropic expansion of space. Since the tensor modes also redshift
away after they enter the horizon, they contribute only to angular
scales above about 1◦ (see Fig. 28.1). Hence some fraction of the low-ℓ
signal could be due to a gravitational wave contribution, although
small amounts of tensors are essentially impossible to discriminate from
other effects that might raise the level of the plateau. Nevertheless,
the tensors can be distinguished using polarization information (see
Sec. 28.7).

28.5.2. The Acoustic Peaks, 100 ∼< ℓ ∼< 1000 :

On sub-degree scales, the rich structure in the anisotropy spectrum
is the consequence of gravity-driven acoustic oscillations occurring
before the atoms in the Universe became neutral [43]. Perturbations
inside the horizon at last scattering have been able to evolve causally
and produce anisotropy at the last scattering epoch, which reflects
this evolution. The frozen-in phases of these sound waves imprint
a dependence on the cosmological parameters, which gives CMB
anisotropies their great constraining power.

The underlying physics can be understood as follows. Before the
Universe became neutral, the proton-electron plasma was tightly
coupled to the photons, and these components behaved as a single
‘photon-baryon fluid.’ Perturbations in the gravitational potential,
dominated by the dark matter component, were steadily evolving.
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They drove oscillations in the photon-baryon fluid, with photon
pressure providing most of the restoring force and baryons giving some
additional inertia. The perturbations were quite small in amplitude,
O(10−5), and so evolved linearly. That means each Fourier mode
developed independently, and hence can be described by a driven
harmonic oscillator, with frequency determined by the sound speed in
the fluid. Thus the fluid density underwent oscillations, giving time
variations in temperature. These combine with a velocity effect, which
is π/2 out of phase and has its amplitude reduced by the sound speed.

After the Universe recombined, the radiation decoupled from
the baryons and could travel freely towards us. At that point, the
(temporal) phases of the oscillations were frozen-in, and became
projected on the sky as a harmonic series of peaks. The main peak
is the mode that went through 1/4 of a period, reaching maximal
compression. The even peaks are maximal under -densities, which
are generally of smaller amplitude because the rebound has to fight
against the baryon inertia. The troughs, which do not extend to zero
power, are partially filled by the Doppler effect because they are at
the velocity maxima.

The physical length scale associated with the peaks is the sound
horizon at last scattering, which can be straightforwardly calculated.
This length is projected onto the sky, leading to an angular scale
that depends on the geometry of space, as well as the distance to
last scattering. Hence the angular position of the peaks is a sensitive
probe of a particular combination of cosmological parameters. In fact,
the angular scale, θ∗, is the most precisely measured observable, and
hence is usually treated as an element of the cosmological parameter
set.

One additional effect arises from reionization at redshift zi. A
fraction of photons (τ) will be isotropically scattered at z < zi,
partially erasing the anisotropies at angular scales smaller than those
subtended by the Hubble radius at zi. This corresponds typically to
ℓs above about 10, depending on the specific reionization model. The
acoustic peaks are therefore reduced by a factor e−2τ relative to the
plateau.

These peaks were a clear theoretical prediction going back to about
1970 [44]. One can think of them as a snapshot of stochastic standing
waves. Since the physics governing them is simple and their structure
rich, one can see how they encode extractable information about the
cosmological parameters. Their empirical existence started to become
clear around 1994 [45], and the emergence, over the following decade,
of a coherent series of acoustic peaks and troughs is a triumph of
modern cosmology. This picture has received further confirmation
with the detection in the power spectrum of galaxies (at redshifts
close to zero) of the imprint of these same acoustic oscillations in the
baryon component [46], as well as through detection of the expected
oscillations in CMB polarization power spectra (see Sec. 28.7).

28.5.3. The Damping Tail, ℓ ∼> 1000 :

The recombination process is not instantaneous, which imparts a
thickness to the last scattering surface. This leads to a damping of
the anisotropies at the highest ℓs, corresponding to scales smaller
than that subtended by this thickness. One can also think of the
photon-baryon fluid as having imperfect coupling, so that there is
diffusion between the two components, and hence the amplitudes of
the oscillations decrease with time. These effects lead to a damping
of the Cℓs, sometimes called Silk damping [47] , which cuts off
the anisotropies at multipoles above about 2000. So, although in
principle it is possible to measure to ever smaller scales, this becomes
increasingly difficult in practice.

28.5.4. Gravitational Lensing Effects :

An extra effect at high ℓs comes from gravitational lensing,
caused mainly by non-linear structures at low redshift. The Cℓs are
convolved with a smoothing function in a calculable way, partially
flattening the peaks and troughs, generating a power-law tail at the
highest multipoles, and complicating the polarization signal [48] .
The expected effects of lensing on the CMB have been definitively
detected through the 4-point function, which correlates temperature
gradients and small-scale anisotropies (enabling a map of the lensing
potential to be constructed [49,50]), as well as through the smoothing
effect on the shape of the Cℓs. Lensing is important because it gives
an independent estimate of As, breaking the parameter combination
Ase

−2τ that is largely degenerate in the anisotropy power spectra.

Lensing is an example of a ‘secondary effect,’ i.e., the processing
of anisotropies due to relatively nearby structures (see Sec. 28.8.2).
Galaxies and clusters of galaxies give several such effects; all are
expected to be of low amplitude, but are increasingly important at
the highest ℓs. Such effects carry additional cosmological information
(about evolving gravitational potentials in the low-redshift Universe)
and are increasing in importance as experiments push to higher
sensitivity and angular resolution. The lensing power spectrum
provides independent constraints on the amplitude of perturbations,
as well as potentially constraining dark energy evolution, while future
measurements at high ℓ are a particularly sensitive probe of the sum
of the neutrino masses [51].

Figure 28.2: CMB temperature anisotropy band-power esti-
mates from the Planck, WMAP, ACT, and SPT experiments.
Note that the widths of the ℓ-bands vary between experiments
and have not been plotted. This figure represents only a selection
of the most recent available experimental results, and some
points with large error bars have been omitted. At the higher
multipoles these band-powers involve subtraction of particular
foreground models, and so proper analysis requires simultaneous
fitting of CMB and foregrounds over multiple frequencies. The
x-axis here is logarithmic for the lowest multipoles, to show the
Sachs-Wolfe plateau, and linear for the other multipoles. The
acoustic peaks and damping region are very clearly observed,
with no need for a theoretical curve to guide the eye; however,
the curve plotted is the best-fit Planck ΛCDM model.

28.6. Current Temperature Anisotropy Data

There has been a steady improvement in the quality of CMB
data that has led to the development of the present-day cosmological
model. The most robust constraints currently available come from
Planck satellite [52,53] data (together with constraints from non-CMB
cosmological data-sets), although smaller scale results from the
ACT [54] and SPT [55] experiments are becoming competetive. We
plot power spectrum estimates from these experiments in Fig. 28.2,
along with WMAP data [8] to show the consistency (see previous
versions of this review for data from earlier experiments). Comparisons
among data-sets show very good agreement, both in maps and in
derived power spectra (up to systematic uncertainties in the overall
calibration for some experiments). This makes it clear that systematic
effects are largely under control.

The band-powers shown in Fig. 28.2 are in very good agreement
with a ‘ΛCDM’ model. As described earlier, several (at least eight)
of the peaks and troughs are quite apparent. For details of how
these estimates were arrived at, the strength of correlations between
band-powers and other information required to properly interpret
them, the original papers should be consulted.
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28.7. CMB Polarization

Since Thomson scattering of an anisotropic radiation field also
generates linear polarization, the CMB is predicted to be polarized
at the level of roughly 5% of the temperature anisotropies [56] .
Polarization is a spin-2 field on the sky, and the algebra of the modes
in ℓ-space is strongly analogous to spin-orbit coupling in quantum
mechanics [57]. The linear polarization pattern can be decomposed
in a number of ways, with two quantities required for each pixel in
a map, often given as the Q and U Stokes parameters. However,
the most intuitive and physical decomposition is a geometrical one,
splitting the polarization pattern into a part that comes from a
divergence (often referred to as the ‘E-mode’) and a part with a curl
(called the ‘B-mode’) [58]. More explicitly, the modes are defined in
terms of second derivatives of the polarization amplitude, with the
Hessian for the E-modes having principle axes in the same sense as
the polarization, while the B-mode pattern can be thought of as a 45◦
rotation of the E-mode pattern. Globally one sees that the E-modes
have (−1)ℓ parity (like the spherical harmonics), while the B-modes

have (−1)ℓ+1 parity.

The existence of this linear polarization allows for six different
cross-power spectra to be determined from data that measure the
full temperature and polarization anisotropy information. Parity
considerations make two of these zero, and we are left with four
potential observables, CTT

ℓ , CTE
ℓ , CEE

ℓ , and CBB
ℓ (see Fig. 28.1).

Because scalar perturbations have no handedness, the B-mode power
spectrum can only be sourced by vectors or tensors. Moreover, since
inflationary scalar perturbations give only E-modes, while tensors
generate roughly equal amounts of E- and B-modes, then the
determination of a non-zero B-mode signal is a way to measure the
gravitational wave contribution (and thus potentially derive the energy
scale of inflation). However, since the signal is expected to be rather
weak, one must first eliminate the foreground contributions and other
systematic effects down to very low levels.

Like with temperature, the polarization Cℓs exhibit a series of
acoustic peaks generated by the oscillating photon-baryon fluid. The
main ‘EE’ power spectrum has peaks that are out of phase with
those in the ‘TT ’ spectrum because the polarization anisotropies
are sourced by the fluid velocity. The ‘TE’ part of the polarization
and temperature patterns comes from correlations between density
and velocity perturbations on the last scattering surface, which can
be both positive and negative, and is of larger amplitude than the
EE signal. There is no polarization Sachs-Wolfe effect, and hence
no large-angle plateau. However, scattering during a recent period of
reionization can create a polarization ‘bump’ at large angular scales.

Because the polarization anisotropies have only a fraction of the
amplitude of the temperature anisotropies, they took longer to detect.
The first measurement of a polarization signal came in 2002 from
the DASI experiment [59] , which provided a convincing detection,
confirming the general paradigm, but of low enough significance that
it lent no real constraint to models. Despite dramatic progress since
then, it is still the case that polarization data mainly support the basic
paradigm, without dramatically reducing error bars on parameters.
However, there are exceptions to this, specifically in the reionization
optical depth, and the potential to constrain primordial gravitational
waves.

28.7.1. T–E Power Spectrum :

Since the T and E skies are correlated, one has to measure the TE
power spectrum, as well as TT and EE, in order to extract all the
cosmological information. This TE signal has now been mapped out
extremely accurately by Planck [53], and these band-powers are shown
in Fig. 28.3, along with those from WMAP [60] and BICEP2/Keck [61]
, with ACTPol [62,63] and SPTPol [64] extending to smaller angular
scales. The anti-correlation at ℓ ≃ 150 and the peak at ℓ ≃ 300
were the first features to become distinct, but now a whole series
of oscillations is clearly seen in this power spectrum. The measured
shape of the cross-correlation power spectrum provides supporting
evidence for the general cosmological picture, as well as directly
constraining the thickness of the last scattering surface. Since the
polarization anisotropies are generated in this scattering surface, the
existence of correlations at angles above about a degree demonstrates
that there were super-Hubble fluctuations at the recombination epoch.
The sign of this correlation also confirms the adiabatic paradigm.

Figure 28.3: Cross-power spectrum band-powers of the
temperature anisotropies and E-mode polarization signal from
Planck (the low multipole data have been binned here), as well
as WMAP, BICEP2/Keck, ACTPol, and SPTPol. The curve
is the prediction from the best fit to the Planck temperature
band-powers (as well as the ℓ < 30 polarization and CMB
lensing results) and is not a fit to these data; however, these
TE measurements follow the curve very closely, showing the
expected oscillatory structure. Note that each band-power is an
average over a range of multipoles, and hence to compare in
detail with a model one has to integrate the theoretical curve
through the band.

The overall picture of the source of CMB polarization and its
oscillations has also been confirmed through tests that average the
maps around both temperature hot spots and cold spots [65,11] .
One sees precisely the expected patterns of radial and tangential
polarization configurations, as well as the phase shift between
polarization and temperature. This leaves no doubt that the
oscillation picture is the correct one and that the polarization is
coming from Thomson scattering at z ≃ 1100.

Figure 28.4: Power spectrum of E-mode polarization from
Planck, together with WMAP, BICEP2/Keck, ACTPol, and
SPTPol. Note that some band-powers with larger uncertainties
have been omitted and that the unbinned Planck low-ℓ data
have been binned here. Also plotted is the best-fit theoretical
model from Planck TT data (plus polarization at ℓ < 30 and
CMB lensing).
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Figure 28.5: Power spectrum of B-mode polarization, including
results from the BICEP2/Keck Array/Planck combined analysis
(B/K/P), Planck, POLARBEAR, SPT, and ACT. Note that
some of the measurements are direct estimates of B-modes on the
sky, while others are only sensitive to the lensing signal and come
from combining E-mode and lensing potential measurements.
Several earlier experiments reported upper limits, which are
all off the top of this plot. A logarithmic x-axis is adopted
here and the y-axis has been divided by a factor of

√
ℓ in

order to show all three theoretically expected contributions: the
low-ℓ reionization bump; the ℓ ∼ 100 recombination peak; and
the high-ℓ lensing signature. The dotted line is for a tensor
(primordial gravitational wave) fraction r = 0.1, simply as an
example, with all other cosmological parameters set at the best
Planck-derived values, for which model the expected lensing
B-modes have also been shown with a dashed line.

28.7.2. E–E Power Spectrum :

Experimental band-powers for CEE
ℓ from Planck, WMAP,

BICEP2/Keck Array [61], ACTPol [63], and SPTPol [64] are shown
in Fig. 28.4. Without the benefit of correlating with the temperature
anisotropies (i.e., measuring CTE

ℓ ), the polarization anisotropies are
very weak and challenging to measure. Nevertheless, the oscillatory
pattern is becoming well established and the data closely match
the TT -derived theoretical prediction. In Fig. 28.4 one can clearly
see the ‘shoulder’ expected at ℓ ≃ 140, the first main peak at
ℓ ≃ 400 (corresponding to the first trough in CTT

ℓ ), and the series
of oscillations that is out of phase with those of the temperature
anisotropy power spectrum.

Perhaps the most notable result from the polarization measurements
is at the largest angular scales (ℓ < 10) in CTE

ℓ and CEE
ℓ , where

there is evidence for an excess signal (not visible in Fig. 28.4)
compared to that expected from the temperature power spectrum
alone. This is precisely the signal anticipated from an early period of
reionization, arising from Doppler shifts during the partial scattering
at z < zi. The amplitude of the signal indicates that the first stars,
presumably the source of the ionizing radiation, formed around z ≃ 8
(although the uncertainty is still quite large). Since this corresponds
to scattering optical depth τ ≃ 0.06, then roughly 6% of CMB photons
were re-scattered at the reionization epoch, with the other 94% last
scattering at z ≃ 1100. However, estimates of the amplitude of this
reionization excess have come down since the first measurements by
WMAP (indicating that this is an extremely difficult measurement
to make) and the latest Planck results have reduced the value
further [66].

28.7.3. B–B Power Spectrum :

The expected amplitude of CBB
ℓ is very small, and so measurements

of this polarization curl-mode are extremely challenging. The first
indication of the existence of the BB signal has come from the
detection of the expected conversion of E-modes to B-modes by
gravitational lensing, through a correlation technique using the lensing

potential and polarization measurements from SPT [67] . However,
the real promise of B-modes lies in the detection of primordial
gravitational waves at larger scales. This tensor signature could
be seen either in the ‘recombination bump’ at around ℓ = 100
(caused by an ISW effect as gravitational waves redshift away at
the last-scattering epoch) or the ‘reionization bump’ (from additional
scattering at low redshifts).

Results from the BICEP-2 experiment [68] in 2014 suggested a
detection of the primordial B-mode signature around the recombina-
tion peak. BICEP-2 mapped a small part of the CMB sky with the
the lowest sensitivity level reached at that time (below 100 nK), but
at a single frequency. Higher frequency data from Planck indicated
that much of the BICEP2 signal was due to dust within out Galaxy,
and a combined analysis by the BICEP-2, Keck Array, and Planck
teams [69] indicated that the data are consistent with no primordial
B-modes, with an upper limit of r < 0.12 (95%, from BB alone). This
limit was reduced to r < 0.09 with the inclusion of Keck Array data
at 95GHz [70].

Several experiments are continuing to push down the sensitivity
of B-mode measurements, motivated by the enormous importance
of a future detection of this telltale signature of inflation (or other
physics at the highest energies). A compilation of experimental
results for CBB

ℓ is shown in Fig. 28.5, coming from a combination
of direct estimates of the B-modes (BICEP2/Keck Array [61],
POLARBEAR [71], SPTPol [72], and ACTPol [63]) and indirect
determinations of the lensing B-modes based on estimating the effect
of measured lensing on measured E-modes (Planck [50], SPT [67],
and ACT [73]) . Additional band-power estimates are expected from
these and other experiments in the near future, with the so-called
‘Stage 4’ CMB project holding great promise for pushing down to the
r ∼ 0.001 level [74].

28.8. Complications

There are a number of issues that complicate the interpretation
of CMB anisotropy data (and are considered to be signal by many
astrophysicists), some of which we sketch out below.

28.8.1. Foregrounds :

The microwave sky contains significant emission from our Galaxy
and from extra-galactic sources [75] . Fortunately, the frequency
dependence of these various sources is in general substantially different
from that of the CMB anisotropy signals. The combination of Galactic
synchrotron, bremsstrahlung, and dust emission reaches a minimum
at a frequency of roughly 100GHz (or wavelength of about 3mm).
As one moves to greater angular resolution, the minimum moves to
slightly higher frequencies, but becomes more sensitive to unresolved
(point-like) sources.

At frequencies around 100GHz, and for portions of the sky
away from the Galactic Plane, the foregrounds are typically 1 to
10% of the CMB anisotropies. By making observations at multiple
frequencies, it is relatively straightforward to separate the various
components and determine the CMB signal to the few per cent level.
For greater sensitivity, it is necessary to use the spatial information
and statistical properties of the foregrounds to separate them from
the CMB. Furthermore, at higher ℓs it is essential to carefully model
extragalactic foregrounds, particularly the clustering of infrared-
emitting galaxies, which dominate the measured power spectrum as
we move into the damping tail.

The foregrounds for CMB polarization follow a similar pattern to
those for temperature, but are intrinsically brighter relative to CMB
anisotropies. WMAP showed that the polarized foregrounds dominate
at large angular scales, and that they must be well characterized in
order to be discriminated [76]. Planck has shown that it is possible
to characterize the foreground polarization signals, with synchrotron
dominating at low frequencies and dust at high frequencies [77]. On
smaller scales there are no strongly polarized foregrounds, and hence
it is in principle easier to measure foreground-free modes at high
multipoles in polarization than in temperature. Although foreground
contamination will no doubt become more complicated as we push
down in sensitivity, and they will make analysis more difficult, for the
time being, foreground contamination is not a fundamental limit for
CMB experiments.
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28.8.2. Secondary Anisotropies :

With increasingly precise measurements of the primary anisotropies,
there is growing theoretical and experimental interest in ‘secondary
anisotropies,’ pushing experiments to higher angular resolution and
sensitivity. These secondary effects arise from the processing of
the CMB due to ionization history and the evolution of structure,
including gravitational lensing (which was already discussed) and
patchy reionization effects [78] . Additional information can thus
be extracted about the Universe at z ≪ 1000. This tends to be
most effectively done through correlating CMB maps with other
cosmological probes of structure. Secondary signals are also typically
non-Gaussian, unlike the primary CMB anisotropies.

A secondary signal of great current interest is the Sunyaev-Zeldovich
(SZ) effect [79] , which is Compton scattering (γe → γ′e′) of the
CMB photons by hot electron gas. This creates spectral distortions
by transferring energy from the electrons to the photons. It is
particularly important for clusters of galaxies, through which one
observes a partially Comptonized spectrum, resulting in a decrement
at radio wavelengths and an increment in the submillimeter.

The imprint on the CMB sky is of the form ∆T/T = y f(x), with
the y-parameter being the integral of Thomson optical depth times
kTe/mec

2 through the cluster, and f(x) describing the frequency
dependence. This is simply x coth(x/2) − 4 for a non-relativistic gas
(the electron temperature in a cluster is typically a few keV), where
the dimensionless frequency x ≡ hν/kTγ. As well as this ‘thermal’ SZ
effect, there is also a smaller ‘kinetic’ effect due to the bulk motion of
the cluster gas, giving ∆T/T ∼ τ(v/c), with either sign, but having
the same spectrum as the primary CMB anisotropies.

A significant advantage in finding galaxy clusters this way is that
the SZ effect is largely independent of redshift, so in principle clusters
can be found to arbitrarily large distances. The SZ effect can be used
to find and study individual clusters, and to obtain estimates of the
Hubble constant. There is also the potential to constrain cosmological
parameters, such as the clustering amplitude σ8 and the equation
of state of the dark energy, through counts of detected clusters as
a function of redshift. The promise of the method has been realized
through detections of clusters purely through the SZ effect by SPT [80]
, ACT [81], and Planck [82]. Results from Planck clusters [83] suggest
a somewhat lower value of σ8 than inferred from CMB anisotropies,
but there are still systematic uncertainties that might encompass the
difference, and a more recent analysis of SPT-detected clusters shows
more agreement [84]. Further analysis of scaling relations among
cluster properties should enable more robust cosmological constraints
to be placed in future, so that we can understand whether this
‘tension’ might be a sign of new physics.

28.8.3. Higher-order Statistics :

Although most of the CMB anisotropy information is contained in
the power spectra, there will also be weak signals present in higher-
order statistics. These can measure any primordial non-Gaussianity
in the perturbations, as well as non-linear growth of the fluctuations
on small scales and other secondary effects (plus residual foreground
contamination of course). Although there are an infinite variety of
ways in which the CMB could be non-Gaussian [29] , there is a
generic form to consider for the initial conditions, where a quadratic
contribution to the curvature perturbations is parameterized through
a dimensionless number fNL. This weakly non-linear component can
be constrained in several ways, the most popular being through
measurements of the bispectrum.

The constraints depend on the shape of the triangles in harmonic
space, and it has become common to distinguish the ‘local’ or
‘squeezed’ configuration (in which one side is much smaller than the
other two) from the ‘equilateral’ configuration. Other configurations
are also relevant for specific theories, such as ‘orthogonal’ non-
Gaussianity, which has positive correlations for k1 ≃ 2k2 ≃ 2k3,
and negative correlations for the equilateral configuration. The
results from the Planck team [85]( including polarization here) are

f localNL = 1± 5, f equilNL = 0± 40, and forthoNL = −26± 21.

These results are consistent with zero, but are at a level that
is now interesting for model predictions. The amplitude of fNL
expected is small, so that a detection of fNL ≫ 1 would rule out
all single-field, slow-roll inflationary models. It is still possible to

improve upon these Planck results, and it certainly seems feasible
that a measurement of primordial non-Gaussianity may yet be within
reach. Non-primordial detections of non-Gaussianity from expected
signatures have already been made. For example, the bispectrum and
trispectrum contain evidence of gravitational lensing, the ISW effect,
and Doppler boosting. For now the primordial signal is elusive, but
should it be detected, then detailed measurements of non-Gaussianity
will become a unique probe of inflationary-era physics. Because of
that, much effort continues to be devoted to honing predictions and
measurement techniques, with the expectation that we will need to go
beyond the CMB to dramatically improve the constraints.

28.8.4. Anomalies :

Several features seen in the Planck data [32] confirm those found
earlier with WMAP [31] , showing mild deviations from a simple
description of the data; these are often referred to as ‘anomalies.’
One such feature is the apparent lack of power in the multipole
range ℓ ≃ 20–30 [9,53]. The other examples involve the breaking of
statistical anisotropy, caused by alignment of the lowest multipoles,
or a somewhat excessive cold spot, or a power asymmetry between
hemispheres. No such feature is significant at more than the roughly
3σ level, and the importance of ‘a posteriori’ statistics here has been
emphasized by many authors. Since these effects are at large angular
scales, where cosmic variance dominates, the results will not increase
in significance with more data, although there is the potential for
polarization to provide independent tests.

28.9. Constraints on Cosmological Parameters

The most striking outcome of the newer experimental results is that
the standard cosmological paradigm is in very good shape. A large
amount of high precision data on the power spectrum is adequately
fit with fewer than 10 free parameters (and only six need non-trivial
values). The framework is that of FRW models, which have nearly flat
geometry, containing dark matter and dark energy, and with adiabatic
perturbations having close to scale-invariant initial conditions.

Within this basic picture, the values of the cosmological parameters
can be constrained. Of course, much more stringent bounds can
be placed on models that cover a restricted parameter space,
e.g., assuming that Ωtot = 1 or r = 0. More generally, the constraints
depend upon the adopted prior probability distributions, even if they
are implicit, for example by restricting the parameter freedom or their
ranges (particularly where likelihoods peak near the boundaries), or
by using different choices of other data in combination with the CMB.
As the data become even more precise, these considerations will be
less important, but for now we caution that restrictions on model
space and choice of non-CMB data-sets and priors need to be kept in
mind when adopting specific parameter values and uncertainties.

There are some combinations of parameters that fit the CMB
anisotropies almost equivalently. For example, there is a nearly exact
geometric degeneracy, where any combination of Ωm and ΩΛ that
provides the same angular diameter distance to last scattering will
give nearly identical Cℓs. There are also other less exact degeneracies
among the parameters. Such degeneracies can be broken when
using the CMB results in combination with other cosmological
data-sets. Particularly useful are complementary constraints from
baryon acoustic oscillations, galaxy clustering, the abundance of
galaxy clusters, weak gravitational lensing measurements, and Type
Ia supernova distances. For an overview of some of these other
cosmological constraints, see The Cosmological Parameters—Sec. 24
of this Review.

Within the context of a six parameter family of models (which
fixes Ωtot = 1, dns/d ln k = 0, r = 0, and w = −1) the Planck
results for TT , together with low-ℓ polarization and CMB lensing,
yields [13]: ln(1010As) = 3.062 ± 0.029; ns = 0.968 ± 0.006; Ωbh

2 =
0.02226± 0.00023; Ωch

2 = 0.1186± 0.0020; 100θ∗ = 1.0410± 0.0005;
and τ = 0.066 ± 0.016 (more recently reduced to 0.055 ± 0.009 [66])
. Other parameters can be derived from this basic set, including
h = 0.678±0.009, ΩΛ = 0.692±0.012 (= 1−Ωm) and σ8 = 0.815±0.009.
Somewhat different (although consistent) values are obtained using
other data combinations, such as including BAO, supernova, H0,
or weak lensing constraints (see Sec. 24 of this Review). However,
the results quoted above are currently the best available from CMB
anisotropies alone. The uncertainties decrease by around 25% when
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adding Planck polarization data, although the recommendation for
now is not to include these 2015 polarization data in fits, since there
are still some unmodeled systematic effects present [53].

The standard cosmological model continues to fit the data well,
with the error bars on the parameters continuing to shrink. Improved
measurement of higher acoustic peaks has dramatically reduced the
uncertainty in the θ∗ parameter, which is now detected at > 2000σ.
The evidence for ns < 1 remains above the 5σ level. The value of
the reionization optical depth has decreased compared with earlier
estimates; it is convincingly detected, but still not of very high
significance.

Constraints can also be placed on parameters beyond the basic six,
particularly when including other astrophysical data-sets. Relaxing
the flatness assumption, the constraint on Ωtot is 1.005 ± 0.008.
Note that for h, the CMB data alone provide only a very weak
constraint if spatial flatness is not assumed. However, with the
addition of other data (particularly powerful in this context being
a compilation of BAO measurements [86] ), the constraints on the
Hubble constant and curvature improve considerably, leading to
Ωtot = 1.0002± 0.0026 [13].

For Ωbh
2 the CMB-derived value is generally consistent with

completely independent constraints from Big Bang nucleosynthesis (see
Sec. 23 of this Review). Related are constraints on additional neutrino-
like relativistic degrees of freedom, which lead to Neff = 3.15 ± 0.23
(including BAO), i.e., no evidence for extra neutrino species.

The 95% confidence upper limit on r (measured at k = 0.002Mpc−1)
from the effect of tensors solely on CTT

ℓ (see Fig. 28.1) is 0.11. This
limit depends on how the slope n is restricted and whether
dns/d ln k 6= 0 is allowed. The joint constraints on ns and r allow
specific inflationary models to be tested [33,34] . The limit on r is
even tighter when combined with the BICEP/Keck/Planck results for
CBB
ℓ , yielding r < 0.07 at 95% confidence [34,70]. Looking at the

(ns, r) plane, this means that m2φ2 (mass-term quadratic) inflation is
now disfavored by the data, as well as λφ4 (self-coupled) inflation.

The addition of the dark energy equation of state w adds the partial
degeneracy of being able to fit a ridge in (w, h) space, extending
to low values of both parameters. This degeneracy is broken when
the CMB is used in combination with other data-sets, e.g., adding
a compilation of BAO data gives w = −1.01± 0.05. Constraints can
also be placed on more general dark energy and modified gravity
models [87]. However, when extending the search space, one needs
to be careful not to over-interpret some tensions between data-sets as
evidence for new physics.

For the reionization optical depth, a reanalysis of Planck data
in 2016 resulted in a reduction in the value of τ , with the tightest
result (from low-ℓ HFI EE data) giving τ = 0.055 ± 0.009. This
corresponds to zi = 7.8–8.8 (depending on the functional form of the
reionization history), with an uncertainty of ±0.9 [66]. This redshift
is only slightly higher that that suggested from studies of absorption
lines in high-z quasar spectra [88] and Lyα-emitting galaxies [89],
perhaps hinting that the process of reionization was not as complex
as previously suspected. The important constraint provided by CMB
polarization, in combination with astrophysical measurements, thus
allows us to investigate how the first stars formed and brought about
the end of the cosmic dark ages.

28.10. Particle Physics Constraints

CMB data place limits on parameters that are directly relevant
for particle physics models. For example, there is a limit on the sum
of the masses of the neutrinos,

∑
mν < 0.21 eV (95%) [9] coming

from Planck together with BAO measurements (although limits are
weaker when considering both Neff and

∑
mν as free parameters).

This assumes the usual number density of fermions, which decoupled
when they were relativistic. The limit is tantalizingly only a factor of
a few higher than the minimum value coming from neutrino mixing
experiments (see Neutrino Mixings—Secs. 14 and 25). As well as
being an indirect probe of the neutrino background, Planck data also
require that the neutrino background has perturbations, i.e., that it
possesses a sound speed c2s ≃ 1/3, as expected [13].

The current suite of data suggests that ns < 1, with a best-fitting
value about 0.03 below unity. This is already quite constraining
for inflationary models, particularly along with r limits. There

is no current evidence for running of the spectral index, with
dns/d ln k = −0.003± 0.008 from Planck alone [13], although this is
less of a constraint on models. Similarly, primordial non-Gaussianity is
being probed to interesting levels, although tests of simple inflationary
models will only come with significant reductions in uncertainty.

The large-angle anomalies, such as the hemispheric modulation of
power and the dip in power at ℓ ≃ 20–30, have the potential to be
hints of new physics. Such effects might be expected in a universe
that has a large-scale power cut-off, or anisotropy in the initial power
spectrum, or is topologically non-trivial. However, cosmic variance
and a posteriori statistics limit the significance of these anomalies,
absent the existence of a model that naturally yields some of these
features (and ideally also predicting other phenomena that can be
tested).

Constraints on ‘cosmic birefringence’ (i.e., rotation of the plane of
CMB polarization that generates non-zero TB and EB power) can
be used to place limits on theories involving parity violation, Lorentz
violation, or axion-photon mixing [90].

It is possible to place limits on additional areas of physics [91], for
example annihilating dark matter [13], primordial magnetic fields [92],
and time variation of the fine-structure constant [93], as well as parity
violation, the neutrino chemical potential, a contribution of warm
dark matter, topological defects, or physics beyond general relativity.
Further particle physics constraints will follow as the smaller scale and
polarization measurements continue to improve.

The CMB anisotropy measurements precisely pin down physics
at the time of last-scattering, and so any change of physics can be
constrained if it affects the relevant energies or timescales. Future,
higher sensitivity measurements of the CMB frequency spectrum will
push the constraints back to cover energy injection at much earlier
times (∼ 1 year). Comparison of CMB and BBN observables extend
these constraints to timescales of order seconds, and energies in the
MeV range. And to the extent that inflation provides an effective
description of the generation of perturbations, the inflationary
observables will constrain physics at GUT-type energy scales.

More generally, careful measurement of the CMB power spectra
and non-Gaussianity can in principle put constraints on physics at the
highest energies, including ideas of string theory, extra dimensions,
colliding branes, etc. At the moment any calculation of predictions
appears to be far from definitive. However, there is a great deal of
activity on implications of string theory for the early Universe, and
hence a very real chance that there might be observational implications
for specific scenarios.

28.11. Fundamental Lessons

More important than the precise values of parameters is what we
have learned about the general features that describe our observable
Universe. Beyond the basic hot Big Bang picture, the CMB has
taught us that:

• The Universe recombined at z ∼ 1000 and started to become
ionized again at z ∼ 10.

• The geometry of the Universe is close to flat.

• Both dark matter and dark energy are required.

• Gravitational instability is sufficient to grow all of the observed
large structures in the Universe.

• Topological defects were not important for structure formation.

• There are ‘synchronized’ super-Hubble modes generated in the
early Universe.

• The initial perturbations were predominantly adiabatic in nature.

• The perturbation spectrum has a slightly red tilt.

• The perturbations had close to Gaussian (i.e., maximally random)
initial conditions.

These features form the basis of the cosmological standard model,
ΛCDM, for which it is tempting to make an analogy with the Standard
Model of particle physics (see earlier Sections of this Review). The
cosmological model is much further from any underlying ‘fundamental
theory,’ which may ultimately provide the values of the parameters
from first principles. Nevertheless, any genuinely complete ‘theory
of everything’ must include an explanation for the values of these
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cosmological parameters as well as the parameters of the Standard
Model of particle physics.

28.12. Future Directions

Given the significant progress in measuring the CMB sky, which has
been instrumental in tying down the cosmological model, what can we
anticipate for the future? There will be a steady improvement in the
precision and confidence with which we can determine the appropriate
cosmological parameters. Ground-based experiments operating at
smaller angular scales will continue to place tighter constraints on the
damping tail. New polarization experiments at small scales will probe
further into the damping tail, without the limitation of extragalactic
foregrounds. And polarization experiments at large angular scales will
push down the limits on primordial B-modes.

Planck, the third generation CMB satellite mission, was launched
in May 2009, and has produced a large number of papers, including a
set of cosmological studies based on the first two full surveys of the
sky (accompanied by a public release of data products) in 2013 and a
further series based on analysis of the full mission data release in 2015
(eight surveys for the Low Frequency Instrument and five surveys for
the High Frequency Instrument). In late 2017 results are expected
from a final analysis, including full constraints from polarization data.

A set of cosmological parameters is now known to percent level
accuracy, and that may seem sufficient for many people. However,
we should certainly demand more of measurements that describe the
entire observable Universe! Hence a lot of activity in the coming
years will continue to focus on determining those parameters with
increasing precision. This necessarily includes testing for consistency
among different predictions of the cosmological Standard Model, and
searching for signals that might require additional physics.

A second area of focus will be the smaller scale anisotropies
and ‘secondary effects.’ There is a great deal of information about
structure formation at z ≪ 1000 encoded in the CMB sky. This
may involve higher-order statistics and cross-correlations with other
large-scale structure tracers, as well as spectral signatures, with
many experiments targeting the galaxy cluster SZ effect. The current
status of CMB lensing is similar (in terms of total signal-to-noise)
to the quality of the first CMB anisotropy measurements by COBE,
and thus we can expect that experimental probes of lensing will
improve dramatically in the coming years. All of these investigations
can provide constraints on the dark energy equation of state, for
example, which is a major area of focus for several future cosmological
surveys at optical wavelengths. CMB lensing also promises to yield a
measurement of the sum of the neutrino masses.

A third direction is increasingly sensitive searches for specific
signatures of physics at the highest energies. The most promising of
these may be the primordial gravitational wave signals in CBB

ℓ , which

could be a probe of the ∼ 1016GeV energy range. There are several
ground- and balloon-based experiments underway that are designed
to search for the polarization B-modes. Additionally, non-Gaussianity
holds the promise of constraining models beyond single-field slow-roll
inflation.

Anisotropies in the CMB have proven to be the premier probe of
cosmology and the early Universe. Theoretically the CMB involves
well understood physics in the linear regime, and is under very good
calculational control. A substantial and improving set of observational
data now exists. Systematics appear to be under control and not
a limiting factor. And so for the next few years we can expect an
increasing amount of cosmological information to be gleaned from
CMB anisotropies, with the prospect also of some genuine surprises.
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29. Cosmic Rays

Revised October 2017 by J.J. Beatty (Ohio State Univ.), J. Matthews
(Louisiana State Univ.), and S.P. Wakely (Univ. of Chicago).

29.1. Primary spectra

The cosmic radiation incident at the top of the terrestrial atmo-
sphere includes all stable charged particles and nuclei with lifetimes of
order 106 years or longer. When discussing the astrophysical origin of
cosmic rays, “primary” cosmic rays are those particles accelerated at
astrophysical sources and “secondaries” are those particles produced
in interaction of the primaries with interstellar gas†. Thus electrons,
protons and helium, as well as carbon, oxygen, iron, and other
nuclei synthesized in stars, are primaries. Nuclei such as lithium,
beryllium, and boron (which are not abundant end-products of stellar
nucleosynthesis) are secondaries. Antiprotons and positrons are also
in large part secondary. Whether a small fraction of these particles
may be primary is a question of current interest.

Apart from particles associated with solar flares, the cosmic
radiation comes from outside the solar system. The incoming charged
particles are “modulated” by the solar wind, the expanding magnetized
plasma generated by the Sun, which decelerates and partially excludes
the lower energy galactic cosmic rays from the inner solar system.
There is a significant anticorrelation between solar activity (which
has an alternating eleven-year cycle) and the intensity of the cosmic
rays with rigidities below about 10 GV. In addition, the lower-energy
cosmic rays are affected by the geomagnetic field, which they must
penetrate to reach the top of the atmosphere. Thus the intensity of
any component of the cosmic radiation in the GeV range depends
both on the location and time.

There are four different ways to describe the spectra of the
components of the cosmic radiation: (1) By particles per unit rigidity.
Propagation (and probably also acceleration) through cosmic magnetic
fields depends on gyroradius or magnetic rigidity, R, which is
gyroradius multiplied by the magnetic field strength:

R =
p c

Z e
= r

L
B . (29.1)

(2) By particles per energy-per-nucleon. Fragmentation of nuclei
propagating through the interstellar gas depends on energy per
nucleon, since that quantity is approximately conserved when a
nucleus breaks up on interaction with the gas. (3) By nucleons
per energy-per-nucleon. Production of secondary cosmic rays in
the atmosphere depends on the intensity of nucleons per energy-
per-nucleon, approximately independently of whether the incident
nucleons are free protons or bound in nuclei. (4) By particles per
energy-per-nucleus. Air shower experiments that use the atmosphere
as a calorimeter generally measure a quantity that is related to total
energy per particle.

The units of differential intensity I are [m−2 s−1sr−1E−1], where E
represents the units of one of the four variables listed above.

The intensity of primary nucleons in the energy range from several
GeV to somewhat beyond 100 TeV is given approximately by

IN (E) ≈ 1.8× 104 (E/1 GeV)−α nucleons

m2 s sr GeV
, (29.2)

where E is the energy-per-nucleon (including rest mass energy) and
α (≡ γ + 1) = 2.7 is the differential spectral index of the cosmic-ray
flux and γ is the integral spectral index. About 74% of the primary
nucleons are free protons and about 70% of the rest are nucleons
bound in helium nuclei. The fractions of the primary nuclei are nearly
constant over this energy range (with a few interesting variations,
e.g. [2]) . Fractions of both primary and secondary incident nuclei
are listed in Table 29.1. Figure 29.1 shows the major components for
kinetic energies greater than 0.22 GeV/nucleus. A useful compendium
of experimental data for cosmic-ray nuclei and electrons is described
in [1].

† ‘Primary’ and ‘secondary’ are used in a different but analogous
sense when discussing cosmic ray interactions in the atmosphere.

Figure 29.1: Fluxes of nuclei of the primary cosmic radiation
in particles per energy-per-nucleus are plotted vs energy-per-
nucleus using data from Refs. [2–13]. The inset shows the H/He
ratio at constant rigidity [2,4].

The composition and energy spectra of nuclei are typically
interpreted in the context of propagation models, in which the sources
of the primary cosmic radiation are located within the Galaxy [14].
The ratio of secondary to primary nuclei is observed to decrease with
increasing energy, a fact often interpreted to mean that the lifetime
of cosmic rays in the Galaxy decreases with energy. Measurements of
radioactive “clock” isotopes in the low energy cosmic radiation are
consistent with a lifetime in the Galaxy of about 15 Myr [15].

Table 29.1: Relative abundances F of cosmic-ray nuclei at
10.6 GeV/nucleon normalized to oxygen (≡ 1) [10]. The oxygen
flux at kinetic energy of 10.6 GeV/nucleon is 3.29 × 10−2

(m2 s sr GeV/nucleon)−1. Abundances of hydrogen and helium
are from Refs. [3–5]. Note that one can not use these values to
extend the cosmic-ray flux to high energy because the power law
indices for each element may differ slightly.

Z Element F

1 H 550

2 He 34

3–5 Li-B 0.40

6–8 C-O 2.20

9–10 F-Ne 0.30

11–12 Na-Mg 0.22

Z Element F

13–14 Al-Si 0.19

15–16 P-S 0.03

17–18 Cl-Ar 0.01

19–20 K-Ca 0.02

21–25 Sc-Mn 0.05

26–28 Fe-Ni 0.12

Cosmic rays are nearly isotropic at most energies due to diffusive
propagation in the galactic magnetic field. Milagro [16], IceCube [17],
and the Tibet-III air shower array [18] have observed anisotropy at
the level of about 10−3 for cosmic rays with energy of a few TeV,
possibly due to the distribution of sources and the direction of local
Galactic magnetic fields.
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(except PAMELA data, which are electrons only) multiplied by
E3 [19–23,33,34]. The line shows the proton spectrum [25]
multiplied by 0.01.

The spectrum of electrons and positrons incident at the top of the
atmosphere is generally expected to steepen by one power of E at an
energy of ∼5 GeV because of strong radiative energy loss effects in
the Galaxy. The ATIC experiment [19] measured a sharp excess of
electrons over propagation model expectations, at energies of ∼300-800
GeV. The Fermi/LAT γ-ray observatory measured a not-entirely flat
spectrum [20] without confirming the peak of the ATIC excess at ∼600
GeV. Measurements in the same energy range by AMS-02 also show
no sharp features and are compatible with a single power law above
30.2 GeV [21]. The HESS imaging atmospheric Cherenkov array also
measured the electron flux above ∼400 GeV, finding indications of a
cutoff above ∼1 TeV [22], but no evidence for a pronounced peak
below this.
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Figure 29.3: The positron fraction (ratio of the flux of e+ to
the total flux of e+ and e−) [26,24,30]. The heavy black line
is a model of pure secondary production [28] and the three thin
lines show three representative attempts to model the positron
excess with different phenomena: green: dark matter decay [29];
blue: propagation physics [32]; red: production in pulsars [40].
The ratio below 10 GeV is dependent on the polarity of the solar
magnetic field.

The PAMELA [26] and AMS-02 [27,24] satellite experiments
measured the positron to electron ratio to increase above 10 GeV
instead of the expected decrease [28] at higher energy, confirming
earlier hints seen by the HEAT balloon-borne experiment [30]. The
structure in the electron spectrum, as well as the increase in the
positron fraction, may be related to contributions from individual
nearby sources (supernova remnants or pulsars) emerging above a

background suppressed at high energy by synchrotron losses [31].
Other explanations have invoked propagation effects [32] or dark
matter decay/annihilation processes (see, e.g., [29]) . The significant
disagreement in the ratio below ∼10 GeV is attributable to differences
in charge-sign dependent solar modulation effects present near Earth
at the times of measurement.

The ratio of antiprotons to protons is ∼ 2× 10−4 [35] at around 10–
20 GeV, and there is clear evidence [36] for the kinematic suppression
at lower energy that is the signature of secondary antiprotons. The
p/p ratio also shows a strong dependence on the phase and polarity
of the solar cycle [37] in the opposite sense to that of the positron
fraction. There is at this time no evidence for a significant primary
component of antiprotons. No antihelium or antideuteron has been
found in the cosmic radiation. The best measured upper limit on the
ratio antihelium/helium is currently approximately 1× 10−7 [38] The
upper limit on the flux of antideuterons around 1 GeV/nucleon is
approximately 2× 10−4 (m2 s sr GeV/nucleon)−1 [39].

29.2. Cosmic rays in the atmosphere

Figure 29.4 shows the vertical fluxes of the major cosmic-ray
components in the atmosphere in the energy region where the particles
are most numerous (except for electrons, which are most numerous
near their critical energy, which is about 81 MeV in air). Except for
protons and electrons near the top of the atmosphere, all particles
are produced in interactions of the primary‡ cosmic rays in the air.
Muons and neutrinos are products of the decay chain of charged
mesons, while electrons and photons originate in decays of neutral
mesons.

Most measurements are made at ground level or near the top of the
atmosphere, but there are also measurements of muons and electrons
from airplanes and balloons. Fig. 29.4 includes recent measurements
of negative muons [41–45]. Since µ+(µ−) are produced in association
with νµ(νµ), the measurement of muons near the maximum of the
intensity curve for the parent pions serves to calibrate the atmospheric
νµ beam [46]. Because muons typically lose almost 2 GeV in passing
through the atmosphere, the comparison near the production altitude
is important for the sub-GeV range of νµ(νµ) energies.

The flux of cosmic rays through the atmosphere is described by
a set of coupled cascade equations with boundary conditions at the
top of the atmosphere to match the primary spectrum. Numerical or
Monte Carlo calculations are needed to account accurately for decay
and energy-loss processes, and for the energy-dependences of the cross
sections and of the primary spectral index γ. Approximate analytic
solutions are, however, useful in limited regions of energy [47,48].
For example, the vertical intensity of charged pions with energy
Eπ ≪ ǫπ = 115 GeV is

Iπ(Eπ, X) ≈ ZNπ

λN
IN (Eπ, 0) e

−X/Λ X Eπ

ǫπ
, (29.3)

where Λ is the characteristic length for exponential attenuation of
the parent nucleon flux in the atmosphere. This expression has a
maximum at X = Λ ≈121±4 g cm−2 [49], which corresponds to an
altitude of 15 kilometers. The quantity ZNπ is the spectrum-weighted
moment of the inclusive distribution of charged pions in interactions
of nucleons with nuclei of the atmosphere. The intensity of low-energy
pions is much less than that of nucleons because ZNπ ≈ 0.079 is small
and because most pions with energy much less than the critical energy
ǫπ decay rather than interact.

‡ When discussing cosmic rays in the atmosphere, ‘primary’ is used
to denote the original particle and ‘secondary’ to denote the particles
produced in interactions.
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29.3. Cosmic rays at the surface

29.3.1. Muons : Muons are the most numerous charged particles
at sea level (see Fig. 29.4). Most muons are produced high in the
atmosphere (typically 15 km) and lose about 2 GeV to ionization
before reaching the ground. Their energy and angular distribution
reflect a convolution of the production spectrum, energy loss in
the atmosphere, and decay. For example, 2.4 GeV muons have a
decay length of 15 km, which is reduced to 8.7 km by energy loss.
The mean energy of muons at the ground is ≈ 4 GeV. The energy
spectrum is almost flat below 1 GeV, steepens gradually to reflect
the primary spectrum in the 10–100 GeV range, and steepens further
at higher energies because pions with Eπ > ǫπ tend to interact in
the atmosphere before they decay. Asymptotically (Eµ ≫ 1 TeV),
the energy spectrum of atmospheric muons is one power steeper
than the primary spectrum. The integral intensity of vertical muons
above 1 GeV/c at sea level is ≈ 70 m−2s−1sr−1 [50,51], with
recent measurements [52–54] favoring a lower normalization by
10-15%. Experimentalists are familiar with this number in the form
I ≈ 1 cm−2 min−1 for horizontal detectors. The overall angular
distribution of muons at the ground as a funxtion of zenith angle θ is
∝ cos2 θ, which is characteristic of muons with Eµ ∼ 3 GeV. At lower
energy the angular distribution becomes increasingly steep, while at
higher energy it flattens, approaching a sec θ distribution for Eµ ≫ ǫπ
and θ < 70◦.

15 10 5 3 2 1 0

0 200 400 600 800 1000
0.01

0.1

1

10

100

1000

10000

Atmospheric depth   [g cm–2]

V
e
rt

ic
a

l 
fl

u
x
  

  
[m

–
2
 s

–
1
 s

r–
1
]

Altitude (km)

µ+ + µ−

π+ + π−

e+ + e−

p + n

νµ + νµ
_

Figure 29.4: Vertical fluxes of cosmic rays in the atmosphere
with E > 1 GeV estimated from the nucleon flux of Eq. (29.2).
The points show measurements of negative muons with
Eµ > 1 GeV [41–45].

Figure 29.5 shows the muon energy spectrum at sea level for
two angles. At large angles low energy muons decay before reaching
the surface and high energy pions decay before they interact, thus
the average muon energy increases. An approximate extrapolation
formula valid when muon decay is negligible (Eµ > 100/ cosθ GeV)
and the curvature of the Earth can be neglected (θ < 70◦) is

dNµ

dEµdΩ
≈

0.14E−2.7
µ

cm2 s sr GeV

×





1

1 +
1.1Eµ cos θ

115GeV

+
0.054

1 +
1.1Eµ cos θ

850GeV





, (29.4)

where the two terms give the contribution of pions and charged kaons.
Eq. (29.4) neglects a small contribution from charm and heavier flavors
which is negligible except at very high energy [55].
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Figure 29.5: Spectrum of muons at θ = 0◦ (¨ [50], ¥ [56],
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The line plots the result from Eq. (29.4) for vertical showers.
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Figure 29.6: Muon charge ratio as a function of the muon
momentum from Refs. [53,54,60,65,66].

The muon charge ratio reflects the excess of π+ over π− and
K+ over K− in the forward fragmentation region of proton initiated
interactions together with the fact that there are more free and bound
protons than free and bound neutrons in the primary spectrum.
The increase with energy of µ+/µ− shown in Fig. 29.6 reflects the
increasing importance of kaons in the TeV range [60] and indicates
a significant contribution of associated production by cosmic-ray
protons (p → Λ+K+). The same process is even more important for
atmospheric neutrinos at high energy.
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29.3.2. Electromagnetic component : At the ground, this
component consists of electrons, positrons, and photons primarily
from cascades initiated by decay of neutral and charged mesons.
Muon decay is the dominant source of low-energy electrons at sea
level. Decay of neutral pions is more important at high altitude
or when the energy threshold is high. Knock-on electrons also
make a small contribution at low energy [61]. The integral vertical
intensity of electrons plus positrons is very approximately 30, 6, and
0.2 m−2s−1sr−1 above 10, 100, and 1000 MeV respectively [51,62],
but the exact numbers depend sensitively on altitude, and the angular
dependence is complex because of the different altitude dependence
of the different sources of electrons [61–63]. The ratio of photons to
electrons plus positrons is approximately 1.3 above 1 GeV and 1.7
below the critical energy [63].

29.3.3. Protons : Nucleons above 1 GeV/c at ground level are
degraded remnants of the primary cosmic radiation. The intensity is
approximately IN (E, 0) × exp(−X/ cos θΛ) for θ < 70◦. At sea level,
about 1/3 of the nucleons in the vertical direction are neutrons (up
from ≈ 10% at the top of the atmosphere as the n/p ratio approaches
equilibrium). The integral intensity of vertical protons above 1 GeV/c
at sea level is ≈ 0.9 m−2s−1sr−1 [51,64].

29.4. Cosmic rays underground

Only muons and neutrinos penetrate to significant depths
underground. The muons produce tertiary fluxes of photons, electrons,
and hadrons.

29.4.1. Muons : As discussed in Section 33.6 of this Review, muons
lose energy by ionization and by radiative processes: bremsstrahlung,
direct production of e+e− pairs, and photonuclear interactions. The
total muon energy loss may be expressed as a function of the amount
of matter traversed as

−dEµ

dX
= a+ bEµ , (29.5)

where a is the ionization loss and b is the fractional energy loss by the
three radiation processes. Both are slowly varying functions of energy.
The quantity ǫ ≡ a/b (≈ 500 GeV in standard rock) defines a critical
energy below which continuous ionization loss is more important than
radiative losses. Table 29.2 shows a and b values for standard rock,
and b for ice, as a function of muon energy. The second column of
Table 29.2 shows the muon range in standard rock (A = 22, Z = 11,
ρ = 2.65 g cm−3). These parameters are quite sensitive to the
chemical composition of the rock, which must be evaluated for each
location.

Table 29.2: Average muon range R and energy loss parameters
a and b calculated for standard rock [67] and the total energy
loss parameter b for ice. Range is given in km-water-equivalent,

or 105 g cm−2.

Eµ R a bbrems bpair bnucl
∑

bi
∑

b(ice)

GeV km.w.e. MeVg−1 cm2 10−6 g−1 cm2

10 0.05 2.17 0.70 0.70 0.50 1.90 1.66

100 0.41 2.44 1.10 1.53 0.41 3.04 2.51

1000 2.45 2.68 1.44 2.07 0.41 3.92 3.17

10000 6.09 2.93 1.62 2.27 0.46 4.35 3.78

The intensity of muons underground can be estimated from the
muon intensity in the atmosphere and their rate of energy loss. To the
extent that the mild energy dependence of a and b can be neglected,
Eq. (29.5) can be integrated to provide the following relation between
the energy Eµ,0 of a muon at production in the atmosphere and its
average energy Eµ after traversing a thickness X of rock (or ice or
water):

Eµ,0 = (Eµ + ǫ) ebX − ǫ . (29.6)

Especially at high energy, however, fluctuations are important and an
accurate calculation requires a simulation that accounts for stochastic
energy-loss processes [68].

There are two depth regimes for which Eq. (29.6) can be simplified.
For X ≪ b−1 ≈ 2.5 km water equivalent, Eµ,0 ≈ Eµ(X) + aX , while

for X ≫ b−1 Eµ,0 ≈ (ǫ + Eµ(X)) exp(bX). Thus at shallow depths
the differential muon energy spectrum is approximately constant for
Eµ < aX and steepens to reflect the surface muon spectrum for
Eµ > aX , whereas for X > 2.5 km.w.e. the differential spectrum
underground is again constant for small muon energies but steepens
to reflect the surface muon spectrum for Eµ > ǫ ≈ 0.5 TeV. In the
deep regime the shape is independent of depth although the intensity
decreases exponentially with depth. In general the muon spectrum at
slant depth X is

dNµ(X)

dEµ
=

dNµ

dEµ,0

dEµ,0

dEµ
=

dNµ

dEµ,0
ebX , (29.7)

where Eµ,0 is the solution of Eq. (29.6) in the approximation neglecting
fluctuations.

Fig. 29.7 shows the vertical muon intensity versus depth. In
constructing this “depth-intensity curve,” each group has taken
account of the angular distribution of the muons in the atmosphere,
the map of the overburden at each detector, and the properties
of the local medium in connecting measurements at various slant
depths and zenith angles to the vertical intensity. Use of data from
a range of angles allows a fixed detector to cover a wide range of
depths. The flat portion of the curve is due to muons produced locally
by charged-current interactions of νµ. The inset shows the vertical
intensity curve for water and ice published in Refs. [70–73]. It is not
as steep as the one for rock because of the lower muon energy loss in
water.

1 10 100

1 102 5

Figure 29.7: Vertical muon intensity vs depth (1 km.w.e.=
105 g cm−2 of standard rock). The experimental data are
from: ♦: the compilations of Crouch [69], ¤: Baksan [75],
◦: LVD [76], •: MACRO [77], ¥: Frejus [78], and △: SNO [79].
The shaded area at large depths represents neutrino-induced
muons of energy above 2 GeV. The upper line is for horizontal
neutrino-induced muons, the lower one for vertically upward
muons. Darker shading shows the muon flux measured by the
SuperKamiokande experiment. The inset shows the vertical
intensity curve for water and ice published in Refs. [70–73].
Additional data extending to slant depths of 13 km are available
in [74].
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Table 29.3: Measured fluxes (10−9 m−2 s−1 sr−1) of neutrino-induced
muons as a function of the effective minimum muon energy Eµ.

Eµ > 1 GeV 1 GeV 1 GeV 2 GeV 3 GeV 3 GeV

Ref. CWI [83] Baksan [84] MACRO [85] IMB [86] Kam [87] SuperK [88]

Fµ 2.17±0.21 2.77±0.17 2.29± 0.15 2.26±0.11 1.94±0.12 1.74±0.07

29.4.2. Neutrinos : Because neutrinos have small interaction cross
sections, measurements of atmospheric neutrinos require a deep
detector to avoid backgrounds. There are two types of measurements:
contained (or semi-contained) events, in which the vertex is determined
to originate inside the detector, and neutrino-induced muons. The
latter are muons that enter the detector from zenith angles so large
(e.g., nearly horizontal or upward) that they cannot be muons
produced in the atmosphere. In neither case is the neutrino flux
measured directly. What is measured is a convolution of the neutrino
flux and cross section with the properties of the detector (which
includes the surrounding medium in the case of entering muons).

Contained and semi-contained events reflect neutrinos in the
sub-GeV to multi-GeV region where the product of increasing cross
section and decreasing flux is maximum. In the GeV region the
neutrino flux and its angular distribution depend on the geomagnetic
location of the detector and, to a lesser extent, on the phase of the
solar cycle. Naively, we expect νµ/νe = 2 from counting neutrinos
of the two flavors coming from the chain of pion and muon decays.
Contrary to expectation, however, the numbers of the two classes of
events are similar rather than different by a factor of two. This is now
understood to be a consequence of neutrino flavor oscillations [82].
(See the article on neutrino properties in this Review.)

Two well-understood properties of atmospheric cosmic rays provide
a standard for comparison of the measurements of atmospheric
neutrinos to expectation. These are the “sec θ effect” and the “east-
west effect” [81]. The former refers originally to the enhancement
of the flux of > 10 GeV muons (and neutrinos) at large zenith
angles because the parent pions propagate more in the low density
upper atmosphere where decay is enhanced relative to interaction.
For neutrinos from muon decay, the enhancement near the horizontal
becomes important for Eν > 1 GeV and arises mainly from the
increased pathlength through the atmosphere for muon decay in flight.

Fig. 14.11 from Ref. 80 shows a comparison between measurement
and expectation for the zenith angle dependence of multi-GeV
electron-like (mostly νe) and muon-like (mostly νµ) events separately.
The νe show an enhancement near the horizontal and approximate
equality for nearly upward (cos θ ≈ −1) and nearly downward
(cos θ ≈ 1) events. There is, however, a very significant deficit of
upward (cos θ < 0) νµ events, which have long pathlengths comparable
to the radius of the Earth. This feature is the principal signature for
atmospheric neutrino oscillations [82].

Muons that enter the detector from outside after production in
charged-current interactions of neutrinos naturally reflect a higher
energy portion of the neutrino spectrum than contained events because
the muon range increases with energy as well as the cross section.
The relevant energy range is ∼ 10 < Eν < 1000 GeV, depending
somewhat on angle. Neutrinos in this energy range show a sec θ effect
similar to muons (see Eq. (29.4)). This causes the flux of horizontal
neutrino-induced muons to be approximately a factor two higher
than the vertically upward flux. The upper and lower edges of the
horizontal shaded region in Fig. 29.7 correspond to horizontal and
vertical intensities of neutrino-induced muons. Table 29.3 gives the
measured fluxes of upward-moving neutrino-induced muons averaged
over the lower hemisphere. Generally the definition of minimum
muon energy depends on where it passes through the detector. The
tabulated effective minimum energy estimates the average over various
accepted trajectories.

29.5. Air showers

So far we have discussed inclusive or uncorrelated fluxes of various
components of the cosmic radiation. An air shower is caused by a
single cosmic ray with energy high enough for its cascade to be
detectable at the ground. The shower has a hadronic core, which
acts as a collimated source of electromagnetic subshowers, generated
mostly from π0 → γ γ decays. The resulting electrons and positrons
are the most numerous charged particles in the shower. The number
of muons, produced by decays of charged mesons, is an order of
magnitude lower. Air showers spread over a large area on the ground,
and arrays of detectors operated for long times are useful for studying
cosmic rays with primary energy E0 > 100 TeV, where the low flux
makes measurements with small detectors in balloons and satellites
difficult.

Greisen [89] gives the following approximate expressions for the
numbers and lateral distributions of particles in showers at ground
level. The total number of muons Nµ with energies above 1 GeV is

Nµ(> 1 GeV) ≈ 0.95× 105
(
Ne/10

6
)3/4

, (29.8)

where Ne is the total number of charged particles in the shower (not
just e±). The number of muons per square meter, ρµ, as a function of
the lateral distance r (in meters) from the center of the shower is

ρµ =
1.25Nµ

2π Γ(1.25)

(
1

320

)1.25

r−0.75
(
1 +

r

320

)−2.5
, (29.9)

where Γ is the gamma function. The number density of charged
particles is

ρe = C1(s, d, C2)x
(s−2)(1 + x)(s−4.5)(1 + C2x

d) . (29.10)

Here s, d, and C2 are parameters in terms of which the overall
normalization constant C1(s, d, C2) is given by

C1(s, d, C2) =
Ne

2πr21
[B(s, 4.5− 2s)

+ C2 B(s+ d, 4.5− d− 2s)]−1 , (29.11)

where B(m,n) is the beta function. The values of the parameters
depend on shower size (Ne), depth in the atmosphere, identity of the
primary nucleus, etc. For showers with Ne ≈ 106 at sea level, Greisen
uses s = 1.25, d = 1, and C2 = 0.088. Finally, x is r/r1, where r1 is
the Molière radius, which depends on the density of the atmosphere
and hence on the altitude at which showers are detected. At sea level
r1 ≈ 78 m. It increases with altitude as the air density decreases. (See
the section on electromagnetic cascades in the article on the passage
of particles through matter in this Review).

The lateral spread of a shower is determined largely by Coulomb
scattering of the many low-energy electrons and is characterized by
the Mol̀iere radius. The lateral spread of the muons (ρµ) is larger and
depends on the transverse momenta of the muons at production as
well as multiple scattering.

There are large fluctuations in development from shower to shower,
even for showers of the same energy and primary mass—especially
for small showers, which are usually well past maximum development
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when observed at the ground. Thus the shower size Ne and primary
energy E0 are only related in an average sense, and even this relation
depends on depth in the atmosphere. One estimate of the relation
is [96]

E0 ∼ 3.9× 106 GeV (Ne/10
6)0.9 (29.12)

for vertical showers with 1014 < E < 1017 eV at 920 g cm−2 (965 m
above sea level). As E0 increases the shower maximum (on average)
moves down into the atmosphere and the relation between Ne and E0

changes. Moreover, because of fluctuations, Ne as a function of E0 is
not correctly obtained by inverting Eq. (29.12). At the maximum of
shower development, there are approximately 2/3 particles per GeV of
primary energy.

There are three common types of air shower detectors: shower
arrays that measure a ground parameter related to shower size Ne and
muon number Nµ as well as the lateral distribution on the ground,
Cherenkov detectors that detect the Cherenkov radiation emitted
by the charged particles of the shower, and fluorescence detectors
that study the nitrogen fluorescence excited by the charged particles
in the shower. The fluorescence light is emitted isotropically so the
showers can be observed from the side. Detection of radiofrequency
emission from showers via geosynchrotron and Askaryan mechanisms
has also been successfully employed in recent experiments. Detailed
simulations and cross-calibrations between different types of detectors
are necessary to establish the primary energy spectrum from air-shower
experiments.

Figure 29.8 shows the “all-particle” spectrum. The differential
energy spectrum has been multiplied by E2.6 in order to display the
features of the steep spectrum that are otherwise difficult to discern.
The steepening that occurs between 1015 and 1016 eV is known as the
knee of the spectrum. The feature around 1018.5 eV is called the ankle
of the spectrum.
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Figure 29.8: The all-particle spectrum as a function of E
(energy-per-nucleus) from air shower measurements [91–106].

Measurements of flux with air shower experiments in the knee
region differ by as much as a factor of two, indicative of systematic
uncertainties in interpretation of the data. (For a review see Ref. 90.)
In establishing the spectrum shown in Fig. 29.8, efforts have been
made to minimize the dependence of the analysis on the primary
composition. Ref. 99 uses an unfolding procedure to obtain the
spectra of the individual components, giving a result for the all-
particle spectrum between 1015 and 1017 eV that lies toward the
upper range of the data shown in Fig. 29.8. In the energy range
above 1017 eV, the fluorescence technique [107] is particularly useful
because it can establish the primary energy in a model-independent
way by observing most of the longitudinal development of each shower,
from which E0 is obtained by integrating the energy deposition in
the atmosphere. The result, however, depends strongly on the light
absorption in the atmosphere and the calculation of the detector’s
aperture.

Assuming the cosmic-ray spectrum below 1018 eV is of galactic
origin, the knee could reflect the fact that most cosmic accelerators
in the Galaxy have reached their maximum energy. Some types of
expanding supernova remnants, for example, are estimated not to be
able to accelerate protons above energies in the range of 1015 eV.
Effects of propagation and confinement in the Galaxy [111] also
need to be considered. A discussion of models of the knee may be
found in Ref. 112. The Kascade-Grande experiment [101] has reported
observation of a second steepening of the spectrum near 8× 1016 eV,
with evidence that this structure is accompanied a transition to heavy
primaries.

Concerning the ankle, one possibility is that it is the result of
a higher energy population of particles overtaking a lower energy
population, for example an extragalactic flux beginning to dominate
over the galactic flux (e.g. Ref. 107). Another possibility is that the
dip structure in the region of the ankle is due to pγ → e+ + e−
energy losses of extragalactic protons on the 2.7 K cosmic microwave
radiation (CMB) [114]. This dip structure has been cited as a robust
signature of both the protonic and extragalactic nature of the highest
energy cosmic rays [113]. If this interpretation is correct, then the
galactic cosmic rays do not contribute significantly to the flux above
1018 eV.
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Figure 29.9: Expanded view of the highest energy portion of
the cosmic-ray spectrum from data of the Telescope Array [105],
and the Pierre Auger Observatory [106].

The energy-dependence of the composition from the knee through
the ankle is useful in discriminating between these two viewpoints,
since a heavy composition above 1018 eV is inconsistent with the
formation of the ankle by pair production losses on the CMB.
The TA and Auger experiments, however, have shown somewhat
different interpretations of data on the depth of shower maximum
Xmax, a quantity that correlates strongly with ln(E/A) and with
the interaction cross section of the primary particle. The Telescope
Array (TA) collaboration [115] has interpreted their data as implying
a light primary composition (mainly p and He) of ultrahigh-energy
cosmic-rays (UHECR) from 1.3 × 1018 to 4 × 1019 eV. The Pierre
Auger collaboration [116], using post-LHC hadronic interaction
models, reports a composition becoming light up to 2 × 1018 eV
but then becoming heavier above that energy, with the mean mass
intermediate between protons and iron at 3× 1019 eV. Auger and TA
have also conducted a thorough joint analysis [117] and state that,
at the current level of statistics and understanding of systematics,
both data sets are compatible with being drawn from the same parent
distribution, and that the TA data is compatible both with a protonic
compsition below 1019 eV and with the mixed compostion above 1019

eV as reported by Auger.

If the cosmic-ray flux at the highest energies is cosmological in
origin, there should be a rapid steepening of the spectrum (called
the GZK feature) around 5 × 1019 eV, resulting from the onset of
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inelastic interactions of UHE cosmic rays with the cosmic microwave
background [118,119]. Photo-dissociation of heavy nuclei in the
mixed composition model [120] would have a similar effect. UHECR
experiments have detected events of energy above 1020 eV [107–108].
The HiRes fluorescence experiment [103,131] detected evidence of
the GZK suppression, and the Auger observatory [104–106] has
also presented spectra showing this suppression based on surface
detector measurements calibrated against fluorescence detectors using
events detected in hybrid mode, i.e. with both the surface and
the fluorescence detectors. The Telescope Array (TA) [105] has also
presented a spectrum showing this suppression. The differential energy
spectra measured by the TA and by Auger agree within systematic
errors below 1019 eV (Fig. 29.9). At higher energies, TA observes more
cosmic rays than would be expected if the spectral shape were the
same as that seen by Auger. TA has also reported a ‘hot spot’ in the
Northern Hemisphere at energies above 5.5× 1019 eV of radius ∼ 20◦

with a post-trials statistical significance of this excess with respect
to an isotropic distribution of 3.4σ [109]. Auger has reported the

observation of a dipole of amplitude 6.5+1.3
−0.9% with a significance of

5.2σ for cosmic rays with energies above 8× 1018 eV. The direction of
the dipole indicates an extragalactic origin for these particles [110].
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Figure 29.10: The best-fit IceCube astrophysical all-flavor
neutrino flux [123]. Also shown are differential limits on
the flux of cosmogenic neutrinos set by four experiments
[125–128]. The curves show the Waxman-Bahcall benchmark
flux (WB, [130]) and a representative midrange model for
the expected flux of cosmogenic neutrinos (ESS, [129]) . The
expected flux is uncertain by over an order of magnitude in
either direction.

Neutrinos are expected to be produced in hadronic interactions in a
variety of astrophysical objects. IceCube has reported a population of
astrophysical neutrino events extending from tens of TeV up to several
PeV [121–123].

There is also expected to be a neutrino flux produced in cosmic
ray GZK interactions. One half of the energy that UHECR protons
lose in photoproduction interactions that cause the GZK effects
ends up in neutrinos [124]. Measuring this cosmogenic neutrino
flux above 1018 eV would help resolve the UHECR uncertainties
mentioned above. The magnitude of this flux depends strongly on
the cosmic-ray spectrum at acceleration, the cosmic-ray composition,
and the cosmological evolution of the cosmic-ray sources. In the case
that UHECR have mixed composition only the proton fraction would
produce cosmogenic neutrinos. Heavy nuclei propagation produces
mostly ν̄e at lower energy from neutron decay.

The expected rate of cosmogenic neutrinos is lower than current
limits obtained by IceCube [125], the Auger observatory [126],
RICE [127], and ANITA-2 [128], which are shown in Fig. 29.10
together with a model for cosmogenic neutrino production [129] and the
Waxman-Bahcall benchmark flux of neutrinos produced in cosmic ray

sources [130]. At production, the dominant component of neutrinos
comes from π± decays and has flavor content νe : νµ : ντ = 1 : 2 : 0.
After oscillations, the arriving cosmogenic neutrinos are expected
to be an equal mixture of all three flavors. The sensitivity of each
experiment depends on neutrino flavor. IceCube, RICE, and ANITA
are sensitive to all three flavors, and the sensitivity to different flavors
is energy dependent. The limit of Auger is only for ντ and ν̄τ which
should be about 1/3 of the total neutrino flux after oscillations, so this
limit is plotted multiplied by a factor of three for comparison with the
other limits and with the theoretical estimates.
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30.1. Luminosity

This article provides background for the High-Energy Collider
Parameter Tables that follow. The number of events, Nexp, is the
product of the cross section of interest, σexp, and the time integral
over the instantaneous luminosity, L :

Nexp = σexp ×
∫

L (t)dt. (30.1)

Today’s colliders all employ bunched beams. If two bunches containing
n1 and n2 particles collide head-on with frequency fcoll, a basic
expression for the luminosity is

L = fcoll
n1n2

4πσ∗xσ∗y
(30.2)

where σ∗x and σ∗y characterize the rms transverse beam sizes in the
horizontal (bend) and vertical directions at the interaction point. In
this form it is assumed that the bunches are identical in transverse
profile, that the profiles are Gaussian and independent of position
along the bunch, and the particle distributions are not altered during
bunch crossing. Nonzero beam crossing angles θc in the horizontal
plane and long bunches (rms bunch length σz) will reduce the

luminosity from the above value, e.g. by a factor 1/(1 + φ2)1/2, where
the parameter φ ≡ θcσz/(2σ

∗
x) is known as the Piwinski angle.

Whatever the distribution at the source, by the time the beam reaches
high energy, the normal form is a useful approximation as suggested
by the σ-notation. In the case of an electron storage ring, synchrotron
radiation leads to a Gaussian distribution in equilibrium, but even in
the absence of radiation the central limit theorem of probability and
the diminished importance of space charge effects produce a similar
result.

The luminosity may be obtained directly by measurement of the
beam properties in Eq. (30.2). For continuous measurements, an
expression similar to Eq. (30.1) with Nref from a known reference
cross section, σref , may be used to determine σexp according to
σexp = (Nexp/Nref )σref .

In the Tables, luminosity is stated in units of cm−2s−1. Integrated
luminosity, on the other hand is usually quoted as the inverse of the
standard measures of cross section such as femtobarns and, recently,
attobarns. Subsequent sections in this report briefly expand on the
dynamics behind collider design, comment on the realization of collider
performance in a selection of today’s facilities, and end with some
remarks on future possibilities.

30.2. Beam Dynamics

The first concern of beam dynamics is stability. While a reference
particle proceeds along the design, or reference, trajectory other
particles in the bunch are to remain close by. Assume that the
reference particle carries a right-handed Cartesian coordinate system,
with the z-coordinate pointed in the direction of motion along the
reference trajectory. The independent variable is the distance s of
the reference particle along this trajectory rather than time, and for
simplicity this path is taken to be planar. The transverse coordinates
are x and y, where {x, z} defines the plane of the reference trajectory.

Several time scales are involved, and the approximations used in
writing the equations of motion reflect that circumstance. All of
today’s high energy colliders are alternating-gradient synchrotrons
or, respectively, storage rings [1,2], and the shortest time scale is
that associated with transverse motion, that is described in terms
of betatron oscillations, so called because of their analysis for the
betatron accelerator species years ago. The linearized equations of
motion of a particle displaced from the reference particle are

x′′ +Kxx = 0, Kx ≡ q

p

∂B

∂x
+

1

ρ2

y′′ +Kyy = 0, Ky ≡ − q

p

∂B

∂x

z′ = −x/ρ

(30.3)

where the magnetic field B(s) along the design trajectory is only
in the y direction, contains only dipole and quadrupole terms, and
is treated as static here. The radius of curvature due to the field
on the reference orbit is ρ; z represents the longitudinal distance
from the reference particle; p and q are the particle’s momentum
and charge, respectively. The prime denotes d/ds. The pair (x, x′)
describes approximately-canonical variables. For more general cases
(e.g. acceleration) one should use (x, px) instead, where px denotes
the transverse momentum in the x-direction.

The equations for x and y are those of harmonic oscillators but with
a restoring force periodic in s; that is, they are instances of Hill’s
equation. The solution may be written in the form

x(s) = Ax

√
βx cosψx

x′(s) = − Ax√
βx

[αx cosψx + sinψx]
(30.4)

where Ax is a constant of integration, αx ≡ −(1/2)dβx(s)/ds, and the
envelope of the motion is modulated by the amplitude function, βx. A
solution of the same form describes the motion in y. The subscripts
will be suppressed in the following discussion.

The amplitude function satisfies

2ββ′′ − β′2 + 4β2K = 4, (30.5)

and in a region free of magnetic field it should be noted that the
solution of Eq. (30.5) is a parabola. Expressing A in terms of x, x′
yields

A2 = γx2 + 2αxx′ + βx′2

=
1

β

[
x2 + (αx+ βx′)2

] (30.6)

with γ ≡ (1 + α2)/β. In a single pass system such as a linac, the
Courant-Snyder parameters α, β, γ may be selected to match the x, x′
distribution of the input beam; in a recursive system, the parameters
are usually defined by the structure rather than by the beam.

The relationships between the parameters and the structure may be
seen by treatment of a simple lattice consisting of equally-spaced
thin-lens quadrupoles whose magnetic-field gradients are equal in
magnitude but alternating in sign. For this discussion, the weak
focusing effects of the bending magnets may be neglected. The
propagation of X ≡ {x, x′} through a repetition period may be
written X2 = MX1, with the matrix M = FODO composed of the
matrices

F =

(
1 0

−1/f 1

)
, D =

(
1 0

1/f 1

)
, O =

(
1 L
0 1

)
,

where f is the magnitude of the focal length and L the lens spacing.
Then

M =




1 +
L

f
2L+

L2

f

− L

f2
1− L

f
− L2

f2


 . (30.7)

The matrix for y is identical in form differing only by a change in sign
of the terms linear in 1/f . An eigenvector-eigenvalue analysis of the
matrix M shows that the motion is stable provided f > L/2. While
that criterion is easily met, in practice instability may be caused by
many other factors, including the beam-beam interaction itself.

Standard focus-drift-defocus-drift, or FODO, cells such as character-
ized in simple form by Eq. (30.7) occupy most of the layout of a
large collider ring and may be used to set the scale of the amplitude
function and related phase advance. Conversion of Eq. (30.4) to a
matrix form equivalent to Eq. (30.7) (but more generally valid, i.e. for
any stable periodic linear motion) gives

M =

(
C + αS βS
−γS C − αS

)
(30.8)

where C ≡ cos∆ψ, S ≡ sin∆ψ, and the relation between structure
and amplitude function is specified by setting the values of the
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latter to be the same at both ends of the cell. By comparison of
Eq. (30.7) and Eq. (30.8) one finds C = 1 − L2/(2f2), so that the
choice f = L/

√
2 would give a phase advance ∆ψ of 90 degrees for

the standard cell. The amplitude function would have a maximum
at the focusing quadrupole of magnitude β̂ = 2.7L, illustrating the
relationship of alternating gradient focusing amplitudes to relatively
local aspects of the design. Other functionalities such as injection,
extraction, and HEP experiments are included by lattice sections
matched to the standard cell parameters (β, α) at the insertion points.

The phase advances according to dψ/ds = 1/β; that is, β also plays
the role of a local λ/2π, and the tune, ν, is the number of such
oscillations per turn about the closed path. In the neighborhood of an
interaction point (IP), the beam optics of the ring is configured so as
to produce a narrow focus; the value of the amplitude function at this
point is designated β∗.
The motion as it develops with s describes an ellipse in {x, x′ ≡ dx/ds}
phase space, the area of which is πA2, where A is the constant in
Eq. (30.4). If the interior of that ellipse is populated by an ensemble
of non-interacting particles, that area, given the name emittance and
denoted by ε, would change only with energy. More precisely, for
a beam with a Gaussian distribution in x, x′, the area containing
one standard deviation σx, divided by π, is used as the definition of
emittance in the Tables:

εx ≡ σ2x
βx

, (30.9)

with a corresponding expression in the other transverse direction, y.
This definition includes 39% of the beam. For most of the entries in
the Tables the standard deviation is used as the beam radius.

To complete the coordinates used to describe the motion, we take as
the variable conjugate to z the fractional momentum deviation δp/p
from that of the reference particle. Radiofrequency electric fields in
the s direction provide a means for longitudinal oscillations, and the
frequency determines the bunch length. The frequency of this system
appears in the Tables as does the rms value of δp/p characterized as
“energy spread” of the beam.

For HEP bunch length is a significant quantity for a variety of reasons,
but in the present context if the bunch length, or (with nonzero
crossing angle) the effective interaction length, becomes larger than
β∗ the luminosity is adversely affected. This is because β grows
parabolically as one proceeds away from the interaction point and
so the beam size increases thus lowering the contribution to the
luminosity from such locations. This is often called the “hourglass”
effect.

The other major external electromagnetic field interaction in the single
particle context is the production of synchrotron radiation due to
centripetal acceleration, given by the Larmor formula multiplied by a
relativistic magnification factor of γ4 [3]. In the case of electron rings
this process determines the equilibrium emittance through a balance
between radiation damping and excitation of oscillations, and further
serves as a barrier to future higher energy versions in this variety
of collider. A more comprehensive discussion of betatron oscillations,
longitudinal motion, and synchrotron radiation is available in the 2008
version of the PDG review [5].

Synchrotron radiation emitted during the collision in the field of the
opposing beam is called beamstrahlung. Beamstrahlung is relevant
for both linear colliders (where it degrades the luminosity spectrum)
and future highest-energy circular colliders (where it limits the beam
lifetime). For both types of colliders the beamstrahlung is mitigated
by making the colliding beams as flat as possible at the interaction
point (σ∗x ≫ σ∗y). The photon energy spectrum of the beamstrahlung
is characterized by the parameter Upsilon Υ = (2/3)~ωc/Eb [4], with
~ωc denoting the critical photon energy and Eb the beam energy. The
spectrum strongly deviates from the classical synchrotron radiation
spectrum for Υ approaching 1.

30.3. Road to High Luminosity

Eq. (30.2) can be recast in terms of emittances and amplitude
functions as

L = f
n1n2

4π
√
ǫx β∗x ǫy β∗y

F . (30.10)

Here, F ≤ 1 is a factor that takes into account effects such as crossing
angles, hour glass factors, pinch effects, and so on. So to achieve high
luminosity, all one has to do is make high population bunches of low
emittance collide at high frequency at locations where the beam optics
provides as low values of the amplitude functions as possible.

Expressions for the reductions due to crossing angle and other effects
can be found elsewhere [6]. While there are no fundamental limits
to producing luminosity, there are certainly challenges. Here we have
space to mention only a few of these. The beam-beam tune shift
appears in the Tables. A bunch in beam 1 presents a (nonlinear) lens
to a particle in beam 2 resulting in changes to the particle’s transverse
tune with a range characterized by the beam-beam parameter [6]

ξy,2 =
( µ0
8π2

) q1q2n1β
∗
y,2

mA,2γ2σ
∗
y,1(σ

∗
x,1 + σ∗y,1)

(30.11)

where q1 (q2) denotes the particle charge of beam 1 (2) in units of
the elementary charge, mA,2 the mass of beam-2 particles, and µ0 the
vacuum permeability. The transverse oscillations are susceptible to
resonant perturbations from a variety of sources such as imperfections
in the magnetic guide field, so that certain values of the tune must
be avoided. Accordingly, the tune spread arising from ξ is limited,
but limited to a value difficult to predict. But a glance at the Tables
shows that electrons are more forgiving than protons thanks to the
damping effects of synchrotron radiation; the ξ-values for the former
are about an order of magnitude larger than those for protons. In
linear colliders, the strength of the collision is measured by the ratio
of the rms bunch length σz to the approximate (linear, thin-lens)
beam-beam focal length. This ratio, called disruption parameter Dy

[4], is related to ξy via Dy = 4πσzξy/β
∗
y .

A subject of present intense interest is the electron-cloud effect [7,8];
actually a variety of related processes come under this heading.
They typically involve a buildup of electron density in the vacuum
chamber due to emission from the chamber walls stimulated by
electrons or photons originating from the beam itself. For instance,
there is a process closely resembling the multipacting effects familiar
from radiofrequency system commissioning. Low energy electrons
are ejected from the walls by photons from positron or proton
beam-produced synchrotron radiation. These electrons are accelerated
toward a beam bunch, but by the time they reach the center of
the vacuum chamber the bunch has gone and so the now-energetic
electrons strike the opposite wall to produce more secondaries. These
secondaries are now accelerated by a subsequent bunch, and so
on. Among the disturbances that this electron accumulation can
produce is an enhancement of the tune spread within the bunch; the
near-cancellation of bunch-induced electric and magnetic fields is no
longer in effect.

If the luminosity of Eq. (30.10) is rewritten in terms of the beam-beam
parameter, Eq. (30.11), the emittance itself disappears. However, the
emittance must be sufficiently small to realize a desired magnitude of
beam-beam parameter, but once ξy reaches this limit, further lowering
the emittance does not lead to higher luminosity.

For electron synchrotrons and storage rings, radiation damping
provides an automatic route to achieve a small emittance. In fact,
synchrotron radiation is of key importance in the design and
optimization of e+e− colliders. While vacuum stability and electron
clouds can be of concern in the positron rings, synchrotron radiation
along with the restoration of longitudinal momentum by the RF
system has the positive effect of generating very small transverse
beam sizes and small momentum spread. Further reduction of beam
size at the interaction points using standard beam optics techniques
and successfully contending with high beam currents has led to record
luminosities in these rings. To maximize integrated luminosity the
beam can be “topped off” by injecting new particles without removing
existing ones – a feature difficult to imitate in hadron colliders.

For hadrons, particularly antiprotons, two inventions have played a
prominent role. Stochastic cooling [9] was employed first to prepare
beams for the Sp̄pS and subsequently in the Tevatron, and to cool
the beams at full energy in RHIC [10,11,12]. Electron cooling [13]
was also used in the Tevatron complex to great advantage. Further
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innovations are underway driven by the needs of potential future
projects; these are noted in the final section.

30.4. Recent High Energy Colliders

Collider accelerator physics of course goes far beyond the elements of
the preceding sections. In this and the following section elaboration
is made on various issues associated with some of the recently
operating colliders, particularly factors which impact integrated
luminosity. The various colliders utilizing hadrons each have unique
characteristics and are, therefore, discussed separately. As space
is limited, general references are provided where much further
information can be obtained. A more complete list of recent colliders
and their parameters can be found in the High-Energy Collider
Parameters tables.

30.4.1. Tevatron : [15] The first synchrotron in history using
superconducting magnets, the Tevatron, was the highest energy
collider for 25 years. Operation was terminated in September 2011,
after delivering more than 10 fb−1 to the p-p̄ collider experiments
CDF and D0. The route to high integrated luminosity in the Tevatron
was governed by the antiproton production rate, the turn-around
time to produce another store, and the resulting optimization of store
time. The proton and antiproton beams in the Tevatron circulated
in a single vacuum pipe and thus were placed on separated orbits
which wrapped around each other in a helical pattern outside of the
interaction regions. Hence, long-range encounters played an important
role here as well, with the 70 long-range encounters distributed about
the synchrotron, and mitigation was limited by the available aperture.
The Tevatron ultimately achieved luminosities a factor of 400 over its
original design specification.

30.4.2. HERA : [16] HERA, operated between 1992 and 2007,
delivered nearly 1 fb−1 of integrated luminosity to the electron-
proton collider experiments H1 and ZEUS. HERA was the first
high-energy lepton-hadron collider, and also the first facility to employ
both applications of superconductivity: magnets and accelerating
structures. The proton beams of HERA had a maximum energy of
920 GeV. The lepton beams (positrons or electrons) were provided
by the existing DESY complex, and were accelerated to 27.5
GeV using conventional magnets. At collision a 4-times higher
frequency RF system, compared with the injection RF, was used to
generate shorter bunches, thus helping alleviate the hourglass effect
at the collision points. The lepton beam naturally would become
transversely polarized (within about 40 minutes) and “spin rotators”
were implemented on either side of an IP to produce longitudinal
polarization at the experiment.

30.4.3. LEP : [17] Installed in a tunnel of 27 km circumference, LEP
was the largest circular e+e− collider built so far. It was operated
from 1989 to 2000 with beam energies ranging from 45.6 to 104.5 GeV
and a maximum luminosity of 1032 cm−2s−1, at 98 GeV, surpassing
all relevant design parameters.

30.4.4. SLC : [18] Based on an existing 3-km long S-band linac, the
SLC was the first and only linear collider. It was operated from 1987
to 1998 with a constant beam energy of 45.6 GeV, up to about 80%
electron-beam polarization, quasi-flat beams, and, in its last year, a
typical peak luminosity of 2 × 1030 cm−2s−1, a third of the design
value.

30.5. Present Collider Facilities

30.5.1. LHC : [19] The superconducting Large Hadron Collider is
the world’s highest energy collider. Early operations for HEP were at
4 TeV per proton [20], with the beam energy increased to 6.5 TeV in
2015. The current status is best checked at the Web site [21]. In 2017
peak luminosities above 2×1034 cm−2s−1 (more than twice the design
value) have been achieved. To meet its luminosity goals the LHC
operates with a high beam current of approximately 0.5 A, leading
to stored energies of several hundred MJ per beam. Component
protection, beam collimation, and controlled energy deposition were
given very high priorities. Additionally, at energies of 5-7 TeV per

particle, synchrotron radiation moves from being a curiosity to a
challenge in a hadron accelerator for the first time. At design beam
current the cryogenic system must remove roughly 7 kW due to
synchrotron radiation, intercepted at a temperature of 4.5-20 K. As
the photons are emitted their interactions with the vacuum chamber
wall can generate free electrons, with consequent “electron cloud”
development. Much care was taken to design a special beam screen
for the chamber to mitigate this issue.

The two proton beams are contained in separate pipes throughout
most of the circumference, and are brought together into a single
pipe at the interaction points. The large number of bunches, and
subsequent short bunch spacing, would lead to approximately 30
head-on collisions through 120 m of common beam pipe at each IP.
Thus, a small crossing angle is employed, which reduces the luminosity
by about 15%. Still, the bunches moving in one direction will have
long-range encounters with the counter-rotating bunches and the
resulting perturbations of the particle motion constitute a continued
course of study. The luminosity scale is absolutely calibrated by the
“van der Meer method” as was invented for the ISR [22], and followed
by multiple, redundant luminosity monitors (see for example [23] and
references therein). The Tables also show the 2015 LHC luminosity
performance in Pb-Pb collisions, which for the ATLAS and CMS
experiments well exceeded the design value, while for the ALICE [24]
experiment, the luminosity was “levelled” at the Pb-Pb design value of
1027 cm−2s−1. The LHC can also provide Pb-p collisions as it did in
2013 and 2016, and other ion-ion or ion-proton collisions, at different
energies.

In the coming years, an ambitious upgrade program, HL-LHC [25,26],
has as its target an order-of-magnitude increase in integrated
luminosity through the utilization of Nb3Sn superconducting magnets,
superconducting compact “crab” cavities and luminosity leveling also
for ATLAS and CMS as its key ingredients.

30.5.2. e+e− Rings : Asymmetric energies of the two beams have
allowed for the enhancement of B-physics research and for interesting
interaction region designs. As the bunch spacing can be quite short,
the lepton beams sometimes pass through each other at an angle and
hence have reduced luminosity. Recently, however, the use of high
frequency “crab crossing” schemes has produced full restoration of the
luminous region. KEK-B attained over 1 fb−1 of integrated luminosity
in a single day, and its upgrade, SuperKEKB, is aiming for luminosities
of 8× 1035 cm−2s−1 [27]. A different collision approach, called “crab
waist”, which relies on special sextupoles together with a large crossing
angle, has been successfully implemented at DAΦNE [28] and has
become a key ingredient for proposed future e+e− circular colliders.
Other e+e− ring colliders in operation are BEPC-II, VEPP-2000 and
VEPP-4M [27].

30.5.3. RHIC : [29] The Relativistic Heavy Ion Collider employs
superconducting magnets, and collides combinations of fully-stripped
ions such as H-H (p-p), p-Al, p-Au, d-Au, h-Au, Cu-Cu, Cu-Au,
Au-Au, and U-U over a wide energy range [30]. The high charge
per particle (+79 for gold, for instance) makes intra-beam scattering
of particles within the bunch a special concern, even for seemingly
moderate bunch intensities. In 2012, 3-D stochastic cooling was
successfully implemented in RHIC [12] and is now routinely used.
With stochastic cooling, steady increases in the bunch intensity, and
numerous other upgrades, RHIC now operates at 44 times the Au-Au
design average luminosity. Another special feature of accelerating
heavy ions in RHIC is that the beams cross the “transition energy”
during acceleration – a point where the derivative with respect to
momentum of the revolution period is zero. This is more typical of
low-energy accelerators, where the necessary phase jump required of
the RF system is implemented rapidly and little time is spent near this
condition. In the case of RHIC with heavy ions, the superconducting
magnets do not ramp very quickly and the period of time spent
crossing transition is long and must be dealt with carefully. For p-p
operation the beams are always above their transition energy and so
this condition is completely avoided.

RHIC is also unique in its ability to accelerate and collide polarized
proton beams. As proton beam polarization must be maintained from
its low-energy source, successful acceleration through the myriad of
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depolarizing resonance conditions in high energy circular accelerators
has taken years to accomplish. An energy of 255 GeV per proton
with 55% final polarization per beam has been realized. As part of a
scheme to compensate the head-on beam-beam effect, electron lenses
operated routinely during the polarized proton operation at 100 GeV
in 2015 [31].

30.6. Future High Energy Colliders and Prospects

Recent accomplishments of particle physics have been obtained
through high-energy and high-intensity experiments using hadron-
hadron, lepton-lepton, and lepton-proton colliders. Following the
discovery of the Higgs particle at the LHC and in view of ongoing
searches for “new physics” and rare phenomena, various options are
under discussions and development to pursue future particle-physics
research at higher energy and with appropriate luminosity. This is the
basis for several new projects, ideas, and R&D activities, which can
only briefly be summarized here. Specifically, the following projects
are noted: an energy upgrade of the LHC based on 16 T dipole
magnets (HE-LHC), two approaches to an electron-positron linear
collider, larger 100-km circular tunnels supporting e+e− collisions

Table 30.1: Tentative parameters of selected future e+e− high-energy colliders.
Parameters associated with different beam energy scenarios are comma-separated.

FCC-ee CEPC ILC CLIC

Species e+e− e+e− e+e− e+e−

Beam energy (GeV) 46, 120, 183 46, 120 125, 250 190, 1500

Circumference / Length (km) 97.75 100 20.5, 31 11, 50

Interaction regions 2 2 1 1

Estimated integrated luminosity
per exp. (ab−1/year)

26, 0.9, 0.17 4, 0.4 0.2, 0.2 0.2, 0.6

Peak luminosity (1034 cm−2 s−1) 200, 7, 1.5 32, 3 1.4, 1.8 1.5, 6

Time between collisions (µs) 0.015, 0.75, 8.5 0.025, 0.68 0.55 0.0005

Energy spread (rms, 10−3) 1.3, 1.65, 2.0 0.4, 1.0 e−: 1.9, 1.2

e+: 1.5, 0.7

3.5

Bunch length (rms, mm) 12.1, 5.3, 3.8 8.5, 3.3 0.3 0.09, 0.044

IP beam size (µm) H: 6.3,
V: 0.03,

14,
0.04,

38
0.07

H: 5.9,
V: 0.04,

21
0.07

H: 0.52,
V: 0.008,

0.47
0.006

H: 0.15, 0.04
V: 0.003, 0.001

Injection energy (GeV) on energy
(topping off)

on energy
(topping off)

5.0 (linac) 9.0 (linac)

Transv. geom. emittance (rms,
pm)

H: 270,
V: 1,

630,
1,

1340
3

H: 170,
V: 2,

1210
3

H: 20, 10
V: 0.14, 0.07

H: 2.4, 0.22
V: 0.08, 0.01

β∗ at interaction point (cm) H: 15,
V: 0.08,

30,
0.1,

100
0.16

H: 20,
V: 0.1,

36
0.15

H: 1.3, 2.2
V: 0.041, 0.048

H: 0.8, 0.69

V: 0.01, 6.8× 10−3

Full crossing angle (mrad) 30 33 14 20

Crossing scheme crab waist crab waist crab crossing crab crossing

Piwinski angle φ = σzθc/(2σ
∗
x) 28.5, 5.8, 1.5 23.8, 2.6 0 0

Beam-beam parameter ξy (10−3) 133, 118, 144 72, 109 n/a n/a

Disruption parameter Dy 0.9, 1.1, 1.9 0.3, 1.0 34, 25 8, 12

Average Upsilon Υ 0.0002, 0.0004, 0.0006 0.0001, 0.0005 0.03, 0.06 0.26, 3.4

RF frequency (MHz) 400, 400, 800 650 1300 11994

Particles per bunch (1010) 17, 15, 27 8, 15 2 0.52, 0.37

Bunches per beam 16640, 328, 33 12000, 242 1312 (pulse) 352, 312 (trains at 50 Hz)

Average beam current (mA) 1390, 29, 5.4 19.2 6 (in train) 1660, 1200 (in train)

RF gradient (MV/m) 1.3, 9.8, 19.8 3.6, 19.7 31.5 72, 100

Polarization (%) ≥10, 0, 0 5–10, 0 e−: 80%
e+: 30%

e−: 70% at IP

SR power loss (MW) 100 64 n/a n/a

Beam power/beam (MW) n/a n/a 5.3, 10.5 3, 14

Novel technology — — high grad. SC RF two-beam accel.

up to either 240 or 365 GeV in the centre of mass along with a
100-TeV proton-proton collider or 70–140 TeV muon ring collider,
and potential use of plasma acceleration and other advanced schemes.
Complementary studies are ongoing of a high-energy lepton-hadron
collider bringing into collision a 60-GeV electron beam from an

energy-recovery linac with the 7 TeV protons circulating in the
LHC (LHeC) [32,33], with the 13.5 TeV protons in the HE-LHC
(HE-LHeC), or with the 50(35) TeV protons of the 100(70) TeV
collider (FCC-he,SPPC), and of γγ collider Higgs factories based
on recirculating electron linacs (e.g. SAPPHiRE [34]) . Tentative
parameters of some of the colliders discussed, or mentioned, in this
section are summarized in Table 30.1 and Table 30.2.

30.6.1. Electron-Positron Linear Colliders : For three decades
efforts have been devoted to develop high-gradient technology e+e−

colliders in order to overcome the synchrotron radiation limitations of
circular e+e− machines in the TeV energy range.

The primary challenge confronting a high energy, high luminosity
single pass collider design is the power requirement, so that measures
must be taken to keep the demand within bounds as illustrated in a
transformed Eq. (30.2) [35]:
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Table 30.2: Tentative parameters of selected future high-energy hadronic colliders. Parameters
associated with different beam energy scenarios for a µ collider are comma-separated. Parameters
of HL-LHC can be found in the High-Energy Collider Parameters review tables.

LHeC HE-LHeC HE-LHC FCC-hh SPPC µ collider

Species ep ep pp pp pp µ+µ−

Beam Energy (TeV) 0.06(e), 7 (p) 0.06(e), 13.5 (p) 13.5 50 37.5 0.063, 3

Circumference (km) 9(e), 26.7 (p) 9(e), 26.7 (p) 26.7 97.75 100 0.3, 6

Interaction regions 1 1 2 (4) 4 2 1, 2

Estimated integrated luminosity
per exp. (ab−1/year)

0.1 0.1 1.0 0.2–1.0 0.4 0.001, 1.0

Peak luminosity (1034 cm−2 s−1) 0.8 1.2 28 5–30 10 2.2, 71

Time between collisions (µs) 0.025 0.025 0.025 0.025 0.025 1, 20

Energy spread (rms, 10−3) 0.03 (e), 0.1(p) 0.03 (e), 0.1(p) 0.1 0.1 0.2 0.04, 1

Bunch length (rms, mm) 0.06 (e), 75.5(p) 0.06 (e), 80 (p) 80 80 75.5 63, 2

IP beam size (µm) 4.3 (round) 3.5 (round) 6.6 6.8 (inj.) 6.8 (inj.) 75, 1.5

Injection energy (GeV) 1(e), 450(p) 1(e), 450(p) 450 3300 2100 on energy

Transverse emittance (rms, nm) 0.45(e),

0.27(p)

0.45(e),

0.17(p)
0.17 0.04 (inj.) 0.06 (inj.) 335, 0.9

β∗, amplitude function at interac-
tion point (cm)

5.0(e),

7.0(p)

4.0(e),

10.0(p)
25 110–30 75 1.7, 0.25

Beam-beam parameter/IP (10−3) −(e), 0.4(p) −(e), 0.3(p) 12 5–15 7.5 20, 90

RF frequency (MHz) 800(e), 400(p) 800(e), 400(p) 400 400 400/200 805

Particles per bunch (1010) 0.23(e), 22(p) 0.30(e), 22(p) 10 10 15 400, 200

Bunches per beam −(e), 2808(p) −(e), 2808(p) 2808 10600 10080 1

Average beam current (mA) 15(e), 883(p) 20(e), 1120(p) 1120 500 730 640, 16 (peak)

Length of standard cell (m) 52.4(e arc), 107(p) 52.4(e arc), 107(p) 137 213 148 N/A

Phase advance per cell (deg) 310/90(eH/V)

90(p)

310/90(eH/V)

90(p)
90 90 90 N/A

Peak magnetic field (T) 0.264(e), 8.33(p) 0.264(e), 16(p) 16 16 12 10

Polarization (%) 90(e), 0(p) 90(e), 0(p) 0 0 0 0

SR power loss/beam (MW) 30(e), 0.01(p) 30(e), 0.1(p) 0.1 2.4 1.1 3× 10−5, 0.068

Novel technology high-energy ERL h.-e. ERL
16 T magnets

16 T Nb3Sn
magnets

16 T Nb3Sn
magnets

HTS
magnets

muon prod.

L ≈ 137

8πre

Pwall

Ecm

η

σ∗y
Nγ HD . (30.12)

Here, Pwall is the total wall-plug power of the collider, η ≡ Pb/Pwall
the efficiency of converting wall-plug power into beam power
Pb = fcollnEcm, Ecm the cms energy, n (= n1 = n2) the bunch
population, and σ∗y the vertical rms beam size at the collision point. In
formulating Eq. (30.12) the number of beamstrahlung photons emitted
per e±, was approximated as Nγ ≈ 2αren/σ

∗
x, where α denotes the

fine-structure constant. The management of Pwall leads to an upward
push on the bunch population n with an attendant rise in the energy
radiated due to the electromagnetic field of one bunch acting on the
particles of the other. Keeping a significant fraction of the luminosity
close to the nominal energy represents a design goal, which is met if
Nγ does not exceed a value of about 1. A consequence is the use of
flat beams, where Nγ is managed by the beam width, and luminosity
adjusted by the beam height, thus the explicit appearance of the
vertical beam size σ∗y . The final factor in Eq. (30.12), HD, represents
the enhancement of luminosity due to the pinch effect during bunch
crossing (the effect of which has been neglected in the expression for
Nγ).

The approach designated by the International Linear Collider (ILC)
is presented in the Tables, and the contrast with the collision-point
parameters of the circular colliders is striking, though reminiscent in
direction of those of the SLAC Linear Collider. The ILC Technical
Design Report [36,37] has a baseline cms energy of 500 GeV with

upgrade provision for 1 TeV, and luminosity comparable to the LHC;
recent tendancies have been toward a baseline of 250 GeV. The ILC
is based on superconducting accelerating structures of the 1.3 GHz
TESLA variety. Progress toward higher field gradients and Q values
continues to be made, with nitrogen-doping techniques being a recent
example [38].

At CERN, a design effort is underway on the Compact Linear Collider
(CLIC), each linac of which is itself a two-beam accelerator, in that
a high energy, low current beam is fed by a low energy, high current
driver [39]. The CLIC design employs normal conducting 12 GHz
accelerating structures at a gradient of 100 MeV/m, some three times
the current capability of the superconducting ILC cavities. The design
cms energy is 3 TeV, though recent staging options – 0.38, 1.5, and 3
TeV – have been developed [40].

30.6.2. Future Circular Colliders : The discovery, in 2012, of
the Higgs boson at the LHC has stimulated interest in constructing
a large circular tunnel which could host a variety of energy-frontier
machines, including high-energy electron-positron, proton-proton, and
lepton-hadron colliders. Such projects are under study by a global
collaboration hosted at CERN (FCC) [41] and another one centered
in China (CEPC/SPPC) [42], following earlier proposals for a Very
Large Hadron Collider (VLHC) [43] and a Very Large Lepton Collider
(VLLC) in the US, which would have been housed in the same 230-km
long tunnel.

The maximum beam energy of a hadron collider is directly proportional
to the magnetic field and to the ring circumference. The LHC magnets,
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based on Nb-Ti superconductor, achieve a maximum operational field
of 8.33 T. The HL-LHC project develops the technology of higher
field Nb3Sn magnets as well as cables made from high-temperature
superconductor (HTS). Nb3Sn dipoles could ultimately reach an
operational field around 16 T, and HTS inserts, requiring new
engineering materials and substantial dedicated R&D, could boost
this further. More cost-effective hybrid magnet designs incorporating
Nb-Ti, two types of Nb3Sn, and an inner layer of HTS providing fields
of about 20 T have been examined [44]. However present project
efforts are not utilizing this hybrid approach as of yet.

Aside from the magnets, the cryogenic beam vacuum system is another
key component of any future hadron collider. A beam screen inside
the cold bore of the magnets can intercept the synchrotron radiation
at an elevated temperature, allowing a more efficient extraction of the
synchrotron-radiation heat load. While the LHC beam screen has a
temperature of 5–20 K, future, higher-energy machines are likely to
raise this temperature to 50 K or 100 K.

Further substantial increases in collision energy are possible only with
a larger tunnel. The FCC hadron collider (FCC-hh) [45], formerly
called VHE-LHC [46,46], is based on a new tunnel of about 100 km
circumference, which would allow exploring energies up to 100 TeV in
the centre of mass with proton-proton collisions, using 16 T magnets.
This new tunnel could also accommodate a high-luminosity circular
e+e− Higgs factory (FCC-ee) as well as a lepton-hadron collider
(FCC-he). The SPPC is a 100 km hadron collider based on 12 T (later
24 T) iron-based high-temperature superconducting magnets, which
could be installed in the same tunnel as the e+e− collider CEPC.

In order to serve as a Higgs factory a new circular e+e− collider
needs to achieve a cms energy of at least 240 GeV. FCC-ee (formerly
TLEP [48]) , installed in the ∼100 km tunnel of the FCC-hh, could
reach even higher energies, e.g. 365 GeV cms for tt̄ production. At
these energies, the luminosity, limited by the synchrotron radiation
power, would still be above 1034 cm−2s−1 at each of two or four
collision points. At lower energies (Z pole and WW threshold) FCC-ee
could deliver up to three orders of magnitude higher luminosities,
and also profit from radiative self polarization for precise energy
calibration. The short beam lifetime at the high target luminosity,
due to radiative Bhabha scattering, requires FCC-ee to be constructed
as a double ring, where the collider ring operating at constant energy
is complemented by a second injector ring installed in the same tunnel
to “top off” the collider current. Beamstrahlung, i.e. synchrotron
radiation emitted during the collision in the field of the opposing
beam, introduces an additional beam lifetime limitation depending
on momentum acceptance (so that achieving sufficient off-momentum
dynamic aperture becomes one of the design challenges), as well as
some bunch lengthening.

30.6.3. Muon Collider : The muon to electron mass ratio of 210
implies less concern about synchrotron radiation by a factor of about
2 × 109 and its 2.2 µs lifetime means that it will last for some 150B
turns in a ring about half of which is occupied by bend magnets with
average field B (Tesla). Design effort became serious in the mid 1990s
and a collider outline emerged quickly.

Removal of the synchrotron radiation barrier reduces the scale of a
muon collider facility to a level compatible with on-site placement at
existing accelerator laboratories. The Higgs production cross section
in the s-channel is enhanced by a factor of (mµ/me)

2 compared to
that in e+e− collisions. And a neutrino factory could potentially be
realized in the course of construction [49].

The challenges to luminosity achievement are clear and amenable to
immediate study: targeting, collection, and emittance reduction are
paramount, as well as the bunch manipulation required to produce
> 1012 muons per bunch without emittance degradation. The proton
source needs to deliver a beam power of several MW, collection would
be aided by magnetic fields common on neutron stars (though scaled
back for application on earth), and the emittance requirements have
inspired fascinating investigations into phase space manipulations that
are finding applications in other facilities. The status was summarized
in a White Paper submitted to “Snowmass 2013” [50]. More
recently, direct production of a low-emittance muon beam by positron
annihilation [51]( or alternatively laser-hadron collisions [52,53]) has

been proposed as a possible path towards a simpler and cheaper muon
collider.

30.6.4. Plasma Acceleration and Other Advanced Concepts :
At the 1956 CERN Symposium, a paper by Veksler, in which he
suggested acceleration of protons to the TeV scale using a bunch
of electrons, anticipated current interest in plasma acceleration [54].
A half-century later this became more than a suggestion, with the
demonstration, as a striking example, of electron energy doubling
from 42 to 84 GeV over 85 cm at SLAC [55] and the creation of a 1
GeV electron bunch with relatively small energy spread accelerated
through a cm-scale plasma [56].

Whether plasma acceleration will find application in an HEP facility
is not yet clear, given the necessity of staging and phase-locking
acceleration in multiple plasma chambers. However, strides continue
to be made, as multi-stage coupling of independent laser plasma
accelerators have been demonstrated recently [57].

Maintaining beam quality and beam position as well as the acceleration
of high-repetition bunch trains are also primary feasibility issues,
addressed by active R&D. For recent discussions of parameters for a
laser-plasma based electron positron collider, see, for example, relevant
papers from the proceedings of the 2016 Advanced Accelerator
Concepts Workshop [58] and the ICFA-ICUIL White Paper from
2011 [59].

Additional approaches aiming at accelerating gradients higher, or
much higher, than those achievable with conventional metal cavities
include the use of dielectric materials and, for the long-term future,
crystals. Combining several innovative ideas, even a linear crystal
muon collider driven by X-ray lasers has been proposed [60], as well as
“accelerators on a chip” [61,62]. Not only the achievable accelerating
gradient, but also the overall power efficiency, e.g. the attainable
luminosity as a function of electrical input power, will determine
the suitability of any novel technology for use in future high-energy
accelerators.
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High-Energy Collider Parameters: e+e− Colliders (I)

Updated in March 2018 with numbers received from representatives of the colliders (contact E. Pianori, LBNL). The table shows the parameter
values achieved. Quantities are, where appropriate, r.m.s.; unless noted otherwise, energies refer to beam energy; H and V indicate horizontal
and vertical directions; s.c. stands for superconducting. Parameters for the defunct SPEAR, DORIS, PETRA, PEP, TRISTAN, and VEPP-2M
colliders may be found in our 1996 edition (Phys. Rev. D54, 1 July 1996, Part I).

VEPP-2000
(Novosibirsk)

VEPP-4M
(Novosibirsk)

BEPC
(China)

BEPC-II
(China)

DAΦNE
(Frascati)

Physics start date 2010 1994 1989 2008 1999

Physics end date — — 2005 — —

Maximum beam energy (GeV) 1.0 6 2.5 1.89 (2.3 max) 0.510

Delivered integrated lumi-
nosity per exp. (fb−1)

0.125 0.027 0.11 17.5 ≈ 4.7 in 2001-2007
≈ 2.7 w/crab-waist
≈ 1.8 since Nov 2014

Luminosity (1030 cm−2s−1) 40 20 12.6 at 1.843 GeV
5 at 1.55 GeV

1000 453

Time between collisions (µs) 0.04 0.6 0.8 0.008 0.0027

Full crossing angle (µ rad) 0 0 0 2.2× 104 5× 104

Energy spread (units 10−3) 0.71 1 0.58 at 2.2 GeV 0.52 0.40

Bunch length (cm) 4 5 ≈ 5 ≈ 1.2 low current: 1
at 15mA: 2

Beam radius (10−6 m) 125 (round) H : 1000
V : 30

H : 890
V : 37

H : 347
V : 4.5

H : 260
V : 4.8

Free space at interaction
point (m)

±0.5 ±2 ±2.15 ±0.63 ±0.295

Luminosity lifetime (hr) continuous 2 7–12 1.5 0.2

Turn-around time (min) continuous 18 32 15 2 (topping up)

Injection energy (GeV) 0.2–1.0 1.8 1.55 1.89 on energy

Transverse emittance
(10−9 m)

H : 150
V : 150

H : 200
V : 20

H : 660
V : 28

H : 121
V : 1.56

H : 260
V : 2.6

β∗, amplitude function at
interaction point (m)

H : 0.05− 0.11
V : 0.05− 0.11

H : 0.75
V : 0.05

H : 1.2
V : 0.05

H : 1.0
V : 0.0129

H : 0.26
V : 0.009

Beam-beam tune shift
per crossing (units 10−4)

H : 850
V : 850

500 350 383 440
(crab-waist test)

RF frequency (MHz) 172 180 199.53 499.8 356

Particles per bunch
(units 1010)

8 15 20 at 2 GeV
11 at 1.55 GeV

3.8 e−: 3.2
e+: 2.1

Bunches per ring
per species

1 2 1 119 100 to 105
(120 buckets)

Average beam current
per species (mA)

160 80 40 at 2 GeV
22 at 1.55 GeV

851 e−: 1250
e+: 800

Circumference or length (km) 0.024 0.366 0.2404 0.23753 0.098

Interaction regions 2 1 2 1 1

Magnetic length of dipole (m) 1.1 2 1.6 outer ring: 1.6
inner ring: 1.41

outer ring: 1.2
inner ring: 1

Length of standard cell (m) 12 7.2 6.6 outer ring: 6.6
inner ring: 6.2

n/a

Phase advance per cell (deg) H : 745
V : 385

65 ≈ 60 60–90
non-standard cells

—

Dipoles in ring 8 78 40 + 4 weak 84 + 8 weak 8

Quadrupoles in ring 24 + 4 s.c. 150 68 134+2 s.c. 48

Peak magnetic field (T) 2.4 0.6 0.903
at 2.8 GeV

outer ring: 0.677
inner ring: 0.766

1.2
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High-Energy Collider Parameters: e+e− Colliders (II)

Updated in March 2018 with numbers received from representatives of the colliders (contact E. Pianori, LBNL). The table shows the parameter
values achieved. Quantities are, where appropriate, r.m.s.; unless noted otherwise, energies refer to beam energy; H and V indicate horizontal
and vertical directions; s.c. stands for superconducting. ILC and CLIC parameters are documented in the Accelerator physics of colliders review.

CESR
(Cornell)

CESR-C
(Cornell)

LEP
(CERN)

SLC
(SLAC)

Physics start date 1979 2002 1989 1989

Physics end date 2002 2008 2000 1998

Maximum beam energy (GeV)
6 6 100 - 104.6 50

Delivered integrated luminosity
per experiment (fb−1)

41.5 2.0 0.221 at Z peak
0.501 at 65− 100 GeV

0.022

0.275 at >100 GeV

Luminosity (1030 cm−2s−1) 1280 at
5.3 GeV

76 at
2.08 GeV

24 at Z peak
100 at > 90 GeV

2.5

Time between collisions (µs) 0.014 to 0.22 0.014 to 0.22 22 8300

Full crossing angle (µ rad) ±2000 ±3300 0 0

Energy spread (units 10−3) 0.6 at 5.3 GeV 0.82 at 2.08 GeV 0.7→1.5 1.2

Bunch length (cm) 1.8 1.2 1.0 0.1

Beam radius (µm) H : 460
V : 4

H : 340
V : 6.5

H : 200 → 300
V : 2.5 → 8

H : 1.5
V : 0.5

Free space at interaction
point (m)

±2.2 (±0.6

to REC quads)

±2.2 (±0.3

to PM quads)
±3.5 ±2.8

Luminosity lifetime (hr) 2–3 2–3 20 at Z peak
10 at > 90 GeV

—

Turn-around time (min) 5 (topping up) 1.5 (topping up) 50 120 Hz (pulsed)

Injection energy (GeV) 1.8–6 1.5–6 22 45.64

Transverse emittance
(10−9 m)

H : 210
V : 1

H : 120
V : 3.5

H : 20–45
V : 0.25 → 1

H : 0.5
V : 0.05

β∗, amplitude function at
interaction point (m)

H : 1.0
V : 0.018

H : 0.94
V : 0.012

H : 1.5
V : 0.05

H : 0.0025
V : 0.0015

Beam-beam tune shift per
crossing (10−4) or disruption

H : 250
V : 620

e−: 420 (H), 280 (V )

e+: 410 (H), 270 (V )
830 0.75 (H)

2.0 (V )

RF frequency (MHz) 500 500 352.2 2856

Particles per bunch
(units 1010)

1.15 4.7 45 in collision
60 in single beam

4.0

Bunches per ring
per species

9 trains
of 5 bunches

8 trains
of 3 bunches

4 trains of 1 or 2 1

Average beam current
per species (mA)

340 72 4 at Z peak
4→6 at > 90 GeV

0.0008

Beam polarization (%) — — 55 at 45 GeV
5 at 61 GeV

e−: 80

Circumference or length (km) 0.768 0.768 26.66 1.45 +1.47

Interaction regions 1 1 4 1

Magnetic length of dipole (m) 1.6–6.6 1.6–6.6 11.66/pair 2.5

Length of standard cell (m) 16 16 79 5.2

Phase advance per cell (deg) 45–90 (no

standard cell)

45–90 (no

standard cell)
102/90 108

Dipoles in ring 86 84 3280 + 24 inj. + 64 weak 460+440

Quadrupoles in ring 101 + 4 s.c. 101 + 4 s.c. 520 + 288 + 8 s.c.
—

Peak magnetic field (T) 0.3 / 0.8
at 8 GeV

0.3 / 0.8 at 8 GeV,
2.1 wigglers at 1.9 GeV

0.135 0.597
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High-Energy Collider Parameters: e+e− Colliders (III)

Updated in March 2018 with numbers received from representatives of the colliders (contact E. Pianori, LBNL). The table shows the parameter
values achieved. For future colliders, design values are quoted. Quantities are, where appropriate, r.m.s.; unless noted otherwise, energies refer
to beam energy; H and V indicate horizontal and vertical directions; s.c. stands for superconducting.

KEKB
(KEK)

PEP-II
(SLAC)

SuperKEKB
(KEK)

Physics start date 1999 1999 2018

Physics end date 2010 2008 —

Maximum beam energy (GeV) e−: 8.33 (8.0 nominal)

e+: 3.64 (3.5 nominal)

e−: 7–12 (9.0 nominal)

e+: 2.5–4 (3.1 nominal)

e−: 7
e+: 4

Delivered integrated lumi-
nosity per exp. (fb−1)

1040 557 —

Luminosity (1030 cm−2s−1) 21083 12069
(design: 3000)

8× 105

Time between collisions (µs) 0.00590 or 0.00786 0.0042 0.004

Full crossing angle (µ rad) ±11000∗ 0 ±41500

Energy spread (units 10−3) 0.7 e−/e+: 0.61/0.77 e−/e+: 0.64/0.81

Bunch length (cm) 0.65 e−/e+: 1.1/1.0 e−/e+: 0.5/0.6

Beam radius (µm) H: 124 (e−), 117 (e+)
V: 1.9

H : 157
V : 4.7

e−: 11 (H), 0.062 (V )

e+: 10 (H), 0.048 (V )

Free space at interaction
point (m)

+0.75/−0.58

(+300/−500) mrad cone
±0.2,

±300 mrad cone
e− : +1.20/− 1.28, e+ : +0.78/− 0.73

(+300/−500) mrad cone

Luminosity lifetime (hr) continuous continuous continuous

Turn-around time (min) continuous continuous continuous

Injection energy (GeV) e−/e+ : 8.0/3.5 (nominal) e−/e+ : 9.0/3.1 (nominal) e−/e+ : 7/4

Transverse emittance
(10−9 m)

e−: 24 (57†) (H), 0.61 (V )

e+: 18 (55†) (H), 0.56 (V )

e−: 48 (H), 1.8 (V )

e+: 24 (H), 1.8 (V )

e−: 4.6 (H), 0.013 (V )

e+: 3.2 (H), 0.0086 (V )

β∗, amplitude function at
interaction point (m)

e−: 1.2 (0.27†) (H), 0.0059 (V )

e+: 1.2 (0.23†) (H), 0.0059 (V )

e−: 0.50 (H), 0.012 (V )

e+: 0.50 (H), 0.012 (V )

e−: 0.025 (H), 3× 10−4 (V )

e+: 0.032 (H), 2.7× 10−4 (V )

Beam-beam tune shift
per crossing (units 10−4)

e−: 1020 (H), 900 (V )

e+: 1270 (H), 1290 (V )

e−: 703 (H), 498 (V )

e+: 510 (H), 727 (V )

e−: 12 (H), 807 (V )

e+: 28 (H), 881 (V )

RF frequency (MHz) 508.887 476 508.887

Particles per bunch
(units 1010)

e−/e+: 4.7/6.4 e−/e+: 5.2/8.0 e−/e+: 6.53/9.04

Bunches per ring
per species

1585 1732 2500

Average beam current
per species (mA)

e−/e+: 1188/1637 e−/e+: 1960/3026 e−/e+: 2600/3600

Beam polarization (%) — — —

Circumference or length (km) 3.016 2.2 3.016

Interaction regions 1 1 1

Magnetic length of dipole (m) e−/e+ : 5.86/0.915 e−/e+: 5.4/0.45 e−/e+ : 5.9/4.0

Length of standard cell (m) e−/e+ : 75.7/76.1 15.2 e−/e+ : 75.7/76.1

Phase advance per cell (deg) 450 e−/e+: 60/90 450

Dipoles in ring e−/e+ : 116/112 e−/e+: 192/192 e−/e+ : 116/112

Quadrupoles in ring e−/e+ : 452/452 e−/e+: 290/326 e−/e+ : 466/460

Peak magnetic field (T) e−/e+ : 0.25/0.72 e−/e+: 0.18/0.75 e−/e+ : 0.22/0.19

∗KEKB was operated with crab crossing from 2007 to 2010.
†With dynamic beam-beam effect.
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High-Energy Collider Parameters: ep, pp, pp Colliders

Updated in March 2018 with numbers received from representatives of the colliders (contact E. Pianori, LBNL). The table shows the parameter
values achieved. Parameters for the defunct SppS collider may be found in our 2002 edition (Phys. Rev. D66, 010001 (2002)). Quantities are,
where appropriate, r.m.s.; unless noted otherwise, energies refer to beam energy; H and V indicate horizontal and vertical directions; s.c. stands
for superconducting.

HERA
(DESY)

TEVATRON∗
(Fermilab)

RHIC
(Brookhaven)

LHC
(CERN)

Physics start date 1992 1987 2001 2009 2015 2026 (HL-LHC)

Physics end date 2007 2011 — —

Particles collided ep pp pp (polarized) pp

Maximum beam
energy (TeV)

e: 0.030
p: 0.92

0.980 0.255
55% polarization

4.0 6.5 7.0

Maximum delivered integrated
luminosity per exp. (fb−1)

0.8 12 0.38 at 100 GeV
1.3 at 250/255 GeV

23.3 at 4.0 TeV
6.1 at 3.5 TeV

94.5 250/y

Luminosity
(1030 cm−2s−1)

75 431 245 (pk)

160 (avg)
7.7× 103 2× 104 5.0× 104

(leveled)

Time between
collisions (ns)

96 396 107 49.90 24.95 24.95

Full crossing angle (µ rad) 0 0 0 290 300 → 240† 500

Energy spread (units 10−3) e: 0.91
p: 0.2

0.14 0.15 0.1445 0.105 0.129

Bunch length (cm) e: 0.83
p: 8.5

p: 50
p̄: 45

60 9.4 8 9

Beam radius
(10−6 m)

e: 110(H), 30(V )

p: 111(H), 30(V )
p: 28
p̄: 16

85 18.8 10 7

Free space at
interaction point (m)

±2 ±6.5 16 38 38 38

Initial luminosity decay
time, −L/(dL/dt) (hr)

10 6 (avg) 7.5 ≈ 6 ≈ 15 ≈ 15 (leveled)

Turn-around time (min) e: 75, p: 135 90 25 180 150 145

Injection energy (TeV) e: 0.012
p: 0.040

0.15 0.023 0.450 0.450 0.450

Transverse emittance
(10−9 m)

e: 20(H), 3.5(V )

p: 5(H), 5(V )
p: 3
p̄: 1

11 0.59 0.3 0.33

β∗, ampl. function at
interaction point (m)

e: 0.6(H), 0.26(V )

p: 2.45(H), 0.18(V )
0.28 0.65 0.6 0.3 0.15

Beam-beam tune shift
per crossing (units 10−4)

e: 190(H), 450(V )

p: 12(H), 9(V )
p: 120
p̄: 120

73 72 45 86

RF frequency (MHz) e: 499.7
p: 208.2/52.05

53 accel: 9
store: 28

400.8 400.8 400.8

Particles per bunch
(units 1010)

e: 3
p: 7

p: 26
p̄: 9

18.5 16 12.5 22

Bunches per ring
per species

e: 189
p: 180

36 111 1380 1868
1868 (i.r. 1/5‡)

2760
2748 (i.r. 1/5‡)

Average beam current
per species (mA)

e: 40
p: 90

p: 70
p̄: 24

257 400 420 1100

Circumference (km) 6.336 6.28 3.834 26.659

Interaction regions 2 colliding beams 2 high L 6 total, 2 high L 4 total, 2 high L
1 fixed target (e beam)

Magnetic length
of dipole (m)

e: 9.185
p: 8.82

6.12 9.45 14.3

Length of standard cell (m) e: 23.5
p: 47

59.5 29.7 106.90

Phase advance per cell (deg) e: 60
p: 90

67.8 84 90

Dipoles in ring e: 396
p: 416

774 192 per ring
+ 12 common

1232
main dipoles

Quadrupoles in ring e: 580
p: 280

216 246 per ring 482 2-in-1
24 1-in-1

Magnet types e: C-shaped
p: s.c., collared, warm iron

s.c., cos θ
warm iron

s.c., cos θ
cold iron

s.c., 2 in 1
cold iron

Peak magnetic field (T) e: 0.274, p: 5 4.4 3.5 8.3§

∗Other TEVATRON parameters: p source accum. rate: 25×1010 hr−1; max. no. of p stored: 3.4×1012 (Accumulator), 6.1×1012 (Recycler).
†Variable crossing angle decreasing during the fill with the reduction in bunch population
‡Number of bunches colliding at the interaction regions (i.r.) 1 (ATLAS) and 5 (CMS).

§Value for design beam energy of 7 TeV.
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High-Energy Collider Parameters: Heavy Ion Colliders

Updated in March 2018 with numbers received from representatives of the colliders (contact E. Pianori, LBNL). The table shows the parameter
values achieved. For the LHC, only maximum values for the ATLAS and CMS experiments are provided (ALICE and LHCb have different
requirements for energy and luminosity). Design values for a high-luminosity upgrade are also given. Quantities are, where appropriate, r.m.s.;
unless noted otherwise, energies refer to beam energy; s.c. stands for superconducting. pk and avg denote peak and average values.

RHIC
(Brookhaven)

LHC
(CERN)

Physics start date 2000 2012 / 2012 / 2004 / 2014

2002 / 2015 / 2015
2010 2012 2017

≥ 2021

(high lum.)§

Physics end date — —

Particles collided Au Au U U / Cu Au / Cu Cu / h Au

d Au / p Au / p Al
Pb Pb p Pb Xe Xe Pb Pb

Maximum beam
energy (TeV/n)

0.1 0.1 2.51 p: 6.5
Pb: 2.56

2.72 2.76

√
sNN (TeV) 0.2 0.2 5.02 8.16 5.44 5.5

Max. delivered int. nucleon-
pair lumin. per exp. (pb−1)

2639
(at 100 GeV/n)

21 / 167 / 60 / 43

169 / 124 / 63 (all at 100 GeV/n)
30.3 194 0.05 ≈ 150/y

Luminosity
(1027 cm−2s−1)

pk: 15.5
avg: 8.7

pk: 0.4 / 12 / 21 / 170

850 / 880 / 7600
avg: 0.6 / 10 / 8 / 100

500 / 450 / 3800

3.6 900 0.4 6 (leveled)

Time between
collisions (ns)

107 107 / 107 / 321 / 107

107 / 107 / 107
99.8 / 149.7 99.8 / 149.7 ≈ 5500 49.9

Full crossing angle (µ rad) 0 0 290 280 300 > 200

Energy spread (units 10−3) 0.75 0.75 0.11 0.11 0.11 0.11

Bunch length (cm) 30 30 8.0 p / Pb: 9 / 11.5 11 7.9

Beam radius
(10−6 m)

114∗ 123∗/ 163∗/ 145∗/ 136∗

124∗/ 147∗/ 128∗
55 19 12 16

Free space at
interaction point (m)

16 16 38 38 38 38

Initial luminosity decay
time, −L/(dL/dt) (hr)

1
-0.35‡/ ∞‡/ 1.8 / 0.6

∞‡/ 0.5 / 0.25
2.6 ≈ 2 ≈ 6 ∞

Turn-around time (min) 30 60 / 160 / 90 / 45

90 / 60 / 50
≈ 180 150 180 ≈ 180

Injection energy (TeV/n) 0.011 0.011 0.177 p / Pb: 0.45 / 0.177 0.188 0.177

Transverse emittance
(10−9 m)

19∗ 22∗/ 38∗/ 23∗/ 19∗

22∗/ 26∗/ 21∗
1.5 0.29 0.3 0.5

β∗, ampl. function at
interaction point (m)

0.7 0.7 / 0.7 / 0.9 / 1.0

0.7 / 0.8 / 0.8
0.8 0.5 0.4 0.5

Beam-beam tune shift
per crossing (units 10−4)

39†
6†/ 14†(Cu), 14†(Au) / 30†

42†(h), 22†(Au) / 40†(d), 27†(Au)
53†(p), 41†(Au) / 80†(p) 59†(Au)

9 15 ≈ 10 10

RF frequency (MHz) accel: 28, store: 197 accel: 28, store: 197 400.8 400.8 400.8 400.8

Particles per bunch
(units 1010)

0.20
0.03 / 0.4 (Cu), 0.13 (Au) / 0.45

4.5 (h), 0.13 (Au) / 13 (d), 0.20 (Au)
22.5 (p), 0.16 (Au) / 24 (p), 1.1 (Al)

0.019
(r.m.s.)

p: 2.6
Pb: 0.022

0.027 0.017

Bunches per ring
per species

111 111 / 111 / 37 / 111

111 / 111 / 111
518 p: 540

Pb: 684
16 ≈ 1100

Average beam current
per species (mA)

224
38 / 160 (Cu), 138 (Au) / 60

125 (h), 143 (Au) / 181 (d), 213 (Au)
313 (p), 176 (Au) / 334 (p), 199 (Al)

14.9 p: 16
Pb: 15

0.54 28

Circumference (km) 3.834 26.659

Interaction regions 6 total, 2 high L 3 high L + 1

Magnetic length of dipole (m) 9.45 14.3

Length of standard cell (m) 29.7 106.90

Phase advance
per cell (deg)

93
84 / 84 / 84 / 93

84 (d), 93 (Au) / 84 (p), 93 (Au)
84 (p), 93 (Al)

90

Dipoles in ring 192 per ring, + 12 common 1232, main dipoles

Quadrupoles in ring 246 per ring 482 2-in-1, 24 1-in-1

Magnet Type s.c. cos θ, cold iron s.c., 2 in 1, cold iron

Peak magnetic field (T) 3.5 8.3

∗Initial value, smaller after cooling
†Initial value, possibly larger after cooling
‡Negative or infinite decay time is effect of cooling.
§High luminosity upgrade expected >= 2021; will extend throughout HL-LHC running. Very preliminary, conservative estimates.
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32. Neutrino Beam Lines at High-Energy Proton Synchrotrons

Revised October 2017 with numbers verified by representatives of the synchrotrons (contact C.-J. Lin, LBNL). For existing (future) neutrino
beam lines the latest achieved (design) values are given.

The main source of neutrinos at proton synchrotrons is from the decay of pions and kaons produced by protons striking a nuclear target.
There are different schemes to focus the secondary particles to enhance neutrino flux and/or tune the neutrino energy profile. In wide-band
beams (WBB), the neutrino parent mesons are focused over a wide momentum range to obtain maximum neutrino intensity. In narrow-band
beams (NBB), the secondary particles are first momentum-selected to produce a monochromatic parent beam. Another approach to generate
a narrow-band neutrino spectrum is to select neutrinos that are emitted off-axis relative to the momentum of the parent mesons. For a
comprehensive review of the topic, including other historical neutrino beam lines, see the article by S. E. Kopp, “Accelerator-based neutrino
beams,” Phys. Rept. 439, 101 (2007).

PS
(CERN)

SPS
(CERN)

PS
(KEK)

Main Ring
(JPARC)

Date 1963 1969 1972 1983 1977 1977 1995 2006 1999 2017

Proton Kinetic
Energy (GeV)

20.6 20.6 26 19 350 350 450 400 12 30
(50)

Protons per
Cycle (1012)

0.7 0.6 5 5 10 10 36 48 6 240
(330)

Cycle Time
(s)

3 2.3 - - - - 14.4 6 2.2 2.48
(3.5)

Beam Power
(kW)

0.8 0.9 - - - - 180 510 5 500
(750)

Target - - - - - - Be Graphite Al Graphite

Target Length
(cm)

- - - - - - 290 1000 66 91

Secondary
Focussing

1-horn
WBB

3-horn
WBB

2-horn
WBB

bare
target

dichromatic
NBB

2-horn
WBB

2-horn
WBB

2-horn
WBB

2-horn
WBB

3-horn
off-axis

Decay Pipe
Length (m)

- - - - - - 110 130 200 96

〈Eν〉 (GeV) 1.5 1.5 1.5 1 50,150† 20 24.3 17 1.3 0.6

Experiments HLBC,
Spark Ch.

HLBC,
Spark Ch.

GGM,
Aachen-

CDHS,
CHARM

CDHS,
CHARM,

GGM,CDHS,
CHARM,

NOMAD,
CHORUS

OPERA,
ICARUS K2K T2K

Padova BEBC BEBC

Main Ring
(Fermilab)

Booster
(Fermilab)

Main Injector
(Fermilab)

Date 1975 1975 1974 1979 1976 1991 1998 2002 2005 2017

Proton Kinetic
Energy (GeV)

300,400 300,400 300 400 350 800 800 8 120 120

Protons per
Cycle (1012)

10 10 10 10 13 10 12 4.5 37 54

Cycle Time
(s)

- - - - - 60 60 0.2 2 1.333

Beam Power
(kW)

- - - - - 20 25 29 350 720

Target - - - - - - BeO Be Graphite Graphite

Target Length
(cm)

- - - - - - 31 71 95 120

Secondary
Focussing

bare
target

quad trip.,
SSBT

dichromatic
NBB

2-horn
WBB

1-horn
WBB

quad
trip.

SSQT
WBB

1-horn
WBB

2-horn
WBB

2-horn
off-axis

Decay Pipe
Length (m)

350 350 400 400 400 400 400 50 675 675

〈Eν〉 (GeV) 40 50,180† 50,180† 25 100 90,260 70,180 1 3-20‡ 2

Experiments

HPWF
CITF,
HPWF

CITF,
HPWF, 15’ BC

HPWF
15’ BC

15’ BC,
CCFRR NuTeV

MiniBooNE,
SciBooNE,

MINOS,
MINERνA

NOνA,
MINERνA,

15’ BC MicroBooNE MINOS+

†Pion and kaon peaks in the momentum-selected channel. ‡Tunable WBB energy spectrum.
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Revised August 2015 by H. Bichsel (University of Washington), D.E.
Groom (LBNL), and S.R. Klein (LBNL).

This review covers the interactions of photons and electrically
charged particles in matter, concentrating on energies of interest
for high-energy physics and astrophysics and processes of interest
for particle detectors (ionization, Cherenkov radiation, transition
radiation). Much of the focus is on particles heavier than electrons
(π±, p, etc.). Although the charge number z of the projectile is
included in the equations, only z = 1 is discussed in detail. Muon
radiative losses are discussed, as are photon/electron interactions at
high to ultrahigh energies. Neutrons are not discussed.

33.1. Notation

The notation and important numerical values are shown in
Table 33.1.

Table 33.1: Summary of variables used in this section.
The kinematic variables β and γ have their usual relativistic
meanings.

Symbol Definition Value or (usual) units

mec
2 electron mass × c2 0.510 998 9461(31) MeV

re classical electron radius

e2/4πǫ0mec
2 2.817 940 3227(19) fm

α fine structure constant

e2/4πǫ0~c 1/137.035 999 139(31)

NA Avogadro’s number 6.022 140 857(74)× 1023 mol−1

ρ density g cm−3

x mass per unit area g cm−2

M incident particle mass MeV/c2

E incident part. energy γMc2 MeV

T kinetic energy, (γ − 1)Mc2 MeV

W energy transfer to an electron MeV

in a single collision

k bremsstrahlung photon energy MeV

z charge number of incident particle

Z atomic number of absorber

A atomic mass of absorber g mol−1

K 4πNAr
2
emec

2 0.307 075 MeV mol−1 cm2

(Coefficient for dE/dx)

I mean excitation energy eV (Nota bene!)

δ(βγ) density effect correction to ionization energy loss

~ωp plasma energy
√
ρ 〈Z/A〉 × 28.816 eV√

4πNer3e mec
2/α |−→ ρ in g cm−3

Ne electron density (units of re)
−3

wj weight fraction of the jth element in a compound or mixture

nj ∝ number of jth kind of atoms in a compound or mixture

X0 radiation length g cm−2

Ec critical energy for electrons MeV

Eµc critical energy for muons GeV

Es scale energy
√
4π/α mec

2 21.2052 MeV

RM Molière radius g cm−2

33.2. Electronic energy loss by heavy particles [1–33]

33.2.1. Moments and cross sections :

The electronic interactions of fast charged particles with speed
v = βc occur in single collisions with energy losses W [1], leading to
ionization, atomic, or collective excitation. Most frequently the energy
losses are small (for 90% of all collisions the energy losses are less than
100 eV). In thin absorbers few collisions will take place and the total
energy loss will show a large variance [1]; also see Sec. 33.2.9 below.
For particles with charge ze more massive than electrons (“heavy”
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particles), scattering from free electrons is adequately described by
the Rutherford differential cross section [2],

dσR(W ;β)

dW
=

2πr2emec
2z2

β2
(1− β2W/Wmax)

W 2
, (33.1)

where Wmax is the maximum energy transfer possible in a single
collision. But in matter electrons are not free. W must be finite and
depends on atomic and bulk structure. For electrons bound in atoms
Bethe [3] used “Born Theorie” to obtain the differential cross section

dσB(W ;β)

dW
=

dσR(W,β)

dW
B(W ) . (33.2)

Electronic binding is accounted for by the correction factor B(W ).
Examples of B(W ) and dσB/dW can be seen in Figs. 5 and 6 of
Ref. 1.

Bethe’s theory extends only to some energy above which atomic
effects are not important. The free-electron cross section (Eq. (33.1))
can be used to extend the cross section to Wmax. At high energies σB
is further modified by polarization of the medium, and this “density
effect,” discussed in Sec. 33.2.5, must also be included. Less important
corrections are discussed below.

The mean number of collisions with energy loss between W and
W + dW occurring in a distance δx is Neδx (dσ/dW )dW , where
dσ(W ;β)/dW contains all contributions. It is convenient to define the
moments

Mj(β) = Ne δx

∫
W j dσ(W ;β)

dW
dW , (33.3)

so that M0 is the mean number of collisions in δx, M1 is the mean
energy loss in δx, (M2 − M1)

2 is the variance, etc. The number of
collisions is Poisson-distributed with mean M0. Ne is either measured
in electrons/g (Ne = NAZ/A) or electrons/cm3 (Ne = NA ρZ/A).
The former is used throughout this chapter, since quantities of interest
(dE/dx, X0, etc.) vary smoothly with composition when there is no
density dependence.
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Fig. 33.1: Mass stopping power (= 〈−dE/dx〉) for positive muons in copper as a
function of βγ = p/Mc over nine orders of magnitude in momentum (12 orders of
magnitude in kinetic energy). Solid curves indicate the total stopping power. Data
below the break at βγ ≈ 0.1 are taken from ICRU 49 [4], and data at higher energies
are from Ref. 5. Vertical bands indicate boundaries between different approximations
discussed in the text. The short dotted lines labeled “µ− ” illustrate the “Barkas
effect,” the dependence of stopping power on projectile charge at very low energies [6].
dE/dx in the radiative region is not simply a function of β.

33.2.2. Maximum energy transfer in a single collision :

For a particle with mass M ,

Wmax =
2mec

2 β2γ2

1 + 2γme/M + (me/M)2
. (33.4)

In older references [2,8] the “low-energy” approximation Wmax =
2mec

2 β2γ2, valid for 2γme ≪ M , is often implicit. For a pion in

copper, the error thus introduced into dE/dx is greater than 6% at
100 GeV. For 2γme ≫ M , Wmax = Mc2 β2γ.

At energies of order 100 GeV, the maximum 4-momentum transfer
to the electron can exceed 1 GeV/c, where hadronic structure
effects significantly modify the cross sections. This problem has been
investigated by J.D. Jackson [9], who concluded that for hadrons (but
not for large nuclei) corrections to dE/dx are negligible below energies
where radiative effects dominate. While the cross section for rare hard
collisions is modified, the average stopping power, dominated by many
softer collisions, is almost unchanged.

33.2.3. Stopping power at intermediate energies :

The mean rate of energy loss by moderately relativistic charged
heavy particles is well-described by the “Bethe equation,”〈

−dE

dx

〉
= Kz2

Z

A

1

β2

[
1

2
ln

2mec
2β2γ2Wmax

I2
− β2 − δ(βγ)

2

]
.

(33.5)
It describes the mean rate of energy loss in the region 0.1 <∼ βγ <∼ 1000
for intermediate-Z materials with an accuracy of a few percent.

This is the mass stopping power ; with the symbol definitions and
values given in Table 33.1, the units are MeV g−1cm2. As can be seen
from Fig. 33.2, 〈−dE/dx〉 defined in this way is about the same for
most materials, decreasing slowly with Z. The linear stopping power,
in MeV/cm, is 〈−dE/dx〉 ρ, where ρ is the density in g/cm3.

Wmax is defined in Sec. 33.2.2. At the lower limit the projec-
tile velocity becomes comparable to atomic electron “velocities”
(Sec. 33.2.6), and at the upper limit radiative effects begin to
be important (Sec. 33.6). Both limits are Z dependent. A minor
dependence on M at the highest energies is introduced through Wmax,
but for all practical purposes 〈dE/dx〉 in a given material is a function
of β alone.

Few concepts in high-energy physics are as misused as 〈dE/dx〉.
The main problem is that the mean is weighted by very rare events

with large single-collision energy deposits. Even with samples of
hundreds of events a dependable value for the mean energy loss
cannot be obtained. Far better and more easily measured is the most
probable energy loss, discussed in Sec. 33.2.9. The most probable
energy loss in a detector is considerably below the mean given by the
Bethe equation.

In a TPC (Sec. 34.6.5), the mean of 50%–70% of the samples
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with the smallest signals is often used as an estimator. Although
it must be used with cautions and caveats, 〈dE/dx〉 as described
in Eq. (33.5) still forms the basis of much of our understanding of
energy loss by charged particles. Extensive tables are available [4,5,
pdg.lbl.gov/AtomicNuclearProperties/].

For heavy projectiles, like ions, additional terms are required to
account for higher-order photon coupling to the target, and to account
for the finite target radius. These can change dE/dx by a factor of
two or more for the heaviest nuclei in certain kinematic regimes [7].
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Figure 33.2: Mean energy loss rate in liquid (bubble chamber)
hydrogen, gaseous helium, carbon, aluminum, iron, tin, and lead.
Radiative effects, relevant for muons and pions, are not included.
These become significant for muons in iron for βγ >∼ 1000, and at
lower momenta for muons in higher-Z absorbers. See Fig. 33.23.

The function as computed for muons on copper is shown as the
“Bethe” region of Fig. 33.1. Mean energy loss behavior below this
region is discussed in Sec. 33.2.6, and the radiative effects at high
energy are discussed in Sec. 33.6. Only in the Bethe region is it
a function of β alone; the mass dependence is more complicated
elsewhere. The stopping power in several other materials is shown in
Fig. 33.2. Except in hydrogen, particles with the same velocity have
similar rates of energy loss in different materials, although there is
a slow decrease in the rate of energy loss with increasing Z. The
qualitative behavior difference at high energies between a gas (He in
the figure) and the other materials shown in the figure is due to the
density-effect correction, δ(βγ), discussed in Sec. 33.2.5. The stopping
power functions are characterized by broad minima whose position
drops from βγ = 3.5 to 3.0 as Z goes from 7 to 100. The values of
minimum ionization as a function of atomic number are shown in
Fig. 33.3.

In practical cases, most relativistic particles (e.g., cosmic-ray
muons) have mean energy loss rates close to the minimum; they are
“minimum-ionizing particles,” or mip’s.

Eq. (33.5) may be integrated to find the total (or partial)
“continuous slowing-down approximation” (CSDA) range R for a
particle which loses energy only through ionization and atomic
excitation. Since dE/dx depends only on β, R/M is a function
of E/M or pc/M . In practice, range is a useful concept only for
low-energy hadrons (R <∼ λI , where λI is the nuclear interaction
length), and for muons below a few hundred GeV (above which
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Figure 33.3: Mass stopping power at minimum ionization for
the chemical elements. The straight line is fitted for Z > 6. A
simple functional dependence on Z is not to be expected, since
〈−dE/dx〉 also depends on other variables.
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Figure 33.4: Range of heavy charged particles in liquid (bubble
chamber) hydrogen, helium gas, carbon, iron, and lead. For
example: For a K+ whose momentum is 700 MeV/c, βγ = 1.42.
For lead we read R/M ≈ 396, and so the range is 195 g cm−2

(17 cm).

radiative effects dominate). R/M as a function of βγ = p/Mc is
shown for a variety of materials in Fig. 33.4.

The mass scaling of dE/dx and range is valid for the electronic
losses described by the Bethe equation, but not for radiative losses,
relevant only for muons and pions.
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Figure 33.5: Mean excitation energies (divided by Z) as
adopted by the ICRU [11]. Those based on experimental
measurements are shown by symbols with error flags; the
interpolated values are simply joined. The grey point is for
liquid H2; the black point at 19.2 eV is for H2 gas. The open
circles show more recent determinations by Bichsel [13]. The
dash-dotted curve is from the approximate formula of Barkas [14]
used in early editions of this Review.

33.2.4. Mean excitation energy :

“The determination of the mean excitation energy is the principal
non-trivial task in the evaluation of the Bethe stopping-power
formula” [10]. Recommended values have varied substantially with
time. Estimates based on experimental stopping-power measurements
for protons, deuterons, and alpha particles and on oscillator-
strength distributions and dielectric-response functions were given
in ICRU 49 [4]. See also ICRU 37 [11]. These values, shown in
Fig. 33.5, have since been widely used. Machine-readable versions can
also be found [12].

33.2.5. Density effect :

As the particle energy increases, its electric field flattens and
extends, so that the distant-collision contribution to Eq. (33.5)
increases as lnβγ. However, real media become polarized, limiting the
field extension and effectively truncating this part of the logarithmic
rise [2–8,15–16]. At very high energies,

δ/2 → ln(~ωp/I) + lnβγ − 1/2 , (33.6)

where δ(βγ)/2 is the density effect correction introduced in Eq. (33.5)
and ~ωp is the plasma energy defined in Table 33.1. A comparison
with Eq. (33.5) shows that |dE/dx| then grows as lnβγ rather than
lnβ2γ2, and that the mean excitation energy I is replaced by the
plasma energy ~ωp. The ionization stopping power as calculated with
and without the density effect correction is shown in Fig. 33.1. Since
the plasma frequency scales as the square root of the electron density,
the correction is much larger for a liquid or solid than for a gas, as is
illustrated by the examples in Fig. 33.2.

The density effect correction is usually computed using Stern-
heimer’s parameterization [15]:

δ(βγ) =





2(ln 10)x− C if x ≥ x1;
2(ln 10)x− C + a(x1 − x)k if x0 ≤ x < x1;
0 if x < x0 (nonconductors);

δ010
2(x−x0) if x < x0 (conductors)

(33.7)
Here x = log10 η = log10(p/Mc). C (the negative of the C used in
Ref. 15) is obtained by equating the high-energy case of Eq. (33.7) with
the limit given in Eq. (33.6). The other parameters are adjusted to
give a best fit to the results of detailed calculations for momenta below
Mc exp(x1). Parameters for elements and nearly 200 compounds and
mixtures of interest are published in a variety of places, notably in
Ref. 16. A recipe for finding the coefficients for nontabulated materials
is given by Sternheimer and Peierls [17], and is summarized in Ref. 5.

The remaining relativistic rise comes from the β2γ growth of Wmax,
which in turn is due to (rare) large energy transfers to a few electrons.
When these events are excluded, the energy deposit in an absorbing
layer approaches a constant value, the Fermi plateau (see Sec. 33.2.8
below). At even higher energies (e.g., > 332 GeV for muons in iron,
and at a considerably higher energy for protons in iron), radiative
effects are more important than ionization losses. These are especially
relevant for high-energy muons, as discussed in Sec. 33.6.

33.2.6. Energy loss at low energies :

Shell corrections C/Z must be included in the square brackets of
of Eq. (33.5) [4,11,13,14] to correct for atomic binding having been
neglected in calculating some of the contributions to Eq. (33.5). The
Barkas form [14] was used in generating Fig. 33.1. For copper it
contributes about 1% at βγ = 0.3 (kinetic energy 6 MeV for a pion),
and the correction decreases very rapidly with increasing energy.

Equation 33.2, and therefore Eq. (33.5), are based on a first-order
Born approximation. Higher-order corrections, again important only
at lower energies, are normally included by adding the “Bloch
correction” z2L2(β) inside the square brackets (Eq.(2.5) in [4]) .

An additional “Barkas correction” zL1(β) reduces the stopping
power for a negative particle below that for a positive particle with
the same mass and velocity. In a 1956 paper, Barkas et al. noted that
negative pions had a longer range than positive pions [6]. The effect
has been measured for a number of negative/positive particle pairs,
including a detailed study with antiprotons [18].

A detailed discussion of low-energy corrections to the Bethe formula
is given in ICRU 49 [4]. When the corrections are properly included,
the Bethe treatment is accurate to about 1% down to β ≈ 0.05, or
about 1 MeV for protons.

For 0.01 < β < 0.05, there is no satisfactory theory. For protons,
one usually relies on the phenomenological fitting formulae developed
by Andersen and Ziegler [4,19]. As tabulated in ICRU 49 [4],
the nuclear plus electronic proton stopping power in copper is
113 MeV cm2 g−1 at T = 10 keV (βγ = 0.005), rises to a maximum
of 210 MeV cm2 g−1 at T ≈ 120 keV (βγ = 0.016), then falls to
118 MeV cm2 g−1 at T = 1 MeV (βγ = 0.046). Above 0.5–1.0 MeV
the corrected Bethe theory is adequate.

For particles moving more slowly than ≈ 0.01c (more or less
the velocity of the outer atomic electrons), Lindhard has been
quite successful in describing electronic stopping power, which is
proportional to β [20]. Finally, we note that at even lower energies,
e.g., for protons of less than several hundred eV, non-ionizing nuclear
recoil energy loss dominates the total energy loss [4,20,21].

33.2.7. Energetic knock-on electrons (δ rays) :

The distribution of secondary electrons with kinetic energies T ≫ I
is [2]

d2N

dTdx
=

1

2
Kz2

Z

A

1

β2
F (T )

T 2
(33.8)

for I ≪ T ≤ Wmax, where Wmax is given by Eq. (33.4). Here
β is the velocity of the primary particle. The factor F is spin-
dependent, but is about unity for T ≪ Wmax. For spin-0 particles
F (T ) = (1 − β2T/Wmax); forms for spins 1/2 and 1 are also given by
Rossi [2]( Sec. 2.3, Eqns. 7 and 8). Additional formulae are given in
Ref. 22. Equation (33.8) is inaccurate for T close to I [23].

δ rays of even modest energy are rare. For a β ≈ 1 particle, for
example, on average only one collision with Te > 10 keV will occur
along a path length of 90 cm of Ar gas [1].

A δ ray with kinetic energy Te and corresponding momentum pe is
produced at an angle θ given by

cos θ = (Te/pe)(pmax/Wmax) , (33.9)

where pmax is the momentum of an electron with the maximum
possible energy transfer Wmax.
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33.2.8. Restricted energy

loss rates for relativistic ionizing particles : Further insight
can be obtained by examining the mean energy deposit by an ionizing
particle when energy transfers are restricted to T ≤ Wcut ≤ Wmax.
The restricted energy loss rate is

−dE

dx

∣∣∣∣
T<Wcut

= Kz2
Z

A

1

β2

[
1

2
ln

2mec
2β2γ2Wcut

I2

−β2

2

(
1 +

Wcut

Wmax

)
− δ

2

]
. (33.10)

This form approaches the normal Bethe function (Eq. (33.5)) as
Wcut → Wmax. It can be verified that the difference between
Eq. (33.5) and Eq. (33.10) is equal to

∫Wmax
Wcut

T (d2N/dTdx)dT , where

d2N/dTdx is given by Eq. (33.8).

Landau/Vavilov/Bichsel ∆p/x for :

Bethe

Tcut = 10 dE/dx|min
Tcut  =  2 dE/dx|min

Restricted energy loss for :
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Figure 33.6: Bethe dE/dx, two examples of restricted energy
loss, and the Landau most probable energy per unit thickness
in silicon. The change of ∆p/x with thickness x illustrates
its a lnx + b dependence. Minimum ionization (dE/dx|min) is
1.664 MeV g−1 cm2. Radiative losses are excluded. The incident
particles are muons.

Since Wcut replaces Wmax in the argument of the logarithmic
term of Eq. (33.5), the βγ term producing the relativistic rise in
the close-collision part of dE/dx is replaced by a constant, and
|dE/dx|T<Wcut

approaches the constant “Fermi plateau.” (The
density effect correction δ eliminates the explicit βγ dependence
produced by the distant-collision contribution.) This behavior is
illustrated in Fig. 33.6, where restricted loss rates for two examples
of Wcut are shown in comparison with the full Bethe dE/dx and
the Landau-Vavilov most probable energy loss (to be discussed in
Sec. 33.2.9 below).

“Restricted energy loss” is cut at the total mean energy, not the
single-collision energy above Wcut It is of limited use. The most
probable energy loss, discussed in the next Section, is far more useful
in situations where single-particle energy loss is observed.

33.2.9. Fluctuations in energy loss :

For detectors of moderate thickness x (e.g. scintillators or
LAr cells),* the energy loss probability distribution f(∆;βγ, x) is
adequately described by the highly-skewed Landau (or Landau-
Vavilov) distribution [24,25]. The most probable energy loss is [26]
†

∆p = ξ

[
ln

2mc2β2γ2

I
+ ln

ξ

I
+ j − β2 − δ(βγ)

]
, (33.11)

* “Moderate thickness” means G <∼ 0.05–0.1, where G is given by
Rossi [Ref. 2, Eq. 2.7(10)]. It is Vavilov’s κ [25]. G is proportional to
the absorber’s thickness, and as such parameterizes the constants de-
scribing the Landau distribution. These are fairly insensitive to thick-
ness for G <∼ 0.1, the case for most detectors.

† Practical calculations can be expedited by using the tables of δ and
β from the text versions of the muon energy loss tables to be found at
pdg.lbl.gov/AtomicNuclearProperties.

where ξ = (K/2) 〈Z/A〉 z2(x/β2) MeV for a detector with a thickness
x in g cm−2, and j = 0.200 [26]. ‡ While dE/dx is independent of
thickness, ∆p/x scales as a lnx+ b. The density correction δ(βγ) was
not included in Landau’s or Vavilov’s work, but it was later included
by Bichsel [26]. The high-energy behavior of δ(βγ) (Eq. (33.6)) is
such that

∆p −→
βγ>∼100

ξ

[
ln

2mc2ξ

(~ωp)2
+ j

]
. (33.12)

Thus the Landau-Vavilov most probable energy loss, like the restricted
energy loss, reaches a Fermi plateau. The Bethe dE/dx and Landau-
Vavilov-Bichsel ∆p/x in silicon are shown as a function of muon
energy in Fig. 33.6. The energy deposit in the 1600 µm case is roughly
the same as in a 3 mm thick plastic scintillator.
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Figure 33.7: Electronic energy deposit distribution for a
10 GeV muon traversing 1.7 mm of silicon, the stopping power
equivalent of about 0.3 cm of PVT-based scintillator [1,13,28].
The Landau-Vavilov function (dot-dashed) uses a Rutherford
cross section without atomic binding corrections but with a
kinetic energy transfer limit of Wmax. The solid curve was
calculated using Bethe-Fano theory. M0(∆) and M1(∆) are
the cumulative 0th moment (mean number of collisions) and
1st moment (mean energy loss) in crossing the silicon. (See
Sec. 33.2.1. The fwhm of the Landau-Vavilov function is about
4ξ for detectors of moderate thickness. ∆p is the most probable
energy loss, and 〈∆〉 divided by the thickness is the Bethe
〈dE/dx〉.

The distribution function for the energy deposit by a 10 GeV
muon going through a detector of about this thickness is shown in
Fig. 33.7. In this case the most probable energy loss is 62% of the
mean (M1(〈∆〉)/M1(∞)). Folding in experimental resolution displaces
the peak of the distribution, usually toward a higher value. 90% of
the collisions (M1(〈∆〉)/M1(∞)) contribute to energy deposits below
the mean. It is the very rare high-energy-transfer collisions, extending
to Wmax at several GeV, that drives the mean into the tail of the
distribution. The large weight of these rare events makes the mean
of an experimental distribution consisting of a few hundred events
subject to large fluctuations and sensitive to cuts. The mean of the
energy loss given by the Bethe equation, Eq. (33.5), is thus ill-defined
experimentally and is not useful for describing energy loss by single
particles.♮ It rises as ln γ because Wmax increases as γ at high energies.
The most probable energy loss should be used.

A practical example: For muons traversing 0.25 inches (0.64 cm)
of PVT (polyvinyltolulene) based plastic scintillator, the ratio of the

‡ Rossi [2], Talman [27], and others give somewhat different values
for j. The most probable loss is not sensitive to its value.

♮ It does find application in dosimetry, where only bulk deposit is
relevant.


