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Figure 33.8: Straggling functions in silicon for 500 MeV pions,
normalized to unity at the most probable value ∆p/x. The width
w is the full width at half maximum.

most probable E loss rate to the mean loss rate via the Bethe equation
is [0.69, 0.57, 0.49, 0.42, 0.38] for Tµ = [0.01, 0.1, 1, 10, 100] GeV.
Radiative losses add less than 0.5% to the total mean energy deposit
at 10 GeV, but add 7% at 100 GeV. The most probable E loss rate
rises slightly beyond the minimum ionization energy, then is essentially
constant.

The Landau distribution fails to describe energy loss in thin
absorbers such as gas TPC cells [1] and Si detectors [26], as
shown clearly in Fig. 1 of Ref. 1 for an argon-filled TPC cell. Also
see Talman [27]. While ∆p/x may be calculated adequately with
Eq. (33.11), the distributions are significantly wider than the Landau
width w = 4ξ [Ref. 26, Fig. 15]. Examples for 500 MeV pions incident
on thin silicon detectors are shown in Fig. 33.8. For very thick
absorbers the distribution is less skewed but never approaches a
Gaussian.

The most probable energy loss, scaled to the mean loss at minimum
ionization, is shown in Fig. 33.9 for several silicon detector thicknesses.
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33.2.10. Energy loss in mixtures and compounds :

A mixture or compound can be thought of as made up of thin
layers of pure elements in the right proportion (Bragg additivity). In
this case, 〈

dE

dx

〉
=

∑
wj

〈
dE

dx

〉

j
, (33.13)

where dE/dx|j is the mean rate of energy loss (in MeV g cm−2)
in the jth element. Eq. (33.5) can be inserted into Eq. (33.13) to
find expressions for 〈Z/A〉, 〈I 〉, and 〈δ〉; for example, 〈Z/A〉 =∑

wjZj/Aj =
∑

njZj/
∑

njAj . However, 〈I 〉 as defined this way is

an underestimate, because in a compound electrons are more tightly
bound than in the free elements, and 〈δ〉 as calculated this way has little
relevance, because it is the electron density that matters. If possible,
one uses the tables given in Refs. 16 and 29, that include effective exci-
tation energies and interpolation coefficients for calculating the density
effect correction for the chemical elements and nearly 200 mixtures and
compounds. Otherwise, use the recipe for δ given in Ref. 5 and 17, and
calculate 〈I〉 following the discussion in Ref. 10. (Note the “13%” rule!)

33.2.11. Ionization yields :

Physicists frequently relate total energy loss to the number of
ion pairs produced near the particle’s track. This relation becomes
complicated for relativistic particles due to the wandering of energetic
knock-on electrons whose ranges exceed the dimensions of the fiducial
volume. For a qualitative appraisal of the nonlocality of energy
deposition in various media by such modestly energetic knock-on
electrons, see Ref. 30. The mean local energy dissipation per local
ion pair produced, W , while essentially constant for relativistic
particles, increases at slow particle speeds [31]. For gases, W can be
surprisingly sensitive to trace amounts of various contaminants [31].
Furthermore, ionization yields in practical cases may be greatly
influenced by such factors as subsequent recombination [32].

33.3. Multiple scattering through small angles
A charged particle traversing a medium is deflected by many small-

angle scatters. Most of this deflection is due to Coulomb scattering
from nuclei as described by the Rutherford cross section. (However,
for hadronic projectiles, the strong interactions also contribute to
multiple scattering.) For many small-angle scatters the net scattering
and displacement distributions are Gaussian via the central limit
theorem. Less frequent “hard” scatters produce non-Gaussian tails.
These Coulomb scattering distributions are well-represented by the
theory of Molière [34]. Accessible discussions are given by Rossi [2]
and Jackson [33], and exhaustive reviews have been published
by Scott [35] and Motz et al. [36]. Experimental measurements
have been published by Bichsel [37]( low energy protons) and by
Shen et al. [38]( relativistic pions, kaons, and protons).*

If we define

θ0 = θ rms
plane =

1√
2
θrms
space , (33.14)

then it is sufficient for many applications to use a Gaussian approxi-
mation for the central 98% of the projected angular distribution, with
an rms width given by Lynch & Dahl [39]:

θ0 =
13.6 MeV

βcp
z

√
x

X0

[
1 + 0.088 log10(

x z2

X0β2
)

]

=
13.6 MeV

βcp
z

√
x

X0

[
1 + 0.038 ln(

x z2

X0β2
)

]
(33.15)

Here p, βc, and z are the momentum, velocity, and charge number
of the incident particle, and x/X0 is the thickness of the scattering
medium in radiation lengths (defined below). This takes into account
the p and z dependence quite well at small Z, but for large Z and small
x the β-dependence is not well represented. Further improvements are
discussed in Ref. 39.

Eq. (33.15) describes scattering from a single material, while the
usual problem involves the multiple scattering of a particle traversing
many different layers and mixtures. Since it is from a fit to a Molière
distribution, it is incorrect to add the individual θ0 contributions in
quadrature; the result is systematically too small. It is much more
accurate to apply Eq. (33.15) once, after finding x and X0 for the
combined scatterer.

The nonprojected (space) and projected (plane) angular distribu-
tions are given approximately by [34]

1

2π θ20
exp


−

θ2space

2θ20


 dΩ , (33.16)

1√
2π θ0

exp


−

θ2plane

2θ20


 dθplane , (33.17)

* Shen et al.’s measurements show that Bethe’s simpler methods of
including atomic electron effects agrees better with experiment than
does Scott’s treatment.
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Figure 33.10: Quantities used to describe multiple Coulomb
scattering. The particle is incident in the plane of the figure.

where θ is the deflection angle. In this approximation, θ2space ≈
(θ2plane,x + θ2plane,y), where the x and y axes are orthogonal to the

direction of motion, and dΩ ≈ dθplane,x dθplane,y. Deflections into
θplane,x and θplane,y are independent and identically distributed.

Fig. 33.10 shows these and other quantities sometimes used to
describe multiple Coulomb scattering. They are

ψ rms
plane =

1√
3
θ rms
plane =

1√
3
θ0 , (33.18)

y rms
plane =

1√
3
x θ rms

plane =
1√
3
x θ0 , (33.19)

s rms
plane =

1

4
√
3
x θ rms

plane =
1

4
√
3
x θ0 . (33.20)

All the quantitative estimates in this section apply only in the limit
of small θ rms

plane and in the absence of large-angle scatters. The random

variables s, ψ, y, and θ in a given plane are correlated. Obviously,
y ≈ xψ. In addition, y and θ have the correlation coefficient ρyθ =√
3/2 ≈ 0.87. For Monte Carlo generation of a joint (y plane, θplane)

distribution, or for other calculations, it may be most convenient to
work with independent Gaussian random variables (z1, z2) with mean
zero and variance one, and then set

yplane =z1 x θ0(1− ρ2yθ)
1/2/

√
3 + z2 ρyθx θ0/

√
3 (33.21)

=z1 x θ0/
√
12 + z2 x θ0/2 ; (33.22)

θplane =z2 θ0 . (33.23)

Note that the second term for y plane equals x θplane/2 and represents
the displacement that would have occurred had the deflection θplane
all occurred at the single point x/2.

For heavy ions the multiple Coulomb scattering has been measured
and compared with various theoretical distributions [40].

33.4. Photon and electron interactions in matter

At low energies electrons and positrons primarily lose energy
by ionization, although other processes (Møller scattering, Bhabha
scattering, e+ annihilation) contribute, as shown in Fig. 33.11. While
ionization loss rates rise logarithmically with energy, bremsstrahlung
losses rise nearly linearly (fractional loss is nearly independent of
energy), and dominates above the critical energy (Sec. 33.4.4 below),
a few tens of MeV in most materials

33.4.1. Collision energy losses by e± :

Stopping power differs somewhat for electrons and positrons, and
both differ from stopping power for heavy particles because of the
kinematics, spin, charge, and the identity of the incident electron with
the electrons that it ionizes. Complete discussions and tables can be
found in Refs. 10, 11, and 29.

For electrons, large energy transfers to atomic electrons (taken as
free) are described by the Møller cross section. From Eq. (33.4), the
maximum energy transfer in a single collision should be the entire
kinetic energy, Wmax = mec

2(γ − 1), but because the particles are
identical, the maximum is half this, Wmax/2. (The results are the
same if the transferred energy is ǫ or if the transferred energy is
Wmax − ǫ. The stopping power is by convention calculated for the
faster of the two emerging electrons.) The first moment of the Møller
cross section [22]( divided by dx) is the stopping power:

〈
−dE

dx

〉
=
1

2
K

Z

A

1

β2

[
ln

mec
2β2γ2{mec

2(γ − 1)/2}
I2

+(1− β2)− 2γ − 1

γ2
ln 2 +

1

8

(
γ − 1

γ

)2

− δ

]
(33.24)

The logarithmic term can be compared with the logarithmic term in
the Bethe equation (Eq. (33.2)) by substituting Wmax = mec

2(γ−1)/2.
The two forms differ by ln 2.

Electron-positron scattering is described by the fairly complicated
Bhabha cross section [22]. There is no identical particle problem, so
Wmax = mec

2(γ−1). The first moment of the Bhabha equation yields
〈
−dE

dx

〉
=
1

2
K

Z

A

1

β2

[
ln

mec
2β2γ2{mec

2(γ − 1)}
2I2

+2 ln 2− β2

12

(
23 +

14

γ + 1
+

10

(γ + 1)2
+

4

(γ + 1)3

)
− δ

]
.(33.25)

Following ICRU 37 [11], the density effect correction δ has been
added to Uehling’s equations [22] in both cases.

For heavy particles, shell corrections were developed assuming
that the projectile is equivalent to a perturbing potential whose
center moves with constant velocity. This assumption has no sound
theoretical basis for electrons. The authors of ICRU 37 [11] estimated
the possible error in omitting it by assuming the correction was twice
as great as for a proton of the same velocity. At T = 10 keV, the error
was estimated to be ≈2% for water, ≈9% for Cu, and ≈21% for Au.

As shown in Fig. 33.11, stopping powers for e−, e+, and heavy
particles are not dramatically different. In silicon, the minimum
value for electrons is 1.50 MeVcm2/g (at γ = 3.3); for positrons,
1.46 MeV cm2/g (at γ = 3.7), and for muons, 1.66 MeV cm2/g (at
γ = 3.58).

33.4.2. Radiation length :

High-energy electrons predominantly lose energy in matter by
bremsstrahlung, and high-energy photons by e+e− pair production.
The characteristic amount of matter traversed for these related
interactions is called the radiation length X0, usually measured in
g cm−2. It is both (a) the mean distance over which a high-energy
electron loses all but 1/e of its energy by bremsstrahlung, and (b) 7

9 of
the mean free path for pair production by a high-energy photon [41].
It is also the appropriate scale length for describing high-energy
electromagnetic cascades. X0 has been calculated and tabulated by
Y.S. Tsai [42]:

1

X0
= 4αr2e

NA

A

{
Z2[Lrad − f(Z)

]
+ Z L′

rad

}
. (33.26)

For A = 1 g mol−1, 4αr2eNA/A = (716.408 g cm−2)−1. Lrad and
L′
rad are given in Table 33.2. The function f(Z) is an infinite sum, but

for elements up to uranium can be represented to 4-place accuracy by

f(Z) =a2
[
(1 + a2)−1 + 0.20206

− 0.0369 a2 + 0.0083 a4 − 0.002 a6
]
,

(33.27)

where a = αZ [43].

Table 33.2: Tsai’s Lrad and L′
rad, for use in calculating the

radiation length in an element using Eq. (33.26).

Element Z Lrad L′
rad

H 1 5.31 6.144
He 2 4.79 5.621
Li 3 4.74 5.805
Be 4 4.71 5.924

Others > 4 ln(184.15Z−1/3) ln(1194Z−2/3)

The radiation length in a mixture or compound may be approxi-
mated by

1/X0 =
∑

wj/Xj , (33.28)

where wj and Xj are the fraction by weight and the radiation length
for the jth element.
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Figure 33.11: Fractional energy loss per radiation length in
lead as a function of electron or positron energy. Electron
(positron) scattering is considered as ionization when the energy
loss per collision is below 0.255 MeV, and as Møller (Bhabha)
scattering when it is above. Adapted from Fig. 3.2 from Messel
and Crawford, Electron-Photon Shower Distribution Function
Tables for Lead, Copper, and Air Absorbers, Pergamon Press,
1970. Messel and Crawford use X0(Pb) = 5.82 g/cm2, but
we have modified the figures to reflect the value given in the
Table of Atomic and Nuclear Properties of Materials (X0(Pb) =
6.37 g/cm2).

33.4.3. Bremsstrahlung energy loss by e± :

At very high energies and except at the high-energy tip of the
bremsstrahlung spectrum, the cross section can be approximated in
the “complete screening case” as [42]

dσ/dk = (1/k)4αr2e
{
(43 − 4

3y + y2)[Z2(Lrad − f(Z)) + Z L′
rad]

+ 1
9 (1− y)(Z2 + Z)

}
,

(33.29)
where y = k/E is the fraction of the electron’s energy transferred to
the radiated photon. At small y (the “infrared limit”) the term on the
second line ranges from 1.7% (low Z) to 2.5% (high Z) of the total.
If it is ignored and the first line simplified with the definition of X0

given in Eq. (33.26), we have

dσ

dk
=

A

X0NAk

(
4
3 − 4

3y + y2
)
. (33.30)

This cross section (times k) is shown by the top curve in Fig. 33.12.
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This formula is accurate except in near y = 1, where screening may
become incomplete, and near y = 0, where the infrared divergence
is removed by the interference of bremsstrahlung amplitudes from
nearby scattering centers (the LPM effect) [44,45] and dielectric
suppression [46,47]. These and other suppression effects in bulk
media are discussed in Sec. 33.4.6.

With decreasing energy (E <∼ 10 GeV) the high-y cross section
drops and the curves become rounded as y → 1. Curves of this familar
shape can be seen in Rossi [2] (Figs. 2.11.2,3); see also the review by
Koch & Motz [48].

Except at these extremes, and still in the complete-screening
approximation, the number of photons with energies between kmin
and kmax emitted by an electron travelling a distance d ≪ X0 is

Nγ =
d

X0

[
4

3
ln

(
kmax

kmin

)
− 4(kmax − kmin)

3E
+

k2max − k2min

2E2

]
.

(33.31)
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Figure 33.14: Electron critical energy for the chemical elements,
using Rossi’s definition [2]. The fits shown are for solids and
liquids (solid line) and gases (dashed line). The rms deviation
is 2.2% for the solids and 4.0% for the gases. (Computed with
code supplied by A. Fassó.)

33.4.4. Critical energy :

An electron loses energy by bremsstrahlung at a rate nearly
proportional to its energy, while the ionization loss rate varies only
logarithmically with the electron energy. The critical energy Ec is
sometimes defined as the energy at which the two loss rates are
equal [49]. Among alternate definitions is that of Rossi [2], who
defines the critical energy as the energy at which the ionization loss
per radiation length is equal to the electron energy. Equivalently,
it is the same as the first definition with the approximation
|dE/dx|brems ≈ E/X0. This form has been found to describe
transverse electromagnetic shower development more accurately (see
below). These definitions are illustrated in the case of copper in
Fig. 33.13.
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The accuracy of approximate forms for Ec has been limited by the
failure to distinguish between gases and solid or liquids, where there
is a substantial difference in ionization at the relevant energy because
of the density effect. We distinguish these two cases in Fig. 33.14.
Fits were also made with functions of the form a/(Z + b)α, but α
was found to be essentially unity. Since Ec also depends on A, I, and
other factors, such forms are at best approximate.

Values of Ec for both electrons and positrons in more than 300
materials can be found at pdg.lbl.gov/AtomicNuclearProperties.
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Figure 33.15: Photon total cross sections as a function of
energy in carbon and lead, showing the contributions of different
processes [50]:

σp.e. = Atomic photoelectric effect (electron ejection,
photon absorption)

σRayleigh = Rayleigh (coherent) scattering–atom neither
ionized nor excited

σCompton = Incoherent scattering (Compton scattering off an
electron)

κnuc = Pair production, nuclear field
κe = Pair production, electron field

σg.d.r. = Photonuclear interactions, most notably the Giant
Dipole Resonance [51]. In these interactions, the
target nucleus is broken up.

Original figures through the courtesy of John H. Hubbell
(NIST).

33.4.5. Energy loss by photons :

Contributions to the photon cross section in a light element
(carbon) and a heavy element (lead) are shown in Fig. 33.15. At low
energies it is seen that the photoelectric effect dominates, although
Compton scattering, Rayleigh scattering, and photonuclear absorption
also contribute. The photoelectric cross section is characterized by
discontinuities (absorption edges) as thresholds for photoionization
of various atomic levels are reached. Photon attenuation lengths
for a variety of elements are shown in Fig. 33.19, and data for
30 eV< k <100 GeV for all elements are available from the web pages
given in the caption. Here k is the photon energy.

Figure 33.16: Probability P that a photon interaction will
result in conversion to an e+e− pair. Except for a few-percent
contribution from photonuclear absorption around 10 or 20
MeV, essentially all other interactions in this energy range result
in Compton scattering off an atomic electron. For a photon
attenuation length λ (Fig. 33.19), the probability that a given
photon will produce an electron pair (without first Compton
scattering) in thickness t of absorber is P [1− exp(−t/λ)].
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attenuation are given in Fig. 33.11. Since coherent processes are included, not all these processes result in energy deposition. The data for
30 eV < E < 1 keV are obtained from http://www-cxro.lbl.gov/optical constants (courtesy of Eric M. Gullikson, LBNL). The data
for 1 keV < E < 100 GeV are from http://physics.nist.gov/PhysRefData, through the courtesy of John H. Hubbell (NIST).

The increasing domination of pair production as the energy
increases is shown in Fig. 33.16. Using approximations similar to
those used to obtain Eq. (33.30), Tsai’s formula for the differential
cross section [42] reduces to

dσ

dx
=

A

X0NA

[
1− 4

3x(1 − x)
]

(33.32)

in the complete-screening limit valid at high energies. Here x = E/k
is the fractional energy transfer to the pair-produced electron (or
positron), and k is the incident photon energy. The cross section is
very closely related to that for bremsstrahlung, since the Feynman
diagrams are variants of one another. The cross section is of necessity
symmetric between x and 1 − x, as can be seen by the solid curve in
Fig. 33.17. See the review by Motz, Olsen, & Koch for a more detailed
treatment [52].

Eq. (33.32) may be integrated to find the high-energy limit for the
total e+e− pair-production cross section:

σ = 7
9 (A/X0NA) . (33.33)

Equation Eq. (33.33) is accurate to within a few percent down to
energies as low as 1 GeV, particularly for high-Z materials.

33.4.6. Bremsstrahlung and pair production at very high en-
ergies :

At ultrahigh energies, Eqns. 33.29–33.33 will fail because of
quantum mechanical interference between amplitudes from different
scattering centers. Since the longitudinal momentum transfer to a
given center is small (∝ k/E(E − k), in the case of bremsstrahlung),
the interaction is spread over a comparatively long distance called
the formation length (∝ E(E − k)/k) via the uncertainty principle.
In alternate language, the formation length is the distance over
which the highly relativistic electron and the photon “split apart.”
The interference is usually destructive. Calculations of the “Landau-
Pomeranchuk-Migdal” (LPM) effect may be made semi-classically
based on the average multiple scattering, or more rigorously using a
quantum transport approach [44,45].

In amorphous media, bremsstrahlung is suppressed if the photon

energy k is less than E2/(E + ELPM ) [45], where*

ELPM =
(mec

2)2αX0

4π~cρ
= (7.7 TeV/cm)× X0

ρ
. (33.34)

Since physical distances are involved, X0/ρ, in cm, appears. The
energy-weighted bremsstrahlung spectrum for lead, k dσLPM/dk,
is shown in Fig. 33.12. With appropriate scaling by X0/ρ, other
materials behave similarly.

For photons, pair production is reduced for E(k − E) > kELPM .
The pair-production cross sections for different photon energies are
shown in Fig. 33.17.

If k ≪ E, several additional mechanisms can also produce
suppression. When the formation length is long, even weak factors
can perturb the interaction. For example, the emitted photon can
coherently forward scatter off of the electrons in the media. Because
of this, for k < ωpE/me ∼ 10−4, bremsstrahlung is suppressed
by a factor (kme/ωpE)2 [47]. Magnetic fields can also suppress
bremsstrahlung.

In crystalline media, the situation is more complicated, with
coherent enhancement or suppression possible. The cross section
depends on the electron and photon energies and the angles between
the particle direction and the crystalline axes [54].

33.4.7. Photonuclear and electronuclear interactions at still
higher energies :

At still higher photon and electron energies, where the bremsstrah-
lung and pair production cross-sections are heavily suppressed by the
LPM effect, photonuclear and electronuclear interactions predominate
over electromagnetic interactions.

At photon energies above about 1020 eV, for example, photons
usually interact hadronically. The exact cross-over energy depends
on the model used for the photonuclear interactions. These processes
are illustrated in Fig. 33.18. At still higher energies (>∼ 1023 eV),

* This definition differs from that of Ref. 53 by a factor of two.
ELPM scales as the 4th power of the mass of the incident particle, so
that ELPM = (1.4× 1010 TeV/cm)×X0/ρ for a muon.
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photonuclear interactions can become coherent, with the photon
interaction spread over multiple nuclei. Essentially, the photon
coherently converts to a ρ0, in a process that is somewhat similar to
kaon regeneration [55].

Similar processes occur for electrons. As electron energies increase
and the LPM effect suppresses bremsstrahlung, electronuclear
interactions become more important. At energies above 1021eV, these
electronuclear interactions dominate electron energy loss [55].

33.5. Electromagnetic cascades

When a high-energy electron or photon is incident on a thick
absorber, it initiates an electromagnetic cascade as pair production
and bremsstrahlung generate more electrons and photons with lower
energy. The longitudinal development is governed by the high-energy
part of the cascade, and therefore scales as the radiation length in the
material. Electron energies eventually fall below the critical energy,
and then dissipate their energy by ionization and excitation rather
than by the generation of more shower particles. In describing shower
behavior, it is therefore convenient to introduce the scale variables

t = x/X0 , y = E/Ec , (33.35)

so that distance is measured in units of radiation length and energy in
units of critical energy.

0.000

0.025

0.050

0.075

0.100

0.125

0

20

40

60

80

100

(1
/

E
0
)
d

E
/

d
t

t = depth in radiation lengths

N
u

m
b
e
r 

cr
o
ss

in
g
 p

la
n

e

30 GeV electron
incident on iron

Energy

Photons
× 1/6.8

Electrons

0 5 10 15 20

Figure 33.20: An EGS4 simulation of a 30 GeV electron-
induced cascade in iron. The histogram shows fractional energy
deposition per radiation length, and the curve is a gamma-
function fit to the distribution. Circles indicate the number of
electrons with total energy greater than 1.5 MeV crossing planes
at X0/2 intervals (scale on right) and the squares the number of
photons with E ≥ 1.5 MeV crossing the planes (scaled down to
have same area as the electron distribution).

Longitudinal profiles from an EGS4 [56] simulation of a 30 GeV
electron-induced cascade in iron are shown in Fig. 33.20. The number
of particles crossing a plane (very close to Rossi’s Π function [2])
is sensitive to the cutoff energy, here chosen as a total energy of
1.5 MeV for both electrons and photons. The electron number falls off
more quickly than energy deposition. This is because, with increasing
depth, a larger fraction of the cascade energy is carried by photons.
Exactly what a calorimeter measures depends on the device, but it
is not likely to be exactly any of the profiles shown. In gas counters
it may be very close to the electron number, but in glass Cherenkov
detectors and other devices with “thick” sensitive regions it is closer
to the energy deposition (total track length). In such detectors the
signal is proportional to the “detectable” track length Td, which is
in general less than the total track length T . Practical devices are
sensitive to electrons with energy above some detection threshold Ed,
and Td = T F (Ed/Ec). An analytic form for F (Ed/Ec) obtained by
Rossi [2] is given by Fabjan in Ref. 57; see also Amaldi [58].

The mean longitudinal profile of the energy deposition in an
electromagnetic cascade is reasonably well described by a gamma

distribution [59]:

dE

dt
= E0 b

(bt)a−1e−bt

Γ(a)
(33.36)

The maximum tmax occurs at (a− 1)/b. We have made fits to shower
profiles in elements ranging from carbon to uranium, at energies from
1 GeV to 100 GeV. The energy deposition profiles are well described
by Eq. (33.36) with

tmax = (a− 1)/b = 1.0× (ln y + Cj) , j = e, γ , (33.37)

where Ce = −0.5 for electron-induced cascades and Cγ = +0.5 for
photon-induced cascades. To use Eq. (33.36), one finds (a− 1)/b from
Eq. (33.37) and Eq. (33.35), then finds a either by assuming b ≈ 0.5
or by finding a more accurate value from Fig. 33.21. The results
are very similar for the electron number profiles, but there is some
dependence on the atomic number of the medium. A similar form for
the electron number maximum was obtained by Rossi in the context
of his “Approximation B,” [2] (see Fabjan’s review in Ref. 57), but
with Ce = −1.0 and Cγ = −0.5; we regard this as superseded by the
EGS4 result.
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Figure 33.21: Fitted values of the scale factor b for energy
deposition profiles obtained with EGS4 for a variety of elements
for incident electrons with 1 ≤ E0 ≤ 100 GeV. Values obtained
for incident photons are essentially the same.

The “shower length” Xs = X0/b is less conveniently parameterized,
since b depends upon both Z and incident energy, as shown in
Fig. 33.21. As a corollary of this Z dependence, the number of elec-
trons crossing a plane near shower maximum is underestimated using
Rossi’s approximation for carbon and seriously overestimated for ura-
nium. Essentially the same b values are obtained for incident electrons
and photons. For many purposes it is sufficient to take b ≈ 0.5.

The length of showers initiated by ultra-high energy photons and
electrons is somewhat greater than at lower energies since the first
or first few interaction lengths are increased via the mechanisms
discussed above.

The gamma function distribution is very flat near the origin, while
the EGS4 cascade (or a real cascade) increases more rapidly. As a
result Eq. (33.36) fails badly for about the first two radiation lengths;
it was necessary to exclude this region in making fits.

Because fluctuations are important, Eq. (33.36) should be used only
in applications where average behavior is adequate. Grindhammer
et al. have developed fast simulation algorithms in which the variance
and correlation of a and b are obtained by fitting Eq. (33.36) to
individually simulated cascades, then generating profiles for cascades
using a and b chosen from the correlated distributions [60].

The transverse development of electromagnetic showers in different
materials scales fairly accurately with the Molière radius RM , given
by [61,62]

RM = X0Es/Ec , (33.38)

where Es ≈ 21 MeV (Table 33.1), and the Rossi definition of Ec is
used.
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In a material containing a weight fraction wj of the element with
critical energy Ecj and radiation length Xj , the Molière radius is
given by

1

RM
=

1

Es

∑ wj Ecj

Xj
. (33.39)

Measurements of the lateral distribution in electromagnetic
cascades are shown in Refs. 61 and 62. On the average, only 10%
of the energy lies outside the cylinder with radius RM . About
99% is contained inside of 3.5RM , but at this radius and beyond
composition effects become important and the scaling with RM fails.
The distributions are characterized by a narrow core, and broaden as
the shower develops. They are often represented as the sum of two
Gaussians, and Grindhammer [60] describes them with the function

f(r) =
2r R2

(r2 +R2)2
, (33.40)

where R is a phenomenological function of x/X0 and lnE.
At high enough energies, the LPM effect (Sec. 33.4.6) reduces the

cross sections for bremsstrahlung and pair production, and hence can
cause significant elongation of electromagnetic cascades [45].

33.6. Muon energy loss at high energy
At sufficiently high energies, radiative processes become more

important than ionization for all charged particles. For muons and
pions in materials such as iron, this “critical energy” occurs at several
hundred GeV. (There is no simple scaling with particle mass, but
for protons the “critical energy” is much, much higher.) Radiative
effects dominate the energy loss of energetic muons found in cosmic
rays or produced at the newest accelerators. These processes are
characterized by small cross sections, hard spectra, large energy
fluctuations, and the associated generation of electromagnetic and (in
the case of photonuclear interactions) hadronic showers [63–71]. As
a consequence, at these energies the treatment of energy loss as a
uniform and continuous process is for many purposes inadequate.

It is convenient to write the average rate of muon energy loss
as [72]

−dE/dx = a(E) + b(E)E . (33.41)

Here a(E) is the ionization energy loss given by Eq. (33.5), and
b(E) is the sum of e+e− pair production, bremsstrahlung, and
photonuclear contributions. To the approximation that these slowly-
varying functions are constant, the mean range x0 of a muon with
initial energy E0 is given by

x0 ≈ (1/b) ln(1 +E0/Eµc) , (33.42)

where Eµc = a/b. Fig. 33.22 shows contributions to b(E) for iron.
Since a(E) ≈ 0.002 GeV g−1 cm2, b(E)E dominates the energy loss
above several hundred GeV, where b(E) is nearly constant. The rates
of energy loss for muons in hydrogen, uranium, and iron are shown in
Fig. 33.23 [5].

Muon energy (GeV)

0

1

2

3

4

5

6

7

8

9

1
0

6
 b

(E
) 

  (
g

−1
cm

2
)

Iron

btotal

bpair

bbremsstrahlung

bnuclear

102101 103 104 105

Figure 33.22: Contributions to the fractional energy loss by
muons in iron due to e+e− pair production, bremsstrahlung,
and photonuclear interactions, as obtained from Groom et al. [5]
except for post-Born corrections to the cross section for direct
pair production from atomic electrons.

Figure 33.23: The average energy loss of a muon in hydrogen,
iron, and uranium as a function of muon energy. Contributions
to dE/dx in iron from ionization and the processes shown in
Fig. 33.22 are also shown.

The “muon critical energy” Eµc can be defined more exactly as the
energy at which radiative and ionization losses are equal, and can be
found by solving Eµc = a(Eµc)/b(Eµc). This definition corresponds
to the solid-line intersection in Fig. 33.13, and is different from the
Rossi definition we used for electrons. It serves the same function:
below Eµc ionization losses dominate, and above Eµc radiative effects
dominate. The dependence of Eµc on atomic number Z is shown in
Fig. 33.24.
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Figure 33.24: Muon critical energy for the chemical elements,
defined as the energy at which radiative and ionization energy
loss rates are equal [5]. The equality comes at a higher energy
for gases than for solids or liquids with the same atomic number
because of a smaller density effect reduction of the ionization
losses. The fits shown in the figure exclude hydrogen. Alkali
metals fall 3–4% above the fitted function, while most other
solids are within 2% of the function. Among the gases the worst
fit is for radon (2.7% high).

The radiative cross sections are expressed as functions of the
fractional energy loss ν. The bremsstrahlung cross section goes
roughly as 1/ν over most of the range, while for the pair production
case the distribution goes as ν−3 to ν−2 [73]. “Hard” losses are
therefore more probable in bremsstrahlung, and in fact energy losses
due to pair production may very nearly be treated as continuous.
The simulated [71] momentum distribution of an incident 1 TeV/c
muon beam after it crosses 3 m of iron is shown in Fig. 33.25. The
most probable loss is 8 GeV, or 3.4 MeV g−1cm2. The full width
at half maximum is 9 GeV/c, or 0.9%. The radiative tail is almost
entirely due to bremsstrahlung, although most of the events in which
more than 10% of the incident energy lost experienced relatively
hard photonuclear interactions. The latter can exceed detector
resolution [74], necessitating the reconstruction of lost energy. Tables
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in Ref. 5 list the stopping power as 9.82 MeV g−1cm2 for a 1 TeV
muon, so that the mean loss should be 23 GeV (≈ 23 GeV/c), for a
final momentum of 977 GeV/c, far below the peak. This agrees with
the indicated mean calculated from the simulation. Electromagnetic
and hadronic cascades in detector materials can obscure muon tracks
in detector planes and reduce tracking efficiency [75].
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Figure 33.25: The momentum distribution of 1 TeV/c muons
after traversing 3 m of iron as calculated with the MARS15
Monte Carlo code [71] by S.I. Striganov [5].

33.7. Cherenkov and transition radiation [33,76,77]

A charged particle radiates if its velocity is greater than the
local phase velocity of light (Cherenkov radiation) or if it crosses
suddenly from one medium to another with different optical properties
(transition radiation). Neither process is important for energy loss,
but both are used in high-energy and cosmic-ray physics detectors.
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γc

η

Cherenkov wavefront

Particle velocity   v = βc

v =
 v g

Figure 33.26: Cherenkov light emission and wavefront angles.
In a dispersive medium, θc + η 6= 900.

33.7.1. Optical Cherenkov radiation :

The angle θc of Cherenkov radiation, relative to the particle’s
direction, for a particle with velocity βc in a medium with index of
refraction n is

cos θc = (1/nβ)

or tan θc =
√
β2n2 − 1

≈
√
2(1− 1/nβ) for small θc, e.g. in gases.(33.43)

The threshold velocity βt is 1/n, and γt = 1/(1 − β2t )
1/2. Therefore,

βtγt = 1/(2δ + δ2)1/2, where δ = n − 1. Values of δ for various
commonly used gases are given as a function of pressure and
wavelength in Ref. 78. For values at atmospheric pressure, see
Table 6.1. Data for other commonly used materials are given in
Ref. 79.

Practical Cherenkov radiator materials are dispersive. Let ω be the
photon’s frequency, and let k = 2π/λ be its wavenumber. The photons
propage at the group velocity vg = dω/dk = c/[n(ω) + ω(dn/dω)]. In
a non-dispersive medium, this simplies to vg = c/n.

In his classical paper, Tamm [80] showed that for dispersive media
the radiation is concentrated in a thin conical shell whose vertex is at
the moving charge, and whose opening half-angle η is given by

cot η =

[
d

dω
(ω tan θc)

]

ω0

=

[
tan θc + β2ω n(ω)

dn

dω
cot θc

]

ω0

, (33.44)

where ω0 is the central value of the small frequency range under
consideration. (See Fig. 33.26.) This cone has a opening half-angle η,
and, unless the medium is non-dispersive (dn/dω = 0), θc + η 6= 900.
The Cherenkov wavefront ‘sideslips’ along with the particle [81]. This
effect has timing implications for ring imaging Cherenkov counters [82],
but it is probably unimportant for most applications.

The number of photons produced per unit path length of a particle
with charge ze and per unit energy interval of the photons is

d2N

dEdx
=

αz2

~c
sin2 θc =

α2z2

remec2

(
1− 1

β2n2(E)

)

≈ 370 sin2 θc(E) eV−1cm−1 (z = 1) , (33.45)

or, equivalently,

d2N

dxdλ
=

2παz2

λ2

(
1− 1

β2n2(λ)

)
. (33.46)

The index of refraction n is a function of photon energy E = ~ω,
as is the sensitivity of the transducer used to detect the light. For
practical use, Eq. (33.45) must be multiplied by the the transducer
response function and integrated over the region for which β n(ω) > 1.
Further details are given in the discussion of Cherenkov detectors in
the Particle Detectors section (Sec. 34 of this Review).

When two particles are close together (lateral separation <∼ 1
wavelength), the electromagnetic fields from the particles may
add coherently, affecting the Cherenkov radiation. Because of their
opposite charges, the radiation from an e+e− pair at close separation
is suppressed compared to two independent leptons [83].

33.7.2. Coherent radio Cherenkov radiation :

Coherent Cherenkov radiation is produced by many charged
particles with a non-zero net charge moving through matter on an
approximately common “wavefront”—for example, the electrons and
positrons in a high-energy electromagnetic cascade. The signals can
be visible above backgrounds for shower energies as low as 1017 eV; see
Sec. 35.3.3 for more details. The phenomenon is called the Askaryan
effect [84]. Near the end of a shower, when typical particle energies
are below Ec (but still relativistic), a charge imbalance develops.
Photons can Compton-scatter atomic electrons, and positrons can
annihilate with atomic electrons to contribute even more photons
which can in turn Compton scatter. These processes result in a
roughly 20% excess of electrons over positrons in a shower. The net
negative charge leads to coherent radio Cherenkov emission. The
radiation includes a component from the decelerating charges (as
in bremsstrahlung). Because the emission is coherent, the electric
field strength is proportional to the shower energy, and the signal
power increases as its square. The electric field strength also increases
linearly with frequency, up to a maximum frequency determined by
the lateral spread of the shower. This cutoff occurs at about 1 GHz in
ice, and scales inversely with the Moliere radius. At low frequencies,
the radiation is roughly isotropic, but, as the frequency rises toward
the cutoff frequency, the radiation becomes increasingly peaked
around the Cherenkov angle. The radiation is linearly polarized in
the plane containing the shower axis and the photon direction. A
measurement of the signal polarization can be used to help determine
the shower direction. The characteristics of this radiation have been
nicely demonstrated in a series of experiments at SLAC [85]. A
detailed discussion of the radiation can be found in Ref. 86.

33.7.3. Transition radiation :

The energy radiated when a particle with charge ze crosses the
boundary between vacuum and a medium with plasma frequency ωp is

I = αz2γ~ωp/3 , (33.47)

where

~ωp =
√
4πNer3e mec

2/α =

√
ρ (in g/cm3) 〈Z/A〉 × 28.81 eV .

(33.48)
For styrene and similar materials, ~ωp ≈ 20 eV; for air it is 0.7 eV.

The number spectrum dNγ/d(~ω diverges logarithmically at low
energies and decreases rapidly for ~ω/γ~ωp > 1. About half the energy
is emitted in the range 0.1 ≤ ~ω/γ~ωp ≤ 1. Inevitable absorption in a
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Figure 33.27: X-ray photon energy spectra for a radiator
consisting of 200 25µm thick foils of Mylar with 1.5 mm spacing
in air (solid lines) and for a single surface (dashed line). Curves
are shown with and without absorption. Adapted from Ref. 87.

practical detector removes the divergence. For a particle with γ = 103,
the radiated photons are in the soft x-ray range 2 to 40 keV. The γ
dependence of the emitted energy thus comes from the hardening of
the spectrum rather than from an increased quantum yield.

The number of photons with energy ~ω > ~ω0 is given by the
answer to problem 13.15 in Ref. 33,

Nγ(~ω > ~ω0) =
αz2

π

[(
ln

γ~ωp

~ω0
− 1

)2

+
π2

12

]
, (33.49)

within corrections of order (~ω0/γ~ωp)
2. The number of photons

above a fixed energy ~ω0 ≪ γ~ωp thus grows as (ln γ)
2, but the number

above a fixed fraction of γ~ωp (as in the example above) is constant.
For example, for ~ω > γ~ωp/10, Nγ = 2.519αz2/π = 0.59%× z2.

The particle stays “in phase” with the x ray over a distance called
the formation length, d(ω) = (2c/ω)(1/γ2 + θ2 + ω2

p/ω
2)−1. Most of

the radiation is produced in this distance. Here θ is the x-ray emission
angle, characteristically 1/γ. For θ = 1/γ the formation length has a
maximum at d(γωp/

√
2) = γc/

√
2ωp. In practical situations it is tens

of µm.
Since the useful x-ray yield from a single interface is low, in practical

detectors it is enhanced by using a stack of N foil radiators—foils L
thick, where L is typically several formation lengths—separated by
gas-filled gaps. The amplitudes at successive interfaces interfere to
cause oscillations about the single-interface spectrum. At increasing
frequencies above the position of the last interference maximum
(L/d(w) = π/2), the formation zones, which have opposite phase,
overlap more and more and the spectrum saturates, dI/dω approaching
zero as L/d(ω) → 0. This is illustrated in Fig. 33.27 for a realistic
detector configuration.

For regular spacing of the layers fairly complicated analytic
solutions for the intensity have been obtained [87,88]. Although one
might expect the intensity of coherent radiation from the stack of foils
to be proportional to N2, the angular dependence of the formation
length conspires to make the intensity ∝ N .
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34.1. Introduction
This review summarizes the detector technologies employed at

accelerator particle physics experiments. Several of these detectors
are also used in a non-accelerator context and examples of such
applications will be provided. The detector techniques which are
specific to non-accelerator particle physics experiments are the
subject of Chap. 35. More detailed discussions of detectors and
their underlying physics can be found in books by Ferbel [1],
Kleinknecht [2], Knoll [3], Green [4], Leroy & Rancoita [5], and
Grupen [6].

In Table 34.1 are given typical resolutions and deadtimes of common
charged particle detectors. The quoted numbers are usually based on
typical devices, and should be regarded only as rough approximations
for new designs. The spatial resolution refers to the intrinsic detector
resolution, i.e. without multiple scattering. We note that analog
detector readout can provide better spatial resolution than digital
readout by measuring the deposited charge in neighboring channels.
Quoted ranges attempt to be representative of both possibilities.
The time resolution is defined by how accurately the time at which
a particle crossed the detector can be determined. The deadtime
is the minimum separation in time between two resolved hits on
the same channel. Typical performance of calorimetry and particle
identification are provided in the relevant sections below.

Table 34.1: Typical resolutions and deadtimes of common
charged particle detectors. Revised November 2011.

Intrinsinc Spatial Time Dead

Detector Type Resolution (rms) Resolution Time

Resistive plate chamber . 10 mm 1 ns (50 psa) —

Streamer chamber 300 µmb 2 µs 100 ms

Liquid argon drift [7] ∼175–450 µm ∼ 200 ns ∼ 2 µs

Scintillation tracker ∼100 µm 100 ps/nc 10 ns

Bubble chamber 10–150 µm 1 ms 50 msd

Proportional chamber 50–100 µme 2 ns 20-200 ns

Drift chamber 50–100 µm 2 nsf 20-100 ns

Micro-pattern gas detectors 30–40 µm < 10 ns 10-100 ns

Silicon strip pitch/(3 to 7)g few nsh . 50 nsh

Silicon pixel . 10 µm few nsh . 50 nsh

Emulsion 1 µm — —

a For multiple-gap RPCs.
b 300 µm is for 1 mm pitch (wirespacing/

√
12).

c n = index of refraction.
d Multiple pulsing time.
e Delay line cathode readout can give ±150 µm parallel to anode
wire.

f For two chambers.
g The highest resolution (“7”) is obtained for small-pitch detectors
(. 25 µm) with pulse-height-weighted center finding.

h Limited by the readout electronics [8].

34.2. Photon detectors
Updated August 2011 by D. Chakraborty (Northern Illinois U) and
T. Sumiyoshi (Tokyo Metro U).

Most detectors in high-energy, nuclear, and astrophysics rely
on the detection of photons in or near the visible range,
100nm .λ. 1000nm, or E ≈ a few eV. This range covers
scintillation and Cherenkov radiation as well as the light detected in
many astronomical observations.

Generally, photodetection involves generating a detectable electrical
signal proportional to the (usually very small) number of incident
photons. The process involves three distinct steps:
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1. generation of a primary photoelectron or electron-hole (e-h) pair by
an incident photon by the photoelectric or photoconductive effect,

2. amplification of the p.e. signal to detectable levels by one or more
multiplicative bombardment steps and/or an avalanche process
(usually), and,

3. collection of the secondary electrons to form the electrical signal.
The important characteristics of a photodetector include the

following in statistical averages:
1. quantum efficiency (QE or ǫQ): the number of primary photo-

electrons generated per incident photon (0 ≤ ǫQ ≤ 1; in silicon
more than one e-h pair per incident photon can be generated for
λ <∼ 165 nm),

2. collection efficiency (CE or ǫC): the overall acceptance factor other
than the generation of photoelectrons (0 ≤ ǫC ≤ 1),

3. gain (G): the number of electrons collected for each photoelectron
generated,

4. dark current or dark noise: the electrical signal when there is no
photon,

5. energy resolution: electronic noise (ENC or Ne) and statistical
fluctuations in the amplification process compound the Poisson
distribution of nγ photons from a given source:

σ(E)

〈E〉 =

√
fN

nγǫQǫC
+

(
Ne

GnγǫQǫC

)2
, (34.1)

where fN , or the excess noise factor (ENF), is the contribution to
the energy distribution variance due to amplification statistics [9],

6. dynamic range: the maximum signal available from the detector
(this is usually expressed in units of the response to noise-equivalent
power, or NEP, which is the optical input power that produces a
signal-to-noise ratio of 1),

7. time dependence of the response: this includes the transit time,
which is the time between the arrival of the photon and the
electrical pulse, and the transit time spread, which contributes to
the pulse rise time and width, and

8. rate capability: inversely proportional to the time needed, after the
arrival of one photon, to get ready to receive the next.

Table 34.2: Representative characteristics of some photodetectors
commonly used in particle physics. The time resolution of the devices
listed here vary in the 10–2000 ps range.

Type λ ǫQ ǫC Gain Risetime Area 1-p.e noise HV Price

(nm) (ns) (mm2) (Hz) (V) (USD)

PMT∗ 115–1700 0.15–0.25 103–107 0.7–10 102–105 10–104 500–3000 100–5000

MCP∗ 100–650 0.01–0.10 103–107 0.15–0.3 102–104 0.1–200 500–3500 10–6000

HPD∗ 115–850 0.1–0.3 103–104 7 102–105 10–103 ∼2× 104 ∼600

GPM∗ 115–500 0.15–0.3 103–106 O(0.1) O(10) 10–103 300–2000 O(10)

APD 300–1700 ∼0.7 10–108 O(1) 10–103 1–103 400–1400 O(100)

PPD 320–900 0.15–0.3 105–106 ∼ 1 1–10 O(106) 30–60 O(100)

VLPC 500–600 ∼0.9 ∼5× 104 ∼ 10 1 O(104) ∼7 ∼1

∗These devices often come in multi-anode configurations. In such
cases, area, noise, and price are to be considered on a “per
readout-channel” basis.

The QE is a strong function of the photon wavelength (λ), and is
usually quoted at maximum, together with a range of λ where the
QE is comparable to its maximum. Spatial uniformity and linearity
with respect to the number of photons are highly desirable in a
photodetector’s response.

Optimization of these factors involves many trade-offs and vary
widely between applications. For example, while a large gain is
desirable, attempts to increase the gain for a given device also
increases the ENF and after-pulsing (“echos” of the main pulse). In
solid-state devices, a higher QE often requires a compromise in the
timing properties. In other types, coverage of large areas by focusing
increases the transit time spread.

Other important considerations also are highly application-specific.
These include the photon flux and wavelength range, the total

area to be covered and the efficiency required, the volume available
to accommodate the detectors, characteristics of the environment
such as chemical composition, temperature, magnetic field, ambient
background, as well as ambient radiation of different types and,
mode of operation (continuous or triggered), bias (high-voltage)
requirements, power consumption, calibration needs, aging, cost, and
so on. Several technologies employing different phenomena for the
three steps described above, and many variants within each, offer a
wide range of solutions to choose from. The salient features of the
main technologies and the common variants are described below.
Some key characteristics are summarized in Table 34.2.

34.2.1. Vacuum photodetectors : Vacuum photodetectors can
be broadly subdivided into three types: photomultiplier tubes,
microchannel plates, and hybrid photodetectors.

34.2.1.1. Photomultiplier tubes: A versatile class of photon detectors,
vacuum photomultiplier tubes (PMT) has been employed by a vast
majority of all particle physics experiments to date [9]. Both
“transmission-” and “reflection-type” PMT’s are widely used. In the
former, the photocathode material is deposited on the inside of a
transparent window through which the photons enter, while in the
latter, the photocathode material rests on a separate surface that
the incident photons strike. The cathode material has a low work
function, chosen for the wavelength band of interest. When a photon
hits the cathode and liberates an electron (the photoelectric effect),
the latter is accelerated and guided by electric fields to impinge on
a secondary-emission electrode, or dynode, which then emits a few
(∼ 5) secondary electrons. The multiplication process is repeated
typically 10 times in series to generate a sufficient number of electrons,
which are collected at the anode for delivery to the external circuit.
The total gain of a PMT depends on the applied high voltage V as
G = AV kn, where k ≈ 0.7–0.8 (depending on the dynode material),
n is the number of dynodes in the chain, and A a constant (which
also depends on n). Typically, G is in the range of 105–106. Pulse
risetimes are usually in the few nanosecond range. With e.g. two-level
discrimination the effective time resolution can be much better.

A large variety of PMT’s, including many just recently developed,
covers a wide span of wavelength ranges from infrared (IR) to extreme

ultraviolet (XUV) [10]. They are categorized by the window materials,
photocathode materials, dynode structures, anode configurations, etc.
Common window materials are borosilicate glass for IR to near-UV,
fused quartz and sapphire (Al2O3) for UV, and MgF2 or LiF for XUV.
The choice of photocathode materials include a variety of mostly Cs-
and/or Sb-based compounds such as CsI, CsTe, bi-alkali (SbRbCs,
SbKCs), multi-alkali (SbNa2KCs), GaAs(Cs), GaAsP, etc. Sensitive
wavelengths and peak quantum efficiencies for these materials are
summarized in Table 34.3. Typical dynode structures used in PMT’s
are circular cage, line focusing, box and grid, venetian blind, and
fine mesh. In some cases, limited spatial resolution can be obtained
by using a mosaic of multiple anodes. Fast PMT’s with very large
windows—measuring up to 508 mm across—have been developed
in recent years for detection of Cherenkov radiation in neutrino
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experiments such as Super-Kamiokande and KamLAND among many
others. Specially prepared low-radioactivity glass is used to make
these PMT’s, and they are also able to withstand the high pressure of
the surrounding liquid.

PMT’s are vulnerable to magnetic fields—sometimes even the
geomagnetic field causes large orientation-dependent gain changes. A
high-permeability metal shield is often necessary. However, proximity-
focused PMT’s, e.g. the fine-mesh types, can be used even in a
high magnetic field (≥ 1 T) if the electron drift direction is parallel
to the field. CMS uses custom-made vacuum phototriodes (VPT)
mounted on the back face of projective lead tungstate crystals to
detect scintillation light in the endcap sections of its electromagnetic
calorimeters, which are inside a 3.8 T superconducting solenoid. A
VPT employs a single dynode (thus, G ≈ 10) placed close to the
photocathode, and a mesh anode plane between the two, to help it
cope with the strong magnetic field, which is not too unfavorably
oriented with respect to the photodetector axis in the endcaps
(within 25◦), but where the radiation level is too high for Avalanche
Photodiodes (APD’s) like those used in the barrel section.

34.2.1.2. Microchannel plates: A typical Microchannel plate (MCP)
photodetector consists of one or more ∼2 mm thick glass plates with
densely packed O(10 µm)-diameter cylindrical holes, or “channels”,
sitting between the transmission-type photocathode and anode planes,
separated by O(1 mm) gaps. Instead of discrete dynodes, the inner
surface of each cylindrical tube serves as a continuous dynode for
the entire cascade of multiplicative bombardments initiated by a
photoelectron. Gain fluctuations can be minimized by operating in
a saturation mode, whence each channel is only capable of a binary
output, but the sum of all channel outputs remains proportional to the
number of photons received so long as the photon flux is low enough
to ensure that the probability of a single channel receiving more than
one photon during a single time gate is negligible. MCP’s are thin,
offer good spatial resolution, have excellent time resolution (∼20 ps),
and can tolerate random magnetic fields up to 0.1 T and axial fields
up to ∼ 1 T. However, they suffer from relatively long recovery
time per channel and short lifetime. MCP’s are widely employed as
image-intensifiers, although not so much in HEP or astrophysics.

34.2.1.3. Hybrid photon detectors: Hybrid photon detectors (HPD)
combine the sensitivity of a vacuum PMT with the excellent spatial
and energy resolutions of a Si sensor [11]. A single photoelectron
ejected from the photocathode is accelerated through a potential
difference of ∼20 kV before it impinges on the silicon sensor/anode.
The gain nearly equals the maximum number of e-h pairs that could
be created from the entire kinetic energy of the accelerated electron:
G ≈ eV/w, where e is the electronic charge, V is the applied potential
difference, and w ≈ 3.7 eV is the mean energy required to create an
e-h pair in Si at room temperature. Since the gain is achieved in a
single step, one might expect to have the excellent resolution of a
simple Poisson statistic with large mean, but in fact it is even better,
thanks to the Fano effect discussed in Sec. 34.7.

Low-noise electronics must be used to read out HPD’s if one
intends to take advantage of the low fluctuations in gain, e.g. when
counting small numbers of photons. HPD’s can have the same ǫQ ǫC
and window geometries as PMT’s and can be segmented down to ∼50
µm. However, they require rather high biases and will not function in
a magnetic field. The exception is proximity-focused devices (⇒ no
(de)magnification) in an axial field. With time resolutions of ∼10 ps
and superior rate capability, proximity-focused HPD’s can be an
alternative to MCP’s. Current applications of HPD’s include the CMS
hadronic calorimeter and the RICH detector in LHCb. Large-size
HPD’s with sophisticated focusing may be suitable for future water
Cherenkov experiments.

Hybrid APD’s (HAPD’s) add an avalanche multiplication step
following the electron bombardment to boost the gain by a factor of
∼50. This affords a higher gain and/or lower electrical bias, but also
degrades the signal definition.

34.2.2. Gaseous photon detectors : In gaseous photomultipliers
(GPM) a photoelectron in a suitable gas mixture initiates an avalanche
in a high-field region, producing a large number of secondary
impact-ionization electrons. In principle the charge multiplication and

Table 34.3: Properties of photocathode and window materials
commonly used in vacuum photodetectors [10].

Photocathode λ Window Peak ǫQ (λ/nm)

material (nm) material

CsI 115–200 MgF2 0.11 (140)

CsTe 115–320 MgF2 0.14 (240)

Bi-alkali 300–650 Borosilicate 0.27 (390)

160-650 Synthetic Silica 0.27 (390)

“Ultra Bi-alkali” 300–650 Borosilicate 0.43 (350)

160-650 Synthetic Silica 0.43 (350)

Multi-alkali 300–850 Borosilicate 0.20 (360)

160-850 Synthetic Silica 0.20 (360)

GaAs(Cs)∗ 160–930 Synthetic Silica 0.23 (280)

GaAsP(Cs) 300-750 Borosilicate 0.50 (500)

InP/InGaAsP† 350-1700 Borosilicate 0.01 (1100)

∗Reflection type photocathode is used. †Requires cooling to
∼ −80◦C.

collection processes are identical to those employed in gaseous tracking
detectors such as multiwire proportional chambers, micromesh gaseous
detectors (Micromegas), or gas electron multipliers (GEM). These are
discussed in Sec. 34.6.4.

The devices can be divided into two types depending on the
photocathode material. One type uses solid photocathode materials
much in the same way as PMT’s. Since it is resistant to gas mixtures
typically used in tracking chambers, CsI is a common choice. In the
other type, photoionization occurs on suitable molecules vaporized
and mixed in the drift volume. Most gases have photoionization
work functions in excess of 10 eV, which would limit their sensitivity
to wavelengths far too short. However, vapors of TMAE (tetrakis
dimethyl-amine ethylene) or TEA (tri-ethyl-amine), which have
smaller work functions (5.3 eV for TMAE and 7.5 eV for TEA), are
suited for XUV photon detection [12]. Since devices like GEM’s offer
sub-mm spatial resolution, GPM’s are often used as position-sensitive
photon detectors. They can be made into flat panels to cover large
areas (O(1 m2)), can operate in high magnetic fields, and are relatively
inexpensive. Many of the ring imaging Cherenkov (RICH) detectors
to date have used GPM’s for the detection of Cherenkov light [13].
Special care must be taken to suppress the photon-feedback process
in GPM’s. It is also important to maintain high purity of the gas as
minute traces of O2 can significantly degrade the detection efficiency.

34.2.3. Solid-state photon detectors : In a phase of rapid
development, solid-state photodetectors are competing with vacuum-
or gas-based devices for many existing applications and making
way for a multitude of new ones. Compared to traditional vacuum-
and gaseous photodetectors, solid-state devices are more compact,
lightweight, rugged, tolerant to magnetic fields, and often cheaper.
They also allow fine pixelization, are easy to integrate into large
systems, and can operate at low electric potentials, while matching or
exceeding most performance criteria. They are particularly well suited
for detection of γ- and X-rays. Except for applications where coverage
of very large areas or dynamic range is required, solid-state detectors
are proving to be the better choice. Some hybrid devices attempt to
combine the best features of different technologies while applications
of nanotechnology are opening up exciting new possibilities.

Silicon photodiodes (PD) are widely used in high-energy physics
as particle detectors and in a great number of applications (including
solar cells!) as light detectors. The structure is discussed in some
detail in Sec. 34.7. In its simplest form, the PD is a reverse-biased
p-n junction. Photons with energies above the indirect bandgap
energy (wavelengths shorter than about 1050 nm, depending on the
temperature) can create e-h pairs (the photoconductive effect), which
are collected on the p and n sides, respectively. Often, as in the PD’s
used for crystal scintillator readout in CLEO, L3, Belle, BaBar, and
GLAST, intrinsic silicon is doped to create a p-i-n structure. The
reverse bias increases the thickness of the depleted region; in the case
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of these particular detectors, to full depletion at a depth of about
100 µm. Increasing the depletion depth decreases the capacitance
(and hence electronic noise) and extends the red response. Quantum
efficiency can exceed 90%, but falls toward the red because of the
increasing absorption length of light in silicon. The absorption length
reaches 100 µm at 985 nm. However, since G = 1, amplification is
necessary. Optimal low-noise amplifiers are slow, but, even so, noise
limits the minimum detectable signal in room-temperature devices to
several hundred photons.

Very large arrays containing O(107) of O(10 µm2)-sized photodiodes
pixelizing a plane are widely used to photograph all sorts of things
from everyday subjects at visible wavelengths to crystal structures
with X-rays and astronomical objects from infrared to UV. To limit
the number of readout channels, these are made into charge-coupled
devices (CCD), where pixel-to-pixel signal transfer takes place over
thousands of synchronous cycles with sequential output through shift
registers [14]. Thus, high spatial resolution is achieved at the expense
of speed and timing precision. Custom-made CCD’s have virtually
replaced photographic plates and other imagers for astronomy and
in spacecraft. Typical QE’s exceed 90% over much of the visible
spectrum, and “thick” CCD’s have useful QE up to λ = 1 µm. Active
Pixel Sensor (APS) arrays with a preamplifier on each pixel and
CMOS processing afford higher speeds, but are challenged at longer
wavelengths. Much R&D is underway to overcome the limitations of
both CCD and CMOS imagers.

In APD’s, an exponential cascade of impact ionizations initiated
by the original photogenerated e-h pair under a large reverse-bias
voltage leads to an avalanche breakdown [15]. As a result, detectable
electrical response can be obtained from low-intensity optical signals
down to single photons. Excellent junction uniformity is critical, and
a guard ring is generally used as a protection against edge breakdown.
Well-designed APD’s, such as those used in CMS’ crystal-based
electromagnetic calorimeter, have achieved ǫQ ǫC ≈ 0.7 with sub-ns
response time. The sensitive wavelength window and gain depend on
the semiconductor used. The gain is typically 10–200 in linear and up
to 108 in Geiger mode of operation. Stability and close monitoring of
the operating temperature are important for linear-mode operation,
and substantial cooling is often necessary. Position-sensitive APD’s
use time information at multiple anodes to calculate the hit position.

One of the most promising recent developments in the field is that of
devices consisting of large arrays (O(103)) of tiny APD’s packed over
a small area (O(1 mm2)) and operated in a limited Geiger mode [16].
Among different names used for this class of photodetectors, “PPD”
(for “Pixelized Photon Detector”) is most widely accepted (formerly
“SiPM”). Although each cell only offers a binary output, linearity
with respect to the number of photons is achieved by summing the
cell outputs in the same way as with a MCP in saturation mode
(see above). PPD’s are being adopted as the preferred solution for
various purposes including medical imaging, e.g. positron emission
tomography (PET). These compact, rugged, and economical devices
allow auto-calibration through decent separation of photoelectron
peaks and offer gains of O(106) at a moderate bias voltage (∼50 V).
However, the single-photoelectron noise of a PPD, being the logical
“or” of O(103) Geiger APD’s, is rather large: O(1 MHz/mm2) at
room temperature. PPD’s are particularly well-suited for applications
where triggered pulses of several photons are expected over a small
area, e.g. fiber-guided scintillation light. Intense R&D is expected
to lower the noise level and improve radiation hardness, resulting in
coverage of larger areas and wider applications. Attempts are being
made to combine the fabrication of the sensors and the front-end
electronics (ASIC) in the same process with the goal of making PPD’s
and other finely pixelized solid-state photodetectors extremely easy to
use.

Of late, much R&D has been directed to p-i-n diode arrays based
on thin polycrystalline diamond films formed by chemical vapor
deposition (CVD) on a hot substrate (∼1000 K) from a hydrocarbon-
containing gas mixture under low pressure (∼100 mbar). These
devices have maximum sensitivity in the extreme- to moderate-UV
region [17]. Many desirable characteristics, including high tolerance
to radiation and temperature fluctuations, low dark noise, blindness
to most of the solar radiation spectrum, and relatively low cost make

them ideal for space-based UV/XUV astronomy, measurement of
synchrotron radiation, and luminosity monitoring at (future) lepton
collider(s).

Visible-light photon counters (VLPC) utilize the formation of an
impurity band only 50 meV below the conduction band in As-doped Si
to generate strong (G ≈ 5× 104) yet sharp response to single photons
with ǫQ ≈ 0.9 [18]. The smallness of the band gap considerably
reduces the gain dispersion. Only a very small bias (∼7 V) is
needed, but high sensitivity to infrared photons requires cooling below
10 K. The dark noise increases sharply and exponentially with both
temperature and bias. The Run 2 DØ detector used 86000 VLPC’s
to read the optical signal from its scintillating-fiber tracker and
scintillator-strip preshower detectors.

34.3. Organic scintillators
Revised August 2017 by Kurtis F. Johnson (FSU).

Organic scintillators are broadly classed into three types, crystalline,
liquid, and plastic, all of which utilize the ionization produced by
charged particles (see Sec. 33.2 of this Review) to generate optical
photons, usually in the blue to green wavelength regions [19]. Plastic
scintillators are by far the most widely used, liquid organic scintillator
is finding increased use, and crystal organic scintillators are practically
unused in high-energy physics. Plastic scintillator densities range from
1.03 to 1.20 g cm−3. Typical photon yields are about 1 photon per
100 eV of energy deposit [20]. A one-cm-thick scintillator traversed
by a minimum-ionizing particle will therefore yield ≈ 2× 104 photons.
The resulting photoelectron signal will depend on the collection and
transport efficiency of the optical package and the quantum efficiency
of the photodetector.

Organic scintillator does not respond linearly to the ionization
density. Very dense ionization columns emit less light than expected
on the basis of dE/dx for minimum-ionizing particles. A widely
used semi-empirical model by Birks posits that recombination and
quenching effects between the excited molecules reduce the light
yield [21]. These effects are more pronounced the greater the density
of the excited molecules. Birks’ formula is

dL

dx
= L0

dE/dx

1 + kB dE/dx
, (34.2)

where L is the luminescence, L0 is the luminescence at low
specific ionization density, and kB is Birks’ constant, which must be
determined for each scintillator by measurement. Decay times are in
the ns range; rise times are much faster. The high light yield and fast
response time allow the possibility of sub-ns timing resolution [22].
The fraction of light emitted during the decay “tail” can depend
on the exciting particle. This allows pulse shape discrimination as a
technique to carry out particle identification. Because of the hydrogen
content (carbon to hydrogen ratio ≈ 1) plastic scintillator is sensitive
to proton recoils from neutrons. Ease of fabrication into desired
shapes and low cost has made plastic scintillator a common detector
element. In the form of scintillating fiber it has found widespread use
in tracking and calorimetry [23].

Demand for large volume detectors has lead to increased use of
liquid organic scintillator, which has the same scintillation mechanism
as plastic scintillator, due to its cost advantage. The containment
vessel defines the detector shape; photodetectors or waveshifters may
be immersed in the liquid.

34.3.1. Scintillation mechanism :
A charged particle traversing matter leaves behind it a wake of

excited molecules. Certain types of molecules, however,
will release a small fraction (≈ 3%) of this energy as optical

photons. This process, scintillation, is especially marked in those
organic substances which contain aromatic rings, such as polystyrene
(PS) and polyvinyltoluene (PVT). Liquids which scintillate include
toluene, xylene and pseudocumene.

In fluorescence, the initial excitation takes place via the absorption
of a photon, and de-excitation by emission of a longer wavelength
photon. Fluors are used as “waveshifters” to shift scintillation light to
a more convenient wavelength. Occurring in complex molecules, the
absorption and emission are spread out over a wide band of photon
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energies, and have some overlap, that is, there is some fraction of the
emitted light which can be re-absorbed [24]. This “self-absorption”
is undesirable for detector applications because it causes a shortened
attenuation length. The wavelength difference between the major
absorption and emission peaks is called the Stokes’ shift. It is usually
the case that the greater the Stokes’ shift, the smaller the self
absorption thus, a large Stokes’ shift is a desirable property for a fluor.

Ionization excitation of base plastic

Forster energy transfer

γ

γ

base plastic

primary fluor
(~1% wt/wt ) 

secondary fluor
(~0.05% wt/wt )

photodetector

emit UV, ~340 nm

absorb blue photon

absorb UV photon

emit blue, ~400 nm

1 m

10−4m

10−8m

Figure 34.1: Cartoon of scintillation “ladder” depicting the
operating mechanism of organic scintillator. Approximate fluor
concentrations and energy transfer distances for the separate
sub-processes are shown.

The plastic scintillators used in high-energy physics are binary
or ternary solutions of selected fluors in a plastic base containing
aromatic rings. (See appendix in Ref. 25 for a comprehensive list of
components.) Virtually all plastic scintillators contain as a base either
PVT or PS. PVT-based scintillator can be up to 50% brighter.

Ionization in the plastic base produces UV photons with short
attenuation length (several mm). Longer attenuation lengths are
obtained by dissolving a “primary” fluor in high concentration (1%
by weight) into the base, which is selected to efficiently re-radiate
absorbed energy at wavelengths where the base is more transparent
(see Fig. 34.1).

The primary fluor has a second important function. The decay time
of the scintillator base material can be quite long – in pure polystyrene
it is 16 ns, for example. The addition of the primary fluor in high
concentration can shorten the decay time by an order of magnitude
and increase the total light yield. At the concentrations used (1% and
greater), the average distance between a fluor molecule and an excited
base unit is around 100 Å, much less than a wavelength of light. At
these distances the predominant mode of energy transfer from base to
fluor is not the radiation of a photon, but a resonant dipole-dipole
interaction, first described by Foerster, which strongly couples the
base and fluor [26]. The strong coupling sharply increases the speed
and the light yield of the plastic scintillators.

Normally a fluor which fulfills other requirements is not adequate
with respect to emission wavelength or attenuation length, so it is
necessary to add yet another waveshifter (the “secondary” fluor),
at fractional percent levels, and occasionally a third (not shown in
Fig. 34.1).

External wavelength shifters are widely used to aid light collection
in complex geometries. Scintillation light is captured by a lightpipe
comprising a wave-shifting fluor dissolved in a nonscintillating base.
The wavelength shifter must be insensitive to ionizing radiation and
Cherenkov light. A typical wavelength shifter uses an acrylic base
because of its good optical qualities, a single fluor to shift the light
emerging from the plastic scintillator to the blue-green, and contains
ultra-violet absorbing additives to deaden response to Cherenkov light.

By drastically increasing fluor concentrations beyond those
discussed above, scintillators of increased radiation resistance or with
special properties such as neutron/gamma discrimination may be
made [35].

34.3.2. Caveats and cautions :
Plastic scintillators are reliable, robust, and convenient. However,

exposure to solvent vapors, high temperatures, mechanical flexing,
irradiation, or rough handling will cause degradation. A The surface is
particularly fragile region and can “craze” – develop microcracks which
degrade transmission of light by total internal reflection. Crazing is
particularly likely where oils, solvents, or fingerprints have contacted
the surface.

They have a long-lived luminescence which does not follow a
simple exponential decay. Intensities at the 10−4 level of the initial
fluorescence can persist for hundreds of ns [19,27].

They can decrease their light yield with increasing partial pressure
of oxygen. This can be a 10% effect in an artificial atmosphere [28].

Their light yield may be changed by a magnetic field. Increases of
≈ 3% at 0.45 T have been reported [29].

Irradiation of plastic scintillator creates color centers which absorb
light more strongly in the UV and blue than at longer wavelengths.
This poorly understood effect appears as a reduction both of light yield
and attenuation length. Radiation damage depends not only on the
integrated dose, but on the dose rate, atmosphere, and temperature,
before, during and after irradiation, as well as the materials properties
of the base such as glass transition temperature, polymer chain length,
etc. Annealing also occurs, accelerated by the diffusion of atmospheric
oxygen and elevated temperatures. The phenomena are complex,
unpredictable, and not well understood [30]. Since color centers are
most disruptive at shorter wavelengths, the most reliable method of
mitigating radiation damage is to shift emissions at every step to the
longest practical wavelengths, e.g., utilize fluors with large Stokes’
shifts (aka the “Better red than dead” strategy).

34.3.3. Scintillating and wavelength-shifting fibers :
The clad optical fiber comprising scintillator and wavelength shifter

(WLS) is particularly useful [31]. Since the initial demonstration
of the scintillating fiber (SCIFI) calorimeter [32], SCIFI techniques
have become mainstream [33]. SCIFI calorimeters are fast, dense,
radiation hard, and can have leadglass-like resolution. SCIFI trackers
can handle high rates and are radiation tolerant, but the low photon
yield at the end of a long fiber (see below) requires use of sensitive
photodetectors. WLS-only fiber readout of a calorimeter allows a very
high level of hermeticity since the solid angle blocked by the fiber
on its way to the photodetector is very small. The sensitive region
of scintillating fibers can be controlled by splicing them onto clear
(non-scintillating/non-WLS) fibers.

A typical configuration would be fibers with a core of polystyrene-
based scintillator or WLS (index of refraction n = 1.59), surrounded
by a cladding of PMMA (n = 1.49) a few microns thick, or, for
added light capture, with another cladding of fluorinated PMMA with
n = 1.42, for an overall diameter of 0.5 to 1 mm. The fraction of
generated light which is transported down the optical fiber is denoted
the capture fraction and is about 6% for the single-clad fiber and
10% for the double-clad fiber. A minimum-ionizing particle traversing
a high-quality 1 mm diameter fiber perpendicular to its axis will
produce fewer than 2000 photons, of which about 200 are captured.
Attenuation may eliminate 95% of these photons in a large collider
tracker.

A scintillating or WLS fiber is often characterized by its attenuation
length, over which the signal is attenuated to 1/e of its original
value. Factors determining attenuation length include re-absorption of
emitted photons by the polymer base or dissolved fluors, the level of
crystallinity of the base polymer, variation of photodetector sensitivity
to emitted wavelengths, and the quality of the internal surface [34].
Attenuation lengths of several meters are obtained by high quality
fibers.
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34.4. Inorganic scintillators:
Revised November 2017 by R.-Y. Zhu (California Institute of
Technology) and C.L. Woody (BNL).

Inorganic crystals form a class of scintillating materials with much
higher densities than organic plastic scintillators (typically ∼ 4–8
g/cm3) with a variety of different properties for use as scintillation
detectors. Due to their high density and high effective atomic number,
they can be used in applications where high stopping power or a
high conversion efficiency for electrons or photons is required. These
include total absorption electromagnetic calorimeters (see Sec. 34.9.1),
which consist of a totally active absorber (as opposed to a sampling
calorimeter), as well as serving as gamma ray detectors over a wide
range of energies. Many of these crystals also have very high light
output, and can therefore provide excellent energy resolution down to
very low energies (∼ few hundred keV).

Some crystals are intrinsic scintillators in which the luminescence is
produced by a part of the crystal lattice itself. However, other crystals
require the addition of a dopant, typically fluorescent ions such as
thallium (Tl) or cerium (Ce) which is responsible for producing the
scintillation light. However, in both cases, the scintillation mechanism
is the same. Energy is deposited in the crystal by ionization, either
directly by charged particles, or by the conversion of photons into
electrons or positrons which subsequently produce ionization. This
energy is transferred to the luminescent centers which then radiate
scintillation photons. The light yield L in terms of the number of
scintillation photons produced per MeV of energy deposit in the
crystal can be expressed as [36]

L = 106 S ·Q/(β ·Eg), (34.3)

where β · Eg is is the energy required to create an e-h pair expressed
as a multiple of the band gap energy Eg (eV), S is the efficiency
of energy transfer to the luminescent center and Q is the quantum
efficiency of the luminescent center. The values of β, S and Q are
crystal dependent and are the main factors in determining the intrinsic
light yield of the scintillator. The decay time of the scintillator is
mainly dominated by the decay time of the luminescent center.

Table 34.4 lists the basic properties of some commonly used
inorganic crystals. NaI(Tl) is one of the most common and widely
used scintillators, with an emission that is well matched to a bialkali
photomultiplier tube, but it is highly hygroscopic and difficult to work
with, and has a rather low density. CsI(Tl) and CsI(Na) have high
light yield, low cost, and are mechanically robust (high plasticity and
resistance to cracking). However, they need careful surface treatment
and are slightly and highly hygroscopic respectively. Pure CsI has
identical mechanical properties as CsI(Tl), but faster emission at
shorter wavelength and a much lower light output. BaF2 has a fast
component with a sub-nanosecond decay time, and is the fastest
known scintillator. However, it also has a slow component with a
much longer decay time (∼ 630 ns). Bismuth gemanate (Bi4Ge3O12

or BGO) has a high density, and consequently a short radiation length
X0 and Molière radius RM . Similar to CsI(Tl), BGO’s emission is
well-matched to the spectral sensitivity of photodiodes, and it is easy
to handle and not hygroscopic. Lead tungstate (PbWO4 or PWO) has
a very high density, with a very short X0 and RM , but its intrinsic
light yield is rather low.

Cerium doped lutetium oxyorthosilicate (Lu2SiO5:Ce, or
LSO:Ce) [37] and cerium doped lutetium-yttrium oxyorthosili-
cate (Lu2(1−x)Y2xSiO5, LYSO:Ce) [38] are dense crystal scintillators
which have a high light yield and a fast decay time. Only the
properties of LSO:Ce are listed in Table 34.4 since the properties
of LYSO:Ce are similar to that of LSO:Ce except a slightly lower
density than LSO:Ce depending on the yttrium fraction in LYSO:Ce.
This material is also featured with excellent radiation hardness [39],
so is expected to be used where extraordinary radiation hardness is
required.

Also listed in Table 34.4 are other fluoride crystals such as PbF2 as
a Cherenkov material and CeF3, which have been shown to provide
excellent energy resolution in calorimeter applications. Table 34.4
also includes cerium doped lanthanum tri-halides, such as LaBr3 [40]
and CeBr3 [41], which are brighter and faster than LSO:Ce, but
they are highly hygroscopic and have a lower density. The FWHM

energy resolution measured for these materials coupled to a PMT with
bi-alkali photocathode for 0.662 MeV γ-rays from a 137Cs source is
about 3%, and has recently been improved to 2% by co-doping with
cerium and strontium [42], which is the best among all inorganic
crystal scintillators. For this reason, LaBr3 and CeBr3 are expected to
be used in applications where a good energy resolution for low energy
photons are required, such as homeland security.

Beside the crystals listed in Table 34.4, a number of new crystals are
being developed that may have potential applications in high energy
or nuclear physics. Of particular interest is the family of yttrium
and lutetium perovskites and garnet, which include YAP (YAlO3:Ce),
LuAP (LuAlO3:Ce), YAG (Y3Al5O12:Ce) and LuAG (Lu3Al5O12:Ce)
and their mixed compositions. These have been shown to be linear
over a large energy range [43], and have the potential for providing
good intrinsic energy resolution.

Aiming at the best jet-mass resolution inorganic scintillators are
being investigated for HEP calorimeters with dual readout for both
Cherenkov and scintillation light to be used at future linear colliders.
These materials may be used for an electromagnetic calorimeter [44]
or a homogeneous hadronic calorimetry (HHCAL) detector concept,
including both electromagnetic and hadronic parts [45]. Because of
the unprecedented volume (70 to 100 m3) foreseen for the HHCAL
detector concept the materials must be (1) dense (to minimize the
leakage) and (2) cost-effective. It should also be UV transparent
(for effective collection of the Cherenkov light) and allow for a clear
discrimination between the Cherenkov and scintillation light. The
preferred scintillation light is thus at a longer wavelength, and not
necessarily bright or fast. Dense crystals, scintillating glasses and
ceramics offer a very attractive implementation for this detector
concept [46].

The fast scintillation light provides timing information about
electromagnetic interactions and showers, which may be used to
mitigate pile-up effects and/or for particle identification since the
time development of electromagnetic and hadronic showers, as well
as minimum ionizing particles, are different. The timing information
is primarily determined by the scintillator rise time and decay time,
and the number of photons produced. For fast timing, it is important
to have a large number of photons emitted in the initial part of the
scintillation pulse, e.g. in the first ns, since one is often measuring
the arrival time of the particle in the crystal using the leading edge
of the light pulse. A good example of this is BaF2, which has ∼ 10%
of its light in its fast component with a decay time of < 1 ns. The
light propagation can spread out the arrival time of the scintillation
photons at the photodetector due to time dispersion [47]. The time
response of the photodetector also plays a major role in achieving
good time resolution with fast scintillating crystals.

Table 34.4 gives the light output of other crystals relative to NaI(Tl)
and their dependence to the temperature variations measured for 1.5
X0 cube crystal samples with a Tyvek paper wrapping and a full end
face coupled to a photodetector [48]. The quantum efficiencies of the
photodetector is taken out to facilitate a direct comparison of crystal’s
light output. However, the useful signal produced by a scintillator
is usually quoted in terms of the number of photoelectrons per
MeV produced by a given photodetector. The relationship between
the number of photons/MeV produced (L) and photoelectrons/MeV
detected (Np.e./MeV) involves the factors for the light collection
efficiency (LC) and the quantum efficiency (QE) of the photodetector:

Np.e./MeV = L · LC ·QE. (34.4)

LC depends on the size and shape of the crystal, and includes
effects such as the transmission of scintillation light within the crystal
(i.e., the bulk attenuation length of the material), scattering from
within the crystal, reflections and scattering from the crystal surfaces,
and re-bouncing back into the crystal by wrapping materials. These
factors can vary considerably depending on the sample, but can be in
the range of ∼10–60%. The internal light transmission depends on the
intrinsic properties of the material, e.g. the density and type of the
scattering centers and defects that can produce internal absorption
within the crystal, and can be highly affected by factors such as
radiation damage, as discussed below.

The quantum efficiency depends on the type of photodetector
used to detect the scintillation light, which is typically ∼15–30% for
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photomultiplier tubes and ∼70% for silicon photodiodes for visible
wavelengths. The quantum efficiency of the detector is usually highly
wavelength dependent and should be matched to the particular
crystal of interest to give the highest quantum yield at the wavelength
corresponding to the peak of the scintillation emission. Fig. 34.2 shows
the quantum efficiencies of two photodetectors, a Hamamatsu R2059
PMT with bi-alkali cathode and quartz window and a Hamamatsu
S8664 avalanche photodiode (APD) as a function of wavelength. Also
shown in the figure are emission spectra of three crystal scintillators,
BGO, LSO:Ce/LYSO:Ce and CsI(Tl), and the numerical values
of the emission weighted quantum efficiency. The area under each
emission spectrum is proportional to crystal’s light yield, as shown
in Table 34.4, where the quantum efficiencies of the photodetector
has been taken out. Results with different photodetectors can be
significantly different. For example, the response of CsI(Tl) relative
to NaI(Tl) with a standard photomultiplier tube with a bi-alkali
photo-cathode, e.g. Hamamatsu R2059, would be 45 rather than 165
because of the photomultiplier’s low quantum efficiency at longer
wavelengths. For scintillators which emit in the UV, a detector with a
quartz window should be used.

For very low energy applications (typically below 1 MeV), non-
proportionality of the scintillation light yield may be important. It
has been known for a long time that the conversion factor between
the energy deposited in a crystal scintillator and the number of
photons produced is not constant. It is also known that the energy
resolution measured by all crystal scintillators for low energy γ-rays is
significantly worse than the contribution from photo-electron statistics
alone, indicating an intrinsic contribution from the scintillator itself.
Precision measurement using low energy electron beam shows that
this non-proportionality is crystal dependent [49]. Recent study on
this issue also shows that this effect is also sample dependent even
for the same crystal [50]. Further work is therefore needed to fully
understand this subject.

Table 34.4: Properties of several inorganic crystals. Most of the
notation is defined in Sec. 6 of this Review.

Parameter: ρ MP X∗
0 R∗

M dE∗/dx λ∗I τdecay λmax n♮ Relative Hygro- d(LY)/dT
output† scopic?

Units: g/cm3 ◦C cm cm MeV/cm cm ns nm %/◦C‡

NaI(Tl) 3.67 651 2.59 4.13 4.8 42.9 245 410 1.85 100 yes −0.2

BGO 7.13 1050 1.12 2.23 9.0 22.8 300 480 2.15 21 no −0.9

BaF2 4.89 1280 2.03 3.10 6.5 30.7 650s 300s 1.50 36s no −1.9s

0.9f 220f 4.1f 0.1f

CsI(Tl) 4.51 621 1.86 3.57 5.6 39.3 1220 550 1.79 165 slight 0.4

CsI(Na) 4.51 621 1.86 3.57 5.6 39.3 690 420 1.84 88 yes 0.4

CsI(pure) 4.51 621 1.86 3.57 5.6 39.3 30s 310 1.95 3.6s slight −1.4

6f 1.1f

PbWO4 8.30 1123 0.89 2.00 10.1 20.7 30s 425s 2.20 0.3s no −2.5

10f 420f 0.077f

LSO(Ce) 7.40 2050 1.14 2.07 9.6 20.9 40 402 1.82 85 no −0.2

PbF2 7.77 824 0.93 2.21 9.4 21.0 - - - Cherenkov no -

CeF3 6.16 1460 1.70 2.41 8.42 23.2 30 340 1.62 7.3 no 0

LaBr3(Ce) 5.29 783 1.88 2.85 6.90 30.4 20 356 1.9 180 yes 0.2

CeBr3 5.23 722 1.96 2.97 6.65 31.5 17 371 1.9 165 yes −0.1

∗ Numerical values calculated using formulae in this review.
♮ Refractive index at the wavelength of the emission maximum.
† Relative light output measured for samples of 1.5 X0 cube with a
Tyvek paper wrapping and a full end face coupled to a photodetector.
The quantum efficiencies of the photodetector are taken out.
‡ Variation of light yield with temperature evaluated at the room
temperature.
f = fast component, s = slow component

One important issue related to the application of a crystal
scintillator is its radiation hardness. Stability of its light output, or
the ability to track and monitor the variation of its light output in a
radiation environment, is required for high resolution and precision
calibration [51]. All known crystal scintillators suffer from ionization
dose induced radiation damage [52], where a common damage
phenomenon is the appearance of radiation induced absorption caused
by the formation of color centers originated from the impurities
or point defects in the crystal. This radiation induced absorption
reduces the light attenuation length in the crystal, and hence its
light output. For crystals with high defect density, a severe reduction
of light attenuation length may cause a distortion of the light
response uniformity, leading to a degradation of the energy resolution.
Additional radiation damage effects may include a reduced intrinsic
scintillation light yield (damage to the luminescent centers) and an
increased phosphorescence (afterglow). For crystals to be used in a
high precision calorimeter in a radiation environment, its scintillation
mechanism must not be damaged and its light attenuation length in
the expected radiation environment must be long enough so that its
light response uniformity, and thus its energy resolution, does not
change.

While radiation damage induced by ionization dose is well
understood [53], investigation is on-going to understand radiation
damage caused by hadrons, including both charged hadrons and
neutrons [54]. Two additional fundamental processes may cause
defects by hadrons: displacement damage and nuclear breakup. While
charged hadrons can produce all three types of damage (and it’s often
difficult to separate them), neutrons can produce only the last two,
and electrons and photons only produce ionization damage. Studies
on hadron induced radiation damage to lead tungstate [56] show a
proton-specific damage component caused by fragments from fission
induced in lead and tungsten by particles in the hadronic shower. The
fragments cause a severe, local damage to the crystalline lattice due to
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their extremely high energy loss over a short distance [56]. Investiga-
tion on neutron-specific damage in lead tungstate [57] up to 4× 1019

n/cm2 show no neutron-specific damage in PWO [58].
Most of the crystals listed in Table 34.4 have been used in high

energy or nuclear physics experiments when the ultimate energy
resolution for electrons and photons is desired. Examples are the
Crystal Ball NaI(Tl) calorimeter at SPEAR, the L3 BGO calorimeter
at LEP, the CLEO CsI(Tl) calorimeter at CESR, the KTeV CsI
calorimeter at the Tevatron, the BaBar, BELLE and BES II CsI(Tl)
calorimeters at PEP-II, KEK and BEPC III. Because of their high
density and relative low cost, PWO calorimeters are used by CMS and
ALICE at LHC, by CLAS and PrimEx at CEBAF and by PANDA
at GSI, and PbF2 calorimeters are used by the A4 experiment
at MAINZ and by the g-2 experiment at Fermilab. A LYSO:Ce
calorimeter is being built for the COMET experiment at J-PARC and
a CsI calorimeter is being built for the Mu2e experiment at Fermilab.

7

Figure 34.2: The quantum efficiencies of two photodetectors,
a Hamamatsu R2059 PMT with bi-alkali cathode and a
Hamamatsu S8664 avalanche photodiode (APD), are shown
as a function of wavelength. Also shown in the figure are
emission spectra of three crystal scintillators, BGO, LSO and
CsI(Tl), and the numerical values of the emission weighted
quantum efficiencies. The area under each emission spectrum is
proportional to crystal’s light yield.

34.5. Cherenkov detectors

Revised August 2015 by B.N. Ratcliff (SLAC).

Although devices using Cherenkov radiation are often thought of as
only particle identification (PID) detectors, in practice they are used
over a much broader range of applications including; (1) fast particle
counters; (2) hadronic PID; and (3) tracking detectors performing
complete event reconstruction. Examples of applications from each
category include; (1) the Quartic fast timing counter designed to
measure small angle scatters at the LHC [59]; (2) the hadronic
PID detectors at the B factory detectors—DIRC in BaBar [60] and
the aerogel threshold Cherenkov in Belle [61]; and (3) large water
Cherenkov counters such as Super-Kamiokande [62]. Cherenkov
counters contain two main elements; (1) a radiator through which
the charged particle passes, and (2) a photodetector. As Cherenkov
radiation is a weak source of photons, light collection and detection
must be as efficient as possible. The refractive index n and the
particle’s path length through the radiator L appear in the Cherenkov
relations allowing the tuning of these quantities for particular
applications.

Cherenkov detectors utilize one or more of the properties of
Cherenkov radiation discussed in the Passages of Particles through
Matter section (Sec. 33 of this Review): the prompt emission of a
light pulse; the existence of a velocity threshold for radiation; and
the dependence of the Cherenkov cone half-angle θc and the number

of emitted photons on the velocity of the particle and the refractive
index of the medium.

The number of photoelectrons (Np.e.) detected in a given device is

Np.e. = L
α2z2

remec2

∫
ǫ(E) sin2 θc(E)dE , (34.5)

where ǫ(E) is the efficiency for collecting the Cherenkov light and
transducing it into photoelectrons, and α2/(remec

2) = 370 cm−1eV−1.
The quantities ǫ and θc are functions of the photon energy E. As

the typical energy dependent variation of the index of refraction is
modest, a quantity called the Cherenkov detector quality factor N0 can
be defined as

N0 =
α2z2

remec2

∫
ǫ dE , (34.6)

so that, taking z = 1 (the usual case in high-energy physics),

Np.e. ≈ LN0〈sin2 θc〉 . (34.7)

This definition of the quality factor N0 is not universal, nor,
indeed, very useful for those common situations where ǫ factorizes as
ǫ = ǫcollǫdet with the geometrical photon collection efficiency (ǫcoll)
varying substantially for different tracks while the photon detector
efficiency (ǫdet) remains nearly track independent. In this case, it
can be useful to explicitly remove (ǫcoll) from the definition of N0.
A typical value of N0 for a photomultiplier (PMT) detection system
working in the visible and near UV, and collecting most of the
Cherenkov light, is about 100 cm−1. Practical counters, utilizing
a variety of different photodetectors, have values ranging between
about 30 and 180 cm−1. Radiators can be chosen from a variety
of transparent materials (Sec. 33 of this Review and Table 6.1). In
addition to refractive index, the choice requires consideration of factors
such as material density, radiation length and radiation hardness,
transmission bandwidth, absorption length, chromatic dispersion,
optical workability (for solids), availability, and cost. When the
momenta of particles to be identified is high, the refractive index must
be set close to one, so that the photon yield per unit length is low
and a long particle path in the radiator is required. Recently, the gap
in refractive index that has traditionally existed between gases and
liquid or solid materials has been partially closed with transparent
silica aerogels with indices that range between about 1.007 and 1.13.

Cherenkov counters may be classified as either imaging or threshold
types, depending on whether they do or do not make use of Cherenkov
angle (θc) information. Imaging counters may be used to track
particles as well as identify them. The recent development of very fast
photodetectors such as micro-channel plate PMTs (MCP PMT) (see
Sec. 34.2 of this Review) also potentially allows very fast Cherenkov
based time of flight (TOF) detectors of either class [63]. The track
timing resolution of imaging detectors can be extremely good as it
scales approximately as 1√

Np.e.
.

Threshold Cherenkov detectors [64], in their simplest form, make
a yes/no decision based on whether the particle is above or
below the Cherenkov threshold velocity βt = 1/n. A straightforward
enhancement of such detectors uses the number of observed
photoelectrons (or a calibrated pulse height) to discriminate between
species or to set probabilities for each particle species [65]. This
strategy can increase the momentum range of particle separation by
a modest amount (to a momentum some 20% above the threshold
momentum of the heavier particle in a typical case).

Careful designs give 〈ǫcoll〉& 90%. For a photomultiplier with a
typical bialkali cathode,

∫
ǫdetdE ≈ 0.27 eV, so that

Np.e./L ≈ 90 cm−1 〈sin2 θc〉 (i.e., N0 = 90 cm−1) . (34.8)

Suppose, for example, that n is chosen so that the threshold for species
a is pt; that is, at this momentum species a has velocity βa = 1/n. A
second, lighter, species b with the same momentum has velocity βb, so
cos θc = βa/βb, and

Np.e./L ≈ 90 cm−1 m2
a −m2

b

p2t +m2
a

. (34.9)



34. Particle detectors at accelerators 469

For K/π separation at p = pt = 1(5) GeV/c, Np.e./L ≈ 16(0.8) cm−1

for π’s and (by design) 0 for K’s.
For limited path lengths Np.e. will usually be small. The overall

efficiency of the device is controlled by Poisson fluctuations, which
can be especially critical for separation of species where one particle
type is dominant. Moreover, the effective number of photoelectrons is
often less than the average number calculated above due to additional
equivalent noise from the photodetector (see the discussion of the
excess noise factor in Sec. 34.2 of this Review). It is common to
design for at least 10 photoelectrons for the high velocity particle
in order to obtain a robust counter. As rejection of the particle
that is below threshold depends on not seeing a signal, electronic
and other background noise, especially overlapping tracks, can be
important. Physics sources of light production for the below threshold
particle, such as decay to an above threshold particle, scintillation
light, or the production of delta rays in the radiator, often limit
the separation attainable, and need to be carefully considered. Well
designed, modern multi-channel counters, such as the ACC at Belle
[61], can attain adequate particle separation performance over a
substantial momentum range.

Imaging counters make the most powerful use of the information
available by measuring the ring-correlated angles of emission of the
individual Cherenkov photons. They typically provide positive ID
information both for the “wanted” and the “unwanted” particles, thus
reducing mis-identification substantially. Since low-energy photon
detectors can measure only the position (and, perhaps, a precise
detection time) of the individual Cherenkov photons (not the angles
directly), the photons must be “imaged” onto a detector so that their
angles can be derived [66]. Typically the optics map the Cherenkov
cone onto (a portion of) a distorted “circle” at the photodetector.
Though the imaging process is directly analogous to familiar imaging
techniques used in telescopes and other optical instruments, there is
a somewhat bewildering variety of methods used in a wide variety
of counter types with different names. Some of the imaging methods
used include (1) focusing by a lens or mirror; (2) proximity focusing
(i.e., focusing by limiting the emission region of the radiation); and
(3) focusing through an aperture (a pinhole). In addition, the prompt
Cherenkov emission coupled with the speed of some modern photon
detectors allows the use of (4) time imaging, a method which is
little used in conventional imaging technology, and may allow some
separation with particle TOF. Finally, (5) correlated tracking (and
event reconstruction) can be performed in large water counters by
combining the individual space position and time of each photon
together with the constraint that Cherenkov photons are emitted from
each track at the same polar angle (Sec. 35.3.1 of this Review).

In a simple model of an imaging PID counter, the fractional error
on the particle velocity (δβ) is given by

δβ =
σβ
β

= tan θcσ(θc) , (34.10)

where

σ(θc) =
〈σ(θi)〉√
Np.e.

⊕ C , (34.11)

and 〈σ(θi)〉 is the average single photoelectron resolution, as defined
by the optics, detector resolution and the intrinsic chromaticity
spread of the radiator index of refraction averaged over the photon
detection bandwidth. C combines a number of other contributions to
resolution including, (1) correlated terms such as tracking, alignment,
and multiple scattering, (2) hit ambiguities, (3) background hits from
random sources, and (4) hits coming from other tracks. The actual
separation performance is also limited by physics effects such as decays
in flight and particle interactions in the material of the detector. In
many practical cases, the performance is limited by these effects.

For a β ≈ 1 particle of momentum (p) well above threshold entering
a radiator with index of refraction (n), the number of σ separation
(Nσ) between particles of mass m1 and m2 is approximately

Nσ ≈ |m2
1 −m2

2|
2p2σ(θc)

√
n2 − 1

. (34.12)

In practical counters, the angular resolution term σ(θc) varies
between about 0.1 and 5 mrad depending on the size, radiator, and

photodetector type of the particular counter. The range of momenta
over which a particular counter can separate particle species extends
from the point at which the number of photons emitted becomes
sufficient for the counter to operate efficiently as a threshold device
(∼20% above the threshold for the lighter species) to the value in
the imaging region given by the equation above. For example, for
σ(θc) = 2mrad, a fused silica radiator(n = 1.474), or a fluorocarbon
gas radiator (C5F12, n = 1.0017), would separate π/K’s from the
threshold region starting around 0.15(3) GeV/c through the imaging
region up to about 4.2(18) GeV/c at better than 3σ.

Many different imaging counters have been built during the last sev-
eral decades [63]. Among the earliest examples of this class of counters
are the very limited acceptance Differential Cherenkov detectors,
designed for particle selection in high momentum beam lines. These
devices use optical focusing and/or geometrical masking to select
particles having velocities in a specified region. With careful design, a
velocity resolution of σβ/β ≈ 10−4–10−5 can be obtained [64].

Practical multi-track Ring-Imaging Cherenkov detectors (generi-
cally called RICH counters) are a more recent development. RICH
counters are sometimes further classified by ‘generations’ that differ
based on historical timing, performance, design, and photodetection
techniques.

Prototypical examples of first generation RICH counters are those
used in the DELPHI and SLD detectors at the LEP and SLC Z factory
e+e− colliders [63]. They have both liquid (C6F14, n = 1.276)
and gas (C5F12, n = 1.0017) radiators, the former being proximity
imaged with the latter using mirrors. The phototransducers are a
TPC/wire-chamber combination. They are made sensitive to photons
by doping the TPC gas (usually, ethane/methane) with ∼ 0.05%
TMAE (tetrakis(dimethylamino)ethylene). Great attention to detail
is required, (1) to avoid absorbing the UV photons to which TMAE
is sensitive, (2) to avoid absorbing the single photoelectrons as they
drift in the long TPC, and (3) to keep the chemically active TMAE
vapor from interacting with materials in the system. In spite of their
unforgiving operational characteristics, these counters attained good
e/π/K/p separation over wide momentum ranges (from about 0.25
to 20 GeV/c) during several years of operation at LEP and SLC.
Related but smaller acceptance devices include the OMEGA RICH
at the CERN SPS, and the RICH in the balloon-borne CAPRICE
detector [63].

Later generation counters [63] generally operate at much higher
rates, with more detection channels, than the first generation detectors
just described. They also utilize faster, more forgiving photon
detectors, covering different photon detection bandwidths. Radiator
choices have broadened to include materials such as lithium fluoride,
fused silica, and aerogel. Vacuum based photodetection systems (e.g.,
single or multi anode PMTs, MCP PMTs, or hybrid photodiodes
(HPD)) have become increasingly common (see Sec. 34.2 of this
Review). They handle high rates, and can be used with a wide choice
of radiators. Examples include (1) the SELEX RICH at Fermilab,
which mirror focuses the Cherenkov photons from a neon radiator
onto a camera array made of ∼ 2000 PMTs to separate hadrons over a
wide momentum range (to well above 200 GeV/c for heavy hadrons);
(2) the HERMES RICH at HERA, which mirror focuses photons from
C4F10(n = 1.00137) and aerogel(n = 1.0304) radiators within the
same volume onto a PMT camera array to separate hadrons in the
momentum range from 2 to 15 GeV/c; and (3) the LHCb detector
now running at the LHC. It uses two separate counters readout by
hybrid PMTs. One volume, like HERMES, contains two radiators
(aerogel and C4F10) while the second volume contains CF4. Photons
are mirror focused onto detector arrays of HPDs to cover a π/K
separation momentum range between 1 and 150 GeV/c. This device
will be upgraded to deal with the higher luminosities provided by
LHC after 2018 by modifying the optics and removing the aerogel
radiator of the upstream RICH and replacing the Hybrid PMTs with
multi-anode PMTs (MaPMTs).

Other fast detection systems that use solid cesium iodide (CsI)
photocathodes or triethylamine (TEA) doping in proportional
chambers are useful with certain radiator types and geometries.
Examples include (1) the CLEO-III RICH at CESR that uses a LiF
radiator with TEA doped proportional chambers; (2) the ALICE
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detector at the LHC that uses proximity focused liquid (C6F14

radiators and solid CSI photocathodes (similar photodectors have
been used for several years by the HADES and COMPASS detectors),
and the hadron blind detector (HBD) in the PHENIX detector at
RHIC that couples a low index CF4 radiator to a photodetector
based on electron multiplier (GEM) chambers with reflective CSI
photocathodes [63].

A DIRC (Detection [of] Internally Reflected Cherenkov [light])
is a distinctive, compact RICH subtype first used in the BaBar
detector [60,63]. A DIRC “inverts” the usual RICH principle for
use of light from the radiator by collecting and imaging the total
internally reflected light rather than the transmitted light. It utilizes
the optical material of the radiator in two ways, simultaneously;
first as a Cherenkov radiator, and second, as a light pipe. The
magnitudes of the photon angles are preserved during transport by
the flat, rectangular cross section radiators, allowing the photons to
be efficiently transported to a detector outside the path of the particle
where they may be imaged in up to three independent dimensions (the
usual two in space and, due to the long photon paths lengths, one in
time). Because the index of refraction in the radiator is large (∼ 1.48
for fused silica), light collection efficiency is good, but the momentum
range with good π/K separation is rather low. The BaBar DIRC
range extends up to ∼ 4 GeV/c. It is plausible, but challenging,
to extend it up to about 10 GeV/c with an improved design. New
DIRC detectors are being developed that take advantage of the new,
very fast, pixelated photodetectors becoming available, such as flat
panel MaPMTs and MCP PMTs. They typically utilize either time
imaging or mirror focused optics, or both, leading not only to a
precision measurement of the Cherenkov angle, but in some cases,
to a precise measurement of the particle TOF, and/or to correction
of the chromatic dispersion in the radiator. Examples [63] include
(1) the time of propagation (TOP) counter being fabricated for the
BELLE-II upgrade at KEKB emphasizing precision timing for both
Cherenkov imaging and TOF, which is scheduled for installation in
2016; (2) the full scale 3-dimensional imaging FDIRC prototype using
the BaBar DIRC radiators which was designed for the SuperB detector
at the Italian SuperB collider and uses precision timing not only for
improving the angle reconstruction and TOF precision, but also to
correct the chromatic dispersion; (3) the DIRCs being developed for
the PANDA detector at FAIR that use elegant focusing optics and
fast timing; and (4) the TORCH proposal being developed for an
LHCb upgrade after 2019 which uses DIRC imaging with fast photon
detectors to provide particle separation via particle TOF over a path
length of 9.5m.

34.6. Gaseous detectors

34.6.1. Energy loss and charge transport in gases : Revised
March 2010 by F. Sauli (CERN) and M. Titov (CEA Saclay).

Gas-filled detectors localize the ionization produced by charged
particles, generally after charge multiplication. The statistics of
ionization processes having asymmetries in the ionization trails, affect
the coordinate determination deduced from the measurement of drift
time, or of the center of gravity of the collected charge. For thin gas
layers, the width of the energy loss distribution can be larger than
its average, requiring multiple sample or truncated mean analysis to
achieve good particle identification. In the truncated mean method
for calculating 〈dE/dx〉, the ionization measurements along the track
length are broken into many samples and then a fixed fraction of
high-side (and sometimes also low-side) values are rejected [67].

The energy loss of charged particles and photons in matter is
discussed in Sec. 33. Table 34.5 provides values of relevant parameters
in some commonly used gases at NTP (normal temperature, 20◦ C,
and pressure, 1 atm) for unit-charge minimum-ionizing particles
(MIPs) [68–74]. Values often differ, depending on the source, so
those in the table should be taken only as approximate. For different
conditions and for mixtures, and neglecting internal energy transfer
processes (e.g., Penning effect), one can scale the density, NP , and NT
with temperature and pressure assuming a perfect gas law.

When an ionizing particle passes through the gas it creates
electron-ion pairs, but often the ejected electrons have sufficient
energy to further ionize the medium. As shown in Table 34.5, the

Table 34.5: Properties of noble and molecular gases at normal
temperature and pressure (NTP: 20◦ C, one atm). EX , EI : first
excitation, ionization energy; WI : average energy per ion pair;
dE/dx|min, NP , NT : differential energy loss, primary and total
number of electron-ion pairs per cm, for unit charge minimum
ionizing particles.

Gas Density, Ex EI WI dE/dx|min NP NT

mg cm−3 eV eV eV keVcm−1 cm−1 cm−1

He 0.179 19.8 24.6 41.3 0.32 3.5 8

Ne 0.839 16.7 21.6 37 1.45 13 40

Ar 1.66 11.6 15.7 26 2.53 25 97

Xe 5.495 8.4 12.1 22 6.87 41 312

CH4 0.667 8.8 12.6 30 1.61 28 54

C2H6 1.26 8.2 11.5 26 2.91 48 112

iC4H10 2.49 6.5 10.6 26 5.67 90 220

CO2 1.84 7.0 13.8 34 3.35 35 100

CF4 3.78 10.0 16.0 54 6.38 63 120

total number of electron-ion pairs (NT ) is usually a few times larger
than the number of primaries (NP ).

The probability for a released electron to have an energy E or larger
follows an approximate 1/E2 dependence (Rutherford law), shown in
Fig. 34.3 for Ar/CH4 at NTP (dotted line, left scale). More detailed
estimates taking into account the electronic structure of the medium
are shown in the figure, for three values of the particle velocity
factor βγ [69]. The dot-dashed line provides, on the right scale, the
practical range of electrons (including scattering) of energy E. As an
example, about 0.6% of released electrons have 1 keV or more energy,
substantially increasing the ionization loss rate. The practical range
of 1 keV electrons in argon (dot-dashed line, right scale) is 70µm and
this can contribute to the error in the coordinate determination.

Figure 34.3: Probability of single collisions in which released
electrons have an energy E or larger (left scale) and practical
range of electrons in Ar/CH4 (P10) at NTP (dot-dashed curve,
right scale) [69].

The number of electron-ion pairs per primary ionization, or cluster
size, has an exponentially decreasing probability; for argon, there is
about 1% probability for primary clusters to contain ten or more
electron-ion pairs [70].

Once released in the gas, and under the influence of an applied
electric field, electrons and ions drift in opposite directions and diffuse
towards the electrodes. The scattering cross section is determined
by the details of atomic and molecular structure. Therefore, the
drift velocity and diffusion of electrons depend very strongly on the
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nature of the gas, specifically on the inelastic cross-section involving
the rotational and vibrational levels of molecules. In noble gases,
the inelastic cross section is zero below excitation and ionization
thresholds. Large drift velocities are achieved by adding polyatomic
gases (usually CH4, CO2, or CF4) having large inelastic cross sections
at moderate energies, which results in “cooling” electrons into the
energy range of the Ramsauer-Townsend minimum (at ∼ 0.5 eV)
of the elastic cross-section of argon. The reduction in both the
total electron scattering cross-section and the electron energy results
in a large increase of electron drift velocity (for a compilation of
electron-molecule cross sections see Ref. 71). Another principal role
of the polyatomic gas is to absorb the ultraviolet photons emitted
by the excited noble gas atoms. Extensive collections of experimental
data [72] and theoretical calculations based on transport theory [73]
permit estimates of drift and diffusion properties in pure gases and
their mixtures. In a simple approximation, gas kinetic theory provides
the drift velocity v as a function of the mean collision time τ and
the electric field E: v = eEτ/me (Townsend’s expression). Values of
drift velocity and diffusion for some commonly used gases at NTP are
given in Fig. 34.4 and Fig. 34.5. These have been computed with the
MAGBOLTZ program [74]. For different conditions, the horizontal
axis must be scaled inversely with the gas density. Standard deviations
for longitudinal (σL) and transverse diffusion (σT ) are given for one
cm of drift, and scale with the the square root of the drift distance.
Since the collection time is inversely proportional to the drift velocity,
diffusion is less in gases such as CF4 that have high drift velocities. In
the presence of an external magnetic field, the Lorentz force acting on
electrons between collisions deflects the drifting electrons and modifies
the drift properties. The electron trajectories, velocities and diffusion
parameters can be computed with MAGBOLTZ. A simple theory, the
friction force model, provides an expression for the vector drift velocity
v as a function of electric and magnetic field vectors E and B, of the
Larmor frequency ω = eB/me, and of the mean collision time τ :

v =
e

me

τ

1 + ω2τ2

(
E+

ωτ

B
(E×B) +

ω2τ2

B2
(E ·B)B

)
(34.13)

To a good approximation, and for moderate fields, one can assume
that the energy of the electrons is not affected by B, and use for τ
the values deduced from the drift velocity at B = 0 (the Townsend
expression). For E perpendicular to B, the drift angle to the relative to
the electric field vector is tan θB = ωτ and v = (E/B)(ωτ/

√
1 + ω2τ2).

For parallel electric and magnetic fields, drift velocity and longitudinal
diffusion are not affected, while the transverse diffusion can be
strongly reduced: σT (B) = σT (B = 0)/

√
1 + ω2τ2. The dotted line in

Fig. 34.5 represents σT for the classic Ar/CH4 (90:10) mixture at 4T.
Large values of ωτ ∼ 20 at 5T are consistent with the measurement
of diffusion coefficient in Ar/CF4/iC4H10 (95:3:2). This reduction is
exploited in time projection chambers (Sec. 34.6.5) to improve spatial
resolution.

Figure 34.4: Computed electron drift velocity as a function of
electric field in several gases at NTP and B = 0 [74].

In mixtures containing electronegative molecules, such as O2 or
H2O, electrons can be captured to form negative ions. Capture cross-
sections are strongly energy-dependent, and therefore the capture

probability is a function of applied field. For example, the electron
is attached to the oxygen molecule at energies below 1 eV. The
three-body electron attachment coefficients may differ greatly for the
same additive in different mixtures. As an example, at moderate
fields (up to 1 kV/cm) the addition of 0.1% of oxygen to an Ar/CO2

mixture results in an electron capture probability about twenty times
larger than the same addition to Ar/CH4.

Carbon tetrafluoride is not electronegative at low and moderate
fields, making its use attractive as drift gas due to its very low
diffusion. However, CF4 has a large electron capture cross section at
fields above ∼ 8 kV/cm, before reaching avalanche field strengths.
Depending on detector geometry, some signal reduction and resolution
loss can be expected using this gas.

If the electric field is increased sufficiently, electrons gain enough
energy between collisions to ionize molecules. Above a gas-dependent
threshold, the mean free path for ionization, λi, decreases exponentially
with the field; its inverse, α = 1/λi, is the first Townsend coefficient.
In wire chambers, most of the increase of avalanche particle density
occurs very close to the anode wires, and a simple electrostatic
consideration shows that the largest fraction of the detected signal
is due to the motion of positive ions receding from the wires. The
electron component, although very fast, contributes very little to the
signal. This determines the characteristic shape of the detected signals
in the proportional mode: a fast rise followed by a gradual increase.
The slow component, the so-called “ion tail” that limits the time
resolution of the detector, is usually removed by differentiation of the
signal. In uniform fields, N0 initial electrons multiply over a length x
forming an electron avalanche of size N = N0 e

αx; N/N0 is the gain
of the detector. Fig. 34.6 shows examples of Townsend coefficients for
several gas mixtures, computed with MAGBOLTZ [74].

Figure 34.5: Electron longitudinal diffusion (σL) (dashed lines)
and transverse diffusion (σT ) (full lines) for 1 cm of drift at NTP
and B = 0. The dotted line shows σT for the P10 mixture at
4T [74].

Figure 34.6: Computed first Townsend coefficient α as a
function of electric field in several gases at NTP [74].
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Positive ions released by the primary ionization or produced in
the avalanches drift and diffuse under the influence of the electric
field. Negative ions may also be produced by electron attachment to
gas molecules. The drift velocity of ions in the fields encountered in
gaseous detectors (up to few kV/cm) is typically about three orders
of magnitude less than for electrons. The ion mobility µ, the ratio of
drift velocity to electric field, is constant for a given ion type up to
very high fields. Values of mobility at NTP for ions in their own and
other gases are given in Table 34.6 [75]. For different temperatures
and pressures, the mobility can be scaled inversely with the density
assuming an ideal gas law. For mixtures, due to a very effective charge
transfer mechanism, only ions with the lowest ionization potential
survive after a short path in the gas. Both the lateral and transverse
diffusion of ions are proportional to the square root of the drift time,
with a coefficient that depends on temperature but not on the ion
mass. Accumulation of ions in the gas drift volume may induce field
distortions (see Sec. 34.6.5).

Table 34.6: Mobility of ions in gases at NTP [75].

Gas Ion Mobility µ

(cm2 V−1 s−1)

He He+ 10.4

Ne Ne+ 4.7

Ar Ar+ 1.54

Ar/CH4 CH+
4 1.87

Ar/CO2 CO+
2 1.72

CH4 CH+
4 2.26

CO2 CO+
2 1.09

34.6.2. Multi-Wire Proportional and Drift Chambers : Re-
vised March 2010 by Fabio Sauli (CERN) and Maxim Titov (CEA
Saclay).

Single-wire counters that detect the ionization produced in a
gas by a charged particle, followed by charge multiplication and
collection around a thin wire have been used for decades. Good energy
resolution is obtained in the proportional amplification mode, while
very large saturated pulses can be detected in the streamer and Geiger
modes [3].

Multiwire proportional chambers (MWPCs) [76,77], introduced in
the late ’60’s, detect, localize and measure energy deposit by charged
particles over large areas. A mesh of parallel anode wires at a suitable
potential, inserted between two cathodes, acts almost as a set of
independent proportional counters (see Fig. 34.7a). Electrons released
in the gas volume drift towards the anodes and produce avalanches in
the increasing field. Analytic expressions for the electric field can be
found in many textbooks. The fields close to the wires E(r), in the
drift region ED, and the capacitance C per unit length of anode wire
are approximately given by

E(r) =
CV0
2πǫ0

1

r
ED =

CV0
2ǫ0s

C =
2πǫ0

π(ℓ/s)− ln(2πa/s)
, (34.14)

where r is the distance from the center of the anode, s the wire
spacing, ℓ and V0 the distance and potential difference between anode
and cathode, and a the anode wire radius.

Because of electrostatic forces, anode wires are in equilibrium only
for a perfect geometry. Small deviations result in forces displacing the
wires alternatively below and above the symmetry plane, sometimes
with catastrophic results. These displacement forces are countered by
the mechanical tension of the wire, up to a maximum unsupported
stable length, LM [67], above which the wire deforms:

LM =
s

CV0

√
4πǫ0TM (34.15)

The maximum tension TM depends on the wire diameter and modulus
of elasticity. Table 34.7 gives approximate values for tungsten and

the corresponding maximum stable wire length under reasonable
assumptions for the operating voltage (V0 = 5kV) [78]. Internal
supports and spacers can be used in the construction of longer detectors
to overcome limits on the wire length imposed by Eq. (34.15).

Table 34.7: Maximum tension TM and stable unsupported
length LM for tungsten wires with spacing s, operated at
V0 = 5 kV. No safety factor is included.

Wire diameter (µm) TM (newton) s (mm) LM (cm)

10 0.16 1 25

20 0.65 2 85
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Figure 34.7: Electric field lines and equipotentials in (a) a
multiwire proportional chamber and (b) a drift chamber.

Detection of charge on the wires over a predefined threshold
provides the transverse coordinate to the wire with an accuracy
comparable to that of the wire spacing. The coordinate along each
wire can be obtained by measuring the ratio of collected charge at
the two ends of resistive wires. Making use of the charge profile
induced on segmented cathodes, the so-called center-of gravity (COG)
method, permits localization of tracks to sub-mm accuracy. Due to
the statistics of energy loss and asymmetric ionization clusters, the
position accuracy is ∼ 50µm rms for tracks perpendicular to the
wire plane, but degrades to ∼ 250µmat 30◦ to the normal [79]. The
intrinsic bi-dimensional characteristic of the COG readout has found
numerous applications in medical imaging.

Drift chambers, developed in the early ’70’s, can be used to estimate
the longitudinal position of a track by exploiting the arrival time of
electrons at the anodes if the time of interaction is known [80]. The
distance between anode wires is usually several cm, allowing coverage
of large areas at reduced cost. In the original design, a thicker wire
(the field wire) at the proper voltage, placed between the anode
wires, reduces the field at the mid-point between anodes and improves
charge collection (Fig. 34.7b). In some drift chamber designs, and
with the help of suitable voltages applied to field-shaping electrodes,
the electric field structure is adjusted to improve the linearity of
space-to-drift-time relation, resulting in better spatial resolution [81].

Drift chambers can reach a longitudinal spatial resolution from
timing measurement of order 100 µm (rms) or better for minimum
ionizing particles, depending on the geometry and operating conditions.
However, a degradation of resolution is observed [82] due to primary
ionization statistics for tracks close to the anode wires, caused by the
spread in arrival time of the nearest ionization clusters. The effect can
be reduced by operating the detector at higher pressures. Sampling
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the drift time on rows of anodes led to the concept of multiple arrays
such as the multi-drift module [83] and the JET chamber [84]. A
measurement of drift time, together with the recording of charge
sharing from the two ends of the anode wires provides the coordinates
of segments of tracks. The total charge gives information on the
differential energy loss and is exploited for particle identification. The
time projection chamber (TPC) [85] combines a measurement of drift
time and charge induction on cathodes, to obtain excellent tracking
for high multiplicity topologies occurring at moderate rates (see
Sec. 34.6.5). In all cases, a good knowledge of electron drift velocity
and diffusion properties is required. This has to be combined with
the knowledge of the electric fields in the structures, computed with
commercial or custom-developed software [74,86]. For an overview
of detectors exploiting the drift time for coordinate measurement see
Refs. 6 and 67.

Multiwire and drift chambers have been operated with a variety
of gas fillings and operating modes, depending on experimental
requirements. The so-called “Magic Gas,” a mixture of argon,
isobutane and Freon [77], permits very high and saturated gains
(∼ 106). This gas mixture was used in early wire chambers, but was
found to be susceptible to severe aging processes. With present-day
electronics, proportional gains around 104 are sufficient for detection
of minimum ionizing particles, and noble gases with moderate amounts
of polyatomic gases, such as methane or carbon dioxide, are used.

Although very powerful in terms of performance, multi-wire
structures have reliability problems when used in harsh or hard-to-
access environments, since a single broken wire can disable the entire
detector. Introduced in the ’80’s, straw and drift tube systems make
use of large arrays of wire counters encased in individual enclosures,
each acting as an independent wire counter [87]. Techniques for
low-cost mass production of these detectors have been developed for
large experiments, such as the Transition Radiation Tracker and the
Drift Tubes arrays for CERN’s LHC experiments [88].

34.6.3. High Rate Effects : Revised March 2010 by Fabio Sauli
(CERN) and Maxim Titov (CEA Saclay).

The production of positive ions in the avalanches and their slow
drift before neutralization result in a rate-dependent accumulation of
positive charge in the detector. This may result in significant field
distortion, gain reduction and degradation of spatial resolution. As
shown in Fig. 34.8 [89], the proportional gain drops above a charge
production rate around 109 electrons per second and mm of wire,
independently of the avalanche size. For a proportional gain of 104

and 100 electrons per track, this corresponds to a particle flux of
103 s−1mm−1 (1 kHz/mm2 for 1 mm wire spacing).

Figure 34.8: Charge rate dependence of normalized gas gain
G/G0 (relative to zero counting rate) in proportional thin-wire
detectors [89]. Q is the total charge in single avalanche; N is
the particle rate per wire length.

At high radiation fluxes, a fast degradation of detectors due to the
formation of polymers deposits (aging) is often observed. The process
has been extensively investigated, often with conflicting results.

Several causes have been identified, including organic pollutants and
silicone oils. Addition of small amounts of water in many (but not
all) cases has been shown to extend the lifetime of the detectors.
Addition of fluorinated gases (e.g., CF4) or oxygen may result in an
etching action that can overcome polymer formation, or even eliminate
already existing deposits. However, the issue of long-term survival of
gas detectors with these gases is controversial [90]. Under optimum
operating conditions, a total collected charge of a few coulombs per cm
of wire can usually be reached before noticeable degradation occurs.
This corresponds, for one mm spacing and at a gain of 104, to a total
particle flux of ∼ 1014 MIPs/cm2.

34.6.4. Micro-Pattern Gas Detectors : Revised March 2010 by
Fabio Sauli (CERN) and Maxim Titov (CEA Saclay)

Despite various improvements, position-sensitive detectors based
on wire structures are limited by basic diffusion processes and
space charge effects to localization accuracies of 50–100µm [91].
Modern photolithographic technology led to the development of novel
Micro-Pattern Gas Detector (MPGD) concepts [92], revolutionizing
cell size limitations for many gas detector applications. By using pitch
size of a few hundred µm, an order of magnitude improvement in
granularity over wire chambers, these detectors offer intrinsic high rate
capability (> 106 Hz/mm2), excellent spatial resolution (∼ 30 µm),
multi-particle resolution (∼ 500 µm), and single photo-electron time
resolution in the ns range.

The Micro-Strip Gas Chamber (MSGC), invented in 1988, was
the first of the micro-structure gas chambers [93]. It consists of
a set of tiny parallel metal strips laid on a thin resistive support,
alternatively connected as anodes and cathodes. Owing to the small
anode-to-cathode distance (∼ 100 µm), the fast collection of positive
ions reduces space charge build-up, and provides a greatly increased
rate capability. Unfortunately, the fragile electrode structure of the
MSGC turned out to be easily destroyed by discharges induced by
heavily ionizing particles [94]. Nevertheless, detailed studies of their
properties, and in particular, on the radiation-induced processes
leading to discharge breakdown, led to the development of the
more powerful devices: GEM and Micromegas. These have improved
reliability and radiation hardness. The absence of space-charge effects
in GEM detectors at the highest rates reached so far and the fine
granularity of MPGDs improve the maximum rate capability by more
than two orders of magnitude (Fig. 34.9) [81,95]. Even larger rate
capability has been reported for Micromegas [96].

Figure 34.9: Normalized gas gain as a function of particle rate
for MWPC [81] and GEM [95].

The Gas Electron Multiplier (GEM) detector consists of a
thin-foil copper-insulator-copper sandwich chemically perforated to
obtain a high density of holes in which avalanches occur [97]. The
hole diameter is typically between 25 µm and 150 µm, while the
corresponding distance between holes varies between 50 µm and
200 µm. The central insulator is usually (in the original design)
the polymer Kapton, with a thickness of 50 µm. Application of a
potential difference between the two sides of the GEM generates the
electric fields indicated in Fig. 34.10. Each hole acts as an independent
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proportional counter. Electrons released by the primary ionization
particle in the upper conversion region (above the GEM foil) drift
into the holes, where charge multiplication occurs in the high electric
field (50–70 kV/cm). Most of avalanche electrons are transferred
into the gap below the GEM. Several GEM foils can be cascaded,
allowing the multi-layer GEM detectors to operate at overall gas gain
above 104 in the presence of highly ionizing particles, while strongly
reducing the risk of discharges. This is a major advantage of the GEM
technology [98]. Localization can then be performed by collecting
the charge on a patterned one- or two-dimensional readout board of
arbitrary pattern, placed below the last GEM.

140 µm

50 µm

Figure 34.10: Schematic view and typical dimensions of the
hole structure in the GEM amplification cell. Electric field lines
(solid) and equipotentials (dashed) are shown.
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Figure 34.11: Schematic drawing of the Micromegas detector.

The micro-mesh gaseous structure (Micromegas) is a thin parallel-
plate avalanche counter, as shown in Fig. 34.11 [99]. It consists of
a drift region and a narrow multiplication gap (25–150 µm) between
a thin metal grid (micromesh) and the readout electrode (strips or
pads of conductor printed on an insulator board). Electrons from
the primary ionization drift through the holes of the mesh into the
narrow multiplication gap, where they are amplified. The electric
field is homogeneous both in the drift (electric field ∼ 1 kV/cm)
and amplification (50–70 kV/cm) gaps. In the narrow multiplication
region, gain variations due to small variations of the amplification
gap are approximately compensated by an inverse variation of the
amplification coefficient, resulting in a more uniform gain. The small
amplification gap produces a narrow avalanche, giving rise to excellent

spatial resolution: 12 µm accuracy, limited by the micro-mesh pitch,
has been achieved for MIPs, as well as very good time resolution and
energy resolution (∼ 12% FWHM with 6 keV x rays) [100].

The performance and robustness of GEM and Micromegas have
encouraged their use in high-energy and nuclear physics, UV and
visible photon detection, astroparticle and neutrino physics, neutron
detection and medical physics. Most structures were originally
optimized for high-rate particle tracking in nuclear and high-energy
physics experiments. COMPASS, a high-luminosity experiment at
CERN, pioneered the use of large-area (∼ 40 × 40 cm2) GEM and
Micromegas detectors close to the beam line with particle rates of
25 kHz/mm2. Both technologies achieved a tracking efficiency of close
to 100% at gas gains of about 104, a spatial resolution of 70–100 µm
and a time resolution of ∼ 10 ns. GEM detectors are also used for
triggering in the LHCb Muon System and for tracking in the TOTEM
Telescopes. Both GEM and Micromegas devices are foreseen for the
upgrade of the LHC experiments and for one of the readout options
for the Time Projection Chamber (TPC) at the International Linear
Collider (ILC). The development of new fabrication techniques—
“bulk” Micromegas technology [101] and single-mask GEMs [102] —is
a big step toward industrial production of large-size MPGDs. In some
applications requiring very large-area coverage with moderate spatial
resolution, coarse macro-patterned detectors, such as Thick GEMs
(THGEM) [103] or patterned resistive-plate devices [104] might offer
economically interesting solutions.

Sensitive and low-noise electronics enlarge the range of the MPGD
applications. Recently, the GEM and Micromegas detectors were
read out by high-granularity (∼ 50 µm pitch) CMOS chips assembled
directly below the GEM or Micromegas amplification structures [105].
These detectors use the bump-bonding pads of a pixel chip as an
integrated charge collecting anode. With this arrangement signals are
induced at the input gate of a charge-sensitive preamplifier (top metal
layer of the CMOS chip). Every pixel is then directly connected to the
amplification and digitization circuits, integrated in the underlying
active layers of the CMOS technology, yielding timing and charge
measurements as well as precise spatial information in 3D.

The operation of a MPGD with a Timepix CMOS chip has
demonstrated the possibility of reconstructing 3D-space points of
individual primary electron clusters with ∼ 30µm spatial resolution
and event-time resolution with nanosecond precision. This has
become indispensable for tracking and triggering and also for
discriminating between ionizing tracks and photon conversions. The
GEM, in conjunction with a CMOS ASIC,* can directly view the
absorption process of a few keV x-ray quanta and simultaneously
reconstruct the direction of emission, which is sensitive to the x-ray
polarization. Thanks to these developments, a micro-pattern device
with finely segmented CMOS readout can serve as a high-precision
“electronic bubble chamber.” This may open new opportunities for
x-ray polarimeters, detection of weakly interacting massive particles
(WIMPs) and axions, Compton telescopes, and 3D imaging of nuclear
recoils.

An elegant solution for the construction of the Micromegas with
pixel readout is the integration of the amplification grid and CMOS
chip by means of an advanced “wafer post-processing” technology [106].
This novel concept is called “Ingrid” (see Fig. 34.12). With this
technique, the structure of a thin (1µm) aluminum grid is fabricated
on top of an array of insulating pillars. which stands ∼ 50µm above
the CMOS chip. The sub-µm precision of the grid dimensions and
avalanche gap size results in a uniform gas gain. The grid hole size,
pitch and pattern can be easily adapted to match the geometry of any
pixel readout chip.

Recent developments in radiation hardness research with state-of-
the-art MPGDs are reviewed in Ref. 107. Earlier aging studies of
GEM and Micromegas concepts revealed that they might be even
less vulnerable to radiation-induced performance degradation than
standard silicon microstrip detectors.

The RD51 collaboration was established in 2008 to further advance
technological developments of micro-pattern detectors and associated
electronic-readout systems for applications in basic and applied
research [108].

* Application Specific Integrated Circuit
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Figure 34.12: Photo of the Micromegas “Ingrid” detector.
The grid holes can be accurately aligned with readout pixels of
CMOS chip. The insulating pillars are centered between the grid
holes, thus avoiding dead regions.

34.6.5. Time-projection chambers : Written August 2015 by
C. Lippmann (GSI Helmholtzzentrum für Schwerionenforschung,
Darmstadt, Germany)

The Time Projection Chamber (TPC) concept was invented by
David Nygren in the late 1970’s [85]. It consists of a cylindrical
or square field cage filled with a detection medium that is usually
a gas or a liquid. Charged particles produce tracks of ionization
electrons that drift in a uniform electric field towards a position-
sensitive amplification stage which provides a 2D projection of the
particle trajectories. The third coordinate can be calculated from the
arrival times of the drifted electrons. The start for this drift time
measurement is usually derived from an external detector, e.g. a fast
interaction trigger detector.

This section focuses on the gas-filled TPCs that are typically used
in particle or nuclear physics experiments at accelerators due to their
low material budget. For neutrino physics (Sec. 34.10) or for detecting
rare events (Sec. 35.4), on the contrary, usually high density and large
active mass are required, and a liquid detection medium is favored.

The TPC enables full 3D measurements of charged particle tracks,
which gives it a distinct advantage over other tracking detector designs
which record information only in two-dimensional detector planes
and have less overall segmentation. This advantage is often exploited
for pattern recognition in events with large numbers of particles,
e.g. heavy-ion collisions. Two examples of modern large-volume
gaseous TPCs are shown in Fig. 34.13 and Fig. 34.14.

Figure 34.13: Schematic view of the ALICE TPC [109]. The
drift volume with 5m diameter is divided into two halves, each
providing 2.5m drift length.
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Figure 34.14: One of the 3 TPC modules for the near detector
of the T2K experiment [110]. The size is 2 × 2 × 0.8m3.
Micromegas devices are used for gas amplification and readout.

Identification of the charged particles crossing the TPC is possible
by simultaneously measuring their momentum and specific energy
deposit through ionisation (dE/dx). The momentum, as well as the
charge sign, are calculated from a helix fit to the particle trajectory
in the presence of a magnetic field (typically parallel to the drift
field). For this application, precise spatial measurements in the plane
transverse to the magnetic field are most important. The specific
energy deposit is estimated from many charge measurements along the
particle trajectory (e.g. one measurement per anode wire or per row of
readout pads). As the charge collected per readout segment depends
on the track angle and on the ambient conditions, the measured
values are corrected for the effective length of the track segments
and for variations of the gas temperature and pressure. The most
probable value of the corrected signal amplitudes provides the best
estimator for the specific energy deposit (see Sec. 33.2.3); it is usually
approximated by the truncated mean, i.e. the average of the 50%-70%
smallest values. The resulting particle identification performance is
illustrated in Fig. 34.15, for the ALICE TPC.
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Figure 34.15: Energy deposit versus momentum measured in
the ALICE TPC [111].

The dependence of the achievable energy resolution on the number
of measurements N , on the thickness of the sampling layers t, and on
the gas pressure P can be estimated using an empirical formula [112]:

σdE/dx = 0.41 N−0.43(t P )−0.32. (34.16)

Typical values at nominal pressure are σdE/dx = 4.5 to 7.5%, with
t = 0.4 to 1.5 cm and N = 40 up to more than 300. Due to the high
gas pressure of 8.5 bar, the resolution achieved with the PEP-4/9 TPC
was an unprecedented 3% [113].
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The greatest challenges for a large TPC are due to the length of
the drift of up to several meters. In particular, it can make the device
sensitive to small distortions in the electric field. Such distortions
can arise from a number of sources, e.g. imperfections in the field
cage construction or the presence of ions in the drift volume. The
electron drift in a TPC in the presence of a magnetic field is defined
by Eq. (34.13). The E ×B term of Eq. (34.13) vanishes for perfectly
aligned electric and magnetic fields, which can however be difficult to
achieve in practice. Furthermore, the electron drift depends on the ωτ
factor, which is defined by the chosen gas mixture and magnetic field
strength. The electrons will tend to follow the magnetic field lines
for ωτ > 1 or the electric field lines for ωτ < 1. The former mode
of operation makes the TPC less sensitive to non-uniformities of the
electric field, which is usually desirable.

The drift of the ionization electrons is superposed with a random
diffusion motion which degrades their position information. The
ultimate resolution of a single position measurement is limited to
around

σx =
σD

√
L√

n
, (34.17)

where σD is the transverse diffusion coefficient for 1 cm drift, L is the
drift length in cm and n is the effective number of electrons collected.
Without a magnetic field, σD,B=0

√
L is typically a few mm after a

drift of L = 100 cm. However, in a strong magnetic field parallel to
the drift field, a large value of ωτ can significantly reduce diffusion:

σD,B>0

σD,B=0
=

1√
1 + ω2τ2

. (34.18)

This factor can reach values of up to 10. In practice, the final
resolution limit due to diffusion will typically be around σx = 100µm.

The drift and diffusion of electrons depend strongly on the nature
of the gas that is used. The optimal gas mixture varies according
to the environment in which the TPC will operate. In all cases, the
oxygen concentration must be kept very low (few ten parts per million
in a large TPC) in order to avoid electron loss through attachment.
Ideally, the drift velocity should depend only weakly on the electric
field at the nominal operating condition. The classic Ar/CH4 (90:10)
mixture, known as P10, has a drift velocity maximum of 5 cm/µs
at an electric field of only 125V/cm (Fig. 34.4). In this regime,
the electron arrival time is not affected by small variations in the
ambient conditions. Moreover, low electric fields simplify the design
and operation of the field cage. The mixture has a large transverse
diffusion at B = 0, but this can be reduced significantly in a strong
magnetic field due to the relatively large value of ωτ .

For certain applications, organic gases like CH4 are not desirable,
since they may cause aging. An alternative is to replace CH4 with
CO2. An Ar/CO2 (90:10) mixture features a low transverse diffusion
at all magnetic field strengths, but does not provide a saturated drift
velocity for the typical electric fields used in TPCs (up to a few
100V/cm), so it is quite sensitive to the ambient conditions. Freon
admixtures like CF4 can be an attractive option for a TPC as well,
since the resulting gas mixtures provide high drift velocities at low
electric fields. However, the use of CF4 always needs to be thoroughly
validated for compatibility with all materials of the detector and the
gas system.

Historically, the amplification stages used in gaseous TPCs have
been planes of anode wires operated in proportional mode. The
performance is limited by effects related to the feature size of a few
mm (wire spacing). Since near the wires the electric and magnetic
fields are not parallel, the incoming ionisation electrons are displaced
in the direction of the wires (“wire E ×B effect”), which degrades the
resolution. The smaller feature sizes of Micro-Pattern Gas Detectors
(MPGDs) like GEMs and Micromegas lead to many advantages as
compared to wire planes (see Sec. 34.6.4). In particular, E ×B effects
in the amplification stage are much smaller. Moreover, the signal
induction process in MPGDs leads to a very narrow pad response,
allowing for a much finer segmentation and improving the separation
of two nearby tracks. Combinations of MPGDs with silicon sensors
have resulted in the highest granularity readout systems so far (see
Sec. 34.6.4). These devices make it possible to count the number
of ionization clusters along the length of a track, which can, in

principle, improve the particle identification capability. However, the
big challenge for such a system is the huge number of read-out
channels for a TPC of a typical size.

The accumulation of the positive ions created by the ionization
from the particle tracks can lead to time-dependent distortions of
the drift field. Due to their small drift velocity, ions from many
events may coexist in the drift volume. To reduce the effect of such
a build-up of space charge, Argon can be replaced by Neon as the
main component of the gas mixture. Neon features a lower number
of ionisation electrons per unit of track length (see Table 34.5) and a
higher ion mobility (see Table 34.6).

Of much greater concern are the ions produced in the gas
amplification stage. In order to prevent them from entering the drift
volume, large TPCs built until now usually have a gating grid. The
gating grid can be switched to transparent mode (usually in the
presence of an interaction trigger) to allow the ionization electrons
to pass into the amplification region. After all electrons have reached
the amplification region, it is usually closed such that it is rendered
opaque to electrons and ions.

Alternatively, new readout schemes are being developed using
MPGDs. These can be optimized in a way that they release many
fewer positive ions than wire planes operating at the same effective
gain. This is an exciting possibility for future TPCs.

34.6.6. Transition radiation detectors (TRD’s) : Revised Au-
gust 2017 by P. Nevski (BNL) and A. Romaniouk (Moscow Eng. &
Phys. Inst.)

Transition radiation (TR) x-rays are produced when a highly
relativistic particle (γ >∼ 103) crosses a refractive index interface, as
discussed in Sec. 33.7. Since the TR yield is about 1% per boundary
crossing, radiation from multiple surface crossings is used in practical
detectors. The x-rays, ranging from a few keV to a few dozen keV
or more, are emitted in a forward direction at small angles (∼
few mrad) to the particle trajectory. The TR intensity for a single
boundary crossing always increases with γ, but, for multiple boundary
crossings, interference leads to saturation above a Lorentz factor γ sat

= 0.6 ω1
√
ℓ1ℓ2/c [114], where ω1 is the radiator material plasma

frequency, ℓ1 is its thickness, and ℓ2 the spacing. The probability
density function of TR is a fairly complex function of γ, radiator
parameters, angle (θ) and photon energy (ω). Integration over the
angle yields the TR spectrum, which typically features many maxima
(see Sec. 33.7). Most of the radiation is emitted near the last maximum
of the spectra determined by radiator material parameters at ωmax

= ℓ1ω
2
1/2πc. The effective TR photon emission starts at about γthr

= ℓ1ω1/c. By varying radiator parameters one may optimize the
particle separation for a given range of the γ-factor. The angular
distribution of TR photons has a few maxima and extends up to
θmax = (1/γ2 + ω2

1/ω
2)1/2 (see Ref. 87 in Sec. 33.7). The largest

part of the TR energy is emitted around the most probable angle θ
= (1/γ2 + ω2

2/ω
2)1/2, where ω2 is the plasma frequency of the gas

surrounding the radiator material elements.
In the simplest concept, a detector module might consist of low-Z

TR radiator followed by a high-Z active layer made of proportional
counters filled with a Xe-rich gas mixture. The atomic number
considerations follow from the dominant photoelectric absorption
cross section per atom going roughly as Z n/E3

x, where n varies
between 4 and 5 over the region of interest, and the x-ray energy is
Ex.* To minimize self-absorption, materials such as polypropylene,
Mylar, carbon, and (rarely) lithium in the form of foils, fibers or
foams are used as radiators. The TR signal in the active regions
is in most cases superimposed upon the particle ionization losses,
which are proportional to Z. In most of the detectors used in
particle physics the radiator parameters are chosen to provide
γ sat ≈ 2000. Those detectors normally work as threshold devices,
ensuring the best electron/pion separation in the momentum range
1 GeV/c <∼ p <∼ 150 GeV/c.

One can distinguish two design concepts—“thick” and “thin”
detectors:

* Photon absorption coefficients for the elements (via a NIST link),
and dE/dx|min and plasma energies for many materials are given in
pdg.lbl.gov/AtomicNuclearProperties.
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In “thick” detectors the radiator, optimized for a minimum total
radiation length at maximum TR yield and total TR absorption in the
detector, consists of few hundred foils (for instance 300 20 µm thick
polypropylene foils). Most of the TR photons are absorbed in the
radiator itself. To maximise the number of TR photons reaching the
detector, part of the radiator far from the active layers is often made
of thicker foils, which shifts the x-ray spectrum to higher energies.
The detector thickness, about 2-4 cm for Xe-filled gas chambers,
is optimized to absorb the incoming x-ray spectrum. A classical
detector is composed of several similar modules which respond nearly
independently. Such detectors were used in the UA2, NA34 and other
experiments [115], and are being used in the ALICE experiment [116],
[117].

In another TRD concept a fine granular radiator/detector structure
exploits the soft part of the TR spectrum more efficiently and thereby
may act also as an integral part of the tracking detector providing
many points of measurements on the particle track . This can be
achieved, for instance, by distributing small-diameter straw-tube
detectors uniformly or in thin layers throughout the radiator material.
Even with a relatively thin radiator stack, radiation below 5 keV is
mostly lost in the radiators themselves. However for photon energies
above this value, the absorption is reduced and the radiation can
be registered by several consecutive detector layers, thus creating a
strong TR build-up effect. This approach allows to realise a TRD as
an integral part of a tracking detector. Descriptions of detectors using
this approach in both accelerator and space experiments can be found
in [116,117]. For example, in the ATLAS TR tracker (TRT), charged
particles cross about 35 effective straw tube layers embedded in the
radiator material [116]. The effective thickness of the Xe gas per
straw is about 2.2 mm and the average number of foils per straw is
about 40 with an effective foil thickness of about 18 µm.

Although the values mentioned above are typical for most of the
plastic radiators used with Xe-based detectors, they vary significantly
depending on the detector parameters: radiator material, thickness
and spacing, the geometry and position of the sensitive chambers,
etc. Thus careful simulations are usually needed to build a detector
optimized for a particular application. For TRD simulations the codes
are based on well understood TR emission formulas (see for instance
Ref. 87 in Sec. 33.7). They give a reasonably good agreement of the
TR energy spectra with data (see in [117] and [120]) , both for the
stand-alone simulation programs (see ATLAS TRT in [116]) and for
GEANT4 based ones [118], [119]. However non of them include
correct angular distribution of the TR photons.
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Figure 34.16: Pion efficiency measured (or predicted) for
different TRDs as a function of the detector length for a fixed
electron efficiency of 90%. The plot is taken from [115]. Results
from more recent detectors are added from [116] and [117].

The discrimination between electrons and pions can be based on
the charge deposition measured in each detection module, on the

number of clusters – energy depositions observed above an optimal
threshold (usually it is 5–7 keV ), or on more sophisticated methods
such as analyzing the pulse shape as a function of time. The total
energy measurement technique is more suitable for thick gas volumes,
which absorb most of the TR radiation and where the ionization loss
fluctuations are relatively small. The cluster-counting method works
better for detectors with thin gas layers, where the fluctuations of
the ionization losses are bigger. Cluster-counting replaces the Landau-
Vavilov distribution of background ionization energy losses with
the Poisson statistics of δ-electrons, responsible for the distribution
tails. The latter distribution is narrower than the Landau-Vavilov
distribution. In practice, most of the experiments use a likelihood
method, which exploits detailed knowledge of the detector response for
different particles and gives the best separation. The more parameters
that are considered, the better separation power may be achieved. For
example, for the TRD in the AMS experiment the rejection power
achieved in the real experiment is better by almost one order of
magnitude than that obtained in the beam test if stringent criteria
for track selection are applied, see in [117]. Another example is the
neural network method used by the ALICE TRD (ALICE point in
Fig. 34.16) which gives another factor of 2–3 in rejection power with
respect to the likelihood method [121].

The major factor in the performance of any TRD is its overall
length. This is illustrated in Fig. 34.16, which shows, for a variety of
detectors, the pion efficiency at a fixed electron efficiency of 90% as a
function of the overall detector length. As TRD performance depends
on particle energy, the experimental data in this figure covering a range
of particle energies from 1 GeV to 40 GeV, are rescaled to an energy
of 10 GeV when possible. Phenomenologically, the rejection power
against pions increases as 5 · 10L/38, where the range of validity is
L ≈ 20–100 cm. Apart from the beam energy variations, the observed
scattering of the points in the plot reflects how effectively the detector
space is used and how well the exact response to different particles is
taken into account in the analysis. For instance, the ATLAS TRT was
built as a compromise between TR and tracking requirements; that is
why the test-beam prototype result (lower point) is better than the
real TRT performance at the LHC shown in Fig. 34.16 for different
regions in the detector (in agreement with MC).

In most cases, recent TRDs combine particle identification with
charged-track measurement in the same detector [116,117,122]. This
is particularly important for collider experiments, where the available
space for the inner detector is very limited. For a modest increase
of the radiation length due to the radiator (∼4% X0), a significant
enhancement of the electron identification was obtained in the case of
the ATLAS TRT. Here, the combination of the two detector functions
provides a powerful tool for electron identification even at very high
particle densities.

In addition to the enhancement of the electron identification during
offline data analysis, TRD signatures are often used in the trigger
algorithms at collider experiments. The ALICE experiment [117] is a
good example for the use of the TRD in a First Level Trigger. In the
ATLAS experiment, the TRT information is used in the High Level
Trigger (HLT) algorithms. At increasing luminosities, the electron
trigger output rate becomes so high, that a significant increase of the
calorimeter energy threshold is required to keep it at an acceptable
level. This may affect the trigger efficiency of very important physics
channels (e.g. W → eν inclusive decay). Even a very soft TR cut
at the HLT level, which preserves high electron efficiency (98%),
allows to suppress a significant part of fake triggers and enhance the
purity for physics events with electrons in a final state. The TRT
also plays a crucial role in the studies where an electron suppression
is required (e.g. hadronic mode of τ–decays). TR information is a
completely independent tool for electron identification and allows
to study systematic uncertainties of other electron reconstruction
methods.

Electron identification is not the only TRD application. Recent
TRDs for particle astrophysics are designed to directly measure the
Lorentz factor of high-energy nuclei by using the quadratic dependence
of the TR yield on nuclear charge; see, for instance, in [116]. The
radiator configuration (ℓ1, ℓ2) is tuned to extend the TR yield rise up
to γ ≈ 105 using the more energetic part of the TR spectrum (up to
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100 keV). High density radiator materials (such as Al) are the best for
this purpose. Direct absorption of the TR-photons of these energies
with thin detectors becomes problematic and TR detection methods
based on Compton scattering have been proposed, see in [116], [117].

The high granularity of the Si-pixel or the Si-microstrip detectors
provides spatial separation of the TR photons and dE/dx losses at
relatively modest distances between radiator and detector. These
detectors may be the basis for novel devices which combine precise
tracking and PID properties. TR measurements using a pixel detector
with 20 µm pitch size are described in [117]. The presence of a
magnetic field could enhance the separation between TR photons
and dE/dx losses. Simulations made on the basis of the beam-test
results has shown that in a magnetic field of 2 T and for the geometry
of the ATLAS Si-tracker proposed for sLHC, a rejection factor of
> 30 can be obtained for an electron efficiency above 90% in the
particle momentum range from 2 to 30 GeV/c, see in [116] and [117].
New detector techniques for TRDs are also under development. In
particular, GasPixel detectors allow to obtain a space point accuracy
of < 30 µm and exploit all details of the particle tracks to highlight
individual TR clusters in the gas, see in [117]. Thin films of heavy
scintillators might be a very attractive option for non-gas based TRD
[117].

34.6.7. Resistive-plate chambers : Revised August 2017 by G.
Aielli (U. Roma Tor Vergata).

The resistive-plate chamber (RPC) is a gaseous detector developed
by R. Santonico and R. Cardarelli in the early 1980’s [123] *.
Although its original purpose was to provide a competitive alternative
to large scintillator counters, the RPC’s potential for timing tracker
systems was quickly recognized given its excellent temporal and spatial
resolutions and the ease of constructing large-format single detectors.
The RPC, as sketched in Fig. 34.17, is a large planar capacitor with
two parallel high bulk resistivity electrode plates (109–1013 Ω·cm)
separated by a set of insulating spacers. The spacers define a gap in
the range from a few millimeters down to 0.1 mm with a precision of
a few ∼ µm. The gap is filled with a suitable atmospheric-pressure
gas mixture which serves as a target for ionizing radiation. Primary
ionization for sub-millimeter gas gaps can be insufficient, thus
multiple gaps can be combined to ensure an acceptable detection
efficiency [125].
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Figure 34.17: Schematic cross section of a generic single gap
RPC.

The electrodes are most commonly made of high pressure phenolic-
melaminic laminate (HPL), improperly referred to as ”bakelite”,
or glass. A moderate electrode resistivity (∼ 105 Ω/¤) establishes
a uniform electric field of several kV/mm across the gap, which
initiates an electron avalanche following primary ionization. The
above resistivity is low enough to ensure uniformity of the electric
field, yet still transparent to fast signal transients from avalanches.
This field configuration allows an excellent space-time localization of
the signal. Due to the high electrode resistivity in RPCs, the electrode
time constant is much longer than discharge processes. Therefore only
the locally-stored electrostatic energy contributes to the discharge,
which prevents the formation of sparks and leaves the rest of the
detector field unaffected. The gas-facing surface of HPL electrodes are
commonly coated with a few µm-thick layer of polymerized linseed oil.
This layer has a similar resistivity as the electrode, and is smooth to
aid the uniformity of the electric field. It also protects the electrode
from the free radicals generated in the discharge e.g. in presence of

* The RPC was based on earlier work on a spark counter with one
metallic and one high-resistivity plate [124].

hydrocarbons or fluorocarbons. As with other gaseous detectors, the
gas mixture is optimized for each specific application. In general it
needs to contain a component to quench UV photons, thus avoiding
discharge propagation. An electronegative component controls the
avalanche growth in case of very high electric fields [126,127]. To first
order, each primary ionization in an RPC is exponentially amplified
according to its distance from the anode. Therefore RPC signals span
a large dynamic range, unlike gaseous detectors where ionization
and amplification occur in separate regions (e.g. wire chambers or
MPGDs). For increasingly stronger fields, the avalanche exponential
growth progressively saturates to linear [128], and finally reaches
a strongly-saturated ”streamer” transition which exhausts all the
locally-available energy [129]. A set of metallic readout electrodes
(e.g. pads or strips) placed behind the resistive electrodes detect
the charge pulse induced by the fast movement of the avalanche
electrons. The signal is isotropically distributed with respect to the
field direction and present with equal but opposite amplitude on
the two electrodes. This feature allows for 2D localization of the
signal with uniform spatial resolution. The induced charge density
projected in 1D can be calculated for a simplified RPC model [130]
as: σ(x) = A/ cosh [(x− x)/δ] where x is the center of the avalanche
and δ = (g + 2d)/π depends on the gap and electrode width (g and
d, respectively). The spatial extent of actual signals are generally
larger than those given by this model [131,132]. Conductivity of the
graphite layer results in the most prominent broadening. Cross-talk
from parasitic coupling of neighboring electrodes can also spread the
signal spatially. Although the broadened charge distribution preserves
most of the original spatial resolution, it can adversely impact signal
clustering, so the detector layout must be calculated according to the
expected application. Sensitivity to high-frequency electron avalanche
signals over large RPC areas requires a correspondingly adequate
Faraday cage and readout structure design. In particular, the front
end electronics must be time-sensitive with a fast response and low
noise, although these requirements are usually in competition [133].

34.6.7.1. RPC types and applications: RPCs are generally classified
in two categories depending on the gas gap structure: single gap
RPCs (described above) and multiple gap RPCs (typically referred
as mRPCs or timing RPCs). While they are both based on the same
principle they have different construction techniques, performance and
limitations, making them suitable for different applications. Due to its
simplicity and robustness, the single gap RPC is ideal for covering very
large surfaces. Typical detector systems can have sensitive surface
areas up to ∼104 m2, with single module areas of a few m2, and a
space-time resolution down to ∼0.4 ns × 100 µm [134,135]. Typical
applications are in muon systems (e.g. the muon trigger systems of
the LHC experiments) or ground and underground based cosmic rays
and neutrino arrays [136]. Moreover, single gap RPCs have recently
found an application in tracking calorimetry [137]. The mRPC allows
for smaller gas gap thicknesses while still maintaining a sufficient
gaseous target. The most common version [138] consists of a stack
of floating glass electrodes separated by monofilament (i.e. fishing
line), sandwiched between two external electrodes which provide the
high-voltage bias. The floating glass electrodes assume a potential
determined by the avalanche processes occurring between them.
mRPCs have been largely used in TOF systems and in applications
such as timing PET.

34.6.7.2. Time and space resolution: The RPC field configuration
generates an avalanche which is strongly correlated in space and time
to the original ionizing event. Space-time uncertainties generally arise
from the statistical fluctuations of the ionization and multiplication
processes, and from the characteristics of the readout and front-end
electronics. The intrinsic signal latency is commonly in the ns range,
making the RPC suitable for applications where a low latency is
essential. A higher time resolution and shorter signal duration is
correlated with a thinner gas gap, although a higher electric field
is required for sufficient avalanche development [138,139]. Typical
timing performances are from around 1 ns with a 2 mm gas gap, down
to 20 ps for a stack of several 0.1 mm gaps [140]. The mechanical
delicacy of sub-mm-gap structures makes this technique less suitable
for large detector areas. Digital strip readouts are commonly used,
with spatial resolution determined by the strip pitch and the cluster
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size (∼0.5 cm). Recent developments toward higher spatial resolutions
are mostly based on charge centroid techniques, benefiting from
the availability of low-cost high-performance readout electronics.
The present state of the art detectors have a combined space-time
resolution of ∼50 ps × 40 µm [141].

34.6.7.3. Rate capability and ageing: RPC rate capability is limited
by the voltage drop on resistive electrodes, ∆V = Va−Vgas = I ·R [142].
Here Va is the applied voltage, Vgas is the effective voltage on the
gas, R = ρ · d/S is the total electrode resistance and I is the working
current. Expressing I as the particle flux Φ times an average charge
per avalanche 〈Q〉 gives ∆V/Φ = ρ · d · 〈Q〉. A large I not only
limits the rate capability but also affects the long term performance
of the detector. Discharges deplete the conductive properties of
HPL electrodes [143]. In the presence of fluorocarbons and water,
discharges generate hydrofluoric acid (HF) which damages internal
detector surfaces, particularly glass electrodes [144]. HF damage
can be mitigated by preventing water vapor contamination (for glass
electrodes) or by sufficient flushing of the gas gap (for HPL electrodes).
Operating in the streamer regime puts low requirements on the front
end electronics sensitivity, but generally limits the counting rate
capability to ∼100 Hz/cm2 and requires stability over a large gain
range. Higher-rate operation can be achieved by reducing gas gain in
favor of electronic amplification, operating the detector in avalanche
mode. Increasing concentrations of electronegative gases, such as
C2H2F4 and SF6 [127], shifts the streamer transition to higher
gains. The avalanche signal has a higher dynamic range, a drawback
which can be compensated with appropriate electronics. With these
techniques, stable performance at high rates (e.g. 10 kHz/cm2) has
been achieved for large area single gap RPCs [133]. Additional
techniques rely on the natural redundancy and small gain of multiple
gap structures [145] and electrodes made with lower resistivity
materials [146].

34.7. Semiconductor detectors
Updated November 2013 by H. Spieler.

Semiconductor detectors provide a unique combination of energy
and position resolution. In collider detectors they are most widely
used as position sensing devices and photodetectors (Sec. 34.2).
Integrated circuit technology allows the formation of high-density
micron-scale electrodes on large (15–20 cm diameter) wafers, providing
excellent position resolution. Furthermore, the density of silicon and
its small ionization energy yield adequate signals with active layers
only 100–300 µm thick, so the signals are also fast (typically tens
of ns). The high energy resolution is a key parameter in x-ray,
gamma, and charged particle spectroscopy, e.g., in neutrinoless double
beta decay searches. Silicon and germanium are the most commonly
used materials, but gallium-arsenide, CdTe, CdZnTe, and other
materials are also useful. CdZnTe provides a higher stopping power
and the ratio of Cd to Zn concentrations changes the bandgap. Ge
detectors are commonly operated at liquid nitrogen temperature to
reduce the bias current, which depends exponentially on temperature.
Semiconductor detectors depend crucially on low-noise electronics (see
Sec. 34.8), so the detection sensitivity is determined by signal charge
and capacitance. For a comprehensive discussion of semiconductor
detectors and electronics see Ref. 147 or the tutorial website
http://www-physics.lbl.gov/ spieler.

34.7.1. Materials Requirements :
Semiconductor detectors are essentially solid state ionization

chambers. Absorbed energy forms electron-hole pairs, i.e., negative
and positive charge carriers, which under an applied electric field
move towards their respective collection electrodes, where they induce
a signal current. The energy required to form an electron-hole pair
is proportional to the bandgap. In tracking detectors the energy loss
in the detector should be minimal, whereas for energy spectroscopy
the stopping power should be maximized, so for gamma rays high-Z
materials are desirable.

Measurements on silicon photodiodes [148] show that for photon
energies below 4 eV one electron-hole (e-h) pair is formed per incident
photon. The mean energy Ei required to produce an e-h pair peaks at
4.4 eV for a photon energy around 6 eV. Above ∼1.5 keV it assumes
a constant value, 3.67 eV at room temperature. It is larger than the

bandgap energy because momentum conservation requires excitation
of lattice vibrations (phonons). For minimum-ionizing particles, the
most probable charge deposition in a 300 µm thick silicon detector is
about 3.5 fC (22000 electrons). Other typical ionization energies are
2.96 eV in Ge, 4.2 eV in GaAs, and 4.43 eV in CdTe.

Since both electronic and lattice excitations are involved, the
variance in the number of charge carriers N = E/Ei produced by
an absorbed energy E is reduced by the Fano factor F (about
0.1 in Si and Ge). Thus, σN =

√
FN and the energy resolution

σE/E =
√
FEi/E. However, the measured signal fluctuations are

usually dominated by electronic noise or energy loss fluctuations in
the detector. The electronic noise contributions depend on the pulse
shaping in the signal processing electronics, so the choice of the
shaping time is critical (see Sec. 34.8).

A smaller bandgap would produce a larger signal and improve
energy resolution, but the intrinsic resistance of the material is critical.
Thermal excitation, given by the Fermi-Dirac distribution, promotes
electrons into the conduction band, so the thermally excited carrier
concentration increases exponentially with decreasing bandgaps. In
pure Si the carrier concentration is ∼1010cm−3 at 300K, corresponding
to a resistivity ρ ≈ 400 kΩ cm. In reality, crystal imperfections and
minute impurity concentrations limit Si carrier concentrations to
∼ 1011 cm−3 at 300K, corresponding to a resistivity ρ ≈ 40 kΩ cm.
In practice, resistivities up to 20 kΩ cm are available, with mass
production ranging from 5 to 10 kΩ cm. Signal currents at keV scale
energies are of order µA. However, for a resistivity of 104 Ωcm a
300 µm thick sensor with 1 cm2 area would have a resistance of
300Ω , so 30 V would lead to a current flow of 100 mA and a power
dissipation of 3 W. On the other hand, high-quality single crystals
of Si and Ge can be grown economically with suitably large volumes,
so to mitigate the effect of resistivity one resorts to reverse-biased
diode structures. Although this reduces the bias current relative to a
resistive material, the thermally excited leakage current can still be
excessive at room temperature, so Ge diodes are typically operated at
liquid nitrogen temperature (77K).

A major effort is to find high-Z materials with a bandgap that
is sufficiently high to allow room-temperature operation while still
providing good energy resolution. Compound semiconductors, e.g.,
CdZnTe, can allow this, but typically suffer from charge collection
problems, characterized by the product µτ of mobility and carrier
lifetime. In Si and Ge µτ > 1 cm2 V−1 for both electrons and holes,
whereas in compound semiconductors it is in the range 10−3–10−8.
Since for holes µτ is typically an order of magnitude smaller than
for electrons, detector configurations where the electron contribution
to the charge signal dominates—e.g., strip or pixel structures—can
provide better performance.

34.7.2. Detector Configurations :
A p-n junction operated at reverse bias forms a sensitive region

depleted of mobile charge and sets up an electric field that sweeps
charge liberated by radiation to the electrodes. Detectors typically use
an asymmetric structure, e.g., a highly doped p electrode and a lightly
doped n region, so that the depletion region extends predominantly
into the lightly doped volume.
In a planar device the thickness of the depleted region is

W =
√
2ǫ (V + Vbi)/Ne =

√
2ρµǫ(V + Vbi) , (34.19)

where V = external bias voltage
Vbi = “built-in” voltage (≈ 0.5 V for resistivities typically used

in Si detectors)
N = doping concentration
e = electronic charge
ǫ = dielectric constant = 11.9 ǫ0 ≈ 1 pF/cm in Si
ρ = resistivity (typically 1–10 kΩ cm in Si)
µ = charge carrier mobility

= 1350 cm2 V−1 s−1 for electrons in Si
= 450 cm2 V−1 s−1 for holes in Si

In Si

W = 0.5 [µm/
√
Ω-cm ·V]×

√
ρ(V + Vbi) for n-type Si, and

W = 0.3 [µm/
√
Ω-cm ·V]×

√
ρ(V + Vbi) for p-type Si.
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The conductive p and n regions together with the depleted volume
form a capacitor with the capacitance per unit area

C = ǫ/W ≈ 1 [pF/cm] /W in Si. (34.20)

In strip and pixel detectors the capacitance is dominated by the
fringing capacitance to neighboring electrodes. For example, the
strip-to-strip Si fringing capacitance is ∼ 1–1.5 pF cm−1 of strip
length at a strip pitch of 25–50 µm.

Large volume (∼ 102–103 cm3) Ge detectors are commonly
configured as coaxial detectors, e.g., a cylindrical n-type crystal with
5–10 cm diameter and 10 cm length with an inner 5–10mm diameter
n+ electrode and an outer p+ layer forming the diode junction. Ge
can be grown with very low impurity levels, 109–1010 cm−3 (HPGe),
so these large volumes can be depleted with several kV.

34.7.3. Signal Formation :
The signal pulse shape depends on the instantaneous carrier

velocity v(x) = µE(x) and the electrode geometry, which determines
the distribution of induced charge (e.g., see Ref. 147, pp. 71–83).
Charge collection time decreases with increasing bias voltage, and can
be reduced further by operating the detector with “overbias,” i.e., a
bias voltage exceeding the value required to fully deplete the device.
Note that in partial depletion the electric field goes to zero, whereas
going beyond full depletion adds a constantly distributed field. The
collection time is limited by velocity saturation at high fields (in
Si approaching 107 cm/s at E > 104 V/cm); at an average field of
104 V/cm the collection time is about 15 ps/µm for electrons and
30 ps/µm for holes. In typical fully-depleted detectors 300 µm thick,
electrons are collected within about 10 ns, and holes within about
25 ns.

Position resolution is limited by transverse diffusion during charge
collection (typically 5 µm for 300 µm thickness) and by knock-on
electrons. Resolutions of 2–4 µm (rms) have been obtained in beam
tests. In magnetic fields, the Lorentz drift deflects the electron and
hole trajectories and the detector must be tilted to reduce spatial
spreading (see “Hall effect” in semiconductor textbooks).

Electrodes can be in the form of cm-scale pads, strips, or µm-scale
pixels. Various readout structures have been developed for pixels, e.g.,
CCDs, DEPFETs, monolithic pixel devices that integrate sensor and
electronics (MAPS), and hybrid pixel devices that utilize separate
sensors and readout ICs connected by two-dimensional arrays of solder
bumps. For an overview and further discussion see Ref. 147.

In gamma ray spectroscopy (Eγ >102 keV) Compton scattering
dominates, so for a significant fraction of events the incident gamma
energy is not completely absorbed, i.e., the Compton scattered
photon escapes from the detector and the energy deposited by the
Compton electron is only a fraction of the total. Distinguishing
multi-interaction events, e.g., multiple Compton scatters with a
final photoelectric absorption, from single Compton scatters allows
background suppression. Since the individual interactions take place
in different parts of the detector volume, these events can be
distinguished by segmenting the outer electrode of a coaxial detector
and analyzing the current pulse shapes. The different collection times
can be made more distinguishable by using “point” electrodes, where
most of the signal is induced when charges are close to the electrode,
similarly to strip or pixel detectors. Charge clusters arriving from
different positions in the detector will arrive at different times and
produce current pulses whose major components are separated in time.
Point electrodes also reduce the electrode capacitance, which reduces
electronic noise, but careful design is necessary to avoid low-field
regions in the detector volume.

34.7.4. Radiation Damage : Radiation damage occurs through
two basic mechanisms:

1. Bulk damage due to displacement of atoms from their lattice
sites. This leads to increased leakage current, carrier trapping,
and build-up of space charge that changes the required operating
voltage. Displacement damage depends on the nonionizing energy
loss and the energy imparted to the recoil atoms, which can
initiate a chain of subsequent displacements, i.e., damage clusters.
Hence, it is critical to consider both particle type and energy.

2. Surface damage due to charge build-up in surface layers, which
leads to increased surface leakage currents. In strip detectors the
inter-strip isolation is affected. The effects of charge build-up are
strongly dependent on the device structure and on fabrication
details. Since the damage is proportional to the absorbed energy
(when ionization dominates), the dose can be specified in rad (or
Gray) independent of particle type.

The increase in reverse bias current due to bulk damage is
∆Ir = αΦ per unit volume, where Φ is the particle fluence and α the
damage coefficient (α ≈ 3×10−17 A/cm for minimum ionizing protons
and pions after long-term annealing; α ≈ 2× 10−17 A/cm for 1 MeV
neutrons). The reverse bias current depends strongly on temperature

IR(T2)

IR(T1)
=

(
T2
T1

)2

exp

[
− E

2k

(
T1 − T2
T1T2

)]
, (34.21)

where E = 1.2 eV, so rather modest cooling can reduce the current
substantially (∼ 6-fold current reduction in cooling from room
temperature to 0◦C).

Displacement damage forms acceptor-like states. These trap
electrons, building up a negative space charge, which in turn requires
an increase in the applied voltage to sweep signal charge through the
detector thickness. This has the same effect as a change in resistivity,
i.e., the required voltage drops initially with fluence, until the positive
and negative space charge balance and very little voltage is required to
collect all signal charge. At larger fluences the negative space charge
dominates, and the required operating voltage increases (V ∝ N).
The safe limit on operating voltage ultimately limits the detector
lifetime. Strip detectors specifically designed for high voltages have
been extensively operated at bias voltages >500V. Since the effect
of radiation damage depends on the electronic activity of defects,
various techniques have been applied to neutralize the damage sites.
For example, additional doping with oxygen can increase the allowable
charged hadron fluence roughly three-fold [149]. Detectors with
columnar electrodes normal to the surface can also extend operational
lifetime [150]. The increase in leakage current with fluence, on the
other hand, appears to be unaffected by resistivity and whether the
material is n or p-type. At fluences beyond 1015 cm−2 decreased
carrier lifetime becomes critical [151,152].

Strip and pixel detectors have remained functional at fluences
beyond 1015 cm−2 for minimum ionizing protons. At this damage
level, charge loss due to recombination and trapping becomes
significant and the high signal-to-noise ratio obtainable with low-
capacitance pixel structures extends detector lifetime. The higher
mobility of electrons makes them less sensitive to carrier lifetime
than holes, so detector configurations that emphasize the electron
contribution to the charge signal are advantageous, e.g., n+ strips
or pixels on a p- or n-substrate. The occupancy of the defect charge
states is strongly temperature dependent; competing processes can
increase or decrease the required operating voltage. It is critical to
choose the operating temperature judiciously (−10 to 0◦C in typical
collider detectors) and limit warm-up periods during maintenance.
For a more detailed summary see Ref. 153 and and the web-sites of the
ROSE and RD50 collaborations at http://RD48.web.cern.ch/rd48
and http://RD50.web.cern.ch/rd50. Materials engineering, e.g.,
introducing oxygen interstitials, can improve certain aspects and is
under investigation. At high fluences diamond is an alternative, but
operates as an insulator rather than a reverse-biased diode.

Currently, the lifetime of detector systems is still limited by
the detectors; in the electronics use of standard “deep submicron”
CMOS fabrication processes with appropriately designed circuitry has
increased the radiation resistance to fluences > 1015 cm−2 of minimum
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ionizing protons or pions. For a comprehensive discussion of radiation
effects see Ref. 154.

34.8. Low-noise electronics
Revised November 2013 by H. Spieler.

Many detectors rely critically on low-noise electronics, either to
improve energy resolution or to allow a low detection threshold. A
typical detector front-end is shown in Fig. 34.18.
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Figure 34.18: Typical detector front-end circuit.

The detector is represented by a capacitance Cd, a relevant model
for most detectors. Bias voltage is applied through resistor Rb and the
signal is coupled to the preamplifier through a blocking capacitor Cc.
The series resistance Rs represents the sum of all resistances present
in the input signal path, e.g. the electrode resistance, any input
protection networks, and parasitic resistances in the input transistor.
The preamplifier provides gain and feeds a pulse shaper, which tailors
the overall frequency response to optimize signal-to-noise ratio while
limiting the duration of the signal pulse to accommodate the signal
pulse rate. Even if not explicitly stated, all amplifiers provide some
form of pulse shaping due to their limited frequency response.

The equivalent circuit for the noise analysis (Fig. 34.19) includes
both current and voltage noise sources. The leakage current of a
semiconductor detector, for example, fluctuates due to continuous
electron emission statistics. The statistical fluctuations in the charge
measurement will scale with the square root of the total number of
recorded charges, so this noise contribution increases with the width
of the shaped output pulse. This “shot noise” ind is represented by a
current noise generator in parallel with the detector. Resistors exhibit
noise due to thermal velocity fluctuations of the charge carriers. This
yields a constant noise power density vs. frequency, so increasing the
bandwidth of the shaped output pulse, i.e. reducing the shaping time,
will increase the noise. This noise source can be modeled either as a
voltage or current generator. Generally, resistors shunting the input
act as noise current sources and resistors in series with the input act
as noise voltage sources (which is why some in the detector community
refer to current and voltage noise as “parallel” and “series” noise).
Since the bias resistor effectively shunts the input, as the capacitor Cb
passes current fluctuations to ground, it acts as a current generator
inb and its noise current has the same effect as the shot noise current
from the detector. Any other shunt resistances can be incorporated
in the same way. Conversely, the series resistor Rs acts as a voltage
generator. The electronic noise of the amplifier is described fully by a
combination of voltage and current sources at its input, shown as ena
and ina.
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Figure 34.19: Equivalent circuit for noise analysis.

Shot noise and thermal noise have a “white” frequency distribution,
i.e. the spectral power densities dPn/df ∝ di2n/df ∝ de2n/df are
constant with the magnitudes

i2nd = 2eId ,

i2nb =
4kT

Rb
,

e2ns = 4kTRs , (34.22)

where e is the electronic charge, Id the detector bias current, k the
Boltzmann constant and T the temperature. Typical amplifier noise
parameters ena and ina are of order nV/

√
Hz and pA/

√
Hz. Trapping

and detrapping processes in resistors, dielectrics and semiconductors
can introduce additional fluctuations whose noise power frequently
exhibits a 1/f spectrum. The spectral density of the 1/f noise voltage
is

e2nf =
Af

f
, (34.23)

where the noise coefficient Af is device specific and of order

10−10–10−12V2.
A fraction of the noise current flows through the detector

capacitance, resulting in a frequency-dependent noise voltage
in/(ωCd), which is added to the noise voltage in the input circuit.
Thus, the current noise contribution increases with lowering frequency,
so its contribution increases with shaping pulse width. Since the
individual noise contributions are random and uncorrelated, they
add in quadrature. The total noise at the output of the pulse
shaper is obtained by integrating over the full bandwidth of
the system. Superimposed on repetitive detector signal pulses of
constant magnitude, purely random noise produces a Gaussian signal
distribution.

Since radiation detectors typically convert the deposited energy
into charge, the system’s noise level is conveniently expressed as an
equivalent noise charge Qn, which is equal to the detector signal
that yields a signal-to-noise ratio of one. The equivalent noise charge
is commonly expressed in Coulombs, the corresponding number of
electrons, or the equivalent deposited energy (eV). For a capacitive
sensor

Q2
n = i2nFiTS + e2nFv

C2

TS
+ FvfAfC

2 , (34.24)

where C is the sum of all capacitances shunting the input, Fi, Fv,
and Fvf depend on the shape of the pulse determined by the shaper
and Ts is a characteristic time, for example, the peaking time of a
semi-gaussian pulse or the sampling interval in a correlated double
sampler. The form factors Fi, Fv are easily calculated

Fi =
1

2TS

∫ ∞

−∞
[W (t)]2 dt , Fv =

TS
2

∫ ∞

−∞

[
dW (t)

dt

]2
dt , (34.25)

where for time-invariant pulse-shaping W (t) is simply the system’s
impulse response (the output signal seen on an oscilloscope) for a
short input pulse with the peak output signal normalized to unity.
For more details see Refs. 155 and 156.

A pulse shaper formed by a single differentiator and integrator with
equal time constants has Fi = Fv = 0.9 and Fvf = 4, independent
of the shaping time constant. The overall noise bandwidth, however,
depends on the time constant, i.e. the characteristic time Ts. The
contribution from noise currents increases with shaping time, i.e., pulse
duration, whereas the voltage noise decreases with increasing shaping
time, i.e. reduced bandwidth. Noise with a 1/f spectrum depends
only on the ratio of upper to lower cutoff frequencies (integrator
to differentiator time constants), so for a given shaper topology
the 1/f contribution to Qn is independent of Ts. Furthermore, the
contribution of noise voltage sources to Qn increases with detector
capacitance. Pulse shapers can be designed to reduce the effect
of current noise, e.g., mitigate radiation damage. Increasing pulse
symmetry tends to decrease Fi and increase Fv (e.g., to 0.45 and 1.0
for a shaper with one CR differentiator and four cascaded integrators).
For the circuit shown in Fig. 34.19,

Q2
n =

(
2eId + 4kT/Rb + i2na

)
FiTS

+
(
4kTRs + e2na

)
FvC

2
d/TS + FvfAfC

2
d .

(34.26)
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As the characteristic time TS is changed, the total noise goes
through a minimum, where the current and voltage contributions are
equal. Fig. 34.20 shows a typical example. At short shaping times the
voltage noise dominates, whereas at long shaping times the current
noise takes over. The noise minimum is flattened by the presence
of 1/f noise. Increasing the detector capacitance will increase the
voltage noise and shift the noise minimum to longer shaping times.
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Figure 34.20: Equivalent noise charge vs shaping time.
Changing the voltage or current noise contribution shifts the
noise minimum. Increased voltage noise is shown as an example.

For quick estimates, one can use the following equation, which
assumes an FET amplifier (negligible ina) and a simple CR–RC
shaper with time constants τ (equal to the peaking time):

(Qn/e)
2 = 12

[
1

nA · ns

]
Idτ + 6× 105

[
kΩ

ns

]
τ

Rb

+ 3.6× 104

[
ns

(pF)2(nV)2/Hz

]
e2n

C2

τ
.

(34.27)

Noise is improved by reducing the detector capacitance and
leakage current, judiciously selecting all resistances in the input
circuit, and choosing the optimum shaping time constant. Another
noise contribution to consider is that noise cross-couples from the
neighboring front-ends in strip and pixel detectors through the
inter-electrode capacitance.

The noise parameters of the amplifier depend primarily on the
input device. In field effect transistors, the noise current contribution
is very small, so reducing the detector leakage current and increasing
the bias resistance will allow long shaping times with correspondingly
lower noise. In bipolar transistors, the base current sets a lower bound
on the noise current, so these devices are best at short shaping times.
In special cases where the noise of a transistor scales with geometry,
i.e., decreasing noise voltage with increasing input capacitance, the
lowest noise is obtained when the input capacitance of the transistor
is equal to the detector capacitance, albeit at the expense of power
dissipation. Capacitive matching is useful with field-effect transistors,
but not bipolar transistors. In bipolar transistors, the minimum
obtainable noise is independent of shaping time, but only at the
optimum collector current IC , which does depend on shaping time.

Q2
n,min = 4kT

C√
βDC

√
FiFv at Ic =

kT

e
C
√
βDC

√
Fv

Fi

1

TS
, (34.28)

where βDC is the DC current gain. For a CR–RC shaper and
βDC = 100,

Qn,min/e ≈ 250
√
C/pF . (34.29)

Practical noise levels range from ∼ 1e for CCD’s at long shaping
times to ∼ 104 e in high-capacitance liquid argon calorimeters. Silicon
strip detectors typically operate at ∼ 103 electrons, whereas pixel
detectors with fast readout provide noise of several hundred electrons.

In timing measurements, the slope-to-noise ratio must be optimized,
rather than the signal-to-noise ratio alone, so the rise time tr of the
pulse is important. The “jitter” σt of the timing distribution is

σt =
σn

(dS/dt)ST
≈ tr

S/N
, (34.30)

where σn is the rms noise and the derivative of the signal dS/dt is
evaluated at the trigger level ST . To increase dS/dt without incurring
excessive noise, the amplifier bandwidth should match the rise-time
of the detector signal. The 10 to 90% rise time of an amplifier with
bandwidth fU is 0.35/fU . For example, an oscilloscope with 350 MHz
bandwidth has a 1 ns rise time. When amplifiers are cascaded, which
is invariably necessary, the individual rise times add in quadrature.

tr ≈
√
t2r1 + t2r2 + ...+ t2rn . (34.31)

Increasing signal-to-noise ratio also improves time resolution, so
minimizing the total capacitance at the input is also important.
At high signal-to-noise ratios, the time jitter can be much smaller
than the rise time. The timing distribution may shift with signal
level (“walk”), but this can be corrected by various means, either in
hardware or software [8].

The basic principles discussed above apply to both analog and
digital signal processing. In digital signal processing the pulse shaper
shown in Fig. 34.18 is replaced by an analog to digital converter
(ADC) followed by a digital processor that determines the pulse shape.
Digital signal processing allows great flexibility in implementing
filtering functions. The software can be changed readily to adapt to a
wide variety of operating conditions and it is possible to implement
filters that are impractical or even impossible using analog circuitry.
However, this comes at the expense of increased circuit complexity
and increased demands on the ADC compared to analog shaping.

If the sampling rate of the ADC is too low, high frequency
components will be transferred to lower frequencies (“aliasing”).
The sampling rate of the ADC must be high enough to capture
the maximum frequency component of the input signal. Apart
from missing information on the fast components of the pulse,
undersampling introduces spurious artifacts. If the frequency range of
the input signal is much greater, the noise at the higher frequencies
will be transferred to lower frequencies and increase the noise level in
the frequency range of pulses formed in the subsequent digital shaper.
The Nyquist criterion states that the sampling frequency must be at
least twice the maximum relevant input frequency. This requires that
the bandwith of the circuitry preceding the ADC must be limited.
The most reliable technique is to insert a low-pass filter.

The digitization process also introduces inherent noise, since
the voltage range ∆V corresponding to a minimum bit introduces
quasi-random fluctuations relative to the exact amplitude

σn =
∆V√
12

. (34.32)

When the Nyquist condition is fulfilled the noise bandwidth ∆fn is
spread nearly uniformly and extends to 1/2 the sampling frequency
fS , so the spectral noise density

en =
σn√
∆fn

=
∆V√
12

· 1√
fS/2

=
∆V√
6fS

. (34.33)

Sampling at a higher frequency spreads the total noise over a
larger frequency range, so oversampling can be used to increase the
effective resolution. In practice, this quantization noise is increased
by differential nonlinearity. Furthermore, the equivalent input noise of
ADCs is often rather high, so the overall gain of the stages preceding
the ADC must be sufficiently large for the preamplifier input noise to
override.

When implemented properly, digital signal processing provides
significant advantages in systems where the shape of detector signal
pulses changes greatly, for example in large semiconductor detectors
for gamma rays or in gaseous detectors (e.g. TPCs) where the
duration of the current pulse varies with drift time, which can range
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over orders of magnitude. Where is analog signal processing best
(most efficient)? In systems that require fast time response the high
power requirements of high-speed ADCs are prohibitive. Systems that
are not sensitive to pulse shape can use fixed shaper constants and
rather simple filters, which can be either continuous or sampled. In
high density systems that require small circuit area and low power
(e.g. strip and pixel detectors), analog filtering often yields the
required response and tends to be most efficient.

It is important to consider that additional noise is often introduced
by external electronics, e.g. power supplies and digital systems.
External noise can couple to the input. Often the “common
grounding” allows additional noise current to couple to the current
loop connecting the detector to the preamp. Recognizing additional
noise sources and minimizing cross-coupling to the detector current
loop is often important. Understanding basic physics and its practical
effects is important in forming a broad view of the detector system
and recognizing potential problems (e.g. modified data), rather than
merely following standard recipes.

For a more detailed introduction to detector signal processing
and electronics see Ref. 147 or the tutorial website http://www-

physics.lbl.gov/ spieler.

34.9. Calorimeters
A calorimeter is designed to measure a particle’s (or jet’s) energy

and direction for an (ideally) contained electromagnetic (EM) or
hadronic shower. The characteristic interaction distance for an
electromagnetic interaction is the radiation length X0, which ranges
from 13.8 g cm−2 in iron to 6.0 g cm−2 in uranium.* Similarly, the
characteristic nuclear interaction length λI varies from 132.1 g cm−2

(Fe) to 209 g cm−2 (U).† In either case, a calorimeter must be many
interaction lengths deep, where “many” is determined by physical size,
cost, and other factors. EM calorimeters tend to be 15–30 X0 deep,
while hadronic calorimeters are usually compromised at 5–8 λI . In
real experiments there is likely to be an EM calorimeter in front of the
hadronic section, which in turn has less sampling density in the back,
so the hadronic cascade occurs in a succession of different structures.
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Figure 34.21: Nuclear interaction length λI/ρ (circles) and
radiation length X0/ρ (+’s) in cm for the chemical elements
with Z > 20 and λI < 50 cm.

In all cases there is a premium on small λI/ρ and X0/ρ (both
with units of length). These quantities are shown for Z > 20 for
the chemical elements in Fig. 34.21. For the hadronic case, metallic
absorbers in the W–Au region are best, followed by U. The Ru–Pd
region elements are rare and expensive. Lead is a bad choice. Given
cost considerations, Fe and Cu might be appropriate choices. For EM
calorimeters high Z is preferred, and lead is not a bad choice.

These considerations are for sampling calorimeters consisting of
metallic absorber sandwiched or (threaded) with an active material

* X0 = 120 g cm−2 Z−2/3 to better than 5% for Z > 23.
† λI = 37.8 g cm−2A0.312 to within 0.8% for Z > 15.

See pdg.lbl.gov/AtomicNuclearProperties for actual values.

which generates signal. The active medium may be a scintillator, an
ionizing noble liquid, a gas chamber, a semiconductor, or a Cherenkov
radiator. The average interaction length is thus greater than that of
the absorber alone, sometimes substantially so.

There are also homogeneous calorimeters, in which the entire
volume is sensitive, i.e., contributes signal. Homogeneous calorimeters
(so far usually electromagnetic) may be built with inorganic heavy
(high density, high 〈Z〉) scintillating crystals, or non-scintillating
Cherenkov radiators such as lead glass and lead fluoride. Scintillation
light and/or ionization in noble liquids can be detected. Nuclear
interaction lengths in inorganic crystals range from 17.8 cm (LuAlO3)
to 42.2 cm (NaI). Popular choices have been BGO with λI = 22.3 cm
and X0 = 1.12 cm, and PbWO4 (20.3 cm and 0.89 cm). Properties of
these and other commonly used inorganic crystal scintillators can be
found in Table 34.4.

34.9.1. Electromagnetic calorimeters :
Revised September 2015 by R.-Y. Zhu (California Institute of
Technology).

The development of electromagnetic showers is discussed in the
section on “Passage of Particles Through Matter” (Sec. 33 of this
Review). Formulae are given which approximately describe average
showers, but since the physics of electromagnetic showers is well
understood, detailed and reliable Monte Carlo simulation is possible.
EGS4 [157] and GEANT [158] have emerged as the standards.

There are homogeneous and sampling electromagnetic calorimeters.
In a homogeneous calorimeter the entire volume is sensitive, i.e.,
contributes signal. Homogeneous electromagnetic calorimeters may
be built with inorganic heavy (high-Z) scintillating crystals such as
BaF2, BGO, CsI, LYSO, NaI and PWO, non-scintillating Cherenkov
radiators such as lead glass and lead fluoride (PbF2), or ionizing noble
liquids. Properties of commonly used inorganic crystal scintillators
can be found in Table 34.4. A sampling calorimeter consists of an
active medium which generates signal and a passive medium which
functions as an absorber. The active medium may be a scintillator, an
ionizing noble liquid, a semiconductor, or a gas chamber. The passive
medium is usually a material of high density, such as lead, tungsten,
iron, copper, or depleted uranium.

The energy resolution σE/E of a calorimeter can be parameterized
as a/

√
E⊕b⊕c/E, where ⊕ represents addition in quadrature and E is

in GeV. The stochastic term a represents statistics-related fluctuations
such as intrinsic shower fluctuations, photoelectron statistics, dead
material at the front of the calorimeter, and sampling fluctuations.
For a fixed number of radiation lengths, the stochastic term a for a
sampling calorimeter is expected to be proportional to

√
t/f , where t

is plate thickness and f is sampling fraction [159,160]. While a is at
a few percent level for a homogeneous calorimeter, it is typically 10%
for sampling calorimeters.

The main contributions to the systematic, or constant, term b
are detector non-uniformity and calibration uncertainty. In the case
of the hadronic cascades discussed below, non-compensation also
contributes to the constant term. One additional contribution to
the constant term for calorimeters built for modern high-energy
physics experiments, operated in a high-beam intensity environment,
is radiation damage of the active medium. This can be mitigated
by developing radiation-hard active media [52], by reducing the
signal path length [55] and by frequent in situ calibration and
monitoring [51,160]. With effort, the constant term b can be reduced
to below one percent. The term c is due to electronic noise summed
over readout channels within a few Molière radii. The best energy
resolution for electromagnetic shower measurement is obtained in total
absorption homogeneous calorimeters, e.g. calorimeters built with
heavy crystal scintillators. These are used when ultimate performance
is pursued.

The position resolution depends on the effective Molière radius
and the transverse granularity of the calorimeter. Like the energy
resolution, it can be factored as a/

√
E ⊕ b, where a is a few to 20 mm

and b can be as small as a fraction of mm for a dense calorimeter
with fine granularity. Electromagnetic calorimeters may also provide
direction measurement for electrons and photons. This is important
for photon-related physics when there are uncertainties in event origin,
since photons do not leave information in the particle tracking system.
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Typical photon angular resolution is about 45 mrad/
√
E, which can

be provided by implementing longitudinal segmentation [161] for a
sampling calorimeter or by adding a preshower detector [162] for a
homogeneous calorimeter without longitudinal segmentation.

Novel technologies have been developed for electromagnetic
calorimetry. New heavy crystal scintillators, such as PWO and
LYSO:Ce (see Sec. 34.4), have attracted much attention. In some
cases, such as PWO, it has received broad applications in high-energy
and nuclear physics experiments. The “spaghetti” structure has been
developed for sampling calorimetry with scintillating fibers as the
sensitive medium. The “shashlik” structure has been developed for
sampling calorimetry with wavelength shifting fibers functioning as
both the converter and transporter for light generated in the sensitive
medium. The “accordion” structure has been developed for sampling
calorimetry with ionizing noble liquid as the sensitive medium.

Table 34.8 provides a brief description of typical electromagnetic
calorimeters built recently for high-energy physics experiments. Also
listed in this table are calorimeter depths in radiation lengths (X0) and
the achieved energy resolution. Whenever possible, the performance of
calorimeters in situ is quoted, which is usually in good agreement with
prototype test beam results as well as EGS or GEANT simulations,
provided that all systematic effects are properly included. Detailed
references on detector design and performance can be found in
Appendix C of reference [160] and Proceedings of the International
Conference series on Calorimetry in High Energy Physics.

Table 34.8: Resolution of typical electromagnetic calorimeters.
E is in GeV.

Technology (Experiment) Depth Energy resolution Date

NaI(Tl) (Crystal Ball) 20X0 2.7%/E1/4 1983

Bi4Ge3O12 (BGO) (L3) 22X0 2%/
√
E ⊕ 0.7% 1993

CsI (KTeV) 27X0 2%/
√
E ⊕ 0.45% 1996

CsI(Tl) (BaBar) 16–18X0 2.3%/E1/4 ⊕ 1.4% 1999

CsI(Tl) (BELLE) 16X0 1.7% for Eγ > 3.5 GeV 1998

PbWO4 (PWO) (CMS) 25X0 3%/
√
E ⊕ 0.5%⊕ 0.2/E 1997

Lead glass (OPAL) 20.5X0 5%/
√
E 1990

Liquid Kr (NA48) 27X0 3.2%/
√
E⊕ 0.42%⊕ 0.09/E 1998

Scintillator/depleted U 20–30X0 18%/
√
E 1988

(ZEUS)

Scintillator/Pb (CDF) 18X0 13.5%/
√
E 1988

Scintillator fiber/Pb 15X0 5.7%/
√
E ⊕ 0.6% 1995

spaghetti (KLOE)

Liquid Ar/Pb (NA31) 27X0 7.5%/
√
E ⊕ 0.5%⊕ 0.1/E 1988

Liquid Ar/Pb (SLD) 21X0 8%/
√
E 1993

Liquid Ar/Pb (H1) 20–30X0 12%/
√
E ⊕ 1% 1998

Liquid Ar/depl. U (DØ) 20.5X0 16%/
√
E ⊕ 0.3%⊕ 0.3/E 1993

Liquid Ar/Pb accordion 25X0 10%/
√
E ⊕ 0.4%⊕ 0.3/E 1996

(ATLAS)

34.9.2. Hadronic calorimeters : [1–5,160]
Revised September 2013 by D. E. Groom (LBNL).

Hadronic calorimetry is considerably more difficult than EM
calorimetry. For the same cascade containment fraction discussed in
the previous section, the calorimeter would need to be ∼30 times
deeper. Electromagnetic energy deposit from the decay of a small
number of π0’s are usually detected with greater efficiency than
are the hadronic parts of the cascade, themselves subject to large
fluctuations in neutron production, undetectable energy loss to nuclear
disassociation, and other effects.

Most large hadron calorimeters are parts of large 4π detectors at
colliding beam facilities. At present these are sampling calorimeters:
plates of absorber (Fe, Pb, Cu, or occasionally U or W) alternating
with plastic scintillators (plates, tiles, bars), liquid argon (LAr), or
gaseous detectors. The ionization is measured directly, as in LAr
calorimeters, or via scintillation light observed by photodetectors
(usually PMT’s or silicon photodiodes). Wavelength-shifting fibers are
often used to solve difficult problems of geometry and light collection
uniformity. Silicon sensors are being studied for ILC detectors; in
this case e-h pairs are collected. There are as many variants of these
schemes as there are calorimeters, including variations in geometry
of the absorber and sensors, e.g., scintillating fibers threading an
absorber [163], and the “accordion” LAr detector [164]. The
latter has zig-zag absorber plates to minimize channeling effects; the
calorimeter is hermitic (no cracks), and plates are oriented so that
cascades cross the same plate repeatedly. Another departure from
the traditional sandwich structure is the LAr-tube design shown in
Fig. 34.22(a) [165].
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Figure 34.22: (a) ATLAS forward hadronic calorimeter struc-
ture (FCal2, 3) [165]. Tubes containing LAr are embedded in a
mainly tungsten matrix. (b) ATLAS central calorimeter wedge;
iron with plastic scintillator tile with wavelength-shifting fiber
readout [166].

A relatively new variant in hadron calorimetry is the detection
of Cerenkov light. Such a calorimeter is sensitive to relativistic e±’s
in the EM showers plus a few relativistic pions. An example is the
radiation-hard forward calorimeter in CMS, with iron absorber and
quartz fiber readout by PMT’s [167].

Ideally the calorimeter is segmented in φ and θ (or η =
− ln tan(θ/2)). Fine segmentation, while desirable, is limited by cost,
readout complexity, practical geometry, and the transverse size of
the cascades—but see Ref. 168. An example, a wedge of the ATLAS
central barrel calorimeter, is shown in Fig. 34.22(b) [166].

Much of the following discussion assumes an idealized calorimeter,
with the same structure throughout and without leakage. “Real”
calorimeters usually have an EM detector in front and a coarse
“catcher” in the back. Complete containment is generally impractical.

In an inelastic hadronic collision a significant fraction fem of the
energy is removed from further hadronic interaction by the production
of secondary π0’s and η’s, whose decay photons generate high-energy
electromagnetic (EM) showers. Charged secondaries (π±, p, . . . )
deposit energy via ionization and excitation, but also interact with
nuclei, producing spallation protons and neutrons, evaporation
neutrons, and spallation products. The charged collision products
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produce detectable ionization, as do the showering γ-rays from the
prompt de-excitation of highly excited nuclei. The recoiling nuclei
generate little or no detectable signal. The neutrons lose kinetic
energy in elastic collisions, thermalize on a time scale of several µs,
and are captured, with the production of more γ-rays—usually outside
the acceptance gate of the electronics. Between endothermic spallation
losses, nuclear recoils, and late neutron capture, a significant fraction
of the hadronic energy (20%–40%, depending on the absorber and
energy of the incident particle) is used to overcome nuclear binding
energies and is therefore lost or “invisible.”

In contrast to EM showers, hadronic cascade processes are
characterized by the production of relatively few high-energy particles.
The lost energy and fem are highly variable from event to event. Until
there is event-by-event knowledge of both the EM fraction and the
invisible energy loss, the energy resolution of a hadron calorimeter will
remain significantly worse than that of its EM counterpart.

The efficiency e with which EM deposit is detected varies from
event to event, but because of the large multiplicity in EM showers
the variation is small. In contrast, because a variable fraction of
the hadronic energy deposit is detectable, the efficiency h with
which hadronic energy is detected is subject to considerably larger
fluctuations. It thus makes sense to consider the ratio h/e as a
stochastic variable.

Most energy deposit is by very low-energy electrons and charged
hadrons. Because so many generations are involved in a high-energy
cascade, the hadron spectra in a given material are essentially
independent of energy except for overall normalization [170]. For this
reason 〈h/e〉 is a robust concept, independently of hadron energy and
species.

If the detection efficiency for the EM sector is e and that for the
hadronic sector is h, then the ratio of the mean response to a pion
relative to that for an electron is

〈π/e〉 = 〈fem〉+ 〈fh〉〈h/e〉∗ = 1− (1− 〈h/e〉)〈fh〉 (34.34)

It has been shown by a simple induction argument and verified by
experiment, that the decrease in the average value of the hadronic
energy fraction 〈fh〉 = 1 − 〈fem〉 as the projectile energy E increases
is fairly well described by the power law [169,170]

〈fh〉 ≈ (E/E0)
m−1 (for E > E0) , (34.35)

at least up to a few hundred GeV. The exponent m depends
logarithmically on the mean multiplicity and the mean fractional loss
to π0 production in a single interaction. It is in the range 0.80–0.87.
E0, roughly the energy for the onset of inelastic collisions, is 1 GeV or
a little less for incident pions [169]. Both m and E0 must be obtained
experimentally for a given calorimeter configuration.

Only the product (1 − 〈h/e〉)E1−m
0 can be obtained by measuring

〈π/e〉 as a function of energy. Since 1−m is small and E0 ≈ 1 GeV
for pion-induced cascades, this fact is usually ignored and 〈h/e〉 is
reported.

In a hadron-nucleus collision a large fraction of the incident energy
is carried by a “leading particle” with the same quark content
as the incident hadron. If the projectile is a charged pion, the
leading particle is usually a pion, which can be neutral and hence
contributes to the EM sector. This is not true for incident protons.
The result is an increased mean hadronic fraction for incident protons:
E0 ≈ 2.6 GeV [169–172].

By definition, 0 ≤ fem ≤ 1. Its variance σ2fem changes only

slowly with energy, but perforce 〈fem〉 → 1 as the projectile energy
increases. An empirical power law (unrelated to Eq. (34.34)) of
the form σfem = (E/E1)

1−ℓ (where ℓ < 1) describes the energy
dependence of the variance adequately and has the right asymptotic
properties [160]. For 〈h/e〉 6= 1 (noncompensation), fluctuations in
fem significantly contribute to or even dominate the resolution. Since
the fem distribution has a high-energy tail, the calorimeter response is
non-Gaussian with a high-energy tail if 〈h/e〉 < 1. Noncompensation
thus seriously degrades resolution and produces a nonlinear response.

∗ Technically, we should write 〈fh(h/e)〉, but we approximate it as
〈fh〉〈h/e〉 to facilitate the rest of the discussion.

It is clearly desirable to compensate the response, i.e., to design the
calorimeter such that 〈h/e〉 = 1. This is possible only with a sampling
calorimeter, where several variables can be chosen or tuned:
1. Decrease the EM sensitivity. EM cross sections increase with

Z,† and most of the energy in an EM shower is deposited by
low-energy electrons. A disproportionate fraction of the EM energy
is thus deposited in the higher-Z absorber. Lower-Z cladding, such
as the steel cladding on ZEUS U plates, preferentially absorbs
low-energy γ’s in EM showers and thus also lowers the electronic
response. G10 signal boards in the DØ calorimeters and G10 next
to slicon readout detectors has the same effect. The degree of
EM signal suppression can be somewhat controlled by tuning the
sensor/absorber thickness ratio.

2. Increase the hadronic sensitivity. The abundant neutrons produced
in the cascade have large n-p elastic scattering cross sections, so
that low-energy scattered protons are produced in hydrogenous
sampling materials such as butane-filled proportional counters
or plastic scintillator. (The maximal fractional energy loss when
a neutron scatters from a nucleus with mass number A is
4A/(1 + A)2.) The down side in the scintillator case is that the
signal from a highly-ionizing stopping proton can be reduced by as
much as 90% by recombination and quenching parameterized by
Birks’ Law (Eq. (34.2)).

3. Fabjan and Willis proposed that the additional signal generated in
the aftermath of fission in 238U absorber plates should compensate
nuclear fluctuations [173]. The production of fission fragments
due to fast n capture was later observed [174]. However, while
a very large amount of energy is released, it is mostly carried
by low-velocity, very highly ionizing fission fragments which
produce very little observable signal because of recombination and
quenching. But in fact much of the compensation observed with
the ZEUS 238U/scintillator calorimeter was mainly the result of
methods 1 and 2 above.
Motivated very much by the work of Brau, Gabriel, Brückmann,

and Wigmans [175], several groups built calorimeters which were very
nearly compensating. The degree of compensation was sensitive to
the acceptance gate width, and so could be somewhat further tuned.
These included
a) HELIOS with 2.5 mm thick scintillator plates sandwiched between

2 mm thick 238U plates (one of several structures); σ/E = 0.34/
√
E

was obtained,
b) ZEUS, 2.6 cm thick scintillator plates between 3.3 mm 238U plates;

σ/E = 0.35/
√
E,

c) a ZEUS prototype with 10 mm Pb plates and 2.5 mm scintillator
sheets; σ/E = 0.44/

√
E, and

d) DØ, where the sandwich cell consists of a 4–6 mm thick 238U plate,
2.3 mm LAr, a G-10 signal board, and another 2.3 mm LAr gap;
σ/E ≈ 0.45/

√
E.

Given geometrical and cost constraints, the calorimeters used in
modern collider detectors are not compensating: 〈h/e〉 ≈ 0.7, for the
ATLAS central barrel calorimeter, is typical.

A more versatile approach to compensation is provided by a
dual-readout calorimeter, in which the signal is sensed by two readout
systems with highly contrasting 〈h/e〉. Although the concept is more
than two decades old [176], it was only recently been implemented by
the DREAM collaboration [177]. The test beam calorimeter consisted
of copper tubes, each filled with scintillator and quartz fibers. If the
two signals C and S (quartz and scintillator) are both normalized to
electron response, then for each event Eq. (34.34) takes the form

C = E[fem + 〈h/e〉|C(1 − fem)]

S = E[fem + 〈h/e〉|S(1− fem)] (34.36)

for the Cherenkov and scintillator responses. On a dotplot of C/E vs
S/E, events scatter about a line-segment locus described in Fig. 34.23.
With increasing energy the distribution moves upward along the locus
and becomes tighter. Equations 34.36 are linear in 1/E and fem,
and are easily solved to obtain estimators of the corrected energy
and fem for each event. Both are subject to resolution effects, but

† The asymptotic pair-production cross section scales roughly as Z0.75,
and |dE/dx| slowly decreases with increasing Z.
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Figure 34.23: Dotplot of Monte Carlo C (Cherenkov) vs S
(scintillator) signals for individual events in a dual readout
calorimeter. Hadronic (π−) induced events are shown in blue,
and scatter about the indicated event locus. Electromagnetic
events cluster about (C,S) = (0,0). In this case worse resolution
(fewer p.e.’s) was assumed for the Cherenkov events, leading to
the “elliptical” distribution.

contributions due to fluctuations in fem are eliminated. The solution
for the corrected energy is given by [170]:

E =
ξS − C

ξ − 1
, where ξ =

1− 〈h/e〉|C
1 − 〈h/e〉|S

(34.37)

ξ is the energy-independent slope of the event locus on a plot of C
vs S. It can be found either from the fitted slope or by measuring
π/e as a function of E. Because we have no knowledge of h/e on an
event-by-event basis, it has been replaced by 〈h/e〉 in Eq. (34.37).
ξ must be as far from unity as possible to optimize resolution,
which means in practical terms that the scintillator readout of the
calorimeter must be as compensating as possible.

Although the usually-dominant contribution of the fem distribution
to the resolution can be minimized by compensation or the use of dual
calorimetry, there remain significant contributions to the resolution:
1. Incomplete corrections for leakage, differences in light collection

efficiency, and electronics calibration.
2. Readout transducer shot noise (usually photoelectron statistics),

plus electronic noise.
3. Sampling fluctuations. Only a small part of the energy deposit

takes place in the scintillator or other sensor, and that fraction
is subject to large fluctuations. This can be as high as 40%/

√
E

(lead/scintillator). It is even greater in the Fe/scint case because
of the very small sampling fraction (if the calorimeter is to be
compensating), and substantially lower in a U/scint calorimeter. It
is obviously zero for a homogeneous calorimeter.

4. Intrinisic fluctuations. The many ways ionization can be produced
in a hadronic shower have different detection efficiencies and
are subject to stochastic fluctuations. In particular, a very large
fraction of the hadronic energy (∼20% for Fe/scint, ∼40% for
U/scint) is “invisible,” going into nuclear dissociation, thermalized
neutrons, etc. The lost fraction depends on readout—it will be
greater for a Cherenkov readout, less for an organic scintillator
readout.
Except in a sampling calorimeter especially designed for the

purpose, sampling and intrinsic resolution contributions cannot be
separated. This may have been best studied by Drews et al. [178],
who used a calorimeter in which even- and odd-numbered scintillators
were separately read out. Sums and differences of the variances were
used to separate sampling and intrinsic contributions.

The fractional energy resolution can be represented by

σ

E
=

a1(E)√
E

⊕
∣∣∣∣1−

〈
h

e

〉∣∣∣∣
(

E

E1

)1−ℓ

(34.38)

The coefficient a1 is expected to have mild energy dependence for
a number of reasons. For example, the sampling variance is (π/e)E
rather than E. The term (E/E1)

1−ℓ is the parametrization of σfem
discussed above. Usually a plot of (σ/E)2 vs 1/E ia well-described by
a straight line (constant a1) with a finite intercept—the square of the
right term in Eq. (34.38), is called “the constant term.” Precise data
show the slight downturn [163].

After the first interaction of the incident hadron, the average
longitudinal distribution rises to a smooth peak. The peak position
increases slowly with energy. The distribution becomes nearly
exponential after several interaction lengths. Examples from the
CDHS magnetized iron-scintillator sandwich calorimeter test beam
calibration runs [179] are shown in Fig. 34.24. Proton-induced
cascades are somewhat shorter and broader than pion-induced
cascades [172]. A gamma distribution fairly well describes the
longitudinal development of an EM shower, as discussed in Sec. 33.5.
Following this logic, Bock et al. suggested that the profile of a hadronic
cascade could be fitted by the sum of two Γ distributions, one with
a characteristic length X0 and the other with length λI [180]. Fits
to this 4-parameter function are commonly used, e.g., by the ATLAS
Tilecal collaboration [172]. If the interaction point is not known (the
usual case), the distribution must be convoluted with an exponential
in the interaction length of the incident particle. Adragna et al. give
an analytic form for the convoluted function [172].

0 2 4 6 8 101 3 5 7 9

Depth (nuclear interaction lengths)

1

10

100

3

30

300

S
ca

le
d 

m
ea

n 
nu

m
be

r 
of

 p
ar

tic
le

s 
in

 c
ou

nt
er

CDHS:
 15 GeV
 30 GeV
 50 GeV
 75 GeV
100 GeV
140 GeV

Figure 34.24: Mean profiles of π+ (mostly) induced cascades
in the CDHS neutrino detector [179]. Corresponding results for
the ATLAS tile calorimeter can be found in Ref. 172.

The transverse energy deposit is characterized by a central core
dominated by EM cascades, together with a wide “skirt” produced by
wide-angle hadronic interactions [181].

The CALICE collaboration has tested a “tracking” calorimeter
(AHCAL) with highly granular scintillator readout [168]. Since the
position of the first interaction is observed, the average longitudinal
and radial shower distributions are obtained.

While the average distributions might be useful in designing a
calorimeter, they have little meaning for individual events, whose
distributions are extremely variable because of the small number of
particles involved early in the cascade.

Particle identification, primarily e-π discrimination, is accomplished
in most calorimeters by depth development. An EM shower is mostly
contained in 15X0 while a hadronic shower takes about 4λI . In
high-A absorbers such as Pb, X0/λI ∼ 0.03. In a fiber calorimeter,
such as the RD52 dual-readout calorimeter [182], e-π discrimination
is achieved by differences in the Cerenkov and scintillation signals,
lateral spread, and timing differences, ultimately achieving about
500:1 discrimination.
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34.9.3. Free electron drift velocities in liquid ionization cham-
bers :
Written August 2009 by W. Walkowiak (U. Siegen)

Drift velocities of free electrons in LAr [183] are given as a function
of electric field strength for different temperatures of the medium in
Fig. 34.25. The drift velocites in LAr have been measured using a
double-gridded drift chamber with electrons produced by a laser pulse
on a gold-plated cathode. The average temperature gradient of the
drift velocity of the free electrons in LAr is described [183] by

∆vd
∆T vd

= (−1.72± 0.08) %/K.

Earlier measurements [184–187] used different techniques and show
systematic deviations of the drift velocities for free electrons which
cannot be explained by the temperature dependence mentioned above.
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Figure 34.25: Drift velocity of free electrons as a function of
electric field strength for LAr [183], LAr + 0.5% CH4 [185]
and LXe [184]. The average temperatures of the liquids are
indicated. Results of a fit to an empirical function [189] are
superimposed. In case of LAr at 91 K the error band for the
global fit [183] including statistical and systematic errors as well
as correlations of the data points is given. Only statistical errors
are shown for the individual LAr data points.

Drift velocities of free electrons in LXe [185] as a function of
electric field strength are also displayed in Fig. 34.25. The drift
velocity saturates for |E | > 3 kV/cm, and decreases with increasing
temperature for LXe as well as measured e.g. by [188].

The addition of small concentrations of other molecules like N2, H2

and CH4 in solution to the liquid typically increases the drift velocities
of free electrons above the saturation value [185,186], see example for
CH4 admixture to LAr in Fig. 34.25. Therefore, actual drift velocities
are critically dependent on even small additions or contaminations.

34.10. Accelerator-based Neutrino Detectors
Revised August 2017 by M.O. Wascko (Imperial College London).

34.10.1. Introduction :
Accelerator-based neutrino experiments span many orders of

magnitude in neutrino energy, from a few MeV to hundreds of GeV.
This wide range of neutrino energy is driven by the many physics
applications of accelerator-based neutrino beams. Foremost among
them is neutrino oscillation, which varies as the ratio L/Eν , where L
is the neutrino baseline (distance traveled), and Eν is the neutrino
energy. But accelerator-based neutrino beams have also been used
to study the nature of the weak interaction, to probe nucleon form
factors and structure functions, and to study nuclear structure.

The first accelerator-based neutrino experiment used neutrinos from
the decays of high energy pions in flight to show that the neutrinos
emitted from pion decay are different from the neutrinos emitted by
beta decay [190]. The field of accelerator-based neutrino experiments
would likely not have expanded beyond this without Simon van

der Meer’s invention of the magnetic focusing horn [191], which
significantly increased the flux of neutrinos aimed toward the detector.
In this mini-review, we focus on experiments employing decay-in-flight
beams—pions, kaons, charmed mesons, and taus—producing fluxes of
neutrinos and antineutrinos from ∼ 10 MeV to ∼ 100 GeV.

Neutrino interactions with matter proceed only through the weak
interaction, making the cross section extremely small and requiring
high fluxes of neutrinos and large detector masses in order to
achieve satisfactory event rates. Therefore, neutrino detector design
is a balancing act taking into account sufficient numbers of nuclear
targets (often achieved with inactive detector materials), adequate
sampling/segmentation to ensure accurate reconstruction of the tracks
and showers produced by neutrino-interaction secondary particles, and
practical readout systems to allow timely analysis of data.

34.10.2. Signals and Backgrounds :
The neutrino interaction processes available increase with increasing

neutrino energy as interaction thresholds are crossed; in general
neutrino-interaction cross sections grow with energy; for a detailed
discussion of neutrino interactions see [192]. The multiplicity of
secondary particles from each interaction process grows in complexity
with neutrino energy, while the forward-boost due to increasing Eν

compresses the occupied phase space in the lab frame, impacting
detector designs. Because decay-in-fight beams produce neutrinos at
well-defined times, leading to very small duty factors, the predominant
backgrounds usually stem from unwanted beam-induced neutrino
interactions, i.e. neutrinos interacting via other processes than the one
being studied. A noteworthy exception is time projection chambers,
wherein the long drift times can admit substantially more cosmic
backgrounds than most other detection methods. Cosmic backgrounds
are more rare at higher energies because the secondary particles
produced by neutrino interactions yield detector signals that resemble
cosmic backgrounds less and less.

Below, we describe a few of the dominant neutrino interaction
processes, with a focus on the final state particle content and
topologies.

34.10.2.1. Charged-Current Quasi-Elastic Scattering and
Pion Production:

Below ∼ 2 GeV neutrino energy, the dominant neutrino-nucleus
interaction process is quasi-elastic (QE) scattering. In the charged
current (CC) mode, the CCQE base neutrino reaction is νℓ n → ℓ− p,
where ℓ = e, µ, τ , and similarly for antineutrinos, νℓ p → ℓ+ n. The
final state particles are a charged lepton, and perhaps a recoiling
nucleon if it is given enough energy to escape the nucleus. Detectors
designed to observe this process should have good single-particle track
resolution for muon neutrino interactions, but should have good µ/e
separation for electron neutrino interactions. Because the interaction
cross section falls sharply with Q2, the lepton typically carries away
more of the neutrino’s kinetic energy than the recoiling nucleon. The
fraction of backward-scattered leptons is large, however, so detectors
with 4π coverage are desirable. The dominant backgrounds in this
channel tend to come from single pion production events in which the
pion is not detected.

Near 1 GeV, the quasi-elastic cross section is eclipsed by pion
production processes. A typical single pion production (CC1π)
reaction is νℓ n → ℓ− π+ n, but many more final state particle
combinations are possible. Single pion production proceeds through
the coherent channel and many incoherent processes, dominated by
resonance production. With increasing neutrino energy, higher-order
resonances can be excited, leading to multiple pions in the final state.
Separating these processes from quasi-elastic scattering, and indeed
from each other, requires tagging, and ideally reconstructing, the pions.
Since these processes can produce neutral pions, electromagnetic (EM)
shower reconstruction is more important here than it is for the quasi-
elastic channel. The predominant backgrounds for pion production
change with increasing neutrino energy. Detection of pion processes
is also complicated because near threshold the quasi-elastic channel
creates pion backgrounds through final state interactions of the
recoiling nucleon, and at higher energies backgrounds come from
migration of multiple pion events in which one or more pions is not
detected.
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34.10.2.2. Deep Inelastic Scattering:
Beyond a few GeV, the neutrino has enough energy to probe

the nucleon at the parton scale, leading to deep inelastic scattering
(DIS). In the charged-current channel, the DIS neutrino reaction is
νℓN → ℓ−X , where N is a nucleon and X encompasses the entire
recoiling hadronic system. The final state particle reconstruction
revolves around accurate reconstruction of the lepton momentum
and containment and reconstruction of the hadronic shower energy.
Because of the high neutrino energies involved, DIS events are very
forward boosted, and can have extremely long particle tracks. For this
reason, detectors measuring DIS interactions must be large to contain
the hadronic showers in the detector volume.

34.10.2.3. Neutral Currents:
Neutrino interactions proceeding through the neutral current (NC)

channel are identified by the lack of a charged lepton in the final state.
For example, the NC elastic reaction is νl N → νl N , and the NC
DIS reaction is νlN → νl X . NC interactions are suppressed relative
to CC interactions by a factor involving the weak mixing angle; the
primary backgrounds for NC interactions come from CC interactions
in which the charged lepton is misidentified.

34.10.3. Instances of Neutrino Detector Technology :
Below we describe many of the actual detectors that have been

built and operated for use in accelerator-based neutrino beams.

Table 34.9: Properties of detectors for accelerator-based neutrino
beams.

Name Type Target Mass∗ (t) Location 〈Eν〉(GeV) Dates

Lederman et al. Spark Al 10 BNL 0.2–2 1962

CERN-spark Spark Al 20 CERN 1.5 1964

Serpukhov Spark Al 20 IHEP 4 1977

Aachen-Padova Spark Al 30 CERN 1.5 1976–77

Gargamelle Bubble Freon 6 CERN 1.5,20 1972,1977

BEBC Bubble H,D,Ne-H 2–42 CERN 50,150 & 20 1977–84

SKAT Bubble Freon 8 IHEP 4 1977-1987

ANL-12ft Bubble H,D 1–2 ANL 0.5 1970

BNL-7ft Bubble H,D 0.4–0.9 BNL 1.3,3 1976–82

Fermilab-15ft Bubble D,Ne 1–20 FNAL 50,180&25,100 1974–92

CITF Iron Fe 92 FNAL 50,180 1977–83

CDHS Iron Fe 750 CERN 50,150 1977–83

MINOS Iron Fe 980,5.4k FNAL 4–15 2005–2016

INGRID Iron Fe 99 J-PARC 0.7–3 2009–

Super-Kamiokande Cherenkov H2O 22,500 Kamioka 0.6 1996–

K2K-1kt Cherenkov H2O 25 KEK 0.8 1998–2004

MiniBooNE Cherenkov CH2 440 FNAL 0.6 2002–12

HWPF Scintillation CH2 2 FNAL 2 2014–

LSND Scintillation CH2 130 LANL 0.06 1993–98

NOvA Scintillation CH2 300,14k FNAL/Ash River 2 2013–

SciBar Scintillation CH 12 KEK/FNAL 0.8,0.6 2004,2007–8

ICARUS LArTPC Ar 760 LNGS 20 2006–12

Argoneut LArTPC Ar 0.025 FNAL 3 2009–10

MicroBooNE LArTPC Ar 170 FNAL 0.8 2014–

FNAL-E-531 Emulsion Ag, Br 0.009 FNAL 25 1984

CHORUS Emulsion Ag, Br 1.6 CERN 20 1995

DONuT Emulsion Fe 0.26 FNAL 100 1997

OPERA Emulsion Pb 1.3k LNGS 20 2006–12

NINJA Emulsion Fe 0.001 J-PARC 0.6 2016–

CHARM Hybrid CaCO3O 150 CERN 20 1977

CHARM-II Hybrid Si 692 CERN 20 1983

BNL-E-734 Hybrid CH2 172 BNL 1.3 1987

BNL-E-776 Hybrid concrete 240 BNL 3 1990

NOMAD Hybrid CH 3 CERN 20 1995–98

CCFR Hybrid Fe 690 FNAL 90,260 1991

NuTeV Hybrid Fe 690 FNAL 70,180 1996–97

MINERvA Hybrid CH,H2O,Fe,Pb,C,He 8 FNAL 3,8 2009–

T2K-ND280 Hybrid CH,H2O,Pb,Cu 4 J-PARC 0.6 2009–

* Fiducial.

34.10.3.1. Spark Chambers:
In the first accelerator-based neutrino beam experiment, Lederman,

Schwartz, and Steinberger [190] used an internally-triggered spark
chamber detector, filled with 10 tons of Al planes and surrounded
by external scintillator veto planes, to distinguish muon tracks from
electron showers, and hence muon neutrinos from electron neutrinos.
The inactive Al planes served as the neutrino interaction target and
as radiators for EM shower development. The detector successfully
showed the presence of muon tracks from neutrino interactions. It was
also sensitive to the hadronic showers induced by NC interactions,
which were unknown at the time. In 1963, CERN also built and
ran a large (20 ton) Al plane spark chamber in a wideband beam
based on the PS accelerator. [193]. More than a decade later, the
Aachen-Padova [195] experiment at CERN employed a 30 ton Al spark
chamber in the PS-WBB.

34.10.3.2. Bubble Chambers:
Several large bubble chamber detectors were employed as accelerator

neutrino detectors in the 1970s and 80s, performing many of the first
studies of the properties of the weak interaction. Bubble chambers
provide exquisite granularity in the reconstruction of secondary
particles, allowing very accurate separation of interaction processes.
However, the extremely slow and labor-intensive acquisition and
analysis of the data from photographic film led to them being phased
out in favor of electronically read out detectors.
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The Gargamelle [196] detector at CERN used Freon and propane
gas targets to make the first observation of neutrino-induced NC
interactions and more. The BEBC [197] detector at CERN was a
bubble chamber that was alternately filled with liquid hydrogen,
deuterium, and a neon-hydrogen mixture; BEBC was also outfitted
with a track-sensitive detector to improve event tagging, and
sometimes used with a small emulsion chamber. The SKAT [194]
Freon bubble chamber was exposed to wideband neutrino and
antineutrino beams at the Serpukhov laboratory in the former Soviet
Union. A series of American bubble chambers in the 1970’s and 1980’s
made measurements on free nucleons that are still crucial inputs for
neutrino-nucleus scattering predictions. The 12-foot bubble chamber
at ANL [210] in the USA used both deuterium and hydrogen targets,
as did the 7-foot bubble chamber at BNL [199]. Fermilab’s 15 foot
bubble chamber [200] used deuterium and neon targets.

34.10.3.3. Iron Tracking Calorimeters:
Because of the forward boost of high energy interactions, long

detectors made of magnetized iron interspersed with active detector
layers have been very successfully employed. The long magnetized
detectors allow measurements of the momentum of penetrating muons.
The iron planes also act as shower-inducing layers, allowing separation
of EM and hadronic showers; the large number of iron planes
provide enough mass for high statistics and/or shower containment.
Magnetized iron spectrometers have been used for studies of the weak
interaction, measurements of structure functions, and searches for
neutrino oscillation. Non-magnetized iron detectors have also been
successfully employed as neutrino monitors for oscillation experiments
and also for neutrino-nucleus interaction studies.

The Caltech-Fermilab counter (CITF) [210] combined a 92 ton iron-
scintillator target-calorimeter detector with a downstream toroidal
magnet to perform early studies of weak interactions—including
observations of neutral currents. The CDHS [211] detector used layers
of magnetized iron modules interspersed with wire drift chambers,
with a fiducial mass of 750 t, to detector neutrinos in the range 30–
300 GeV. Within each iron module, 5 cm (or 15 cm) iron plates were
interspersed with scintillation counters. The MINOS [214] detectors,
a near detector of 980 t at FNAL and a far detector of 5400 t in the
Soudan mine, were functionally identical magnetized iron calorimeters,
comprised of iron plates interleaved with layers of 4 cm wide plastic
scintillator strips in alternating orientations. The T2K [234] on-axis
detector, INGRID, consists of 16 non-magnetized iron scintillator
sandwich detectors, each with nine 6.5 cm iron plane (7.1 t total)
interspersed between layers of 5 cm wide plastic scintillator strips
readout out by multi-pixel photon counters (MPPCs) coupled to WLS
fibers. Fourteen of the INGRID modules are arranged in a cross-hair
configuration centered on the neutrino beam axis.

34.10.3.4. Cherenkov Detectors:
Open volume water Cherenkov detectors were originally built to

search for proton decay. Large volumes of ultra-pure water were
lined with photomultipliers to collect Cherenkov light emitted by the
passage of relativistic charged particles. See Sec. 35.3.1 for a detailed
discussion of deep liquid detectors for rare processes. The Cherenkov
light, which has significant production in the visible range, appears on
the walls of the detectors in distinctive ring patterns, and topological
characteristics of the rings are employed to separate muon-induced
rings from electron-induced with very high accuracy. As neutrino
detectors, Cherenkov detectors optimize the design balance since the
entire neutrino target is also active detector medium.

When used to detect ∼ GeV neutrinos, the detector medium acts as
a natural filter for final state particles below the Cherenkov threshold;
this feature has been exploited successfully by the K2K, MiniBooNE
(using mineral oil instead of water), and T2K neutrino oscillation
experiments. This makes event reconstruction simple and robust since
electrons and muons have very different signatures, but does require
making assumptions when inferring neutrino energy since not all final
state particles are observed. At higher energies Cherenkov detectors
become less accurate because the overlapping rings from many final
state particles become increasingly difficult to resolve.

The second-generation Cherenkov detector in Japan, Super-
Kamiokande [202]( Super-K), comprises 22.5 kt of water viewed
by 50 cm photomultiplier tubes with 40% photocathode coverage;

it is surrounded by an outer detector region viewed by 20 cm
photomultipliers. Super-K is the far detector for K2K and T2K, and
is described in greater detail elsewhere in this review. The K2K
experiment also employed a 1 kt water Cherenkov detector in the
suite of near detectors [203], with 40% photocathode coverage.
The MiniBooNE detector at FNAL was a 0.8 kt [204] mineral
oil Cherenkov detector, with 20 cm photomultipliers giving 10%
photocathode coverage, surrounded by a veto detector also with 20 cm
photomultipliers.

34.10.3.5. Scintillation Detectors:
Liquid and solid scintillator detectors also employ fully (or nearly

fully) active detector media. Typically organic scintillators, which emit
into the ultraviolet range, are dissolved in mineral oil or plastic and
read out by photomultipliers coupled to wavelength shifters (WLS).
Open volume scintillation detectors lined with photomultipliers
are conceptually similar to Cherenkov detectors, although energy
reconstruction is calorimetric in nature as opposed to kinematic (see
also Sec. 35.3.1). For higher energies and higher particle multiplicities,
it becomes beneficial to use segmented detectors to help distinguish
particle tracks and showers from each other.

The HWPF collaboration [206] employed a 2 t liquid scintillator
total-absorption hadron calorimeter followed by a magnetic spectrome-
ter to observe neutral current events in the early days of Fermilab. The
LSND [207] detector at LANL was a 130 t open volume liquid scintil-
lator detector employed to detect relatively low energy (<300 MeV)
neutrinos. The NOvA [209] detectors use segmented volumes of liquid
scintillator in which the scintillation light is collected by WLS fibers
in the segments that are coupled to avalanche photodiodes (APDs)
at the ends of the volumes. The NOvA far detector, located in Ash
River, MN, is comprised of 896 layers of 15.6 m long extruded PVC
scintillator cells for a total mass of 14 kt; the NOνA near detector is
comprised of 214 layers of 4.1 m scintillator volumes for a total mass
of of 300 t. Both are placed in the NuMI beamline at 0.8◦ off-axis.
The SciBar (Scintillation Bar) detector was originally built for K2K at
KEK in Japan and then re-used for SciBooNE [208] at FNAL. SciBar
used plastic scintillator strips with 1.5 cm×2.5 cm rectangular cross
section, read out by multianode photomultipliers (MAPMTs) coupled
to WLS fibers, arranged in alternating horizontal and vertical layers.
Both SciBooNE and K2K employed an EM calorimeter downstream
of SciBar and a muon range detector (MRD) downstream of that.

34.10.3.6. Liquid Argon Time Projection Chambers:
Liquid argon time projection chambers (LAr-TPCs) were conceived

in the 1970s as a way to achieve a fully active detector with sub-
centimeter track reconstruction [215]. A massive volume of purified
liquid argon is put under a strong electric field (hundreds of V/cm),
so that the liberated electrons from the paths of ionizing particles
can be drifted to the edge of the volume and read out, directly by
collecting charge from wire planes or non-destructively through charge
induction in the wire planes. A dual-phase readout method is also
being developed, in which the charge is drifted vertically and then
passed through an amplification region inside a gas volume above the
liquid volume; the bottom of the liquid volume is equipped with a
PMT array for detecting scintillation photons form the liquid argon.
The first large scale LAr-TPC was the ICARUS T-600 module [216],
comprising 760 t of liquid argon with a charge drift length of 1.5 m
read out by wires with 3 mm pitch, which operated in LNGS, both
standalone and also exposed to the CNGS high energy neutrino beam.
The ICARUS detector has been transported to Fermilab and is being
installed in an on-axis position in the Booster Neutrino Beamline,
where it will also be exposed to off-axis neutrinos from the NuMI
beamline. The ArgoNeuT [217] detector at FNAL, with fiducial mass
25 kg of argon read out with 4 mm pitch wires, was exposed to
the NuMI neutrino and antineutrino beams. The MicroBooNE [218]
detector at FNAL comprises 170 t of liquid Ar, read out with 3 mm
wire pitch, which began collecting data in the Booster Neutrino Beam
Oct 2015. A LAr-TPC has also been chosen as the detector design
for the future DUNE neutrino oscillation experiment, from FNAL to
Sanford Underground Research Facility; both single and dual phase
modules are planned.
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34.10.3.7. Emulsion Detectors:
Photographic film emulsions have been employed in particle physics

experiments since the 1940s [219]. Thanks to advances in scanning
technology and automation [223], they have been successfully
employed as neutrino detectors. Emulsions are used for experiments
observing CC tau neutrino interactions, where the short lifetime of
the tau, ττ = 2.90 × 10−13s, leading to the short mean path length,
c × τ = 87µm, requires extremely precise track resolution. They
are employed in hybrid detectors in which the emulsion bricks are
embedded inside fine-grained tracker detectors. In the data analysis,
the tracker data are used to select events with characteristics typical of
a tau decay in the final state, such as missing energy and unbalanced
transverse momentum. The reconstructed tracks are projected back
into an emulsion brick and used as the search seed for a neutrino
interaction vertex.

E531 [220] at Fermilab tested many of the emulsion-tracker hybrid
techniques employed by later neutrino experiments, in a detector with
approximately 9 kg of emulsion target. The CHORUS [221] experiment
at CERN used 1,600 kg of emulsion, in a hybrid detector with a fiber
tracker, high resolution calorimeter, and muon spectrometer, to search
for νµ → ντ oscillation. The DONuT [222] experiment at FNAL used
a hybrid detector, with 260 kg of emulsion bricks interspersed with
fiber trackers, followed by a magnetic spectrometer, and calorimeter,
to make the first direct observation of tau neutrino CC interactions.
The OPERA [224,225,226] experiment used an automated hybrid
emulsion detector, with 1,300 t of emulsion, to make the first direct
observation of the appearance of ντ in a νµ beam. Recently, the
NINJA collaboration has developed an emulsion cloud chamber
detector to observe neutrinos in the J-PARC neutrino beam [227].

34.10.3.8. Hybrid Detectors:
In the previous neutrino detector examples, one can point to a

specific detection technology or configuration that defines a category
of detectors. In this section we look at detectors that combine multiple
elements or techniques, without one facet being specifically dominant
or crucial; we call these detectors hybrids.

The CHARM detector [228] at CERN was built to study neutral-
current interactions and search for muon neutrino oscillation. It
was a fine-grained ionization calorimeter tracker with approximately
150 t of marble as neutrino target, surrounded by a magnetized iron
muon system for tagging high angle muons, and followed downstream
by a muon spectrometer. The CHARM II detector [229] at CERN
comprised a target calorimeter followed by a downstream muon
spectrometer. Each target calorimeter module consists of a 4.8 cm
thick glass plate followed by a layer of plastic streamer tubes, with
spacing 1 cm, instrumented with 2 cm wide pickup strips. Every fifth
module is followed by a 3 cm thick scintillator layer. The total mass
of the target calorimeter was 692 t.

The Brookhaven E-734 [230] detector was a tracking calorimeter
made up of 172 t liquid scintillator modules interspersed with
proportional drift tubes, followed by a dense EM calorimeter and a
muon spectrometer downstream of that. The detector was exposed to
a wideband horn-focused beam with peak neutrino energy near 1 GeV.
The Brookhaven E-776 [231] experiment comprised a finely segmented
EM calorimeter, with 2.54 cm concrete absorbers interspersed with
planes of drift tubes and acrylic scintillation counters, with total mass
240 t, followed by a muon spectrometer.

The FNAL Lab-E neutrino detector was used by the CCFR [212]
and NuTeV [213] collaborations to perform a series of experiments in
the Fermilab high energy neutrino beam (50 GeV< Eν < 300 GeV).
The detector was comprised of six iron target calorimeter modules,
with 690 t total target mass, followed by three muon spectrometer
modules, followed by two drift chambers. Each iron target calorimeter
module comprised 5.2 cm thick steel plates interspersed with liquid
scintillation counters and drift chambers.

The NOMAD [232] detector at CERN consisted of central tracker
detector inside a 0.4 T dipole magnet (the magnet was originally used
by the UA1 experiment at CERN) followed by a hadronic calorimeter
and muon detectors downstream of the magnet. The main neutrino
target is 3 t of drift chambers followed downstream by transition
radiation detectors which are followed by an EM calorimeter. NOMAD
was exposed to the same wideband neutrino beam as was CHORUS.

MINERvA [233] is a hybrid detector based around a central plastic
scintillator tracker: 8.3 t of plastic scintillator strips with triangular
cross section read out by MAPMTs coupled to WLS fibers. The
scintillator tracker is surrounded by electromagnetic and hadronic
calorimetry, which is achieved by interleaving thin lead (steel) layers
between the scintillator layers for the ECAL (HCAL). MINERvA
is situated upstream of the MINOS near detector which acts as a
muon spectrometer. Upstream of the scintillator tracker is a nuclear
target region containing inactive layers of C (graphite), Pb, Fe (steel),
and O (water). MINERvA’s physics goals span a wide range of
neutrino-nucleus interaction studies, from form factors to nuclear
effects.

T2K [234] in Japan employs two near detectors at 280 m from the
neutrino beam target, one centered on the axis of the horn-focused
J-PARC neutrino beam and one placed 2.5◦ off-axis. The on-axis
detector, INGRID, is described above. The 2.5◦ off-axis detector,
ND280, employs the UA1 magnet (at 0.2 T) previously used by
NOMAD. Inside the magnet volume are three separate detector
systems: the trackers, the Pi0 Detector (P0D), and several ECal
modules. The tracker detectors comprise two fine-grained scintillator
detectors (FGDs), read out by MPPCs coupled to WLS fibers,
interleaved between three gas TPCs read out by micromegas planes.
The downstream FGD contains inactive water layers in addition to
the scintillators. Upstream of the tracker is the P0D, a sampling
tracker calorimeter with active detector materials comprising plastic
scintillator read out by MPPCs and WLS fibers, and inactive sheets of
brass radiators and refillable water modules. Surrounding the tracker
and P0D, but still inside the magnet, are lead-scintillator EM sampling
calorimeters.

34.10.4. Outlook :
Detectors for accelerator-based neutrino beams have been in use,

and constantly evolving, for six decades now. The rich program of
neutrino oscillation physics and attendant need for newer and better
neutrino-nucleus scattering measurements means that more neutrino
detectors with broader capabilities will be needed in the coming
decades.

One of the most intriguing prospects is a large volume, high
pressure gas time projection chamber (HPTPC). With the prospect
of megawatt power accelerator-based neutrino beams, it is entirely
feasible to collect high statistics data sets with a gas target. The low
momentum thresholds for particle detection, and excellent momentum
resolution and particle identification capabilities, of an HPTPC would
open a new window into the physics of neutrino-nucleus scattering.
Moreover, the ability to change the gas mixtures in the HPTPC would
allow measurements in the same detector on multiple nuclear targets,
which would, in turn, allow unprecedentedly accurate constraints and
tuning of neutrino-nucleus interaction models.

34.11. Superconducting magnets for collider
detectors

Revised August 2017 by Y. Makida (KEK)

34.11.1. Solenoid Magnets : In all cases SI unit are assumed, so
that the magnetic field, B, is in Tesla, the stored energy, E, is in
joules, the dimensions are in meters, and vacuum permeability of
µ0 = 4π × 10−7.

The magnetic field (B) in an simple solenoid with a flux return iron
yoke, in which the magnetic field is lower than magnetic saturation of
< 2 T, is given by

B =
µ0 n I

L
(34.39)

where n is the number of turns, I is the current and L is the coil
length.

In an air-core solenoid case, the central field is given by

B(0, 0) = µ0 n I
1√

L2 + 4R2
, (34.40)

where R is the coil radius.
In most cases, momentum analysis is made by measuring the

circular trajectory of the passing particles according to p = mv = qrB,
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where p is the momentum, m the mass, q the charge, r the bending
radius. The sagitta, s, of the trajectory is given by

s = q B ℓ2/8p , (34.41)

where ℓ is the path length in the magnetic field. In a practical
momentum measurement in colliding beam detectors, it is more
effective to increase the magnetic volume than the field strength, since

dp/p ∝ p/B ℓ2 , (34.42)

where ℓ corresponds to the solenoid coil radius R. The energy stored
in the magnetic field of any magnet is calculated by integrating B2

over all space:

E =
1

2µ0

∫
B2dV (34.43)

If the coil thin and inside an iron return yoke , (which is the case if it
is to superconducting coil), then

E ≈ (B2/2µ0)πR
2L . (34.44)

For a detector in which the calorimetry is outside the aperture of
the solenoid, the coil must be transparent in terms of radiation and
absorption lengths. This usually means that the superconducting
solenoid and its cryostat is of minimum real thickness and is made of a
material with long radiation length. There are two major contributors
to the thickness of a thin solenoid:

Table 34.10: Progress of superconducting magnets for particle physics
detectors.

Experiment Laboratory B Radius Length Energy X/X0 E/M
[T] [m] [m] [MJ] [kJ/kg]

TOPAZ* KEK 1.2 1.45 5.4 20 0.70 4.3
CDF* Tsukuba/Fermi 1.5 1.5 5.07 30 0.84 5.4
VENUS* KEK 0.75 1.75 5.64 12 0.52 2.8
AMY* KEK 3 1.29 3 40 †
CLEO-II* Cornell 1.5 1.55 3.8 25 2.5 3.7
ALEPH* Saclay/CERN 1.5 2.75 7.0 130 2.0 5.5
DELPHI* RAL/CERN 1.2 2.8 7.4 109 1.7 4.2
ZEUS* INFN/DESY 1.8 1.5 2.85 11 0.9 5.5
H1* RAL/DESY 1.2 2.8 5.75 120 1.8 4.8
BaBar* INFN/SLAC 1.5 1.5 3.46 27 † 3.6
D0* Fermi 2.0 0.6 2.73 5.6 0.9 3.7
BELLE* KEK 1.5 1.8 4 42 † 5.3
BES-III IHEP 1.0 1.475 3.5 9.5 † 2.6
ATLAS-CS ATLAS/CERN 2.0 1.25 5.3 38 0.66 7.0
ATLAS-BT ATLAS/CERN 1 4.7–9.75 26 1080 (Toroid)†

ATLAS-ET ATLAS/CERN 1 0.825–5.35 5 2× 250 (Toroid)†

CMS CMS/CERN 4 6 12.5 2600 † 12
SiD** ILC 5 2.9 5.6 1560 † 12
ILD** ILC 4 3.8 7.5 2300 † 13
SiD** CLIC 5 2.8 6.2 2300 † 14
ILD** CLIC 4 3.8 7.9 2300 †
FCC** 6 6 23 54000 † 12

∗ No longer in service
∗∗Conceptual design in future
† EM calorimeter is inside solenoid, so small X/X0 is not a goal

1) The conductor consisting of the current-carrying superconducting
material (usually Nb-Ti/Cu) and the quench protecting stabilizer
(usually aluminum) are wound on the inside of a structural support
cylinder (usually aluminum also). The coil thickness scales as B2R,
so the thickness in radiation lengths (X0) is

tcoil/X0 = (R/σhX0)(B
2/2µ0) , (34.45)

where tcoil is the physical thickness of the coil, X0 the average
radiation length of the coil/stabilizer material, and σh is the
hoop stress in the coil [237]. B2/2µ0 is the magnetic pressure.
In large detector solenoids, the aluminum stabilizer and support
cylinders dominate the thickness; the superconductor (Nb-TI/Cu)
contributes a smaller fraction. The main coil and support cylinder
components typically contribute about 2/3 of the total thickness in
radiation lengths.

2) Another contribution to the material comes from the outer
cylindrical shell of the vacuum vessel. Since this shell is susceptible
to buckling collapse, its thickness is determined by the diameter,
length and the modulus of the material of which it is fabricated.
The outer vacuum shell represents about 1/3 of the total thickness
in radiation length.

34.11.2. Properties of collider detector magnets :
The physical dimensions, central field stored energy and thickness

in radiation lengths normal to the beam line of the supercon-
ducting solenoids associated with the major collider are given in
Table 34.10 [236]. Fig. 34.26 shows thickness in radiation lengths as
a function of B2R in various collider detector solenoids.
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The ratio of stored energy to cold mass (E/M) is a useful
performance measure. It can also be expressed as the ratio of the
stress, σh, to twice the equivalent density, ρ, in the coil [237]:

E

M
=

E

ρ 2πtcoilRL
≈ σh

2ρ
(34.46)

The E/M ratio in the coil is approximately equivalent to H ,* the
enthalpy of the coil, and it determines the average coil temperature
rise after energy absorption in a quench:

E/M = H(T2)−H(T1) ≈ H(T2) (34.47)

where T2 is the average coil temperature after the full energy
absorption in a quench, and T1 is the initial temperature. E/M
ratios of 5, 10, and 20 kJ/kg correspond to ∼65, ∼80, and ∼100 K,
respectively. The E/M ratios of various detector magnets are shown
in Fig. 34.27 as a function of total stored energy. One would like
the cold mass to be as small as possible to minimize the thickness,
but temperature rise during a quench must also be minimized. An
E/M ratio as large as 12 kJ/kg is designed into the CMS solenoid,

* The enthalpy, or heat content, is called H in the thermodynam-
ics literature. It is not to be confused with the magnetic field inten-
sity B/µ.

with the possibility that about half of the stored energy can go to an
external dump resistor. Thus the coil temperature can be kept below
80 K if the energy extraction system works well. The limit is set by
the maximum temperature that the coil design can tolerate during a
quench. This maximum local temperature should be <130 K (50 K +
80 K), so that thermal expansion effects, which are remarkable beyond
80 K, in the coil are manageable less than 50 K.

34.11.3. Toroidal magnets :
Toroidal coils uniquely provide a closed magnetic field without the

necessity of an iron flux-return yoke. Because no field exists at the
collision point and along the beam line, there is, in principle, no
effect on the beam. On the other hand, the field profile generally
has 1/r dependence. The particle momentum may be determined by
measurements of the deflection angle combined with the sagitta. The
deflection (bending) power BL is

BL ≈
∫ R0

Ri

BiRi dR

R sin θ
=

BiRi

sin θ
ln(R0/Ri) , (34.48)

where Ri is the inner coil radius, R0 is the outer coil radius, and θ is
the angle between the particle trajectory and the beam line axis . The
momentum resolution given by the deflection may be expressed as

∆p

p
∝ p

BL
≈ p sin θ

BiRi ln(R0/Ri)
. (34.49)

The momentum resolution is better in the forward/backward (smaller
θ) direction. The geometry has been found to be optimal when
R0/Ri ≈ 3–4. In practical designs, the coil is divided into 6–12
lumped coils in order to have reasonable acceptance and accessibility.
This causes the coil design to be much more complex. The mechanical
structure needs to sustain the decentering force between adjacent
coils, and the peak field in the coil is 3–5 times higher than the useful
magnetic field for the momentum analysis [235].

34.12. Measurement of particle momenta in a
uniform magnetic field [238,239]

The trajectory of a particle with momentum p (in GeV/c) and
charge ze in a constant magnetic field

−→
B is a helix, with radius

of curvature R and pitch angle λ. The radius of curvature and
momentum component perpendicular to

−→
B are related by

p cosλ = 0.3 z B R , (34.50)

where B is in tesla and R is in meters.
The distribution of measurements of the curvature k ≡ 1/R is

approximately Gaussian. The curvature error for a large number of
uniformly spaced measurements on the trajectory of a charged particle
in a uniform magnetic field can be approximated by

(δk)2 = (δkres)
2 + (δkms)

2 , (34.51)

where δk = curvature error
δkres = curvature error due to finite measurement resolution
δkms = curvature error due to multiple scattering.

If many (≥ 10) uniformly spaced position measurements are made
along a trajectory in a uniform medium,

δkres =
ǫ

L′ 2

√
720

N + 4
, (34.52)

where N = number of points measured along track
L′ = the projected length of the track onto the bending plane
ǫ = measurement error for each point, perpendicular to the

trajectory.

If a vertex constraint is applied at the origin of the track, the
coefficient under the radical becomes 320.

For arbitrary spacing of coordinates si measured along the projected
trajectory and with variable measurement errors ǫi the curvature error
δkres is calculated from:

(δkres)
2 =

4

w

Vss
VssVs2s2 − (Vss2)

2 , (34.53)
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where V are covariances defined as Vsmsn = 〈smsn〉 − 〈sm〉〈sn〉 with
〈sm〉 = w−1 ∑(si

m/ǫi
2) and w =

∑
ǫi
−2.

The contribution due to multiple Coulomb scattering is approxi-
mately

δkms ≈
(0.016)(GeV/c)z

Lpβ cos2 λ

√
L

X0
, (34.54)

where p = momentum (GeV/c)
z = charge of incident particle in units of e
L = the total track length

X0 = radiation length of the scattering medium (in units of
length; the X0 defined elsewhere must be multiplied by
density)

β = the kinematic variable v/c.

More accurate approximations for multiple scattering may be found
in the section on Passage of Particles Through Matter (Sec. 33
of this Review). The contribution to the curvature error is given
approximately by δkms ≈ 8srms

plane/L
2, where srms

plane is defined there.
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35.1. Introduction

Non-accelerator experiments have become increasingly important
in particle physics. These include classical cosmic ray experiments,
neutrino oscillation measurements, and searches for double-beta decay,
dark matter candidates, and magnetic monopoles. The experimental
methods are sometimes those familiar at accelerators (plastic scintil-
lators, drift chambers, TRD’s, etc.) but there is also instrumentation
either not found at accelerators or applied in a radically different way.
Examples are atmospheric scintillation detectors (Fly’s Eye), massive
Cherenkov detectors (Super-Kamiokande, IceCube), ultracold solid
state detectors (CDMS). And, except for the cosmic ray detectors,
radiologically ultra-pure materials are required.

In this section, some more important detectors special to terrestrial
non-accelerator experiments are discussed. Techniques used in both
accelerator and non-accelerator experiments are described in Sec. 28,
Particle Detectors at Accelerators, some of which have been modified
to accommodate the non-accelerator nuances.

Space-based detectors also use some unique instrumentation, but
these are beyond the present scope of RPP.

35.2. High-energy cosmic-ray hadron and gamma-
ray detectors

35.2.1. Atmospheric fluorescence detectors :
Revised August 2017 by L.R. Wiencke (Colorado School of Mines).

Cosmic-ray fluorescence detectors (FDs) use the atmosphere as a
giant calorimeter to measure isotropic scintillation light that traces
the development profiles of extensive air showers. An extensive air
shower (EAS) is produced by the interactions of ultra high-energy
(E > 1017 eV) subatomic particles in the stratosphere and upper
troposphere. The amount of scintillation light generated by an EAS
is proportional to the energy deposited in the atmosphere and nearly
independent of the primary species. With energies extending beyond
1020 eV these are the highest energy subatomic particles known
to exist. In addition to particle arrival directions, energy spectra
and primary composition, the astroparticle science investigated with
FDs also includes multi-messenger studies, searches for high energy
photons, neutrinos, monopoles and deeply penetrating forms of dark
matter.

Previous experiments with FDs included the pioneering Fly’s
Eye [1,2], and the High Resolution Fly’s Eye (HiRes and HiRes
prototype) [3]. The current generation of experiments include the
Telescope Array (TA) [4] in the northern hemisphere, and the
much larger Pierre Auger Observatory (Auger) [5] in the southern
hemisphere. Both are hybrid observatories. Their FD telescopes
overlook sparse arrays of particle detectors on the ground. Select
parameters are listed in Table 35.1. TA and Auger have each one
FD site populated with additional telescopes that view up to 60◦ in
elevation to measure lower EASs using a combination of scintillation
and direct Cherenkov light. The Auger FD also measures UV
scintillation that traces the development of atmospheric transient
luminous events called ”Elves” that are initiated by lightning [6]. At
TA a prototype FD telescope, dubbed FAST [7], has observed EASs
using wide field of view PMTs and fast timing.

The fluorescence light is emitted primarily between 290 and
430 nm (Fig. 35.1) with major lines at 337, 357, and 391 nm, when
relativistic charged particles, primarily electrons and positrons, excite
nitrogen molecules in air, resulting in transitions of the 1P and
2P systems. Reviews and references for the pioneering and recent
laboratory measurements of fluorescence yield, Y (λ, P, T, u), including
dependence on wavelength (λ), temperature (T ), pressure (p), and
humidity (u) may be found in Refs. 8–10. The results of various
laboratory experiments have been combined (Fig. 35.2) to obtain an
absolute average and uncertainty for Y(337 nm, 800 hPa, 293 K, dry
air) of 7.04 ± 0.24 ph/MeV after corrections for different electron
beam energies and other factors. The units of ph/MeV correspond
to the number of fluorescence photons produced per MeV of energy
deposited in the atmosphere by the electromagnetic component of an
EAS.
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Figure 35.1: Measured fluorescence spectrum excited by 3 MeV
electrons in dry air at 800 hPa and 293 K [12].
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Table 35.1: Parameters of major fluorescence detectors. Note 1: Year when all FD sites
were operational. Note 2: At TA 1 of the 3 FD sites features 24 telescopes from the HiRes
experiment. Note 3: A-C for one telescope where A is the full area and C the area obscured
by the camera and support structures. Thus A-C is the effective light collecting area. For
the modified Schmidt design at Auger, the area of the entrance pupil, A, is listed because
the pupil is smaller than the mirror and thus defines the entrance aperture. For the other
experiments, the area of the mirror, A, is listed.

Observatory Fly’s Eye HiRes Telescope Array Pierre Auger

Location Dugway UT US Dugway UT US Delta UT US Malargüe AR

Start-End 1981-1992 1996-2006 2008-present 2005-present

Sites (note 1) 2 (1986) 2 (1999) 3 (2008) 4 (2008)

Separation 3.3 km 12.6 km 31-40 km 39-62 km

Telescopes/site 67,18 21,42 12,12,14+10 6, 6, 6, 6+3

Pixel FOV 5.5◦ 1◦ 1◦ 1.5◦

Telescope FOV ≈18◦×≈18◦ 16◦×13.5◦ 18◦×15◦ (note 2) 30◦×28.1◦

Azi×Elv

Light collection 1.95m2 - 0.25m2 3.72m2 - 0.5m2 6.8m2 - 0.85m2 3.80m2 - 0.80m2

area (note 3) (for 2 sites) (modified schmidt)

Energy Scale ≤40% ≈20% ≈20% 14%

Uncertainty

3 4 5 6 7 8 9 10

Y 337 (ph/MeV)

Kakimoto

Nagano

Lefeuvre

MACFLY

FLASH

AirLight

Dandl

Airfly

Theoretical

<Y 337> = 7.04 ± 0.24 ph/MeV

Figure 35.2: Fluorescence yield values and associated uncer-
tainties at 337 nm (Y337) in dry air at 800 hPa and 293 K
The methodology and corrections that were applied to obtain
the average and the uncertainty are discussed extensively in
this reference. The vertical axis denotes different laboratory
experiments that measured FY. The gray bars show three of the
original measurements to illustrate the scale of the corrections
applied. Figure from Ref [13].

An FD element (telescope) consists of a non-tracking spherical
mirror of less than astronomical quality, a close-packed “camera” of
photomultiplier tubes (PMTs) near the focal plane, and a flash ADC
readout system with a pulse and track-finding trigger scheme [11].
The major experiments listed in Table 35.1 all use conventional
PMTs (for example, Hamamatsu R9508 or Photonis XP3062) with
grounded cathodes and AC coupled readout. Segmented mirrors have
been fabricated from slumped or slumped/polished glass with an
anodized aluminum coating or fabricated using shaped aluminum
that was then chemically anodized with AlMgSiO5. A broadband UV
filter (custom fabricated or Schott MUG-6) reduces background light
such as starlight, airglow, man-made light pollution, and airplane
strobe-lights.

At 1020 eV, where the flux drops below 1 EAS/km2century, the
aperture for an eye of adjacent FD telescopes that span the horizon
can reach 104 km2 sr. FD operation requires (nearly) moonless nights
and clear atmospheric conditions, which imposes a duty cycle of about
10%. Arrangements of LEDs, calibrated diffuse sources [14], pulsed

UV lasers [15], LIDARs* and IR detectors that are sensitive to clouds
are used for photometric calibration, atmospheric calibration [16], and
determination of exposure [17]. For purposes of optical transmission,
the atmosphere is treated as a dominant molecular component and
a secondary aerosol component. The latter is well described [18]
by molecular scattering theory and models derived from radiosonde
measurements. The aerosol component can include dust, haze and
pollution and the aerosol optical depth profile must be measured on
site in the UV during FD data taking.

The EAS generates a track consistent with a light source moving at
v = c across the FOV. The number of photons (Nγ) as a function of
atmospheric depth (X) can be expressed as [9]

dNγ

dX
=

dEtot
dep

dX

∫
Y (λ, P, T, u) · τatm(λ,X) · εFD(λ)dλ, (35.1)

where τatm(λ,X) is the atmospheric transmission, including wave-
length (λ) dependence, and εFD(λ) is the FD efficiency. εFD(λ)
includes geometric factors and collection efficiency of the optics,
quantum efficiency of the PMTs, and other throughput factors. The
typical systematic uncertainties, τatm (10%) and εFD (photometric
calibration 10%), currently dominate the systematic uncertainty
the absolute EAS energy scale. FD energy resolution, defined as
event-to-event statistical uncertainty, is typically less than 10% for
final data samples used for science analysis.

Analysis methods to reconstruct the EAS profile and deconvolve
the contributions of re-scattered scintillation light, and direct and
scattered Cherenkov light are described in [1] and more recently
in [19]. The EAS energy is typically obtained by integrating over the
Gaisser-Hillas function [20]

Ecal =

∫ ∞

0
[wmax

(
X −X0

Xmax −X0

)(Xmax−X0)/λ

e(Xmax−X)/λ]dX,

(35.2)
where Ecal is the energy of electromagnetic energy component of the
EAS and Xmax is the atmospheric slant depth at which the shower
reaches its maximum energy deposit rate. This maximum dE/dX is
denoted as wmax. X0 and λ are two shape parameters. The energy of
the primary cosmic ray is obtained by correcting Ecal upward by about

* ”LIDAR stands for ”Light Detection and Ranging” and refers here
to systems that measure atmospheric properties from the light scattered
backwards from laser pulses directed into the sky.
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10% to account for the invisible energy carried by particles that do not
interact in the atmosphere. Energy resolution, ∆E/E, of 15-20% is
achievable, provided the geometric fit of the EAS axis is constrained,
typically by multi-eye stereo projection or hybrid observations, and
the profile fit of EAS development along the track is constrained by
the observed rise and fall about Xmax. An example of a recorded
EAS light profile and its corresponding dE/dX development profile
are shown in Fig. 35.3.

χ

Figure 35.3: Example light profile (top) of one EAS recorded
by the Pierre Auger FD and the corresponding profile (bottom) of
energy deposited in the atmosphere vs atmospheric slant depth.
The light profiles include the estimated components of Cherenkov
light that have been scattered out of the forward beam by the
molecular and aerosol (Mie) components of the atmosphere. The
reconstructed energy of this EAS was 3.0± 0.2× 1019 eV. Figure
from Ref [21].

R&D toward an FD in space is at the design and prototype
phase. A proposed space based FD instrument [22] by the JEM-EUSO
collaboration would look down on the earth’s atmosphere from space to
view a much larger area than ground based instruments. Prototypes
that have been built and flown include the TUS instrument [23]
launched in 2016 onboard the Lomonosov satellite and two FD
telescopes flown on stratospheric balloons in 2014 [24] and 2017 [25].
The proposed POEMMA space mission [26] would record scintillation
and Cherenkov light from EASs the atmosphere to measure UHECRs
and PeV scale cosmogenic tau neutrinos.

35.2.2. Atmospheric Cherenkov telescopes for high-energy
γ-ray astronomy :
Revised July 2017 by J. Holder (Dept. of Physics and Astronomy &
Bartol Research Inst., Univ. of Delaware).

A wide variety of astrophysical objects are now known to produce
high-energy γ-ray photons. Leptonic or hadronic particles, accelerated
to relativistic energies in the source, produce γ-rays typically through

inverse Compton boosting of ambient photons or through the decay
of neutral pions produced in hadronic interactions. At energies below
∼30 GeV, γ-ray emission can be efficiently detected using satellite or
balloon-borne instrumentation, with an effective area approximately
equal to the size of the detector (typically < 1 m2). At higher energies,
a technique with much larger effective collection area is desirable
to measure astrophysical γ-ray fluxes, which decrease rapidly with
increasing energy. Atmospheric Cherenkov detectors achieve effective
collection areas of >105 m2 by employing the Earth’s atmosphere as
an intrinsic part of the detection technique.

As described in Chapter 29, a hadronic cosmic ray or high energy
γ-ray incident on the Earth’s atmosphere triggers a particle cascade,
or air shower. Relativistic charged particles in the cascade generate
Cherenkov radiation, which is emitted along the shower direction,
resulting in a light pool on the ground with a radius of ∼130 m.
Cherenkov light is produced throughout the cascade development,
with the maximum emission occurring when the number of particles
in the cascade is largest, at an altitude of ∼10 km for primary
energies of 100GeV–1TeV. Following absorption and scattering in
the atmosphere, the Cherenkov light at ground level peaks at a
wavelength, λ ≈ 300–350 nm. The photon density is typically ∼100
photons/m2 for a 1 TeV primary, arriving in a brief flash of a few
nanoseconds duration. This Cherenkov pulse can be detected from
any point within the light pool radius by using large reflecting surfaces
to focus the Cherenkov light on to fast photon detectors (Fig. 35.4).

10 km

130 m

Camera plane

Figure 35.4: A schematic illustration of an imaging atmospheric
Cherenkov telescope array. The primary particle initiates an air
shower, resulting in a cone of Cherenkov radiation. Telescopes
within the Cherenkov light pool record elliptical images; the
intersection of the long axes of these images indicates the arrival
direction of the primary, and hence the location of a γ-ray source
in the sky.

Modern atmospheric Cherenkov telescopes, such as those built
and operated by the VERITAS [27], H.E.S.S. [28] and MAGIC [29]
collaborations, consist of large (> 100m2) segmented mirrors on
steerable altitude-azimuth mounts. A camera made from an array of
photosensors is placed at the focus of each mirror and used to record
a Cherenkov image of each air shower. In these imaging atmospheric
Cherenkov telescopes, single-anode photomultipliers tubes (PMTs)
have traditionally been used (2048, in the case of H.E.S.S. II), but
multi-anode PMTs and silicon devices now feature in more modern
designs. The telescope cameras typically cover a field-of-view of 3−10◦
in diameter. Images are recorded at kHz rates, the vast majority
of which are due to showers with hadronic cosmic-ray primaries.
The shape and orientation of the Cherenkov images are used to
discriminate γ-ray photon events from this cosmic-ray background,
and to reconstruct the photon energy and arrival direction. γ-ray
images result from purely electromagnetic cascades and appear as
narrow, elongated ellipses in the camera plane. The long axis of the
ellipse corresponds to the vertical extension of the air shower, and
points back towards the source position in the field-of-view. If multiple
telescopes are used to view the same shower (“stereoscopy”), the
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source position is simply the intersection point of the various image
axes. Cosmic-ray primaries produce secondaries with large transverse
momenta, which initiate sub-showers. Their images are consequently
wider and less regular than those with γ-ray primaries and, since the
original charged particle has been deflected by Galactic magnetic fields
before reaching the Earth, the images have no preferred orientation.

The measurable differences in Cherenkov image orientation and
morphology provide the background discrimination which makes
ground-based γ-ray astronomy possible. For point-like sources, such
as distant active galactic nuclei, modern instruments can reject over
99.999% of the triggered cosmic-ray events, while retaining up to 50%
of the γ-ray population. In the case of spatially extended sources,
such as Galactic supernova remnants, the background rejection is less
efficient, but the technique can be used to produce γ-ray maps of
the emission from the source. The angular resolution depends upon
the number of telescopes which view the image and the energy of
the primary γ-ray, but is typically less than 0.1◦ per event (68%
containment radius) at energies above a few hundred GeV.

The total Cherenkov yield from the air shower is proportional to
the energy of the primary particle. The image intensity, combined
with the reconstructed distance of the shower core from each telescope,
can therefore be used to estimate the primary energy. The energy
resolution of this technique, also energy-dependent, is typically 15–20%
at energies above a few hundred GeV. Energy spectra of γ-ray sources
can be measured over a wide range, depending upon the instrument
characteristics, source properties (flux, spectral slope, elevation angle,
etc.), and exposure time. The effective energy range is typically from
30 GeV to 100 TeV and peak sensitivity lies in the range from 100 GeV
to a few TeV.

The first astrophysical source to be convincingly detected using the
imaging atmospheric Cherenkov technique was the Crab Nebula [30],
with an integral flux of 2.1×10−11 photons cm−2 s−1 above 1 TeV [31].
Modern imaging atmospheric Cherenkov telescopes have sensitivity
sufficient to detect sources with less than 1% of the Crab Nebula
flux in a few tens of hours. The TeV source catalog now consists
of approximately 200 sources (see e.g. Ref. 32). A large fraction of
these were detected by scanning the Galactic plane from the southern
hemisphere with the H.E.S.S. telescope array [33]. Recent reviews of
the field include [34] and [35], and a historical overview can be found
in [36].

Major upgrades of the existing telescope arrays have recently been
completed, including the addition of a 28 m diameter central telescope
to H.E.S.S. (H.E.S.S. II). Development is also underway for the next
generation instrument, the Cherenkov Telescope Array (CTA), which
will consist of a northern and a southern hemisphere observatory, with
a combined total of more than 100 telescopes [37]. Telescopes of three
different sizes are planned, spread over an area of > 1 km2, providing
wider energy coverage, improved angular and energy resolutions, and
an order of magnitude improvement in sensitivity relative to existing
imaging atmospheric Cherenkov telescopes. Baseline telescope designs
are similar to existing devices, but exploit technological developments
such as dual mirror optics and silicon photo-detectors.

35.3. Large neutrino detectors

35.3.1. Deep liquid detectors for rare processes :
Revised August 2017 by K. Scholberg & C.W. Walter (Duke
University)

Deep, large detectors for rare processes tend to be multi-purpose
with physics reach that includes not only solar, reactor, supernova
and atmospheric neutrinos, but also searches for baryon number
violation, searches for exotic particles such as magnetic monopoles,
and neutrino and cosmic-ray astrophysics in different energy regimes.
The detectors may also serve as targets for long-baseline neutrino
beams for neutrino oscillation physics studies. In general, detector
design considerations can be divided into high-and low-energy regimes,
for which background and event reconstruction issues differ. The
high-energy regime, from about 100 MeV to a few hundred GeV,
is relevant for proton decay searches, atmospheric neutrinos and
high-energy astrophysical neutrinos. The low-energy regime (a few
tens of MeV or less) is relevant for supernova, solar, reactor and
geological neutrinos.

Large water Cherenkov and scintillator detectors (see Table 34.9)
usually consist of a volume of transparent liquid viewed by
photomultiplier tubes (PMTs) (see Sec. 34.2); the liquid serves as
active target. PMT hit charges and times are recorded and digitized,
and triggering is usually based on coincidence of PMT hits within
a time window comparable to the detector’s light-crossing time.
Because photosensors lining an inner surface represent a driving
cost that scales as surface area, very large volumes can be used for
comparatively reasonable cost. Some detectors are segmented into
subvolumes individually viewed by PMTs, and may include other
detector elements (e.g., tracking detectors). Devices to increase light
collection, e.g., reflectors or waveshifter plates, may be employed. A
common configuration is to have at least one concentric outer layer
of liquid material separated from the inner part of the detector to
serve as shielding against ambient background. If optically separated
and instrumented with PMTs, an outer layer may also serve as an
active veto against entering cosmic rays and other background events.
The PMTs for large detectors typically range in size from 20 cm to
51 cm diameter, and typical quantum efficiencies are in the 20–25%
range for scintillation and water-Cherenkov photons. PMTs with
higher quantum efficiencies, 35% or higher, have recently become
available. The active liquid volume requires purification and there
may be continuous recirculation of liquid. For large homogeneous
detectors, the event interaction vertex is determined using relative
timing of PMT hits, and energy deposition is determined from the
number of recorded photoelectrons. A “fiducial volume” is usually
defined within the full detector volume, some distance away from the
PMT array. Inside the fiducial volume, enough PMTs are illuminated
per event that reconstruction is considered reliable, and furthermore,
entering background from the enclosing walls is suppressed by a
buffer of self-shielding. PMT and detector optical parameters are
calibrated using laser, LED, or other light sources. Quality of event
reconstruction typically depends on photoelectron yield, pixelization
and timing.

Because in most cases one is searching for rare events, large
detectors are usually sited underground to reduce cosmic-ray-related
background (see Chapter 29). The minimum depth required varies
according to the physics goals [38].

35.3.1.1. Liquid scintillator detectors:
Past and current large underground detectors based on hydrocarbon

scintillators include LVD, MACRO, Baksan, Borexino, KamLAND
and SNO+; JUNO is a future detector. Experiments at nuclear
reactors include CHOOZ, Double CHOOZ, Daya Bay, and RENO.
Organic liquid scintillators (see Sec. 34.3.0) for large detectors are
chosen for high light yield and attenuation length, good stability,
compatibility with other detector materials, high flash point, low
toxicity, appropriate density for mechanical stability, and low cost.
They may be doped with waveshifters and stabilizing agents. Popular
choices are pseudocumene (1,2,4-trimethylbenzene) with a few g/L
of the PPO (2,5-diphenyloxazole) fluor, and linear alkylbenzene
(LAB). In a typical detector configuration there will be active or
passive regions of undoped scintillator, non-scintillating mineral oil
or water surrounding the inner neutrino target volume. A thin vessel
or balloon made of nylon, acrylic or other material transparent to
scintillation light may contain the inner target; if the scintillator is
buoyant with respect to its buffer, ropes may hold the balloon in
place. For phototube surface coverages in the 20–40% range, yields
in the few hundreds of photoelectrons per MeV of energy deposition
can be obtained. Typical energy resolution is about 7%/

√
E(MeV),

and typical position reconstruction resolution is a few tens of cm at ∼
1 MeV, scaling as ∼ N−1/2, where N is the number of photoelectrons
detected.

Shallow detectors for reactor neutrino oscillation experiments
require excellent muon veto capabilities. For ν̄e detection via inverse
beta decay on free protons, ν̄e + p → n+ e+, the neutron is captured
by a proton on a ∼180 µs timescale, resulting in a 2.2 MeV γ ray,
observable by Compton scattering and which can be used as a tag in
coincidence with the positron signal. The positron annihilation γ rays
may also contribute. Inverse beta decay tagging may be improved by
addition of Gd at ∼0.1% by mass, which for natural isotope abundance
has a ∼49,000 barn cross-section for neutron capture (in contrast to
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Table 34.9: Properties of large detectors for rare processes.
If total target mass is divided into large submodules, the
number of subdetectors is indicated in parentheses. Projects
with first data expected in 2020 or later are indicated in italics.

Detector Mass, kton PMTs ξ p.e./MeV Dates

(modules) (diameter, cm)

Baksan 0.33, scint (3150) 1/module (15) segmented 40 1980–

MACRO 0.56, scint (476) 2-4/module (20) segmented 18 1989–2000

LVD 1, scint. (840) 3/module (15) segmented 15 1992–

KamLAND 0.41f , scint 1325(43)+554(51)* 34% 460 2002–

Borexino 0.1f , scint 2212 (20) 30% 500 2007–

SNO+ 0.78, scint 9438 (20) 54% 400–900 2017 (exp.)

CHOOZ 0.005, scint (Gd) 192 (20) 15% 130 1997–1998

Double Chooz 0.017, scint (Gd)(2) 534/module (20) 13% 180 2011–

Daya Bay 0.160, scint (Gd)(8) 192/module (20) 5.6%† 100 2011–

RENO 0.032, scint (Gd)(2) 342/module (25) 12.6% 100 2011–

JUNO 20.0f , scint 17000 (51)/25000 (8) 75% 1200 2020 (exp.)

IMB-1 3.3f , H2O 2048 (12.5) 1% 0.25 1982–1985

IMB-2 3.3f , H2O 2048 (20) 4.5% 1.1 1987–1990

Kam I 0.88/0.78f , H2O 1000/948 (51) 20% 3.4 1983–1985

Kam II 1.04f , H2O 948 (51) 20% 3.4 1986–1990

Kam III 1.04f , H2O 948 (51) 20%‡ 4.3 1990–1995

SK I 22.5f , H2O 11146 (51) 40% 6 1996–2001

SK II 22.5f , H2O 5182 (51) 19% 3 2002–2005

SK III-IV 22.5f , H2O 11129 (51) 40% 6 2006–

SK-Gd 22.5f , H2O (Gd) 11129 (51) 40% 6 2019 (exp.)

Hyper-K 187f , H2O** 40000 (51) 40% 12 2026 (exp.)

SNO 1, D2O/1.7, H2O 9438 (20) 31% § 9 1999–2006

f indicates typical fiducial mass used for data analysis; this may vary by physics topic.

* Measurements made before 2003 only considered data from the 43 cm PMTs.

† The effective Daya Bay coverage is 12% with top and bottom reflectors.

‡ The effective Kamiokande III coverage was 25% with light collectors.

** A second staged module is planned.

§ The effective SNO coverage was 54% with light collectors.

the 0.3 barn cross-section for capture on free protons). Gd capture
takes ∼30 µs, and is followed by a cascade of γ rays adding up to
about 8 MeV. Gadolinium doping of scintillator requires specialized
formulation to ensure adequate attenuation length and stability.

Scintillation detectors have an advantage over water Cherenkov
detectors in the lack of Cherenkov threshold and the high light
yield. However, scintillation light emission is nearly isotropic,
and therefore directional capabilities are relatively weak. Liquid
scintillator is especially suitable for detection of low-energy events.
Radioactive backgrounds are a serious issue, and include long-lived
cosmogenics. To go below a few MeV, very careful selection of
materials and purification of the scintillator is required (see Sec. 35.6).
Fiducialization and tagging can reduce background. One can also
dissolve neutrinoless double beta decay (0νββ) isotopes in scintillator.
This has been realized by KamLAND-Zen, which deployed a 1.5 m-
radius balloon containing enriched Xe dissolved in scintillator inside
KamLAND, and 130Te is planned for SNO+. Although for this
approach, energy resolution is poor compared to other 0νββ search
experiments, the quantity of isotope can be so large that the kinematic
signature of 0νββ would be visible as a clear feature in the spectrum.

35.3.1.2. Water Cherenkov detectors:
Very large imaging water detectors reconstruct ten-meter-scale

Cherenkov rings produced by charged particles (see Sec. 34.5.0).
The first such large detectors were IMB and Kamiokande. The only
currently existing instance of this class of detector, with fiducial
mass of 22.5 kton and total mass of 50 kton, is Super-Kamiokande
(Super-K, SK). Hyper-Kamiokande (Hyper-K) plans at least one, and
possibly two, detectors with 187-kton fiducial mass. For volumes of

this scale, absorption and scattering of Cherenkov light are non-
negligible, and a wavelength-dependent factor exp(−d/L(λ)) (where d
is the distance from emission to the sensor and L(λ) is the attenuation
length of the medium) must be included in the integral of Eq. (34.5)
for the photoelectron yield. Attenuation lengths on the order of
100 meters have been achieved.

Cherenkov detectors are excellent electromagnetic calorimeters,
and the number of Cherenkov photons produced by an e/γ is nearly
proportional to its kinetic energy. For massive particles, the number
of photons produced is also related to the energy, but not linearly.
For any type of particle, the visible energy Evis is defined as the
energy of an electron which would produce the same number of
Cherenkov photons. The number of collected photoelectrons depends
on the scattering and attenuation in the water along with the photo-
cathode coverage, quantum efficiency and the optical parameters
of any external light collection systems or protective material
surrounding them. Event-by-event corrections are made for geometry
and attenuation. For a typical case, in water Np.e. ∼ 15 ξ Evis(MeV),
where ξ is the effective fractional photosensor coverage. Cherenkov
photoelectron yield per MeV of energy is relatively small compared
to that for scintillator, e.g., ∼ 6 pe/MeV for Super-K with a PMT
surface coverage of ∼ 40%. In spite of light yield and Cherenkov
threshold issues, the intrinsic directionality of Cherenkov light allows
individual particle tracks to be reconstructed. Vertex and direction
fits are performed using PMT hit charges and times, requiring that
the hit pattern be consistent with a Cherenkov ring.

High-energy (∼100 MeV or more) neutrinos from the atmosphere
or beams interact with nucleons; for the nucleons bound inside the
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16O nucleus, nuclear effects must be considered both at the interaction
and as the particles leave the nucleus. Various event topologies can
be distinguished by their timing and fit patterns, and by presence
or absence of light in a veto. “Fully-contained” events are those for
which the neutrino interaction final state particles do not leave the
inner part of the detector; these have their energies relatively well
measured. Neutrino interactions for which the lepton is not contained
in the inner detector sample have higher-energy parent neutrino
energy distributions. For example, in “partially-contained” events, the
neutrino interacts inside the inner part of the detector but the lepton
(almost always a muon, since only muons are penetrating) exits.
“Upward-going muons” can arise from neutrinos which interact in the
rock below the detector and create muons which enter the detector
and either stop, or go all the way through (entering downward-going
muons cannot be distinguished from cosmic rays). At high energies,
multi-photoelectron hits are likely and the charge collected by each
PMT (rather than the number of PMTs firing) must be used; this
degrades the energy resolution to approximately 2%/

√
ξ Evis(GeV).

The absolute energy scale in this regime can be known to ∼2–3%
using cosmic-ray muon energy deposition, Michel electrons and π0

from atmospheric neutrino interactions. Typical vertex resolutions
for GeV energies are a few tens of cm [39]. Angular resolution for
determination of the direction of a charged particle track is a few
degrees. For a neutrino interaction, because some final-state particles
are usually below Cherenkov threshold, knowledge of direction of the
incoming neutrino direction itself is generally worse than that of the
lepton direction, and dependent on neutrino energy.

Multiple particles in an interaction (so long as they are above
Cherenkov threshold) may be reconstructed, allowing for the exclusive
reconstruction of final states. In searches for proton decay, multiple
particles can be kinematically reconstructed to form a decaying
nucleon. High-quality particle identification is also possible: γ rays
and electrons shower, and electrons scatter, which results in fuzzy
rings, whereas muons, pions and protons make sharp rings. These
patterns can be quantitatively separated with high reliability
using maximum likelihood methods [40]. A e/µ misidentification
probability of ∼ 0.4%/ξ in the sub-GeV range is consistent with the
performance of several experiments for 4% < ξ < 40%. Sources of
background for high energy interactions include misidentified cosmic
muons and anomalous light patterns when the PMTs sometimes
“flash” and emit photons themselves. The latter class of events can
be removed using its distinctive PMT signal patterns, which may be
repeated. More information about high energy event selection and
reconstruction may be found in reference [41].

In spite of the fairly low light yield, large water Cherenkov
detectors may be employed for reconstructing low-energy events,
down to e.g. ∼ 4-5 MeV for Super-K [42]. Low-energy neutrino
interactions of solar neutrinos in water are predominantly elastic
scattering off atomic electrons; single electron events are then
reconstructed. At solar neutrino energies, the visible energy resolution
(∼ 30%/

√
ξ Evis(MeV)) is about 20% worse than photoelectron

counting statistics would imply. Using an electron LINAC and/or
nuclear sources, approximately 0.5% determination of the absolute
energy scale has been achieved at solar neutrino energies. Angular
resolution is limited by multiple scattering in this energy regime
(25–30◦). At these energies, radioactive backgrounds become a
dominant issue. These backgrounds include radon in the water itself
or emanated from detector materials, and γ rays from the rock and
detector materials. In the few to few tens of MeV range, radioactive
products of cosmic-ray-muon-induced spallation are troublesome, and
are removed by proximity in time and space to preceding muons, at
some cost in dead time. Gadolinium doping using 0.2% Gd2(SO4)3 is
planned for Super-K to improve selection of low-energy ν̄e and other
events with accompanying neutrons [43].

The Sudbury Neutrino Observatory (SNO) detector [44] is the
only instance of a large heavy water detector and deserves mention
here. In addition to an outer 1.7 kton of light water, SNO contained
1 kton of D2O, giving it unique sensitivity to neutrino neutral current
(νx + d → νx + p + n), and charged current (νe + d → p + p + e−)
deuteron breakup reactions. The neutrons were detected in three
ways: In the first phase, via the reaction n + d → t + γ + 6.25 MeV;

Cherenkov radiation from electrons Compton-scattered by the γ rays
was observed. In the second phase, NaCl was dissolved in the water.
35Cl captures neutrons, n+ 35Cl → 36Cl + γ + 8.6 MeV. The γ rays
were observed via Compton scattering. In a final phase, specialized
low-background 3He counters (“neutral current detectors” or NCDs)
were deployed in the detector. These counters detected neutrons via
n+ 3He → p+ t+ 0.76 MeV; ionization charge from energy loss of the
products was recorded in proportional counters.

35.3.2. Neutrino telescopes :
Revised Aug. 2017 by Ch. Spiering (DESY/Zeuthen) and U.F. Katz
(Univ. Erlangen)

The primary goal of neutrino telescopes (NTs) is the detection of
astrophysical neutrinos, in particularly those which are expected to
accompany the production of high-energy cosmic rays in astrophysical
accelerators. NTs in addition address a variety of other fundamental
physics issues like indirect search for dark matter, study of neutrino
oscillations, search for exotic particles like magnetic monopoles or
study of cosmic rays and their interactions [45,46,47].

NTs are large-volume arrays of “optical modules” (OMs) installed
in open transparent media like water or ice, at depths that completely
block the daylight. The OMs record the Cherenkov light induced
by charged secondary particles produced in reactions of high-energy
neutrinos in or around the instrumented volume. The neutrino
energy, Eν , and direction can be reconstructed from the hit pattern
recorded. NTs typically target an energy range Eν & 100GeV;
sensitivity to lower energies is achieved in dedicated setups with denser
instrumentation.

In detecting cosmic neutrinos, three sources of backgrounds have to
be considered: (i) atmospheric neutrinos from cosmic-ray interactions
in the atmosphere, which can be separated from cosmic neutrinos
on a statistical basis, or, for down-going neutrinos, by vetoing
accompanying muons; (ii) down-going punch-through atmospheric
muons from cosmic-ray interactions, which are suppressed by several
orders of magnitude with respect to the ground level due to the
large detector depths. They can be further reduced by selecting
upward-going or high-energy neutrinos or by self-veto methods; (iii)
random backgrounds due to photomultiplier (PMT) dark counts, 40K
decays (mainly in sea water) or bioluminescence (only water), which
impact adversely on event recognition and reconstruction. Note that
atmospheric neutrinos and muons allow for investigating neutrino
oscillations and cosmic ray anisotropies, respectively. Recently, it has
become obvious that a precise measurement of the energy-zenith-
distribution of atmospheric neutrinos may allow for determining
the neutrino mass hierarchy by exploiting matter-induced oscillation
effects in the Earth [48,49].

Neutrinos can interact with target nucleons N through charged
current (֒ ֓νℓN → ℓ∓X , CC) or neutral current (֒ ֓νℓN → ֒ ֓νℓX ,
NC) processes. A CC reaction of a ֒ ֓νµ produces a muon track
and a hadronic particle cascade, whereas all NC reactions and CC
reactions of ֒ ֓νe produce particle cascades only. CC interactions of
֒ ֓ντ can have either signature, depending on the τ decay mode. In
most astrophysical models, neutrinos are expected to be produced
through the π/K → µ → e decay chain, i.e., with a flavour ratio
νe : νµ : ντ ≈ 1 : 2 : 0. For sources outside the solar system, neutrino
oscillations turn this ratio to νe : νµ : ντ ≈ 1 : 1 : 1 upon arrival on
Earth.

The total neutrino-nucleon cross section is about 10−35 cm2 at
Eν = 1TeV and rises roughly linearly with Eν below this energy and
as E0.3–0.5

ν above, flattening out towards high energies. The CC:NC
cross-section ratio is about 2:1. At energies above some TeV, neutrino
absorption in the Earth becomes noticeable; for vertically upward-
moving neutrinos (zenith angle θ = 180◦), the survival probability is
74 (27, < 2)% for 10 (100, 1000)TeV. On average, between 50% (65%)
and 75% of Eν is transfered to the final-state lepton in neutrino
(antineutrino) reactions between 100GeV and 10PeV.

The final-state lepton follows the initial neutrino direction with a
RMS mismatch angle 〈φνℓ〉 ≈ 1.5◦/

√
Eν [TeV], indicating the intrinsic

kinematic limit to the angular resolution of NTs. For CC ֒ ֓νµ reactions
at energies above about 10TeV, the angular resolution is dominated
by the muon reconstruction accuracy of a few times 0.1◦ at most.
For muon energies Eµ & 1TeV, the increasing light emission due to
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radiative processes allows for reconstructing Eµ from the measured
dEµ/dx with an accuracy of σ(logEµ) ≈ 0.3; at lower energies, Eµ can
be estimated from the length of the muon track if it is contained in the
detector. These properties make CC ֒ ֓νµ reactions the prime channel
for the identification of individual astrophysical neutrino sources.

Hadronic and electromagnetic particle cascades at the relevant
energies are 5–20m long, i.e., short compared to typical OM distances.
The total amount of Cherenkov light provides a direct measurement
of the cascade energy with an accuracy of about 20% at energies
above 10TeV and 10% beyond 100TeV for events contained in the
instrumented volume. Neutrino flavour and reaction mechanism can,
however, hardly be determined and neutrinos from NC reactions
or τ decays may carry away significant “invisible” energy. Above
100TeV, the average directional reconstruction accuracy of cascades
is 10–15degrees in polar ice and better than 2 degrees in water, the
difference being due to the inhomogeneity of the ice and stronger light
scattering in ice. These features, together with the small background
of atmospheric ֒ ֓νe and ֒ ֓ντ events, makes the cascade channel
particularly interesting for searches for a diffuse, high-energy excess of
extraterrestrial over atmospheric neutrinos. In water, cascade events
can also be used for the search for point sources of cosmic neutrinos,
albeit the inferior angular accuracy compared to muon tracks leads to
a higher background from atmospheric neutrinos.

The detection efficiency of a NT is quantified by its effective area,
e.g., the fictitious area for which the full incoming neutrino flux
would be recorded (see Fig. 35.5). The increase with Eν is due to
the rise of neutrino cross section and muon range, while neutrino
absorption in the Earth causes the decrease at large θ. Identification
of downward-going neutrinos requires strong cuts against atmospheric
muons, hence the cut-off towards low Eν . Due to the small cross
section, the effective area is many orders of magnitude smaller than
the geometrical dimension of the detector; a ֒ ֓νµ with 1TeV can, e.g.,
be detected with a probability of the order 10−6 if the telescope is on
its path.

Table 35.2: Past, present and future neutrino telescope projects
and their main parameters. The milestone years give the times
of project start, of first data taking with partial configurations,
of detector completion, and of project termination. Projects
with first data expected past 2020 are indicated in italics. The
size refers to the largest instrumented volume reached during
the project development. See [47] for references to the different
projects where unspecified.

Experiment Milestones Medium/ Size Remarks

Location (km3)

DUMAND 1978/–/–/1995 Pacific/Hawaii Terminated due to

technical/funding problems

NT-200 1980/1993/1998/2015 Lake Baikal 10−4 First proof of principle

GVD [50] 2012/2015/–/– Lake Baikal 0.5–1.5 High-energy ν astronomy,

first 2 clusters installed

NESTOR 1991/–/–/– Med. Sea 2004 data taking with prototype

NEMO 1998/–/–/– Med. Sea R&D project, prototype tests

AMANDA 1990/1996/2000/2009 Ice/South Pole 0.015 First deep-ice neutrino telescope

ANTARES 1997/2006/2008/– Med. Sea 0.010 First deep-sea neutrino telescope

IceCube 2001/2005/2010/– Ice/South Pole 1.0 First km3-sized detector

IceCube-Gen2 [51] 2014/–/–/– Ice/South Pole 5–10 Planned extension of IceCube

covering low and high energies,

a surface array and radio detection

KM3NeT/ARCA [49] 2013/(2015)/–/– Med. Sea 1–2 First construction phase started

KM3NeT/ORCA [49] 2014/(2017)/–/– Med. Sea 0.003 Low-energy configuration for

neutrino mass hierarchy

KM3NeT Phase 3 2013/–/–/– Med. Sea 3–6 6 building blocks + ORCA
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Figure 35.5: Effective ֒ ֓νµ area for IceCube as an example of a
cubic-kilometre NT, as a function of neutrino energy for three
intervals of the zenith angle θ. The values shown here correspond
to a specific event selection for point source searches.

Detection of upward-going muons allows for identifying neutrino
interactions far outside the instrumented volume. This method,
however, is only sensitive to CC ֒ ֓νµ interactions and cannot be
extended to more than 5–10degrees above the geometric horizon,
where the background of atmospheric muons becomes prohibitive.
Alternatively, one can select events that start inside the instrumented
volume and thus remove incoming muons that generate early hits in
the outer layers of the detector. Such a veto-based event selection is
sensitive to neutrinos of all flavours from all directions, albeit with a
reduced efficiency since a part of the instrumented volume is sacrificed
for the veto. Such a muon veto, or vetoing events with a coincident
signal in the surface array, also rejects down-going atmospheric
neutrinos that are accompanied by muons from the same air shower
and thus reduces the atmospheric-neutrino background. Actually, the
breakthrough in detecting high-energy cosmic neutrinos has been
achieved with this technique.

Note that the fields of view of NTs at the South Pole and in the
Northern hemisphere are complementary for each reaction channel
and neutrino energy.

35.3.2.1. The Projects:
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35.3.2.2. Properties of media:
The efficiency and quality of event reconstruction depend strongly

on the optical properties (absorption and scattering length, intrinsic
optical activity) of the medium in the spectral range of bialkali
photocathodes (300–550nm). Large absorption lengths result in a
better light collection, large scattering lengths in superior angular
resolution. Deep-sea sites typically have effective scattering lengths of
> 100m and, at their peak transparency around 450 nm, absorption
lengths of 50–65m. The absorption length for Lake Baikal is 22–24m.
The properties of South Polar ice vary strongly with depth; at the peak
transparency wave length (400 nm), the scattering length is between 5
and 75m and the absorption length between 15 and 250m, with the
best values in the depth region 220 ones in the layer 1950–2100m.

Noise rates measured by 25 cm PMTs in deep polar ice are about
0.5 kHz per PMT and almost entirely due to radioactivity in the
OM components. The corresponding rates in sea water are typically
60 kHz, mostly due to 40K decays. Bioluminescence activity can locally
cause rates on the MHz scale for seconds; the frequency and intensity
of such “bursts” depends strongly on the sea current, the season,
the geographic location, and the detector geometry. Experience from
ANTARES shows that these backgrounds are manageable without a
major loss of efficiency or experimental resolution.

35.3.2.3. Technical realisation:
Optical modules (OMs) and PMTs: An OM is a pressure-tight glass
sphere housing one or several PMTs with a time resolution in the
nanosecond range, and in most cases also electronics for control, HV
generation, operation of calibration LEDs, time synchronisation and
signal digitisation.

Hybrid PMTs with 37 cm diameter have been used for NT-200,
conventional hemispheric PMTs for AMANDA (20 cm) and for
ANTARES, IceCube and Baikal-GVD (25 cm). A novel concept has
been chosen for KM3NeT. The OMs (43 cm) are equipped with 31
PMTs (7.5 cm), plus control, calibration and digitisation electronics.
The main advantages are that (i) the overall photocathode area
exceeds that of a 25 cm PMT by more than a factor of 3; (ii) the
individual readout of the PMTs results in a very good separation
between one- and two-photoelectron signals which is essential for
online data filtering and random background suppression; (iii) the hit
pattern on an OM provides directional information; (iv) no mu-metal
shielding against the Earth magnetic field is required. Figure 35.6
shows the OM designs of IceCube and KM3NeT.

Figure 35.6: Schematic views of the digital OMs of IceCube
(left) and KM3NeT (right).

Readout and data filtering: In current NTs the PMT data are
digitised in situ, for ANTARES and Baikal-GVD in special electronics
containers close to the OMs, for IceCube and KM3NeT inside the
OMs. For IceCube, data are transmitted via electrical cables of up to
3.3 km length, depending on the location of the strings and the depth
of the OMs; for ANTARES, KM3NeT and Baikal-GVD optical fibre
connections have been chosen (several 10 km for the first two and 4 km
for GVD).

The full digitised waveforms of the IceCube OMs are transmitted
to the surface for pulses appearing in local coincidences on a string;
for other pulses, only time and charge information is provided. For
ANTARES (time and charge) and KM3NeT (time over threshold), all
PMT signals above an adjustable noise threshold are sent to shore.

The raw data are subsequently processed on online computer
farms, where multiplicity and topology-driven filter algorithms are
applied to select event candidates. The filter output data rate is
about 10GByte/day for ANTARES and of the order 1TByte/day for
IceCube (100GByte/day transfered via satellite) and KM3NeT.
Calibration: For efficient event recognition and reconstruction, the
OM timing must be synchronised at the few-nanosecond level and
the OM positions and orientations must be known to a few 10 cm
and a few degrees, respectively. Time calibration is achieved by
sending synchronisation signals to the OM electronics and also by
light calibration signals emitted at known times by LED or laser
flashers emitted in situ (ANTARES, KM3NeT). Precise position
calibration is achieved by measuring the travel time of light calibration
signals sent from OM to OM (IceCube) or acoustic signals sent
from transducer at the sea floor to receivers on the detector strings
(ANTARES, KM3NeT, Baikal-GVD). Absolute pointing and angular
resolution can be determined by measuring the “shadow of the moon”
(i.e., the directional depletion of muons generated in cosmic-ray
interactions). IceCube has shown that both are below 1◦, confirming
MC calculations which indicate a precision of ≈ 0.5◦ for energies
above 10TeV. For KM3NeT, simulations indicate that sub-degree
precision in the absolute pointing can be reached within a few weeks
of operation.
Detector configurations: IceCube (see Fig. 35.7) consists of 5160
Digital OMs (DOMs) installed on 86 strings at depths of 1450
to 2450m in the Antarctic ice; except for the DeepCore region,
string distances are 125m and vertical distances between OMs 17m.
324 further DOMs are installed in IceTop, an array of detector stations
on the ice surface above the strings. DeepCore is a high-density
sub-array at large depths (i.e., in the best ice layer) at the centre of
IceCube.

Eiffel Tower

324 m

IceCube

Lab

50 m

1450 m

2450 m

Figure 35.7: Schematic view of the IceCube neutrino obser-
vatory comprising the deep-ice detector including its nested
dense part DeepCore, and the surface air shower array IceTop.
The IceCube Lab houses data acquisition electronics and the
computer farm for online processing. Operation of AMANDA
was terminated in 2009.

The NT200 detector in Lake Baikal at a depth of 1100m consisted
of 8 strings attached to an umbrella-like frame, with 12 pairs of OMs
per string. The diameter of the instrumented volume was 42m, its
height 70m. Meanwhile (2017), the Baikal collaboration has installed
the first two clusters of a future cubic-kilometre array. A first phase,
covering a volume of about 0.4 km3, will consist of 8 clusters, each
with 288 OMs at 8 strings; its completion is scheduled for 2020. A
next stage could comprise about 20 clusters and cover up to 1.5 km3.

ANTARES comprises 12 strings with lateral distances of 60–70m,
each carrying 25 triplets of OMs at vertical distances of 14.5m.
The OMs are located at depths 2.1–2.4 km, starting 100m above
the sea floor. A further string carries devices for calibration and
environmental monitoring. A system to investigate the feasibility of
acoustic neutrino detection is also implemented.

KM3NeT will consist of building blocks of 115 strings each, with
18 OMs per string. Prototype operations have successfully verified
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the KM3NeT technology [52]. In the upcoming phase 2.0 of its
staged implementation, KM3NeT aims at two building blocks for
neutrino astronomy, with vertical distances between OMs of 36m
and a lateral distance between adjacent strings of 90m (ARCA, for
Astroparticle Research with Cosmics in the Abyss) and at one block
for the measurement of the neutrino mass hierarchy, with vertical
distances between OMs of 9m and a lateral distance between adjacent
strings of about 20m (ORCA, for Oscillation Research with Cosmics
in the Abyss) [49]. A first installation phase of ARCA near Capo
Passero, East of Sicily and of ORCA near Toulon has started in 2015
and comprises 24 (7) ARCA(ORCA) strings to be deployed by end of
2018. Completion of the full three blocks is expected for 2021.

35.3.2.4. Results:
Atmospheric neutrino fluxes have been precisely measured with

AMANDA and ANTARES (֒ ֓νµ) and with IceCube (֒ ֓νµ, ֒ ֓νe); the
results are in agreement with predicted spectra. No astrophysical
point sources have been identified yet, and no indications of neutrino
fluxes from dark matter annihilations or of exotic phenomena have
been found (see [47] and references therein). IceCube has furthermore
reported an energy-dependent anisotropy of cosmic-ray induced
muons.

In 2013, an excess of track and cascade events between 30TeV
and 1PeV above background expectations was reported by IceCube;
this analysis used the data taken in 2010 and 2011 and for the first
time employed containment conditions and an atmospheric muon veto
for suppression of down-going atmospheric neutrinos (High-Energy
Starting Event analysis, HESE). A display of one of the selected events
is shown in Fig. 35.8. The observed excess reached a significance of
5.7σ in a subsequent analysis of 3 years of data [53] and cannot be
explained by atmospheric neutrinos and misidentified atmospheric
muons alone. Some clustering of the HESE events close to the Galactic
Centre was observed. The hypothesis that this low-significance excess
could be due to a point source with a spectral index of ≥ 2 was
constrained by an analysis of ANTARES data looking at lower
energies and with superior pointing to the same sky region [54]. In
a six-year HESE sample, combined with a sample of high-energy
through-going muons, the mentioned excess close to the Galactic
Centre has essentially disappeared (see Fig. 35.9). Meanwhile the
energy range of the IceCube HESE analysis has been extended
down to 1TeV and the high-energy excess confirmed; also, events
with through-going muons showed a corresponding excess of cosmic
origin. In [55], the various analyses have been combined. Assuming
the cosmic neutrino flux to be isotropic, flavour-symmetric and
ν-ν-symmetric at Earth, the all-flavour spectrum is well described by a
power law with normalisation 6.7+1.1

−1.2 × 10−18GeV−1s−1sr−1cm−2 at
100TeV and a spectral index −2.50± 0.09 for energies between 25TeV
and 2.8PeV. A spectral index of −2, an often quoted benchmark
value, is disfavoured with a significance of 3.8σ.

Figure 35.9: Arrival directions of IceCube candidate events for
cosmic neutrinos in equatorial coordinates. The plot contains
82 HESE events, with shower-like events marked as blue × and
muon tracks as orange +, and in addition 36 through-going
muons tracks with an energy deposit exceeding 200TeV (green
circles). Approximately 40% of the events are expected to
originate from atmospheric backgrounds. The grey curve denotes
the Galactic Plane and the grey circle the Galactic Centre
(from [58]) .

At lower energies, down to 10GeV, IceCube/DeepCore and
ANTARES have identified clear signals of oscillations of atmospheric
neutrinos. The closely spaced OMs of DeepCore allow for selecting a

Figure 35.8: Event display of one of the starting-track events
from [53]. The deposited energy is 70TeV, the colour code
indicates the signal timing (red: early; green: late).

very pure sample of low-energy ֒ ֓νµ (6–56GeV) that produce upward
moving muons inside the detector. The neutrino energy is determined
from the energy of the hadronic shower at the vertex and the muon
range. Fits to the energy/zenith-dependent deficit of muon neutrinos
provide constraints on the oscillation parameters sin2 θ23 and ∆m2

23
(see Fig. 14.13 in ”Neutrino masses, mixing, and oscillations” review).

See [56] and [57] for summaries of recent results of IceCube and
ANTARES, respectively.

35.3.2.5. Plans beyond 2020:
Within the future IceCube-Gen2 project, it is planned to extend

the sensitivity of IceCube towards both lower and higher energies.
A substantially denser instrumentation of a sub-volume of DeepCore
would lead to an energy threshold for neutrino detection of a few GeV
(PINGU project, aiming primarily at measuring the neutrino mass
hierarchy). For higher energies, a large-volume extension, combined
with a powerful surface veto, is envisaged [7]. A very first phase with
7 closely spaced strings is discussed, aiming to cover part of the
PINGU program, to better calibrate the existing IceCube and to test
new technologies. More information on the future extensions of GVD
and KM3NeT are given above, in Table 35.2 and in [49].

35.3.3. Coherent radio Cherenkov radiation detectors :
Revised August 2017 by S.R. Klein (LBNL/UC Berkeley)

Radio-frequency (RF) pulses are an attractive signature for coherent
Cherenkov radiation from showers produced from interactions of ultra-
high energy cosmic neutrinos. RF detectors can be used to search
for energetic neutrinos from three types of sources: astrophysical
objects (i.e. extending measurements the neutrino energy spectrum
observed at TeV to PeV energies upward in energy, searching
for ‘GZK’ neutrinos associated with cosmic-ray-cosmic microwave
background radiation interactions, and searching for neutrinos from
beyond-standard-model physics. These types are roughly associated
with energies below 1018 eV, the energy range 1018 to 1020 eV,
and above 1020 eV. GZK neutrinos are produced when protons with
energy E > 4 × 1019 eV interact with cosmic microwave background
radiation (CMB) and are excited to a ∆+ resonance. The subsequent
∆+ → nπ+ decay leads to the production of neutrinos with energies
above 1018 eV [59]. Neutrinos are the only long-range probe of the
ultra-high energy cosmos, because protons, heavier nuclei and photons
with energies above 5× 1019 eV are limited to ranges of less than 100
Mpc by interactions with the CMB and early starlight.

To detect a GZK neutrino signal of at least a few events per year
(assuming that ultra-high energy cosmic-rays are protons) requires
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a detector with an active volume of about 100 km3, made out of
a non-conducting solid (or potentially liquid) medium, with a long
absorption length for radio waves. The huge volumes require that this
be a common material. A dense medium would be ideal to reduce the
detector volume, but, unfortunately, the available natural media have
only moderate density. Optical Cherenkov and acoustical detectors
are limited by short ( < 300 m) attenuation lengths [60] so would
require a prohibitive number of sensors. Radio-detection is the only
current approach that can scale to this volume. Table 35.3 compares
the characteristics of commonly used media - the lunar regolith and
several locations on the polar ice pack [61].

Electromagnetic and hadronic showers produce radio pulses via the
Askaryan effect [62], as discussed in Sec. 33. The shower contains
more electrons than positrons, leading to coherent emission.

High-frequency radiation is concentrated around the Cherenkov
angle. On the cone, the electric field strength, Ech at a frequency
f from an electromagnetic shower from a νe may be roughly
parameterized as [63]

ECh(V/MHz) = 2.53× 10−7 Eν

1TeV

f

fc

[
1

1 + (f/fc)1.44

]
. (35.3)

The electric field strength increases linearly with frequency, up to
a cut-off fc, which is set by the transverse size of the shower [64].
The maximum wavelength is roughly the Moliere radius divided by
cos(θC ) where θC is the Cherenkov angle. Some examples are given in
Table 35.3.

Near fc, radiation is narrowly concentrated around the Cherenov
angle [64]. At lower frequencies, the limited length of the emitting
region leads to a broadening in emission angle around the Cherenkov
cone. Away from θC , the electric field from Eq. (35.3) is reduced
by [63],

E

ECh
= exp

(
−1

2

(θ − θC)
2

(2.20 × [1GHz/f ])2

)
, (35.4)

At very low frequencies, the distribution is nearly isotropic.

Table 35.3: Characteristics of different detection media
for radio-Cherenkov signals. The attenuation length is at a
frequency of 300 MHz; the Greenland figure is extrapolated
upward from the 75 MHz measurements. The lunar regolith and
ice have similar Cherenkov angles because they have similar
indices of refraction.

Medium Density Cherenkov Cutoff Atten.
Ang. Freq. Length

Lunar Regolith 2.5 g/cm3 560 3.0 GHz 9m/f(GHz) [61]
Antarctic Ice 0.92 g/cm3 560 1.15 GHz 900 m [65]
(South Pole)
Ross Ice Shelf 0.92 g/cm3 560 1.15 GHz 406 m [66]
Greenland 0.92 g/cm3 560 1.15 GHz 1022 m [67]

Along the Cherenkov cone, the initial pulse width is ≈ 1 nsec,
but it may be broadened by dispersion as it propagates, particularly
for signals from the Moon traversing the ionosphere. As long as the
dispersion can be compensated for, a large bandwidth detector is the
most sensitive. Spectral information can be used to reject background,
and to help reconstruct the neutrino direction, because the cutoff
frequency depends on the observation angle (with respect to the
Cherenkov cone).

The electric field is linearly proportional to the neutrino energy, so
the power (field strength squared) is proportional to the square of the
neutrino energy. Since the signal is a radio wave, the field amplitude
decreases as 1/R, plus absorption in the intervening medium. The
detection threshold is determined by the distance to the antenna and
the noise characteristics of the detector. For an antenna located in the
detection medium, the typical threshold is around 1017 eV; for stand-
off (remote sensing) detectors, the threshold rises roughly linearly
with the distance. These thresholds can be reduced significantly by
using directional antennas and/or combining the signals from multiple

antennas using beam-forming techniques. Experiments have used both
approaches to reduce trigger-level noise, or to reject background at
the analysis level. For multi-element arrays, the threshold drops as
the square root of number of antennas, since the signal adds in-phase
while the backgrounds add with random phases [68].

The main background sources are anthropogenic noise, an-
tenna/preamp noise, cosmic-ray air showers, charge generated by
blowing snow, and lightning. The need to limit anthropogenic noise
has led most experimental groups to select remote locations for their
detectors.

The signal is linearly polarized in the plane perpendicular to the
neutrino direction. This polarization is an important check that any
observed signal is indeed coherent Cherenkov radiation. Polarization
measurements can be used to help reconstruct the neutrino direction.

At energies above 1020 eV, the Landau-Pomeranchuk-Migdal effect
significantly spreads out electromagnetic showers, producing what are
effectively subshowers with significant separation. The radio emission
becomes even more concentrated around the Cherenkov cone, and
then, at higher energies the emission begins to vary event-by-event.
Because of this, many of the experiments that study higher energy
neutrinos focus on the hadronic shower from the struck nucleus.
This contains on average only about 20% of the energy, but with
large fluctuations. The hadronic shower is useful for very high energy
searches (≫ 1020 eV) because it is much less subject to the LPM
effects.

Radio detectors have observed cosmic-ray air showers in the
atmosphere. The physics of radio-wave generation in air showers
is more complex because of the large contribution due to charge
separation as electrons and positrons bend in different directions
as they propagate, leading to a growing charge dipole (transverse
current) [69]. This time-varying transverse current emits radiation,
spread over the transverse size of the shower. Since the radiating
particles are moving relativistically downward, a ground-based
observer sees a Lorentz contracted pulse which can have frequency
components reaching the GHz range, limited by the thickness of the
particle shower. There is also a contribution from geosynchrotron
radiation, as e± are bent in the same field [69]. Coherent Cherenkov
radiation is less important than these other sources. Experiments for
ν detection may also detect air showers [70], which is also a potential
background. Magnetic monopoles would also emit radio waves, and
neutrino experiments have also set monpole flux limits [71].

35.3.4. The Moon as a target :
Because of its large size and non-conducting regolith, and the

availability of large radio-telescopes, the Moon is an attractive tar-
get [72]. TableMoonList lists some lunar experiments. Conventional
radio-telescopes are quite well suited to lunar neutrino searches, with
natural beam widths not too dissimilar from the size of the Moon.
Still, there are experimental challenges. The composition of the lunar
regolith is not well known, and the attenuation length for radio waves
must be estimated. The big limitation of lunar experiments is that
the 240,000 km target-antenna separation leads to neutrino energy
thresholds above 1020 eV.

Table 35.4: Experiments that have set limits on neutrino
interactions in the Moon; current limits are shown in Fig. 1 of
[61], with Lunaska (2015) from [73].

Experiment Year Dish Size Frequency Bandwidth Obs. Time

Parkes 1995 64 m 1425 MHz 500 MHz 10 hrs
Glue 1999+ 70 m, 34 m 2200 MHz 40-150 MHz 120 hrs
NuMoon 2008 11×25 m 115–180 MHz — 50 hrs
Lunaska 2008 3× 22 m 1200–1800 MHz — 6 nights
Lunaska 2015 64 1200-1500 MHz 300 MHz 127 hours
Resun 2008 4× 25 m 1450 MHz 50 MHz 45 hours

The effective volume probed by experiments depends on the
geometry, which itself depends on the frequency range used. At high
frequencies f , the electric field strength is high, leading to a lower
energy threshold, but the sensitive volume is limited because the
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Cherenkov cone only points toward the Earth for a narrow range
of geometries. Lower frequency radiation is more isotropic, so the
effective volume is larger, but, because the electric field is weaker, the
energy threshold is higher. The 1/f dependence of the attenuation
length in the lunar regolith further increases the effective volume at
low frequencies.

With modern technology, it is increasingly viable to search over
very broad frequency ranges [74]. One technical challenge is due
to dispersion (frequency dependent time delays) in the ionosphere.
Dispersion can be largely removed with a de-dispersion filter, using
either analog circuitry or post-collection digital processing.

Lunar experiments use different techniques to reduce the an-
thropogenic background. Some experiments use multiple antennas,
separated by at least hundreds of meters; by requiring a coincidence
within a small time window, anthropogenic noise can be rejected.
With good enough timing, beam-forming techniques can be used to
further reduce the background. An alternative approach is to use
beam forming with multiple feed antennas viewing a single reflector,
to ensure that the signal points back to the moon.

In the near future, several large radio detector arrays should reach
significantly lower limits. The LOFAR array is beginning to take data
with 36 detector clusters spread over Northwest Europe. In the longer
term, the Square Kilometer Array (SKA) with 1 km2 effective area
will push thresholds down to near 1020 eV [74].

35.3.5. Ice-based detectors :
Lower energy thresholds require a smaller antenna-target separation.

Natural ice is an attractive medium for this, with attenuation lengths
over 300 m. The attenuation length varies with the frequency and ice
temperature, with higher attenuation in warmer ice. Table 35.3 lists
some radio attenuation measurements.

Although ice is mostly uniform, the top ≈ 100 m of Antarctic
ice, the ’firn,’ exhibits a gradual transition from packed snow at the
surface (typical density 0.35 g/cm3) to solid ice (density 0.92 g/cm3)
below [75]. The index of refraction depends linearly on the density,
so radio waves curve downward in the firn. This bending reduces
the effectiveness of surface or aerial antennas. The thickness of the
firn varies with location; it is thicker in central Antarctica than in
the coastal ice sheets. For aerial observations, the surface roughness
of the ice can affect signals as they transition from the ice to the
atmosphere. There are also indications that the increase in firn density
is non-monotonic. This can lead to a non-monotonic change in index
of refraction which may create waveguides which trap and propagate
waves horizontally [76].

There are two types of Antarctic neutrino experiments. In one
class, antennas mounted on scientific balloons observe the ice from
above. The ANITA experiment is one example. It has made four
flights around Antarctica, floating at an altitude around 35 km [77].
Its 32/40/48 (depending on the flight) dual-polarization horn antennas
scanned the surrounding ice, out to the horizon (650 km away).
Because of the small angle of incidence, ANITA could make use of
polarization information; ν signals should be vertically polarized,
while most background from cosmic-ray air showers is expected to be
horizontally polarized.

Because of the significant source-detector separation, ANITA is
most sensitive at energies above 1019 eV, above the peak of the GZK
neutrino spectrum. As with the lunar experiments, ANITA had to
contend with anthropogenic backgrounds. The ANITA collaboration
uses their multiple antennas as a phased array to achieve good pointing
accuracy, and used that to remove all apparent signals that pointed
toward known or suspected areas of human habitation. By using the
several-meter separation between antennas, they achieved a pointing
accuracy of 0.2-0.40 in elevation, and 0.5-1.10 in azimuth. ANITA has
set the most stringent limits on GZK neutrinos to date.

The proposed EVA experiment will use a portion of a fixed-shape
balloon as a large parabolic radio antenna. Because of the large
antenna surface, they hope to achieve threshold around 1017 eV.

Other ice based experiments use antennas located within the active
volume, allowing them to reach thresholds around 1017 eV. This
approach was pioneered by the RICE experiment [78], which buried
18 half-wave dipole antennas in holes drilled for AMANDA at the
South Pole, at depths from 100 to 300 m. The hardware was sensitive

from 200 MHz to 1 GHz. Each antenna fed an in-situ preamplifier
which transmitted the signals to surface digitizing electronics.

Two groups are have deployed prototype arrays, with the goal of a
building a detector with a ∼100 km3 active volume. In both concepts,
the hardware is modular, so the detector volume scales roughly
linearly with the available funding. The Askaryan Radio Array (ARA)
is located at the South Pole [79], while the Antarctic Ross Iceshelf
Antenna Neutrino Array (ARIANNA) is on the Ross Ice Shelf [80],
about 110 km north of McMurdo station. Both experiments use
multiple antennas, with varying degrees of connection. They use the
timing between multiple antennas in a single station to determine
the arrival direction, and have angular resolutions of a few degrees.
At larger distance scales, such as between ARA and ARIANNA
stations, the relative timing uncertainty is larger, and the stations are
effectively independent, with independent triggers, and the data is
only combined offline.

The two approaches have many differences. ARA [79] is located
at the South Pole, where the ice is very cold and more than 2800 m
thick, leading to long attenuation lengths and allowing a large active
volume, while ARIANNA [80] is on the Ross Ice Shelf, about 110 km
north of McMurdo station, where the ice is 575 m thick. The ice is
warmer there, but it sits atop the Ross Sea. At the site, the ice-water
interface is smooth, so it acts as a reflector for radio waves. These
reflections give ARIANNA sensitivity to downward going neutrinos,
and to more of the Cherenkov cone for horizontal neutrinos.

The two experiments have different antenna deployment schemes.
ARA buries their antennas up to 200 m deep in the ice, to avoid radio
wave refraction in the firn and give their antennas a clear field of
view. However, drilling holes has costs, and the limited hole diameter
(15 cm in ARA) requires compromises between antenna design
(particularly for horizontally polarized waves), mechanical support,
power and communications. In contrast, the ARIANNA antennas are
placed in shallow holes. This greatly simplifies deployment and avoids
limitations on antenna design, but at a cost of reduced sensitivity to
neutrino interactions near the surface.

The current ARA proposal, ARA-37 [79], calls for an array of
37 stations, each consisting of 16 embedded antennas deployed in
narrow boreholes 50-200 m deep. The antennas will detect signals
from 150 to 850 MHz for vertical polarization, and 250 MHz to 850
MHz for horizontal polarization. ARA plans to use bicone antennas
for vertical polarization, and quad-slotted cylinders for horizontal
polarization. The collaboration uses notch filters and surface veto
antennas to eliminate most anthropogenic noise, and vetos events
when aircraft are in the area, or weather balloons are being launched.
Each ARIANNA station (1296 have been proposed) [80] will include
multiple log-periodic dipole antennas sensitive to the frequency range
from about 80 MHz to 1 GHz. The multiple antennas allow for
single-station directional and polarization measurements. A few of the
antennas will point upward to help veto cosmic-ray air showers and
other external backgrounds.

35.4. Large time-projection chambers for rare event
detection

Revised Aug. 2017 by T. Shutt (SLAC).

Rare event searches require detectors that combine large target
masses and low levels of radioactivity, and that are located deep
underground to eliminate cosmic-ray related backgrounds. Past and
present efforts include searches for the scattering of particle dark
matter, neutrinoless double beta decay, and the measurement of solar
neutrinos, while next generation experiments will also probe coherent
scattering of solar, atmospheric and diffuse supernova background
neutrinos. Large time project chambers (TPCs), adapted from particle
collider experiments, have emerged as a leading technology for these
efforts. Events are measured in a central region confined by a field
cage and usually filled with a liquid noble element target. Ionized
electrons are drifted (in the z direction) to an anode region by use
of electrode grids and field shaping rings, where their magnitude and
x − y location is measured. In low background TPCs, scintillation
generated at the initial event site is also measured, and the time
difference between this prompt signal and the later-arriving charge
signal gives the event location in z for a known electron drift speed.
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Thus, 3D imaging is a achieved in a monolithic central volume. Noble
elements have relatively high light yields (comparable to or exceeding
the best inorganic scintillators), and the charge signal can be amplified
by multiplication or electroluminescence. Radioactive backgrounds are
distinguished by event imaging, the separate measurements of charge
and light, and scintillation pulse shape. For recent reviews of noble
element detectors, see [81,82].

Methods for achieving very low radioactive backgrounds are
discussed in general in section 34.6. The basic architecture of large
TPCs is very favorable for this application because gas or liquid targets
can be relatively easily purified, while the generally more radioactive
readout and support materials are confined to the periphery. The 3D
imaging of the TPC then allows self shielding in the target material,
which is quite powerful when the target is large compared to mean
scattering lengths of ∼ MeV neutrons and gammas from radioactivity
(∼ 10 cm in LXe, for example). The use of higher density targets
(i.e., liquid instead of gas and/or higher mass elements) maximizes
the ratio of target to surrounding material mass. The TPC geometry
allows highly hermetic external shielding, with recent experiments
using large water shields, in some cases enhanced with an active liquid
scintillator layer.

In noble element targets, all non-noble impurities are readily
removed (e.g., by chemical reaction in a commercial getter) so that
only radioactive noble isotopes are a significant background concern.
Xe, Ne and He have have no long lived radioactive isotopes (apart
from the 136Xe, discussed below). Kr has ∼ 1 MBq/kg of the beta
emitter 85Kr created by nuclear fuel reprocessing, making it unusable
as a target, while the 1 Bq/kg level of the beta emitter 39Ar is a
nuisance for Ar-based experiments. Both of these can be backgrounds
in other target materials, as can Rn emanating from detector
components. Relatively low background materials are available for
most of the structures surrounding the central target, with the
exception of radioactive glasses and ceramics usually present in PMTs,
feedthroughs and electrical components. Very low background PMTs
with synthetic quartz windows, developed over the last decade, have
been a key enabling technology for dark matter searches. These
are not yet low enough in background for some double beta decay
searches, which use radio-clean Si-based photon detectors.

An important technical challenge in liquid detectors is achieving
the high voltages needed for electron drift and measurement. Quench
gases which stabilize charge gain and speed electron transport in wire
chambers cannot be used, since these absorb scintillation light (and
also suppress charge extraction in dual-phase detectors, discussed
below). At low energies (e.g., in a dark matter search) it is also
important to suppress low-level emission of electrons and associated
photons. Drift of electrons over meter scales with minimal loss from
attachment on trace levels of dissolved impurities (e.g., O2) has so
far required continuous circulating purification. The relatively slow
readout due to ∼ msec/m drift speeds is not a major pile-up concern
in low background experiments.

35.4.1. Dark matter and other low energy signals :
A major goal of low background experiments is detection of WIMP

(Weakly Interacting Massive Particle) dark matter through scattering
on nuclei in a terrestrial detector (for a recent review, see [83]) .
Energy transfers are generally small, a few tens of keV at most. Liquid
noble TPCs distinguish nuclear recoils (NR) from dark matter from
the usually dominant background of electron recoils (ER) from gamma
rays and beta decays by requiring single scatters and based on their
charge to light ratio or scintillation pulse shape, as described below.
Neutrons are a NR background, but can be recognized in a large
imaging TPC if they multiply scatter. To detect small charge signals,
a dual phase technique is used wherein electrons from interactions in
the liquid target are drifted to the liquid surface and extracted with
high field (∼ 5 kV/cm) into the gas phase leading to an amplified
electroluminescence signal measured by an array of PMTs located
just above. (Both charge multiplication and electroluminescence are
possible in liquid, but have seen little use because the signals have very
broad dispersion). This technique readily measures single electrons
with ∼ cm x − y resolution. The sides of the chamber are lined
with highly (diffusively) reflective PTFE, and a second PMT array
is located below the active volume to maximize the sensitivity to the

initial scintillation signal.

The microscopic processes leading to signals in liquid nobles are
complex. Energy deposited by an event generates pairs of free electron
and ions, and also atoms in their lowest excited state. These rapidly
form excimers which de-excite by emitting light. Excimers arise in
both triplet and singlet states which have the same energy but different
decay times. In an event track, some fraction of electrons recombine
with ions, while the rest escape and are measured. Recombination
leads to further excimer formation and hence more scintillation
photons. Finally, some part of the energy is lost as heat - a small
fraction for ER but a dominant and energy dependent fraction for
NR. This complexity distinguishes ER and NR: for the same visible
energy, the slower nuclear recoils form a denser track with less charge
and more light than recoiling electrons, and they generate fewer
long-lived triplet state scintillation photons than singlet-state photons.
Charge and light yields depend on drift field, energy, and the initial
particle (ER or NR), requiring extensive calibrations. The existing
data has been incorporated into the NEST Monte Carlo framework.
Typical yields are several tens of electrons and photons per keV of
deposited energy (with up to 10-15 % efficiency for these photons
being detected).

The scattering rates of WIMPs are model dependent, but are
usually highest for spin-independent scattering which has an A2

dependence, so that experiments to date have used LXe and LAr
targets. LXe experiments have had the best WIMP sensitivity for
all but the lowest most WIMP masses for the last decade, with
the ton-scale XENON1T [84] and PANDAX-II [85] experiments
now eclipsing LUX with world-leading results. Previous significant
experiments also include XENON10/100, and ZEPLIN II/III. Next
generation experiments under construction include LZ and XENONnT
with roughly 7 tons active mass. If a dark matter signal is seen,
its spin dependence could be probed with Xe targets isotopically
separated into spin-rich and spin-poor targets.

The reach of LXe TPCs depends critically on the level of ER
background rejection provided by the ratio of charge to light. Most
reported values (at 50% NR acceptance) are near the 99.6% result
obtained by LUX, while ZEPLIN III had 99.99%, possibly because
of its very high drift field (4 kV/cm). While there is a basic
framework [86] for how this improves with light collection and varies
with electric field, a fully predictive understanding is not yet in hand.
Pulse shape discrimination is present, but weak at low energy. The ∼
178 nm scintillation light of Xe is just long enough to be transmitted
through high purity synthetic quartz PMTs windows. Kr suppression
to the ∼ ppt or better level is needed, and has been accomplished via
distillation or chromatography.

Two experiments to date have produced dark matter limits using
dual phase Ar TPCs: WARP and DarkSide-50, while ArDM is under
development. A primary attraction of Ar compared to Xe is much
lower raw material costs. However beta decays from 39Ar, produced
by cosmic-ray interactions in the atmosphere, give a low energy
ER background roughly 108 times higher than the fundamental ER
background from p-p solar neutrinos. Remarkably, however, pulse
shape discrimination (PSD) of ER backgrounds is very powerful in
LAr for sufficiently high energy, based on the favorably different ratio
of populations of the singlet (6 ns lifetime) and triplet (∼ 1.5 µ s
lifetime) states. DarkSide has shown roughly 108 discrimination with
≥ 50% WIMP acceptance above 47 keV. They have also extracted
“aged” Ar with the 32.9 yr half-life 39 Ar reduced by a factor of 1400,
via processing of underground (cosmic ray shielded) gas deposits.
This lowers the energy threshold and allows ton-scale experiments
without significant pile-up. Charge and light discrimination has also
been demonstrated at high energy, but it is less well characterized
than in LXe and appears weak at low energy. While the strong PSD
in LAr allows relaxed requirements for ER backgrounds, U and Th
contamination must still be kept very low because their decay chains
create neutrons via (α, n) reactions, particularly in low Z elements
such as PMT glass and PTFE. Waveshifter is used (typically TPB)
because PMTs are blind to the 128 nm scintillation light.

LZ and XENONnT project sensitivity to WIMPs about a decade
above the“floor” of coherent electron scattering of astrophysical
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neutrinos, which, absent a directional measurement (see below), are
essentially indistinguishable from WIMPs. A 30-50 ton LXe TPC
would approach the practical limit set by this floor for WIMP masses
above ∼ 5 GeV if a ∼ 99.98% rejection (at 30% NR acceptance) of
p-p solar ν ER backgrounds [87] is achieved, while a ∼ 200 ton LAr
detector would achieve similar sensitivity for WIMPs above ∼ 50 GeV.
Sensitivity to lower WIMP mass could be obtained by adding Ne to a
LXe TPC, or, more speculatively,with a superfluid He TPC [88] read
out with superconducting sensors (similar to the proposed HERON
solar neutrino experiment). With sufficient control of dissolved Kr
and especially Rn, the ER background in the next LXe experiments
could be dominated by the poorly measured low energy spectrum of
solar neutrinos from the main p-p burning reaction.

Measurement of NR recoil track direction would provide proof of
the galactic origin of a dark matter signal since the prevailing WIMP
direction varies on a daily basis as the earth spins. This cannot be
achieved for the sub-micron tracks in any existing solid or liquid
technology, but the mm-scale tracks in a low pressure gas (typically,
P ∼ 50 Torr) could be imaged with sufficiently dense instrumentation.
Directionality can be established with O(102) events by measuring
just the track direction, while, with finer resolution that distinguishes
the diffuse (dense) tail and dense (diffuse) head of NR (ER) tracks,
only O(10) events are required. Such imaging requires a high energy
threshold, decreasing WIMP sensitivity, but also powerfully rejecting
less dense ER background tracks.

A variety of TPC configurations are being pursued to accomplish
this, most with a CF4 target. The longest established effort, DRIFT,
avoids diffusion washing out tracks for electron drift distances
greater than ∼ 20 cm by attaching electrons to CS2, which drifts
with vastly reduced diffusion. Other efforts drift electrons directly
and use a variety of techniques for their measurement: DMTPC
(electroluminescence + CCDs), MIMAC (MicroMegas), NEWAGE
(GEMs), and D3 (Si pixels). WIMP limits have been obtained
by DRIFT, NEWAGE, and DMTPC. A related suggestion is that
the amount of recombination in a high pressure Xe gas with an
electron-cooling additive could be sensitive to the angle between the
track and electric field [89], eliminating the need for track imaging.
Directional measurements appear to be the only possibility to push
beyond the floor of coherent neutrino scatters [90], though this would
require extraodinarily large target mass.

35.4.2. 0νββ Decay :
Another major class of rare event search is neutrinoless double

beta decay (0νββ). A limited set of nuclei are unstable against
simultaneous beta decay of two neutrons. Observation of the lepton-
number violating neutrinoless version of this decay would establish
that neutrinos are Majorana particles and provide a direct measure
of neutrino mass. For a recent review, see [91]. The signal in 0νββ
decay is distinctive: the full Q-value energy of the nuclear decay
appears as equal energy back-to-back recoil electrons. A large TPC
is advantageous for observing this low rate decay for all the reasons
described above. The first detector to observe the standard model
process 2 neutrino double beta decay was a gaseous TPC which
imaged the two electrons tracks from 82Se embedded in a foil. Modern
detectors use Xe as the detector medium because it includes the ββ
isotope 136Xe (Q-value 2458 keV), which, as an inert gas, can also be
more readily enriched from its natural 8.9% abundance than any other
ββ isotope. EXO-200, which currently has one of the best search
limits [93], is a large single-phase LXe TPC with roughly 110 active
kg of Xe enriched to 80.7 % 136Xe, and a multi-ton successor nEXO
has been proposed which would fully cover the inverted neutrino mass
hierarchy. These detectors are similar to dark matter TPCs, but, not
needing charge gain, use single phase with charge measured directly
on crossed wire grids. Light readout is done with LAAPDs (EXO-200)
and SiPMTs (nEXO).

The dominant background is gamma rays originating outside the
active volume. Most of these undergo multiple Compton-scatters
which are efficiently recognized and rejected through sub-cm position
resolution, though the few percent of gammas at this energy that
photoabsorb are not. Self shielding of gamma rays is less powerful
than in dark matter, since in the former case there is some small
probability of penetrating to some depth followed by the modestly

small probability of photo-absorption. The latter case consists of
three small probability processes: penetration to some depth, a
very low-energy scatter, and the gamma exiting without a second
interaction. Because of this and the fact that background and the
signal are both electron recoils, the requirements on radioactivity in all
the materials of a ββ TPC are much more stringent than an otherwise
similar dark matter detector, unless other background rejection
tools are available. Percent-level energy resolution is crucial to avoid
background from 2νββ decays and gammas including the prominent
2615 MeV line from 208Tl in the Th chain. Here the combined charge
and light measurement eliminates the otherwise dominant fluctuations
in recombination which lead to anti-correlated fluctuations in charge
and light. EXO-200 has achieved σ ≈ 1.5% (at 2458 keV), and values
below 1% appear possible.

A related approach being pursued by the NEXT and PandaX-
III collaborations is to use high pressure gaseous Xe TPC. With
mm-scale charge readout, the two-electron topology of 0νββ events
can be distinguished from single electrons from photoabsorption of
background gammas. In addition, the low recombination fraction
in the gas phase suppresses recombination fluctuations, in principle
allowing σ below 0.2% via the charge channel alone. Finally, a
definitive identification of a 0νββ signal would be provided by
extraction and tagging of the ionized Ba daughter via atomic physics
techniques [94], either in gas or liquid and gas phases.

35.5. Sub-Kelvin detectors

Written September 2015 by K. Irwin (Stanford and SLAC).
Many particle physics experiments utilize detectors operated at

temperatures below 1 K. These include WIMP searches, beta-decay
experiments to measure the absolute mass of the electron neutrino,
and searches for neutrinoless-double-beta decay (0νββ) to probe the
properties of Majorana neutrinos. Sub-Kelvin detectors also provide
important cosmological constraints on particle physics through
sensitive measurement of the cosmic microwave background (CMB).
CMB measurements probe the physics of inflation at ∼ 1016 GeV, and
the absolute mass, hierarchy, and number of neutrino species.

Detectors that operate below 1 K benefit from reduced thermal
noise and lower material specific heat and thermal conductivity.
At these temperatures, superconducting materials, sensors with
high responsivity, and cryogenic preamplifiers and multiplexers are
available. We provide a simple overview of the techniques and the
experiments using sub-K detectors. A useful review of the broad
application of low-temperature detectors is provided in [95], and
the proceedings of the International Workshop on Low Temperature
Detectors [96] provide an overview of the field.

Sub-Kelvin detectors can be categorized as equilibrium thermal
detectors or non-equilibrium detectors. Equilibrium detectors measure
a temperature rise in a material when energy is deposited. Non-
equilibrium detectors are based on the measurement of prompt,
non-equilibrated signals and on the excitation of materials with an
energy gap.

35.5.1. Equilibrium thermal detectors :
An equilibrium thermal detector consists of a thermometer

and absorber with combined heat capacity C coupled to a heat
bath through a weak thermal conductance G. The rise time of a
thermal detector is limited by the internal equilibration time of the
thermometer-absorber system and the electrical time constant of the
thermometer. The thermal relaxation time over which heat escapes to
the heat bath is τ = C/G. Thermal detectors are often designed so
that an energy input to the absorber is thermalized and equilibrated
through the absorber and thermometer on timescales shorter than
τ , making the operation particularly simple. An equilibrium thermal
detector can be operated as either a calorimeter, which measures an
incident energy deposition E, or as a bolometer, which measures an
incident power P .

In a calorimeter, an energy E deposited by a particle interaction
causes a transient change in the temperature ∆T = E/C, where the
heat capacity C can be dominated by the phonons in a lattice, the
quasiparticle excitations in a superconductor, or the electronic heat
capacity of a metal. The thermodynamic energy fluctuations in the
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absorber and thermometer have variance

∆E2
rms = kBT

2C (35.5)

when operated near equilibrium, where ∆Erms is the root-mean-
square energy fluctuation, kB is the Boltzmann constant and T is the
equilibrium temperature. When a sufficiently sensitive thermometer is
used, and the energy is thermalized at frequencies large compared to
the thermal response frequency (fth = 1/2πτ), the signal-to-noise ratio
is nonzero at frequencies higher than fth. In this case, detector energy
resolution can be somewhat better than ∆Erms [97]. Deviations
from the ideal calorimeter model can cause excess noise and position
and energy dependence in the signal shape, leading to degradation in
achieved energy resolution.

Table 35.5: Some selected experiments using sub-Kelvin equilibrium bolometers to measure
the CMB. These experiments constrain the physics of inflation and the absolute mass,
hierarchy, and number of neutrino species. The experiment location determines the part of
the sky that is observed. The size of the aperture determines the angular resolution. The
table also indicates the type of sensor used, the number of sensors, the frequency range, and
the number of frequency bands. The number of sensors and frequency range and bands for
ongoing upgrades are provided for some experiments in parentheses.

Sub-K CMB Location Aperture Sensor # Sensors Frequency Bands

Experiment type (planned) (planned) (planned)

Ground-based

Atacama Cosmology Chile 6 m TES 1,800 90–150 GHz 2
Telescope (2007–) (5,334) (28–220 GHz) (5)

BICEP/Keck (2006–) South Pole 26/68 cm TES 3,200 95–220 GHz 3

CLASS Chile 60 cm TES 36 40 GHz 1
(2015–) (5,108) (40–220 GHz) (4)

POLARBEAR / Chile 3.5 m TES 1,274 150 GHz 1
Simons (2012–) (22,764) (90–220 GHz) (3)

South Pole South 10 m TES 1,536 95–150 GHz 2
Telescope (2007–) Pole (16,260) (95–220 GHz) (3)

Balloon

EBEX (2013–) McMurdo 1.5 m TES ∼1,000 150–410 GHz 3

PIPER (2016–) New Mexico 2 m TES 5,120 200–600 GHz 4

SPIDER (2014–) McMurdo 30 cm TES 1,959 90–280 GHz 3

Satellite

Planck HFI (2003–) L2 1.5 m NTD 52 100-857 GHz 9

In a bolometer, a power P deposited by a stream of particles
causes a change in the equilibrium temperature ∆T = P/G. The weak
thermal conductance G to the heat bath is usually limited by the flow
of heat through a phonon or electron system. The thermodynamic
power fluctuations in the absorber and thermometer have power
spectral density

SP = NEP 2 = 4kBT
2G (35.6)

when operated near equilibrium, where the units of NEP (noise
equivalent power) are W/

√
Hz.

The minimization of thermodynamic energy and power fluctuations
is a primary motivation for the use of sub-Kelvin thermal detectors.
These low temperatures also enable the use of materials and structures
with extremely low C and G, and the use of superconducting materials
and amplifiers.

When very large absorbers are required (e.g. WIMP dark matter
searches), dielectric crystals with extremely low specific heat are
often used. These materials are operated well below the Debye
temperature TD of a crystal, where the specific heat scales as T 3. In
this low-temperature limit, the dimensionless phononic heat capacity
at fixed volume reduces to

CV

N kB
=

12 π4

5

(
T

TD

)3

, (35.7)

where N is the number of atoms in the crystal. Normal metals have
higher low-temperature specific heat than dielectric crystals, but they

also have superior thermalization properties, making them attractive
for some applications in which extreme precision and high energy
resolution are required (e.g. beta endpoint experiments to measure
neutrino mass using 163Ho). At low temperature, the heat capacity of
normal metals is dominated by electrons, and is linear in temperature,
with convenient form

C =
ρ

A
γV T, (35.8)

where V is the sample volume, γ is the molar specific heat of
the material, ρ is the mass density, and A is the atomic weight.
Superconducting absorbers are also used. Superconductors combine
some of the thermalization advantages of normal metals with the lower
specific heats associated with insulators when operated well below Tc,

where the electronic heat capacity freezes out, and the material
is dominated by phononic heat capacity. At higher temperatures,
superconducting materials have more complicated heat capacities,
but at their transition temperature Tc, BCS theory predicts that the
electronic heat capacity of a superconductor is ∼2.43 times the normal
metal value.

When very low thermal conductances are required for power
measurement (e.g. the measurement of the cosmic microwave
background), the weak thermal link is sometimes provided by
thin membranes of non-stoichiometric silicon nitride. The thermal
conductance of these membranes is:

G = 4σAT 3ξ, (35.9)

where σ has a value of 15.7 mW/cm2K4, A is the cross-sectional area
perpendicular to the heat flow, and ξ is a numerical factor with a
value of one in the case of specular surface scattering but less than
one for diffuse surface scattering. The thermal impedance between the
electron and phonon systems can also limit the thermal conductance.

The most commonly used sub-Kelvin thermometer is the super-
conducting transition-edge sensor (TES) [98]. The TES consists of a
superconductor biased at the transition temperature Tc, in the region
between the superconducting and normal state, where its resistance
is a strong function of temperature. The TES is voltage biased.
The Joule power provides strong negative electrothermal feedback,
which improves linearity, speeds up response to faster than τ = C/G,
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and provides tolerance for Tc variation between multiple TESs in
a large array. The current flowing through a TES is read out by
a superconducting quantum interference device (SQUID) amplifier.
These amplifiers can be cryogenically multiplexed, allowing a large
number of TES devices to be read out with a small number of wires
to room temperature.

Neutron-transmutation-doped (NTD) germanium and implanted
silicon semiconductors read out by cryogenic FET amplifiers
are also used as thermometers [97]. Their electrical resistance is
exponentially dependent on 1/T , and is determined by phonon-assisted
hopping conduction between impurity sites. Finally, the temperature
dependence of the permeability of a paramagnetic material is used as
a thermometer. Detectors using these thermometers are referred to as
metallic magnetic calorimeters (MMC) [99]. These detectors operate
without dissipation and are inductively readout by SQUIDs.

Table 35.6: Selected experiments using sub-Kelvin calorimeters. The table shows only
currently operated experiments, and is not exhaustive. WIMP experiments search for dark
matter, and beta-decay and neutrinoless double beta decay (0νββ) experiments constrain
neutrino mass, hierarchy, and Majorana nature. The experiment location determines the
characteristics of the radioactive background. The dates of current program phase, detection
mode (equilibrium or nonequilibrium phonon measurements, and measurement of ionization or
scintillation signals), the absorber and total mass, the sensor type, and the number of sensors
and crystals (if different) are given. Many sub-K calorimeter experiments are also in planning
and construction phases, including EURECA (dark matter), HOLMES and NuMECs (beta
decay), and CUPID-0 (0νββ decay). Many of the existing experiments are being upgraded to
larger mass absorbers, different absorber materials, or lower energy threshhold.

Sub-K Location Detection Absorber Sensor # Sensor

Calorimeter mode Total mass type # Crystal

WIMP

CRESST II Gran Sasso Noneq. phon. CaWO4 TES 18
(2003–) Italy and scint. 5.4 kg

EDELWEISS III LSM Modane Eq. thermal Ge NTD Ge 36
(2015–) France and ion. 22 kg +HEMT

SuperCDMS Soudan, USA Noneq. phon. Ge TES 120
(2012–) SNOLAB, Canada and ion. 9 kg +JFET 15

Beta decay

ECHo Heidelberg Eq. thermal Au:163Ho MMC 16
(2012–) Germany 0.2µg

0νββ decay

CUORE Gran Sasso Eq. thermal TeO2 NTD Ge 988
(2015–) Italy 741 kg

AMoRe Pilot Yang Yang Noneq. phon. CaMoO4 MMC 5
(2015–) S. Korea and scint. 1.5 kg

LUCIFER Gran Sasso Eq. thermal ZnSe NTD Ge 1
(2010–) Italy and scint. 431 g

Equilibrium thermal detectors are simple, and they have important
advantages in precision measurements because of their insensitivity
to statistical variations in energy down-conversion pathways, as
long as the incident energy equilibrates into an equilibrium thermal
distribution that can be measured by a thermometer.

35.5.2. Nonequilibrium Detectors :
Nonequilibrium detectors use many of the same principles and

techniques as equilibrium detectors, but are also sensitive to details
of the energy down-conversion before thermalization. Sub-Kelvin
nonequilibrium detectors measure athermal phonon signals in a
dielectric crystal, electron-hole pairs in a semiconductor crystal,
athermal quasiparticle excitations in a superconductor, photon
emission from a scintillator, or a combination of two of the above
to better discriminate recoils from nuclei or electrons. Because the
phonons are athermal, sub-Kelvin nonequilibrium detectors can use
absorbers with larger heat capacity, and they use information about
the details of energy down-conversion pathways in order to better
discriminate signal from background.

In WIMP and neutrino experiments using sub-Kelvin dielectric
semiconductors, the recoil energy is typically & 0.1 keV. The majority
of the energy is deposited in phonons and a minority in ionization and,
in some cases, scintillation. The semiconductor bandgap is typically
∼ eV, and kBT < 10 µeV at T < 1 K. Thus, high-energy charge
pairs and athermal phonons are initially produced. The charge pairs
cascade quickly to the gap edge. The high-energy phonons experience
isotopic scattering and anharmonic decay, which downshifts the
phonon spectrum until the phonon mean free path approaches the
characteristic dimension of the absorber. If the crystal is sufficiently
pure, these phonons propagate ballistically, preserving information
about the interaction location. They are not thermalized, and thus
not affected by an increase in the crystal heat capacity, allowing
the use of larger absorbers. Sensors similar to those used in sub-K
equilibrium thermal detectors measure the athermal phonons at the

crystal surface.
Superconductors can also be used as absorbers in sub-Kelvin

detectors when T ≪ Tc. The superconducting gap is typically
∼ meV. Energy absorption breaks Cooper pairs and produces
quasiparticles. These particles cascade to the superconducting gap
edge, and then recombine after a material-dependent lifetime. During
the quasiparticle lifetime, they diffuse through the material. In
superconductors with large mean free path, the diffusion length can
be more than 1 mm, allowing diffusion to a detector.

In some experiments (e.g. SuperCDMS and CRESST), athermal
phonons and quasiparticle diffusion are combined to increase achievable
absorber mass. Athermal phonons in a three-dimensional dielectric
crystal break Cooper pairs in a two-dimensional superconducting film
on the detector surface. The resulting quasiparticles diffuse to thermal
sensors (typically a TES) where they are absorbed and detected.
While thin superconducting films have diffusion lengths shorter than
the diffusion lengths in single crystal superconductors, segmenting the
films into small sections and coupling them to multiple TES sensors
allows the instrumentation of large absorber volume. The TES sensors
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can be wired in parallel to combine their output signal.
The combined measurement of the phonon signal and a secondary

signal (ionization or scintillation) can provide a powerful discrimination
of signal from background events. Nuclear-recoil events in WIMP
searches produce proportionally smaller ionization or scintillation
signal than electron-scattering events. Since many of the background
events are electron recoils, this discrimination provides a powerful
veto. Similarly, beta-decay events produce proportionally smaller
scintillation signal than alpha-particle events, allowing rejection of
alpha backgrounds in neutrino experiments.

Combined phonon and ionization measurement has been imple-
mented in experiments including CDMS I/II, SuperCDMS, and
EDELWEISS I/II/III. These experiments use semiconductor crystal
absorbers, in which dark-matter scattering events would produce
recoiling particles and generate electron-hole pairs and phonons. The
electron-hole pairs are separated and drifted to the surface of the
crystal by applying an electric field, where they are measured by a
JFET or HEMT using similar techniques to those used in 77 K Ge
x-ray spectrometers. However, the field strength must be much lower
in sub-K detectors to limit the generation of phonon signals by the
Neganov-Luke effect, which can confuse the background discrimina-
tion. For detectors with very low threshhold, the Neganov-Luke effect
can also be used to detect generated charge through the induced
phonon signal.

Combined phonon and scintillation measurement has been
implemented in CRESST II, ROSEBUD, AMoRE and LUCIFER. For
example, the CRESST-II experiment uses CaWO4 crystal absorbers,
and measures both the phonon signal and the scintillation signal with
TES calorimeters. A wide variety of scintillating crystals are under
consideration, including different tungstates and molybdates, BaF2,
ZnSe, and bismuth germanate (BGO).

35.6. Low-radioactivity background techniques

Revised August 2015 by A. Piepke (University of Alabama).

The physics reach of low-energy rare-event searches e.g. for dark
matter, neutrino oscillations, or double beta decay is often limited
by background caused by radioactivity. Depending on the chosen
detector design, the separation of the physics signal from this
unwanted interference can be achieved on an event-by-event basis
by active event tagging, utilizing some unique event features, or
by reducing the flux of the background radiation by appropriate
shielding and material selection. In both cases, the background rate is
proportional to the flux of the interfering radiation. Its reduction is
thus essential for realizing the full physics potential of the experiment.
In this context, “low energy” may be defined as the regime of natural,
anthropogenic, or cosmogenic radioactivity, all at energies up to about
10 MeV. See [100,101] for in-depth reviews of this subject. Following
the classification of [100], sources of background may be categorized
into the following classes:
1. environmental radioactivity,
2. radio-impurities in detector or shielding components,
3. radon and its progeny,
4. cosmic rays,
5. neutrons from natural fission, (α, n) reactions and from cosmic-ray

muon spallation and capture.

35.6.1. Defining the problem : The application defines the
requirements. Background goals can be as demanding as a few
low-energy events per year in a ton-size detector. The strength of
the physics signal of interest can often be estimated theoretically or
from limits derived by earlier experiments. The experiments are then
designed for the desired signal-to-background ratio. This requires
finding the right balance between “clarity of measurement”, ease of
construction, and budget. In a practical sense, it is important to
formulate background goals that are sufficient for the task at hand
but achievable, in a finite time. It is standard practice to use detector
simulations to translate the background requirements into limits for
the radioactivity content of various detector components, requirements
for radiation shielding, and allowable cosmic-ray fluxes. This strategy
allows the identification of the most critical components early and
facilitates the allocation of analysis and development resources in
a rational way. The CERN code GEANT4 [102] is a widely used

tool for this purpose. It has incorporated sufficient nuclear physics
to allow accurate background estimations. Custom-written event
generators, modeling e.g., particle correlations in complex decay
schemes, deviations from allowed beta spectra or γ − γ-angular
correlations, are used as well.

35.6.2. Environmental radioactivity : The long-lived natural
radio-nuclides 40K, 232Th, and 238U have average abundances of
1.6, 11.1 and 2.7 ppm (corresponding to 412, 45 and 33 Bq/kg,
respectively) in the earth’s crust, with large local variations. In
most applications, γ radiation emitted due to the decay of natural
radioactivity and its unstable daughters constitutes the dominant
contribution to the local radiation field. Typical low-background
applications require levels of natural radioactivity on the order of
ppb or ppt in the detector components. Passive or active shielding
is used to suppress external γ radiation down to an equivalent level.
Fig. 35.10 shows the energy-dependent attenuation length λ(Eγ) as
a function of γ-ray energy Eγ for three common shielding materials
(water, copper, lead). The thickness ℓ required to reduce the external
flux by a factor f > 1 is estimated, assuming exponential damping:

ℓ = λ(Eγ) · ln f . (35.10)

At 100 keV, a typical energy scale for dark matter searches (or
2.615 MeV, for a typical double-beta decay experiment), attenuation
by a factor f = 105 requires 67(269) cm of H2O, 2.8(34) cm of Cu,
or 0.18(23) cm of Pb. Such estimates allow for an order-of-magnitude
determination of the experiment dimensions.
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Figure 35.10: γ-ray attenuation lengths in some common
shielding materials. The mass attenuation data has been
taken from the NIST data base XCOM; see “Atomic Nuclear
Properties” at pdg.lbl.gov.

A precise estimation of the the magnitude of the external gamma-
ray background, including scattering and the effect of analysis-energy
cuts, requires Monte Carlo simulations based on the the knowledge
of the radioactivity present in the laboratory. Detailed modeling of
the γ-ray flux in a large laboratory, or inside the hermetic shielding,
needs to cope with a very small probability of generating any signal
in the detector. It is often advantageous to calculate solid angle of
the detector to the background sources and mass attenuation of the
radiation shield separately, or to employ importance sampling. The
former method can lead to loss of energy-direction correlations while
in the latter has to balance CPU-time consumption against the loss
of statistical independence. These approaches reduce the computation
time required for a statistically meaningful number of detector hits to
manageable levels.

Water is commonly used as shielding medium for large detectors,
as it can be obtained cheaply and purified effectively in large quantity.
Water purification technology is commercially available. Ultra-pure
water, instrumented with photomultiplier tubes, can serve as active
cosmic-ray veto counter. Water is also an effective neutron moderator
and shield. In more recent underground experiments that involve
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detectors operating at cryogenic temperature, liquefied gases (e.g.
argon) are being used for shielding as well.

35.6.3. Radioactive impurities in detector and shielding com-
ponents : After suppressing the effect of external radioactivity,
radioactive impurities, contained in the detector components or
attached to their surfaces, become important. Every material contains
radioactivity at some level. The activity can be natural, cosmogenic,
man-made, or a combination of them. The determination of the
activity content of a specific material or component requires case-
by-case analyses, and is rarely obtainable from the manufacturer.
However, there are some general rules that can be used to guide
the pre-selection. For detectors designed to look for electrons (for
example in double-beta decay searches or neutrino detection via
inverse beta decay or elastic scattering), intrinsic radioactivity is often
the principal source of background. For devices detecting nuclear
recoils (for example in dark matter searches), this is often of secondary
importance as ionization signals can be actively discriminated on
an event-by-event basis. Decay induced nuclear reactions become a
concern.

For natural radioactivity, a rule of thumb is that synthetic
substances are cleaner than natural materials. Typically, more highly
processed materials have lower activity content than raw substances.
Substances with high electro-negativity tend to be cleaner as the
refining process preferentially removes K, Th, and U. For example,
Al is often found to contain considerable amounts of Th and U,
while electrolytic Cu is very low in primordial activities. Plastics or
liquid hydrocarbons, having been refined by distillation, are often
quite radiopure. Tabulated radioassay results for a wide range of
materials can be found in Refs. [103] and [104]. Radioassay results
from previous underground physics experiments are being archived at
an online database [105].

The long-lived 238U daughter 210Pb (T1/2=22.3 y) is found in all
shielding lead, and is a background concern at low energies. This is
due to the relatively high endpoint energy (Qβ=1.162 MeV) of its

beta-unstable daughter 210Bi. Lead refined from selected low-U ores
have specific activities of about 5–30 Bq/kg. For applications that
require lower specific activity, ancient lead (for example from Roman
ships) is sometimes used. Because the ore processing and lead refining
removed most of the 238U, the 210Pb decayed during the long waiting
time to the level supported by the U-content of the refined lead.
Lining the lead with copper to range out the low-energy radiation is
another remedy. However, intermediate-Z materials carry additional
cosmogenic-activation risks when handled above ground, as will be
discussed below. 210Pb is also found in solders.

Man-made radioactivity, released during above-ground nuclear
testing and nuclear power production, is a source of background.
The fission product 137Cs can often be found attached to the surface
of materials. The radioactive noble gas 85Kr, released into the
atmosphere by nuclear reactors and nuclear fuel re-processing, is
sometimes a background concern, especially due to its high solubility
in organic materials. Post-World War II steel typically contains a few
tens of mBq/kg of 60Co.

Surface activity is not a material property per se but is added
during manufacturing and handling. Surface contamination can often
be effectively removed by clean machining, etching, or a combination
of both. The assembly of low-background detectors is often performed
in controlled enclosures (e.g. clean rooms or glove boxes) to avoid
contaminating surfaces with environmental substances, such as dust,
containing radioactivity at much higher concentrations than the
detector components. Surfaces are cleaned with high purity chemicals
and de-ionized water. When not being processed components are
best stored in sealed bags to limit dust deposition on the surface,
even inside clean rooms. Surface contamination can be quantified
by means of wipe-testing with acid or alcohol wetted Whatman 41
filters. Pre-soaking of the filters in clean acid reduces the amount of
Th and U contained in the paper and boosts analysis sensitivity. The
paper filters are ashed after wiping and the residue is digested in
acid. Subsequent analysis by means of mass spectroscopy or neutron
activation analysis is capable of detecting less than 1 pg/cm2 of Th
and U.

The most demanding low-rate experiments require screening of all

components, which can be a time consuming task. The requirements
for activity characterization depend on the experiment and the location
and amount of a particular component. Monte Carlo simulations are
used to quantify these requirements. Sensitivities of the order
µBq/kg or less are sometimes required for the most critical detector
components. At such a level of sensitivity, the characterization
becomes a challenging problem in itself. Low-background α, β, and
γ-ray counting, mass spectroscopy, and neutron activation analysis are
the commonly used diagnostic techniques.

35.6.4. Radon and its progeny : The noble gas 222Rn, a pure
α-emitter, is a 238U decay product. Due to its relatively long half-life
of 3.8 d it is released by surface soil and is found in the atmosphere
everywhere. 220Rn (232Th decay product) is mostly unimportant for
most low-background experiments because of its short half-life. The
222Rn activity in air ranges from 10 to 100 mBq/L outdoors and 100
to thousands of mBq/L indoors. The natural radon concentration
depends on the weather and shows daily and seasonal variations.
Radon levels are lowest above the oceans. For electron detectors, it
is not the Rn itself that creates background, but its progeny 214Pb,
214Bi, 210Bi, which emit energetic beta and γ radiation. Thus, not
only the detector itself has to be separated from contact with air, but
also internal voids in the shield which contain air can be a background
concern. Radon is quite soluble in water and even more so in organic
solvents. For large liquid scintillation detectors, radon mobility due
to convection and diffusion is a concern. To define a scale: typical
double-beta-decay searches are are restricted to < µBq/kgdetector
(or 1 decay per kgdetector and per 11.6 days) activities of 222Rn in
the active medium. This corresponds to a steady-state population of
0.5 atoms/kgdetector or 50 µL/kgdetector of air (assuming 20 mBq/L
of radon in the air). The demand on leak tightness can thus be quite
demanding. The decay of Rn itself is a concern for some recoil type
detectors, as nuclear recoil energies in α decays are substantial (76
keV in the case of 222Rn).

Low-background detectors are often kept sealed from the air and
continuously flushed with boil-off nitrogen, which contains only small
amounts of Rn. For the most demanding applications, the nitrogen is
purified by multiple distillations, or by using pressure swing adsorption
chromatography. Then only the Rn outgassing of the piping (due to
its intrinsic U content) determines the radon concentration. Radon
diffuses readily through thin plastic barriers. If the detector is to be
isolated from its environment by means of a membrane, the choice of
material is important [106].

Prolonged exposure of detector components or raw materials to
air leads to the accumulation of the long-lived radon daughter 210Pb
on surfaces. Due to its low Q-value of 63.5 keV, 210Pb itself is
only a problem when extreme low energy response is important.
However, because of its higher Q-value, the lead daughter 210Bi, is a
concern up to the MeV scale. The alpha unstable Bi-daughter 210Po
(Eα = 5304 keV) contributes not only to the alpha background but
can also induce the emission of energetic neutrons via (α,n) reactions
on low-Z materials (such as F, C, Si...etc). The neutrons, in turn, may
capture on other detector components, creating energetic background.
The (α,n) reaction yield induced by the α decay of 210Po is typically
small (6 · 10−6 n/α in Teflon, for example). Some data is available
on the deposition of radon daughters from air onto materials, see
e.g. [108]. This data indicates effective radon daughter collection
distances of a a few cm in air. These considerations limit the allowable
air exposure time. In case raw materials (e.g. in the form of granules)
were exposed to air at the production site, the bulk of the finished
detector components may be loaded with 210Pb and its daughters.
These are difficult to detect as no energetic gamma radiation is
emitted in their decays. Careful air-exposure management is the only
way to reduce this source of background. This can be achieved by
storing the parts under a protective low-radon cover gas or keeping
them sealed from radon.

State-of-the-art detectors can detect radon even at the level of
few atoms. Solid state, scintillation, or gas detectors utilize alpha
spectroscopy or are exploiting the fast β − α decay sequences of 214Bi
and 214Po. The efficiency of these devices is sometimes boosted by
electrostatic collection of charged radon from a large gas volume into
a small detector.
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35.6.5. Cosmic rays : Cosmic radiation, discussed in detail in
Chapter 29, is a source of background for just about any non-
accelerator experiment. Primary cosmic rays are about 90% protons,
9% alpha particles, and the rest heavier nuclei (Fig. 29.1). They are
totally attenuated within the first the first few hg/cm2 of atmospheric
thickness. At sea level secondary particles (π± : p : e± : n : µ±) are
observed with relative intensities 1 : 13 : 340 : 480 : 1420 (Ref. 109;
also see Fig. 29.4).

All but the muon and the neutron components are readily absorbed
by overburden such as building ceilings and passive shielding. Only if
there is very little overburden (<∼10 g/cm2 or so [100]) do pions and
protons need to be considered when estimating the production rate of
cosmogenic radioactivity.

Sensitive experiments are thus operated deep underground where
essentially only muons can penetrate. As shown in Fig. 29.7, the
muon intensity falls off rapidly with depth. Active detection systems,
capable of tagging events correlated in time with cosmic-ray activity,
are needed, depending on the overburden.

The muonic background is related to low-radioactivity techniques
insofar as photo-nuclear interactions with atomic nuclei can produce
long-lived radioactivity directly or indirectly via the creation of
neutrons. This happens at any overburden, however, at strongly depth
dependent rates. Muon bremsstrahlung, created in high-Z shielding
materials, contributes to the low energy background too. Active muon
detection systems are effective in reducing this background, but only
for activities with sufficiently short half-lives, allowing vetoing with
reasonable detector dead time.

Cosmogenic activation of detector components at the surface can
be an issue for low-background experiments. Proper management
of parts and materials above ground during manufacturing and
detector assembly minimizes the accumulation of long-lived activity.
Cosmogenic activation is most important for intermediate-Z materials
such as Cu and Fe. For the most demanding applications, metals are
stored and transported under sufficient shielding to stop the hadronic
component of the cosmic rays. Parts can be stored underground
for long periods before being used. Underground machine shops are
sometimes used to limit the duration of exposure at the surface. Some
experiments are even electro-forming copper underground.

35.6.6. Neutrons : Neutrons contribute to the background of low-
energy experiments in different ways: directly through nuclear recoil
in the detector medium, and indirectly, through the production of
radio-nuclides, capture γs and inelastic scattering inside the detector
and its components. The indirect mechanisms allow even remote
materials to contribute to the background by means of penetrating
γ radiation. Neutrons are thus an important source of low-energy
background. They are produced in different ways:
1. At the earth’s surface the flux of cosmic-ray secondary neutrons

is exceeded only by that of muons;
2. Energetic tertiary neutrons are produced by cosmic-ray muons by

nuclear spallation in the detector and laboratory walls;
3. In high-Z materials, often used in radiation shields, nuclear

capture of negative muons results in the emission of neutrons;
4. Natural radioactivity has a neutron component through sponta-

neous fission and (α, n)-reactions.
A calculation with the hadronic simulation code FLUKA [107],

using the known energy distribution of secondary neutrons at the
earth’s surface [110], yields a mass attenuation of 1.5 hg/cm2 in
concrete for secondary neutrons. In case energy-dependent neutron-
capture cross sections are known, such calculations can be used to
obtain the production rate of particular radio-nuclides.

At an overburden of only few meters water equivalent, neutron
production by muons becomes the dominant mechanism. Neutron
production rates are high in high-Z shielding materials. A high-Z
radiation shield, discussed earlier as being effective in reducing
background due to external radioactivity, thus acts as a source
for cosmogenic tertiary high-energy neutrons. Depending on the
overburden and the radioactivity content of the laboratory, there is
an optimal shielding thickness. Water shields, although bulky, are an
attractive alternative due to their low neutron production yield and
self-shielding.

Shields made from plastic or water are commonly used to reduce

the neutron flux. The shield is sometimes doped with a substance
having a high thermal neutron capture cross section (such as boron)
to absorb thermal neutrons more quickly. The hydrogen, contained in
these shields, serves as a target for elastic scattering, and is effective
in reducing the neutron energy. Neutrons from natural radioactivity
have relatively low energies and can be effectively suppressed by a
neutron shield. Ideally, such a neutron shield should be inside the lead
to be effective for tertiary neutrons. However, this is rarely done as it
increases the neutron production target (in form of the passive shield),
and the costs increase as the cube of the linear dimensions. An active
cosmic-ray veto is an effective solution, correlating a neutron with its
parent muon. This solution works best if the veto system is as far away
from the detector as feasible (outside the radiation shield) in order
to correlate as many background-producing muons with neutrons as
possible. The vetoed time after a muon hit needs to be sufficiently long
to assure muon bremsstrahlung and neutron-induced backgrounds are
sufficiently suppressed. An upper limit to the allowable veto period
is given by the veto-induced deadtime, which is related to the muon
hit rate on the veto detector. This consideration also constitutes the
limiting factor for the physical size of the veto system (besides the
cost). The background caused by neutron-induced radioactivity with
live-times exceeding the veto time cannot be addressed in this way.
Moving the detector deep underground, and thus reducing the muon
flux, is the only technique that addresses all sources of cosmogenic the
neutron background.
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36. Radioactivity and Radiation Protection

Revised October 2017 by S. Roesler and M. Silari (CERN).

36.1. Definitions [1,2,3]

It would be desirable if legal protection limits could be expressed in
directly measurable physical quantities. However, this does not allow
to quantify biological effects of the exposure of the human body to
ionizing radiation.

For this reason, protection limits are expressed in terms of so-called
protection quantities which, although calculable, are not measurable.
Protection quantities quantify the extent of exposure of the human
body to ionizing radiation from both whole and partial body external
irradiation and from intakes of radionuclides.

In order to demonstrate compliance with dose limits, so-called
operational quantities are typically used which aim at providing
conservative estimates of protection quantities. Often radiation
protection detectors used for individual and area monitoring are
calibrated in terms of operational quantities and, thus, these
quantities become “measurable”.

36.1.1. Physical quantities :

• Fluence, Φ (unit: 1/m2): The fluence is the quotient of the sum
of the particle trajectory lengths dl in the volume dV

Φ = dl/dV . (36.1)

It can also be expressed in terms of number of particles dN incident
upon a small sphere of cross-sectional area da

Φ = dN/da .

• Absorbed dose, D (unit: gray, 1 Gy=1 J/kg=100 rad): The
absorbed dose is the energy imparted by ionizing radiation in a volume
element of a specified material divided by the mass of this volume
element.

• Kerma, K (unit: gray): Kerma is the sum of the initial kinetic
energies of all charged particles liberated by indirectly ionizing
radiation in a volume element of the specified material divided by the
mass of this volume element.

• Linear energy transfer, L or LET (unit: J/m, often given in
keV/µm, 1 keV/µm≈ 1.602× 10−10 J/m): The linear energy transfer
is the mean energy, dE, lost by a charged particle owing to collisions
with electrons in traversing a distance dl in matter. Low-LET
radiation: X rays and gamma rays (accompanied by charged particles
due to interactions with the surrounding medium) or light charged
particles such as electrons that produce sparse ionizing events far
apart at a molecular scale (L < 10 keV/µm). High-LET radiation:
neutrons and heavy charged particles that produce ionizing events
densely spaced at a molecular scale (L > 10 keV/µm). While the
above LET definition refers to electronic stopping power only, at low
energy nuclear stopping power could be a significant fraction of the
total stopping power.

• Activity, A (unit: becquerel, 1 Bq=1/s=27 pCi): Activity is the
expectation value of the number of nuclear decays occurring in a given
quantity of material per unit time.

36.1.2. Protection quantities :

• Organ absorbed dose, DT (unit: gray): The mean absorbed
dose in an organ or tissue T of mass mT is defined as

DT =
1

mT

∫

mT

Ddm .

• Equivalent dose, HT (unit: sievert, 1 Sv=100 rem): The
equivalent dose HT in an organ or tissue T is equal to the sum
of the absorbed doses DT,R in the organ or tissue caused by
different radiation types R weighted with so-called radiation weighting
factors wR:

HT =
∑

R

wR ×DT,R . (36.2)

Table 36.1: Radiation weighting factors, wR.

Radiation type wR

Photons, electrons and muons 1

Neutrons, En < 1 MeV 2.5 + 18.2× exp[−(lnEn)
2/6]

1 MeV ≤ En ≤ 50 MeV 5.0 + 17.0× exp[−(ln(2En))
2/6]

En > 50 MeV 2.5 + 3.25× exp[−(ln(0.04En))
2/6]

Protons and charged pions 2

Alpha particles, fission

fragments, heavy ions 20

It expresses long-term risks (primarily cancer and leukemia) from
low-level chronic exposure. The values for wR recommended by
ICRP [2] are given in Table 36.1.

• Effective dose, E (unit: sievert): The sum of the equivalent
doses, weighted by the tissue weighting factors wT (

∑
T wT = 1) of

several organs and tissues T of the body that are considered to be
most sensitive [2], is called “effective dose”:

E =
∑

T

wT ×HT . (36.3)

36.1.3. Operational quantities :

• Dose equivalent, H (unit: sievert): The dose equivalent at a point
in tissue is given by:

H = D ×Q (36.4)

where D is the absorbed dose and Q is the quality factor at that
point. The quality factor at a point in tissue, is given by:

Q =
1

D

∫ ∞

L=0
Q(L)DLdL

where DL is the distribution of D in unrestricted linear energy transfer
L at the point of interest, and Q(L) is the quality factor as a function
of L. The integration is to be performed over DL, due to all charged
particles, excluding their secondary electrons.

• Ambient dose equivalent, H∗(10) (unit: sievert): The dose
equivalent at a point in a radiation field that would be produced by
the corresponding expanded and aligned field in a 30 cm diameter
sphere of unit density tissue (ICRU sphere) at a depth of 10 mm on
the radius vector opposing the direction of the aligned field. Ambient
dose equivalent is the operational quantity for area monitoring.

• Personal dose equivalent, Hp(d) (unit: sievert): The dose
equivalent in ICRU tissue at an appropriate depth, d, below a specified
point on the human body. The specified point is normally taken to
be where the individual dosimeter is worn. For the assessment of
effective dose, Hp(10) with a depth d = 10 mm is chosen, and for
the assessment of the dose to the skin and to the hands and feet the
personal dose equivalent, Hp(0.07), with a depth d = 0.07 mm, is used.
Personal dose equivalent is the operational quantity for individual
monitoring.

36.1.4. Dose conversion coefficients :

Dose conversion coefficients allow direct calculation of protection
or operational quantities from particle fluence and are functions of
particle type, energy and irradiation configuration. The most common
coefficients are those for effective dose and ambient dose equivalent.
The former are based on simulations in which the dose to organs
of anthropomorphic phantoms is calculated for approximate actual
conditions of exposure, such as irradiation of the front of the body
(antero-posterior irradiation) or isotropic irradiation.

Conversion coefficients from fluence to effective dose are given for
anterior-posterior irradiation and various particles in Fig. 36.1 [4].
For example, the effective dose from an anterior-posterior irradiation
in a field of 1-MeV neutrons with a fluence of 1 neutron per cm2

is about 290 pSv. In Monte Carlo simulations such coefficients allow
multiplication with fluence at scoring time such that effective dose to
a human body at the considered location is directly obtained.
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Figure 36.1: Fluence to effective dose conversion coefficients
for anterior-posterior irradiation and various particles [4].

36.2. Radiation levels [5]

• Natural background radiation: On a worldwide average, the
annual whole-body dose equivalent due to all sources of natural
background radiation ranges from 1.0 to 13 mSv (0.1–1.3 rem) with
an annual average of 2.4 mSv [6]. In certain areas values up to
50 mSv (5 rem) have been measured. A large fraction (typically more
than 50%) originates from inhaled natural radioactivity, mostly radon
and radon daughters. The latter can vary by more than one order of
magnitude: it is 0.1–0.2 mSv in open areas, 2 mSv on average in a
house and more than 20 mSv in poorly ventilated mines.

• Cosmic ray background radiation: At sea level, the whole-
body dose equivalent due to cosmic ray background radiation is
dominated by muons; at higher altitudes also nucleons contribute.
Dose equivalent rates range from less than 0.1 µSv/h at sea level to a
few µSv/h at aircraft altitudes. Details on cosmic ray fluence levels
are given in the Cosmic Rays section (Sec. 29 of this Review).

36.3. Health effects of ionizing radiation

Radiation can cause two types of health effects, deterministic and
stochastic:

• Deterministic effects are tissue reactions which cause injury to a
population of cells if a given threshold of absorbed dose is exceeded.
The severity of the reaction increases with dose. The quantity in use
for tissue reactions is the absorbed dose, D. When particles other than
photons and electrons (low-LET radiation) are involved, a Relative
Biological Effectiveness (RBE)-weighted dose may be used. The RBE
of a given radiation is the reciprocal of the ratio of the absorbed dose
of that radiation to the absorbed dose of a reference radiation (usually
X rays) required to produce the same degree of biological effect. It is
a complex quantity that depends on many factors such as cell type,
dose rate, fractionation, etc.

• Stochastic effects are malignant diseases and heritable effects for
which the probability of an effect occurring, but not its severity, is a
function of dose without threshold.

• Lethal dose: The whole-body dose from penetrating ionizing
radiation resulting in 50% mortality in 30 days (assuming no medical
treatment) is 2.5–4.5 Gy (250–450 rad)†, as measured internally on the
body longitudinal center line. The surface dose varies due to variable
body attenuation and may be a strong function of energy.

• Cancer induction: The cancer induction probability is about 5%
per Sv on average for the entire population [3].

• Recommended effective dose limits: The International
Commission on Radiological Protection (ICRP) recommends a limit
for radiation workers of 20 mSv effective dose per year averaged over
5 years, with the provision that the dose should not exceed 50 mSv in
any single year [3]. The limit in the EU-countries and Switzerland is

† RBE-weighted when necessary

20 mSv per year, in the U.S. it is 50 mSv per year (5 rem per year).
Many physics laboratories in the U.S. and elsewhere set lower limits.
The effective dose limit for general public is typically 1 mSv per year.

36.4. Prompt neutrons at accelerators

Neutrons dominate the particle environment outside thick shielding
(e.g., > 1 m of concrete) for high energy (> a few hundred MeV)
electron and hadron accelerators. In addition, for accelerators with
energies above about 10 GeV, muons contribute significantly at
small angles with regard to the beam, even behind several meters of
shielding. Another special case are synchrotron light sources where
particular care has to be taken to shield the very intense low-energy
photons extracted from the electron synchrotron into the experimental
areas. Due to its importance at high energy accelerators this section
focuses on prompt neutrons.

36.4.1. Electron accelerators :

At electron accelerators, neutrons are generated via photonuclear
reactions from bremsstrahlung photons. Neutron production takes
place above a threshold value which varies from 10 to 19 MeV for light
nuclei (with important exceptions, such as 2.23 MeV for deuterium
and 1.67 MeV for beryllium) and from 4 to 6 MeV for heavy nuclei.
It is commonly described by different mechanisms depending on the
photon energy: the giant dipole resonance interactions (from threshold
up to about 30 MeV, often the dominant process), the quasi-deuteron
effect (between 30 MeV and a few hundred MeV), the delta resonance
mechanism (between 200 MeV and a few GeV) and the vector meson
dominance model at higher energies.

The giant dipole resonance reaction consists in a collective
excitation of the nucleus, in which neutrons and protons oscillate in
the direction of the photon electric field. The oscillation is damped
by friction in a few cycles, with the photon energy being transferred
to the nucleus in a process similar to evaporation. Nucleons emitted
in the dipolar interaction have an anisotropic angular distribution,
with a maximum at 90

◦
, while those leaving the nucleus as a result

of evaporation are emitted isotropically with a Maxwellian energy
distribution described as [7]:

dN

dEn
=

En

T 2
e−En/T , (36.5)

where T is a nuclear ‘temperature’ (in units of MeV) characteristic
of the particular target nucleus and its excitation energy. For heavy
nuclei the ‘temperature’ generally lies in the range of T = 0.5–1.0
MeV. Neutron yields from semi-infinite targets per kW of electron
beam power are plotted in Fig. 36.2 as a function of the electron beam
energy [7].

While for thick targets neutron production is mainly due to
photonuclear interactions, for thin targets (thickness of fractions of
the radiation length) electronuclear interactions are the dominating
process.

Typical neutron energy spectra outside of concrete (80 cm thick,
2.35 g/cm3) and iron (40 cm thick) shields are shown in Fig. 36.3.
In order to compare these spectra to those caused by proton beams
(see below) the spectra are scaled by a factor of 100, which roughly
corresponds to the difference in the high energy hadronic cross sections
for photons and hadrons (e.g., the fine structure constant). The shape
of these spectra are generally characterized by a low-energy peak at
around 1 MeV (evaporation neutrons) and a high-energy shoulder at
around 70–80 MeV. In case of concrete shielding, the spectrum also
shows a pronounced peak at thermal neutron energies.

36.4.2. Proton accelerators :

At proton accelerators, neutron yields emitted per incident proton
by different target materials are roughly independent of proton energy
between 20 MeV and 1 GeV, and are given by the ratio C : Al : Cu-Fe :
Sn : Ta-Pb = 0.3 : 0.6 : 1.0 : 1.5 : 1.7 [10]. Above about 1 GeV, the
neutron yield is proportional to Em, where 0.80 ≤ m ≤ 0.85 [11].

Typical neutron energy spectra outside of concrete and iron
shielding are shown in Fig. 36.3. Here, the radiation fields are caused
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Figure 36.2: Neutron yields from semi-infinite targets per kW
of electron beam power, as a function of the electron beam
energy, disregarding target self-shielding [7].
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Figure 36.3: Neutron energy spectra calculated with the
FLUKA code [8,9] from 25 GeV proton and electron beams
on a thick copper target. Spectra are evaluated at 90◦ to the
beam direction behind 80 cm of concrete or 40 cm of iron. All
spectra are normalized per beam particle. In addition, spectra
for electron beam are multiplied by a factor of 100.

by a 25 GeV proton beam interacting with a thick copper target.
The comparison of these spectra with those for an electron beam of
the same energy reflects the difference in the hadronic cross sections
between photons and hadrons above a few 100 MeV. Differences
are increasing towards lower energies because of different interaction
mechanisms. Furthermore, the slight shift in energy above about
100 MeV follows from the fact that the energies of the interacting
photons are lower than 25 GeV. Apart from this the shapes of the two
spectra are similar.

The neutron-attenuation length is shown in Fig. 36.4 for concrete
and mono-energetic broad-beam conditions. As can be seen in the
figure it reaches a value of about 117 g/cm2 above 200 MeV. As the
cascade through thick shielding is carried by particles with energies
between about 100 MeV and 300 MeV (in this energy range non-elastic

cross sections are at minimum and are dominated by quasi-elastic
processes leading to low attenuation) this value is equal to the
equilibrium attenuation length for particles emitted at 90 degrees in
concrete.
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Figure 36.4: The variation of the attenuation length for
mono-energetic neutrons in concrete as a function of neutron
energy [10].

36.5. Photon sources

The dose equivalent rate in tissue (in mSv/h) from a gamma point
source emitting one photon of energy E (in MeV) per second at a
distance of 1 m is 4.6× 10−9 µen/ρE, where µen/ρ is the mass energy
absorption coefficient. The latter has a value of 0.029± 0.004 cm2/g
for photons in tissue over an energy range between 60 keV and 2 MeV
(see Ref. 12 for tabulated values).

Similarly, the dose equivalent rate in tissue (in mSv/h) at
the surface of a semi-infinite slab of uniformly activated material
containing 1 Bq/g of a gamma emitter of energy E (in MeV) is
2.9× 10−4Rµ E, where Rµ is the ratio of the mass energy absorption
coefficients of the photons in tissue and in the material.

36.6. Accelerator-induced radioactivity

Typical medium- and long-lived activation products in metallic
components of accelerators are 22Na, 46Sc, 48V, 51Cr, 54Mn, 55Fe,
59Fe, 56Co, 57Co, 58Co, 60Co, 63Ni and 65Zn. Gamma-emitting
nuclides dominate doses by external irradiation at longer decay times
(more than one day) while at short decay times β+ emitters are also
important (through photons produced by β+ annihilation). Due to
their short range, β− emitters are relevant, for example, only for
dose to the skin and eyes or for doses due to inhalation or ingestion.
Fig. 36.5 and Fig. 36.6 show the contributions of gamma and β+

emitters to the total dose rate at 12.4 cm distance to a copper
sample [13]. The sample was activated by the stray radiation field
created by a 120 GeV mixed hadron beam dumped in a copper
target during about 8 hours at intensities between 107 − 108 hadrons
per second. Typically, dose rates at a certain decay time are mainly
determined by radionuclides having a half-life of the order of the
decay time. Extended irradiation periods might be an exception to
this general rule as in this case the activity of long-lived nuclides can
build up sufficiently so that it dominates that one of short-lived even
at short cooling times.

Activation in concrete is dominated by 24Na (short decay times)
and 22Na (long decay times). Both nuclides can be produced either by
low-energy neutron reactions on the sodium-component in the concrete
or by spallation reactions on silicon, calcium and other constituents
such as aluminum. At long decay times nuclides of radiological interest
in activated concrete can also be 60Co, 152Eu, 154Eu and 134Cs, all
of which produced by (n,γ)-reactions with traces of natural cobalt,
europium and cesium, Thus, such trace elements might be important
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even if their content in concrete is only a few parts per million or less
by weight.

The explicit simulation of radionuclide production with general-
purpose Monte Carlo codes has become the most commonly applied
method to calculate induced radioactivity and its radiological
consequences [13]( see also Sec. 36.8). They are complemented by
analytical codes based on folding particle fluence spectra with nuclide
production cross sections. ActiWiz [14,15] is an example of such
a code targeting the domain of radiological characterization and
material optimization. It allows for calculating nuclide inventories
by convolution of fluence spectra with nuclide production data for
85 chemical elements and arbitrary compounds from threshold to an
energy of 100 TeV.
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Figure 36.5: Contribution of individual gamma-emitting
nuclides to the total dose rate at 12.4 cm distance to an activated
copper sample [13].
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36.7. Radiation protection instrumentation

The capacity to distinguish and measure the high-LET (mostly
neutrons) and the low-LET components (photons, electrons, muons)
of the radiation field at workplaces is of primary importance
to evaluate the exposure of personnel. At proton machines the
prompt dose equivalent outside a shield is mainly due to neutrons,
with some contribution from photons and, to a minor extent,
charged particles. At high-energy electron accelerators the dominant
stray radiation during operation consists of high-energy neutrons,
because the shielding is normally thick enough to absorb most of the
bremsstrahlung photons. Most of the personnel exposure at accelerator
facilities is often received during maintenance interventions, and is
due to gamma/beta radiation coming from residual radioactivity in
accelerator components.

Radiation detectors used both for radiation surveys and area
monitoring are normally calibrated in ambient dose equivalent H∗(10).

36.7.1. Neutron detectors :

• Rem counters: A rem counter [16] is a portable detector consisting
of a thermal neutron counter embedded in a polyethylene moderator,
with a response function that approximately follows the curve of
the conversion coefficients from neutron fluence to H∗(10) over a
wide energy range. Conventional rem counters provide a response
to neutrons up to approximately 10-15 MeV, extended-range units
are heavier as they include a high-A converter but correctly measure
H∗(10) up to several hundred MeV [17].

• Bonner Sphere Spectrometer (BSS): A BSS [18] is made up
of a thermal neutron detector at the centre of moderating spheres of
different diameters made of polyethylene (PE) or a combination of PE
and a high-A material to enhance its response to high energy neutrons
(similar to rem counters). Each sphere has a different response
function versus neutron energy, and the neutron energy, at which
the sensitivity peaks, increases with sphere diameter. The energy
resolution of the system is rather low but satisfactory for radiation
protection purposes. The neutron spectrum is obtained by unfolding
the experimental counts of the BSS with its response matrix by a
computer code that is often based on an iterative algorithm. BSS exist
in active (using 3He or BF3 proportional counters or 6LiI scintillators)
and passive versions (using CR-39 track detectors or LiF), for use e.g.
in strongly pulsed fields. With 3He counters the discrimination with
respect to gamma rays and noise is excellent.

• Bubble detectors: A bubble detector [19] is a dosimeter based on
a super-heated emulsion (super-heated droplets suspended in a gel)
contained in a vial and acting as a continuously sensitive, miniature
bubble chamber. The total number of bubbles evolved from the
radiation-induced nucleation of drops gives an integrated measure of
the total neutron exposure. Various techniques exist to record and
count the bubbles, e.g., visual inspection, automated reading with
video cameras or acoustic counting. Bubble detectors are insensitive
to low-LET radiation. Super-heated emulsions are used as personal,
area and environmental dosimeters, as well as neutron spectrometers.

• Track etched detectors: Track etched detectors (TEDs) [20] are
based on the preferential dissolution of suitable, mostly insulator,
materials along the damage trails of charged particles of sufficiently
high-energy deposition density. The detectors are effectively not
sensitive to radiation which deposits the energy through the
interactions of particles with low LET. These dosimeters are generally
able to determine neutron ambient dose equivalent down to around
100 µSv. They are used both as personal dosimeters and for area
monitoring, e.g., in BSS.

36.7.2. Photon detectors [21] :

• GM counters: Geiger Müller (GM) counters are low cost devices
and simple to operate. They work in pulse mode and since they only
count radiation-induced events, any spectrometric information is lost.
In general they are calibrated in terms of air kerma, for instance in
a 60Co field. The response of GM counters to photons is constant
within 15% for energies up to 2 MeV and shows considerable energy
dependence above.

• Ionization chambers: Ionization chambers are gas-filled detectors
used both as hand-held instruments (e.g., for radiation surveys)
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and environmental monitors. They are normally operated in current
mode although pulse-mode operation is also possible. They possess a
relatively flat response to a wide range of X- and gamma ray energies
(typically from 10 keV to several MeV), can measure radiation over
a wide intensity range and are capable of discriminating between the
beta and gamma components of a radiation field (by use of, e.g., a
beta window). Pressurized ion chambers (filled, e.g., with Ar or H
gas to several tens of bars) are used for environmental monitoring
applications. They have good sensitivity to neutrons and charged
hadrons in addition to low LET radiation (gammas and muons), with
the response function to the former being strongly non-linear with
energy.

• Scintillators: Scintillation-based detectors are used in radiation
protection as hand-held probes and in fixed installations, e.g., portal
monitors. A scintillation detector or counter is obtained coupling a
scintillator to an electronic light sensor such as a photomultiplier tube
(PMT), a photodiode or a silicon photomultiplier (SiPM). There is a
wide range of scintillating materials, inorganic (such as CsI and BGO),
organic or plastic; they find application in both photon dosimetry and
spectrometry.

36.7.3. Operation in pulsed radiation fields :

There are many practical situations with particle accelerators used
for scientific, industrial and medical applications where the time
structure of the stray radiation limits the use of active monitors.
Pulsed neutron and gamma fields may be present because of beam
losses at, e.g., targets, collimators and beam dumps. The time
duration of a single burst can range from a few ns to about 1 ms
with a typical repetition rate in the range 0.1–100Hz. Conventional
detectors generally suffer from dead time effects and have strong
limitations in the measurements of pulsed fields. Severe under response
has been observed, e.g., in commercial rem counters, with tremendous
underestimation of the ambient dose equivalent, H∗(10), up to three
orders of magnitude. The common techniques used to correct the
response of radiation detectors which include dead-time corrections
operate properly in a steady-state radiation field, whereas it is much
more difficult to cope with dead time losses in a pulsed radiation
field of unknown time structure and burst dose. Generally speaking
the monitoring instrumentation must be chosen on the basis of the
knowledge of the radiation field. Detectors with specifically designed
electronics must be employed in pulsed field conditions, such as the
recently developed LUPIN [22] in place of conventional rem counters
for neutrons. If real-time monitoring is not required, passive detectors
or dosimeters such as TEDs mentioned in Sec. 36.7.1 or LiF mentioned
in Sec. 36.7.4 can be employed, as they are insensitive to the time
structure of the radiation.

36.7.4. Personal dosimeters :

Personal dosimeters, calibrated in Hp(10), are worn by persons
exposed to ionizing radiation for professional reasons to record the dose
received. They are typically passive detectors, either film, track etched
detectors, 6Li/7Li-based dosimeters (e.g. LiF), optically stimulated
luminescence (OSL) or radiophotoluminescence detectors (RPL) but
semi-active dosimeters using miniaturized ion-chambers also exist.

Electronic personal dosimeters are small active units for on-line
monitoring of individual exposure, designed to be worn on the body.
They can give an alarm on both the integral dose received or dose rate
once a pre-set threshold is exceeded.

36.8. Monte Carlo codes for radiation protection
studies

The use of general-purpose particle interaction and transport Monte
Carlo codes is often the most accurate and efficient choice for assessing
radiation protection quantities at accelerators. Due to the vast spread
of such codes to all areas of particle physics and the associated
extensive benchmarking with experimental data, the modeling has
reached an unprecedented accuracy. Furthermore, most codes allow
the user to simulate all aspects of a high energy particle cascade in
one and the same run: from the first interaction of a TeV nucleus
over the transport and re-interactions (hadronic and electromagnetic)

of the produced secondaries, to detailed nuclear fragmentation, the
calculation of radioactive decays and even of the electromagnetic
shower caused by the radiation from such decays. A brief account of
the codes most widely used for radiation protection studies at high
energy accelerators is given in the following.

• FLUKA [8,9]: FLUKA is a general-purpose particle interaction
and transport code. It comprises all features needed for radiation
protection, such as detailed hadronic and nuclear interaction models
up to 10 PeV, full coupling between hadronic and electromagnetic
processes and numerous variance reduction options. The latter include
weight windows, region importance biasing, and leading particle,
interaction, and decay length biasing (among others). The capabilities
of FLUKA are unique for studies of induced radioactivity, especially
with regard to nuclide production, decay, and transport of residual
radiation. In particular, particle cascades by prompt and residual
radiation are simulated in parallel based on the microscopic models
for nuclide production and a solution of the Bateman equations for
activity build-up and decay.

• GEANT4 [23,24,25]: GEANT4 is an object-oriented toolkit
consisting of a kernel that provides the framework for particle trans-
port, including tracking, geometry description, material specifications,
management of events and interfaces to external graphics systems.
The kernel also provides interfaces to physics processes. It allows the
user to freely select the physics models that best serve the particular
application needs. Implementations of interaction models exist over
an extended range of energies, from optical photons and thermal
neutrons to high-energy interactions required for the simulation of
accelerator and cosmic ray experiments. To facilitate the use of vari-
ance reduction techniques, general-purpose biasing methods such as
importance biasing, weight windows, and a weight cut-off method have
been introduced directly into the toolkit. Other variance reduction
methods, such as leading particle biasing for hadronic processes, come
with the respective physics packages.

• MARS15 [26,27,28]: The MARS15 code system is a set of Monte
Carlo programs for the simulation of hadronic and electromagnetic
cascades. It covers a wide energy range: 1 keV to 100 TeV for
muons, charged hadrons, heavy ions and electromagnetic showers;
and 0.00215 eV to 100 TeV for neutrons. Hadron-nucleus interactions
as well as practically all other strong, weak and electromagnetic
interactions in the entire energy range can be simulated either
inclusively or exclusively. MARS15 uses ENDFB-VII nuclear data to
handle interactions of neutrons with energies below 14 MeV. Several
variance reduction techniques, such as weight windows, particle
splitting, and Russian roulette, are available in MARS15. A tagging
module allows one to tag the origin of a given signal for source term
or sensitivity analyses. The geometry module allows either a basic
solid body representation option or a ROOT-based powerful engine.
Further features of MARS15 include a MAD-MARS merge for a
convenient creation of accelerator models and multi-turn tracking and
cascade simulation in accelerator and beamline lattices.

• MCNP6 [29,30]: MCNP6 is the latest version of the Monte
Carlo N-Particle transport (MCNP) family of neutron interaction
and transport codes and, therefore, features one of the most
comprehensive and detailed descriptions of the related physical
processes. It transports 37 different particle types, including ions
and electromagnetic particles. The neutron interaction and transport
modules use standard evaluated data libraries mixed with physics
models where such libraries are not available. The transport is
continuous in energy. MCNP6 contains one of the most powerful
implementations of variance reduction techniques. Spherical mesh
weight windows can be created by a generator in order to focus the
simulation time on certain spatial regions of interest. In addition, a
more generalized phase space biasing is also possible through energy-
and time-dependent weight windows. Other biasing options include
pulse-height tallies with variance reduction and criticality source
convergence acceleration.

• PHITS [31,32]: The Particle and Heavy-Ion Transport code System
PHITS was among the first general-purpose codes to simulate the
transport and interactions of heavy ions in a wide energy range, from
10 MeV/nucleon to 100 GeV/nucleon. It is based on the high-energy
hadron transport code NMTC/JAM that was extended to heavy ions.
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The transport of low-energy neutrons employs cross sections from
evaluated nuclear data libraries such as ENDF and JENDL below 20
MeV. Electromagnetic interactions are simulated based on the ITS
code in the energy range between 1 keV and 100 MeV for electrons
and positrons and between 1 keV and 100 GeV for photons. Several
variance reduction techniques, including weight windows and region
importance biasing, are available in PHITS.
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37. Commonly Used Radioactive Sources

Table 37.1. Revised August 2017 by D.E. Groom (LBNL) and
R.B. Firestone (LBNL).

Particle Photon

Type of Energy Emission EnergyEmission
Nuclide Half-life decay (MeV) prob. (MeV) prob.
22
11Na 2.603 y β+, EC 0.546 90% 0.511 Annih.

1.275 100%
51
24Cr 27.70 d EC 0.340 10%

V K x rays 100%
Neutrino calibration source

54
25Mn 0.855 y EC 0.835 100%

Cr K x rays 26%
55
26Fe 2.747 y EC Mn K x rays:

0.00590 24.4%
0.00649 2.86%

57
27Co 271.8 d EC 0.014 9%

0.122 86%
0.136 11%
Fe K x rays 58%

60
27Co 5.271 y β− 0.317 99.9% 1.173 99.9%

1.333 99.9%
68
32Ge 271.0 d EC Ga K x rays 42%
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

→ 68
31Ga 67.8 m β+, EC 1.899 90% 0.511 Annih.

1.077 3%
90
38Sr 28.8 y β− 0.546 100%
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

→ 90
39Y 2.67 d β− 2.279 100%

106
44Ru 371.5 d β− 0.039 100%
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

→ 106
45Rh 30.1 s β− 3.546 79% 0.512 21%

0.622 10%
109
48Cd 1.265 y EC 0.063 e− 42% 0.088 3.7%

0.084 e− 44% Ag K x rays 100%
113
50Sn 115.1 d EC 0.364 e− 28% 0.392 65%

0.388 e− 6% In K x rays 97%
137
55Cs 30.0 y β− 0.514 94% 0.662 85%

1.176 6%
133
56Ba 10.55 y EC 0.045 e− 50% 0.081 33%

0.075 e− 6% 0.356 62%
Cs K x rays 121%

152
63Eu 13.537 y EC 72.1% Many γ’s

β− 27.9% 0.1218–1.408MeV
207
83Bi 32.9 y EC 0.481 e− 2% 0.569 98%

0.975 e− 7% 1.063 75%
1.047 e− 2% 1.770 7%

Pb K x rays 78%
228
90Th 1.912 y 6α: 5.341 to 8.785 0.239 44%

3β−: 0.334 to 2.246 0.583 31%
2.614 36%

(→224
88Ra → 220

86Rn → 216
84Po → 212

82Pb → 212
83Bi → 212

84Po)
( 361 d 55.8 s 0.148 s 10.64 h 60.54 m 300 ns)

241
95Am 432.6 y α 5.443 13% 0.060 36%

5.486 84% Np L x rays 38%
241
95Am/Be 432.6 y 6× 10−5 neutrons (〈E〉 = 4 MeV) and

4× 10−5γ’s (4.43 MeV from 9
4 Be(α, n))

244
96Cm 18.11 y α 5.763 24% Pu L x rays ∼ 9%

5.805 76%
252
98Cf 2.645 y α (97%) 6.076 15%

6.118 82%
Fission (3.1%): Average 7.8 γ’s/fission; 〈Eγ〉 = 0.88 MeV

≈ 4 neutrons/fission; 〈En〉 = 2.14 MeV

“Emission probability” is the probability per decay of a given emission;
because of cascades these may total more than 100%. Only principal
emissions are listed. EC means electron capture, and e− means
monoenergetic internal conversion (Auger) electron. The intensity of
0.511 MeV e+e− annihilation photons depends upon the number of
stopped positrons. Endpoint β± energies are listed. In some cases
when energies are closely spaced, the γ-ray values are approximate
weighted averages. Radiation from short-lived daughter isotopes is
included where relevant.

Half-lives, energies, and intensities may be found in www-

pub.iaea.org/books/IAEABooks/7551/Update-of-X-Ray-and-

Gamma-Ray-Decay-Data-Standards-for-Detector-Calibration-

and-Other-Applications IAEA (2007)
or Nuclear Data Sheets (www.journals.elsevier.com/nuclear-
data-sheets) (2007).

Neutron sources: See e.g. “Neutron Calibration Sources in the Daya
Bay Experiment,” J. Liu et al., Nuclear Instrum. Methods A797, 260
(2005) (arXiv.1504.07911).

51
24Cr calibration of neutrino detectors is discussed in e.g. J.N. Ab-
durashitov et al. [SAGE Collaboration], Phys. Rev. C59, 2246 (1999).
The use of 75

34Se and other isotopes has also been proposed.
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Revised September 2015 by G. Cowan (RHUL).

38.1. General [1–8]

An abstract definition of probability can be given by considering
a set S, called the sample space, and possible subsets A,B, . . . , the
interpretation of which is left open. The probability P is a real-valued
function defined by the following axioms due to Kolmogorov [9]:

1. For every subset A in S, P (A) ≥ 0;

2. For disjoint subsets (i.e., A ∩B = ∅), P (A ∪B) = P (A) + P (B);

3. P (S) = 1.

In addition, one defines the conditional probability P (A|B) (read as P
of A given B) as

P (A|B) =
P (A ∩B)

P (B)
. (38.1)

From this definition and using the fact that A ∩ B and B ∩A are the
same, one obtains Bayes’ theorem,

P (A|B) =
P (B|A)P (A)

P (B)
. (38.2)

From the three axioms of probability and the definition of conditional
probability, one obtains the law of total probability,

P (B) =
∑

i

P (B|Ai)P (Ai) , (38.3)

for any subset B and for disjoint Ai with ∪iAi = S. This can be
combined with Bayes’ theorem (Eq. (38.2)) to give

P (A|B) =
P (B|A)P (A)∑
i P (B|Ai)P (Ai)

, (38.4)

where the subset A could, for example, be one of the Ai.

The most commonly used interpretation of the elements of
the sample space are outcomes of a repeatable experiment. The
probability P (A) is assigned a value equal to the limiting frequency
of occurrence of A. This interpretation forms the basis of frequentist
statistics.

The elements of the sample space might also be interpreted as
hypotheses, i.e., statements that are either true or false, such as ‘The
mass of the W boson lies between 80.3 and 80.5 GeV.’ Upon repetition
of a measurement, however, such statements are either always true
or always false, i.e., the corresponding probabilities in the frequentist
interpretation are either 0 or 1. Using subjective probability, however,
P (A) is interpreted as the degree of belief that the hypothesis A
is true. Subjective probability is used in Bayesian (as opposed to
frequentist) statistics. Bayes’ theorem can be written

P (theory|data) ∝ P (data|theory)P (theory) , (38.5)

where ‘theory’ represents some hypothesis and ‘data’ is the outcome of
the experiment. Here P (theory) is the prior probability for the theory,
which reflects the experimenter’s degree of belief before carrying out
the measurement, and P (data|theory) is the probability to have gotten
the data actually obtained, given the theory, which is also called the
likelihood.

Bayesian statistics provides no fundamental rule for obtaining
the prior probability, which may depend on previous measurements,
theoretical prejudices, etc. Once this has been specified, however,
Eq. (38.5) tells how the probability for the theory must be modified
in the light of the new data to give the posterior probability,
P (theory|data). As Eq. (38.5) is stated as a proportionality, the
probability must be normalized by summing (or integrating) over all
possible hypotheses.

38.2. Random variables

A random variable is a numerical characteristic assigned to an
element of the sample space. In the frequency interpretation of proba-

bility, it corresponds to an outcome of a repeatable experiment. Let x
be a possible outcome of an observation. If x can take on any value
from a continuous range, we write f(x; θ)dx as the probability that
the measurement’s outcome lies between x and x+ dx. The function
f(x; θ) is called the probability density function (p.d.f.), which may
depend on one or more parameters θ. If x can take on only discrete
values (e.g., the non-negative integers), then we use f(x; θ) to denote
the probability to find the value x. In the following the term p.d.f. is
often taken to cover both the continuous and discrete cases, although
technically the term density should only be used in the continuous
case.

The p.d.f. is always normalized to unity. Both x and θ may have
multiple components and are then often written as vectors. If θ is
unknown, we may wish to estimate its value from a given set of
measurements of x; this is a central topic of statistics (see Sec. 39).

The cumulative distribution function F (a) is the probability that
x ≤ a:

F (a) =

∫ a

−∞
f(x) dx . (38.6)

Here and below, if x is discrete-valued, the integral is replaced by a
sum. The endpoint a is expressly included in the integral or sum. Then
0 ≤ F (x) ≤ 1, F (x) is nondecreasing, and P (a < x ≤ b) = F (b)−F (a).
If x is discrete, F (x) is flat except at allowed values of x, where it has
discontinuous jumps equal to f(x).

Any function of random variables is itself a random variable, with
(in general) a different p.d.f. The expectation value of any function
u(x) is

E[u(x)] =

∫ ∞

−∞
u(x) f(x) dx , (38.7)

assuming the integral is finite. The expectation value is linear,
i.e., for any two functions u and v of x and constants c1 and c2,
E[c1u+ c2v] = c1E[u] + c2E[v].

The nth moment of a random variable x is

αn ≡ E[xn] =

∫ ∞

−∞
xnf(x) dx , (38.8a)

and the nth central moment of x (or moment about the mean, α1) is

mn ≡ E[(x− α1)
n] =

∫ ∞

−∞
(x− α1)

nf(x) dx . (38.8b)

The most commonly used moments are the mean µ and variance σ2:

µ ≡ α1 , (38.9a)

σ2 ≡ V [x] ≡ m2 = α2 − µ2 . (38.9b)

The mean is the location of the “center of mass” of the p.d.f., and
the variance is a measure of the square of its width. Note that
V [cx+k] = c2V [x]. It is often convenient to use the standard deviation
of x, σ, defined as the square root of the variance.

Any odd moment about the mean is a measure of the skewness
of the p.d.f. The simplest of these is the dimensionless coefficient of
skewness γ1 = m3/σ

3.

The fourth central moment m4 provides a convenient measure of the
tails of a distribution. For the Gaussian distribution (see Sec. 38.4),
one has m4 = 3σ4. The kurtosis is defined as γ2 = m4/σ

4 − 3, i.e.,
it is zero for a Gaussian, positive for a leptokurtic distribution with
longer tails, and negative for a platykurtic distribution with tails that
die off more quickly than those of a Gaussian.

The quantile xα is the value of the random variable x at which
the cumulative distribution is equal to α. That is, the quantile is the
inverse of the cumulative distribution function, i.e., xα = F−1(α). An
important special case is the median, xmed, defined by F (xmed) = 1/2,
i.e., half the probability lies above and half lies below xmed.
(More rigorously, xmed is a median if P (x ≥ xmed) ≥ 1/2 and
P (x ≤ xmed) ≥ 1/2. If only one value exists, it is called ‘the median.’)

Under a monotonic change of variable x → y(x), the quantiles
of a distribution (and hence also the median) obey yα = y(xα). In
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general the expectation value and mode (most probable value) of a
distribution do not, however, transform in this way.

Let x and y be two random variables with a joint p.d.f. f(x, y).
The marginal p.d.f. of x (the distribution of x with y unobserved) is

f1(x) =

∫ ∞

−∞
f(x, y) dy , (38.10)

and similarly for the marginal p.d.f. f2(y). The conditional p.d.f. of y
given fixed x (with f1(x) 6= 0) is defined by f3(y|x) = f(x, y)/f1(x),
and similarly f4(x|y) = f(x, y)/f2(y). From these, we immediately
obtain Bayes’ theorem (see Eqs. (38.2) and (38.4)),

f4(x|y) =
f3(y|x)f1(x)

f2(y)
=

f3(y|x)f1(x)∫
f3(y|x′)f1(x′) dx′

. (38.11)

The mean of x is

µx =

∫ ∞

−∞

∫ ∞

−∞
x f(x, y) dx dy =

∫ ∞

−∞
x f1(x) dx , (38.12)

and similarly for y. The covariance of x and y is

cov[x, y] = E[(x− µx)(y − µy)] = E[xy]− µxµy . (38.13)

A dimensionless measure of the covariance of x and y is given by the
correlation coefficient,

ρxy = cov[x, y]/σxσy , (38.14)

where σx and σy are the standard deviations of x and y. It can be
shown that −1 ≤ ρxy ≤ 1.

Two random variables x and y are independent if and only if

f(x, y) = f1(x)f2(y) . (38.15)

If x and y are independent, then ρxy = 0; the converse is not necessarily
true. If x and y are independent, E[u(x)v(y)] = E[u(x)]E[v(y)], and
V [x+ y] = V [x] + V [y]; otherwise, V [x+ y] = V [x] + V [y] + 2cov[x, y],
and E[uv] does not necessarily factorize.

Consider a set of n continuous random variables x = (x1, . . . , xn)
with joint p.d.f. f(x), and a set of n new variables y = (y1, . . . , yn),
related to x by means of a function y(x) that is one-to-one, i.e., the
inverse x(y) exists. The joint p.d.f. for y is given by

g(y) = f(x(y))|J | , (38.16)

where |J | is the absolute value of the determinant of the square matrix
Jij = ∂xi/∂yj (the Jacobian determinant). If the transformation from
x to y is not one-to-one, the x-space must be broken into regions
where the function y(x) can be inverted, and the contributions to
g(y) from each region summed.

Given a set of functions y = (y1, . . . , ym) with m < n, one
can construct n − m additional independent functions, apply
the procedure above, then integrate the resulting g(y) over the
unwanted yi to find the marginal distribution of those of interest.

For a one-to-one transformation of discrete random variables,
the probability is obtained by simple substitution; no Jacobian is
necessary because in this case f is a probability rather than a
probability density. If the transformation is not one-to-one, then one
must sum the probabilities for all values of the original variable that
contribute to a given value of the transformed variable. If f depends
on a set of parameters θ, a change to a different parameter set η(θ) is
made by simple substitution; no Jacobian is used.

38.3. Characteristic functions

The characteristic function φ(u) associated with the p.d.f. f(x) is
essentially its Fourier transform, or the expectation value of eiux:

φ(u) = E
[
eiux

]
=

∫ ∞

−∞
eiuxf(x) dx . (38.17)

Once φ(u) is specified, the p.d.f. f(x) is uniquely determined and vice
versa; knowing one is equivalent to the other. Characteristic functions
are useful in deriving a number of important results about moments
and sums of random variables.

It follows from Eqs. (38.8a) and (38.17) that the nth moment of a
random variable x that follows f(x) is given by

i−n dnφ

dun

∣∣∣∣
u=0

=

∫ ∞

−∞
xnf(x) dx = αn . (38.18)

Thus it is often easy to calculate all the moments of a distribution
defined by φ(u), even when f(x) cannot be written down explicitly.

If the p.d.f.s f1(x) and f2(y) for independent random variables
x and y have characteristic functions φ1(u) and φ2(u), then the
characteristic function of the weighted sum ax + by is φ1(au)φ2(bu).
The rules of addition for several important distributions (e.g., that
the sum of two Gaussian distributed variables also follows a Gaussian
distribution) easily follow from this observation.

Let the (partial) characteristic function corresponding to the
conditional p.d.f. f2(x|z) be φ2(u|z), and the p.d.f. of z be f1(z). The
characteristic function after integration over the conditional value is

φ(u) =

∫
φ2(u|z)f1(z) dz . (38.19)

Suppose we can write φ2 in the form

φ2(u|z) = A(u)eig(u)z . (38.20)

Then
φ(u) = A(u)φ1(g(u)) . (38.21)

The cumulants (semi-invariants) κn of a distribution with
characteristic function φ(u) are defined by the relation

φ(u) = exp

[ ∞∑

n=1

κn
n!

(iu)n

]
= exp

(
iκ1u− 1

2κ2u
2 + . . .

)
. (38.22)

The values κn are related to the moments αn and mn. The first few
relations are

κ1 = α1 (= µ, the mean)

κ2 = m2 = α2 − α2
1 (= σ2, the variance)

κ3 = m3 = α3 − 3α1α2 + 2α3
1 . (38.23)

38.4. Commonly used probability distributions

Table 38.1 gives a number of common probability density functions
and corresponding characteristic functions, means, and variances.
Further information may be found in Refs. [1– 8], [10], and [11],
which has particularly detailed tables. Monte Carlo techniques for
generating each of them may be found in our Sec. 40.4 and in Ref. [10].
We comment below on all except the trivial uniform distribution.

38.4.1. Binomial and multinomial distributions :

A random process with exactly two possible outcomes which occur
with fixed probabilities is called a Bernoulli process. If the probability
of obtaining a certain outcome (a “success”) in an individual trial is p,
then the probability of obtaining exactly r successes (r = 0, 1, 2, . . . , N)
in N independent trials, without regard to the order of the successes
and failures, is given by the binomial distribution f(r;N, p) in
Table 38.1. If r and s are binomially distributed with parameters
(Nr, p) and (Ns, p), then t = r+ s follows a binomial distribution with
parameters (Nr +Ns, p).

If there are are m possible outcomes for each trial having
probabilities p1, p2, . . . , pm, then the joint probability to find
r1, r2, . . . , rm of each outcome after a total of N independent trials
is given by the multinomial distribution as shown in Table 38.1. We
can regard outcome i as “success” and all the rest as “failure”, so
individually, any of the ri follow a binomial distribution for N trials
and a success probability pi.
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38.4.2. Poisson distribution :

The Poisson distribution f(n; ν) gives the probability of finding
exactly n events in a given interval of x (e.g., space or time) when
the events occur independently of one another and of x at an average
rate of ν per the given interval. The variance σ2 equals ν. It is the
limiting case p → 0, N → ∞, Np = ν of the binomial distribution.
The Poisson distribution approaches the Gaussian distribution for
large ν.

For example, a large number of radioactive nuclei of a given type
will result in a certain number of decays in a fixed time interval. If this
interval is small compared to the mean lifetime, then the probability
for a given nucleus to decay is small, and thus the number of decays
in the time interval is well modeled as a Poisson variable.

Table 38.1. Some common probability density functions, with corresponding characteristic functions and
means and variances. In the Table, Γ(k) is the gamma function, equal to (k − 1)! when k is an integer;

1F1 is the confluent hypergeometric function of the 1st kind [11].

Probability density function Characteristic
Distribution f (variable; parameters) function φ(u) Mean Variance

Uniform f(x; a, b) =

{
1/(b− a) a ≤ x ≤ b

0 otherwise

eibu − eiau

(b − a)iu

a+ b

2

(b− a)2

12

Binomial f(r;N, p) =
N !

r!(N − r)!
prqN−r (q + peiu)N Np Npq

r = 0, 1, 2, . . . , N ; 0 ≤ p ≤ 1 ; q = 1− p

Multinomial f(r1, . . . , rm;N, p1, . . . , pm) =
N !

r1! · · · rm!
p
r1
1 · · · prmm

(∑m
k=1 pke

iuk
)N E[ri] =

Npi

cov[ri, rj ] =

Npi(δij − pj)
rk = 0, 1, 2, . . . , N ; 0 ≤ pk ≤ 1 ;

∑m
k=1 rk = N

Poisson f(n; ν) =
νne−ν

n!
; n = 0, 1, 2, . . . ; ν > 0 exp[ν(eiu − 1)] ν ν

Normal
(Gaussian)

f(x;µ, σ2) =
1

σ
√
2π

exp(−(x− µ)2/2σ2) exp(iµu− 1
2σ

2u2) µ σ2

−∞ < x < ∞ ; −∞ < µ < ∞ ; σ > 0

Multivariate
Gaussian

f(x;µ, V ) =
1

(2π)n/2
√
|V |

exp
[
iµ · u− 1

2u
TV u

]
µ Vjk

× exp
[
−1

2 (x− µ)TV −1(x− µ)
]

−∞ < xj < ∞; − ∞ < µj < ∞; |V | > 0

Log-normal f(x;µ, σ2) =
1

σ
√
2π

1

x
exp(−(ln x− µ)2/2σ2) —

exp(µ+ σ2/2) exp(2µ+ σ2)

×[exp(σ2)− 1]
0 < x < ∞ ; −∞ < µ < ∞ ; σ > 0

χ2 f(z;n) =
zn/2−1e−z/2

2n/2Γ(n/2)
; z ≥ 0 (1− 2iu)−n/2 n 2n

Student’s t f(t;n) =
1√
nπ

Γ[(n+ 1)/2]

Γ(n/2)

(
1 +

t2

n

)−(n+1)/2

—
0

for n > 1

n/(n− 2)

for n > 2
−∞ < t < ∞ ; n not required to be integer

Gamma f(x;λ, k) =
xk−1λke−λx

Γ(k)
; 0 ≤ x < ∞ ; (1− iu/λ)−k k/λ k/λ2

k not required to be integer

Beta f(x;α, β) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1

1F1(α;α + β; iu)
α

α+ β

αβ

(α+ β)2(α+ β + 1)
0 ≤ x ≤ 1

38.4.3. Normal or Gaussian distribution :

The normal (or Gaussian) probability density function f(x;µ, σ2)
given in Table 38.1 has mean E[x] = µ and variance V [x] = σ2.
Comparison of the characteristic function φ(u) given in Table 38.1
with Eq. (38.22) shows that all cumulants κn beyond κ2 vanish; this is
a unique property of the Gaussian distribution. Some other properties
are:

P (x in range µ± σ) = 0.6827,

P (x in range µ± 0.6745σ) = 0.5,

E[|x− µ|] =
√
2/πσ = 0.7979σ,

half-width at half maximum =
√
2 ln 2σ = 1.177σ.
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For a Gaussian with µ = 0 and σ2 = 1 (the standard normal) the
cumulative distribution, often written Φ(x), is related to the error
function erf by

F (x; 0, 1) ≡ Φ(x) = 1
2

[
1 + erf(x/

√
2)
]
. (38.24)

The error function and standard Gaussian are tabulated in many
references (e.g., Ref. [11,12]) and are available in software packages
such as ROOT [13]. For a mean µ and variance σ2, replace x by
(x − µ)/σ. The probability of x in a given range can be calculated
with Eq. (39.70).

For x and y independent and normally distributed, z = ax + by
follows a normal p.d.f. f(z; aµx + bµy, a

2σ2x + b2σ2y); that is, the
weighted means and variances add.

The Gaussian derives its importance in large part from the central
limit theorem:

If independent random variables x1, . . . , xn are distributed according
to any p.d.f. with finite mean and variance, then the sum y =

∑n
i=1 xi

will have a p.d.f. that approaches a Gaussian for large n. If the p.d.f.s
of the xi are not identical, the theorem still holds under somewhat
more restrictive conditions. The mean and variance are given by the
sums of corresponding terms from the individual xi. Therefore, the
sum of a large number of fluctuations xi will be distributed as a
Gaussian, even if the xi themselves are not.

For a set of n Gaussian random variables x with means µ and
covariances Vij = cov[xi, xj ], the p.d.f. for the one-dimensional
Gaussian is generalized to

f(x;µ, V ) =
1

(2π)n/2
√
|V |

exp
[
− 1

2 (x− µ)TV −1(x− µ)
]
, (38.25)

where the determinant |V | must be greater than 0. For diagonal V
(independent variables), f(x;µ, V ) is the product of the p.d.f.s of n
Gaussian distributions.

For n = 2, f(x;µ, V ) is

f(x1, x2; µ1, µ2, σ1, σ2, ρ) =
1

2πσ1σ2
√
1− ρ2

× exp

{ −1

2(1− ρ2)

[
(x1 − µ1)

2

σ21

2ρ(x1 − µ1)(x2 − µ2)

σ1σ2
+

(x2 − µ2)
2

σ22

]}
.

(38.26)
The characteristic function for the multivariate Gaussian is

φ(u;µ, V ) = exp
[
iµ · u− 1

2u
TV u

]
. (38.27)

If the components of x are independent, then Eq. (38.27) is the
product of the characteristic functions of n Gaussians.

For an n-dimensional Gaussian distribution for x with mean µ and
covariance matrix V , the marginal distribution for any single xi is
is a one-dimensional Gaussian with mean µi and variance Vii. The
equation (x− a)T V −1(x− a) = C, where C is any positive number,
defines an n-dimensional ellipse centered about a. If a is equal to
the mean µ, then C is a random variable obeying the χ2 distribution
for n degrees of freedom, which is discussed in the following section.
The probability that x lies outside the ellipsoid for a given value
of C is given by 1 − Fχ2(C;n), where Fχ2 is the cumulative χ2

distribution. This may be read from Fig. 39.1. For example, the “s-
standard-deviation ellipsoid” occurs at C = s2. For the two-variable
case (n = 2), the point x lies outside the one-standard-deviation
ellipsoid with 61% probability. The use of these ellipsoids as indicators
of probable error is described in Sec. 39.4.2.2; the validity of those
indicators assumes that µ and V are correct.

38.4.4. Log-normal distribution :

If a random variable y follows a Gaussian distribution with mean
µ and variance σ2, then x = ey follows a log-normal distribution, as
given in Table 38.1. As a consequence of the central limit theorem
described in Sec. 38.4.3, the distribution of the product of a large
number of positive random variables approaches a log-normal. It is
bounded below by zero and is thus well suited for modeling quantities
that are intrinsically non-negative such as an efficiency. One can
implement a log-normal model for a random variable x by defining
y = lnx so that y follows a Gaussian distribution.

38.4.5. χ2 distribution :

If x1, . . . , xn are independent Gaussian random variables, the sum
z =

∑n
i=1(xi − µi)

2/σ2i follows the χ2 p.d.f. with n degrees of freedom,

which we denote by χ2(n). More generally, for n correlated Gaussian
variables as components of a vector X with covariance matrix V ,
z = XTV −1X follows χ2(n) as in the previous section. For a set of
zi, each of which follows χ2(ni),

∑
zi follows χ2(

∑
ni). For large n,

the χ2 p.d.f. approaches a Gaussian with a mean and variance given
by µ = n and σ2 = 2n, respectively (here the formulae for µ and σ2

are valid for all n).

The χ2 p.d.f. is often used in evaluating the level of compatibility
between observed data and a hypothesis for the p.d.f. that the data
might follow. This is discussed further in Sec. 39.3.2 on significance
tests.

38.4.6. Student’s t distribution :

Suppose that y and x1, . . . , xn are independent and Gaussian
distributed with mean 0 and variance 1. We then define

z =

n∑

i=1

x2i and t =
y√
z/n

. (38.28)

The variable z thus follows a χ2(n) distribution. Then t is distributed
according to Student’s t distribution with n degrees of freedom,
f(t;n), given in Table 38.1.

If defined through gamma functions as in Table 38.1, the parameter
n is not required to be an integer. As n → ∞, the distribution
approaches a Gaussian, and for n = 1 it is a Cauchy or Breit–Wigner
distribution.

As an example, consider the sample mean x =
∑

xi/n and the
sample variance s2 =

∑
(xi − x)2/(n − 1) for normally distributed

xi with unknown mean µ and variance σ2. The sample mean
has a Gaussian distribution with a variance σ2/n, so the variable

(x − µ)/
√
σ2/n is normal with mean 0 and variance 1. The quantity

(n− 1)s2/σ2 is independent of this and follows χ2(n− 1). The ratio

t =
(x− µ)/

√
σ2/n√

(n− 1)s2/σ2(n− 1)
=

x− µ√
s2/n

(38.29)

is distributed as f(t;n − 1). The unknown variance σ2 cancels, and
t can be used to test the hypothesis that the true mean is some
particular value µ.

38.4.7. Gamma distribution :

For a process that generates events as a function of x (e.g.,
space or time) according to a Poisson distribution, the distance in
x from an arbitrary starting point (which may be some particular
event) to the kth event follows a gamma distribution, f(x;λ, k). The
Poisson parameter µ is λ per unit x. The special case k = 1 (i.e.,
f(x;λ, 1) = λe−λx) is called the exponential distribution. A sum of k′

exponential random variables xi is distributed as f(
∑

xi;λ, k
′).

The parameter k is not required to be an integer. For λ = 1/2 and
k = n/2, the gamma distribution reduces to the χ2(n) distribution.

38.4.8. Beta distribution :

The beta distribution describes a continuous random variable
x in the interval [0, 1]. By scaling and translation one can easily
generalize it to have arbitrary endpoints. In Bayesian inference about
the parameter p of a binomial process, if the prior p.d.f. is a beta
distribution f(p;α, β) then the observation of r successes out of N
trials gives a posterior beta distribution f(p; r+α,N−r+β) (Bayesian
methods are discussed further in Sec. 39). The uniform distribution is
a beta distribution with α = β = 1.
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This chapter gives an overview of statistical methods used in
high-energy physics. In statistics, we are interested in using a given
sample of data to make inferences about a probabilistic model, e.g., to
assess the model’s validity or to determine the values of its parameters.
There are two main approaches to statistical inference, which we may
call frequentist and Bayesian.

In frequentist statistics, probability is interpreted as the frequency
of the outcome of a repeatable experiment. The most important tools
in this framework are parameter estimation, covered in Section 39.2,
statistical tests, discussed in Section 39.3, and confidence intervals,
which are constructed so as to cover the true value of a parameter with
a specified probability, as described in Section 39.4.2. Note that in
frequentist statistics one does not define a probability for a hypothesis
or for the value of a parameter.

In Bayesian statistics, the interpretation of probability is more
general and includes degree of belief (called subjective probability).
One can then speak of a probability density function (p.d.f.) for a
parameter, which expresses one’s state of knowledge about where its
true value lies. Bayesian methods provide a natural means to include
additional information, which in general may be subjective; in fact
they require prior probabilities for the hypotheses (or parameters)
in question, i.e., the degree of belief about the parameters’
values, before carrying out the measurement. Using Bayes’ theorem
(Eq. (38.4)), the prior degree of belief is updated by the data from the
experiment. Bayesian methods for interval estimation are discussed in
Sections 39.4.1 and 39.4.2.4.

For many inference problems, the frequentist and Bayesian ap-
proaches give similar numerical values, even though they answer
different questions and are based on fundamentally different inter-
pretations of probability. In some important cases, however, the
two approaches may yield very different results. For a discussion
of Bayesian vs. non-Bayesian methods, see references written by a
statistician [1], by a physicist [2], or the detailed comparison in
Ref. [3].

39.1. Fundamental concepts

Consider an experiment whose outcome is characterized by one or
more data values, which we can write as a vector x. A hypothesis H is
a statement about the probability for the data, often written P (x|H).
(We will usually use a capital letter for a probability and lower case for
a probability density. Often the term p.d.f. is used loosely to refer to
either a probability or a probability density.) This could, for example,
define completely the p.d.f. for the data (a simple hypothesis), or it
could specify only the functional form of the p.d.f., with the values of
one or more parameters not determined (a composite hypothesis).

If the probability P (x|H) for data x is regarded as a function
of the hypothesis H , then it is called the likelihood of H , usually
written L(H). Often the hypothesis is characterized by one or more
parameters θ, in which case L(θ) = P (x|θ) is called the likelihood
function.

In some cases one can obtain at least approximate frequentist
results using the likelihood evaluated only with the data obtained. In
general, however, the frequentist approach requires a full specification
of the probability model P (x|H) both as a function of the data x and
hypothesis H .

In the Bayesian approach, inference is based on the posterior
probability for H given the data x, which represents one’s degree of
belief that H is true given the data. This is obtained from Bayes’
theorem (38.4), which can be written

P (H |x) = P (x|H)π(H)∫
P (x|H ′)π(H ′) dH ′ . (39.1)

Here P (x|H) is the likelihood for H , which depends only on the data
actually obtained. The quantity π(H) is the prior probability for H ,
which represents one’s degree of belief for H before carrying out the
measurement. The integral in the denominator (or sum, for discrete
hypotheses) serves as a normalization factor. If H is characterized by

a continuous parameter θ then the posterior probability is a p.d.f.
p(θ|x). Note that the likelihood function itself is not a p.d.f. for θ.

39.2. Parameter estimation

Here we review point estimation of parameters, first with an overview
of the frequentist approach and its two most important methods,
maximum likelihood and least squares, treated in Sections 39.2.2 and
39.2.3. The Bayesian approach is outlined in Sec. 39.2.5.

An estimator θ̂ (written with a hat) is a function of the data used to
estimate the value of the parameter θ. Sometimes the word ‘estimate’
is used to denote the value of the estimator when evaluated with
given data. There is no fundamental rule dictating how an estimator
must be constructed. One tries, therefore, to choose that estimator
which has the best properties. The most important of these are (a)
consistency, (b) bias, (c) efficiency, and (d) robustness.

(a) An estimator is said to be consistent if the estimate θ̂ converges
in probability (see Ref. [3]) to the true value θ as the amount of
data increases. This property is so important that it is possessed by
all commonly used estimators.

(b) The bias, b = E[ θ̂ ] − θ, is the difference between the expectation
value of the estimator and the true value of the parameter.
The expectation value is taken over a hypothetical set of similar
experiments in which θ̂ is constructed in the same way. When b = 0,
the estimator is said to be unbiased. The bias depends on the chosen
metric, i.e., if θ̂ is an unbiased estimator of θ, then θ̂ 2 is not in general
an unbiased estimator for θ2.

(c) Efficiency is the ratio of the minimum possible variance for any

estimator of θ to the variance V [ θ̂ ] of the estimator θ̂. For the case
of a single parameter, under rather general conditions the minimum
variance is given by the Rao-Cramér-Fréchet bound,

σ2min =

(
1 +

∂b

∂θ

)2

/I(θ) , (39.2)

where

I(θ) = E

[(
∂ lnL

∂θ

)2
]
= −E

[
∂2 lnL

∂θ2

]
(39.3)

is the Fisher information, L is the likelihood, and the operator E[] in
(39.3) is the expectation value with respect to the data. For the final
equality to hold, the range of allowed data values must not depend on
θ.

The mean-squared error,

MSE = E[(θ̂ − θ)2] = V [θ̂] + b2 , (39.4)

is a measure of an estimator’s quality which combines bias and
variance.

(d) Robustness is the property of being insensitive to departures
from assumptions in the p.d.f., e.g., owing to uncertainties in the
distribution’s tails.

It is not in general possible to optimize simultaneously for all the
measures of estimator quality described above. For example, there is
in general a trade-off between bias and variance. For some common
estimators, the properties above are known exactly. More generally,
it is possible to evaluate them by Monte Carlo simulation. Note that
they will in general depend on the unknown θ.

39.2.1. Estimators for mean, variance, and median :

Suppose we have a set of n independent measurements, x1, . . . , xn,
each assumed to follow a p.d.f. with unknown mean µ and unknown
variance σ2 (the measurements do not necessarily have to follow a
Gaussian distribution). Then

µ̂ =
1

n

n∑

i=1

xi (39.5)

σ̂2 =
1

n− 1

n∑

i=1

(xi − µ̂)2 (39.6)
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are unbiased estimators of µ and σ2. The variance of µ̂ is σ2/n and

the variance of σ̂2 is

V
[
σ̂2

]
=

1

n

(
m4 − n− 3

n− 1
σ4

)
, (39.7)

where m4 is the 4th central moment of x (see Eq. (38.8b)). For
Gaussian distributed xi, this becomes 2σ4/(n− 1) for any n ≥ 2, and
for large n the standard deviation of σ̂ is σ/

√
2n. For any n and

Gaussian xi, µ̂ is an efficient estimator for µ, and the estimators µ̂

and σ̂2 are uncorrelated. Otherwise the arithmetic mean (39.5) is not
necessarily the most efficient estimator; this is discussed further in
Sec. 8.7 of Ref. [4].

If σ2 is known, it does not improve the estimate µ̂, as can be seen
from Eq. (39.5); however, if µ is known, one can substitute it for µ̂ in
Eq. (39.6) and replace n − 1 by n to obtain an estimator of σ2 still
with zero bias but smaller variance. If the xi have different, known
variances σ2i , then the weighted average

µ̂ =
1

w

n∑

i=1

wixi , (39.8)

where wi = 1/σ2i and w =
∑

i wi, is an unbiased estimator for µ with a
smaller variance than an unweighted average. The standard deviation
of µ̂ is 1/

√
w.

As an estimator for the median xmed, one can use the value x̂med
such that half the xi are below and half above (the sample median).
If there are an even number of observations and the sample median
lies between two observed values, the estimator is set by convention
to their arithmetic average. If the p.d.f. of x has the form f(x − µ)
and µ is both mean and median, then for large n the variance of the
sample median approaches 1/[4nf2(0)], provided f(0) > 0. Although
estimating the median can often be more difficult computationally
than the mean, the resulting estimator is generally more robust, as it
is insensitive to the exact shape of the tails of a distribution.

39.2.2. The method of maximum likelihood :

Suppose we have a set of measured quantities x and the likelihood
L(θ) = P (x|θ) for a set of parameters θ = (θ1, . . . , θN ). The
maximum likelihood (ML) estimators for θ are defined as the values
that give the maximum of L. Because of the properties of the
logarithm, it is usually easier to work with lnL, and since both are
maximized for the same parameter values θ, the ML estimators can
be found by solving the likelihood equations,

∂ lnL

∂θi
= 0 , i = 1, . . . , N . (39.9)

Often the solution must be found numerically. Maximum likelihood
estimators are important because they are unbiased and efficient
asymptotically (i.e., for large data samples), under quite general
conditions, and the method has a wide range of applicability.

In general the likelihood function is obtained from the probability
of the data under assumption of the parameters. An important special
case is when the data consist of i.i.d. (independent and identically
distributed) values. Here one has a set of n statistically independent
quantities x = (x1, . . . , xn), where each component follows the same
p.d.f. f(x;θ). In this case the joint p.d.f. of the data sample factorizes
and the likelihood function is

L(θ) =

n∏

i=1

f(xi;θ) . (39.10)

In this case the number of events n is regarded as fixed. If however
the probability to observe n events itself depends on the parameters
θ, then this dependence should be included in the likelihood. For
example, if n follows a Poisson distribution with mean µ and the
independent x values all follow f(x;θ), then the likelihood becomes

L(θ) =
µn

n!
e−µ

n∏

i=1

f(xi;θ) . (39.11)

Equation (39.11) is often called the extended likelihood (see, e.g.,
Refs. [6–8]). If µ is given as a function of θ, then including the
probability for n given θ in the likelihood provides additional
information about the parameters. This therefore leads to a reduction
in their statistical uncertainties and in general changes their estimated
values.

In evaluating the likelihood function, it is important that any
normalization factors in the p.d.f. that involve θ be included. However,
we will only be interested in the maximum of L and in ratios of L
at different values of the parameters; hence any multiplicative factors
that do not involve the parameters that we want to estimate may be
dropped, including factors that depend on the data but not on θ.

Under a one-to-one change of parameters from θ to η, the
ML estimators θ̂ transform to η(θ̂). That is, the ML solution is
invariant under change of parameter. However, other properties of
ML estimators, in particular the bias, are not invariant under change
of parameter.

The inverse V −1 of the covariance matrix Vij = cov[θ̂i, θ̂j ] for a set
of ML estimators can be estimated by using

(V̂ −1)ij = − ∂2 lnL

∂θi∂θj

∣∣∣∣
θ̂

. (39.12)

For finite samples, however, Eq. (39.12) can result in a misestimation
of the variances. In the large sample limit (or in a linear model with
Gaussian data), L has a Gaussian form and lnL is (hyper)parabolic.
In this case, s times the standard deviations σi of the estimators for
the parameters can be obtained from the hypersurface defined by the
θ such that

lnL(θ) = lnLmax − s2/2 , (39.13)

where lnLmax is the value of lnL at the solution point (compare
with Eq. (39.73)). The minimum and maximum values of θi on the
hypersurface then give an approximate s-standard deviation confidence
interval for θi (see Section 39.4.2.2).

39.2.2.1. ML with binned data:

If the total number of data values xi, (i = 1, . . . , ntot), is small, the
unbinned maximum likelihood method, i.e., use of Equation (39.10)
(or (39.11) for extended ML), is preferred since binning can only
result in a loss of information, and hence larger statistical errors for
the parameter estimates. If the sample is large, it can be convenient
to bin the values in a histogram with N bins, so that one obtains a
vector of data n = (n1, . . . , nN ) with expectation values µ = E[n] and
probabilities f(n;µ). Suppose the mean values µ can be determined
as a function of a set of parameters θ. Then one may maximize the
likelihood function based on the contents of the bins.

As mentioned in Sec. 39.2.2, the total number of events ntot =
∑

i ni
can be regarded either as fixed or as a random variable. If it is fixed,
the histogram follows a multinomial distribution,

fM(n;θ) =
ntot!

n1! · · ·nN !
p
n1
1 · · · pnNN , (39.14)

where we assume the probabilities pi are given functions of the
parameters θ. The distribution can be written equivalently in terms
of the expected number of events in each bin, µi = ntotpi. If the ni
are regarded as independent and Poisson distributed, then the data
are instead described by a product of Poisson probabilities,

fP(n;θ) =

N∏

i=1

µ
ni
i

ni!
e−µi , (39.15)

where the mean values µi are given functions of θ. The total
number of events ntot thus follows a Poisson distribution with mean
µtot =

∑
i µi.

When using maximum likelihood with binned data, one can find
the ML estimators and at the same time obtain a statistic usable for
a test of goodness-of-fit (see Sec. 39.3.2). Maximizing the likelihood
L(θ) = fM/P(n;θ) is equivalent to maximizing the likelihood ratio

λ(θ) = fM/P(n;θ)/f(n; µ̂), where in the denominator f(n;µ) is a
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model with an adjustable parameter for each bin, µ = (µ1, . . . , µN ),
and the corresponding estimators are µ̂ = (n1, . . . , nN ). Equivalently
one often minimizes the quantity −2 lnλ(θ). For independent Poisson
distributed ni this is [9]

−2 lnλ(θ) = 2

N∑

i=1

[
µi(θ)− ni + ni ln

ni
µi(θ)

]
, (39.16)

where for bins with ni = 0, the last term in (39.16) is zero. The
expression (39.16) without the terms µi − ni also gives −2 lnλ(θ) for
multinomially distributed ni, i.e., when the total number of entries is
regarded as fixed. In the limit of zero bin width, minimizing (39.16)
is equivalent to maximizing the unbinned extended likelihood function
(39.11); in the corresponding multinomial case without the µi − ni
terms one obtains Eq. (39.10).

A smaller value of −2 lnλ(θ̂) corresponds to better agreement
between the data and the hypothesized form of µ(θ). The value of

−2 lnλ(θ̂) can thus be translated into a p-value as a measure of
goodness-of-fit, as described in Sec. 39.3.2. Assuming the model is
correct, then according to Wilks’ theorem [10], for sufficiently large
µi and provided certain regularity conditions are met, the minimum
of −2 lnλ as defined by Eq. (39.16) follows a χ2 distribution (see, e.g.,
Ref. [9]) . If there are N bins and m fitted parameters, then the
number of degrees of freedom for the χ2 distribution is N −m if the
data are treated as Poisson-distributed, and N −m − 1 if the ni are
multinomially distributed.

Suppose the ni are Poisson-distributed and the overall normalization
µtot =

∑
i µi is taken as an adjustable parameter, so that µi =

µtotpi(θ), where the probability to be in the ith bin, pi(θ), does not
depend on µtot. Then by minimizing Eq. (39.16), one obtains that the
area under the fitted function is equal to the sum of the histogram
contents, i.e.,

∑
i µ̂i =

∑
i ni. This is a property not possessed by the

estimators from the method of least squares (see, e.g., Sec. 39.2.3 and
Ref. [8]) .

39.2.2.2. Frequentist treatment of nuisance parameters:

Suppose we want to determine the values of parameters θ using a
set of measurements x described by a probability model Px(x|θ). In
general the model is not perfect, which is to say it can not provide
an accurate description of the data even at the most optimal point of
its parameter space. As a result, the estimated parameters can have a
systematic bias.

One can improve the model by including in it additional parameters.
That is, Px(x|θ) is replaced by a more general model Px(x|θ,ν),
which depends on parameters of interest θ and nuisance parameters
ν. The additional parameters are not of intrinsic interest but must be
included for the model to be accurate for some point in the enlarged
parameter space.

Although including additional parameters may eliminate or at least
reduce the effect of systematic uncertainties, their presence will result
in increased statistical uncertainties for the parameters of interest.
This occurs because the estimators for the nuisance parameters and
those of interest will in general be correlated, which results in an
enlargement of the contour defined by Eq. (39.13).

To reduce the impact of the nuisance parameters one often
tries to constrain their values by means of control or calibration
measurements, say, having data y. For example, some components of
y could represent estimates of the nuisance parameters, often from
separate experiments. Suppose the measurements y are statistically
independent from x and are described by a model Py(y|ν). The joint
model for both x and y is in this case therefore the product of the
probabilities for x and y, and thus the likelihood function for the full
set of parameters is

L(θ,ν) = Px(x|θ,ν)Py(y|ν) . (39.17)

Note that in this case if one wants to simulate the experiment by
means of Monte Carlo, both the primary and control measurements,
x and y, must be generated for each repetition under assumption of
fixed values for the parameters θ and ν.

Using all of the parameters (θ,ν) in Eq. (39.13) to find the
statistical errors in the parameters of interest θ is equivalent to using
the profile likelihood, which depends only on θ. It is defined as

Lp(θ) = L(θ, ̂̂ν(θ)), (39.18)

where the double-hat notation indicates the profiled values of the
parameters ν, defined as the values that maximize L for the specified
θ. The profile likelihood is discussed further in Section 39.3.2.1 in
connection with hypothesis tests.

39.2.3. The method of least squares :

The method of least squares (LS) coincides with the method of
maximum likelihood in the following special case. Consider a set of N
independent measurements yi at known points xi. The measurement
yi is assumed to be Gaussian distributed with mean µ(xi;θ) and
known variance σ2i . The goal is to construct estimators for the
unknown parameters θ. The log-likelihood function contains the sum
of squares

χ2(θ) = −2 lnL(θ) + constant =

N∑

i=1

(yi − µ(xi;θ))
2

σ2i
. (39.19)

The parameter values that maximize L are the same as those which
minimize χ2.

The minimum of the chi-square function in Equation (39.19) defines

the least-squares estimators θ̂ for the more general case where the
yi are not Gaussian distributed as long as they are independent.
If they are not independent but rather have a covariance matrix
Vij = cov[yi, yj ], then the LS estimators are determined by the
minimum of

χ2(θ) = (y − µ(θ))T V −1(y − µ(θ)) , (39.20)

where y = (y1, . . . , yN ) is the (column) vector of measurements, µ(θ)
is the corresponding vector of predicted values, and the superscript T
denotes the transpose. If the yi are not Gaussian distributed, then the
LS and ML estimators will not in general coincide.

Often one further restricts the problem to the case where µ(xi;θ)
is a linear function of the parameters, i.e.,

µ(xi;θ) =

m∑

j=1

θjhj(xi) . (39.21)

Here the hj(x) are m linearly independent functions, e.g.,

1, x, x2, . . . , xm−1 or Legendre polynomials. We require m < N
and at least m of the xi must be distinct.

Minimizing χ2 in this case with m parameters reduces to solving a
system of m linear equations. Defining Hij = hj(xi) and minimizing

χ2 by setting its derivatives with respect to the θi equal to zero gives
the LS estimators,

θ̂ = (HTV −1H)−1HTV −1y ≡ Dy . (39.22)

The covariance matrix for the estimators Uij = cov[θ̂i, θ̂j ] is given by

U = DVDT = (HTV −1H)−1 , (39.23)

or equivalently, its inverse U−1 can be found from

(U−1)ij =
1

2

∂2χ2

∂θi∂θj

∣∣∣∣
θ=θ̂

=

N∑

k,l=1

hi(xk)(V
−1)klhj(xl) . (39.24)

The LS estimators can also be found from the expression

θ̂ = Ug , (39.25)

where the vector g is defined by

gi =
N∑

j,k=1

yjhi(xk)(V
−1)jk . (39.26)
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For the case of uncorrelated yi, for example, one can use (39.25) with

(U−1)ij =

N∑

k=1

hi(xk)hj(xk)

σ2k
, (39.27)

gi =
N∑

k=1

ykhi(xk)

σ2k
. (39.28)

Expanding χ2(θ) about θ̂, one finds that the contour in parameter
space defined by

χ2(θ) = χ2(θ̂) + 1 = χ2
min + 1 (39.29)

has tangent planes located at approximately plus-or-minus-one
standard deviation σ

θ̂
from the LS estimates θ̂.

In constructing the quantity χ2(θ) one requires the variances or,
in the case of correlated measurements, the covariance matrix. Often
these quantities are not known a priori and must be estimated from
the data. An important example is where the measured value yi
represents the event count in a histogram bin. If, for example, yi
represents a Poisson variable, for which the variance is equal to the
mean, then one can either estimate the variance from the predicted
value, µ(xi;θ), or from the observed number itself, yi. In the first
option, the variances become functions of the parameters, and as a
result the estimators may need to be found numerically. The second
option can be undefined if yi is zero, and for small yi, the variance
will be poorly estimated. In either case, one should constrain the
normalization of the fitted curve to the correct value, i.e., one should
determine the area under the fitted curve directly from the number
of entries in the histogram (see Ref. [8], Section 7.4). As noted in
Sec. 39.2.2.1, this issue is avoided when using the method of extended
maximum likelihood with binned data by minimizing Eq. (39.16). In
that case if the expected number of events µtot does not depend on
the other fitted parameters θ, then its extended ML estimator is equal
to the observed total number of events.

As the minimum value of the χ2 represents the level of agreement
between the measurements and the fitted function, it can be used for
assessing the goodness-of-fit; this is discussed further in Section 39.3.2.

39.2.4. Parameter estimation with constraints :

In some applications one is interested in using a set of measured
quantities y = (y1, . . . , yN ) to estimate a set of parameters θ =
(θ1, . . . , θM ) subject to a number of constraints. For example, one
may have measured coordinates from two tracks, and one wishes
to estimate their momentum vectors subject to the constraint that
the tracks have a common vertex. The parameters can also include
momenta of undetected particles such as neutrinos, as long as the
constraints from conservation of energy and momentum and from
known masses of particles involved in the reaction chain provide
enough information for these quantities to be inferred.

A set of K constraints can be given in the form of equations

ck(θ) = 0 , k = 1, . . . ,K . (39.30)

In some problems it may be possible to define a new set of parameters
η = (η1, . . . , ηL) with L = M −K such that every point in η-space
automatically satisfies the constraints. If this is possible then the
problem reduces to one of estimating η with, e.g., maximum likelihood
or least squares and then transforming the estimators back into
θ-space.

In many cases it may be difficult or impossible to find an appropriate
transformation η(θ). Suppose that the parameters are determined
through minimizing an objective function such as χ2(θ) in the method
of least squares. Here one may enforce the constraints by finding the
stationary points of the Lagrange function

L(θ,λ,y) = χ2(θ,y) +
K∑

k=1

λkck(θ) (39.31)

with respect to both the parameters θ and a set of Lagrange multipliers
λ = (λ1, . . . , λK). Combining the parameters and Lagrange multipliers

into an (M +K)-component vector γ = (θ1, . . . , θM , λ1, . . . , λK), the
solutions for γ, i.e., the estimators γ̂, are found (e.g., numerically)
from the system of equations

Fi(γ,y) ≡
∂L
∂γi

= 0 , i = 1, . . . ,M +K . (39.32)

To obtain the covariance matrix of the estimated parameters one can
find solutions γ̃ corresponding to the expectation values of the data
〈y〉 and expand Fi(γ̂,y) to first order about these values. This gives
(see, e.g., Sec. 11.6 of Ref. [8]) linearized approximations for the
estimators, γ̂(y) ≈ γ̃ + C(y − 〈y〉), where the matrix C = −A−1B,
and A and B are given by

Aij =

[
∂Fi

∂γj

]

γ̃,〈y〉
and Bij =

[
∂Fi

∂yj

]

γ̃,〈y〉
. (39.33)

In practice the values 〈y〉 and corresponding solutions γ̃ are estimated
using the data from the actual measurement. Using this approximation
for γ̂(y), one can find the covariance matrix Uij = cov[γ̂i, γ̂j ] of the
the estimators for the γi in terms of that of the data Vij = cov[yi, yj ]
using error propagation (cf. Eqs. (39.42) and (39.43)),

U = CV CT . (39.34)

The upper-left M × M block of the matrix U gives the covariance
matrix for the estimated parameters cov[θ̂i, θ̂j ]. If the parameters
are estimated using the method of least squares, then the number
of degrees of freedom for the distribution of the minimized χ2 is
increased by the number of constraints, i.e., it becomes N −M +K.
Further details can be found in, e.g., Ch. 7 of Ref. [31].

39.2.5. The Bayesian approach :

In the frequentist methods discussed above, probability is associated
only with data, not with the value of a parameter. This is no longer
the case in Bayesian statistics, however, which we introduce in this
section. For general introductions to Bayesian statistics see, e.g.,
Refs. [26–29].

Suppose the outcome of an experiment is characterized by a vector
of data x, whose probability distribution depends on an unknown
parameter (or parameters) θ that we wish to determine. In Bayesian
statistics, all knowledge about θ is summarized by the posterior p.d.f.
p(θ|x), whose integral over any given region gives the degree of belief
for θ to take on values in that region, given the data x. It is obtained
by using Bayes’ theorem,

p(θ|x) = P (x|θ)π(θ)∫
P (x|θ′)π(θ′) dθ′ , (39.35)

where P (x|θ) is the likelihood function, i.e., the joint p.d.f. for the
data viewed as a function of θ, evaluated with the data actually
obtained in the experiment, and π(θ) is the prior p.d.f. for θ. Note
that the denominator in Eq. (39.35) serves to normalize the posterior
p.d.f. to unity.

As it can be difficult to report the full posterior p.d.f. p(θ|x),
one would usually summarize it with statistics such as the mean (or
median) value, and covariance matrix. In addition one may construct
intervals with a given probability content, as is discussed in Sec. 39.4.1
on Bayesian interval estimation.

39.2.5.1. Priors:

Bayesian statistics supplies no unique rule for determining the prior
π(θ); this reflects the analyst’s subjective degree of belief (or state
of knowledge) about θ before the measurement was carried out. For
the result to be of value to the broader community, whose members
may not share these beliefs, it is important to carry out a sensitivity
analysis, that is, to show how the result changes under a reasonable
variation of the prior probabilities.

One might like to construct π(θ) to represent complete ignorance
about the parameters by setting it equal to a constant. A problem
here is that if the prior p.d.f. is flat in θ, then it is not flat for a
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nonlinear function of θ, and so a different parametrization of the
problem would lead in general to a non-equivalent posterior p.d.f.

For the special case of a constant prior, one can see from Bayes’
theorem (39.35) that the posterior is proportional to the likelihood,
and therefore the mode (peak position) of the posterior is equal to the
ML estimator. The posterior mode, however, will change in general
upon a transformation of parameter. One may use as the Bayesian
estimator a summary statistic other than the mode, such as the
median, which is invariant under parameter transformation. But this
will not in general coincide with the ML estimator.

The difficult and subjective nature of encoding personal knowledge
into priors has led to what is called objective Bayesian statistics,
where prior probabilities are based not on an actual degree of belief
but rather derived from formal rules. These give, for example, priors
which are invariant under a transformation of parameters, or ones
which result in a maximum gain in information for a given set of
measurements. For an extensive review see, e.g., [30].

Objective priors do not in general reflect degree of belief, but they
could in some cases be taken as possible, although perhaps extreme,
subjective priors. The posterior probabilities as well therefore do
not necessarily reflect a degree of belief. However one may regard
investigating a variety of objective priors to be an important part
of the sensitivity analysis. Furthermore, use of objective priors with
Bayes’ theorem can be viewed as a recipe for producing estimators or
intervals which have desirable frequentist properties.

An important procedure for deriving objective priors is due to
Jeffreys. According to Jeffreys’ rule one takes the prior as

π(θ) ∝
√

det(I(θ)) , (39.36)

where

Iij(θ) = −E

[
∂2 lnP (x|θ)

∂θi∂θj

]
(39.37)

is the Fisher information matrix. One can show that the Jeffreys
prior leads to inference that is invariant under a transformation
of parameters. One should note that the Jeffreys prior does not
in general correspond to one’s degree of belief about the value of
a parameter. As examples, the Jeffreys prior for the mean µ of a
Gaussian distribution is a constant, and for the mean of a Poisson
distribution one finds π(µ) ∝ 1/

√
µ.

Neither the constant nor 1/
√
µ priors can be normalized to unit

area and are therefore said to be improper. This can be allowed
because the prior always appears multiplied by the likelihood function,
and if the likelihood falls to zero sufficiently quickly then one may
have a normalizable posterior density.

An important type of objective prior is the reference prior due to
Bernardo and Berger [32]. To find the reference prior for a given
problem one considers the Kullback-Leibler divergence Dn[π, p] of the
posterior p(θ|x) relative to a prior π(θ), obtained from a set of i.i.d.
data x = (x1, . . . , xn):

Dn[π, p] =

∫
p(θ|x) ln p(θ|x)

π(θ)
dθ . (39.38)

This is effectively a measure of the gain in information provided by
the data. The reference prior is chosen so that the expectation value
of this information gain is maximized for the limiting case of n → ∞,
where the expectation is computed with respect to the marginal
distribution of the data,

p(x) =

∫
p(x|θ)π(θ) dθ . (39.39)

For a single, continuous parameter the reference prior is usually
identical to the Jeffreys prior. In the multiparameter case an iterative
algorithm exists, which requires sorting the parameters by order of
inferential importance. Often the result does not depend on this order,
but when it does, this can be part of a sensitivity analysis. Further
discussion and applications to particle physics problems can be found
in Ref. [33].

39.2.5.2. Bayesian treatment of nuisance parameters:

As discussed in Sec. 39.2.2, a model may depend on parameters of
interest θ as well as on nuisance parameters ν, which must be included
for an accurate description of the data. Knowledge about the values
of ν may be supplied by control measurements, theoretical insights,
physical constraints, etc. Suppose, for example, one has data y from a
control measurement which is characterized by a probability Py(y|ν).
Suppose further that before carrying out the control measurement
one’s state of knowledge about ν is described by an initial prior π0(ν),
which in practice is often taken to be a constant or in any case very
broad. By using Bayes’ theorem (39.1) one obtains the updated prior
π(ν) (i.e., now π(ν) = π(ν|y), the probability for ν given y),

π(ν|y) ∝ P (y|ν)π0(ν) . (39.40)

In the absence of a model for P (y|ν) one may make some reasonable
but ad hoc choices. For a single nuisance parameter ν, for example, one
might characterize the uncertainty by a p.d.f. π(ν) centered about its
nominal value with a certain standard deviation σν . Often a Gaussian
p.d.f. provides a reasonable model for one’s degree of belief about a
nuisance parameter; in other cases, more complicated shapes may be
appropriate. If, for example, the parameter represents a non-negative
quantity then a log-normal or gamma p.d.f. can be a more natural
choice than a Gaussian truncated at zero. Note also that truncation
of the prior of a nuisance parameter ν at zero will in general make
π(ν) nonzero at ν = 0, which can lead to an unnormalizable posterior
for a parameter of interest that appears multiplied by ν.

The likelihood function, prior, and posterior p.d.f.s all depend on
both θ and ν, and are related by Bayes’ theorem, as usual. Note that
the likelihood here only refers to the primary measurement x. Once
any control measurements y are used to find the updated prior π(ν)
for the nuisance parameters, this information is fully encapsulated in
π(ν) and the control measurements do not appear further.

One can obtain the posterior p.d.f. for θ alone by integrating over
the nuisance parameters, i.e.,

p(θ|x) =
∫

p(θ,ν|x) dν . (39.41)

Such integrals can often not be carried out in closed form, and if the
number of nuisance parameters is large, then they can be difficult to
compute with standard Monte Carlo methods. Markov Chain Monte
Carlo (MCMC) techniques are often used for computing integrals of
this type (see Sec. 40.5).

39.2.6. Propagation of errors :

Consider a set of n quantities θ = (θ1, . . . , θn) and a set of m
functions η(θ) = (η1(θ), . . . , ηm(θ)). Suppose we have estimated

θ̂ = (θ̂1, . . . , θ̂n), using, say, maximum-likelihood or least-squares, and

we also know or have estimated the covariance matrix Vij = cov[θ̂i, θ̂j ].
The goal of error propagation is to determine the covariance matrix
for the functions, Uij = cov[η̂i, η̂j ], where η̂ = η(θ̂ ). In particular, the
diagonal elements Uii = V [η̂i] give the variances. The new covariance
matrix can be found by expanding the functions η(θ) about the

estimates θ̂ to first order in a Taylor series. Using this one finds

Uij ≈
∑

k,l

∂ηi
∂θk

∂ηj
∂θl

∣∣∣∣
θ̂
Vkl . (39.42)

This can be written in matrix notation as U ≈ AV AT where the
matrix of derivatives A is

Aij =
∂ηi
∂θj

∣∣∣∣
θ̂

, (39.43)

and AT is its transpose. The approximation is exact if η(θ) is linear
(it holds, for example, in Equation (39.23)). If this is not the case, the
approximation can break down if, for example, η(θ) is significantly

nonlinear close to θ̂ in a region of a size comparable to the standard
deviations of θ̂.
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39.3. Statistical tests

In addition to estimating parameters, one often wants to assess
the validity of certain statements concerning the data’s underlying
distribution. Frequentist hypothesis tests, described in Sec. 39.3.1,
provide a rule for accepting or rejecting hypotheses depending on the
outcome of a measurement. In significance tests, covered in Sec. 39.3.2,
one gives the probability to obtain a level of incompatibility with a
certain hypothesis that is greater than or equal to the level observed
with the actual data. In the Bayesian approach, the corresponding
procedure is based fundamentally on the posterior probabilities of the
competing hypotheses. In Sec. 39.3.3 we describe a related construct
called the Bayes factor, which can be used to quantify the degree to
which the data prefer one or another hypothesis.

39.3.1. Hypothesis tests :

A frequentist test of a hypothesis (often called the null hypothesis,
H0) is a rule that states for which data values x the hypothesis is
rejected. A region of x-space called the critical region, w, is specified
such that there is no more than a given probability under H0, α,
called the size or significance level of the test, to find x ∈ w. If the
data are discrete, it may not be possible to find a critical region with
exact probability content α, and thus we require P (x ∈ w|H0) ≤ α. If
the data are observed in the critical region, H0 is rejected.

The data x used to construct a test could be, for example, a
set of values that characterizes an individual event. In this case
the test corresponds to classification as, e.g., signal or background.
Alternatively the data could represent a set of values from a collection
of events. Often one is interested in knowing whether all of the events
are of a certain type (background), or whether the sample contains at
least some events of a new type (signal). Here the background-only
hypothesis plays the role of H0, and in the alternative H1 both signal
and background are present. Rejecting H0 is, from the standpoint of
frequentist statistics, the required step to establish discovery of the
signal process.

The critical region is not unique. Its choice should take into
account the probabilities for the data predicted by some alternative
hypothesis (or set of alternatives) H1. Rejecting H0 if it is true is
called a type-I error, and occurs by construction with probability no
greater than α. Not rejecting H0 if an alternative H1 is true is called
a type-II error, and for a given test this will have a certain probability
β = P (x /∈ w|H1). The quantity 1− β is called the power of the test
of H0 with respect to the alternative H1. A strategy for defining the
critical region can therefore be to maximize the power with respect to
some alternative (or alternatives) given a fixed size α.

To maximize the power of a test of H0 with respect to the
alternative H1, the Neyman–Pearson lemma states that the critical
region w should be chosen such that for all data values x inside w, the
likelihood ratio

λ(x) =
f(x|H1)

f(x|H0)
(39.44)

is greater than or equal to a given constant cα, and everywhere
outside the critical region one has λ(x) < cα, where the value of cα is
determined by the size of the test α. Here H0 and H1 must be simple
hypotheses, i.e., they should not contain undetermined parameters.

It is convenient to define the test using a scalar function of the data
x called a test statistic, t(x), such that the boundary of the critical
region is given by a surface of constant t(x). The Neyman–Pearson
lemma is equivalent to the statement that the likelihood ratio (39.44)
represents the optimal test statistic. It can be difficult in practice,
however, to determine λ(x), since this requires knowledge of the
joint p.d.f.s f(x|H0) and f(x|H1). Often one does not have explicit
formulae for these, but rather Monte Carlo models that allow one to
generate instances of x that follow the p.d.f.s.

In the case where the likelihood ratio (39.44) cannot be used
explicitly, there exist a variety of other multivariate methods for
constructing a test statistic that may approach its performance. These
are based on machine-learning algorithms that use samples of training
data corresponding to the hypotheses in question, often generated
from Monte Carlo models. Methods often used in HEP include
Fisher Discriminants, Neural Networks, Boosted Decision Trees and

Support Vector Machines. Descriptions of these and other methods
can be found in Refs. [11–14] and Proceedings of the PHYSTAT
conference series [15]. Software for HEP includes the TMVA [16] and
scikit-learn [18] packages.

An important issue in constructing a test is the choice of variables
that enter into the data vector x. For purposes of classification one
may choose, for example, to form certain functions of particle momenta
such as, e.g., invariant masses that are felt to be physically meaningful
in the context of a particular event type. It may be difficult to know,
however, whether there may exist further features that would help
distinguish between signal and background. Recently, so-called Deep
Neural Networks containing several or more hidden layers have been
applied in HEP [19]; these allow one to use directly as inputs the
elements of the data vector x (features) that represent lower-level
quantities such as individual particle momenta, rather than needing
to first construct “by hand” higher level features. Each hidden layer
then allows the network to construct significant high-level features in
an automatic way.

The multivariate algorithms designed to classify events into signal
and background types also form the basis of tests of the hypothesis
that a sample of events consists of background only. Such a test
can be constructed using the distributions of the test statistic t(x)
for event classification obtained from a multivariate algorithm such
as a Neural Network output. The distributions p(t|s) and p(t|b) for
signal and background events, respectively, are used to construct the
likelihood ratio of the signal-plus-background hypothesis relative to
that of background only. To the extent that the test statistic t(x)
approximates the likelihood ratio (or a monotonic function thereof)
for individual events given by (39.44), the resulting test of the
background-only hypothesis for the event sample will have maximum
power with respect to the signal-plus-background alternative (see
Ref. [20]) .

39.3.2. Tests of significance (goodness-of-fit) :

Often one wants to quantify the level of agreement between the data
and a hypothesis without explicit reference to alternative hypotheses.
This can be done by defining a statistic t whose value reflects in some
way the level of agreement between the data and the hypothesis. The
analyst must decide what values of the statistic correspond to better
or worse levels of agreement with the hypothesis in question; the
choice will in general depend on the relevant alternative hypotheses.

The hypothesis in question, H0, will determine the p.d.f. f(t|H0)
for the statistic. The significance of a discrepancy between the data
and what one expects under the assumption of H0 is quantified by
giving the p-value, defined as the probability to find t in the region of
equal or lesser compatibility with H0 than the level of compatibility
observed with the actual data. For example, if t is defined such that
large values correspond to poor agreement with the hypothesis, then
the p-value would be

p =

∫ ∞

tobs

f(t|H0) dt , (39.45)

where tobs is the value of the statistic obtained in the actual
experiment.

The p-value should not be confused with the size (significance
level) of a test, or the confidence level of a confidence interval
(Section 39.4), both of which are pre-specified constants. We may
formulate a hypothesis test, however, by defining the critical region to
correspond to the data outcomes that give the lowest p-values, so that
finding p ≤ α implies that the data outcome was in the critical region.
When constructing a p-value, one generally chooses the region of data
space deemed to have lower compatibility with the model being tested
as one having higher compatibility with a given alternative, such that
the corresponding test will have a high power with respect to this
alternative.

The p-value is a function of the data, and is therefore itself a
random variable. If the hypothesis used to compute the p-value is
true, then for continuous data p will be uniformly distributed between
zero and one. Note that the p-value is not the probability for the
hypothesis; in frequentist statistics, this is not defined.
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When searching for a new phenomenon, one tries to reject the
hypothesis H0 that the data are consistent with known (e.g., Standard
Model) processes. If the p-value of H0 is sufficiently low, then one
is willing to accept that some alternative hypothesis is true. Often
one converts the p-value into an equivalent significance Z, defined so
that a Z standard deviation upward fluctuation of a Gaussian random
variable would have an upper tail area equal to p, i.e.,

Z = Φ−1(1− p) . (39.46)

Here Φ is the cumulative distribution of the standard Gaussian, and
Φ−1 is its inverse (quantile) function. Often in HEP the level of
significance where an effect is said to qualify as a discovery is Z = 5,
i.e., a 5σ effect, corresponding to a p-value of 2.87 × 10−7. One’s
actual degree of belief that a new process is present, however, will
depend in general on other factors as well, such as the plausibility of
the new signal hypothesis and the degree to which it can describe the
data, one’s confidence in the model that led to the observed p-value,
and possible corrections for multiple observations out of which one
focuses on the smallest p-value obtained (the “look-elsewhere effect”,
discussed in Section 39.3.2.2).

39.3.2.1. Treatment of nuisance parameters for frequentist tests:

Suppose one wants to test hypothetical values of parameters θ, but
the model also contains nuisance parameters ν. To find a p-value for
θ we can construct a test statistic qθ such that larger values constitute
increasing incompatibility between the data and the hypothesis. Then
for an observed value of the statistic qθ,obs, the p-value of θ is

pθ(ν) =

∫ ∞

qθ,obs

f(qθ|θ,ν) dqθ , (39.47)

which depends in general on the nuisance parameters ν. In the strict
frequentist approach, θ is rejected only if the p-value is less than α for
all possible values of the nuisance parameters.

The difficulty described above is effectively solved if we can define
the test statistic qθ in such a way that its distribution f(qθ|θ) is
independent of the nuisance parameters. Although exact independence
is only found in special cases, it can be achieved approximately by use
of the profile likelihood ratio. This is given by the profile likelihood
from Eq.(39.18) divided by the value of the likelihood at its maximum,

i.e., when evaluated with the ML estimators θ̂ and ν̂:

λp(θ) =
L(θ, ̂̂ν(θ))
L(θ̂, ν̂)

. (39.48)

Wilks’ theorem [10] states that, providing certain general conditions
are satisfied, the distribution of −2 lnλp(θ), under assumption of
θ, approaches a χ2 distribution in the limit where the data sample
is very large, independent of the values of the nuisance parameters
ν. Here the number of degrees of freedom is equal to the number
of components of θ. More details on use of the profile likelihood
are given in Refs. [41–42] and in contributions to the PHYSTAT
conferences [15]; explicit formulae for special cases can be found
in Ref. [43]. Further discussion on how to incorporate systematic
uncertainties into p-values can be found in Ref. [21].

Even with use of the profile likelihood ratio, for a finite data sample
the p-value of hypothesized parameters θ will retain in general some
dependence on the nuisance parameters ν. Ideally one would find the
the maximum of pθ(ν) from Eq. (39.47) explicitly, but that is often
impractical. An approximate and computationally feasible technique

is to use pθ(
̂̂ν(θ)), where ̂̂ν(θ) are the profiled values of the nuisance

parameters as defined in Section 39.2.2.2. The resulting p-value is
correct if the true values of the nuisance parameters are equal to the
profiled values used; otherwise it could be either too high or too low.
This is discussed further in Section 39.4.2 on confidence intervals.

One may also treat model uncertainties in a Bayesian manner
but then use the resulting model in a frequentist test. Suppose the
uncertainty in a set of nuisance parameters ν is characterized by a
Bayesian prior p.d.f. π(ν). This can be used to construct the marginal

(also called the prior predictive) model for the data x and parameters
of interest θ,

Pm(x|θ) =
∫

P (x|θ,ν)π(ν) dν . (39.49)

The marginal model does not represent the probability of data that
would be generated if one were really to repeat the experiment, as
in that case one would assume that the nuisance parameters do not
vary. Rather, the marginal model represents a situation in which
every repetition of the experiment is carried out with new values of ν,
randomly sampled from π(ν). It is in effect an average of models each
with a given ν, where the average is carried out with respect to the
prior p.d.f. π(ν).

The marginal model for the data x can be used to determine the
distribution of a test statistic Q, which can be written

Pm(Q|θ) =
∫

P (Q|θ,ν)π(ν) dν . (39.50)

In a search for a new signal process, the test statistic can be based on
the ratio of likelihoods corresponding to the experiments where signal
and background events are both present, Ls+b, to that of background
only, Lb. Often the likelihoods are evaluated with the profiled values
of the nuisance parameters, which may give improved performance. It
is important to note, however, that it is through use of the marginal
model for the distribution of Q that the uncertainties related to
the nuisance parameters are incorporated into the result of the test.
Different choices for the test statistic itself only result in variations of
the power of the test with respect to different alternatives.

39.3.2.2. The look-elsewhere effect:

The “look-elsewhere effect” relates to multiple measurements used
to test a single hypothesis. The classic example is when one searches
in a distribution for a peak whose position is not predicted in advance.
Here the no-peak hypothesis is tested using data in a given range of
the distribution. In the frequentist approach the correct p-value of the
no-peak hypothesis is the probability, assuming background only, to
find a signal as significant as the one found or more so anywhere in the
search region. This can be substantially higher than the probability
to find a peak of equal or greater significance in the particular place
where it appeared. There is in general some ambiguity as to what
constitutes the relevant search region or even the broader set of
relevant measurements. Although the desired p-value is well defined
once the search region has been fixed, an exact treatment can require
extensive computation.

The “brute-force” solution to this problem by Monte Carlo involves
generating data under the background-only hypothesis and for each
data set, fitting a peak of unknown position and recording a measure
of its significance. To establish a discovery one often requires a p-value
smaller than 2.87 × 10−7, corresponding to a 5σ or larger effect.
Determining this with Monte Carlo thus requires generating and
fitting a very large number of experiments, perhaps several times 107.
In contrast, if the position of the peak is fixed, then the fit to the
distribution is much easier, and furthermore one can in many cases use
formulae valid for sufficiently large samples that bypass completely the
need for Monte Carlo (see, e.g., [43]) . However, this fixed-position
or “local” p-value would not be correct in general, as it assumes the
position of the peak was known in advance.

A method that allows one to modify the local p-value computed
under assumption of a fixed position to obtain an approximation to the
correct “global” value using a relatively simple calculation is described
in Ref. [22]. Suppose a test statistic q0, defined so that larger
values indicate increasing disagreement with the data, is observed to
have a value u. Furthermore suppose the model contains a nuisance
parameter θ (such as the peak position) which is only defined under
the signal model (there is no peak in the background-only model). An
approximation for the global p-value is found to be

pglobal ≈ plocal + 〈Nu〉 , (39.51)

where 〈Nu〉, which is much smaller than one in cases of interest, is the
mean number of “upcrossings” of the statistic q0 above the level u in
the range of the nuisance parameter considered (e.g., the mass range).
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The value of 〈Nu〉 can be estimated from the number of upcrossings
〈Nu0〉 above some much lower value, u0, by using a relation due to
Davis [23],

〈Nu〉 ≈ 〈Nu0〉e−(u−u0)/2 . (39.52)

By choosing u0 sufficiently low, the value of 〈Nu〉 can be estimated by
simulating only a very small number of experiments, or even from the
observed data, rather than the 107 needed if one is dealing with a 5σ
effect.

39.3.2.3. Goodness-of-fit with the method of least squares:

When estimating parameters using the method of least squares,
one obtains the minimum value of the quantity χ2 (39.19). This
statistic can be used to test the goodness-of-fit, i.e., the test provides a
measure of the significance of a discrepancy between the data and the
hypothesized functional form used in the fit. It may also happen that
no parameters are estimated from the data, but that one simply wants
to compare a histogram, e.g., a vector of Poisson distributed numbers
n = (n1, . . . , nN ), with a hypothesis for their expectation values
µi = E[ni]. As the distribution is Poisson with variances σ2i = µi, the

χ2 (39.19) becomes Pearson’s χ2 statistic,

χ2 =
N∑

i=1

(ni − µi)
2

µi
. (39.53)

If the hypothesis µ = (µ1, . . . , µN ) is correct, and if the expected
values µi in (39.53) are sufficiently large (or equivalently, if the
measurements ni can be treated as following a Gaussian distribution),
then the χ2 statistic will follow the χ2 p.d.f. with the number of
degrees of freedom equal to the number of measurements N minus the
number of fitted parameters.

Alternatively, one may fit parameters and evaluate goodness-
of-fit by minimizing −2 lnλ from Eq. (39.16). One finds that the
distribution of this statistic approaches the asymptotic limit faster
than does Pearson’s χ2. Therefore if one uses the asymptotic χ2 p.d.f.
as the statistic’s approximate sampling distribution to compute a
p-value, one obtains in general a more accurate result from −2 lnλ
than from Pearson’s χ2 (see Ref. [9] and references therein).

Assuming the goodness-of-fit statistic follows a χ2 p.d.f., the p-value
for the hypothesis is then

p =

∫ ∞

χ2
f(z;nd) dz , (39.54)

where f(z;nd) is the χ2 p.d.f. and nd is the appropriate number of
degrees of freedom. Values are shown in Fig. 39.1 or obtained from
the ROOT function TMath::Prob. If the conditions for using the χ2

p.d.f. do not hold, the statistic can still be defined as before, but
its p.d.f. must be determined by other means in order to obtain the
p-value, e.g., using a Monte Carlo calculation.

Since the mean of the χ2 distribution is equal to nd, one expects
in a “reasonable” experiment to obtain χ2 ≈ nd. Hence the quantity
χ2/nd is sometimes reported. Since the p.d.f. of χ2/nd depends on
nd, however, one must report nd as well if one wishes to determine
the p-value. The p-values obtained for different values of χ2/nd are
shown in Fig. 39.2.

If the minimized χ2 value indicates a low level of agreement
between data and hypothesis, one may be tempted to expect a high
degree of uncertainty for any fitted parameters. Poor goodness-of-fit,
however, does not mean that one will have large statistical errors for
parameter estimates. If, for example, the error bars (or covariance
matrix) used in constructing the χ2 are underestimated, then this will
lead to underestimated statistical errors for the fitted parameters. The
standard deviations of estimators that one finds from, say, Eq. (39.13)
reflect how widely the estimates would be distributed if one were to
repeat the measurement many times, assuming that the hypothesis
and measurement errors used in the χ2 are also correct. They do
not include the systematic error which may result from an incorrect
hypothesis or incorrectly estimated measurement errors in the χ2.
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Figure 39.1: One minus the χ2 cumulative distribution,
1 − F (χ2;n), for n degrees of freedom. This gives the p-value
for the χ2 goodness-of-fit test as well as one minus the coverage
probability for confidence regions (see Sec. 39.4.2.2).
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Figure 39.2: The ‘reduced’ χ2, equal to χ2/n, for n degrees
of freedom. The curves show as a function of n the χ2/n that
corresponds to a given p-value.

39.3.3. Bayes factors :

In Bayesian statistics, all of one’s knowledge about a model is
contained in its posterior probability, which one obtains using Bayes’
theorem (Eq. (39.35)). Thus one could reject a hypothesis H if its
posterior probability P (H |x) is sufficiently small. The difficulty here is
that P (H |x) is proportional to the prior probability P (H), and there
will not be a consensus about the prior probabilities for the existence
of new phenomena. Nevertheless one can construct a quantity called
the Bayes factor (described below), which can be used to quantify the
degree to which the data prefer one hypothesis over another, and is
independent of their prior probabilities.

Consider two models (hypotheses), Hi and Hj , described by vectors
of parameters θi and θj , respectively. Some of the components will
be common to both models and others may be distinct. The full prior
probability for each model can be written in the form

π(Hi,θi) = P (Hi)π(θi|Hi) . (39.55)

Here P (Hi) is the overall prior probability for Hi, and π(θi|Hi) is
the normalized p.d.f. of its parameters. For each model, the posterior
probability is found using Bayes’ theorem,

P (Hi|x) =
∫
P (x|θi, Hi)P (Hi)π(θi|Hi) dθi

P (x)
, (39.56)
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where the integration is carried out over the internal parameters θi
of the model. The ratio of posterior probabilities for the models is
therefore

P (Hi|x)
P (Hj |x)

=

∫
P (x|θi, Hi)π(θi|Hi) dθi∫
P (x|θj , Hj)π(θj |Hj) dθj

P (Hi)

P (Hj)
. (39.57)

The Bayes factor is defined as

Bij =

∫
P (x|θi, Hi)π(θi|Hi) dθi∫
P (x|θj , Hj)π(θj |Hj) dθj

. (39.58)

This gives what the ratio of posterior probabilities for models i and
j would be if the overall prior probabilities for the two models were
equal. If the models have no nuisance parameters, i.e., no internal
parameters described by priors, then the Bayes factor is simply the
likelihood ratio. The Bayes factor therefore shows by how much the
probability ratio of model i to model j changes in the light of the data,
and thus can be viewed as a numerical measure of evidence supplied
by the data in favour of one hypothesis over the other.

Although the Bayes factor is by construction independent of the
overall prior probabilities P (Hi) and P (Hj), it does require priors
for all internal parameters of a model, i.e., one needs the functions
π(θi|Hi) and π(θj |Hj). In a Bayesian analysis where one is only
interested in the posterior p.d.f. of a parameter, it may be acceptable
to take an unnormalizable function for the prior (an improper prior)
as long as the product of likelihood and prior can be normalized. But
improper priors are only defined up to an arbitrary multiplicative
constant, and so the Bayes factor would depend on this constant.
Furthermore, although the range of a constant normalized prior is
unimportant for parameter determination (provided it is wider than
the likelihood), this is not so for the Bayes factor when such a prior
is used for only one of the hypotheses. So to compute a Bayes factor,
all internal parameters must be described by normalized priors that
represent meaningful probabilities over the entire range where they
are defined.

An exception to this rule may be considered when the identical
parameter appears in the models for both numerator and denominator
of the Bayes factor. In this case one can argue that the arbitrary
constants would cancel. One must exercise some caution, however, as
parameters with the same name and physical meaning may still play
different roles in the two models.

Both integrals in Equation (39.58) are of the form

m =

∫
P (x|θ)π(θ) dθ , (39.59)

which is the marginal likelihood seen previously in Eq. (39.49) (in
some fields this quantity is called the evidence). Computing marginal
likelihoods can be difficult; in many cases it can be done with the
nested sampling algorithm [35] as implemented, e.g., in the program
MultiNest [36]. A review of Bayes factors can be found in Ref. [37].

39.4. Intervals and limits

When the goal of an experiment is to determine a parameter θ,
the result is usually expressed by quoting, in addition to the point
estimate, some sort of interval which reflects the statistical precision
of the measurement. In the simplest case, this can be given by the
parameter’s estimated value θ̂ plus or minus an estimate of the
standard deviation of θ̂, σ̂

θ̂
. If, however, the p.d.f. of the estimator

is not Gaussian or if there are physical boundaries on the possible
values of the parameter, then one usually quotes instead an interval
according to one of the procedures described below.

In reporting an interval or limit, the experimenter may wish to

• communicate as objectively as possible the result of the
experiment;

• provide an interval that is constructed to cover on average the
true value of the parameter with a specified probability;

• provide the information needed by the consumer of the result to
draw conclusions about the parameter or to make a particular
decision;

• draw conclusions about the parameter that incorporate stated
prior beliefs.

With a sufficiently large data sample, the point estimate and
standard deviation (or for the multiparameter case, the parameter
estimates and covariance matrix) satisfy essentially all of these goals.
For finite data samples, no single method for quoting an interval will
achieve all of them.

In addition to the goals listed above, the choice of method may
be influenced by practical considerations such as ease of producing
an interval from the results of several measurements. Of course the
experimenter is not restricted to quoting a single interval or limit;
one may choose, for example, first to communicate the result with a
confidence interval having certain frequentist properties, and then in
addition to draw conclusions about a parameter using a judiciously
chosen subjective Bayesian prior. It is recommended, however, that
there be a clear separation between these two aspects of reporting a
result. In the remainder of this section, we assess the extent to which
various types of intervals achieve the goals stated here.

39.4.1. Bayesian intervals :

As described in Sec. 39.2.5, a Bayesian posterior probability may
be used to determine regions that will have a given probability of
containing the true value of a parameter. In the single parameter
case, for example, an interval (called a Bayesian or credible interval)
[θlo, θup] can be determined which contains a given fraction 1 − α of
the posterior probability, i.e.,

1− α =

∫ θup

θlo

p(θ|x) dθ . (39.60)

Sometimes an upper or lower limit is desired, i.e., θlo or θup can be
set to a physical boundary or to plus or minus infinity. In other cases,
one might be interested in the set of θ values for which p(θ|x) is higher
than for any θ not belonging to the set, which may constitute a single
interval or a set of disjoint regions; these are called highest posterior
density (HPD) intervals. Note that HPD intervals are not invariant
under a nonlinear transformation of the parameter.

If a parameter is constrained to be non-negative, then the prior
p.d.f. can simply be set to zero for negative values. An important
example is the case of a Poisson variable n, which counts signal events
with unknown mean s, as well as background with mean b, assumed
known. For the signal mean s, one often uses the prior

π(s) =

{
0 s < 0
1 s ≥ 0

. (39.61)

This prior is regarded as providing an interval whose frequentist
properties can be studied, rather than as representing a degree of
belief. For example, to obtain an upper limit on s, one may proceed
as follows. The likelihood for s is given by the Poisson distribution for
n with mean s+ b,

P (n|s) = (s+ b)n

n!
e−(s+b) , (39.62)

along with the prior (39.61) in (39.35) gives the posterior density for
s. An upper limit sup at confidence level (or here, rather, credibility
level) 1− α can be obtained by requiring

1− α =

∫ sup

−∞
p(s|n)ds =

∫ sup
−∞ P (n|s)π(s) ds∫∞
−∞ P (n|s)π(s) ds , (39.63)

where the lower limit of integration is effectively zero because of the
cut-off in π(s). By relating the integrals in Eq. (39.63) to incomplete
gamma functions, the solution for the upper limit is found to be

sup = 1
2F

−1
χ2

[p, 2(n+ 1)]− b , (39.64)

where F−1
χ2

is the quantile of the χ2 distribution (inverse of the

cumulative distribution). Here the quantity p is

p = 1− α
(
1− Fχ2 [2b, 2(n+ 1)]

)
, (39.65)
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where Fχ2 is the cumulative χ2 distribution. For both Fχ2 and F−1
χ2

above, the argument 2(n+ 1) gives the number of degrees of freedom.
For the special case of b = 0, the limit reduces to

sup = 1
2F

−1
χ2

(1− α; 2(n+ 1)) . (39.66)

It happens that for the case of b = 0, the upper limit from Eq. (39.66)
coincides numerically with the frequentist upper limit discussed in
Section 39.4.2.3. Values for 1 − α = 0.9 and 0.95 are given by the
values µup in Table 39.3. The frequentist properties of confidence
intervals for the Poisson mean found in this way are discussed in
Refs. [2] and [25].

As in any Bayesian analysis, it is important to show how the result
changes under assumption of different prior probabilities. For example,
one could consider the Jeffreys prior as described in Sec. 39.2.5. For
this problem one finds the Jeffreys prior π(s) ∝ 1/

√
s+ b for s ≥ 0 and

zero otherwise. As with the constant prior, one would not regard this
as representing one’s prior beliefs about s, both because it is improper
and also as it depends on b. Rather it is used with Bayes’ theorem to
produce an interval whose frequentist properties can be studied.

If the model contains nuisance parameters then these are eliminated
by marginalizing, as in Eq. (39.41), to obtain the p.d.f. for the
parameters of interest. For example, if the parameter b in the Poisson
counting problem above were to be characterized by a prior p.d.f.
π(b), then one would first use Bayes’ theorem to find p(s, b|n). This is
then marginalized to find p(s|n) =

∫
p(s, b|n)π(b) db, from which one

may determine an interval for s. One may not be certain whether to
extend a model by including more nuisance parameters. In this case, a
Bayes factor may be used to determine to what extent the data prefer
a model with additional parameters, as described in Section 39.3.3.

39.4.2. Frequentist confidence intervals :

The unqualified phrase “confidence intervals” refers to frequentist
intervals obtained with a procedure due to Neyman [34], described
below. The boundary of the interval (or in the multiparameter case,
region) is given by a specific function of the data, which would
fluctuate if one were to repeat the experiment many times. The
coverage probability refers to the fraction of intervals in such an
ensemble that contain the true parameter value. Confidence intervals
are constructed so as to have a coverage probability greater than or
equal to a given confidence level, regardless of the true parameter’s
value. It is important to note that in the frequentist approach, such
a probability is not meaningful for a fixed interval. In this section we
discuss several techniques for producing intervals that have, at least
approximately, this property of coverage.

39.4.2.1. The Neyman construction for confidence intervals:

Consider a p.d.f. f(x; θ) where x represents the outcome of the
experiment and θ is the unknown parameter for which we want
to construct a confidence interval. The variable x could (and often
does) represent an estimator for θ. Using f(x; θ), we can find using
a pre-defined rule and probability 1− α for every value of θ, a set of
values x1(θ, α) and x2(θ, α) such that

P (x1 < x < x2; θ) =

∫ x2

x1

f(x; θ) dx ≥ 1− α . (39.67)

If x is discrete, the integral is replaced by the corresponding sum.
In that case there may not exist a range of x values whose summed
probability is exactly equal to a given value of 1− α, and one requires
by convention P (x1 < x < x2; θ) ≥ 1− α.

This is illustrated for continuous x in Fig. 39.3: a horizontal line
segment [x1(θ, α), x2(θ, α)] is drawn for representative values of θ.
The union of such intervals for all values of θ, designated in the figure
as D(α), is known as a confidence belt. Typically the curves x1(θ, α)
and x2(θ, α) are monotonic functions of θ, which we assume for this
discussion.

Upon performing an experiment to measure x and obtaining a value
x0, one draws a vertical line through x0. The confidence interval for θ
is the set of all values of θ for which the corresponding line segment
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Figure 39.3: Construction of the confidence belt (see text).

[x1(θ, α), x2(θ, α)] is intercepted by this vertical line. Such confidence
intervals are said to have a confidence level (CL) equal to 1− α.

Now suppose that the true value of θ is θ0, indicated in the figure.
We see from the figure that θ0 lies between θ1(x) and θ2(x) if and
only if x lies between x1(θ0) and x2(θ0). The two events thus have
the same probability, and since this is true for any value θ0, we can
drop the subscript 0 and obtain

1− α = P (x1(θ) < x < x2(θ)) = P (θ2(x) < θ < θ1(x)) . (39.68)

In this probability statement, θ1(x) and θ2(x), i.e., the endpoints of
the interval, are the random variables and θ is an unknown constant.
If the experiment were to be repeated a large number of times, the
interval [θ1, θ2] would vary, covering the fixed value θ in a fraction
1− α of the experiments.

The condition of coverage in Eq. (39.67) does not determine x1 and
x2 uniquely, and additional criteria are needed. One possibility is to
choose central intervals such that the probabilities to find x below x1
and above x2 are each α/2. In other cases, one may want to report
only an upper or lower limit, in which case one of P (x ≤ x1) or
P (x ≥ x2) can be set to α and the other to zero. Another principle
based on likelihood ratio ordering for determining which values of x
should be included in the confidence belt is discussed below.

When the observed random variable x is continuous, the coverage
probability obtained with the Neyman construction is 1−α, regardless
of the true value of the parameter. Because of the requirement
P (x1 < x < x2) ≥ 1 − α when x is discrete, one obtains in that case
confidence intervals that include the true parameter with a probability
greater than or equal to 1− α.

An equivalent method of constructing confidence intervals is to
consider a test (see Sec. 39.3) of the hypothesis that the parameter’s
true value is θ (assume one constructs a test for all physical values of
θ). One then excludes all values of θ where the hypothesis would be
rejected in a test of size α or less. The remaining values constitute
the confidence interval at confidence level 1 − α. If the critical region
of the test is characterized by having a p-value pθ ≤ α, then the
endpoints of the confidence interval are found in practice by solving
pθ = α for θ.

In the procedure outlined above, one is still free to choose the test to
be used; this corresponds to the freedom in the Neyman construction
as to which values of the data are included in the confidence belt. One
possibility is to use a test statistic based on the likelihood ratio,

λ(θ) =
f(x; θ)

f(x; θ̂ )
, (39.69)

where θ̂ is the value of the parameter which, out of all allowed values,
maximizes f(x; θ). This results in the intervals described in Ref. [38]
by Feldman and Cousins. The same intervals can be obtained from the
Neyman construction described above by including in the confidence
belt those values of x which give the greatest values of λ(θ).
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If the model contains nuisance parameters ν, then these can be
incorporated into the test (or the p-values) used to determine the limit
by profiling as discussed in Section 39.3.2.1. As mentioned there, the
strict frequentist approach is to regard the parameter of interest θ as
excluded only if it is rejected for all possible values of ν. The resulting
interval for θ will then cover the true value with a probability greater
than or equal to the nominal confidence level for all points in ν-space.

If the p-value is based on the profiled values of the nuisance

parameters, i.e., with ν = ̂̂ν(θ) used in Eq. (39.47), then the resulting
interval for the parameter of interest will have the correct coverage if
the true values of ν are equal to the profiled values. Otherwise the
coverage probability may be too high or too low. This procedure has
been called profile construction in HEP [24] (see also [21]) .

39.4.2.2. Gaussian distributed measurements:

An important example of constructing a confidence interval is when
the data consists of a single random variable x that follows a Gaussian
distribution; this is often the case when x represents an estimator for
a parameter and one has a sufficiently large data sample. If there is
more than one parameter being estimated, the multivariate Gaussian
is used. For the univariate case with known σ, the probability that
the measured value x will fall within ±δ of the true value µ is

1− α =
1√
2πσ

∫ µ+δ

µ−δ
e−(x−µ)2/2σ2 dx = erf

(
δ√
2 σ

)
= 2Φ

(
δ

σ

)
− 1 ,

(39.70)
where erf is the Gaussian error function, which is rewritten in the
final equality using Φ, the Gaussian cumulative distribution. Fig. 39.4
shows a δ = 1.64σ confidence interval unshaded. The choice δ = σ
gives an interval called the standard error which has 1 − α = 68.27%
if σ is known. Values of α for other frequently used choices of δ are
given in Table 39.1.

−3 −2 −1 0 1 2 3

f (x; µ,σ)

α /2α /2

(x−µ) /σ

1−α

Figure 39.4: Illustration of a symmetric 90% confidence interval
(unshaded) for a Gaussian-distributed measurement of a single
quantity. Integrated probabilities, defined by α = 0.1, are as
shown.

Table 39.1: Area of the tails α outside ±δ from the mean of a
Gaussian distribution.

α δ α δ

0.3173 1σ 0.2 1.28σ

4.55 ×10−2 2σ 0.1 1.64σ

2.7 ×10−3 3σ 0.05 1.96σ

6.3×10−5 4σ 0.01 2.58σ

5.7×10−7 5σ 0.001 3.29σ

2.0×10−9 6σ 10−4 3.89σ

We can set a one-sided (upper or lower) limit by excluding above
x + δ (or below x − δ). The values of α for such limits are half the
values in Table 39.1.

The relation (39.70) can be re-expressed using the cumulative
distribution function for the χ2 distribution as

α = 1− F (χ2;n) , (39.71)

for χ2 = (δ/σ)2 and n = 1 degree of freedom. This can be seen as
the n = 1 curve in Fig. 39.1 or obtained by using the ROOT function
TMath::Prob.

For multivariate measurements of, say, n parameter estimates
θ̂ = (θ̂1, . . . , θ̂n), one requires the full covariance matrix Vij =

cov[θ̂i, θ̂j ], which can be estimated as described in Sections 39.2.2
and 39.2.3. Under fairly general conditions with the methods of
maximum-likelihood or least-squares in the large sample limit, the
estimators will be distributed according to a multivariate Gaussian
centered about the true (unknown) values θ, and furthermore, the
likelihood function itself will take on a Gaussian shape.

The standard error ellipse for the pair (θ̂i, θ̂j) is shown in Fig. 39.5,

corresponding to a contour χ2 = χ2
min + 1 or lnL = lnLmax − 1/2.

The ellipse is centered about the estimated values θ̂, and the tangents
to the ellipse give the standard deviations of the estimators, σi and
σj . The angle of the major axis of the ellipse is given by

tan 2φ =
2ρijσiσj

σ2j − σ2i
, (39.72)

where ρij = cov[θ̂i, θ̂j ]/σiσj is the correlation coefficient.

The correlation coefficient can be visualized as the fraction of the
distance σi from the ellipse’s horizontal center-line at which the ellipse
becomes tangent to vertical, i.e., at the distance ρijσi below the
center-line as shown. As ρij goes to +1 or −1, the ellipse thins to a
diagonal line.

It could happen that one of the parameters, say, θj , is known from
previous measurements to a precision much better than σj , so that
the current measurement contributes almost nothing to the knowledge
of θj . However, the current measurement of θi and its dependence
on θj may still be important. In this case, instead of quoting both
parameter estimates and their correlation, one sometimes reports the
value of θi, which minimizes χ2 at a fixed value of θj , such as the PDG
best value. This θi value lies along the dotted line between the points
where the ellipse becomes tangent to vertical, and has statistical
error σinner as shown on the figure, where σinner = (1 − ρ2ij)

1/2σi.

Instead of the correlation ρij , one reports the dependency dθ̂i/dθj ,
which is the slope of the dotted line. This slope is related to the
correlation coefficient by dθ̂i/dθj = ρij × σi

σj
.
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Figure 39.5: Standard error ellipse for the estimators θ̂i and
θ̂j . In the case shown the correlation is negative.

As in the single-variable case, because of the symmetry of the
Gaussian function between θ and θ̂, one finds that contours of constant
lnL or χ2 cover the true values with a certain, fixed probability. That
is, the confidence region is determined by

lnL(θ) ≥ lnLmax −∆ lnL , (39.73)

or where a χ2 has been defined for use with the method of
least-squares,

χ2(θ) ≤ χ2
min +∆χ2 . (39.74)
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Table 39.2: Values of ∆χ2 or 2∆ lnL corresponding to a
coverage probability 1 − α in the large data sample limit, for
joint estimation of m parameters.

(1− α) (%) m = 1 m = 2 m = 3

68.27 1.00 2.30 3.53

90. 2.71 4.61 6.25

95. 3.84 5.99 7.82

95.45 4.00 6.18 8.03

99. 6.63 9.21 11.34

99.73 9.00 11.83 14.16

Values of ∆χ2 or 2∆ lnL are given in Table 39.2 for several
values of the coverage probability 1 − α and number of fitted
parameters m. For Gaussian distributed data, these are related by
∆χ2 = 2∆ lnL = F−1

χ2m
(1 − α), where F−1

χ2m
is the chi-square quantile

(inverse of the cumulative distribution) for m degrees of freedom.

For non-Gaussian data samples, the probability for the regions
determined by Equations (39.73) or (39.74) to cover the true value
of θ becomes independent of θ only in the large-sample limit. So
for a finite data sample these are not exact confidence regions
according to our previous definition. Nevertheless, they can still have
a coverage probability only weakly dependent on the true parameter,
and approximately as given in Table 39.2. In any case, the coverage
probability of the intervals or regions obtained according to this
procedure can in principle be determined as a function of the true
parameter(s), for example, using a Monte Carlo calculation.

One of the practical advantages of intervals that can be constructed
from the log-likelihood function or χ2 is that it is relatively simple to
produce the interval for the combination of several experiments. If N
independent measurements result in log-likelihood functions lnLi(θ),
then the combined log-likelihood function is simply the sum,

lnL(θ) =

N∑

i=1

lnLi(θ) . (39.75)

This can then be used to determine an approximate confidence interval
or region with Eq. (39.73), just as with a single experiment.

39.4.2.3. Poisson or binomial data:

Another important class of measurements consists of counting a
certain number of events, n. In this section, we will assume these
are all events of the desired type, i.e., there is no background. If n
represents the number of events produced in a reaction with cross
section σ, say, in a fixed integrated luminosity L, then it follows a
Poisson distribution with mean µ = σL. If, on the other hand, one
has selected a larger sample of N events and found n of them to have
a particular property, then n follows a binomial distribution where the
parameter p gives the probability for the event to possess the property
in question. This is appropriate, e.g., for estimates of branching ratios
or selection efficiencies based on a given total number of events.

For the case of Poisson distributed n, limits on the mean value µ can
be found from the Neyman procedure as discussed in Section 39.4.2.1
with n used directly as the statistic x . The upper and lower limits
are found to be

µlo = 1
2F

−1
χ2

(αlo; 2n) , (39.76a)

µup = 1
2F

−1
χ2

(1− αup; 2(n+ 1)) , (39.76b)

where confidence levels of 1− αlo and 1− αup refer separately to the

corresponding intervals µ ≥ µlo and µ ≤ µup, and F−1
χ2

is the quantile

of the χ2 distribution (inverse of the cumulative distribution). The
quantiles F−1

χ2
can be obtained from standard tables or from the

ROOT routine TMath::ChisquareQuantile. For central confidence
intervals at confidence level 1− α, set αlo = αup = α/2.

Table 39.3: Lower and upper (one-sided) limits for the mean
µ of a Poisson variable given n observed events in the absence of
background, for confidence levels of 90% and 95%.

1− α =90% 1− α =95%

n µlo µup µlo µup

0 – 2.30 – 3.00

1 0.105 3.89 0.051 4.74

2 0.532 5.32 0.355 6.30

3 1.10 6.68 0.818 7.75

4 1.74 7.99 1.37 9.15

5 2.43 9.27 1.97 10.51

6 3.15 10.53 2.61 11.84

7 3.89 11.77 3.29 13.15

8 4.66 12.99 3.98 14.43

9 5.43 14.21 4.70 15.71

10 6.22 15.41 5.43 16.96

It happens that the upper limit from Eq. (39.76b) coincides
numerically with the Bayesian upper limit for a Poisson parameter,
using a uniform prior p.d.f. for µ. Values for confidence levels of
90% and 95% are shown in Table 39.3. For the case of binomially
distributed n successes out of N trials with probability of success p,
the upper and lower limits on p are found to be

plo =
nF−1

F [αlo; 2n, 2(N − n+ 1)]

N − n+ 1 + nF−1
F [αlo; 2n, 2(N − n+ 1)]

, (39.77a)

pup =
(n+ 1)F−1

F [1− αup; 2(n+ 1), 2(N − n)]

(N − n) + (n+ 1)F−1
F [1− αup; 2(n+ 1), 2(N − n)]

. (39.77b)

Here F−1
F is the quantile of the F distribution (also called the

Fisher–Snedecor distribution; see Ref. [4]) .

39.4.2.4. Parameter exclusion in cases of low sensitivity:

An important example of a statistical test arises in the search for
a new signal process. Suppose the parameter µ is defined such that
it is proportional to the signal cross section. A statistical test may
be carried out for hypothesized values of µ, which may be done by
computing a p-value, pµ, for all µ. Those values not rejected in a
test of size α, i.e., for which one does not find pµ ≤ α, constitute a
confidence interval with confidence level 1− α.

In general one will find that for some regions in the parameter
space of the signal model, the predictions for data are almost
indistinguishable from those of the background-only model. This
corresponds to the case where µ is very small, as would occur, e.g., in
a search for a new particle with a mass so high that its production
rate in a given experiment is negligible. That is, one has essentially
no experimental sensitivity to such a model.

One would prefer that if the sensitivity to a model (or a point in a
model’s parameter space) is very low, then it should not be excluded.
Even if the outcomes predicted with or without signal are identical,
however, the probability to reject the signal model will equal α, the
type-I error rate. As one often takes α to be 5%, this would mean
that in a large number of searches covering a broad range of a signal
model’s parameter space, there would inevitably be excluded regions
in which the experimental sensitivity is very small, and thus one may
question whether it is justified to regard such parameter values as
disfavored.

Exclusion of models to which one has little or no sensitivity occurs,
for example, if the data fluctuate very low relative to the expectation
of the background-only hypothesis. In this case the resulting upper
limit on µ may be anomalously low. As a means of controlling this
effect one often determines the mean or median limit under assumption
of the background-only hypothesis, as discussed in Sec. 39.5.
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One way to mitigate the problem of excluding models to which
one is not sensitive is the CLs method, where the measure used to
test a parameter is increased for decreasing sensitivity [39,40]. The
procedure is based on a statistic called CLs, which is defined as

CLs =
pµ

1− pb
, (39.78)

where pb is the p-value of the background-only hypothesis. In the
usual formulation of the method, both pµ and pb are defined using
a single test statistic, and the definition of CLs above assumes this
statistic is continuous; more details can be found in Refs. [39–40].

A point in a model’s parameter space is regarded as excluded
if one finds CLs ≤ α. As the denominator in Eq. (39.78) is always
less than or equal to unity, the exclusion criterion based on CLs

is more stringent than the usual requirement pµ ≤ α. In this sense
the CLs procedure is conservative, and the coverage probability of
the corresponding intervals will exceed the nominal confidence level
1− α. If the experimental sensitivity to a given value of µ is very low,
then one finds that as pµ decreases, so does the denominator 1 − pb,
and thus the condition CLs ≤ α is effectively prevented from being
satisfied. In this way the exclusion of parameters in the case of low
sensitivity is suppressed.

The CLs procedure has the attractive feature that the resulting
intervals coincide with those obtained from the Bayesian method
in two important cases: the mean value of a Poisson or Gaussian
distributed measurement with a constant prior. The CLs intervals
overcover for all values of the parameter µ, however, by an amount
that depends on µ.

The problem of excluding parameter values to which one has little
sensitivity is particularly acute when one wants to set a one-sided
limit, e.g., an upper limit on a cross section. Here one tests a value
of a rate parameter µ against the alternative of a lower rate, and
therefore the critical region of the test is taken to correspond to data
outcomes with a low event yield. If the number of events found in
the search region fluctuates low enough, however, it can happen that
all physically meaningful signal parameter values, including those to
which one has very little sensitivity, are rejected by the test.

Another solution to this problem, therefore, is to replace the
one-sided test by one based on the likelihood ratio, where the critical
region is not restricted to low rates. This is the approach followed
in the Feldman-Cousins procedure described in Section 39.4.2.1. The
critical region for the test of a given value of µ contains data values
characteristic of both higher and lower rates. As a result, for a given
observed rate one can in general obtain a two-sided interval. If,
however, the parameter estimate µ̂ is sufficiently close to the lower
limit of zero, then only high values of µ are rejected, and the lower
edge of the confidence interval is at zero. Note, however, that the
coverage property of 1 − α pertains to the entire interval, not to the
probability for the upper edge µup to be greater than the true value
µ. For parameter estimates increasingly far away from the boundary,
i.e., for increasing signal significance, the point µ = 0 is excluded and
the interval has nonzero upper and lower edges.

An additional difficulty arises when a parameter estimate is not
significantly far away from the boundary, in which case it is natural
to report a one-sided confidence interval (often an upper limit). It is
straightforward to force the Neyman prescription to produce only an
upper limit by setting x2 = ∞ in Eq. (39.67). Then x1 is uniquely
determined and the upper limit can be obtained. If, however, the
data come out such that the parameter estimate is not so close to the
boundary, one might wish to report a central confidence interval (i.e.,
an interval based on a two-sided test with equal upper and lower tail
areas). As pointed out by Feldman and Cousins [38], if the decision
to report an upper limit or two-sided interval is made by looking at
the data (“flip-flopping”), then in general there will be parameter
values for which the resulting intervals have a coverage probability
less than 1 − α. With the confidence intervals suggested in [38], the
prescription determines whether the interval is one- or two-sided in a
way which preserves the coverage probability (and are thus said to be
unified).

The intervals according to this method for the mean of Poisson
variable in the absence of background are given in Table 39.4. (Note

Table 39.4: Unified confidence intervals [µ1, µ2] for a the mean
of a Poisson variable given n observed events in the absence of
background, for confidence levels of 90% and 95%.

1− α =90% 1− α =95%

n µ1 µ2 µ1 µ2

0 0.00 2.44 0.00 3.09

1 0.11 4.36 0.05 5.14

2 0.53 5.91 0.36 6.72

3 1.10 7.42 0.82 8.25

4 1.47 8.60 1.37 9.76

5 1.84 9.99 1.84 11.26

6 2.21 11.47 2.21 12.75

7 3.56 12.53 2.58 13.81

8 3.96 13.99 2.94 15.29

9 4.36 15.30 4.36 16.77

10 5.50 16.50 4.75 17.82

that α in Ref. [38] is defined following Neyman [34] as the coverage
probability; this is opposite the modern convention used here in which
the coverage probability is 1−α.) The values of 1−α given here refer
to the coverage of the true parameter by the whole interval [µ1, µ2].
In Table 39.3 for the one-sided upper limit, however, 1 − α refers to
the probability to have µup ≥ µ (or µlo ≤ µ for lower limits).

A potential difficulty with unified intervals arises if, for example,
one constructs such an interval for a Poisson parameter s of some
yet to be discovered signal process with, say, 1− α = 0.9. If the true
signal parameter is zero, or in any case much less than the expected
background, one will usually obtain a one-sided upper limit on s. In a
certain fraction of the experiments, however, a two-sided interval for
s will result. Since, however, one typically chooses 1− α to be only
0.9 or 0.95 when setting limits, the value s = 0 may be found below
the lower edge of the interval before the existence of the effect is well
established. It must then be communicated carefully that in excluding
s = 0 at, say, 90% or 95% confidence level from the interval, one is not
necessarily claiming to have discovered the effect, for which one would
usually require a higher level of significance (e.g., 5 σ).

Another possibility is to construct a Bayesian interval as described
in Section 39.4.1. The presence of the boundary can be incorporated
simply by setting the prior density to zero in the unphysical region.
More specifically, the prior may be chosen using formal rules such as
the reference prior or Jeffreys prior mentioned in Sec. 39.2.5.

In HEP a widely used prior for the mean µ of a Poisson distributed
measurement has been the uniform distribution for µ ≥ 0. This prior
does not follow from any fundamental rule nor can it be regarded
as reflecting a reasonable degree of belief, since the prior probability
for µ to lie between any two finite values is zero. The procedure
above can be more appropriately regarded as a way for obtaining
intervals with frequentist properties that can be investigated. The
resulting upper limits have a coverage probability that depends on
the true value of the Poisson parameter, and is nowhere smaller than
the stated probability content. Lower limits and two-sided intervals
for the Poisson mean based on flat priors undercover, however, for
some values of the parameter, although to an extent that in practical
cases may not be too severe [2,25]. Intervals constructed in this way
have the advantage of being easy to derive; if several independent
measurements are to be combined then one simply multiplies the
likelihood functions (cf. Eq. (39.75)).

In any case, it is important to always report sufficient information
so that the result can be combined with other measurements. Often
this means giving an unbiased estimator and its standard deviation,
even if the estimated value is in the unphysical region.

It can also be useful with a frequentist interval to calculate its
subjective probability content using the posterior p.d.f. based on one
or several reasonable guesses for the prior p.d.f. If it turns out to
be significantly less than the stated confidence level, this warns that
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it would be particularly misleading to draw conclusions about the
parameter’s value from the interval alone.

39.5. Experimental sensitivity

In this section we describe methods for characterizing the sensitivity
of a search for a new physics signal. As discussed in Sec. 39.3,an
experimental analysis can often be formulated as a test of hypothetical
model parameters. Therefore we may quantify the sensitivity by
giving the results that we expect from such a test under specific
assumptions about the signal process.

Here to be concrete we will consider a parameter µ proportional to
the rate of a signal process, although the concepts described in this
section may be easily generalized to other parameters. One may wish
to establish discovery of the signal process by testing and rejecting
the hypothesis that µ = 0, and in addition one often wants to test
nonzero values of µ to construct a confidence interval (e.g., limits)
as described in Sec. 39.4. In the frequentist framework, the result of
each tested value of µ is the p-value pµ or equivalently the significance
Zµ = Φ−1(1 − pµ), where as usual Φ is the standard Gaussian
cumulative distribution and its inverse Φ−1 is the standard Gaussian
quantile.

Prior to carrying out the experiment, one generally wants to
quantify what significance Zµ is expected under given assumptions
for the presence or absence of the signal process. Specifically, for the
significance of a test of µ = 0 (the discovery significance) one usually
quotes the Z0 one would expect if the signal is present at a given
nominal rate, which we can define in general to correspond to µ = 1.
For limits, one often gives the expected limit under assumption of the
background-only (µ = 0) model. These quantities are used to optimize
the analysis and to quantify the experimental sensitivity, that is, to
characterize how likely it is to make a discovery if the signal is present,
and to say what values of µ one may be able to exclude if the signal is
in fact absent.

First we clarify the notion of expected significance. Because the
significance Zµ is a function of the data, it is itself a random quantity
characterized by a certain sampling distribution. This distribution
depends on the assumed value of µ, which is not necessarily the same
as the hypothesized value of µ being tested. We may therefore consider
the distribution f(Zµ|µ′), i.e., the distribution of Zµ that would be
obtained by considering data samples generated under assumption of
µ′. In a similar way one can talk about the sampling distribution of
an upper limit for µ, f(µup|µ′).

One can identify the expected significance or limit with either
the mean or median of these distributions, but the median may be
preferred since it is invariant under monotonic transformations. For
example, the monotonic relation between p-value and significance,
p = 1−Φ(Z), then gives med[pµ|µ′] = 1−Φ(med[Zµ|µ′]), whereas the
corresponding relation does not hold in general for the mean.

In some cases one may be able to write down approximate formulae
for the distributions of Zµ and for limits, but more generally they
must be determined from Monte Carlo calculations. In many cases of
interest, the significance Zµ and the limits on µ will have approximate
Gaussian distributions.

As an example, consider a Poisson counting experiment, where
the result consists of an observed number n of events, modeled as a
Poisson distributed variable with a mean of µs+ b. Here s and b, the
expected numbers of events from signal and background processes,
are taken to be known. If we are interested in discovering the signal
process we test and try to reject the hypothesis µ = 0. To characterize
the experimental sensitivity, we want to give the discovery significance
expected under the assumption of µ = 1.

In the limit where its mean value is large, the Poisson variable n
can be approximated as an almost continuous Gaussian variable with
mean µs + b and standard deviation σ =

√
µs+ b. In the usual case

where a physical signal model corresponds to µ > 0, the p-value of
µ = 0 is the probability to find n greater than or equal to the value
observed,

p0 = Φ

(
n− b√

b

)
, (39.79)

and the corresponding significance is Z0 = Φ−1(1− p0) = (n− b)/
√
b.

The median (here equal to the mean) of n assuming µ = 1 is s + b,
and therefore the median discovery significance is

med[Z0|µ = 1] =
s√
b
. (39.80)

The figure of merit “s/
√
b” has been widely used in HEP as a measure

of expected discovery significance. A better approximation for the
Poisson counting experiment, however, may be obtained by testing
µ = 0 using the likelihood ratio (39.48) λ(0) = L(0)/L(µ̂), where

L(µ) =
(µs+ b)n

n!
e−(µs+b) (39.81)

is the likelihood function, µ̂ = (n − b)/s is the ML estimator. In this
example there are no nuisance parameters, as s and b are taken to
be known. For the case where the relevant signal models correspond
to positive µ, one may test the µ = 0 hypothesis with the statistic
q0 = −2 lnλ(0) when µ̂ > 0, i.e., an excess is observed, and q0 = 0
otherwise. One can show (see, e.g., [43]) that in the large-sample
limit, the discovery significance is then Z0 =

√
q0, for which one finds

Z0 =

√
2
(
n ln

n

b
+ b− n

)
(39.82)

for n > b and Z0 = 0 otherwise. To approximate the expected
discovery significance assuming µ = 1, one may simply replace n with
the expected value E[n|µ = 1] = s + b (the so-called “Asimov data
set”), giving

med[Z0|µ = 1] =

√
2
(
(s+ b) ln

(
1 +

s

b

)
− s

)
. (39.83)

This has been shown in Ref. [43] to provide a good approximation to
the median discovery significance for values of s of several and for b
well below unity. The right-hand side of Eq. (39.83) reduces to s/

√
b

in the limit s ≪ b.

Beyond the simple Poisson counting experiment, in general one
may test values of a parameter µ with more complicated functions
of the measured data to obtain a p-value pµ, and from this one can
quote the equivalent significance Zµ or find, e.g., an upper limit µup.
In this case as well one may quantify the experimental sensitivity by
giving the significance Zµ expected if the data are generated with a
different value of the parameter µ′. In some problems, finding the
sampling distribution of the significance or limits may be possible
using large-sample formulae as described, e.g., in Ref. [43]. In other
cases a Monte Carlo study may be needed. Using whatever method
of calculation is most appropriate, one usually quotes the expected
(mean or, preferably, median) significance or limit as the primary
measures of experimental sensitivity.

Even if the true signal is present at its nominal rate, the actual
discovery significance Z0 obtained from the real data is subject to
statistical fluctuations and will not in general be equal to its expected
value. In an analogous way, the observed limit will differ from the
expected limit even if the signal is absent. Upon observing such
a difference one would like to know how large this is compared
to expected statistical fluctuations. Therefore, in addition to the
observed significance and limits it is useful to communicate not
only their expected values but also a measure of the width of their
distributions.

As the distributions of significance and limits are often well
approximated by a Gaussian, one may indicate the intervals
corresponding to plus-or-minus one and/or two standard deviations.
If the distributions are significantly non-Gaussian, one may use
instead the quantiles that give the same probability content, i.e.,
[0.1587, 0.8413] for ±1σ, [0.02275, 0.97725] for ±2σ. An upper limit
found significantly below the background-only expectation may
indicate a strong downward fluctuation of the data, or perhaps as well
an incorrect estimate of the background rate.

The procedures described above pertain to frequentist hypothesis
tests and limits. Bayesian limits, just like those found from a
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frequentist procedure, are functions of the data and one may
therefore find, usually with approximations or Monte Carlo studies,
their sampling distribution and corresponding mean (or, preferably,
median) and standard deviation.

When trying to establish discovery of a signal process, the Bayesian
approach may employ a Bayes factor as described in Sec. 39.3.3. In
the case of the Poisson counting experiment with the likelihood from
Eq. (39.81), the log of the Bayes factor that compares µ = 1 to µ = 0
is lnB10 = ln(L(1)/L(0)) = n ln(1 + s/b)− s. That is, the expectation
value, assuming µ = 1, of lnB10 for this problem is

E[lnB10|µ = 1] = (s+ b) ln
(
1 +

s

b

)
− s . (39.84)

Comparing this to Eq. (39.83), one finds med[Z0|1] =
√
2E[lnB10|1].

Thus for this particular problem the frequentist median discovery
significance can be related to the corresponding Bayes factor in a
simple way.

In some analyses, the goal may not be to establish discovery of
a signal process but rather to measure, as accurately as possible,
the signal rate. If we consider again the Poisson counting experiment
described by the likelihood function of Eq. (39.81), the ML estimator
µ̂ = (n− b)/s has a variance, assuming µ = 1, of

V [µ̂] = V

[
n− b

s

]
=

1

s2
V [n] =

s+ b

s2
, (39.85)

so that the standard deviation of µ̂ is σµ̂ =
√
s+ b/s. One may

therefore use s/
√
s+ b as a figure of merit to be maximized in order

to obtain the best measurement accuracy of a rate parameter. The
quantity s/

√
s+ b is also the expected significance with which one

rejects s assuming the signal is absent, and thus can be used to
optimize the expected upper limit on s.
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40.Monte Carlo Techniques

Revised September 2017 by G. Cowan (RHUL).

Monte Carlo techniques are often the only practical way to
evaluate difficult integrals or to sample random variables governed
by complicated probability density functions. Here we describe an
assortment of methods for sampling some commonly occurring
probability density functions.

40.1. Sampling the uniform distribution

Most Monte Carlo sampling or integration techniques assume a
“random number generator,” which generates uniform statistically
independent values on the half open interval [0, 1); for reviews see,
e.g., Refs. [1,2].

Uniform random number generators are available in software
libraries such as CLHEP [3], and ROOT [4]. For example, in addition
to a basic congruential generator TRandom (see below), ROOT
provides three more sophisticated routines: TRandom1 implements
the RANLUX generator [5] based on the method by Lüscher, and
allows the user to select different quality levels, trading off quality
with speed; TRandom2 is based on the maximally equidistributed
combined Tausworthe generator by L’Ecuyer [6]; the TRandom3

generator implements the Mersenne twister algorithm of Matsumoto
and Nishimura [7]. All of the algorithms produce a periodic sequence
of numbers, and to obtain effectively random values, one must not use
more than a small subset of a single period. The Mersenne twister
algorithm has an extremely long period of 219937 − 1.

The performance of the generators can be investigated with tests
such as DIEHARD [8] or TestU01 [9]. Many commonly available
congruential generators fail these tests and often have sequences
(typically with periods less than 232), which can be easily exhausted
on modern computers. A short period is a problem for the TRandom

generator in ROOT, which, however, has the advantage that its
state is stored in a single 32-bit word. The generators TRandom1,
TRandom2, or TRandom3 have much longer periods, with TRandom3

being recommended by the ROOT authors as providing the best
combination of speed and good random properties. For further
information see, e.g., Ref. [10].

40.2. Inverse transform method

If the desired probability density function is f(x) on the range
−∞ < x < ∞, its cumulative distribution function (expressing the
probability that x ≤ a) is given by Eq. (38.6). If a is chosen with
probability density f(a), then the integrated probability up to point
a, F (a), is itself a random variable which will occur with uniform
probability density on [0, 1]. Suppose u is generated according to
a uniformly distributed in (0, 1). If x can take on any value, and
ignoring the endpoints, we can then find a unique x chosen from the
p.d.f. f(x) for a given u if we set

u = F (x) , (40.1)

provided we can find an inverse of F , defined by

x = F−1(u) . (40.2)

This method is shown in Fig. 40.1a. It is most convenient when one
can calculate by hand the inverse function of the indefinite integral of
f . This is the case for some common functions f(x) such as exp(x),
(1 − x)n, and 1/(1 + x2) (Cauchy or Breit-Wigner), although it
does not necessarily produce the fastest generator. Standard libraries
contain software to implement this method numerically, working
from functions or histograms in one or more dimensions, e.g., the
UNU.RAN package [11], available in ROOT.

For a discrete distribution, F (x) will have a discontinuous jump of
size f(xk) at each allowed xk, k = 1, 2, · · ·. Choose u from a uniform
distribution on (0,1) as before. Find xk such that

F (xk−1) < u ≤ F (xk) ≡ Prob (x ≤ xk) =

k∑

i=1

f(xi) ; (40.3)

then xk is the value we seek (note: F (x0) ≡ 0). This algorithm is
illustrated in Fig. 40.1b.

0

1

0

1

F(x)

F(x)

} f (xk)

x
xk+1xk

u

x
x = F−1(u)

Continuous
distribution

Discrete
distribution

u

(a)

(b)

Figure 40.1: Use of a random number u chosen from a uniform
distribution (0,1) to find a random number x from a distribution
with cumulative distribution function F (x).

40.3. Acceptance-rejection method (Von Neumann)

Very commonly an analytic form for F (x) is unknown or too
complex to work with, so that obtaining an inverse as in Eq. (40.2) is
impractical. We suppose that for any given value of x, the probability
density function f(x) can be computed, and further that enough is
known about f(x) that we can enclose it entirely inside a shape which
is C times an easily generated distribution h(x), as illustrated in
Fig. 40.2. That is, Ch(x) ≥ f(x) must hold for all x.

C h(x)

C h(x)

f (x)

x

f (x)

(a)

(b)

Figure 40.2: Illustration of the acceptance-rejection method.
Random points are chosen inside the upper bounding figure, and
rejected if the ordinate exceeds f(x). The lower figure illustrates
a method to increase the efficiency (see text).

Frequently h(x) is uniform or is a normalized sum of uniform
distributions. Note that both f(x) and h(x) must be normalized
to unit area, and therefore, the proportionality constant C > 1.
To generate f(x), first generate a candidate x according to h(x).
Calculate f(x) and the height of the envelope C h(x); generate u and
test if uC h(x) ≤ f(x). If so, accept x; if not reject x and try again. If
we regard x and uC h(x) as the abscissa and ordinate of a point in a
two-dimensional plot, these points will populate the entire area C h(x)
in a smooth manner; then we accept those which fall under f(x). The
efficiency is the ratio of areas, which must equal 1/C; therefore we
must keep C as close as possible to 1.0. Therefore, we try to choose
C h(x) to be as close to f(x) as convenience dictates, as in the lower
part of Fig. 40.2.
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40.4. Algorithms

Algorithms for generating random numbers belonging to many
different distributions are given for example by Press [12], Ahrens
and Dieter [13], Rubinstein [14], Devroye [15], Walck [16] and Gentle
[17]. For many distributions, alternative algorithms exist, varying in
complexity, speed, and accuracy. For time-critical applications, these
algorithms may be coded in-line to remove the significant overhead
often encountered in making function calls.

In the examples given below, we use the notation for the variables
and parameters given in Table 38.1. Variables named “u” are assumed
to be independent and uniform on [0,1). Denominators must be
verified to be non-zero where relevant.

40.4.1. Exponential decay :

This is a common application of the inverse transform method, and
uses the fact that if u is uniformly distributed in [0, 1], then (1 − u) is
as well. Consider an exponential p.d.f. f(t) = (1/τ) exp(−t/τ) that is
truncated so as to lie between two values, a and b, and renormalized
to unit area. To generate decay times t according to this p.d.f., first
let α = exp(−a/τ) and β = exp(−b/τ); then generate u and let

t = −τ ln(β + u(α− β)). (40.4)

For (a, b) = (0,∞), we have simply t = −τ ln u. (See also Sec. 40.4.6.)

40.4.2. Isotropic direction in 3D :

Isotropy means the density is proportional to solid angle, the
differential element of which is dΩ = d(cos θ)dφ. Hence cos θ is
uniform (2u1 − 1) and φ is uniform (2πu2). For alternative generation
of sinφ and cosφ, see the next subsection.

40.4.3. Sine and cosine of random angle in 2D :

Generate u1 and u2. Then v1 = 2u1 − 1 is uniform on (−1,1), and
v2 = u2 is uniform on (0,1). Calculate r2 = v21 + v22 . If r2 > 1, start
over. Otherwise, the sine (S) and cosine (C) of a random angle (i.e.,
uniformly distributed between zero and 2π) are given by

S = 2v1v2/r
2 and C = (v21 − v22)/r

2 . (40.5)

40.4.4. Gaussian distribution :

If u1 and u2 are uniform on (0,1), then

z1 = sin(2πu1)
√
−2 lnu2 and z2 = cos(2πu1)

√
−2 lnu2 (40.6)

are independent and Gaussian distributed with mean 0 and σ = 1.

There are many variants of this basic algorithm, which may be
faster. For example, construct v1 = 2u1 − 1 and v2 = 2u2 − 1, which
are uniform on (−1,1). Calculate r2 = v21 + v22 , and if r2 > 1 start
over. If r2 < 1, it is uniform on (0,1). Then

z1 = v1

√
−2 ln r2

r2
and z2 = v2

√
−2 ln r2

r2
(40.7)

are independent numbers chosen from a normal distribution with
mean 0 and variance 1. z′i = µ + σzi distributes with mean µ and

variance σ2.

For a multivariate Gaussian with an n×n covariance matrix V , one
can start by generating n independent Gaussian variables, {ηj}, with
mean 0 and variance 1 as above. Then the new set {xi} is obtained
as xi = µi +

∑
j Lijηj , where µi is the mean of xi, and Lij are

the components of L, the unique lower triangular matrix that fulfils
V = LLT . The matrix L can be easily computed by the following
recursive relation (Cholesky’s method):

Ljj =


Vjj −

j−1∑

k=1

L2
jk




1/2

, (40.8a)

Lij =
Vij −

∑j−1
k=1 LikLjk

Ljj
, j = 1, ..., n ; i = j + 1, ..., n, (40.8b)

where Vij = ρijσiσj are the components of V . For n = 2 one has

L =

(
σ1 0
ρσ2

√
1− ρ2 σ2

)
, (40.9)

and therefore the correlated Gaussian variables are generated as
x1 = µ1 + σ1η1, x2 = µ2 + ρσ2η1 +

√
1− ρ2 σ2η2.

40.4.5. χ2(n) distribution :

To generate a variable following the χ2 distribution for n degrees of
freedom, use the Gamma distribution with k = n/2 and λ = 1/2 using
the method of Sec. 40.4.6.

40.4.6. Gamma distribution :

All of the following algorithms are given for λ = 1. For λ 6= 1,
divide the resulting random number x by λ.

• If k = 1 (the exponential distribution), accept x = − lnu. (See
also Sec. 40.4.1.)

• If 0 < k < 1, initialize with v1 = (e + k)/e (with e = 2.71828...
being the natural log base). Generate u1, u2. Define v2 = v1u1.

Case 1: v2 ≤ 1. Define x = v
1/k
2 . If u2 ≤ e−x, accept x and

stop, else restart by generating new u1, u2.
Case 2: v2 > 1. Define x = −ln([v1 − v2]/k). If u2 ≤ xk−1,
accept x and stop, else restart by generating new u1, u2.
Note that, for k < 1, the probability density has a pole at
x = 0, so that return values of zero due to underflow must be
accepted or otherwise dealt with.

• Otherwise, if k > 1, initialize with c = 3k − 0.75. Generate
u1 and compute v1 = u1(1 − u1) and v2 = (u1 − 0.5)

√
c/v1. If

x = k + v2 − 1 ≤ 0, go back and generate new u1; otherwise
generate u2 and compute v3 = 64v31u

2
2. If v3 ≤ 1 − 2v22/x or if

ln v3 ≤ 2{[k − 1] ln[x/(k − 1)]− v2}, accept x and stop; otherwise
go back and generate new u1.

40.4.7. Binomial distribution :

Begin with k = 0 and generate u uniform in [0, 1). Compute
Pk = (1 − p)n and store Pk into B. If u ≤ B accept rk = k and
stop. Otherwise, increment k by one; compute the next Pk as
Pk · (p/(1 − p)) · (n − k)/(k + 1); add this to B. Again, if u ≤ B,
accept rk = k and stop, otherwise iterate until a value is accepted. If
p > 1/2, it will be more efficient to generate r from f(r;n, q), i.e.,
with p and q interchanged, and then set rk = n− r.

40.4.8. Poisson distribution :

Iterate until a successful choice is made: Begin with k = 1 and set
A = 1 to start. Generate u. Replace A with uA; if now A < exp(−µ),
where µ is the Poisson parameter, accept nk = k − 1 and stop.
Otherwise increment k by 1, generate a new u and repeat, always
starting with the value of A left from the previous try.

Note that the Poisson generator used in ROOT’s TRandom

classes before version 5.12 (including the derived classes TRandom1,

TRandom2, TRandom3) uses a Gaussian approximation when µ exceeds
a given threshold. This may be satisfactory (and much faster) for some
applications. To do this, generate z from a Gaussian with zero mean
and unit standard deviation; then use x = max(0, [µ + z

√
µ + 0.5])

where [ ] signifies the greatest integer ≤ the expression. The routines
from Numerical Recipes [12] and CLHEP’s routine RandPoisson do
not make this approximation (see, e.g., Ref. 10).

40.4.9. Student’s t distribution :

Generate u1 and u2 uniform in (0, 1); then t = sin(2πu1)[n(u
−2/n
2 −

1)]1/2 follows the Student’s t distribution for n > 0 degrees of freedom
(n not necessarily an integer).

Alternatively, generate x from a Gaussian with mean 0 and σ2 = 1
according to the method of 40.4.4. Next generate y, an independent
gamma random variate, according to 40.4.6 with λ = 1/2 and k = n/2.
Then z = x/

√
y/n is distributed as a t with n degrees of freedom.

For the special case n = 1, the Breit-Wigner distribution, generate
u1 and u2; set v1 = 2u1 − 1 and v2 = 2u2 − 1. If v21 + v22 ≤ 1 accept
z = v1/v2 as a Breit-Wigner distribution with unit area, center at 0.0,
and FWHM 2.0. Otherwise start over. For center M0 and FWHM Γ,
use W = zΓ/2 +M0.
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40.4.10. Beta distribution :

The choice of an appropriate algorithm for generation of beta
distributed random numbers depends on the values of the parameters
α and β. For, e.g., α = 1, one can use the transformation method to
find x = 1 − u1/β , and similarly if β = 1 one has x = u1/α. For more
general cases see, e.g., Refs. [16,17] and references therein.

40.5. Markov Chain Monte Carlo

In applications involving generation of random numbers following
a multivariate distribution with a high number of dimensions, the
transformation method may not be possible and the acceptance-
rejection technique may have too low of an efficiency to be practical.
If it is not required to have independent random values, but only that
they follow a certain distribution, then Markov Chain Monte Carlo
(MCMC) methods can be used. In depth treatments of MCMC can
be found, e.g., in the texts by Robert and Casella [18], Liu [19], and
the review by Neal [20]. HEP-oriented software for MCMC is available
from the Bayesian Analysis Toolkit (BAT) [21].

MCMC is particularly useful in connection with Bayesian statistics,
where a p.d.f. p(θ) for an n-dimensional vector of parameters
θ = (θ1, . . . , θn) is obtained, and one needs the marginal distribution
of a subset of the components. Here one samples θ from p(θ) and
simply records the marginal distribution for the components of
interest.

A simple and broadly applicable MCMC method is the Metropolis-
Hastings algorithm, which allows one to generate multidimensional
points θ distributed according to a target p.d.f. that is proportional
to a given function p(θ). It is not necessary to have p(θ) normalized
to unit area, which is useful in Bayesian statistics, as posterior
probability densities are often determined only up to an unknown
normalization constant.

To generate points that follow p(θ), one first needs a proposal p.d.f.
q(θ;θ0), which can be (almost) any p.d.f. from which independent
random values θ can be generated, and which contains as a parameter
another point in the same space θ0. For example, a multivariate
Gaussian centered about θ0 can be used. Beginning at an arbitrary
starting point θ0, the Hastings algorithm iterates the following steps:

1. Generate a value θ using the proposal density q(θ;θ0);

2. Form the Hastings test ratio, α = min

[
1,

p(θ)q(θ0;θ)

p(θ0)q(θ;θ0)

]
;

3. Generate a value u uniformly distributed in [0, 1];

4. If u ≤ α, take θ1 = θ. Otherwise, repeat the old point, i.e.,
θ1 = θ0.

5. Set θ0 = θ1 and return to step 1.

If one takes the proposal density to be symmetric in θ and θ0, then
this is the Metropolis -Hastings algorithm, and the test ratio becomes
α = min[1, p(θ)/p(θ0)]. That is, if the proposed θ is at a value of
probability higher than θ0, the step is taken. If the proposed step is
rejected, the old point is repeated.

Methods for assessing and optimizing the performance of the
algorithm are discussed in, e.g., Refs. [18–20]. One can, for example,
examine the autocorrelation as a function of the lag k, i.e., the
correlation of a sampled point with that k steps removed. This should
decrease as quickly as possible for increasing k.

Generally one chooses the proposal density so as to optimize some
quality measure such as the autocorrelation. For certain problems
it has been shown that one achieves optimal performance when the
acceptance fraction, that is, the fraction of points with u ≤ α, is
around 40%. This can be adjusted by varying the width of the
proposal density. For example, one can use for the proposal p.d.f. a
multivariate Gaussian with the same covariance matrix as that of the
target p.d.f., but scaled by a constant.

40.6. Generative Adversarial Networks

Recent developments in Machine Learning have led to new types of
Monte Carlo methods based on generative models. The goal is to gen-

erate events each consisting of a vector of quantities x, which could
represent the set of pixels in an image or energy deposits in the cells
of a calorimeter. Suppose, however, that we do not have direct access
to the underlying probability density f(x), but rather we only have
an implicit model (e.g., a computer program able to simulate the
complexities of the physical system), which can provide a set of events
usable as training data. In the case of a calorimeter, for example, this
could represent real events from a control measurement or simply the
output from a detailed simulation.

Generative models such as such as Variational Autoencoders
(VAEs) [22,23] and Generative Adversarial Networks (GANs) [24]
are algorithms for generating events that mimic the training data.
Recently GANs have been investigated in HEP for simulation of
energy deposits in calorimeters, so far in a simplified setting. They
are able to generate events that capture detailed properties of those
from a detailed Monte Carlo simulation but require far less computing
time (for a recent example see, e.g., Ref. [25]).

Here we sketch the main ideas behind GANs used to simulate a
random vector x. This follows some distribution f(x) which itself
is not known, but we have a set of instances (events) x1, . . . ,xN as
training data, here regarded as representative of the true distribution.
We seek a function (the generator) G(z) which takes as input a
vector of random numbers z and produces directly as output an event
vector, i.e., x = G(z). The method is in this sense similar to the
transformation method described in 40.2, but here both the function
G and the input of random values z are multidimensional. As a
prototypical example we can take the components of z as independent
and Gaussian distributed about zero with unit variance.

The GAN makes use of two functions, the generator G(z) and
a discriminator D(x). The generator tries to produce events x
that mimic the (real) training data and thus look as if they were
sampled from the unknown distribution f(x). Simultaneously, the
discriminator is trained to do its best to distinguish the generated
events from the real ones.

To find the function G(z) that generates events that are as similar
as possible to the training data, one may use a Deep Neural Network
(DNN), i.e., a neural network with a sufficiently large number of
hidden layers, and thus having a large set of parameters θg. This
is needed so that network is capable of modelling accurately the
potentially complex density f(x). The input layer corresponds to the
components of the random vector z and the multidimensional output
layer to x. The goal is thus reduced to finding optimal values of the
parameters θg using the training data.

The discriminator function D(x;θd) can also be a DNN containing
parameters θd. It takes as input an event (an instance in x-space)
and provides a single scalar output in [0, 1], which should be as close
as possible to zero for generated and one for real events.

The parameters of the generator and discriminator are chosen such
that the function

V (θg,θd) = Ex[log(D(x;θd))] +Ez [log(1−D(G(z;θg);θd))] (40.10)

is minimized with respect to θg and simultaneously maximized with
respect to θd. For the expectation value in the first term, x is
sampled from the (real) training data; for the second term z follows
its given distribution, e.g., a multivariate standard Gaussian. That is,
the discriminator is adjusted to maximize the probability that it will
correctly identify an event as real or generated, and simultaneously
the generator is tuned such that it produces events which appear as
real as possible when evaluated by the discriminator.

Challenges with GANs such as difficulty training the networks are
an active area of research in Machine Learning. Once an optimal
set of parameters is found, the transformation x = G(z;θg) can be
used to generate events in x-space that capture detailed properties
of the training data. Further information on applications, network
architecture and training procedures can be found in, e.g., Ref. [25]
and references therein.
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Revised September 2017 by P. Nason (INFN, Milan) and P.Z. Skands
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General-purpose Monte Carlo (GPMC) generators like HER-

WIG [1,2,3], PYTHIA [4,5], and SHERPA [6], provide detailed
simulations of high-energy collisions. They play an essential role
in QCD modeling (in particular for aspects beyond fixed-order
perturbative QCD) and in data analysis and the planning of new
experiments, where they are used together with detector simulation
to estimate signals and backgrounds in high-energy processes. They
are built from several components, that describe the physics starting
from very short distance scales, up to the typical scale of hadron
formation and decay. Since QCD is weakly interacting at short
distances (below a femtometer), the components of the GPMC dealing
with short-distance physics are based upon perturbation theory. At
larger distances, all soft hadronic phenomena, like hadronization and
the formation of the underlying event in hadron collisions, cannot be
computed from first principles at present, and one must rely upon
QCD-inspired models.

The purpose of this review is to illustrate the main components of
these generators. It is divided into four sections. The first one deals
with short-distance, perturbative phenomena. The basic concepts
leading to the simulations of the dominant QCD processes are
illustrated here. In the second section, the nonperturbative transition
from partons to hadrons (“hadronization”) is treated. The two
most popular hadronization models, the string and cluster models,
are illustrated. The basics of the implementation of decay chains of
unstable “primary” hadrons into stable “secondaries” is also illustrated
here. In the third section, models for soft hadron physics are discussed.
These include models for the underlying event and for minimum-bias
interactions. Issues of Bose-Einstein and color-reconnection effects
are also discussed here. The fourth section briefly introduces the
challenges of MC uncertainty estimates and tuning.

We use natural units throughout, such that c = 1 and ℏ = 1,
with energy, momenta and masses measured in GeV, and time and
distances measured in GeV−1.

41.1. Short-distance physics in GPMC generators

The short-distance components of a GPMC generator deal with the
computation of the primary process at hand, with decays of short-lived
particles, and with the generation of QCD and QED radiation. QCD
radiation is computable in perturbation theory as long as the time
scales involved are well below 1/Λ, where Λ is a typical hadronic
scale of few hundred MeV. Because of the presence of logarithmic
enhancements due to both collinear and soft emissions, this description
involves an indefinite number of final-state particles that are emitted
at time scales below 1/Λ. In e+e− annihilation into hadrons, for
example, the time scale of the primary process is of the order of the
inverse of the annihilation energy Q. Collinear and soft emissions
take place at all time scales between 1/Q and 1/Λ, Technically, the
computation of the dominant collinear and soft radiation is carried
out by the so called shower algorithms. Historically, such algorithms
were first developed for resummation of collinear singularities, leading
to the so called “Parton Shower” algorithms. We will briefly describe
this approach in this section. We stress, however, that many modern
generators adopt approaches that focus initially upon soft singularities,
leading to the so called “Dipole Showers” discussed in Sec. 41.1.3.

Collinear singularities arise when the angle between two emitted
light partons becomes small. For example, in a process in which a
quark and a gluon are emitted, if the angle θ among them is very
small (and is smaller than the angles among all other pairs of light
partons in the process) the squared amplitude factorizes as follows

|Mqg|2dΦqg ≈ |Mq|2 dΦq
αs

2π
Pq,qg(z)dz

dφ

2π

dθ2

θ2
(41.1)

where Mqg, dΦqg are the amplitude and phase space when both the
gluon and the quark are emitted; Mq, dΦq are the amplitude and
phase space when only the quark is emitted; z = Eq/(Eq + Eg) is
the fraction of energy carried by the quark; φ is the azimuth of the
splitting plane, and Pq,qg(z) = CF (1+z2)/(1−z) is the Altarelli-Parisi

splitting kernel for gluon emission from a quark line, with color factor
CF = 4/3. The factorized form of Eq. (41.1) is due to the fact that for
small angle the process is dominated by a single amplitude in which
the splitting quark is almost on shell and hence propagates for long
distances. We define the energy scale corresponding to the inverse of
this distance as the hardness of the splitting process, so that larger
hardness corresponds to shorter distance. We can define the hardness
t as the product E2θ2, or as the virtuality of the splitting parton p2,
or as a measure of the relative transverse momentum in the splitting
such as the kt of an emitted parton relative to its parent, defined by

p2 = 2E2z(1− z)(1− cos θ) ≈ z(1− z)E2θ2 , k2T = z2(1− z)2E2θ2 .
(41.2)

If the region of small values of z and 1 − z was not important, these
definitions would be equivalent. In QCD we also have soft divergences,
arising when soft gluons are emitted. In Eq. (41.1) they appear as
z → 1, because of the 1/(1 − z) singularity of Pq,qg(z). Thus, we
expect that the choice of the appropriate ordering variable will be
relevant when dealing with soft divergences (see Sec. 41.3). The
dθ2/θ2 factor in Eq. (41.1) can be equivalently written in terms of the
hardness dt/t. After integration it gives rise to a logarithmic factor
log(Q2/Λ2). We can have many subsequent splittings, that we can
describe by applying Eq. (41.1) recursively, as long as the splittings
are strongly ordered in decreasing hardness. This means that, from
a typical final-state configuration, by clustering together final-state
parton pairs with the smallest hardness recursively, we can reconstruct
a branching tree, that may be viewed as the splitting history of the
event. We stress that all hardness values between the hardness of the
primary process and the cutoff scale Λ are equally involved here. The
collinear approximation is applied recursively to splitting processes
that have much smaller hardness with respect to all previous ones.

By integrating over the phase space, a process with n collinear
splittings will be of order (αS(Q

2) log(Q2/Λ2))n with respect to the
primary process. Since αS(Q

2) ∝ 1/ log(Q2/Λ2) [7], these corrections
are not small. The so-called KLN theorem [8,9] guarantees that large
logarithmic enhancements arising from final-state collinear splitting
cancel against the virtual corrections in inclusive cross sections,
order by order in perturbation theory. Furthermore, the factorization
theorem guarantees that initial-state collinear singularities can be
factorized into the parton density functions (PDFs) [7]. Therefore,
the cross section for the basic process remains accurate up to
corrections of higher orders in αS(Q), provided it is interpreted as an
inclusive cross section, rather than as a bare partonic cross section.
For example, the leading order (LO) cross section for e+e− → qq̄ is
a good LO estimate of the e+e− cross section for the production of
a pair of quarks accompanied by an arbitrary number of collinear
and soft gluons, but is not a good estimate of the cross section for
the production of a qq̄ pair with no extra radiation. In summary,
perturbation theory at fixed order can yield increasingly accurate
predictions for inclusive observables, but cannot be used to describe
the indefinite sequence of collinear and soft radiations that accompany
the hard partons.

Parton-Shower algorithms are used to compute the cross section
for generic hard processes including all dominant collinear radiation.
These algorithms begin with the generation of the kinematics of the
basic process, performed with a probability proportional to its LO
partonic cross section. This is interpreted physically as the inclusive
cross section for the basic process, followed by an arbitrary sequence
of shower splittings. The algorithm then assigns a probability to each
splitting sequence, so that the initial LO cross section is partitioned
into the cross sections for a multitude of final states of arbitrary
multiplicity, with their sum equal to the cross section of the primary
process. This property of the GPMCs reflects the KLN cancellation
mentioned earlier, and it is often called “unitarity of the shower
process”, a name that reminds us that the KLN cancellation itself is a
consequence of unitarity. The fact that a quantum mechanical process
can be described in terms of composition of probabilities, rather than
amplitudes, follows from the collinear approximation. In fact, because
of strong ordering, a radiated parton cannot be collinear to more than
one parton in the amplitude, and this suppresses interference effects.

We now illustrate the basic parton-shower algorithm, as first
introduced in Ref. 11. (For more pedagogical introductions see Ref. 18
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and references therein.) For simplicity, we consider the example of
e+e− annihilation into qq̄ pairs, where we only have to deal with
final state radiation (FSR). We consider all final states that can be
built by dressing the q and q̄ partons with an indefinite number
of splitting processes. By recursively clustering together final state
parton pairs with the smallest relative hardness, from each final state
configuration we can construct two trees rooted at the q and q̄ partons.
The momenta of all intermediate lines of the tree diagrams are then
uniquely determined from the final-state momenta. Hardnesses in the
trees are ordered. One assigns to each splitting vertex the hardness
t, the energy fractions z and 1 − z of the two generated partons, and
the azimuth φ of the splitting process with respect to the momentum
of the incoming parton. For definiteness, we assume that z and φ are
defined in the center-of-mass (CM) frame of the e+e− collision. The
differential cross section for a given final state is given by the product
of the differential cross section for the initial e+e− → qq̄ process,
multiplied by a factor

∆i(tm, tn)
αS(t)

2π
Pi,jk(z)

dtm
tm

dz
dφ

2π
(41.3)

for each intermediate line arising from the nth and ending in the mth

splitting vertex. ∆(tm, tn) is the so-called Sudakov form factor

∆i(tm, tn) = exp


−

∫ tn

tm

dq2

q2
αS(q

2)

2π

∑

jk

Pi,jk(z)dz
dφ

2π


 . (41.4)

The suffixes i and jk represent the parton species of the incoming and
final partons, respectively, and Pi,jk(z) are the Altarelli-Parisi [12]
splitting kernels. Notice that the endpoints on the z integration
depend upon the definition of hardness. For example, in case of
virtuality or transverse momentum ordering, the z integration is
automatically cut-off near the extremes, see eq. (1.2). When this is
not the case (as, for example, for angular ordering) an explicit cut-off
on z must be introduced, corresponding to the requirement that an
emission must have some mininum energy to be distinguishable from
no emission. For lines originating at the primary vertex, the scale tn
is replaced by the typical scale of the primary process and for lines
ending without any further splitting the scale tm is replaced by t0, an
infrared cutoff defined by the shower hadronization scale (at which the
charges are screened by hadronization) or, for an unstable particle,
its width (a source cannot emit radiation with a period exceeding its
lifetime).

Eq. (41.3) can be obtained by iterating formula Eq. (41.1)
recursively, with two important corrections: a) the strong coupling is
evaluated at a scale corresponding to the hardness of the splitting
process; b) the presence of the Sudakov form factor. Both these
modifications arise from the inclusion of all collinear-dominant virtual
corrections.

Notice that the Sudakov form factor for a small hardness interval
∆i(t, t + δt) is equal to one minus the integrated emission probability
of Eq. (41.3), i.e. it can be interpreted as the probability of no
emission in the interval t, t + δt. From this, it immediately follows
that ∆i(tm, tn) can be interpreted as the no-emission probability
in the full tm, tn interval. This interpretation allows to formulate
the shower process as a probabilistic algorithm. We first notice that
0 < ∆i(tm, tn) ≤ 1, where the upper extreme is reached for tm = tn,
and the lower extreme is approached for tm = t0. Starting from
each of the partons in the primary process (e.g., e+e− → qq̄), event
generation then proceeds recursively as follows. Given a parton exiting
a vertex with hardness tn, (taken to be of order the annihilation
scale Q2 for the first branching) one seeks a solution of the equation
r = ∆i(tm, tn), with r ∈ [0, 1] a uniform random number, and solves it
for the hardness of the next branching tm. If tm ≤ t0, no splitting is
generated and the line is interpreted as a final parton. If tm > t0, a
branching is generated at the scale tm. Its z value and the final parton
species jk are generated with a probability proportional to Pi,jk(z).
The azimuth is generated uniformly, neglecting angular correlations
(see Sec. 41.1.1). This procedure is started with each of the primary
process partons, and is applied recursively to all generated partons. It

may generate an arbitrary number of partons, and it stops when no
final-state partons undergo further splitting.

The four-momenta of the final-state partons are reconstructed
from the momenta of the initial ones, and from the whole sequence
of splitting variables, subject to overall momentum conservation.
Different algorithms employ different strategies to treat recoil effects
due to momentum conservation, which may be applied either locally
for each splitting, or globally for the entire set of partons (a procedure
called momentum reshuffling.) This has a subleading effect with
respect to the collinear approximation.

We emphasize that the shower cross sections described above can
be derived from perturbative QCD by keeping only the collinear-
dominant real and virtual contributions to the cross section. As such
it is unpredictive for large-angle radiation. It is thus unsafe to rely
upon Parton Shower Monte Carlo alone to compute backgrounds to
new physics signals that are characterized by several widely separated
jets.

A Shower Monte Carlo builds its final state as if it developed
from an iterative process, often with each intermediate stage made
available to the user. It should be remarked that the meaning of these
intermediate stages is only relevant within the approximation adopted
by the generator, and could also differ in different implementations.

41.1.1. Angular correlations :
In gluon-splitting processes (g → qq̄, g → gg) in the collinear
approximation, the distribution of the split pair is not uniform in
azimuth, and the Altarelli-Parisi splitting functions are recovered only
after azimuthal averaging. This dependence is due to the interference
of positive and negative helicity states for the gluon that undergoes
splitting. Spin correlations propagate through the splitting process,
and determine acausal correlations of the EPR kind [13]. A method
to partially account for these effects was introduced in Ref. 14, in
which the azimuthal correlation between two successive splittings is
computed by averaging over polarizations. This can then be applied
at each branching step. Acausal correlations are argued to be small,
and are discarded with this method, that is still used in PYTHIA [4].
A method that fully includes spin correlation effects was later
proposed [15], and has been implemented in HERWIG [16,3].

41.1.2. Initial-state radiation :
Initial-state radiation (ISR) arises because incoming particles may
undergo collinear radiation before entering the hard-scattering process.
In doing so, they acquire a non-vanishing transverse momentum,
and their virtuality becomes negative (spacelike). It turns out to
be convenient to develop the ISR shower starting with the highest
hardness (i.e. with the hard process) and ending with the smallest
(i.e. with the incoming parton in the hadron). Unlike the case of FSR,
however, hardness ordering is opposite to time ordering in the ISR
case. A corresponding backwards-evolution algorithm was formulated
by Sjöstrand [17], and was basically adopted in all shower models. It
can be illustrated by considering a primary interaction initiated by a
quark where no collinear emission of hardness ≥ t have taken place,
and the same process where the quark also emits a collinear gluon of
hardness t. The respective cross sections are proportional to

|Mq(x)|2dxfq(x, t), and|Mq(x)|2 dx
αs(t)

2π
fq(x/z, t)Pq,qg(z)dz

dφ

2π

dt

t
.

(41.5)
Here fq is the quark PDF in the incoming hadron, x is the fraction of
momentum of the incoming quark that enters the basic process, while
x/z is the fraction of momentum of the incoming quark before it emits
the collinear gluon. The elementary emission probability is the ratio
of the second over the first expression in Eq. (41.5). In analogy with
the final state radiation case, this ratio will appear in the exponent
of the Sudakov form factor, that (after the inclusion of all splitting
subprocesses) is given by

∆ISR
i (t, t′) = exp


−

∫ t

t′
dt′′

t′′
αS(t

′′)
2π

∫ 1

x

dz

z

∑

jk

Pj,ik(z)
fj(t

′′, x/z)
fi(t′′, x)


 .

(41.6)
Notice that there are two uses of the PDFs: they are used to
compute the cross section for the basic hard process, and they control
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ISR via backward evolution. Since the evolution is generated with
leading-logarithmic accuracy, it is acceptable to use two different PDF
sets for these two tasks, provided they agree at the LO level.

In the context of GPMC evolution, each ISR emission generates
a finite amount of transverse momentum. Details on how the recoils
generated by these transverse “kicks” are distributed among other
partons in the event, in particular the ones involved in the hard
process, constitute one of the main areas of difference between existing
algorithms, see Ref. 18. An additional O(1GeV) of “primordial
kT ” is typically added, to represent the sum of unresolved and/or
non-perturbative motion below the shower cutoff scale.

41.1.3. Soft emissions and QCD coherence :
Soft singularities arise in QCD due to the real or virtual emission of
soft gluons. For example, the cross section for the emission of a soft
gluon in e+e− annihilation into hadrons is given by

dσqq̄g ≈ dσqq̄
4

3
(4παs)

[
2 pq · pq̄
pq · l pq̄ · l

]
d3l

2l0(2π)3

= dσqq̄
αs

2π

4

3

dl0

l0
dφ

2π

d cos θ

1− cos2 θ
, (41.7)

where pq, pq̄ and l are the quark, antiquark and gluon momentum, and
θ and φ are the polar and azimuthal angle of the gluon momentum
with respect to the quark direction. Since the gluon is soft, we may
assume that pq and pq̄ are unaffected by the gluon emission. The soft
singularity is manifest in the dl0/l0 factor. Notice that also collinear
singularities are present at the same time when θ → 0 and θ → π,
corresponding to the gluon becoming collinear to either the quark or
the antiquark. It is easy to check that in the collinear limits Eq. (41.7)
becomes equivalent to Eq. (41.1) with Pq,qg(z) = (4/3)2/(1 − z),
i.e. the limiting form of Pq,qg(z) when z approaches 1. Thus, soft
singularities coexist with collinear ones, so that two potentially large
logarithms can arise simultaneously due to gluon emission.

Unlike the case of collinear emission, soft emission is not tied to a
single emitting particle. The amplitude for the emission of a soft gluon
from an external (incoming or outgoing) line with momentum p is
proportional to p · ǫ/p · l. When squaring the amplitude, products like
the one appearing in the square bracket of Eq. (41.1) arise for all pairs
of external particles, with the product of a single emission amplitude
with itself appearing only if p2 > 0, i.e. for massive coloured particles.
Thus interference plays here a crucial role. This is unlike the case of
collinear singularities, where because of strong ordering a radiated
parton cannot be collinear to more than one other parton.

It was shown in a set of publications (see Ref. 19) that, within the
conventional parton-shower formalism based on collinear factorization,
the region of collinear and soft emissions can be correctly described
by using the angle of the emissions as the ordering variable, rather
than the virtuality, and by setting the argument of αS at the splitting
vertex equal to the relative parton transverse momentum after the
splitting. Physically, the ordering in angle approximates the coherent
interference arising from large-angle soft emission from a bunch
of collinear partons. Without this effect, the particle multiplicity
would grow too rapidly with energy, in conflict with e+e− data.
For this reason, angular ordering is used as the default evolution
variable in all versions of HERWIG (see Ref. 20). To partially account
for soft interference effects, an angular veto is imposed on the
virtuality-ordered evolution in PYTHIA 6 [21].

A radical alternative formulation of QCD cascades first proposed
in Ref. 22 focuses upon soft emission, rather than collinear emission,
as the basic splitting mechanism. It then becomes natural to consider
a branching process where it is a parton pair (i.e. a dipole) rather
than a single parton, that emits a soft parton. Adding a suitable
correction for non-soft, collinear partons, one can simultaneously
achieve the correct logarithmic structure for both the collinear and
soft emissions in the so called leading color approximation, i.e.
when terms suppressed by a power of the number of colors are
neglected. The ARIADNE [23] and VINCIA [25] programs are based on
this approach. Dipole-type showers [26] are also used by default in
SHERPA [27] and exist as an option in HERWIG [28]. An alternative
dipole-based model is available in PYTHIA and SHERPA via the DIRE [29]

plugin. The p⊥-ordered showers in PYTHIA 6 and 8 represent a hybrid,
combining collinear splitting kernels with dipole kinematics [30].

41.1.4. Resummation :
It is notoriously difficult to assess the accuracy of shower Monte Carlos
in comparison with QCD resummation calculations [7]. The latter
start from the definition of a specific infrared-safe observable, which
develops towers of large logarithms in certain regions of phase space.
A dedicated resummation calculation must in general be performed
for each new observable. The predictions of shower MCs, on the other
hand, are cast in terms of complete sets of final-state momenta, on
which one can evaluate any observable; i.e., the shower algorithm itself
is normally independent of the specific observable(s) under study.

Generally, shower MCs perform much better than strict LL
resummations; this is related to their inclusion of several universal but
formally subleading aspects. But there are no guarantees. A shower
MC may do well for some specific observables, and not for others. At
present, it is difficult to make more precise and general statements
than that. Instead, it is common to specify what kind of corrections
are included. Typically, collinear emissions are accounted for, although
not always including angular correlations. Soft emissions are dealt
with to some extent via angular ordering or dipole approaches.
The most important and ubiquitous aspects beyond the strict LL
approximation are momentum conservation and optimised scale
choices. The former is obviously physical, hence including it should
yield better results than not doing so (indeed, momentum conservation
does become an aspect of QCD resummation calculations beyond LL),
although the precise way of how the resulting recoil effects are handled
in the shower is ambiguous. The latter can be tied, e.g., to reaching
NLL accuracy for soft emissions for observables such as the transverse
momentum of Drell-Yan pairs [101].

41.1.5. Massive quarks :
Quark masses act as a cut-off on collinear singularities. If the mass of
a quark is below, or of the order of Λ, its effect in the shower is small.
For larger quark masses, like in c, b, or t production, it is the mass,
rather than the typical hadronic scale, that cuts off collinear radiation.
For a quark with energy E and mass mQ, the divergent behavior dθ/θ
of the collinear splitting process is regulated for θ ≤ θ0 = mQ/E. We
thus expect less collinear activity for heavy quarks than for light ones,
which in turn is the reason why heavy quarks carry a larger fraction
of the momentum acquired in the hard production process.

This feature can be implemented with different levels of sophis-
tication. Using the fact that soft emission exhibits a zero at zero
emission angle, older parton shower algorithms simply limited the
shower emission to be not smaller than the angle θ0. More modern
approaches are used in both PYTHIA, where mass effects are included
using a kind of matrix-element correction method [31], and in
HERWIG++ and SHERPA, where a generalization of the Altarelli-Parisi
splitting kernel is used for massive quarks [32].

41.1.6. Color information :
In event generators, quarks and antiquarks are represented by color
lines, with arrows indicating the direction of color flow. In the limit of
infinitely many colors (called the leading color approximation), each
such line can be associated with a unique label; the probability for
two quarks (or antiquarks) to have the same color (anticolor) vanishes.
Moreover, in the same limit gluons can be represented by a pair of
color lines with opposite arrows, as can be realised e.g. from the SU(3)
group relation 8 = 3 ⊗ 3̄ ⊖ 1. The rules for color propagation are:

During the shower development, partons are connected by color
lines. We can have a quark directly connected by a color line to an
antiquark, or via an arbitrary number of intermediate gluons, as shown
in Fig. 41.1. It is also possible for a set of gluons to be connected
cyclically in color, as e.g. in the decay Υ → ggg.

The color information is used in angular-ordered showers, where the
angle of color-connected partons (i.e. partons connected by the same
color line) determines the initial angle for the shower development, and
in dipole showers, where dipoles are always color-connected partons.
It is also used in hadronization models, where the initial strings or
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Figure 41.1: Color development of a shower in e+e− annihi-
lation. Color-neutral clusters of partons are indicated by the
dashed under-brackets.

clusters used for hadronization are formed by color-neutral clusters of
partons.

41.1.7. Electromagnetic corrections :
The physics of photon emission from light charged particles can also
be treated with a shower MC algorithm. High-energy electrons and
quarks, for example, are accompanied by bremsstrahlung photons.
Also here, similarly to the QCD case, electromagnetic corrections
are of order αem ln(Q/m), where m is the mass of the radiating
particle, or even of order αem ln(Q/m) ln(Eγ/E) in the region where
soft photon emission is important, so that, especially for the case
of electrons, their inclusion in the simulation process is mandatory.
This is done in most of the GPMC’s (for a recent comparative study
see [33]) . The specialized generator PHOTOS [34] is sometimes used
as an afterburner for an improved treatment of QED radiation in
non-hadronic resonance decays.

For photon emissions off leptons, the shower can be continued down
to virtualities arbitrarily close to the lepton mass shell (unlike the case
in QCD). In practice, an infrared cutoff is still required for the shower
algorithm to terminate. Therefore, there is always an energy cut-off
for emitted photons that depends upon the implementations [33].
In the case of electrons, this energy is typically of the order of its
mass. Electromagnetic radiation below this scale is not enhanced
by collinear singularities, and is thus bound to be soft, so that the
electron momentum is not affected by it.

For photons emitted from quarks, we have instead the obvious
limitation that the photon wavelength cannot exceed the typical
hadronic size. Longer-wavelength photons are in fact emitted
by hadrons, rather than quarks. This last effect is in practice
never modeled by existing shower MC implementations. Thus,
electromagnetic radiation from quarks is cut off at a typical hadronic
scale. Finally, hadron (and τ) decays involving charged particles can
produce additional soft bremsstrahlung. This is implemented in a
general way in HERWIG++/HERWIG 7 [35] and SHERPA [36].

41.1.8. Beyond-the-Standard-Model Physics :
The inclusion of processes for physics beyond the Standard Model
(BSM) in event generators is to some extent only a matter of
implementing the relevant hard processes and (chains of) decays, with
the level of difficulty depending on the complexity of the model and
the degree of automation [37,38]. Notable exceptions are long-lived
colored particles [39], particles in exotic color representations, and
particles showering under new gauge symmetries, with a growing set
of implementations documented in the individual GPMC manuals.
Further complications that may be relevant are finite-width effects
(discussed in Sec. 41.1.9) and the assumed threshold behavior.

In addition to code-specific implementations [18], there are a
few commonly adopted standards that are useful for transferring
information and events between codes. Currently, the most important
of these is the Les Houches Event File (LHEF) standard [40], normally
used to transfer parton-level events from a hard-process generator to a
shower generator. Another important standard is the Supersymmetry
Les Houches Accord (SLHA) format [41], originally used to transfer
information on supersymmetric particle spectra and couplings, but
by now extended to apply also to more general BSM frameworks and
incorporated within the LHEF standard [42].

41.1.9. Decay Chains and Particle Widths :
In most BSM processes and some SM ones, an important aspect of
the event simulation is how decays of short-lived particles, such as
top quarks, EW and Higgs bosons, and new BSM resonances, are

handled. We here briefly summarize the spectrum of possibilities,
but emphasize that there is no universal standard. Users are advised
to check whether the treatment of a given code is adequate for the
physics study at hand.

The appearance of an unstable resonance as a physical particle
at an intermediate stage of the event generation implies that its
production and decay processes are treated as being factorized. This
is valid up to corrections of order Γ/m0, with Γ the width and m0 the
pole mass. States whose widths are a substantial fraction of their mass
should instead be treated as intrinsically off-shell internal propagator
lines.

For states treated as physical particles, two aspects are relevant: the
mass distribution of the decaying particle itself and the distributions
of its decay products. For the former, matrix-element generators often
use a simple δ function at m0. The next level up, typically used in
GPMCs, is to use a Breit-Wigner distribution (relativistic or non-
relativistic), which formally resums higher-order virtual corrections to
the mass distribution. Note, however, that this still only generates an
improved picture for moderate fluctuations away from m0. Similarly
to above, particles that are significantly off-shell (in units of Γ) should
not be treated as resonant, but rather as internal off-shell propagator
lines. In most GPMCs, further refinements are included, for instance
by letting Γ be a function of m (“running widths”) and by limiting
the magnitude of the allowed fluctuations away from m0. We finally
point out that recently NLO+PS generators have appeared that
can deal with resonances including off-shell effects, non-resonance
contributions and interference of radiation generated in resonance
decay and production, see [24] and references therein.

For the distributions of the decay products, the simplest treatment
is again to assign them their respective m0 values, with a uniform
phase-space distribution. A more sophisticated treatment distributes
the decay products according to the differential decay matrix elements,
capturing at least the internal dynamics and helicity structure of the
decay process, including EPR-like correlations. Further refinements
include polarizations of the external states [43] and assigning the
decay products their own Breit-Wigner distributions, the latter of
which opens the possibility to include also intrinsically off-shell decay
channels, like H → WW ∗.

GPMC manuals often give instructions on how to include new decay
modes, at varying levels of sophistications ranging from simple uniform
phase-space sampling (which the user can reweight a posteriori) and
step-function thresholds, to fully matrix-element weighted decay
implementations including potential off-shell / threshold effects.

During subsequent showering of the decay products, most parton-
shower models will preserve the total invariant mass of the decayed
resonance, so as not to skew the original resonance shape. In the
context of passing externally generated LHEF files [40] to a GPMC for
showering, note that this is only possible if the intermediate resonances
are present (with status code 2) in the LHEF event record [44].

41.1.10. Matching with Matrix Elements :
Shower algorithms are based upon a combination of the collinear
(small-angle) and soft (small-energy) approximations and are thus
normally inaccurate for hard, wide-angle emissions (i.e., additional
well-resolved jets). They also contain only the leading singular pieces
of next-to-leading order (NLO) and higher corrections to the basic
process.

Traditional GPMCs, like HERWIG and PYTHIA, have included for
a long time the so called Matrix Element Corrections (MEC), first
formulated in Ref. 45 with later developments summarized in Ref. 18.
They are typically available for 2 → 1 or 1 → 2 processes, like DIS,
vector boson and Higgs production and decays, and top decays. The
MEC corrects the emission of the hardest jet at large angles, so that
it becomes exact at LO. A generalization of the method to multiple
emissions was formulated recently [46].

Aside from MECs implemented directly in the GPMCs, the
improvements on the parton-shower description of hard collisions have
been made in two main directions: the so called Matrix Elements and
Parton Shower matching (ME+PS from now on), and the matching
of NLO calculations and Parton Showers (NLO+PS). We now discuss
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each of these, and then briefly summarise techniques becoming
available for combining them.

The ME+PS method allows one to use tree-level matrix elements
for hard, large-angle emissions. It was first formulated in the so-called
CKKW paper [47], and several variants have appeared, including
the CKKW-L, MLM, and pseudoshower methods, see Refs. 48, 18
for summaries. So called “Truncated Showers” are required [49] to
maintain color coherence when interfacing to angular-ordered parton
showers, and care must be taken to use consistent αS choices for the
real (ME-driven) and virtual (PS-driven) corrections [50].

In the ME+PS method one typically starts by generating LO
matrix elements for the production of the basic process plus a certain
number ≤ n of other partons. A minimum separation is imposed
on the produced partons, requiring, for example, that the relative
transverse momentum in any pair of partons is above a given cut
Qcut. One then reweights these amplitudes in such a way that, in the
strongly ordered region, the virtual effects that are included in the
shower algorithm (i.e. running couplings and Sudakov form factors)
are also accounted for. At this stage, before parton showers are added,
the generated configurations are tree-level accurate at large angle,
and at small angle they match the results of the shower algorithm,
except that there are no emissions below the scale Qcut, and no final
states with more than n partons. These kinematic configurations are
thus fed into a GPMC, that must generate all splittings with relative
transverse momentum below the scale Qcut, for initial events with
less than n partons, or below the scale of the smallest pair transverse
momentum, for events with n partons. The matching parameter Qcut

must be chosen to be large enough for fixed-order perturbation theory
to hold, but small enough so that the shower is accurate for emissions
below it. Notice that the accuracy achieved with MEC is equivalent
to that of ME+PS with n = 1, where MEC has the advantage of not
having a matching parameter Qcut.

The popularity of the ME+PS method is due to the fact that
processes with many jets appear often as backgrounds to new-physics
searches. These jets are typically required to be well separated, and to
have large transverse momenta. These kinematical configurations are
exactly those for which pure shower algorithms are unreliable, hence
it is mandatory to describe them using at least LO matrix elements.

Several ME+PS implementations use existing LO generators, like
ALPGEN [51], MADGRAPH [52], and others summarized in Ref. 48, for
the calculation of the matrix elements, and feed the partonic events
to a GPMC like PYTHIA or HERWIG using the Les Houches Interface
for User Processes (LHI/LHEF) [44,40]. SHERPA and HERWIG 7 also
include their own matrix-element generators.

The NLO+PS methods promote the accuracy of the generation of
the basic process from LO to NLO in QCD. They must thus include
the radiation of one extra parton with tree-level accuracy, since this
radiation constitutes a NLO correction to the basic process. They
must also include NLO virtual corrections. They can be viewed as
an extension of the MEC methods with the inclusion of NLO virtual
corrections. They are however more general, since they are applicable
to processes of arbitrary complexity. Two of these methods are now
widely used: MC@NLO [53] and POWHEG [49,54], with several alternative
methods now also being pursued, see Ref. 18 and references therein.

NLO+PS generators produce NLO accurate distributions for
inclusive quantities, and generate the hardest jet with tree-level
accuracy. It should be recalled, though, that in 2 → 1 processes like
Z/W production, GPMCs including MEC and weighted by a constant
K factor may perform nearly as well, and, if suitably tuned, may even
yield a better description of data. In this context, note also that the
optimal tuning of an NLO+PS generator may well be different from
that of the pure PS.

Several NLO+PS processes are implemented in the MC@NLO

program [53], together with the new AMC@NLO development [55], and
in the POWHEG BOX framework [54]. HERWIG 7 supports now its own
variants of POWHEG and MC@NLO for several processes. SHERPA instead
implements a variant of the MC@NLO method.

For applications that require an accurate description of more
than one hard, large-angle jet associated with the primary process,
ME+PS schemes are still superior to NLO+PS ones. Ideally, one

would like to improve NLO generators in such a way that also the
production of associated jets achieves NLO accuracy. The FXFX [57],
UNLOPS [58], MiNLO [59] and MEPS@NLO [60] methods address this
problem. In turn, its solution is a prerequisite for the construction
of NNLO+PS generators, that in fact have already appeared for the
gg → H and Drell-Yan processes (see ref. [61] and references therein).

41.2. Hadronization Models

In the context of GPMCs, hadronization denotes the process by
which a set of colored partons (after showering) is transformed into
a set of “primary hadrons”, which may then subsequently decay
further (to “secondary hadrons”). This non-perturbative transition
takes place at the hadronization scale Qhad, which by construction
is equal to the infrared cutoff of the parton shower. In the absence
of a first-principles solution to the relevant dynamics, GPMCs use
QCD-inspired phenomenological models to describe this transition.

An important result in “quenched” lattice QCD (see Chap. 17
of PDG book) is that the potential energy between two partons
with opposite color charges grows linearly with their separation, at
distances greater than about a femtometer. This is known as “linear
confinement”, and it forms the starting point for the string model
of hadronization, discussed below in Sec. 41.2.1. Alternatively, a
property of perturbative QCD called “preconfinement” is the basis of
the cluster model of hadronization, discussed in Sec. 41.2.2.

A key difference between MC hadronization models and the
fragmentation-function (FF) formalism used to describe inclusive
hadron spectra in perturbative QCD (see Chap. 9 and Chap. 19 of
PDG book) is that FFs can be defined at an arbitrary perturbative
scale Q while MC hadronization models are intrinsically defined at
the scale Qhad. Direct comparisons are therefore only meaningful
if the perturbative evolution between Q and Qhad is taken into
account. FFs are calculable in pQCD, given a non-perturbative initial
condition obtained by fits to hadron spectra. In the MC context,
one can prove that the correct QCD evolution of the FFs arises
from the shower formalism, with the hadronization model providing
an explicit parameterization of the non-perturbative component.
However, the MC modeling of shower and hadronization includes
much more information on the final state since it is fully exclusive (i.e.,
it addresses all particles in the final state explicitly), while FFs only
describe inclusive spectra. This exclusivity also enables MC models to
make use of the color-flow information coming from the perturbative
shower evolution (see Sec. 41.1.6) to determine between which partons
confining potentials should arise. E.g., in the string picture, the
nonperturbative limit of a QCD dipole is a string piece [62].

Given an exact hadronization model, its dependence on the scale
Qhad should in principle be compensated by the corresponding
scale dependence of the shower algorithm, which stops generating
branchings at the scale Qhad. However, due to their complicated
and fully exclusive nature, it is generally not possible to enforce this
compensation automatically in MC models. One must therefore be
aware that the nonperturbative model parameters must be “retuned”
by hand if the infrared cutoff is modified. Any other changes to the
perturbative part of the calculation, such as matching to further
(fixed-order or resummed) coefficients, may also necessitate a retuning.
Tuning is discussed briefly in Sec. 41.4.

Finally, it should be emphasized that the so-called “parton level”
that can be obtained by switching off hadronization in a GPMC, is
not a universal concept, since each model defines Qhad differently (e.g.
via a cutoff in p⊥, invariant mass, etc., with different tunes using
different values for the cutoff). Comparisons to distributions at this
level may therefore be used to provide an idea of the overall impact of
hadronization corrections within a given model, but should be avoided
in the context of physical observables.

41.2.1. The String Model :
Starting from early concepts [63], several hadronization models based
on strings have been proposed [18]. Of these, the most widely
used today is the so-called Lund model [64,65], implemented in
PYTHIA [4,5]. We concentrate on that particular model here, though
many of the overall concepts would be shared by any string-inspired
method.
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Consider a color-connected quark-antiquark pair emerging from
the parton shower (like the q̄q pair in the center of Fig. 41.1). As
the charges move apart, linear confinement implies that a potential
V (r) = κ r is reached for large distances r. (At short distances,
there is a Coulomb term ∝ 1/r as well, but this is neglected in
the Lund string.) This potential describes a string with tension
κ ∼ 1GeV/fm ∼ 0.2GeV2. The physical picture is that of a color
flux tube being stretched between the q and the q̄.
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Figure 41.2: Illustration of string breaking by quark pair-
creation in the string field.

As the string grows, the nonperturbative creation of quark-antiquark
pairs can break the string, via the process illustrated in Fig. 41.2. The
model is Lorentz invariant, so considerations involving boosted string
systems are straightforward, involving the usual Lorentz effects. More
complicated configurations involving intermediate gluons are treated
by representing gluons as transverse “kinks”, illustrated in Fig. 41.3,
and considerations involving boosted string systems are subject to the
usual Lorentz effects. In the leading-color approximation, the order
of these kinks follows directly from the color ordering produced by
the parton shower, cf. the q̄gggq and q̄gq systems on the left and
right part of Fig. 41.1. (Modifications to this order, by possible color
reconnection/rearrangement effects, are discussed in Sec. 41.3.3.)

PS

x

y

Figure 41.3: Schematic illustration of an e+e− → qgq̄
configuration emerging from the parton shower (PS). Snapshots
of string positions are shown at two different times (full and
shaded lines respectively). The gluon forms a transverse kink
which grows in the y direction until all the gluon’s kinetic energy
has been used up.

Thus gluons effectively build up a transverse structure in the
originally one-dimensional object, with infinitely soft ones smoothly
absorbed into the string. Note: cyclic topologies made entirely of
gluons (closed strings) are also possible, e.g. in decays such as H → gg
or Υ → ggg. The space-time evolution is more involved when kinks
are taken into account [65], but no additional free parameters need
to be introduced. The main difference between quark and gluon
hadronization stems from the fact that gluons are connected to two
string pieces (one on either side), while quarks are only connected to
a single string piece. Hence, the relative rate of energy loss per unit
invariant time — and consequently also the rate of hadron production
— is larger by a factor of 2 for gluons (similar to the ratio of color
Casimirs CA/CF = 2.25).

To convert a set of partons to hadrons, the first step is thus to
map color-connected pairs of partons to string pieces, with quarks
as endpoints and gluons as kinks. Next, the strings evolve, with a
constant probability density for string breaks to occur per unit string
space-time area. In this context, it is important to note that the
individual string breaks are causally disconnected [65], hence they
do not have to be generated in any particular time-ordered sequence.
This is exploited in the Lund model to allow to consider the formation
of a single on-shell hadron at a time, in an order that corresponds
to decreasing average absolute rapidity (along the string). Selecting
randomly between the left and right sides of the string, the first hadron
to be generated is thus the “outermost” one, formed by combining

the original hadronizing endpoint quark (or antiquark) q0 with an
antiquark (or quark) q̄1 produced by a breakup. The new leftover
quark (or antiquark) q1 becomes the string endpoint for the next
iteration, in a Markov chain which continues, alternating randomly
between the left and right ends of the string, until finally a small last
bit of string is decayed directly to two hadrons, with no energy left
over.

For each breakup vertex, quantum mechanical tunneling is assumed
to control the masses and p⊥ kicks (transverse to the string axis, in a
frame in which the string itself has no transverse motion) that can be
produced, leading to a Gaussian suppression

Prob(m2
q , p

2
⊥q) ∝ exp

(
−πm2

q

κ

)
exp

(
−πp2⊥q

κ

)
, (41.8)

where mq is the mass of the produced quark flavor and p⊥ is the
nonperturbative transverse momentum imparted to it by the breakup

process, with a universal average value of
〈
p2⊥q

〉
= κ/π ∼ (250MeV)2.

The antiquark has the same mass and opposite p⊥.
In an MC model with a fixed shower cutoff t0, the effective amount

of p⊥ in string breaks may be larger than the purely nonperturbative
κ/π above, to account for effects of additional (unresolved) radiation
below t0.

From the mass term in Eq. (41.8), one concludes that charm and
bottom quarks are too heavy to be produced in string breaks, while
strange quarks will be suppressed relative to up and down ones.
Lacking unambiguous and precise mass definitions for light quarks,
however, the effective amount of strangeness suppression is normally
extracted from experimental data, using observables such as K/π and
K∗/ρ ratios.

Baryon production can also be incorporated, by allowing string
breaks to produce pairs of diquarks, loosely bound states of two quarks
in an overall 3̄ representation. Again, since diquark masses are difficult
to define, the relative rate of diquark to quark production is extracted,
e.g. from the p/π ratio. Since the perturbative shower splittings do
not produce diquarks, the optimal value for this parameter is mildly
correlated with the amount of g → qq̄ splittings produced by the
shower. More advanced scenarios for baryon production have also been
proposed, see Ref. 65. Within the PYTHIA framework, a hadronization
model including baryon string junctions [66] is also available.

The next step of the algorithm is the assignment of the produced
quarks within hadron multiplets. Using a nonrelativistic classification
of spin states, the hadronizing q may combine with the q̄′ from a
newly created breakup to produce a meson — or baryon, if diquarks
are involved — of a given spin S and angular momentum L. The
lowest-lying pseudoscalar and vector meson multiplets, and spin-1/2
and -3/2 baryons, are assumed to dominate in a string framework1,
but individual rates are not predicted by the model. This is therefore
the sector that contains the largest amount of free parameters. The
ratio V/P of vectors to pseudoscalars is expected to be 3, but in
practice it is only in the B meson sector that this is approximately
true. For lighter flavors, the difference in phase space caused by the
V –P mass splittings implies a suppression of vector production. When
extracting the corresponding parameters from data, it is advisable
to begin with the heaviest states, since so-called feed-down from the
decays of higher-lying hadron states complicates the extraction for
lighter particles, see Sec. 41.2.3. For baryons, additional parameters
control the relative rates of spin-1 diquarks vs. spin-0 ones.

With p2⊥ and m2 now fixed, the final step is to select the
longitudinal momentum component of the created hadron along the
string axis. This is parameterized by a nonperturbative fragmentation
function, f(z), which governs the probability for a hadron to take
a fraction z ∈ [0, 1] of the total available momentum. In a string
framework, the requirement that the hadronization be independent of

1 PYTHIA includes the lightest pseudoscalar and vector mesons, with
the four L = 1 multiplets (scalar, tensor, and 2 pseudovectors) available
but disabled by default, largely because several states are poorly known
and thus may result in a worse overall description when included. For
baryons, the lightest spin-1/2 and -3/2 multiplets are included.
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the sequence in which breakups are considered (causality) imposes a
“left-right symmetry” which strongly constrains the functional form of
f(z), with the solution

f(z) ∝ 1

z
(1− z)a exp

(
−b (m2

h + p2⊥h)

z

)
. (41.9)

This is known as the Lund symmetric fragmentation function
(normalized to unit integral). The dimensionless parameter a
dampens the hard tail of the fragmentation function, towards z → 1,
and may in principle be flavor-dependent, while b, with dimension
GeV−2, is a universal constant related to the string tension [65]
which determines the behavior in the soft limit, z → 0. Note that
the dependence on the hadron mass, mh, in f(z) implies that heavier
hadrons have higher 〈z〉.

As a by-product, the probability distribution in invariant time τ of
q′q̄ breakup vertices, or equivalently Γ = (κτ)2, is also obtained, with
dP/dΓ ∝ Γa exp(−bΓ) implying an area law for the color flux, and the
average breakup time lying along a hyperbola of constant invariant
time τ0 ∼ 10−23s [65].

For massive endpoints (e.g. c and b quarks), which do not move
along straight lightcone sections, the exponential suppression with

string area leads to modifications of the form f(z) → f(z)/z
bm2

Q , with
mQ the mass of the heavy quark [67]. Although different forms, such
as the Peterson formula [68], can also be used to describe inclusive
heavy-meson spectra (see Sec 19.9 of PDG book), such choices are not
strictly consistent with causality in the string framework.

41.2.2. The Cluster Model :
The cluster hadronization model is based on preconfinement, i.e., on
the observation [69,70] that the color structure of a perturbative QCD
shower evolution at any scale Q0 is such that color-singlet subsystems
of partons (labeled “clusters”) occur with a universal invariant mass
distribution which is power suppressed at large masses. For any
starting scale Q ≫ Q0 ≫ ΛQCD, only the number of such clusters
depends on Q, while the shape of their mass distribution only depends
on Q0 and on ΛQCD.

Following early models based on this universality [11,71],
the cluster model developed by Webber [72] has for many years
been a hallmark of the HERWIG generators, with an alternative
implementation [73] now available in the SHERPA generator. The key
idea, in addition to preconfinement, is to force “by hand” all gluons
to split into quark-antiquark pairs at the end of the parton shower.
Compared with the string description, this effectively amounts to
viewing gluons as “seeds” for string breaks, rather than as kinks
in a continuous object. After the splittings, a new set of low-mass
color-singlet clusters is obtained, formed only by quark-antiquark
pairs. These can be decayed to on-shell hadrons in a simple manner,
with the relative yields of different hadron species mainly governed by
their masses and the size of the phase space.

The algorithm starts by generating the forced g → qq̄ breakups,
and by assigning flavors and momenta to the produced quark pairs.
For a typical shower cutoff corresponding to a gluon virtuality
of Qhad ∼ 1GeV, the p⊥ generated by the splittings can be
neglected. The constituent light-quark masses, mu,d ∼ 300MeV and
ms ∼ 450MeV, imply a suppression (typically even an absence)
of strangeness production. In principle, the model also allows for
diquarks to be produced at this stage, but due to the larger constituent
masses this would only become relevant for shower cutoffs larger than
1GeV.

If a cluster formed in this way has an invariant mass above some
cutoff value, typically 3–4 GeV, it is forced to undergo sequential
1 → 2 cluster breakups, along an axis defined by the constituent
partons of the original cluster, until all sub-cluster masses fall below
the cutoff value. Due to the preservation of the original axis in these
breakups, this treatment has some resemblance to the string-like
picture, though the nonperturbative p⊥ kicks generated in this way
are generally larger, up to half the allowed cluster mass.

Next, on the low-mass side of the spectrum, some clusters are
allowed to decay directly to a single hadron, with nearby clusters

absorbing any excess momentum. This improves the description of
the high-z part of the spectrum — where the hadron carries almost
all the momentum of its parent jet — at the cost of introducing one
additional parameter, controlling the probability for single-hadron
cluster decay.

Having obtained a final distribution of small-mass clusters, now
with a strict cutoff at 3–4 GeV and with the component destined to
decay to single hadrons already removed, the remaining clusters are
interpreted as a smoothed-out spectrum of excited mesons, each of
which decays isotropically to two hadrons, with relative probabilities
proportional to the available phase space for each possible two-hadron
combination that is consistent with the cluster’s internal flavors,
including spin degeneracy. It is important that all the light members
(containing only uds) of each hadron multiplet be included, as the
absence of members can lead to unphysical isospin or SU(3) flavor
violation. Typically, the lightest pseudoscalar, vector, scalar, even and
odd charge conjugation pseudovector, and tensor multiplets of light
mesons are included. In addition, some excited vector multiplets of
light mesons may be available. For baryons, usually only the lightest
flavor-octet, -decuplet and -singlet baryons are present, although both
the HERWIG++ and SHERPA implementations now include some heavier
baryon multiplets as well.

Differently from the string model, the mechanism of phase-space
suppression employed here leads to a natural enhancement of the
lighter pseudoscalars, and no parameters beyond the spectrum of
hadron masses need to be introduced at this point. The phase space
also limits the transverse momenta of the produced hadrons relative
to the jet axis.

Note that, since the masses and decays of excited heavy-flavor
hadrons in particular are not well known, there is some freedom in
the model to adjust these, which in turn will affect their relative
phase-space populations.

41.2.3. Hadron and τ Decays :
Of the so-called primary hadrons, originating directly from string
breaks and/or cluster decays (see above), many are unstable and so
decay further, until a set of particles is obtained that can be considered
stable on time scales relevant to the given measurement. (A typical
hadron-collider definition of a “stable particle” cτ ≥ 10mm includes
weakly-decaying strange hadrons K, Λ, Σ±, Σ̄±, Ξ, Ω.) The decay
modeling can therefore have a significant impact on final particle yields
and spectra, especially for the lowest-lying hadronic states, which
receive the largest relative contributions from decays (feed-down).
This interplay also implies that hadronization parameters may need
to be retuned if significant changes to the decay treatment are made.

Particle summary tables, such as those given elsewhere in
this Review, represent a condensed summary of the available
experimental measurements and hence may be incomplete and/or
exhibit inconsistencies within the experimental precision. In an
MC decay package, on the other hand, all information must be
quantified and consistent, with all branching ratios summing to unity.
When adapting particle summary information for use in a decay
package, a number of choices must therefore be made. The amount of
ambiguity increases as more excited hadron multiplets are added to
the simulation, about which less and less is known from experiment,
with each GPMC making its own choices.

A related choice is how to distribute the decay products
differentially in phase space, in particular which matrix elements to
use. Historically, MC generators contained matrix elements only for
selected (generator-specific) classes of hadron and τ decays, coupled
with a Breit-Wigner smearing of the masses, truncated at the edges
of the physical decay phase space (the treatment of decay thresholds
can be important for certain modes [18]) . A more sophisticated
treatment can then be obtained by reweighting the generated events
using the obtained particle four-momenta and/or by using specialized
external packages such as EVTGEN [74] for hadron decays and TAUOLA

[75] for τ decays.

More recently, HERWIG++ and SHERPA include helicity-dependence
in τ decays [76,6], with a more limited treatment available in
PYTHIA 8 [5]. The HERWIG++ and SHERPA generators have also
included significantly improved internal simulations of hadronic
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decays, which include spin correlations between those decays for
which matrix elements are used. Photon-bremsstrahlung effects are
discussed in Sec. 41.1.7.

HERWIG++ and PYTHIA include the probability for B mesons to
oscillate into B̄ ones before decay. SHERPA and EVTGEN also include
CP-violating effects and, for common decay modes of the neutral
meson and its antiparticle, the interference between the direct decay
and oscillation followed by decay.

We end on a note of warning on double counting. This may occur
if a particle can decay via an intermediate on-shell resonance. An
example is a1 → πππ which may proceed via a1 → ρπ, ρ → ππ. If
these decay channels of the a1 are both included, each with their full
partial width, a double counting of the on-shell a1 → ρπ contribution
would result. Such cases are normally dealt with consistently in the
default MC generator packages, so this warning is mostly for users
that wish to edit decay tables on their own.

41.3. Models for Soft Hadron-Hadron Physics

41.3.1. Minimum-Bias and Diffraction :
The term “minimum bias” (MB) originates from the experimental
requirement of a minimal number of tracks (or hits) in a given
instrumented region. In order to make MC predictions for such
observables, all possible contributions to the relevant phase-space
region must be accounted for. There are essentially four types
of physics processes, which together make up the total hadron-
hadron (hh) cross section: 1) elastic scattering2: hh → hh, 2)
single diffractive dissociation: hh → h + gap +X , with X denoting
anything that is not the original beam particle, and “gap” denoting
a rapidity region devoid of observed activity; 3) double diffractive
dissociation: hh → X + gap + X , and 4) inelastic non-diffractive
scattering: everything else. A fifth class may also be defined, called
central diffraction (hh → h+ gap +X + gap + h). Note that different
terminologies exist [77]: in experimental settings, diffraction is
typically defined by an observable gap, of some minimal size in
rapidity, while in the MC context, each diffractive physics process
produces a whole spectrum of gaps, with small ones suppressed but
not excluded.

The inelastic non-diffractive part of the cross section is typically
modeled either by smoothly regulating and extending the perturbative
QCD scattering cross sections all the way to zero p⊥ [78] (PYTHIA
and SHERPA), or by regulating the QCD cross sections with a
sharp cutoff [79] and adding a separate class of nonperturbative
scatterings below that scale [80]( HERWIG). See also Sec. 41.3.2. In all
cases, the most important ingredients are: 1) the IR regularization
of the perturbative scattering cross sections, including their PDF
dependence, 2) the assumed matter distribution of the colliding
hadrons, possibly including multi-parton correlations [66] and/or x
dependence [81], and 3) additional soft-QCD effects such as color
reconnections, discussed in Sec. 41.3.3.

Currently, there are essentially three methods for simulating
diffraction in the main MC models: 1) in PYTHIA 6, one picks
a diffractive mass according to parameterized cross sections ∝
dM2/M2 [82]. This mass is represented as a string, which is
hadronized as described in Sec. 41.2.1, though differences in the
effective scale of the hadronization may necessitate a (re)tuning of
the hadronization parameters for diffraction; 2) in PYTHIA 8, the
high-mass tail beyond M ∼ 10GeV is augmented by a partonic
description in terms of pomeron PDFs [83], allowing diffractive
jet production including showers and underlying event [84]; 3) the
PHOJET and DPMJET programs also include central diffraction and
rely directly on a formulation in terms of pomerons (color-singlet
multi-gluon states) [85–87]. Cut pomerons correspond to exchanges
of soft gluons while uncut ones give elastic and diffractive topologies
as well as virtual corrections that help preserve unitarity. So-called
“hard pomerons” provide a transition to the perturbative regime.
Hadronization is still handled using the Lund string model, so there
is some overlap with the above models at the hadronization stage.

2 The QED elastic cross section diverges and is normally a non-
default option.

In addition, a pomeron-based package exists for HERWIG [88], and
an effort is underway to construct an MC implementation of the
“KMR” model [89] within the SHERPA generator. Color reconnections
(Sec. 41.3.3) may also play a role in creating rapidity gaps and the
underlying event (Sec. 41.3.2) in filling them.

41.3.2. Underlying Event and Jet Pedestals :
In the GPMC context, “underlying event” (UE) denotes any additional
activity beyond the basic process and its associated ISR and FSR
activity. The UE is thus only defined in the context of events selected
with a “hard” (i.e., high-p⊥) trigger which defines the basic process at
hand. (This is distinct from the MB selection which does not require
any hard perturbative activity.) The dominant contribution to the
UE is believed to come from additional color exchanges between the
colliding hadronic states. These multiple exchanges can be modeled
either as additional perturbative (mainly t-channel gluon) exchanges,
called multiple parton-parton interactions (MPI), or nonperturbatively
using so-called cut pomerons (roughly equivalent to exchange of gluons
with p⊥ → 0). The experimental observation that events with a hard
trigger are accompanied by a higher-than-average level of associated
activity (UE particle densities and related quantities are greater than
those of MB events at the same CM energy) is called the “jet pedestal”
effect.

The most clearly identifiable consequence of MPI is arguably the
possibility of observing several hard parton-parton interactions in one
and the same hadron-hadron event. Typically, these are QCD 2 → 2
interactions, which produce additional back-to-back jet pairs, with
each pair having a small value of sum(~p⊥). The fraction of MPI that
give rise to additional reconstructible jets is, however, small. Soft
interactions, that exchange color and a small amount of momentum
without giving rise to observable jets, are much more plentiful, and can
give significant corrections to the color flow and total scattered energy
of the event. This affects the final-state activity in a more global
way, increasing hadron-multiplicity and summed ET distributions,
and contributing to the break-up of the beam remnants in the forward
direction.

The first detailed Monte Carlo model for perturbative MPI was
proposed in Ref. 78, and with some variation this still forms the basis
for most modern implementations. Some useful additional references
can be found in Ref. 18. The first crucial observation is that the
t-channel propagators appearing in perturbative QCD 2 → 2 scattering
almost go on shell at low p⊥, causing the differential cross sections to
behave roughly as

dσ2→2 ∝ dt

t2
∼ dp2⊥

p4⊥
. (41.10)

This cross section represents the inclusive scattering of partons
against partons in perturbative QCD, summed over all partons.
Thus, if a single hadron-hadron scattering contains two parton-parton
interactions, that event will contribute twice to the parton-parton
cross section σ2→2 but only once to the hadron-hadron one σtot,
and so on. In the limit that all the parton-parton interactions are
independent and equivalent, one has

σ2→2 = 〈n〉 σtot , (41.11)

with 〈n〉 the average number of parton-parton interactions, typically
defined with some minimal p⊥ > p⊥min to render the parton-parton
cross section finite. The probability for n parton-parton scatterings
then follows a Poisson distribution,

Pn = 〈n〉n exp (−〈n〉)
n!

. (41.12)

This simple argument expresses unitarity; instead of the total hadron-
hadron interaction cross section diverging as the parton-parton p⊥ → 0
(which would violate unitarity), we have restated the problem so that
it is now the number of parton-parton interactions per hadron-hadron
collision that diverges, with the total hadron-hadron cross section
remaining finite. At LHC energies, the parton-parton scattering cross
sections computed using the LO QCD cross section folded with
modern PDFs become larger than the total pp one for p⊥min values of
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order 4–5 GeV (see e.g. [90,91]) . One therefore expects the average
number of perturbative MPI to exceed unity at around that scale.

Two ingredients remain to fully regulate the remaining divergence.
Firstly, the interactions cannot use up more momentum than is
available in the parent hadron. This suppresses the large-n tail of the
estimate above. In PYTHIA-based models, the MPI are ordered in p⊥,
and the parton densities for each successive interaction are explicitly
constructed so that the sum of x fractions can never be greater than
unity. In the HERWIG models, the Poisson estimate of 〈n〉 above is used
as an initial guess, but the generation of actual MPI is stopped once
the energy-momentum conservation limit is reached. Both of these
approaches generate momentum (conservation) correlations among the
MPI.

The second ingredient invoked to suppress the number of
interactions, at low p⊥ and x, is color screening; if the wavelength ∼
1/p⊥ of an exchanged colored parton becomes larger than a typical
color-anticolor separation distance, it will only see an average color
charge that vanishes in the limit p⊥ → 0. This provides an infrared
cutoff for MPI similar to that provided by the hadronization scale
for parton showers. A first estimate of the color-screening cutoff
would be the proton size, p⊥min ≈ ~/rp ≈ 0.3GeV ≈ ΛQCD, but
empirically this appears to be far too low. In current models, one
replaces the proton radius rp in the above formula by a “typical color
screening distance,” i.e., an average size of a region within which
the net compensation of a given color charge occurs. This number
is not known from first principles [89] and is perceived of simply as
an effective cutoff parameter. The simplest choice is to introduce a
step function Θ(p⊥ − p⊥min). Alternatively, one may note that the
jet cross section is divergent like α2

S(p
2
⊥)/p

4
⊥, cf. Eq. (41.10), and that

therefore a factor

α2
S(p

2
⊥0 + p2⊥)

α2
S(p

2
⊥)

p4⊥
(p2⊥0 + p2⊥)

2
(41.13)

would smoothly regulate the divergences, now with p⊥0 as the free
parameter. Regardless of whether it is imposed as a smooth (PYTHIA
and SHERPA) or steep (HERWIG++) function, this is effectively the main
“tuning” parameter in such models.

Note that the numerical value obtained for the cross section
depends upon the PDF set used, and therefore the optimal value
to use for the cutoff will also depend on this choice. Note also that
the cutoff does not have to be energy-independent. Higher energies
imply that parton densities can be probed at smaller x values, where
the number of partons rapidly increases. Partons then become closer
packed and the color screening distance d decreases. The uncertainty
on the energy and/or x scaling of the cutoff is a major concern when
extrapolating between different collider energies [92].

We now turn to the origin of the observational fact that hard
jets appear to sit on top of a higher “pedestal” of underlying
activity than events with no hard jets. This is interpreted as a
consequence of impact-parameter-dependence: in peripheral collisions,
only a small fraction of events contain any high-p⊥ activity, whereas
central collisions are more likely to contain at least one hard
scattering; a high-p⊥ triggered sample will therefore be biased
towards small impact parameters, b. The ability of a model to
describe the shape of the pedestal (e.g. to describe both MB and UE
distributions simultaneously) therefore depends upon its modeling of
the b-dependence, and correspondingly the impact-parameter shape
constitutes another main tuning parameter.

For each impact parameter b, the number of interactions ñ(b) can
still be assumed to be distributed according to Eq. (41.12), again
modulo momentum conservation, but now with the mean value of
the Poisson distribution depending on impact parameter, 〈ñ(b)〉. This
causes the final n-distribution (integrated over b) to be wider than a
Poissonian.

Finally, there are two perturbative modeling aspects which go
beyond the introduction of MPI themselves: 1) parton showers off
the MPI, and 2) perturbative parton-rescattering effects. Without
showers, MPI models would generate very sharp peaks for back-
to-back MPI jets, caused by unshowered partons passed directly to

the hadronization model. However, with the exception of the oldest
PYTHIA6 model, all GPMC models do include such showers [18],
and hence should exhibit more realistic (i.e., broader and more
decorrelated) MPI jets. On the initial-state side, the main questions
are whether and how correlated multi-parton densities are taken into
account and, as discussed previously, how the showers are regulated
at low p⊥ and/or low x. Although none of the MC models currently
impose a rigorous correlated multi-parton evolution, all of them include
some elementary aspects. The most significant for parton-level results
is arguably momentum conservation, which is enforced explicitly in
all the models. The so-called “interleaved” models [30] attempt to
go a step further, generating an explicitly correlated multi-parton
evolution in which flavor sum rules are imposed to conserve, e.g. the
total numbers of valence and sea quarks [66].

Perturbative rescattering in the final state can occur if partons
are allowed to undergo several distinct interactions, with showering
activity possibly taking place in-between. This has so far not been
studied extensively, but a first exploratory model is available [93]. In
the initial state, parton rescattering/recombination effects have so far
not been included in any of the GPMC models.

41.3.3. Bose-Einstein and Color-Reconnection Effects :
In the context of e+e− collisions, Bose-Einstein (BE) correlations have
mostly been discussed as a source of uncertainty on high-precision W
mass determinations at LEP [94]. In hadron-hadron (and nucleus-
nucleus) collisions, however, BE correlations are used extensively to
study the space-time structure of hadronizing matter (“femtoscopy”).

In MC models of hadronization, each string break or particle/cluster
decay is normally factorized from all other ones. This reduces the
number of variables that must be considered in each step, but also
makes it intrinsically difficult to introduce correlations among particles
from different breaks/decays. In GPMCs, a few semi-classical models
are available within the PYTHIA 6 and 8 generators [95], in which
the BE effect is mimicked by an attractive interaction between pairs
of identical particles in the final state, with no higher correlations
included. Variants of this model differ mainly by the assumed shape
of the correlation function and how overall momentum conservation is
handled.

As discussed in Sec. 41.2, leading-color (“planar”) color flows are
used to set up the hadronizing systems (clusters or strings) at the
hadronization stage. If the systems do not overlap significantly in
space and time, subleading-color ambiguities and/or nonperturbative
reconnections are expected to be small. However, if the density of
displaced color charges is sufficiently high that several systems can
overlap significantly, full-color and/or reconnection effects should
become progressively larger.

In the specific context of MPI, a crucial question is how color is
neutralized between different MPI systems, including the remnants.
The large rapidity differences involved imply large invariant masses
(though normally low p⊥), and hence large amounts of (soft) particle
production. Indeed, in the context of soft-inclusive physics, it is these
“inter-system” strings/clusters that furnish the dominant particle-
production mechanism, and hence their modeling is an essential
part of the soft-physics description, affecting topics such as MB/UE
multiplicity and p⊥ distributions, rapidity gaps, and precision mass
measurements. Reviews of color-reconnection effects can be found in
Refs. 18,96.

41.4. Uncertainties and Tuning

The accuracy that can be achieved by a GPMC model depends
on the sophistication of the theory models it incorporates, on the
available constraints on its free parameters, and on the nature of
the observable(s) under study. Using existing data (or more accurate
theory calculations) to constrain the model parameters is referred to as
generator tuning. Although tuned models do tend to yield improved
results also for observables that they have not been tuned to, the
question of evaluating the remaining uncertainties reliably is still far
from solved. It is worth noting, however, that all of the GPMCs
now provide options for automatic evaluation of perturbative shower
uncertainties (e.g., via renormalization-scale variations), in the form
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of vectors of alternative event weights [97,98,99] although significant
weight fluctuations can be a problem for processes with many or large
shower phase spaces. One must be aware that these variations are not
necessarily exhaustive and care must be taken in their interpretation.
Nonperturbative uncertainties must normally still be evaluated by
varying salient model parameters by hand. A general method called
eigentunes [100] is also available, based on global fits to data.

Typically, the overall event properties are determined by only a few,
very important parameters, such as the value of αS, for perturbative
corrections, and the shape of the fragmentation functions, for
nonperturbative ones. More parameters may then be introduced to
describe successively more detailed aspects (e.g., the rates and decays
of individual hadron species), but these should have progressively less
impact on the overall modeling. One may therefore take a factorized
approach, first constraining the perturbative parameters and thereafter
the nonperturbative ones, in order of decreasing significance to the
overall modeling. Furthermore, by identifying which measurements are
most sensitive to each parameter, this ordering can be reflected in the
way that data is selected and applied to constrain the models. Thus,
measurements sensitive to global event properties would typically be
applied first, to constrain the most inclusive parameters, and so on for
progressively more exclusive aspects.

At LO×LL, perturbation theory is doing well if it agrees with
an IR safe measurement within ∼ 10%. It would therefore not make
much sense to tune a GPMC beyond roughly 5% (it might even be
dangerous, due to overfitting). The advent of NLO Monte Carlos may
reduce this number slightly, but only for quantities for which one
expects NLO precision. For quantities governed by nonperturbative
physics, uncertainties are larger. For some quantities, e.g. ones for
which the underlying modeling is known to be poor, an order-of-
magnitude agreement or worse may have to be accepted. Note further
that the unitarity of shower and hadronization models implies that the
Born-level cross-section normalization is not tunable, hence in tuning
contexts one tends to focus on the shapes of distributions rather than
their normalizations.

In the context of LO×LL GPMC tuning, subleading aspects of
coupling-constant and PDF choices are relevant. In particular, one
should be aware that the choice of QCD Λ parameter ΛMC = 1.569ΛMS
(for 5 active flavors) improves the predictions of coherent shower
algorithms at the NLL level for a class of relevant observables [101],
and hence this scheme is often considered the baseline for shower
tuning. The question of LO vs. NLO PDFs is more involved [18],
but it should be emphasized that the gluon PDF at (very) low x
is important for determining the level of the underlying event in
MPI models (Sec. 41.3.2), and hence the MB/UE tuning (and energy
scaling [92]) is linked to the choice of PDF in such models. Further
issues and an example of a specific recipe that could be followed in a
realistic set-up can be found in Ref. 90. A useful online resource can
be found at the mcplots.cern.ch web site [102], based on the RIVET
tool [103].

Recent years have seen the emergence of automated tools to reduce
the amount of both computer and manpower required for tuning [100].
Automating the human expert input is more difficult. In the tools
currently on the market, this is addressed by a combination of input
solicited from the GPMC authors (e.g., which parameters and ranges
to consider, which observables constitute a complete set, etc) and a set
of weights determining the relative priority given to each bin in each
distribution. The final result is therefore still subjective but at least
reproducible. When backed by careful demonstrations of sensitivities,
correlations, and uncertainties, the quality of the resulting tunes
is by now competitive. The field is still burgeoning, with future
sophistications to be expected.
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60. S. Höche et al., JHEP 04, 027 (2013), arXiv:1207.5030.
61. K. Hamilton, P. Nason and G. Zanderighi, JHEP 05, 140

(2015), arXiv:1501.04637.
62. G. Gustafson, Phys. Lett. B175, 453 (1986).
63. X. Artru and G. Mennessier, Nucl. Phys. B70, 93 (1974).
64. B. Andersson et al., Phys. Reports 97, 31 (1983).
65. B. Andersson, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol.

7 (1997).
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42.Monte Carlo Neutrino Generators

Updated September 2017 by H. Gallagher (Tufts U.) and Y. Hayato
(Tokyo U.)

Monte Carlo neutrino generators are programs or libraries which
simulate neutrino interactions with electrons, nucleons and nuclei.
In this capacity their usual task is to take an input neutrino and
nucleus and produce a set of 4-vectors for particles emerging from the
interaction, which are then input to full detector simulations. Since
these generators have to simulate not only the initial interaction of
neutrinos with target particles, but re-interactions of the generated
particles in the nucleus, they contain a wide range of elementary
particle and nuclear physics. Viewed more broadly, they are the
access point for neutrino experimentalists to the theory inputs needed
for analysis. Examples include cross section libraries for event rate
calculations and parameter uncertainties and reweighting tools for
systematic error evaluation.

Neutrino experiments typically operate in neutrino beams that
are neither completely pure nor mono-energetic. Generators are
a crucial component in the convolution of beam flux, neutrino
interaction physics, and detector response that is necessary to make
predictions about observable quantities. Similarly they are used to
relate reconstructed quantities back to true quantities. In these various
capacities they are used from the detector design stage through the
extraction of physics measurements from reconstructed observables.
Monte Carlo neutrino generators play unique and important roles in
the experimental study of neutrino interactions and oscillations.

There are several neutrino event generators available, such
as ANIS [1], GENIE [2], GiBUU [3,4], MARLEY [5],
NEGN [6], NEUT [7], NUANCE [8], the FLUKA routines
NUNDIS/NUNRES [9,10], and NuWro [11], as well as tools to
facilitate cross-generator comparisons [12]. Historically, experiments
would develop their own generators. This was often because they were
focused on a particular measurement, energy range, or target, and
wanted to ensure that the best physics was included for it. These
‘home-grown’ generators were often tuned primarily or exclusively
to the neutrino data most similar to the data that the experiment
would be collecting. A major advance in the field was the introduction
of conference series devoted to the topic of neutrino interaction
physics, NuINT (https://nuint2017.physics.utoronto.ca) and NuFACT
(https://indico.uu.se/event/324/) in particular. Event generator com-
parisons have been a regular staple of the NuINT conference series
from its inception, and a great deal of information on this topic
can be found in the Proceedings of these meetings. These meetings
have facilitated experiment-theory discussions leading to the first
generator developed by a theory group (NuWro) [11], the extension of
established nuclear interaction codes (FLUKA and GiBUU) to include
neutrino-nuclear processes [3,4,9,10], and inclusion of theorists in
existing generator development teams.

These activites have led to more careful scrutiny of the crucial
nuclear theory inputs to these generators, which is evaluated in
particular through comparisons to electron-scattering data. At this
point in time all simulation codes face challenges in describing the
full extent of the lepton scattering data, and the tension between
incorporating the best available theory versus obtaining the best
agreement with the data plays out in a variety of ways within the field.
For the field to make progress, inclusion of state of the art theory
needs to be coupled to global analyses that correctly incorporate
correlations between measurements. Given the rapid pace of new data
and the complexity of analyses, this is a significant challenge for the
field in the coming years.

There are many neutrino experiments which use various sources
of neutrinos, from reactors, accelerators, the atmosphere, and
astrophysical sources, thereby covering a range of energies from MeV
to TeV. Much of the emphasis has been on the few-GeV region in
the generators, as this is the relevant energy range for short- and
long-baseline neutrino oscillation experiments. These generators use
the impulse approximation, which treats the nucleus as a collection
of independent nucleons and the primary interaction occurs between
the probe and a single nucleon, for most of the initial interaction,
and subsequently simulates the interactions of secondary particles in
the nucleus in semi-classical ways. Semi-classical hadron transport

approaches are commonly used as they are able simulate a variety
of nuclei in a single model, and for practical considerations as these
approaches are fast. However, there are several challenges facing
these simulations coming mainly from the complexity of the nuclear
physics, and avoiding double counting in combining perturbative and
non-perturbative models for the neutrino-nucleon scattering processes.
The overall validity of this impulse approximation-based scheme, and
in particular the importance of scattering channels that involve more
than one nucleon, is a crucial question that is the topic of much
current work. While generators share many common ingredients,
differences in implementation, parameter values, and approaches to
avoid double counting can yield dramatically different predictions [13].
In the following sections, interaction models and their implementations
including the interactions of generated particles in the nuclei are
described.

In order to assure its validity, neutrino event generators are tuned
and validated against a wide variety of data, including data from
photon, charged lepton, neutrino, and hadron probes. The results from
these external data tuning exercises are important for experiments
as they quantify the uncertainty on model paramaters, needed by
experiments in the evaluation of generator-related systematic errors.
Electron scattering data plays an important role in determining the
vector contribution to the form-factors and structure functions, as
well as in evaluating specific aspects of the nuclear model [14].
Hadron scattering data is used in validating the nuclear model, in
particular of interactions between hadrons produced in the primary
interaction and the residual target nucleus (final state interactions).
Tuning of neutrino-nucleon scattering and hadronization models relies
heavily on the previous generation of high energy neutrino scattering
and hydrogen and deuterium bubble chamber experiments, and
more recent data from the K2K, MiniBooNE, NOMAD, SciBooNE,
MINOS, T2K, ArgoNEUT, MINERvA, NOvA, MicroBooNE, and
SBND experiments either has been, or will be, used for this purpose.

42.1. Neutrino-Nucleon Scattering

Event generators typically begin with free-nucleon cross sections
which are then embedded into a nuclear physics model. The most
important processes are quasi-elastic (elastic for neutral current (NC))
scattering, resonance production, and non-resonant inelastic scattering,
which make comparable contributions for few-GeV interactions. The
neutrino cross sections in this energy range can be seen in Figures 50.1
through 50.3 of this Review.

42.1.1. Quasi-Elastic Scattering : The cross section for the
neutrino nucleon charged current quasi-elastic scattering is described
in terms of the leptonic and hadronic weak currents, where dominant
contributions to the hadronic current come from the vector (V) and
axial-vector (A) form factors. Contributions from the pseudo-scalar
form factor (P) are typically small for muon and electron and
neutrinos are are related to the axial form factor (A) assuming
partially conserved axial currents (PCAC). The vector form factors
are related via the conserved vector current (CVC) hypothesis to those
measured by precise electron scattering experiments, which are known
to have some deviation from the simple dipole form [15]. Therefore,
most of the generators use parametrizations of this form factor taken
directly from the data. For the axial form factor there is no such
precise experiment, and most of the generators use a dipole form
[16]. Generally, the value of axial form factor at q2 = 0 (q is the
four-momentum transfer) is extracted from the polarized nucleon beta
decay experiment. However, the selection of the axial vector mass
parameter depends on each generator, with values typically around
1.00 GeV/c2. Recently, there are several attempts to use the other
fucntions for the axial form factors [17,18] and some generators have
already implemented these form factors [19].

42.1.2. Resonance Production : Most generators use the pre-
scriptions of Rein-Sehgal [20] to simulate neutrino-induced single
pion production. To obtain the cross section for a particular channel,
they calculate the amplitude for the production of each resonance
multiplied by the probability for the decay of that resonance into that
particular channel. Implementation differences include the number of
resonances included, whether the amplitudes are added coherently or
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incoherently, the invariant mass range over which the model is used,
how non-resonant backgrounds are included, inclusion of lepton mass
terms, and the model parameter values (in particular the axial mass).
In this model it is also possible to calculate the cross-sections of single
photon, kaon and η productions by changing the decay probability
of the resonances, which are included in some of the programs.
However, it is known that discrepancies exist between the recent pion
electro/photoproduction data and the results from the simulation data
with the same framework, i.e. vector part of this model. There are
several attempts to overcome this issue [21] and some of the generators
started using more appropriate form factors. The GiBUU and NuWro
generators do not use the Rein-Sehgal model, and instead rely directly
on electro-production data for the vector contribution and fit bubble
chamber data to determine the remaining parameters for the axial
contribution [22,23,24].

42.1.3. Deep and Shallow Inelastic Scattering : For this process
the fundamental target shifts from the nucleon to its quark
constituents. Therefore, the generators use the standard expression
for the constructions for the nucleon structure functions F2 and xF3

from parton distributions for high Q2 (the DIS regime: W> 2 GeV/c2

and Q2 > 1 GeV2) to calculate direction and momentum of lepton.
The first challenge is in extending this picture to the lower values
of Q2 and W that dominate the available phase space for few-GeV
interactions (the so-called ‘shallow inelastic scattering’, or SIS regime).
GRV98LO parton distribution functions [25] with the corrections
proposed in [26] are widely used, while others [9] implement their
own modifictions to the parton distributions at low Q2. Both DIS
and SIS generates hadrons but their production depends on each
generator’s implementation of a hadronization model as described in
the next section. There are various difficulties not only in the actual
hadronization but the relation with the single meson production. It
is necessary to avoid double counting between the resonance and
SIS/DIS models, and all generators are different in this regard.
The scheme chosen can have a significant impact on the results of
simulations at a few-GeV neutrino energies.

42.2. Hadronization Models

For hadrons produced via baryonic resonances, the underlying model
amplitudes and resonance branching fractions can be used to fully
characterize the hadronic system. For non-resonant production, a
hadronization model is required. Most generators use PYTHIA [27]
for this purpose, although some with modified parameters. In
addition some implement their own models to handle invariant
masses that are too low for PYTHIA, typically somewhere around
2.0 GeV/c2. Such models rely heavily on measurements of neutrino
hadro-production in high-resolution devices, such as bubble chambers
and the CHORUS [28] and NOMAD experiments [29], to construct
empirical parametrizations that reproduce the key features of the
data [30,31]. The basic ingredients are the emperical observations
that average charged particle multiplicites increase logarithmically
with the invariant mass of the hadronic system, and that the
distribution of charged particle multiplicities about this average are
described by a single function (an observation known as KNO scaling
[32]) . Neutral particles are assumed to be produced with an average
multiplicity that is 50% of the charged particle multiplicity. Simple
parametrizations to more accurately reproduce differences observed in
the forward/backward hemispheres of hadronic systems are included
in GENIE, NEUT, and NuWro.

42.3. Nuclear Physics

The nuclear physics relevant to neutrino-nucleus scattering at
few-GeV energies is complicated, involving Fermi motion, nuclear
binding, Pauli blocking, in-medium modifications of form factors and
hadronization, intranuclear rescattering of hadrons, and many-body
scattering mechanisms including long- and short-range nucleon-nucleon
correlations.

42.3.1. Scattering Mechanisms :

Most of the models used for neutrino-nuclear scattering kinematics
were developed in the context of few-GeV inclusive electron scattering,
by experiments going back nearly 50 years. A topic of considerable
discussion within this community has been to what extent the impulse
approximation, whereby the nucleus is envisioned as collection of
bound, moving, single nucleons, is appropriate. The question arose
initially in the context of measurements of the quasi-elastic axial
mass, with a number of recent experiments using nuclear targets
measuring values that were significantly higher than those obtained by
an earlier generation of bubble chamber experiments using hydrogen
or deuterium [16]. These differences arise for several reasons; a
suppression of forward going muons (low Q2), a high Q2 enhancement
in the event rate, and an overall larger than expected number of
observed events. The mismodeling of the Q2 distribution suggests
that the simple nuclear model is not appropriate in describing the
data, and the larger interaction rate indicates that there may be
the other interactions included in the signal sample which have
not been taken into account. These led to a revisitation of the
role played by scattering from multi-particle/hole states in the
nucleus, and the experimental search for evidence of these scattering
channels is an area of intense experimental interest [33]. The
contribution of these scattering processes is an extremely active
area of theoretical research as well, with significant implications
for generators and analyses [34]. Several approaches, ranging from
strictly phenomenological descriptions to full theoretical calculations,
have recently been incorporated into generators [35,36,37]. One
example of a phenomenological approach utilizes an Effective Spectral
Function [38] and a Transerse Enhancement Model [39], which
together encapsulate information derived from electron scattering
experiments at relevant kinematics. The microscopic model of Nieves
and collaborators is now available in GENIE and NEUT [40,41].
One of the challenges in incoporating full theoretical models of these
processes is that they are typically slow, so generators have developed
new approaches whereby much of the computation is done offline,
and the generators simply read in the hadronic tensor components.
This allows for a full prediction of the lepton kinematics, however
the ability to simulate the hadronic component of these multinucleon
states then relies on separate models.

In order to obtain the cross-section off nucleons in the nucleus, it
is necessary to take into account the in-medium effects. The basic
models imployed in event generators rely on impulse approximation
schemes, the most simple of which is the Relativistic Fermi Gas
Model. The most common implementations are the Smith-Moniz [42]
and Bodek-Ritchie [43] models. However, these simple Fermi-Gas
model can not reproduce the strong suppression of the forward going
muons, which has been observed in K2K, MiniBooNE and the other
experiments. This kind of small q2 suppression could be reproduced by
taking into account more realistic nuclear binding effects. For example,
medium correction for rather simple local Fermi-Gas model, which is
calculated with random phase approximation, is known to give large
suppression in small q2. Some of the generators started implementing
this kind of nuclear medium corrections. Recent hadronic energy
measurements by MINERvA have shown that the simple global
Fermi-gas model is not appropriate to reproduce the small energy
deposit. Therefore, several generators implemented local Fermi-gas
model or more sophisticated models. Within the electron scattering
community, the analogous calculations have for decades relied on
spectral functions, which incorporate information about nucleon
momenta and binding energies in the impulse approximation scheme.
The NuWro and GiBUU generators currently use spectral functions,
they are incorporated into NEUT as an option, and several of the
other generators are incorporating spectral function models at this
time. It is known from photo and electro-nuclear scattering that the
Delta width is affected by Pauli blocking and collisional broadening.
These effects are included in some, but not all, generators.

When scattering from a nucleus, coherent scattering of various
kinds is possible. Most simulations incorporate, at least, neutral and
charged coherent single pion production. While the interaction rate
for these interactions is typically around a percent of the total yield,
the unique kinematic features of these events can make them potential
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backgrounds for oscillation searches. Implemented in Monte Carlo
are several PCAC-based methods [44,45], and microscopic models
[46,47], valid at lower neutrino energies, have also been implemented
in several generators. One of the commonly used model by Rein
and Sehgal [44] predicts much larger charged current cross-section
compared to the recent measurements of MINERνA and T2K gives
a few times smaller cross-section for the charged current coherent
pion production. However, the cross-section is sensitive to the pion
cross-section used in the model as parameters and improved models
with lepton mass correction [45] give better agreement with the recent
data. This improved model is implemented in most of the generators.

42.3.2. Hadron Production in Nuclei :

Neutrino pion production is one of the dominant interactions in a
few-GeV region and the interaction cross sections of pions in nucleus
from those interactions are quite large. Therefore, the interactions of
pions in nucleus changes the kinematics of the pions and can have large
effects on the results of simulations at these energies. Most generators
implement this physics through an intranuclear cascade simulation.
In generators which utilize cascade models, a hadron, which has
been formed in the nucleus, is moved step by step until it interacts
with the other nucleon or escapes from the nucleus. The probabilities
of each interaction in nucleus are usually given as the mean free
paths and used to determine whether the hadron is interacted or
not. If the hadron is found to be interacted, appropriate interactions
are selected and simulated. Usually, absorption, elastic, charge
exchange, and inelastic scatterings including particle productions are
simulated as intranuclear interactions. The determination method of
the kinematics for the final state particles heavily depends on the
generators but most of them use experimentally validated models to
simulate hadron interactions in nucleus. No two interanuclear cascade
simulations implemented in neutrino event generators are the same.
In all cases hadrons propagate from an interaction vertex chosen
based on the density distribution of the target nucleus. In determining
the generated position of the hadrons in nucleus, the concept of the
formation length is sometimes employed. Based on this idea, the
hadronization process is not instantaneous and it takes some time
before generating the hadrons [11]. The basis for formation times are
measurements at relatively high energy and Q2, and most generators
that employ the concept do not apply them to resonance interactions.

GiBUU does not employ an intranuclear cascade simulation,
instead, it utilizes a semiclassical transport model in coupled channels
that describes the space-time evolution of a manybody system in
the presence of potentials and a collision term [3]. This approach
assures consistency between nuclear effects in the initial state, such
as Fermi motion, Pauli blocking, hadron self-energies, and modified
cross sections, and the final state, such as particle reinteractions,
since the two are derived from the same model. This model has
been previously used to describe a wide variety of nuclear interaction
data. Similarly, the hadronic simulation of the NUNDIS/NUNRES
programs are handled by the well-established FLUKA hadronic
simulation package [9].
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43.Monte Carlo Particle Numbering Scheme
Revised October 2017 by L. Garren (Fermilab), F. Krauss (Durham
U.), C.-J. Lin (LBNL), S. Navas (U. Granada), P. Richardson
(Durham U.), and T. Sjöstrand (Lund U.).

The Monte Carlo particle numbering scheme presented here is
intended to facilitate interfacing between event generators, detector
simulators, and analysis packages used in particle physics. The
numbering scheme was introduced in 1988 [1] and a revised
version [2,3] was adopted in 1998 in order to allow systematic inclusion
of quark model states which are as yet undiscovered and hypothetical
particles such as SUSY particles. The numbering scheme is used in
several event generators, e.g. HERWIG, PYTHIA, and SHERPA, and
interfaces, e.g. /HEPEVT/ and HepMC.

The general form is a 7–digit number:
±n nr nL nq1 nq2 nq3 nJ .

This encodes information about the particle’s spin, flavor content,
and internal quantum numbers. The details are as follows:

1. Particles are given positive numbers, antiparticles negative
numbers. The PDG convention for mesons is used, so that K+

and B+ are particles.
2. Quarks and leptons are numbered consecutively starting from 1

and 11 respectively; to do this they are first ordered by family
and within families by weak isospin.

3. In composite quark systems (diquarks, mesons, and baryons)
nq1−3 are quark numbers used to specify the quark content, while
the rightmost digit nJ = 2J + 1 gives the system’s spin (except
for the K0

S and K0
L). The scheme does not cover particles of spin

J > 4.
4. Diquarks have 4-digit numbers with nq1 ≥ nq2 and nq3 = 0.
5. The numbering of mesons is guided by the nonrelativistic (L–S

decoupled) quark model, as listed in Tables 15.2 and 15.3.

a. The numbers specifying the meson’s quark content conform
to the convention nq1 = 0 and nq2 ≥ nq3 . The special case

K0
L is the sole exception to this rule.

b. The quark numbers of flavorless, light (u, d, s) mesons are:
11 for the member of the isotriplet (π0, ρ0, . . .), 22 for the
lighter isosinglet (η, ω, . . .), and 33 for the heavier isosinglet
(η′, φ, . . .). Since isosinglet mesons are often large mixtures
of uu+ dd and ss states, 22 and 33 are assigned by mass and
do not necessarily specify the dominant quark composition.

c. The special numbers 310 and 130 are given to the K0
S and

K0
L respectively.

d. The fifth digit nL is reserved to distinguish mesons of the
same total (J) but different spin (S) and orbital (L) angular
momentum quantum numbers. For J > 0 the numbers are:
(L, S) = (J − 1, 1) nL = 0, (J, 0) nL = 1, (J, 1) nL = 2
and (J + 1, 1) nL = 3. For the exceptional case J = 0 the
numbers are (0, 0) nL = 0 and (1, 1) nL = 1 (i.e. nL = L).
See Table 43.1.

Table 43.1: Meson numbering logic. Here qq stands for
nq2 nq3.

L = J − 1, S = 1 L = J , S = 0 L = J , S = 1 L = J + 1, S = 1

J code JPC L code JPC L code JPC L code JPC L

0 — — — 00qq1 0−+ 0 — — — 10qq1 0++ 1

1 00qq3 1−− 0 10qq3 1+− 1 20qq3 1++ 1 30qq3 1−− 2

2 00qq5 2++ 1 10qq5 2−+ 2 20qq5 2−− 2 30qq5 2++ 3

3 00qq7 3−− 2 10qq7 3+− 3 20qq7 3++ 3 30qq7 3−− 4

4 00qq9 4++ 3 10qq9 4−+ 4 20qq9 4−− 4 30qq9 4++ 5

e. If a set of physical mesons correspond to a (non-negligible)
mixture of basis states, differing in their internal quantum
numbers, then the lightest physical state gets the smallest
basis state number. For example the K1(1270) is numbered
10313 (11P1 K1B) and the K1(1400) is numbered 20313
(13P1 K1A).

f. The sixth digit nr is used to label mesons radially excited
above the ground state.

g. Numbers have been assigned for complete nr = 0 S- and
P -wave multiplets, even where states remain to be identified.

h. In some instances assignments within the qq̄ meson model
are only tentative; here best guess assignments are made.

i. Many states appearing in the Meson Listings are not yet
assigned within the qq̄ model. Here nq2−3 and nJ are
assigned according to the state’s likely flavors and spin; all
such unassigned light isoscalar states are given the flavor
code 22. Within these groups nL = 0, 1, 2, . . . is used to
distinguish states of increasing mass. These states are flagged
using n = 9. It is to be expected that these numbers will
evolve as the nature of the states are elucidated. Codes are
assigned to all mesons which are listed in the one-page table
at the end of the Meson Summary Table as long as they have
a prefered or established spin. Additional heavy meson states
expected from heavy quark spectroscopy are also assigned
codes.

6. The numbering of baryons is again guided by the nonrelativistic
quark model, see Table 15.6. This numbering scheme is illustrated
through a few examples in Table 43.2.

a. The numbers specifying a baryon’s quark content are such
that in general nq1 ≥ nq2 ≥ nq3 .

b. Two states exist for J = 1/2 baryons containing 3 different
types of quarks. In the lighter baryon (Λ,Ξ,Ω, . . .) the light
quarks are in an antisymmetric (J = 0) state while for
the heavier baryon (Σ0,Ξ′,Ω′, . . .) they are in a symmetric
(J = 1) state. In this situation nq2 and nq3 are reversed for
the lighter state, so that the smaller number corresponds to
the lighter baryon.

c. For excited baryons a scheme is adopted, where the nr
label is used to denote the excitation bands in the harmonic
oscillator model, see Sec. 15.4. Using the notation employed
there, nr is given by the N -index of the DN band identifier.

d. Further degeneracies of excited hadron multiplets with the
same excitation number nr and spin J are lifted by labelling
such multiplets with the nL index according to their mass, as
given by its N or ∆-equivalent.

e. In such excited multiplets extra singlets may occur, the
Λ(1520) being a prominent example. In such cases the
ordering is reversed such that the heaviest quark label is
pushed to the last position: nq3 > nq1 > nq2 .

f. For pentaquark states n = 9, nrnLnq1nq2 gives the four
quark numbers in order nr ≥ nL ≥ nq1 ≥ nq2 , nq3 gives the
antiquark number, and nJ = 2J + 1, with the assumption
that J = 1/2 for the states currently reported.

7. The gluon, when considered as a gauge boson, has official number
21. In codes for glueballs, however, 9 is used to allow a notation
in close analogy with that of hadrons.

8. The pomeron and odderon trajectories and a generic reggeon
trajectory of states in QCD are assigned codes 990, 9990, and 110
respectively, where the final 0 indicates the indeterminate nature
of the spin, and the other digits reflect the expected “valence”
flavor content. We do not attempt a complete classification of all
reggeon trajectories, since there is currently no need to distinguish
a specific such trajectory from its lowest-lying member.

9. Two-digit numbers in the range 21–30 are provided for the
Standard Model gauge bosons and Higgs.

10. Codes 81–100 are reserved for generator-specific pseudoparticles
and concepts. Codes 901–930, 1901–1930, 2901–2930, and 3901–
3930 are for additional components of Standard Model parton
distribution functions, where the latter three ranges are intended
to distinguish left/right/longitudinal components.

11. The search for physics beyond the Standard Model is an active
area, so these codes are also standardized as far as possible.

a. A standard fourth generation of fermions is included by
analogy with the first three.

b. The graviton and the boson content of a two-Higgs-doublet
scenario and of additional SU(2)×U(1) groups are found in
the range 31–40.

c. “One-of-a-kind” exotic particles are assigned numbers in the
range 41–80.

d. Fundamental supersymmetric particles are identified by
adding a nonzero n to the particle number. The superpartner
of a boson or a left-handed fermion has n = 1 while the
superpartner of a right-handed fermion has n = 2. When
mixing occurs, such as between the winos and charged
Higgsinos to give charginos, or between left and right
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Table 43.2: Some examples of octet (top) and decuplet (bottom) members for the
numbering scheme for excited baryons. Here qqq stands for nq1nq2nq3 . See the text
for the definition of the notation. The numbers in parenthesis correspond to the
mass of the baryons. The states marked as (?) are not experimentally confirmed.

JP (D,LP
N ) nrnLnq1nq2nq3nJ N Λ8 Σ Ξ Λ1

Octet 211,221 312 311,321,322 331,332 213

1/2+ (56,0+0 ) 00qqq2 (939) (1116) (1193) (1318) —

1/2+ (56,0+2 ) 20qqq2 (1440) (1600) (1660) (1690) —

1/2+ (70,0+2 ) 21qqq2 (1710) (1810) (1880) (?) (?)

1/2− (70,1−1 ) 10qqq2 (1535) (1670) (1620) (1750) (1405)

JP (D,LP
N ) nrnLnq1nq2nq3nJ ∆ Σ Ξ Ω

Decuplet 111,211,221,222 311,321,322 331,332 333

3/2+ (56,0+0 ) 00qqq4 (1232) (1385) (1530) (1672)

3/2+ (56,0+2 ) 20qqq4 (1600) (1690) (?) (?)

1/2− (70,1−1 ) 11qqq2 (1620) (1750) (?) (?)

3/2− (70,1−1 ) 12qqq4 (1700) (?) (?) (?)

sfermions, the lighter physical state is given the smaller basis
state number.

e. Technicolor states have n = 3, with technifermions treated
like ordinary fermions. States which are ordinary color
singlets have nr = 0. Color octets have nr = 1. If a state
has non-trivial quantum numbers under the topcolor groups
SU(3)1 × SU(3)2, the quantum numbers are specified by
tech,ij, where i and j are 1 or 2. nL is then 2i + j. The
coloron, V8, is a heavy gluon color octet and thus is 3100021.

f. Excited (composite) quarks and leptons are identified by
setting n = 4 and nr = 0.

g. Within several scenarios of new physics, it is possible to
have colored particles sufficiently long-lived for color-singlet
hadronic states to form around them. In the context of
supersymmetric scenarios, these states are called R-hadrons,
since they carry odd R-parity. R-hadron codes, defined here,
should be viewed as templates for corresponding codes also
in other scenarios, for any long-lived particle that is either
an unflavored color octet or a flavored color triplet. The
R-hadron code is obtained by combining the SUSY particle
code with a code for the light degrees of freedom, with as
many intermediate zeros removed from the former as required
to make place for the latter at the end. (To exemplify, a
sparticle n00000nq̃ combined with quarks q1 and q2 obtains
code n00nq̃nq1nq2nJ .) Specifically, the new-particle spin
decouples in the limit of large masses, so that the final nJ
digit is defined by the spin state of the light-quark system
alone. An appropriate number of nq digits is used to define
the ordinary-quark content. As usual, 9 rather than 21 is
used to denote a gluon/gluino in composite states. The sign
of the hadron agrees with that of the constituent new particle
(a color triplet) where there is a distinct new antiparticle,
and else is defined as for normal hadrons. Particle names are
R with the flavor content as lower index.

h. A black hole in models with extra dimensions has code
5000040. Kaluza-Klein excitations in models with extra
dimensions have n = 5 or n = 6, to distinquish excitations
of left- or right-handed fermions or, in case of mixing, the
lighter or heavier state (cf. 11d). The nonzero nr digit gives
the radial excitation number, in scenarios where the level
spacing allow these to be distinguished. Should the model
also contain supersymmetry, excited SUSY states would be
denoted by an nr > 0, with n = 1 or 2 as usual. Should
some colored states be long-lived enough that hadrons would
form around them, the coding strategy of 11g applies, with
the initial two nnr digits preserved in the combined code.

i. Magnetic monopoles and dyons are assumed to have one unit
of Dirac monopole charge and a variable integer number

nq1nq2nq3 units of electric charge. Codes 411nq1nq2nq30 are
then used when the magnetic and electrical charge sign agree
and 412nq1nq2nq30 when they disagree, with the overall sign
of the particle set by the magnetic charge. For now no spin
information is provided.

j. The nature of Dark Matter (DM) is not known, and therefore
a definitive classification is too early. Candidates within
specific scenarios are classified therein, such as 1000022 for
the lightest neutralino. Generic fundamental states can be
given temporary codes in the range 51 - 60, with 51, 52 and
53 reserved for spin 0, 1/2 and 1 ones. Generic mediators
of s-channel DM pair creation of annihilation can be given
codes 54 and 55 for spin 0 or 1 ones. Separate antiparticles,
with negative codes, may or may not exist. More elaborate
new scenarios should be constructed with n = 5 and nr = 9.

k. Hidden Valley particles have n = 4 and nr = 9, and trailing
numbers in agreement with their nearest-analog standard
particles, as far as possible. Thus 4900021 is the gauge
boson gv of a confining gauge field, 490000nqv and 490001nℓv
fundamental constituents charged or not under this, 4900022
is the γv of a non-confining field, and 4900nqv1nqv2nJ a
Hidden Valley meson.

12. Occasionally program authors add their own states. To avoid
confusion, these should be flagged by setting nnr = 99.

13. Concerning the non-99 numbers, it may be noted that only
quarks, excited quarks, squarks, and diquarks have nq3 = 0; only
diquarks, baryons (including pentaquarks), and the odderon have
nq1 6= 0; and only mesons, the reggeon, and the pomeron have
nq1 = 0 and nq2 6= 0. Concerning mesons (not antimesons), if nq1
is odd then it labels a quark and an antiquark if even.

14. Nuclear codes are given as 10-digit numbers ±10LZZZAAAI.
For a (hyper)nucleus consisting of np protons, nn neutrons and
nΛ Λ’s, A = np + nn + nΛ gives the total baryon number, Z = np
the total charge and L = nΛ the total number of strange quarks.
I gives the isomer level, with I = 0 corresponding to the ground
state and I > 0 to excitations, see [4], where states denoted
m,n, p, q translate to I = 1 − 4. As examples, the deuteron
is 1000010020 and 235U is 1000922350. To avoid ambiguities,
nuclear codes should not be applied to a single hadron, like p, n
or Λ0, where quark-contents-based codes already exist.

This text and full lists of particle numbers can be found online [5].
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QUARKS

d 1
u 2
s 3
c 4
b 5
t 6
b′ 7
t′ 8

LEPTONS
e− 11
νe 12

µ− 13

νµ 14

τ− 15
ντ 16

τ ′− 17
ντ ′ 18

GAUGE AND
HIGGS BOSONS
g (9) 21

γ 22

Z0 23
W+ 24
h0/H0

1 25

Z ′/Z0
2 32

Z ′′/Z0
3 33

W ′/W+
2 34

H0/H0
2 35

A0/H0
3 36

H+ 37

SPECIAL
PARTICLES
G (graviton) 39

R0 41
LQc 42

DM(S = 0) 51

DM(S = 1/2) 52

DM(S = 1) 53

reggeon 110

pomeron 990

odderon 9990

for MC internal
use 81–100, 901–930∗,
1901–1930∗, 2901–2930∗

and 3901–3930∗

DIQUARKS

(dd)1 1103

(ud)0 2101

(ud)1 2103

(uu)1 2203

(sd)0 3101

(sd)1 3103

(su)0 3201

(su)1 3203

(ss)1 3303

(cd)0 4101

(cd)1 4103

(cu)0 4201

(cu)1 4203

(cs)0 4301

(cs)1 4303

(cc)1 4403

(bd)0 5101

(bd)1 5103

(bu)0 5201

(bu)1 5203

(bs)0 5301

(bs)1 5303

(bc)0 5401

(bc)1 5403

(bb)1 5503

SUSY
PARTICLES
d̃L 1000001

ũL 1000002

s̃L 1000003

c̃L 1000004

b̃1 1000005a

t̃1 1000006a

ẽ−L 1000011

ν̃eL 1000012

µ̃−L 1000013

ν̃µL 1000014

τ̃−1 1000015a

ν̃τL 1000016

d̃R 2000001

ũR 2000002

s̃R 2000003

c̃R 2000004

b̃2 2000005a

t̃2 2000006a

ẽ−R 2000011

µ̃−R 2000013

τ̃−2 2000015a

g̃ 1000021

χ̃0
1 1000022b

χ̃0
2 1000023b

χ̃+
1 1000024b

χ̃0
3 1000025b

χ̃0
4 1000035b

χ̃+
2 1000037b

G̃ 1000039

LIGHT I = 1 MESONS
π0 111
π+ 211
a0(980)

0 9000111

a0(980)
+ 9000211

π(1300)0 100111

π(1300)+ 100211

a0(1450)
0 10111

a0(1450)
+ 10211

π(1800)0 9010111

π(1800)+ 9010211

ρ(770)0 113

ρ(770)+ 213

b1(1235)
0 10113

b1(1235)
+ 10213

a1(1260)
0 20113

a1(1260)
+ 20213

π1(1400)
0 9000113

π1(1400)
+ 9000213

ρ(1450)0 100113

ρ(1450)+ 100213

π1(1600)
0 9010113

π1(1600)
+ 9010213

a1(1640)
0 9020113

a1(1640)
+ 9020213

ρ(1700)0 30113

ρ(1700)+ 30213

ρ(1900)0 9030113

ρ(1900)+ 9030213

ρ(2150)0 9040113

ρ(2150)+ 9040213

a2(1320)
0 115

a2(1320)
+ 215

π2(1670)
0 10115

π2(1670)
+ 10215

a2(1700)
0 9000115

a2(1700)
+ 9000215

π2(2100)
0 9010115

π2(2100)
+ 9010215

ρ3(1690)
0 117

ρ3(1690)
+ 217

ρ3(1990)
0 9000117

ρ3(1990)
+ 9000217

ρ3(2250)
0 9010117

ρ3(2250)
+ 9010217

a4(2040)
0 119

a4(2040)
+ 219

LIGHT I = 0 MESONS
(uu, dd, and ss Admixtures)

η 221

η′(958) 331

f0(500) 9000221

f0(980) 9010221

η(1295) 100221

f0(1370) 10221

η(1405) 9020221

η(1475) 100331

f0(1500) 9030221

f0(1710) 10331

η(1760) 9040221

f0(2020) 9050221

f0(2100) 9060221

f0(2200) 9070221

η(2225) 9080221

ω(782) 223

φ(1020) 333

h1(1170) 10223

f1(1285) 20223

h1(1380) 10333

f1(1420) 20333

ω(1420) 1000223

f1(1510) 9000223

h1(1595) 9010223

ω(1650) 30223

φ(1680) 100333

f2(1270) 225

f2(1430) 9000225

f ′2(1525) 335

f2(1565) 9010225

f2(1640) 9020225

η2(1645) 10225

f2(1810) 9030225

η2(1870) 10335

f2(1910) 9040225

f2(1950) 9050225

f2(2010) 9060225

f2(2150) 9070225

f2(2300) 9080225

f2(2340) 9090225

ω3(1670) 227

φ3(1850) 337

f4(2050) 229

fJ (2220) 9000229

f4(2300) 9010229
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STRANGE
MESONS
K0

L 130

K0
S 310

K0 311
K+ 321
K∗

0 (700)
0 9000311

K∗
0 (700)

+ 9000321

K∗
0 (1430)

0 10311

K∗
0 (1430)

+ 10321

K(1460)0 100311

K(1460)+ 100321

K(1830)0 9010311

K(1830)+ 9010321

K∗
0 (1950)

0 9020311

K∗
0 (1950)

+ 9020321

K∗(892)0 313

K∗(892)+ 323

K1(1270)
0 10313

K1(1270)
+ 10323

K1(1400)
0 20313

K1(1400)
+ 20323

K∗(1410)0 100313

K∗(1410)+ 100323

K1(1650)
0 9000313

K1(1650)
+ 9000323

K∗(1680)0 30313

K∗(1680)+ 30323

K∗
2 (1430)

0 315

K∗
2 (1430)

+ 325

K2(1580)
0 9000315

K2(1580)
+ 9000325

K2(1770)
0 10315

K2(1770)
+ 10325

K2(1820)
0 20315

K2(1820)
+ 20325

K∗
2 (1980)

0 9010315

K∗
2 (1980)

+ 9010325

K2(2250)
0 9020315

K2(2250)
+ 9020325

K∗
3 (1780)

0 317

K∗
3 (1780)

+ 327

K3(2320)
0 9010317

K3(2320)
+ 9010327

K∗
4 (2045)

0 319

K∗
4 (2045)

+ 329

K4(2500)
0 9000319

K4(2500)
+ 9000329

CHARMED
MESONS
D+ 411
D0 421
D∗

0(2400)
+ 10411

D∗
0(2400)

0 10421

D∗(2010)+ 413

D∗(2007)0 423

D1(2420)
+ 10413

D1(2420)
0 10423

D1(H)+ 20413

D1(2430)
0 20423

D∗
2(2460)

+ 415

D∗
2(2460)

0 425

D+
s 431

D∗
s0(2317)

+ 10431

D∗+
s 433

Ds1(2536)
+ 10433

Ds1(2460)
+ 20433

D∗
s2(2573)

+ 435

BOTTOM
MESONS
B0 511
B+ 521
B∗0
0 10511

B∗+
0 10521

B∗0 513
B∗+ 523
B1(L)

0 10513

B1(L)
+ 10523

B1(H)0 20513

B1(H)+ 20523

B∗0
2 515

B∗+
2 525

B0
s 531

B∗0
s0 10531

B∗0
s 533

Bs1(L)
0 10533

Bs1(H)0 20533

B∗0
s2 535

B+
c 541

B∗+
c0 10541

B∗+
c 543

Bc1(L)
+ 10543

Bc1(H)+ 20543

B∗+
c2 545

cc
MESONS
ηc(1S) 441

χc0(1P ) 10441

ηc(2S) 100441

J/ψ(1S) 443

hc(1P ) 10443

χc1(1P ) 20443

ψ(2S) 100443

ψ(3770) 30443

ψ(4040) 9000443

ψ(4160) 9010443

ψ(4415) 9020443

χc2(1P ) 445

χc2(3930) 100445

bb
MESONS
ηb(1S) 551

χb0(1P ) 10551

ηb(2S) 100551

χb0(2P ) 110551

ηb(3S) 200551

χb0(3P ) 210551

Υ(1S) 553

hb(1P ) 10553

χb1(1P ) 20553

Υ2(1D) 30553

Υ(2S) 100553

hb(2P ) 110553

χb1(2P ) 120553

Υ1(2D) 130553

Υ(3S) 200553

hb(3P ) 210553

χb1(3P ) 220553

Υ(4S) 300553

Υ(10860) 9000553

Υ(11020) 9010553

χb2(1P ) 555

ηb2(1D) 10555

Υ2(1D) 20555

χb2(2P ) 100555

ηb2(2D) 110555

Υ2(2D) 120555

χb2(3P ) 200555

Υ3(1D) 557

Υ3(2D) 100557

LIGHT
BARYONS
p 2212

n 2112
∆++ 2224
∆+ 2214
∆0 2114
∆− 1114

STRANGE
BARYONS
Λ 3122
Σ+ 3222
Σ0 3212
Σ− 3112
Σ∗+ 3224c

Σ∗0 3214c

Σ∗− 3114c

Ξ0 3322
Ξ− 3312
Ξ∗0 3324c

Ξ∗− 3314c

Ω− 3334

CHARMED
BARYONS
Λ+
c 4122

Σ++
c 4222

Σ+
c 4212

Σ0
c 4112

Σ∗++
c 4224

Σ∗+
c 4214

Σ∗0
c 4114

Ξ+
c 4232

Ξ0
c 4132

Ξ′+
c 4322

Ξ′0
c 4312

Ξ∗+
c 4324

Ξ∗0
c 4314

Ω0
c 4332

Ω∗0
c 4334

Ξ+
cc 4412

Ξ++
cc 4422

Ξ∗+
cc 4414

Ξ∗++
cc 4424

Ω+
cc 4432

Ω∗+
cc 4434

Ω++
ccc 4444

BOTTOM
BARYONS
Λ0
b 5122

Σ−
b 5112

Σ0
b 5212

Σ+
b 5222

Σ∗−
b 5114

Σ∗0
b 5214

Σ∗+
b 5224

Ξ−
b 5132

Ξ0
b 5232

Ξ′−
b 5312

Ξ′0
b 5322

Ξ∗−
b 5314

Ξ∗0
b 5324

Ω−
b 5332

Ω∗−
b 5334

Ξ0
bc 5142

Ξ+
bc 5242

Ξ′0
bc 5412

Ξ′+
bc 5422

Ξ∗0
bc 5414

Ξ∗+
bc 5424

Ω0
bc 5342

Ω′0
bc 5432

Ω∗0
bc 5434

Ω+
bcc 5442

Ω∗+
bcc 5444

Ξ−
bb 5512

Ξ0
bb 5522

Ξ∗−
bb 5514

Ξ∗0
bb 5524

Ω−
bb 5532

Ω∗−
bb 5534

Ω0
bbc 5542

Ω∗0
bbc 5544

Ω−
bbb 5554

Footnotes to the Tables:
∗) Numbers or names in bold face are new or have changed since the 2016 Review.
a) Particulary in the third generation, the left and right sfermion states may mix, as shown.

The lighter mixed state is given the smaller number.

b) The physical χ̃ states are admixtures of the pure γ̃, Z̃0, W̃+, H̃0
1 , H̃

0
2 , and H̃+ states.

c) Σ∗ and Ξ∗ are alternate names for Σ(1385) and Ξ(1530).
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44. Clebsch-Gordan Coefficients, Spherical Harmonics, and d Functions

Note: A square-root sign is to be understood over every coefficient, e.g., for −8/15 read −
√
8/15.

Y 0
1 =

√
3

4π
cos θ

Y 1
1 = −

√
3

8π
sin θ eiφ

Y 0
2 =

√
5

4π

(3
2
cos2 θ − 1

2

)

Y 1
2 = −

√
15

8π
sin θ cos θ eiφ

Y 2
2 =

1

4

√
15

2π
sin2 θ e2iφ

Y −m
ℓ = (−1)mY m∗

ℓ 〈j1j2m1m2|j1j2JM〉
= (−1)J−j1−j2〈j2j1m2m1|j2j1JM〉d ℓ

m,0 =

√
4π

2ℓ+ 1
Y m
ℓ e−imφ

d
j
m′,m = (−1)m−m′

d
j
m,m′ = d

j
−m,−m′ d 1

0,0 = cos θ d
1/2
1/2,1/2

= cos
θ

2

d
1/2
1/2,−1/2

= − sin
θ

2

d 1
1,1 =

1 + cos θ

2

d 1
1,0 = − sin θ√

2

d 1
1,−1 =

1− cos θ

2

d
3/2
3/2,3/2

=
1 + cos θ

2
cos

θ

2

d
3/2
3/2,1/2

= −
√
3
1 + cos θ

2
sin

θ

2

d
3/2
3/2,−1/2

=
√
3
1− cos θ

2
cos

θ

2

d
3/2
3/2,−3/2

= −1− cos θ

2
sin

θ

2

d
3/2
1/2,1/2

=
3 cos θ − 1

2
cos

θ

2

d
3/2
1/2,−1/2

= −3 cos θ + 1

2
sin

θ

2

d 2
2,2 =

(1 + cos θ

2

)2

d 2
2,1 = −1 + cos θ

2
sin θ

d 2
2,0 =

√
6

4
sin2 θ

d 2
2,−1 = −1− cos θ

2
sin θ

d 2
2,−2 =

(1− cos θ

2

)2

d 2
1,1 =

1 + cos θ

2
(2 cos θ − 1)

d 2
1,0 = −

√
3

2
sin θ cos θ

d 2
1,−1 =

1− cos θ

2
(2 cos θ + 1) d 2

0,0 =
(3
2
cos2 θ − 1

2

)

Figure 44.1: The sign convention is that of Wigner (Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley (The
Theory of Atomic Spectra, Cambridge Univ. Press, New York, 1953), Rose (Elementary Theory of Angular Momentum, Wiley, New York, 1957),
and Cohen (Tables of the Clebsch-Gordan Coefficients, North American Rockwell Science Center, Thousand Oaks, Calif., 1974).
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45. SU(3) isoscalar factors and representation matrices

Written by R.L. Kelly (LBNL).

The most commonly used SU(3) isoscalar factors, corresponding
to the singlet, octet, and decuplet content of 8 ⊗ 8 and 10 ⊗ 8, are
shown at the right. The notation uses particle names to identify the
coefficients, so that the pattern of relative couplings may be seen
at a glance. We illustrate the use of the coefficients below. See J.J
de Swart, Rev. Mod. Phys. 35, 916 (1963) for detailed explanations
and phase conventions.

A
√

is to be understood over every integer in the matrices; the
exponent 1/2 on each matrix is a reminder of this. For example, the
Ξ → ΩK element of the 10 → 10⊗ 8 matrix is −

√
6/
√
24 = −1/2.

Intramultiplet relative decay strengths may be read directly from
the matrices. For example, in decuplet → octet + octet decays, the
ratio of Ω∗ → ΞK and ∆ → Nπ partial widths is, from the 10 → 8× 8
matrix,

Γ (Ω∗ → ΞK)

Γ (∆ → Nπ)
=

12

6
× (phase space factors) . (45.1)

Including isospin Clebsch-Gordan coefficients, we obtain, e.g.,

Γ(Ω∗− → Ξ0K−)
Γ(∆+ → p π0)

=
1/2

2/3
× 12

6
× p.s.f. =

3

2
× p.s.f. (45.2)

Partial widths for 8 → 8 ⊗ 8 involve a linear superposition of 81
(symmetric) and 82 (antisymmetric) couplings. For example,

Γ(Ξ∗ → Ξπ) ∼
(
−
√

9

20
g1 +

√
3

12
g2

)2

. (45.3)

The relations between g1 and g2 (with de Swart’s normalization)
and the standard D and F couplings that appear in the interaction
Lagrangian,

L = −
√
2 D Tr ({B,B}M) +

√
2 F Tr ([B,B]M) , (45.4)

where [B,B] ≡ BB −BB and {B,B} ≡ BB +BB, are

D =

√
30

40
g1 , F =

√
6

24
g2 . (45.5)

Thus, for example,

Γ(Ξ∗ → Ξπ) ∼ (F −D)2 ∼ (1 − 2α)2 , (45.6)

where α ≡ F/(D + F ). (This definition of α is de Swart’s. The
alternative D/(D + F ), due to Gell-Mann, is also used.)

The generators of SU(3) transformations, λa (a = 1, 8), are 3 × 3
matrices that obey the following commutation and anticommutation
relationships:

[λa, λb] ≡ λaλb − λbλa = 2ifabcλc (45.7)

{λa, λb} ≡ λaλb + λbλa =
4

3
δabI + 2dabcλc , (45.8)

where I is the 3 × 3 identity matrix, and δab is the Kronecker delta
symbol. The fabc are odd under the permutation of any pair of
indices, while the dabc are even. The nonzero values are

1 → 8⊗ 8
(
Λ
)

→
(
NK Σπ Λη ΞK

)
=

1√
8

( 2 3 −1 −2 )1/2

81 → 8⊗ 8



N
Σ
Λ
Ξ


→




Nπ Nη ΣK ΛK
NK Σπ Λπ Ση ΞK

NK Σπ Λη ΞK
ΣK ΛK Ξπ Ξη


=

1√
20




9 −1 −9 −1
−6 0 4 4 −6
2 −12 −4 −2
9 −1 −9 −1




1/2

82 → 8⊗ 8



N
Σ
Λ
Ξ


→




Nπ Nη ΣK ΛK
NK Σπ Λπ Ση ΞK

NK Σπ Λη ΞK
ΣK ΛK Ξπ Ξη


=

1√
12




3 3 3 −3
2 8 0 0 −2
6 0 0 6
3 3 3 −3




1/2

10 → 8⊗ 8



∆
Σ
Ξ
Ω


→




Nπ ΣK
NK Σπ Λπ Ση ΞK

ΣK ΛK Ξπ Ξη
ΞK


=

1√
12




−6 6
−2 2 −3 3 2

3 −3 3 3
12




1/2

8 → 10⊗ 8



N
Σ
Λ
Ξ


→




∆π ΣK
∆K Σπ Ση ΞK

Σπ ΞK
ΣK Ξπ Ξη ΩK


 =

1√
15




−12 3
8 −2 −3 2

−9 6
3 −3 −3 6




1/2

10 → 10⊗ 8



∆
Σ
Ξ
Ω


→




∆π ∆η ΣK
∆K Σπ Ση ΞK
ΣK Ξπ Ξη ΩK

ΞK Ωη


 =

1√
24




15 3 −6
8 8 0 −8
12 3 −3 −6

12 −12




1/2

abc fabc abc dabc abc dabc

123 1 118 1/
√
3 355 1/2

147 1/2 146 1/2 366 −1/2

156 −1/2 157 1/2 377 −1/2

246 1/2 228 1/
√
3 448 −1/(2

√
3)

257 1/2 247 −1/2 558 −1/(2
√
3)

345 1/2 256 1/2 668 −1/(2
√
3)

367 −1/2 338 1/
√
3 778 −1/(2

√
3)

458
√
3/2 344 1/2 888 −1/

√
3

678
√
3/2

The λa’s are

λ1=

(
0 1 0
1 0 0
0 0 0

)
λ2=

(
0 −i 0
i 0 0
0 0 0

)
λ3=

(
1 0 0
0 − 1 0
0 0 0

)

λ4=

(
0 0 1
0 0 0
1 0 0

)
λ5=

(
0 0 −i
0 0 0
i 0 0

)
λ6=

(
0 0 0
0 0 1
0 1 0

)

λ7=

(
0 0 0
0 0 −i
0 i 0

)
λ8=

1√
3

(
1 0 0
0 1 0
0 0 −2

)

Equation (45.7) defines the Lie algebra of SU(3). A general d-
dimensional representation is given by a set of d×d matrices satisfying
Eq. (45.7) with the fabc given above. Equation (45.8) is specific to the
defining 3-dimensional representation.
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46. SU(n)Multiplets and Young Diagrams

Written by C.G. Wohl (LBNL).

This note tells (1) how SU(n) particle multiplets are identified or
labeled, (2) how to find the number of particles in a multiplet from its
label, (3) how to draw the Young diagram for a multiplet, and (4) how
to use Young diagrams to determine the overall multiplet structure of
a composite system, such as a 3-quark or a meson-baryon system.

In much of the literature, the word “representation” is used where
we use “multiplet,” and “tableau” is used where we use “diagram.”

46.1. Multiplet labels

An SU(n) multiplet is uniquely identified by a string of (n−1)
nonnegative integers: (α, β, γ, . . .). Any such set of integers specifies
a multiplet. For an SU(2) multiplet such as an isospin multiplet, the
single integer α is the number of steps from one end of the multiplet
to the other (i.e., it is one fewer than the number of particles in the
multiplet). In SU(3), the two integers α and β are the numbers of
steps across the top and bottom levels of the multiplet diagram. Thus
the labels for the SU(3) octet and decuplet

1

1

0

3

are (1,1) and (3,0). For larger n, the interpretation of the integers
in terms of the geometry of the multiplets, which exist in an
(n−1)-dimensional space, is not so readily apparent.

The label for the SU(n) singlet is (0, 0, . . . , 0). In a flavor SU(n),
the n quarks together form a (1, 0, . . . , 0) multiplet, and the n
antiquarks belong to a (0, . . . , 0, 1) multiplet. These two multiplets
are conjugate to one another, which means their labels are related by
(α, β, . . .) ↔ (. . . , β, α).

46.2. Number of particles

The number of particles in a multiplet, N = N(α, β, . . .), is given
as follows (note the pattern of the equations).

In SU(2), N = N(α) is

N =
(α+ 1)

1
. (46.1)

In SU(3), N = N(α, β) is

N =
(α+ 1)

1
· (β + 1)

1
· (α+ β + 2)

2
. (46.2)

In SU(4), N = N(α, β, γ) is

N =
(α+1)

1
· (β+1)

1
· (γ+1)

1
· (α+β+2)

2
· (β+γ+2)

2
· (α+β+γ+3)

3
.

(46.3)

Note that in Eq. (46.3) there is no factor with (α + γ + 2): only a
consecutive sequence of the label integers appears in any factor. One
more example should make the pattern clear for any SU(n). In SU(5),
N = N(α, β, γ, δ) is

N =
(α+1)

1
· (β+1)

1
· (γ+1)

1
· (δ+1)

1
· (α+β+2)

2
· (β+γ+2)

2

× (γ+δ+2)

2
· (α+β+γ+3)

3
· (β+γ+δ+3)

3
· (α+β+γ+δ+4)

4
.(46.4)

From the symmetry of these equations, it is clear that multiplets that
are conjugate to one another have the same number of particles, but
so can other multiplets. For example, the SU(4) multiplets (3,0,0) and
(1,1,0) each have 20 particles. Try the equations and see.

46.3. Young diagrams

A Young diagram consists of an array of boxes (or some other
symbol) arranged in one or more left-justified rows, with each row
being at least as long as the row beneath. The correspondence between
a diagram and a multiplet label is: The top row juts out α boxes to
the right past the end of the second row, the second row juts out β
boxes to the right past the end of the third row, etc. A diagram in
SU(n) has at most n rows. There can be any number of “completed”
columns of n boxes buttressing the left of a diagram; these don’t affect
the label. Thus in SU(3) the diagrams

, , , ,

represent the multiplets (1,0), (0,1), (0,0), (1,1), and (3,0). In any
SU(n), the quark multiplet is represented by a single box, the
antiquark multiplet by a column of (n−1) boxes, and a singlet by a
completed column of n boxes.

46.4. Coupling multiplets together

The following recipe tells how to find the multiplets that occur
in coupling two multiplets together. To couple together more than
two multiplets, first couple two, then couple a third with each of the
multiplets obtained from the first two, etc.

First a definition: A sequence of the letters a, b, c, . . . is admissible
if at any point in the sequence at least as many a’s have occurred as
b’s, at least as many b’s have occurred as c’s, etc. Thus abcd and aabcb
are admissible sequences and abb and acb are not. Now the recipe:

(a) Draw the Young diagrams for the two multiplets, but in one of
the diagrams replace the boxes in the first row with a’s, the boxes in
the second row with b’s, etc. Thus, to couple two SU(3) octets (such

as the π-meson octet and the baryon octet), we start with and

a a
b . The unlettered diagram forms the upper left-hand corner of all
the enlarged diagrams constructed below.

(b) Add the a’s from the lettered diagram to the right-hand ends
of the rows of the unlettered diagram to form all possible legitimate
Young diagrams that have no more than one a per column. In general,
there will be several distinct diagrams, and all the a’s appear in each
diagram. At this stage, for the coupling of the two SU(3) octets, we
have:

a a , a , a , .
a a

a a

(c) Use the b’s to further enlarge the diagrams already obtained,
subject to the same rules. Then throw away any diagram in which the
full sequence of letters formed by reading right to left in the first row,
then the second row, etc., is not admissible.

(d) Proceed as in (c) with the c’s (if any), etc.

The final result of the coupling of the two SU(3) octets is:

⊗ a a
b

=

a a ⊕ a a ⊕ a ⊕ a ⊕ a ⊕ .
b a b a b a

b b a a b

Here only the diagrams with admissible sequences of a’s and b’s and
with fewer than four rows (since n = 3) have been kept. In terms of
multiplet labels, the above may be written

(1, 1)⊗ (1, 1) = (2, 2)⊕ (3, 0)⊕ (0, 3)⊕ (1, 1)⊕ (1, 1)⊕ (0, 0) .

In terms of numbers of particles, it may be written

8⊗ 8 = 27⊕ 10⊕ 10⊕ 8⊕ 8⊕ 1 .

The product of the numbers on the left here is equal to the sum on
the right, a useful check. (See also Sec. 15 on the Quark Model.)
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47. Kinematics

Revised August 2017 by D.R. Tovey (Sheffield) and January 2000 by
J.D. Jackson (LBNL).

Throughout this section units are used in which ~ = c = 1. The
following conversions are useful: ~c = 197.3 MeV fm, (~c)2 = 0.3894
(GeV)2 mb.

47.1. Lorentz transformations

The energy E and 3-momentum p of a particle of mass m form a
4-vector p = (E,p) whose square p2 ≡ E2−|p|2 = m2. The velocity of
the particle is β = p/E. The energy and momentum (E∗,p∗) viewed
from a frame moving with velocity βf are given by

(
E∗

p∗‖

)
=

(
γf −γfβf

−γfβf γf

)(
E
p‖

)
, p∗

T
= pT , (47.1)

where γf = (1 − β2f )
−1/2 and pT (p‖) are the components of p

perpendicular (parallel) to βf . Other 4-vectors, such as the space-
time coordinates of events, of course transform in the same way. The
scalar product of two 4-momenta p1 · p2 = E1E2 − p1 · p2 is invariant
(frame independent).

47.2. Center-of-mass energy and momentum

In the collision of two particles of masses m1 and m2 the total
center-of-mass energy can be expressed in the Lorentz-invariant form

Ecm =
[
(E1 + E2)

2 − (p1 + p2)
2
]1/2

,

=
[
m2

1 +m2
2 + 2E1E2(1− β1β2 cos θ)

]1/2
, (47.2)

where θ is the angle between the particles. In the frame where one
particle (of mass m2) is at rest (lab frame),

Ecm = (m2
1 +m2

2 + 2E1 lab m2)
1/2 . (47.3)

The velocity of the center-of-mass in the lab frame is

βcm = plab/(E1 lab +m2) , (47.4)

where plab ≡ p1 lab and

γcm = (E1 lab +m2)/Ecm . (47.5)

The c.m. momenta of particles 1 and 2 are of magnitude

pcm = plab
m2

Ecm
. (47.6)

For example, if a 0.80 GeV/c kaon beam is incident on a proton
target, the center of mass energy is 1.699 GeV and the center of mass
momentum of either particle is 0.442 GeV/c. It is also useful to note
that

Ecm dEcm = m2 dE1 lab = m2 β1 lab dplab . (47.7)

47.3. Lorentz-invariant amplitudes

The matrix elements for a scattering or decay process are written in
terms of an invariant amplitude −iM . As an example, the S-matrix
for 2 → 2 scattering is related to M by

〈p′1p′2 |S| p1p2〉 = I − i(2π)4 δ4(p1 + p2 − p′1 − p′2)

× M (p1, p2; p
′
1, p

′
2)

(2E1)1/2 (2E2)1/2 (2E
′
1)

1/2 (2E′
2)

1/2
. (47.8)

The state normalization is such that

〈p′|p〉 = (2π)3δ3(p− p′) . (47.9)

For a 2 → 2 scattering process producing unstable particles 1′ and
2′ decaying via 1′ → 3′4′ and 2′ → 5′6′ the matrix element for the
complete process can be written in the narrow width approximation
as:

M (12 → 3′4′5′6′) =
∑

h1′ ,h2′

M (12 → 1′2′)M (1′ → 3′4′)M (2′ → 5′6′)
(m2

3′4′ −m2
1′ + im1′Γ1′)(m

2
5′6′ −m2

2′ + im2′Γ2′)
. (47.10)

Here, mij is the invariant mass of particles i and j, mk and Γk are
the mass and total width of particle k, and the sum runs over the
helicities of the intermediate particles. This enables the cross section
for such a process to be written as the product of the cross section for
the initial 2 → 2 scattering process with the branching ratios (relative
partial decay rates) of the subsequent decays.

47.4. Particle decays

The partial decay rate of a particle of mass M into n bodies in its
rest frame is given in terms of the Lorentz-invariant matrix element
M by

dΓ =
(2π)4

2M
|M |2 dΦn (P ; p1, . . . , pn), (47.11)

where dΦn is an element of n-body phase space given by

dΦn(P ; p1, . . . , pn) = δ4 (P −
n∑

i=1

pi)

n∏

i=1

d3pi
(2π)32Ei

. (47.12)

This phase space can be generated recursively, viz.

dΦn(P ; p1, . . . , pn) = dΦj(q; p1, . . . , pj)

× dΦn−j+1 (P ; q, pj+1, . . . , pn)(2π)
3dq2 , (47.13)

where q2 = (
∑j

i=1Ei)
2 −

∣∣∣
∑j

i=1 pi

∣∣∣
2
. This form is particularly

useful in the case where a particle decays into another particle that
subsequently decays.

47.4.1. Survival probability : If a particle of mass M has mean
proper lifetime τ (= 1/Γ) and has momentum (E,p), then the
probability that it lives for a time t0 or greater before decaying is
given by

P (t0) = e−t0 Γ/γ = e−Mt0 Γ/E , (47.14)

and the probability that it travels a distance x0 or greater is

P (x0) = e−Mx0 Γ/|p| . (47.15)

47.4.2. Two-body decays :

p1, m1

p2, m2

P, M

Figure 47.1: Definitions of variables for two-body decays.

In the rest frame of a particle of mass M , decaying into 2 particles
labeled 1 and 2,

E1 =
M2 −m2

2 +m2
1

2M
, (47.16)

|p1| = |p2|

=

[(
M2 − (m1 +m2)

2
) (

M2 − (m1 −m2)
2
)]1/2

2M
, (47.17)

and

dΓ =
1

32π2
|M |2 |p1|

M2
dΩ , (47.18)

where dΩ = dφ1d(cos θ1) is the solid angle of particle 1. The invariant
mass M can be determined from the energies and momenta using
Eq. (47.2) with M = Ecm.

47.4.3. Three-body decays :

p1, m1

p3, m3

P, M p2, m2

Figure 47.2: Definitions of variables for three-body decays.
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Defining pij = pi + pj and m2
ij = p2ij , then m2

12 + m2
23 + m2

13 =

M2+m2
1+m2

2+m2
3 and m2

12 = (P − p3)
2 = M2+m2

3− 2ME3, where
E3 is the energy of particle 3 in the rest frame of M . In that frame,
the momenta of the three decay particles lie in a plane. The relative
orientation of these three momenta is fixed if their energies are known.
The momenta can therefore be specified in space by giving three Euler
angles (α, β, γ) that specify the orientation of the final system relative
to the initial particle. The direction of any one of the particles relative
to the frame in which the initial particle is described can be specified
in space by two angles (α, β) while a third angle, γ, can be set as the
azimuthal angle of a second particle around the first [1]. Then

dΓ =
1

(2π)5
1

16M
|M |2 dE1 dE3 dα d(cos β) dγ . (47.19)

Alternatively

dΓ =
1

(2π)5
1

16M2
|M |2 |p∗1| |p3| dm12 dΩ∗

1 dΩ3 , (47.20)

where (|p∗1|, Ω∗
1) is the momentum of particle 1 in the rest frame of

1 and 2, and Ω3 is the angle of particle 3 in the rest frame of the
decaying particle. |p∗1| and |p3| are given by

|p∗1| =
[(
m2

12 − (m1 +m2)
2
) (

m2
12 − (m1 −m2)

2
)]

2m12

1/2

, (47.21a)

and

|p3| =
[(
M2 − (m12 +m3)

2
) (

M2 − (m12 −m3)
2
)]1/2

2M
. (47.21b)

[Compare with Eq. (47.17).]

If the decaying particle is a scalar or we average over its spin states,
then integration over the angles in Eq. (47.19) gives

dΓ =
1

(2π)3
1

8M
|M |2 dE1 dE3

=
1

(2π)3
1

32M3 |M |2 dm2
12 dm2

23 . (47.22)

This is the standard form for the Dalitz plot.

47.4.3.1. Dalitz plot: For a given value of m2
12, the range of m2

23 is
determined by its values when p2 is parallel or antiparallel to p3:

(m2
23)max =

(E∗
2 + E∗

3 )
2 −

(√
E∗2
2 −m2

2 −
√
E∗2
3 −m2

3

)2

, (47.23a)

(m2
23)min =

(E∗
2 + E∗

3 )
2 −

(√
E∗2
2 −m2

2 +
√
E∗2
3 −m2

3

)2

. (47.23b)

Here E∗
2 = (m2

12 −m2
1 +m2

2)/2m12 and E∗
3 = (M2−m2

12−m2
3)/2m12

are the energies of particles 2 and 3 in the m12 rest frame. The scatter
plot in m2

12 and m2
23 is called a Dalitz plot. If |M |2 is constant, the

allowed region of the plot will be uniformly populated with events [see
Eq. (47.22)]. A nonuniformity in the plot gives immediate information
on |M |2. For example, in the case of D → Kππ, bands appear when
m(Kπ) = mK∗(892), reflecting the appearance of the decay chain

D → K∗(892)π → Kππ.
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Figure 47.3: Dalitz plot for a three-body final state. In this
example, the state is π+K0p at 3 GeV. Four-momentum
conservation restricts events to the shaded region.

47.4.4. Kinematic limits :

47.4.4.1. Three-body decays: In a three-body decay (Fig. 47.2)
the maximum of |p3|, [given by Eq. (47.21)], is achieved when
m12 = m1+m2, i.e., particles 1 and 2 have the same vector velocity in
the rest frame of the decaying particle. If, in addition, m3 > m1,m2,
then |p

3
|max > |p

1
|max, |p

2
|max. The distribution of m12 values

possesses an end-point or maximum value at m12 = M −m3. This
can be used to constrain the mass difference of a parent particle and
one invisible decay product.

47.4.4.2. Sequential two-body decays:

bc a

2 1

Figure 47.4: Particles participating in sequential two-body
decay chain. Particles labeled 1 and 2 are visible while the
particle terminating the chain (a) is invisible.

When a heavy particle initiates a sequential chain of two-body
decays terminating in an invisible particle, constraints on the masses of
the states participating in the chain can be obtained from end-points
and thresholds in invariant mass distributions of the aggregated decay
products. For the two-step decay chain depicted in Fig. 47.4 the
invariant mass distribution of the two visible particles possesses an
end-point given by:

(mmax
12 )2 =

(m2
c −m2

b)(m
2
b −m2

a)

m2
b

, (47.24)

provided particles 1 and 2 are massless. If visible particle 1 has
non-zero mass m1 then Eq. (47.24) is replaced by

(mmax
12 )2 = m2

1 +
(m2

c −m2
b)

2m2
b

×

(
m2

1 +m2
b −m2

a +
√
(−m2

1 +m2
b −m2

a)
2 − 4m2

1m
2
a

)
. (47.25)

See Refs. 2 and 3 for other cases.
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47.4.5. Multibody decays : The above results may be generalized
to final states containing any number of particles by combining some
of the particles into “effective particles” and treating the final states
as 2 or 3 “effective particle” states. Thus, if pijk... = pi+ pj + pk+ . . .,
then

mijk... =
√
p2ijk... , (47.26)

and mijk... may be used in place of e.g., m12 in the relations in
Sec. 47.4.3 or Sec. 47.4.4 above.

47.5. Cross sections

p3, m3

pn+2, mn+2

.

.

.

p1, m1

p2, m2

Figure 47.5: Definitions of variables for production of an
n-body final state.

The differential cross section is given by

dσ =
(2π)4|M |2

4
√
(p1 · p2)2 −m2

1m
2
2

× dΦn(p1 + p2; p3, . . . , pn+2) . (47.27)

[See Eq. (47.12).] In the rest frame of m2(lab),

√
(p1 · p2)2 −m2

1m
2
2 = m2p1 lab ; (47.28a)

while in the center-of-mass frame
√
(p1 · p2)2 −m2

1m
2
2 = p1cm

√
s . (47.28b)

47.5.1. Two-body reactions :

p1, m1

p2, m2

p3, m3

p4, m4

Figure 47.6: Definitions of variables for a two-body final state.

Two particles of momenta p1 and p2 and masses m1 and m2 scatter
to particles of momenta p3 and p4 and masses m3 and m4; the
Lorentz-invariant Mandelstam variables are defined by

s = (p1 + p2)
2 = (p3 + p4)

2

= m2
1 + 2E1E2 − 2p1 · p2 +m2

2 , (47.29)

t = (p1 − p3)
2 = (p2 − p4)

2

= m2
1 − 2E1E3 + 2p1 · p3 +m2

3 , (47.30)

u = (p1 − p4)
2 = (p2 − p3)

2

= m2
1 − 2E1E4 + 2p1 · p4 +m2

4 , (47.31)

and they satisfy

s+ t+ u = m2
1 +m2

2 +m2
3 +m2

4 . (47.32)

The two-body cross section may be written as

dσ

dt
=

1

64πs

1

|p1cm|2 |M |2 . (47.33)

In the center-of-mass frame

t = (E1cm −E3cm)2 − (p1cm − p3cm)2 − 4p1cm p3cm sin2(θcm/2)

= t0 − 4p1cm p3cm sin2(θcm/2) , (47.34)

where θcm is the angle between particle 1 and 3. The limiting values
t0 (θcm = 0) and t1 (θcm = π) for 2 → 2 scattering are

t0(t1) =

[
m2

1 −m2
3 −m2

2 +m2
4

2
√
s

]2
− (p1 cm ∓ p3 cm)2 . (47.35)

In the literature the notation tmin (tmax) for t0 (t1) is sometimes
used, which should be discouraged since t0 > t1. The center-of-mass
energies and momenta of the incoming particles are

E1cm =
s+m2

1 −m2
2

2
√
s

, E2cm =
s+m2

2 −m2
1

2
√
s

, (47.36)

For E3cm and E4cm, change m1 to m3 and m2 to m4. Then

pi cm =
√
E2
i cm −m2

i and p1cm =
p1 lab m2√

s
. (47.37)

Here the subscript lab refers to the frame where particle 2 is at rest.
[For other relations see Eqs. (47.2)–(47.4).]

47.5.2. Inclusive reactions : Choose some direction (usually the
beam direction) for the z-axis; then the energy and momentum of a
particle can be written as

E = mT cosh y , px , py , pz = mT sinh y , (47.38)

where m
T
, conventionally called the ‘transverse mass’, is given by

m2
T
= m2 + p2x + p2y . (47.39)

and the rapidity y is defined by

y =
1

2
ln

(
E + pz
E − pz

)

= ln

(
E + pz
m

T

)
= tanh−1

(pz
E

)
. (47.40)

Note that the definition of the transverse mass in Eq. (47.39) differs
from that used by experimentalists at hadron colliders (see Sec. 47.6.1
below). Under a boost in the z-direction to a frame with velocity β,
y → y− tanh−1 β. Hence the shape of the rapidity distribution dN/dy
is invariant, as are differences in rapidity. The invariant cross section
may also be rewritten

E
d3σ

d3p
=

d3σ

dφ dy pT dpT
=⇒ d2σ

π dy d(p2
T
)
. (47.41)

The second form is obtained using the identity dy/dpz = 1/E, and the
third form represents the average over φ.

Feynman’s x variable is given by

x =
pz

pzmax
≈ E + pz

(E + pz)max
(pT ≪ |pz|) . (47.42)

In the c.m. frame,

x ≈ 2pz cm√
s

=
2mT sinh ycm√

s
(47.43)

and
= (ycm)max = ln(

√
s/m) . (47.44)

The invariant mass M of the two-particle system described in
Sec. 47.4.2 can be written in terms of these variables as

M2 = m2
1 +m2

2 + 2[ET (1)ET (2) cosh∆y − pT (1) · pT (2)] , (47.45)

where

ET (i) =
√
|pT (i)|2 +m2

i , (47.46)

and pT (i) denotes the transverse momentum vector of particle i.

For p ≫ m, the rapidity [Eq. (47.40)] may be expanded to obtain

y =
1

2
ln

cos2(θ/2) +m2/4p2 + . . .

sin2(θ/2) +m2/4p2 + . . .

≈ − ln tan(θ/2) ≡ η (47.47)

where cos θ = pz/p. The pseudorapidity η defined by the second line
is approximately equal to the rapidity y for p ≫ m and θ ≫ 1/γ,
and in any case can be measured when the mass and momentum
of the particle are unknown. From the definition one can obtain the
identities

sinh η = cot θ , cosh η = 1/ sin θ , tanh η = cos θ . (47.48)
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47.6. Transverse variables

At hadron colliders, a significant and unknown proportion of the
energy of the incoming hadrons in each event escapes down the
beam-pipe. Consequently if invisible particles are created in the final
state, their net momentum can only be constrained in the plane
transverse to the beam direction. Defining the z-axis as the beam
direction, this net momentum is equal to the missing transverse energy
vector

Emiss
T = −

∑

i

pT (i) , (47.49)

where the sum runs over the transverse momenta of all visible final
state particles.

47.6.1. Single production with semi-invisible final state :

Consider a single heavy particle of mass M produced in association
with visible particles which decays as in Fig. 47.1 to two particles,
of which one (labeled particle 1) is invisible. The mass of the parent
particle can be constrained with the quantity MT defined by

M2
T ≡ [ET (1) + ET (2)]

2 − [pT (1) + pT (2)]
2

= m2
1 +m2

2 + 2[ET (1)ET (2)− pT (1) · pT (2)] , (47.50)

where
pT (1) = Emiss

T . (47.51)

This quantity is called the ‘transverse mass’ by hadron collider
experimentalists but it should be noted that it is quite different from
that used in the description of inclusive reactions [Eq. (47.39)]. The
distribution of event MT values possesses an end-point at Mmax

T = M .
If m1 = m2 = 0 then

M2
T = 2|pT (1)||pT (2)|(1 − cosφ12) , (47.52)

where φij is defined as the angle between particles i and j in the
transverse plane.

47.6.2. Pair production with semi-invisible final states :

p
11

, mp
44

, mp

, mp

3 1

22

, m

M M

Figure 47.7: Definitions of variables for pair production of
semi-invisible final states. Particles 1 and 3 are invisible while
particles 2 and 4 are visible.

Consider two identical heavy particles of mass M produced such
that their combined center-of-mass is at rest in the transverse plane
(Fig. 47.7). Each particle decays to a final state consisting of an
invisible particle of fixed mass m1 together with an additional visible
particle. M and m1 can be constrained with the variables MT2 and
MCT which are defined in Refs. 4 and 5.
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48. Resonances

Updated 2017 by D.M. Asner (Brookhaven National Laboratory),
C. Hanhart (Forschungszentrum Jülich) and E. Klempt (Bonn).

48.1. General Considerations

Perturbative methods can be applied to systems of quarks and
gluons only for large momentum transfers (see review on ’Quantum
chromodynamics’) and, under certain conditions, to some properties
of systems that contain heavy quarks (see review on ’Heavy-Quark
and Soft-Collinear Effective Theory’). In general, however, dealing
with QCD in the low momentum transfer region is a very complicated,
non–perturbative problem where quarks and gluons are confined
within color neutral hadrons. Physical states show up as poles of
the S–matrix either on the physical sheet (bound states) or on the
unphysical sheets (resonances) and manifest themselves as structures
in experimental observables.

Resonances can show up either in so–called formation experiments,
typically of the kind

A+B → R → C1 + ...+ Cn ,

where they become visible in an energy scan (a perfect example of
this being the R–function measured in e+e− annihilations — cf .
the corresponding plots in the review on ’Plots of Cross sections
and related quantities’), or together with a spectator particle S in
production experiments of the kind

A → R+ S → [C1 + ...+ Cn] + S .

In the latter case the resonances properties are commonly extracted
from a Dalitz plot analysis (see review on ’Kinematics’) or projections
thereof. Multi–particle final states are often parametrized in terms of
successive decays of two–body resonances.

Resonance phenomena are very rich: while typical hadronic widths
are of the order of 100 MeV (e.g., for the meson resonances ρ(770)
or ψ(4040) or the baryon resonance ∆(1232)) corresponding to a life
time of 10−23 s, the widths can also be as small as sub MeV (e.g.
of X(3872)) or as large as several hundred MeV (e.g. of the meson
resonances f0(500) or D1(2430) or the baryon resonance N(2190)).

Ideally a resonance appears as a peak in the total cross section.
If the structure is narrow and if there are no relevant thresholds or
other resonances nearby, the resonance properties may be extracted
employing a standard Breit-Wigner parametrization if necessary
improved by using an energy dependent width term (cf. Sec. 2.1 of
this review). However, in general, unitarity and analyticity call for the
use of more refined tools. When there are overlapping resonances with
the same quantum numbers, the resonance terms should not simply
be added but combined in a non–trivial way either in a K–matrix
approximation (cf. Sec. 2.3 of this review) or using more refined
methods (cf. Sec. 1.4 of this review). Only then the proper pole
parameters can be extracted that are universal resonance properties
— on the contrary, Breit–Wigner parameters are typically reaction
dependent. In addition, for broad resonances there is no direct relation
anymore between pole location and the total width/life time — then
the pole residues need to be used in order to quantify the decay
properties of a given state (cf . Sec. 3 of this review).

For simplicity, throughout this review the formulas are given for
distinguishable, scalar particles. The additional complications that
appear in the presence of spins can be controlled in the helicity
framework developed by Jacob and Wick [1], or in a non-relativistic
[2] or relativistic [3] tensor operator formalism. Within these frames,
sequential (cascade) decays are commonly treated as a coherent sum
of two-body interactions. Therefore below most explicit expressions
are given for two–body kinematics.
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Figure 48.1: Sketch of the imaginary part of a typical single–
channel amplitude in the complex s-plane. The solid dots
indicate allowed positions for resonance poles, the cross for a
bound state. The solid line is the physical axis (shifted by iǫ
into the physical sheet). The two sheets are connected smoothly
along their discontinuities.

48.1.1. Properties of the S-matrix :

The unitary operator that connects asymptotic in and out states
is called the S–matrix. It is an analytic function in the Mandelstam
plane up to its branch points and poles. Branch points appear
whenever there is a channel opening — at each threshold for massive
particles the number of Riemann sheets doubles. Poles refer either
to bound states or to resonances. The former poles are located on
the physical sheet, the latter are located on the unphysical sheet
closest to the physical one, often called the second sheet; each can be
accompanied by mirror poles. If there are resonances in subsystems of
multi–particle states, branch points appear in the complex plane of the
unphysical sheet(s). Any of these singularities leads to some structure
in the observables (see also Ref. [4]). In a partial wave decomposed
amplitude additional singularities not related to resonance physics
may emerge as a result of the partial-wave projection. For a discussion
see, e.g., Ref. [5].

For simplicity we now restrict ourselves to reactions involving four
particles. Then the kinematics of the reaction is fully described by the
Mandelstam variables s, t and u, only two of them being independent
(cf. Eqs. (28)-(31) of the kinematics review). Bound state poles are
allowed only on the real s–axis below the lowest threshold. There
is no restriction for the location of poles on the unphysical sheets.
Analyticity requires, however, that, if there is a pole at some complex
value of s, there must be another pole at its complex conjugate value,
s∗. The pole with a negative imaginary part is closer to the physical
axis and thus influences the observables in the vicinity of the resonance
region more strongly, however, at the threshold both poles are always
equally important. This is illustrated in Fig. 48.1.

The S-matrix is related to the scattering matrix M (c.f. Eq. (8) of
the kinematics review). For two–body scattering it can be cast into
the form

Sab = Iab − 2i
√
ρaMab

√
ρb . (48.1)

M is a matrix in channel space and depends, for two–body scattering,
on both s and t. The channel indices a and b are multi–indices
specifying all properties of the channel including the conserved
quantum numbers. The two-body phase-space ρ is given (cf. Eq. 12
of the kinematics review) by

ρa(s)=
1

16π

2|~qa|√
s

. (48.2)

with qa denoting the relative momentum of the decay particles of
channel a, with masses m1 and m2, cf. Eq. (20a) of the kinematics
review.

As discussed below, unitarity puts strong constraints on the
scattering matrix. Further constraints come, e.g., from crossing
symmetry and duality [6].
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48.1.2. Consequences from unitarity :

In what follows, scattering amplitudes M and decay amplitudes
A will be distinguished, since unitarity puts different constraints on
these. The discontinuity of the scattering amplitude from channel a
to channel b [7] is constrained by unitarity to

i [Mba − M ∗
ab] = (2π)4

∑

c

∫
dΦcM

∗
cbMca . (48.3)

Using Disc(M (s)) = 2i Im(M (s+ iǫ)) the optical theorem follows

Im (Maa|forward) = 2qa
√
s σtot(a → anything) . (48.4)

The unitarity relation for a decay amplitude of a heavy state H into a
channel a is given by

i
[
AH
a −AH ∗

a

]
= (2π)4

∑

c

∫
dΦcM

∗
caAH

c . (48.5)

From Eq. (48.5) Watson’s theorem follows straightforwardly: the
phase of A agrees with that of M as long as only a single channel
contributes. For systems where the phase shifts are known like ππ
in S– and P–waves for low energies, AH can be calculated in a
model-independent way using dispersion theory [8]. Those methods
can also be generalized to three–body final states [9] and were applied
to η → πππ in Refs. [10,11,12] and to φ and ω to 3π in Ref. [13].

48.1.3. Partial-wave decomposition :
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Figure 48.2: Argand plot showing a diagonal element of
a partial-wave amplitude, abb, as a function of energy. The
amplitude leaves the unitary circle (solid line) as soon as
inelasticity sets in, η < 1 (dashed line).

In general, a physical amplitude M (c.f. Eq. (8) of the kinematics
review) is a matrix in channel space. It depends, for two–body
scattering, on both s and t. It is often convenient to expand the
amplitudes in partial waves. For this purpose one defines for the
transition matrix from channel a to channel b

Mba(s, t) =

∞∑

L=0

(2L+ 1)ML
ba(s)PL(cos(θ)) , (48.6)

where L denotes the angular momentum—in the presence of spins the
initial and final value of L does not need to be equal. To simplify
notations below we will drop the label L. The function Mba(s) is
expressed in terms of the partial-wave amplitudes fba(s) via

Mba(s) = −fba(s)/
√
ρaρb . (48.7)

The partial-wave amplitudes fba depend on s only. Using Sba =
δba + 2ifba one gets from the unitarity of the S-matrix

fbb = (η exp(2iδb)− 1)/2i , (48.8)

where δb (η) denotes the phase shift (elasticity parameter — also
called inelasticity) for the scattering from channel b to channel b.
One has 0 ≤ η ≤ 1, where η = 1 refers to purely elastic scattering.
The evolution with energy of a partial-wave amplitude fbb can be
displayed as a trajectory in an Argand plot, as shown in Fig. 48.2. In
case of a two–channel problem the off–diagonal element is typically
parametrized as fba =

√
1− η2/2 exp(i(δb + δa)).

48.1.4. Explicit parametrizations for scattering and produc-
tion amplitudes :

It is often convenient to decompose the physical amplitude M into
a pole part and a non–pole part, often called background

M = M b.g. + M pole . (48.9)

The splitting given in Eq. (48.9) is reaction dependent and not
unique (see, e.g., the discussion in Ref. [14]) , such that some
resonances show up differently in different reactions. Independent of
the reaction are, however, the location of the pole of a given resonance
R in the complex s-plane, sR, and its residues, or, more accurately,
the pole couplings introduced in the last section of this review.
Those parameters capture all the properties of a given resonance. The
decomposition of Eq. (48.9) is employed, e.g., in Ref. [15] to study the
lineshape of ψ(3770) and in Refs. [16,17] to investigate πN scattering.
Traditionally one introduces the notation

√
sR = MR − iΓR/2 , (48.10)

where MR and ΓR are referred to as mass and total width of
the resonance R, respectively. Note, the standard Breit-Wigner
parameters MBW and ΓBW, also introduced below, in general deviate
from the pole parameters, e.g., due to finite width effects and the
influence of thresholds.

If there are N resonances in a particular channel,

M pole
ba (s) = γb(s)[1 − V R(s)Σ(s)]−1

bc V R
ca(s)γa(s) . (48.11)

where all ingredients are matrices in channel space. Especially

V R
ab(s) = −

N∑

n=1

gn b gna

s−M2
n

, (48.12)

γa and Σa denote the normalized vertex function and the self-energy,
respectively, while gn a denotes the coupling of the resonance Rn to
channel a and Mn its mass parameter (not to be confused with the
pole position). The sign in Eq. (48.12) is necessary to render the
g–parameters real. A relation analogous to Eq. (48.5) holds for any
kind of production amplitude — especially for the normalized vertex
functions, however, with the final state interaction provided by M b.g.

i [γa − γ∗a] = (2π)4
∑

c

dΦc

(
M b.g.

)∗
ca

γc . (48.13)

The discontinuity of the self-energy Σa(s) is

i [Σa −Σ∗
a] = (2π)4

∫
dΦa|γa|2 . (48.14)

The real part of Σa can be calculated from Eq. (48.14) via a
properly subtracted dispersion integral. If M b.g. is unitary, the use of
Eq. (48.11) leads to a unitary full amplitude, cf. Eq. (48.9).

For a single resonance (N = 1) Eq. (48.11) reads

Mpole(s)ba
∣∣
N=1

= −γb(s)
gb ga

s− M̂R(s)2 + i
√
sΓR(s)tot

γa(s) , (48.15)

where the mass function M̂R(s)
2 = M2+

∑
c g

2
cRe(Σc). The imaginary

part of the self-energy gives the width of the resonance via

ΓR
c (s) =

(2π)4

2
√
s
g2c

∫
dΦc|γc|2; ΓR(s)tot =

∑

c

ΓR
c (s) . (48.16)

Here the sum runs over all channels. Eq. (48.16) agrees with Eq. (10)
of the kinematics review.

In the absence of left–hand cuts in the production mechanism, the
decay amplitude of some heavy state H can be written as

AH
a (s) = γa(s)

[
1− V R(s)Σ(s)

]−1

ab
PH
b (s) , (48.17)
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where PH is a vector in channel space that may be parametrized as

PH
b (s) = pb(s)−

N∑

n=1

gn b αH
n

s−M2
n

(48.18)

and the masses Mn need to agree with those in VR. The function
pa(s) is a background term and the αH

n denote the coupling of the
heavy state H to the particular resonance Rn. If there are additional
particles in the final state of the studied decay of the heavy state
H , not included in the non-perturbative treatment of Eq. (48.17),
then they also contain the corresponding kinematic factors related to
their coupling. If these additional particles are interacting strongly,
a complete few–body treatment of the final state becomes necessary,
especially since rescattering effects can introduce additional complex
phases [18]. However, in practice those effects as well as those from
missing channels are often parametrized by choosing the parameters
αH
n complex valued. With some additional assumptions, Eq. (48.9)

and Eq. (48.17) were employed in Ref. [19] to study the pion
vector form factor. An alternative parametrization for the production
amplitude that is convenient, if the full matrix M — including the
resonances — is known, cf. Ref. [20]

AH
a (s) = Mab(s)P̃H

b (s) . (48.19)

The function P̃H(s)b needs to cancel the left–hand cuts of M and
therefore could be strongly energy dependent. In actual applications a
low-order polynomial turned out to be sufficient — c.f. Ref. [21,22] for
a study of γγ → ππ. As above, to preserve unitarity the coefficients
of P̃H(s)b need to be real, however, in practice rescattering effects or
missing channels are parametrized by complex valued parameters.

Three-body decays are often represented by Dalitz plots. It is often
of interest to quantify the contribution of a single amplitude AH

a to the
decay of a heavy resonance H , where now AH

a needs to be generalized
to three body kinematics either completely by considering the full
three–body final state interactions or effectively by choosing complex
vertex parameters. Then fractional contributions are introduced (since
different intermediate states leading to the same final state interfere,
the assignment of branching ratios is to be taken with some caution)
via

FH
a =

∫
dΦ|AH

a |2∫
dΦ|∑aAH

a |2 (48.20)

where the phase space integral dΦ extends over the Dalitz plot
region and the angular dependence of the subsystems needs to be
kept (cf. Eq. (48.6)). Typically the effect of interference terms in the
denominator is small.

The formulas given so far are completely general. However,
they require as input, e.g., information on all relevant channels.
It is therefore often necessary and appropriate to find approxima-
tions/parameterizations.

48.2. Common parameterizations for resonances

In most common parameterizations the non–pole interaction,
M b.g., is omitted. While this is a bad approximation for, e.g.,
scalar–isoscalar ππ interactions at very low energies [23], under more
favorable conditions this can be justified. Thus in what follows we will
assume M b.g. = 0, which leads to real vertex functions. For two–body
channels one writes

γ(s)a = qLa
a FLa(qa, qo) ,

where La denotes the angular momentum of the decay products,
giving rise to the centrifugal barrier qLa

a , where qa denotes the
relative momentum of the outgoing particle pair defined in the
rest frame of the decaying particle, cf. Eq. (20a) of the kinematics
review. Often one introduces a phenomenological form factor, here
denoted by FLa(qa, qo). It depends on the channel momentum as
well as some intrinsic scale qo. Often the Blatt-Weisskopf form
is chosen [24,25], where, e.g., F 2

0 = 1, F 2
1 = 2/(qa + qo) and

F 2
2 = 13/((qa − 3qo)

2 + 9qaqo). In addition, for isolated, narrow
resonances the couplings ga can be related to the partial widths,
ΓR→a, via

ga =
1

γa(sR)

√
MRΓR→a

ρa
, (48.21)

where MR was defined in Eq. (48.10).

48.2.1. The Breit–Wigner and Flatté Parametrizations :

If there is only a single resonance present and all relevant thresholds
are far away, then one may replace ΓR(s)tot with a constant, ΓBW.
Under these conditions also the real part of Σ is a constant that can
be absorbed into the mass parameter and Eq. (48.15) simplifies to

M pole
ba

∣∣∣
N=1

= − gb ga

s−M2
BW + i

√
sΓBW

, (48.22)

which is the standard Breit–Wigner parametrization. For a narrow
resonance it is common to replace

√
s by MBW. If there are nearby

relevant thresholds, ΓBW needs to be replaced by Γ(s). For two–body
decays one writes

Γ(s) =
∑

c

ΓR→c

(
qc
qR c

)2Lc+1(MR√
s

)(
FLc(qc, qo)

FLc(qR c, qo)

)2

, (48.23)

where qR c = q(MBW)c denotes the decay momentum of resonance R
into channel c. The Breit-Wigner parameters MBW and ΓBW agree
with the pole parameters only if MRΓ(MR) ≪ M2

thr. − M2
R, with

Mthr. for the closest relevant threshold. Otherwise the Breit-Wigner
parameters deviate from the pole parameters and are reaction
dependent.

If there is more than one resonance in one partial wave that
significantly couples to the same channels, it is in general incorrect
to use a sum of Breit-Wigner functions, for it may violate unitarity
constraints. Then more refined methods should be used, like the
K–matrix approximation described in the next section.

Below the corresponding threshold, qc in Eq. (48.23) must be
continued analytically: if, e.g., the particles in channel c have equal
mass mc, then

qc =
i

2

√
4m2

c − s for
√
s < 2mc . (48.24)

The resulting line shape above and below the threshold of channel c is
called Flatté parametrization [26]. If the coupling of a resonance to
the channel opening nearby is very strong, the Flatté parametrization
shows a scaling invariance and does not allow for an extraction of
individual partial decay widths, but only of ratios [27].

48.2.2. The K–matrix approximation :

As soon as there is more than one resonance in one channel, the
use of the K–matrix approximation should be preferred compared
to the Breit–Wigner parametrization discussed above. From the
considerations formulated in Eq. (48.11), the K–matrix approximation
follows straightforwardly by replacing the self-energy Σc by its
imaginary part in the absence of M b.g., but keeping the full matrix
structure of V R. Thus, for two–body intermediate states one writes
within this scheme for the self-energy

Σ(s)c → iρc γ(s)
2
c . (48.25)

However, in distinction to the Breit-Wigner approach, V R, then called
K–matrix, is kept in the form of Eq. (48.12). The decay amplitude
given in Eq. (48.17) then takes the form of the standard P–vector
formalism introduced in Ref. [28]. For N = 1 the amplitude derived
from the K–matrix is identical to that of Eq. (48.22).

Some authors use the analytic continuation of ρc below the
threshold via the analytic continuation of the particle momentum as
described above [29,30].

48.2.3. Further improvements :

The K–matrix described above usually allows one to get a proper
fit of physical amplitudes and it is easy to deal with, however, it
also has an important deficit: it violates constraints from analyticity
— e.g., ρa, defined in Eq. (48.2), is ill-defined at s = 0 and for
unequal masses develops an unphysical cut. In addition, the analytic
continuation of the amplitudes into the complex plane is not controlled
and typically the parameters of broad resonances come out wrong
(see, e.g., minireview on scalar mesons). A method to improve
the analytic properties was suggested in Refs. [31–34]. It basically
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amounts to replacing the phase-space factor iρa in Eq. (48.25) by an
analytic function that produces the identical imaginary part on the
right-hand cut. In the simplest case of a channel with equal masses
the expressions that can be used for real values of s read

− ρ̂a
π

log

∣∣∣∣
1 + ρ̂a
1− ρ̂a

∣∣∣∣ , −2ρ̂a
π

arctan

(
1

ρ̂a

)
, − ρ̂a

π
log

∣∣∣∣
1 + ρ̂a
1− ρ̂a

∣∣∣∣+ iρ̂a

for s < 0, 0 < s < 4m2
a, and 4m2

a < s, respectively, with

ρ̂a =
√
|1− 4m2

a/s| for all values of s, extending the expression of
Eq. (48.2) into the regime below threshold. The more complicated
expression for the case of different masses can be found, e.g., in
Ref. [32].

If there is only a single resonance in a given channel, it is possible to
feed the imaginary part of the Breit-Wigner function, Eq. (48.22) with
an energy-dependent width, directly into a dispersion integral to get a
resonance propagator with the correct analytic structure [35,36].

48.3. Properties of resonances

A resonance is characterized not only by its complex pole position
but also by its residues that quantify its couplings to the various
channels and allow one to define a branching ratio also for broader
resonances. In the Meson Particle Listings the two-photon width
of f0(500) is defined in terms of the corresponding residue. The
Baryon Particle Listings give the elastic pole residues and normalized
transition residues. However, different conventions are used in the two
sectors, which are shortly outlined here.

In the close vicinity of a pole the scattering matrix M can be
written as

lim
s→sR

Mba = − Rba

s− sR
, (48.26)

where sR denotes the pole position of the resonance R. The sign
convention in Eq. (48.26) is consistent with that of Eq. (48.12). The
residues may be calculated via an integration along a closed contour
around the pole using

Rba =
i

2π

∮
dsMba .

The factorization of the residue (Rba)
2 = Raa × Rbb allows one to

introduce pole couplings according to

g̃a = Rba/
√

Rbb . (48.27)

The pole couplings are the only quantities that allow one quantify
the transition strength of a given resonance to some channel a
independent of how the particular resonance got produced. For a
single, narrow state with an energy-independent background in the
resonance region, far away from all relevant thresholds one finds
g̃a = γa(sR)ga with the real valued resonance couplings ga defined in
Eq. (48.12) accompanied by the complex valued vertex functions γa
introduced in Eq. (48.11). Based on this observation one may use the
straightforward generalization of Eq. (48.21) to define a partial width
and a branching fraction even for a broad resonance via

ΓR→a =
|g̃a|2
MR

ρa(M
2
R) and Bra = ΓR→a/ΓR , (48.28)

where MR and ΓR were introduced in Eq. (48.10). This expression was
used to define a two–photon width for the broad f0(500) (also called
σ) [21,22]. Eq. (48.28) defines a partial decay width independent of
the reaction used to extract the parameters. It maps smoothly onto
the standard definitions for narrow resonances — cf. Eq. (48.16).
There are cases where a resonance couples to a channel that opens
only above MR. A prominent example for this being f0(980) to K̄K.
If one wants to define a branching fraction that also captures this
situation one may define

Br′a =

∞∫

threshold

ds

π

|g̃a|2ρ(s)
|D(s)|2 . (48.29)

Here one needs to assume a line shape for the resonance R. A possible
choice is a Flatté form

|D(s)|2 = (M2
R − s)2 + (

∑

a

|g̃a|2ρa(s))2 . (48.30)

If the s–dependence of the phase space factors is large (as is the case,
e.g., for multi–particle final states) the spectral shape that emerges
from the choice in Eq. (48.30) may deviate significantly from what
one would expect from the corresponding pole in the complex plane.
In those situations it might be appropriate to refine the parameters of
Eq. (48.29) somewhat as was suggested, e.g., in Ref. [38]. In any case
the only model-independent quantities are the pole couplings/residues
— both forms, Eq. (48.28) and Eq. (48.29), are in general not directly
related to observables but only meant to quantify the effect of the pole
couplings by employing better known quantities.

In the baryon sector it is common to define the residue with respect
to the partial-wave amplitudes fba(s) defined in Eq. (48.7) and with
respect to

√
s instead of s. Accordingly in the baryon listings the

elastic pole residue, which refers to πN → πN scattering, is related to
the residues introduced above via

r =
ρπN (sR)√

4sR
RπN,πN , (48.31)

where the phase space factor is to be evaluated at the pole.
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Revised October 2009 by H. Baer (University of Oklahoma) and R.N.
Cahn (LBNL).

PART I: STANDARD MODEL PROCESSES

Setting aside leptoproduction (for which, see Sec. 16 of this
Review), the cross sections of primary interest are those with light
incident particles, e+e−, γγ, qq, gq , gg, etc., where g and q represent
gluons and light quarks. The produced particles include both light
particles and heavy ones - t, W , Z, and the Higgs boson H . We
provide the production cross sections calculated within the Standard
Model for several such processes.

49.1. Resonance Formation

Resonant cross sections are generally described by the Breit-Wigner
formula (Sec. 18 of this Review).

σ(E) =
2J + 1

(2S1 + 1)(2S2 + 1)

4π

k2

[
Γ2/4

(E − E0)2 + Γ2/4

]
BinBout, (49.1)

where E is the c.m. energy, J is the spin of the resonance, and the
number of polarization states of the two incident particles are 2S1 + 1
and 2S2 + 1. The c.m. momentum in the initial state is k, E0 is the
c.m. energy at the resonance, and Γ is the full width at half maximum
height of the resonance. The branching fraction for the resonance into
the initial-state channel is Bin and into the final-state channel is Bout.
For a narrow resonance, the factor in square brackets may be replaced
by πΓδ(E −E0)/2.

49.2. Production of light particles

The production of point-like, spin-1/2 fermions in e+e− annihilation
through a virtual photon, e+e− → γ∗ → ff , at c.m. energy squared s
is given by

dσ

dΩ
= Nc

α2

4s
β
[
1 + cos2 θ + (1− β2) sin2 θ

]
Q2
f , (49.2)

where β is v/c for the produced fermions in the c.m., θ is the c.m.
scattering angle, and Qf is the charge of the fermion. The factor Nc

is 1 for charged leptons and 3 for quarks. In the ultrarelativistic limit,
β → 1,

σ = NcQ
2
f
4πα2

3s
= NcQ

2
f
86.8 nb

s (GeV2)
. (49.3)

The cross section for the annihilation of a qq pair into a distinct pair
q′q′ through a gluon is completely analogous up to color factors, with
the replacement α → αs. Treating all quarks as massless, averaging
over the colors of the initial quarks and defining t = −s sin2(θ/2),
u = −s cos2(θ/2), one finds [1]

dσ

dΩ
(qq → q′q′) =

α2
s

9s

t2 + u2

s2
. (49.4)

Crossing symmetry gives

dσ

dΩ
(qq′ → qq′) =

α2
s

9s

s2 + u2

t2
. (49.5)

If the quarks q and q′ are identical, we have

dσ

dΩ
(qq → qq) =

α2
s

9s

[
t2 + u2

s2
+

s2 + u2

t2
− 2u2

3st

]
, (49.6)

and by crossing

dσ

dΩ
(qq → qq) =

α2
s

9s

[
t2 + s2

u2
+

s2 + u2

t2
− 2s2

3ut

]
. (49.7)

Annihilation of e+e− into γγ has the cross section

dσ

dΩ
(e+e− → γγ) =

α2

2s

u2 + t2

tu
. (49.8)

The related QCD process also has a triple-gluon coupling. The cross
section is

dσ

dΩ
(qq → gg) =

8α2
s

27s
(t2 + u2)

(
1

tu
− 9

4s2

)
. (49.9)

The crossed reactions are

dσ

dΩ
(qg → qg) =

α2
s

9s
(s2 + u2)(− 1

su
+

9

4t2
) (49.10)

and

dσ

dΩ
(gg → qq) =

α2
s

24s
(t2 + u2)(

1

tu
− 9

4s2
) . (49.11)

Finally,

dσ

dΩ
(gg → gg) =

9α2
s

8s
(3− ut

s2
− su

t2
− st

u2
) . (49.12)

Lepton-quark scattering is analogous (neglecting Z exchange)

dσ

dΩ
(eq → eq) =

α2

2s
e2q

s2 + u2

t2
. (49.13)

where eq is the charge of the quark. For neutrino scattering with the
four-Fermi interaction

dσ

dΩ
(νd → ℓ−u) =

G2
F s

4π2
, (49.14)

where the Cabibbo angle suppression is ignored. Similarly

dσ

dΩ
(νu → ℓ−d) =

G2
F s

4π2
(1 + cos θ)2

4
. (49.15)

To obtain the formulae for deep inelastic scattering (presented in
more detail in Section 16) we consider quarks of type i carrying a
fraction x = Q2/(2Mν) of the nucleon’s energy, where ν = E − E′ is
the energy lost by the lepton in the nucleon rest frame. With y = ν/E
we have the correspondences

1 + cos θ → 2(1− y) ,

dΩcm → 4πfi(x)dx dy , (49.16)

where the latter incorporates the quark distribution, fi(x). In this
way we find

dσ

dx dy
(eN → eX) =

4πα2xs

Q4

1

2

[
1 + (1− y)2

]

×
[4
9
(u(x) + u(x) + . . .) +

1

9
(d(x) + d(x) + . . .)

]
(49.17)

where now s = 2ME is the cm energy squared for the electron-nucleon
collision and we have suppressed contributions from higher mass
quarks.

Similarly,

dσ

dx dy
(νN → ℓ−X) =

G2
F xs

π
[(d(x)+. . .)+(1−y)2(u(x)+. . .)] (49.18)

and

dσ

dx dy
(νN → ℓ+X) =

G2
F xs

π
[(d(x)+. . .)+(1−y)2(u(x)+. . .)] . (49.19)

Quasi-elastic neutrino scattering (νµn → µ−p, νµp → µ+n) is
directly related to the crossed reaction, neutron decay. The formula
for the differential cross section is presented, for example, in N.J. Baker
et al., Phys. Rev. D23, 2499 (1981).
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49.3. Hadroproduction of heavy quarks

For hadroproduction of heavy quarks Q = c, b, t, it is important
to include mass effects in the formulae. For qq̄ → QQ̄, one has

dσ

dΩ
(qq̄ → QQ̄) =

α2
s

9s3

√

1−
4m2

Q

s

[
(m2

Q − t)2 + (m2
Q − u)2 + 2m2

Qs
]
,

(49.20)
while for gg → QQ̄ one has

dσ

dΩ
(gg → QQ̄) =

α2
s

32s

√

1−
4m2

Q

s

[
6

s2
(m2

Q − t)(m2
Q − u)

−
m2

Q(s− 4m2
Q)

3(m2
Q − t)(m2

Q − u)

+
4

3

(m2
Q − t)(m2

Q − u)− 2m2
Q(m

2
Q + t)

(m2
Q − t)2

+
4

3

(m2
Q − t)(m2

Q − u)− 2m2
Q(m

2
Q + u)

(m2
Q − u)2

− 3
(m2

Q − t)(m2
Q − u) +m2

Q(u − t)

s(m2
Q − t)

− 3
(m2

Q − t)(m2
Q − u) +m2

Q(t− u)

s(m2
Q − u)

]
. (49.21)

49.4. Production of Weak Gauge Bosons

49.4.1. W and Z resonant production :

Resonant production of a single W or Z is governed by the partial
widths

Γ(W → ℓiνi) =

√
2GFm

3
W

12π
(49.22)

Γ(W → qiqj) = 3

√
2GF |Vij |2m3

W

12π
(49.23)

Γ(Z → ff) = Nc

√
2GFm

3
Z

6π

×
[
(T3 −Qf sin

2 θW )2 + (Qf sin
2 θW )2

]
.(49.24)

The weak mixing angle is θW . The CKM matrix elements are
indicated by Vij and Nc is 3 for qq final states and 1 for leptonic final
states.

The full differential cross section for fif j → (W,Z) → fi′f j′ is
given by

dσ

dΩ
=

Nf
c

N i
c
· 1

256π2s
· s2

(s−M2)2 + sΓ2

×
[
(L2 +R2)(L′2 +R′2)(1 + cos2 θ)

+ (L2 − R2)(L′2 −R′2)2 cosθ
]

(49.25)

where M is the mass of the W or Z. The couplings for the W are
L = (8GFm

2
W /

√
2)1/2Vij/

√
2;R = 0 where Vij is the corresponding

CKM matrix element, with an analogous expression for L′ and R′.
For Z, the couplings are L = (8GFm

2
Z/

√
2)1/2(T3 − sin2 θWQ);R =

−(8GFm
2
Z/

√
2)1/2 sin2 θWQ, where T3 is the weak isospin of the

initial left-handed fermion and Q is the initial fermion’s electric charge.

The expressions for L′ and R′ are analogous. The color factors N i,f
c

are 3 for initial or final quarks and 1 for initial or final leptons.

49.4.2. Production of pairs of weak gauge bosons :

The cross section for ff → W+W− is given in term of the couplings
of the left-handed and right-handed fermion f , ℓ = 2(T3 − QxW ),
r = −2QxW , where T3 is the third component of weak isospin for the
left-handed f , Q is its electric charge (in units of the proton charge),
and xW = sin2 θW :

dσ

dt
=

2πα2

Ncs2

{[(
Q+

ℓ+ r

4xW

s

s−m2
Z

)2

+

(
ℓ− r

4xW

s

s−m2
Z

)2]
A(s, t, u)

+
1

2xW

(
Q+

ℓ

2xW

s

s−m2
Z

)
(Θ(−Q)I(s, t, u)−Θ(Q)I(s, u, t))

+
1

8x2W
(Θ(−Q)E(s, t, u) + Θ(Q)E(s, u, t))

}
, (49.26)

where Θ(x) is 1 for x > 0 and 0 for x < 0, and where

A(s, t, u) =

(
tu

m4
W

− 1

)(
1

4
− m2

W

s
+ 3

m4
W

s2

)
+

s

m2
W

− 4,

I(s, t, u) =

(
tu

m4
W

− 1

)(
1

4
− m2

W

2s
− m4

W

st

)
+

s

m2
W

− 2 + 2
m2

W

t
,

E(s, t, u) =

(
tu

m4
W

− 1

)(
1

4
+

m4
W

t2

)
+

s

m2
W

, (49.27)

and s, t, u are the usual Mandelstam variables with s = (pf + pf )
2, t =

(pf − pW−)2, u = (pf − pW+)2. The factor Nc is 3 for quarks and 1
for leptons.

The analogous cross-section for qiqj → W±Z0 is

dσ

dt
=

πα2|Vij |2
6s2x2W

{(
1

s−m2
W

)2 [(
9− 8xW

4

)(
ut−m2

Wm2
Z

)

+(8xW − 6) s
(
m2

W +m2
Z

)]

+

[
ut−m2

Wm2
Z − s(m2

W +m2
Z)

s−m2
W

][
ℓj
t
− ℓi

u

]

+
ut−m2

Wm2
Z

4(1− xW )

[
ℓ2j
t2

+
ℓ2i
u2

]
+
s(m2

W +m2
Z)

2(1− xW )

ℓiℓj
tu

}
, (49.28)

where ℓi and ℓj are the couplings of the left-handed qi and qj as
defined above. The CKM matrix element between qi and qj is Vij .

The cross section for qiqi → Z0Z0 is

dσ

dt
=

πα2

96

ℓ4i + r4i
x2W (1− x2W )2s2

[
t

u
+

u

t
+

4m2
Zs

tu
−m4

Z

(
1

t2
+

1

u2

)]
.

(49.29)

49.5. Production of Higgs Bosons

49.5.1. Resonant Production : The Higgs boson of the Standard
Model can be produced resonantly in the collisions of quarks, leptons,
W or Z bosons, gluons, or photons. The production cross section
is thus controlled by the partial width of the Higgs boson into the
entrance channel and its total width. The branching fractions for the
Standard Model Higgs boson are shown in Fig. 1 of the “Searches for
Higgs bosons” review in the Particle Listings section, as a function of
the Higgs boson mass. The partial widths are given by the relations

Γ(H → ff) =
GFm

2
fmHNc

4π
√
2

(
1− 4m2

f/m
2
H

)3/2
, (49.30)

Γ(H → W+W−) =
GFm

3
HβW

32π
√
2

(
4− 4aW + 3a2W

)
, (49.31)

Γ(H → ZZ) =
GFm

3
HβZ

64π
√
2

(
4− 4aZ + 3a2Z

)
, (49.32)
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where Nc is 3 for quarks and 1 for leptons and where aW = 1− β2W =

4m2
W /m2

H and aZ = 1 − β2Z = 4m2
Z/m

2
H . The decay to two gluons

proceeds through quark loops, with the t quark dominating [2].
Explicitly,

Γ(H → gg) =
α2
sGFm

3
H

36π3
√
2

∣∣∣∣∣
∑

q

I(m2
q/m

2
H)

∣∣∣∣∣

2

, (49.33)

where I(z) is complex for z < 1/4. For z < 2× 10−3, |I(z)| is small so
the light quarks contribute negligibly. For mH < 2mt, z > 1/4 and

I(z) = 3

[
2z + 2z(1− 4z)

(
sin−1 1

2
√
z

)2
]
, (49.34)

which has the limit I(z) → 1 as z → ∞.

49.5.2. Higgs Boson Production in W ∗ and Z∗ decay :

The Standard Model Higgs boson can be produced in the decay of
a virtual W or Z (“Higgstrahlung”) [3,4]: In particular, if k is the
c.m. momentum of the Higgs boson,

σ(qiqj → WH) =
πα2|Vij |2
36 sin4 θW

2k√
s

k2 + 3m2
W

(s−m2
W )2

(49.35)

σ(ff → ZH) =
2πα2(ℓ2f + r2f )

48Nc sin4 θW cos4 θW

2k√
s

k2 + 3m2
Z

(s−m2
Z)

2
, (49.36)

where ℓ and r are defined as above.

49.5.3. W and Z Fusion :

Just as high-energy electrons can be regarded as sources of virtual
photon beams, at very high energies they are sources of virtual W
and Z beams. For Higgs boson production, it is the longitudinal
components of the W s and Zs that are important [5]. The
distribution of longitudinal W s carrying a fraction y of the electron’s
energy is [6]

f(y) =
g2

16π2
1− y

y
, (49.37)

where g = e/ sin θW . In the limit s ≫ mH ≫ mW , the partial decay
rate is Γ(H → WLWL) = (g2/64π)(m3

H/m2
W ) and in the equivalent

W approximation [7]

σ(e+e− → νeνeH) =
1

16m2
W

(
α

sin2 θW

)3

×
[(

1 +
m2

H

s

)
log

s

m2
H

− 2 + 2
m2

H

s

]
. (49.38)

There are significant corrections to this relation when mH is not
large compared to mW [8]. For mH = 150 GeV, the estimate is
too high by 51% for

√
s = 1000 GeV, 32% too high at

√
s = 2000

GeV, and 22% too high at
√
s = 4000 GeV. Fusion of ZZ to make

a Higgs boson can be treated similarly. Identical formulae apply for
Higgs production in the collisions of quarks whose charges permit
the emission of a W+ and a W−, except that QCD corrections and
CKM matrix elements are required. Even in the absence of QCD
corrections, the fine-structure constant ought to be evaluated at the
scale of the collision, say mW . All quarks contribute to the ZZ fusion
process.

49.6. Inclusive hadronic reactions

One-particle inclusive cross sections Ed3σ/d3p for the production
of a particle of momentum p are conveniently expressed in terms of
rapidity y (see above) and the momentum pT transverse to the beam
direction (in the c.m.):

E
d3σ

d3p
=

d3σ

dφ dy pT dp
2
T

. (49.39)

In appropriate circumstances, the cross section may be decomposed
as a partonic cross section multiplied by the probabilities of finding
partons of the prescribed momenta:

σhadronic =
∑

ij

∫
dx1 dx2 fi(x1) fj(x2) dσ̂partonic , (49.40)

The probability that a parton of type i carries a fraction of the incident
particle’s that lies between x1 and x1 + dx1 is fi(x1)dx1 and similarly
for partons in the other incident particle. The partonic collision is
specified by its c.m. energy squared ŝ = x1x2s and the momentum
transfer squared t̂. The final hadronic state is more conveniently
specified by the rapidities y1, y2 of the two jets resulting from the
collision and the transverse momentum pT . The connection between
the differentials is

dx1dx2dt̂ = dy1dy2
ŝ

s
dp2T , (49.41)

so that

d3σ

dy1dy2dp
2
T

=
ŝ

s

[
fi(x1)fj(x2)

dσ̂

dt̂
(ŝ, t̂, û) + fi(x2)fj(x1)

dσ̂

dt̂
(ŝ, û, t̂)

]
,

(49.42)

where we have taken into account the possibility that the incident
parton types might arise from either incident particle. The second
term should be dropped if the types are identical: i = j.

49.7. Two-photon processes

In the Weizsäcker-Williams picture, a high-energy electron beam is
accompanied by a spectrum of virtual photons of energies ω and
invariant-mass squared q2 = −Q2, for which the photon number
density is

dn =
α

π

[
1− ω

E
+

ω2

E2 − m2
e ω2

Q2E2

]
dω

ω

dQ2

Q2 , (49.43)

where E is the energy of the electron beam. The cross section for
e+e− → e+e−X is then [9]

dσe+e−→e+e−X(s) = dn1dn2dσγγ→X(W 2), (49.44)

where W 2 = m2
X . Integrating from the lower limit Q2 =

m2
e

ω2
i

Ei(Ei − ωi)
to a maximum Q2 gives

σe+e−→e+e−X (s) =
α2

π2

∫ 1

zth

dz

z

×
[(

ln
Q2
max

zm2
e

− 1

)2

f(z) +
1

3
(ln z)3

]
σγγ→X(zs),(49.45)

where

f(z) =
(
1 + 1

2z
)2

ln(1/z)− 1
2 (1− z)(3 + z). (49.46)

The appropriate value of Q2
max depends on the properties of the

produced system X . For production of hadronic systems, Q2
max ≈ m2

ρ,
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while for lepton-pair production, Q2 ≈ W 2. For production of a
resonance with spin J 6= 1, we have

σe+e−→e+e−R(s) = (2J + 1)
8α2ΓR→γγ

m3
R

×
[
f(m2

R/s)

(
ln

m2
V s

m2
em

2
R

− 1

)2

− 1

3

(
ln

s

M2
R

)3]
,(49.47)

where mV is the mass that enters into the form factor for the γγ → R
transition, typically mρ.

PART II: PROCESSES BEYOND THE STANDARD
MODEL

49.8. Production of supersymmetric particles

In supersymmetric (SUSY) theories (see Supersymmetric Particle
Searches in this Review), every boson has a fermionic superpartner,
and every fermion has a bosonic superpartner. The minimal super-
symmetric Standard Model (MSSM) is a direct supersymmetrization
of the Standard Model (SM), although a second Higgs doublet is
needed to avoid triangle anomalies [10]. Under soft SUSY breaking,
superpartner masses are lifted above the SM particle masses. In weak
scale SUSY, the superpartners are invoked to stabilize the weak scale
under radiative corrections, so the superpartners are expected to have
masses of order the TeV scale.

49.8.1. Gluino and squark production :

The superpartners of gluons are the color octet, spin−1
2 gluinos

(g̃), while each helicity component of quark flavor has a spin-0 squark
partner, e.g. q̃L and q̃R. Third generation left- and right- squarks
are expected to have large mixing, resulting in mass eigenstates q̃1
and q̃2, with mq̃1 < mq̃2 (here, q denotes any of the SM flavors of
quarks and q̃i the corresponding flavor and type (i = L,R or 1, 2) of
squark). Gluino pair production (g̃g̃) takes place via either glue-glue
or quark-antiquark annihilation [11].

The subprocess cross sections are usually presented as differential
distributions in the Mandelstam variables s, t and u. Note that for
a 2 → 2 scattering subprocess ab → cd, the Mandelstam variable
s = (pa + pb)

2 = (pc + pd)
2, where pa is the 4-momentum of particle

a, and so forth. The variable t = (pc − pa)
2, where c and a are taken

conventionally to be the most similar particles in the subprocess. The
variable u would then be equal to (pd − pa)

2. Note that since s, t and
u are squares of 4-vectors, they are invariants in any inertial reference
frame.

Gluino pair production at hadron colliders is described by:

dσ

dt
(gg → g̃g̃) =

9πα2
s

4s2

{
2(m2

g̃ − t)(m2
g̃ − u)

s2

+
(m2

g̃ − t)(m2
g̃ − u)− 2m2

g̃(m
2
g̃ + t)

(m2
g̃ − t)2

+
(m2

g̃ − t)(m2
g̃ − u)− 2m2

g̃(m
2
g̃ + u)

(m2
g̃ − u)2

+
m2

g̃(s− 4m2
g̃)

(m2
g̃ − t)(m2

g̃ − u)

−
(m2

g̃ − t)(m2
g̃ − u) +m2

g̃(u− t)

s(m2
g̃ − t)

−
(m2

g̃ − t)(m2
g̃ − u) +m2

g̃(t− u)

s(m2
g̃ − u)

}
,

(49.48)
where αs is the strong fine structure constant. Also,

dσ

dt
(qq̄ → g̃g̃) =

8πα2
s

9s2





4

3

(
m2

g̃ − t

m2
q̃ − t

)2

+
4

3

(
m2

g̃ − u

m2
q̃ − u

)2

+
3

s2

[
(m2

g̃ − t)2 + (m2
g̃ − u)2 + 2m2

g̃s
]
− 3

[
(m2

g̃ − t)2 +m2
g̃s
]

s(m2
q̃ − t)

− 3

[
(m2

g̃ − u)2 +m2
g̃s
]

s(m2
q̃ − u)

+
1

3

m2
g̃s

(m2
q̃ − t)(m2

q̃ − u)



 . (49.49)

Gluinos can also be produced in association with squarks: g̃q̃i
production, where q̃i represents any of the various types (left-, right-
or mixed) and flavors of squarks. The subprocess cross section is
independent of whether the squark is the right-, left- or mixed type:

dσ

dt
(gq → g̃q̃i) =

πα2
s

24s2

[
16
3 (s2 + (m2

q̃i
− u)2) + 4

3s(m
2
q̃i
− u)

]

s(m2
g̃ − t)(m2

q̃i
− u)2

×
(
(m2

g̃ − u)2 + (m2
q̃i
−m2

g̃)
2 +

2sm2
g̃(m

2
q̃i
−m2

g̃)

(m2
g̃ − t)

)
.

(49.50)

There are many different subprocesses for production of squark
pairs. Since left- and right- squarks generally have different masses
and different decay patterns, we present the differential cross section
for each subprocess of q̃i (i = L, R or 1, 2) separately. (In early
literature, the following formulae were often combined into a single
equation which didn’t differentiate the various squark types.) The
result for gg → q̃i¯̃qi is:

dσ

dt
(gg → q̃i¯̃qi) =

πα2
s

4s2





1

3

(
m2

q̃ + t

m2
q̃ − t

)2

+
1

3

(
m2

q̃ + u

m2
q̃ − u

)2

+
3

32s2

(
8s(4m2

q̃ − s) + 4(u− t)2
)
+

7

12

− 1

48

(4m2
q̃ − s)2

(m2
q̃ − t)(m2

q̃ − u)

+
3

32

[
(t− u)(4m2

q̃ + 4t− s)− 2(m2
q̃ − u)(6m2

q̃ + 2t− s)
]

s(m2
q̃ − t)

+
3

32

[
(u − t)(4m2

q̃ + 4u− s)− 2(m2
q̃ − t)(6m2

q̃ + 2u− s)
]

s(m2
q̃ − u)

+
7

96

[
4m2

q̃ + 4t− s
]

m2
q̃ − t

+
7

96

[
4m2

q̃ + 4u− s
]

m2
q̃ − u



 , (49.51)

which has an obvious u ↔ t symmetry.

For qq̄ → q̃i¯̃qi with the same initial and final state flavors, we have

dσ

dt
(qq̄ → q̃i¯̃qi) =

2πα2
s

9s2

{
1

(t−m2
g̃)

2
+

2

s2
− 2/3

s(t−m2
g̃)

}

×
[
−st− (t−m2

q̃i
)2
]
, (49.52)

while if initial and final state flavors are different (qq̄ → q̃′i¯̃q
′
i) we

instead have

dσ

dt
(qq̄ → q̃′i¯̃q

′
i) =

4πα2
s

9s4

[
−st− (t−m2

q̃′i
)2
]
. (49.53)

If the two initial state quarks are of different flavors, then we have

dσ

dt
(qq̄′ → q̃i¯̃q

′
i) =

2πα2
s

9s2

−st− (t−m2
q̃i
)2

(t−m2
g̃)

2
. (49.54)

If the initial quarks are of different flavor and final state squarks are
of different type (i 6= j) then

dσ

dt
(qq̄′ → q̃i¯̃q

′
j) =

2πα2
s

9s2

m2
g̃s

(t−m2
g̃)

2
. (49.55)

For same-flavor initial state quarks, but final state unlike-type squarks,
we also have

dσ

dt
(qq̄ → q̃i¯̃qj) =

2πα2
s

9s2

m2
g̃s

(t−m2
g̃)

2
. (49.56)
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There also exist cross sections for quark-quark annihilation to squark
pairs. For same flavor quark-quark annihilation to same flavor/same
type final state squarks,

dσ

dt
(qq → q̃iq̃i) =

=
πα2

s

9s2
m2

g̃s

{
1

(t−m2
g̃)

2
+

1

(u −m2
g̃)

2
− 2/3

(t−m2
g̃)(u−m2

g̃)

}
, (49.57)

while if the final type squarks are different (i 6= j), we have

dσ

dt
(qq → q̃iq̃j) =

2πα2
s

9s2





[−st− (t−m2
q̃i
)(t−m2

q̃j
)]

(t−m2
g̃)

+
[−su− (u−m2

q̃i
)(u −m2

q̃j
)]

(u−m2
g̃)



 .

(49.58)
If initial/final state flavors are different, but final state squark types
are the same, then

dσ

dt
(qq′ → q̃iq̃

′
i) =

2πα2
s

9s2

m2
g̃s

(t−m2
g̃)

2
. (49.59)

If initial quark flavors are different and final squark types are different,
then

dσ

dt
(qq′ → q̃iq̃

′
j) =

2πα2
s

9s2

−st− (t−m2
q̃i
)(t−m2

q̃j
)

(t−m2
g̃)

2
. (49.60)

49.8.2. Gluino and squark associated production :

In the MSSM, the charged spin-12 winos and higgsinos mix to

make chargino states χ±
1 and χ±

2 , with m
χ±1

< m
χ±2

. The spin−1
2

neutral bino, wino and higgsino fields mix to give four neutralino mass
eigenstates χ0

1,2,3,4 ordered according to mass. We sometimes denote
the charginos and neutralinos collectively as -inos for notational
simplicity

For gluino and squark production in association with charginos
and neutralinos [12], the quark-squark-neutralino couplings*
are defined by the interaction Lagrangian terms Lf̃f χ̃0i

=
[
iAf

χ̃0i
f̃†L ¯̃χ

0
iPLf + iBf

χ̃0i
f̃†R ¯̃χ0

iPRf + h.c.

]
, where Af

χ̃0i
and Bf

χ̃0i
are

coupling constants involving gauge couplings, neutralino mixing
elements and in the case of third generation fermions, Yukawa
couplings. Their form depends on the conventions used for setting
up the MSSM Lagrangian, and can be found in various reviews [13]
and textbooks [14,15]. PL and PR are the usual left- and right-
spinor projection operators and f denotes any of the SM fermions
u, d, e, νe, · · ·. The fermion-sfermion- chargino couplings have

the form L =

[
iAd

χ̃−i
ũ
†
Lχ̃

−
i PLd+ iAu

χ̃−i
d̃
†
Lχ̃

c
iPLu+ h.c.

]
for u and d

quarks, where the Ad
χ̃−i

and Au
χ̃−i

couplings are again convention-

dependent, and can be found in textbooks. The superscript c denotes
“charge conjugate spinor”, defined by ψc ≡ Cψ̄T .

The subprocess cross sections for chargino-squark associated
production occur via squark exchange and are given by

dσ

dt
(ūg → χ̃−

i
¯̃
dL) =

αs

24s2
|Au

χ̃−i
|2ψ(md̃L

,m
χ̃−i

, t), (49.61)

dσ

dt
(dg → χ̃−

i ũL) =
αs

24s2
|Ad

χ̃−i
|2ψ(mũL ,mχ̃−i

, t), (49.62)

* The couplings Af

χ̃0i
and Bf

χ̃0i
are given explicitly in Ref. 15 in Eq.

(8.87). Also, the couplings Ad
χ̃−i

and Au
χ̃−i

are given in Eq. (8.93). The

couplings X
j
i and Y

j
i are given by Eq. (8.103), while the xi and yi

couplings are given in Eq. (8.100). Finally, the couplings Wij are given
in Eq. (8.101).

while neutralino-squark production is given by

dσ

dt
(qg → χ̃0

i q̃) =
αs

24s2

(
|Aq

χ̃0i
|2 + |Bq

χ̃0i
|2
)
ψ(mq̃,mχ̃0i

, t), (49.63)

where

ψ(m1,m2, t) =
s+ t−m2

1

2s
− m2

1(m
2
2 − t)

(m2
1 − t)2

+
t(m2

2 −m2
1) +m2

2(s−m2
2 +m2

1)

s(m2
1 − t)

. (49.64)

Here, the variable t is given by the square of “squark-minus-quark”
four-momentum. The neutralino-gluino associated production cross
section also occurs via squark exchange and is given by

dσ

dt
(qq̄ → χ̃0

i g̃) =
αs

18s2

(
|Aq

χ̃0i
|2 + |Bq

χ̃0i
|2
)

(m2

χ̃0i
− t)(m2

g̃ − t)

(m2
q̃ − t)2

+
(m2

χ̃0i
− u)(m2

g̃ − u)

(m2
q̃ − u)2

−
2ηiηg̃mg̃mχ̃0i

s

(m2
q̃ − t)(m2

q̃ − u)


 ,(49.65)

where ηi is the sign of the neutralino mass eigenvalue and ηg̃ is
the sign of the gluino mass eigenvalue. We also have chargino-gluino
associated production:

dσ

dt
(ūd → χ̃−

i g̃) =
αs

18s2


|Au

χ̃−i
|2
(m2

χ̃−i
− t)(m2

g̃ − t)

(m2
d̃L

− t)2

+|Ad
χ̃−i

|2
(m2

χ̃−i
− u)(m2

g̃ − u)

(m2
ũL

− u)2
+

2ηg̃Re(Au
χ̃−i

Ad
χ̃−i

)mg̃mχ̃is

(m2
d̃L

− t)(m2
ũL

− u)


 , (49.66)

where t̂ = (g̃ − d)2 and in the third term one must take the real part
of the in general complex coupling constant product.

49.8.3. Slepton and sneutrino production :

The subprocess cross section for ℓ̃L¯̃νℓL production (ℓ = e or µ)
occurs via s-channel W exchange and is given by

dσ

dt
(dū → ℓ̃L¯̃νℓL) =

g4|DW (s)|2
192πs2

(
tu−m2

ℓ̃L
m2

ν̃ℓL

)
, (49.67)

where DW (s) = 1/(s −M2
W + iMWΓW ) is the W -boson propagator

denominator. The production of τ̃1 ¯̃ντ is given as above, but replacing
mℓ̃L

→ mτ̃1 , mν̃ℓL
→ mν̃τ and multiplying by an overall factor

of cos2 θτ (where θτ is the tau-slepton mixing angle). Similar
substitutions hold for τ̃2 ¯̃ντ production, except the overall factor is
sin2 θτ .

Table 49.1: The constants αf and βf that appear in in the SM
neutral current Lagrangian. Here t ≡ tan θW and c ≡ cot θW .

f qf αf βf

ℓ −1
1

4
(3t− c)

1

4
(t+ c)

νℓ 0
1

4
(t+ c) −1

4
(t+ c)

u
2

3
− 5

12
t+

1

4
c −1

4
(t+ c)

d −1

3

1

12
t− 1

4
c

1

4
(t+ c)
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The subprocess cross section for ℓ̃L
¯̃
ℓL production occurs via s-

channel γ and Z exchange, and depends on the neutral current
interaction, with fermion couplings to γ and Z0 given by Lneutral =
−eqf f̄γ

µfAµ + ef̄γµ(αf + βfγ5)fZµ (with values of qf , αf , and βf
given in Table 49.1.

The subprocess cross section is given by

dσ

dt
(qq̄ → ℓ̃L

¯̃
ℓL) =

e4

24πs2

(
tu−m4

ℓ̃L

)
×

{
q2ℓ q

2
q

s2
+ (αℓ − βℓ)

2(α2
q + β2q )|DZ(s)|2

+
2qℓqqαq(αℓ − βℓ)(s−M2

Z)

s
|DZ(s)|2

}
, (49.68)

where DZ(s) = 1/(s−M2
Z + iMZΓZ). The cross section for sneutrino

production is given by the same formula, but with αℓ, βℓ, qℓ and m
ℓ̃L

replaced by αν , βν , 0 and mν̃L , respectively. The cross section for τ̃1 ¯̃τ1
production is obtained by replacing m

ℓ̃L
→ mτ̃1 and βℓ → βℓ cos 2θτ .

The cross section for ℓ̃R
¯̃
ℓR production is given by substituting

αℓ − βℓ → αℓ + βℓ and m
ℓ̃L

→ m
ℓ̃R

in the equation above. The cross

section for τ̃2¯̃τ2 production is obtained from the formula for ℓ̃R
¯̃
ℓR

production by replacing m
ℓ̃R

→ mτ̃2 and βℓ → βℓ cos 2θτ .

Finally, the cross section for τ̃1 ¯̃τ2 production occurs only via Z
exchange, and is given by

dσ

dt
(qq̄ → τ̃1 ¯̃τ2) =

dσ

dt
(qq̄ → ¯̃τ1τ̃2) =

e4

24πs2
(α2

q + β2q )β
2
ℓ sin

2 2θτ |DZ(s)|2(ut−m2
τ̃1
m2

τ̃2
). (49.69)

49.8.4. Chargino and neutralino pair production :

49.8.4.1. χ̃−
i χ̃

0
j production:

The subprocess cross section for dū → χ̃−
i χ̃

0
j depends on

Lagrangian couplings LWūd = − g√
2
ūγµPLdW

+µ + h.c., L
Wχ̃−i χ̃0j

=

−g(−i)θj χ̃−
i[X

j
i +Y

j
i γ5]γµχ̃

0
jW

−µ +h.c., L
qq̃χ̃−i

= iAd
χ̃−i

ũ
†
Lχ̃

−
i PLd+

iAu
χ̃−i

d̃
†
Lχ̃

c
iPLu +h.c. and Lqq̃χ̃0j

= iA
q

χ̃0j
q̃
†
Lχ̃

0
jPLq +h.c.. Contributing

diagrams include W exchange and also d̃L and ũL squark exchange.

The Xj
i and Y j

i couplings are new, and again convention-dependent:
the cross section formulae works if the interaction Lagrangian is written
in the above form, so that the couplings can be suitably extracted.
The term θj = 0 (1) if mχ̃0j

> 0 (< 0); it comes about because the

neutralino field must be re-defined by a −iγ5 transformation if its
mass eigenvalue is negative [15]. The subprocess cross section is
given in terms of dot products of four momenta, where particle labels
are used to denote their four-momenta; note that all mass terms in the
cross section formulae are positive definite, so that the signs of mass
eigenstates have been absorbed into the Lagrangian couplings, as for
instance in Ref. [15]. We then have

dσ

dt
(du → χ̃−

i χ̃
0
j ) =

1

192πs2

[
TW + Td̃L

+ TũL + TWd̃L
+ TWũL

+ Td̃LũL

]
(49.70)

where

TW = 8g4|DW (s)|2
{
[X

j2
i + Y

j2
i ](χ̃0

j · dχ̃−
i · u+ χ̃0

j · uχ̃−
i · d)

+ 2(Xj
i Y

j
i )(χ̃

0
j · dχ̃−

i · u− χ̃0
j · uχ̃−

i · d) + [Xj2
i − Y j2

i ]m
χ̃−i

mχ̃0j
d · u

}
,

(49.71)

Td̃L
=

4|Au
χ̃−i

|2|Ad
χ̃0j

|2

[(χ̃−
i − u)2 −m2

d̃L
]2

d · χ̃0
j χ̃

−
i · u, (49.72)

TũL =

4|Ad
χ̃−i

|2|Au
χ̃0j

|2

[(χ̃0
j − u)2 −m2

ũL
]2

u · χ̃0
j χ̃

−
i · d (49.73)

T
Wd̃L

=

−
√
2g2Re[Ad∗

χ̃0j
Au
χ̃−i

(−i)θj ](s−M2
W )|DW (s)|2

(χ̃−
i − u)2 −m2

d̃L

×
{
8(Xj

i + Y j
i )χ̃

0
j · du · χ̃−i + 4(Xj

i − Y j
i )mχ̃−i

mχ̃0j
d · u

}
(49.74)

TWũL =

√
2g2Re[Ad∗

χ̃−i
Au
χ̃0j

(−i)θj ](s−M2
W )|DW (s)|2

(χ̃0
j − u)2 −m2

ũL

×
{
8(X

j
i − Y

j
i )χ̃

0
j · ud · χ̃−i + 4(X

j
i + Y

j
i )mχ̃−i

mχ̃0j
d · u

}
(49.75)

and

T
d̃LũL

= −
4Re[Ad

χ̃0j
Au∗
χ̃−i

Ad∗
χ̃−i

Au
χ̃0j

]m
χ̃−i

mχ̃0j
d · u

[(χ̃−
i − u)2 −m2

d̃L
][(χ̃0

j − u)2 −m2
ũL

]
. (49.76)

49.8.4.2. Chargino pair production:

The subprocess cross section for dd̄ → χ̃−
i χ̃

+
i (i = 1, 2) depends on

Lagrangian couplings L = eχ̃−
i γµχ̃

−
i A

µ−e cot θW χ̃−
i γµ(xi−yiγ5)χ̃

−
i Z

µ

and also L ∋ iAd
χ̃−i

ũ†Lχ̃
−
i PLd + iAu

χ̃−i
d̃†Lχ̃

−c
i PLu + h.c.. Contributing

diagrams include s-channel γ, Z0 exchange and t-channel ũL
exchange [16,17]. The couplings xi and yi are again new and as usual
convention-dependent.

The subprocess cross section is given by

dσ

dt
(dd → χ̃−

i χ̃
+
i ) =

1

192πs2
[
Tγ + TZ + TũL + TγZ + TγũL + TZũL

]

(49.77)
where

Tγ =
32e4q2d
s2

[
d · χ̃+

i d · χ̃−
i + d · χ̃−

i d · χ̃+
i +m2

χ̃−i
d · d

]
(49.78)

TZ = 32e4 cot2 θW |DZ(s)|2
{
(α2

d + β2d)(x
2
i + y2i )

[
d · χ̃+

i d · χ̃−
i + d · χ̃−

i d · χ̃+
i +m2

χ̃−i
d · d

]

∓4αdβdxiyi
[
d · χ̃+

i d · χ̃−
i − d · χ̃−

i d · χ̃+
i

]
−2y2i (α

2
d + β2d)m

2
χ̃−i

d · d
}
,

(49.79)

TũL =

4|Ad
χ̃−i

|4

[(d− χ̃−
i )

2 −m2
ũL

]2
d · χ̃−

i d · χ̃+
i (49.80)

TγZ =
64e4 cot θW qd(s−M2

Z)|DZ(s)|2
s

×
{
αdxi

(
d · χ̃+

i d · χ̃−
i + d · χ̃−

i d · χ̃+
i +m2

χ̃−i
d · d

)

±βdyi
(
d · χ̃−

i d · χ̃+
i − d · χ̃+

i d · χ̃−
i

)
}

(49.81)

TγũL = ∓8e2qd
s

|Ad
χ̃−i

|2

[(d− χ̃−
i )

2 −m2
ũL

]

{
2d · χ̃+

i d · χ̃−
i +m2

χ̃−i
d · d

}

(49.82)
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and

TZũL
= ∓8e2 cot θW |DZ(s)|2

|Ad
χ̃−i

|2(s−M2
Z)

[(d− χ̃−
i )

2 −m2
ũL

]
(αd − βd)

×
{
2(xi ∓ yi)d · χ̃−

i d · χ̃+
i +m2

χ̃−i
(xi ± yi)d · d

}
(49.83)

using the upper of the sign choices.

The cross section for uu → χ̃+
i χ̃

−
i can be obtained from the above

by replacing αd → αu, βd → βu, qd → qu, ũL → d̃L, A
d
χ̃−i

→ Au
χ̃−i

,

d → u, d → u and adopting the lower of the sign choices everywhere.

The cross section for qq̄ → χ̃−
1 χ̃

+
2 , χ̃+

1 χ̃
−
2 can occur via Z and q̃L

exchange. It is usually much smaller than χ̃−
1,2χ̃

+
1,2 production, so the

cross section will not be presented here. It can be found in Appendix
A of Ref. 15.

49.8.4.3. Neutralino pair production:

Neutralino pair production via qq̄ fusion takes place via s-channel
Z exchange plus t- and u-channel left- and right- squark exchange
(5 diagrams) [17,18]. The Lagrangian couplings (see previous
footnote*) needed include terms given above plus terms of the form

L = Wij χ̃0
iγµ(γ5)

θi+θj+1χ̃0
jZ

µ. The couplings Wij depend only on
the higgsino components of the neutralinos i and j. The subprocess
cross section is given by:

dσ

dt
(qq̄ → χ̃0

i χ̃
0
j ) =

1

192πs2
[
TZ + Tq̃L + Tq̃R + TZq̃L + TZq̃R

]
(49.84)

where
TZ = 128e2|Wij |2(α2

q + β2q )|DZ(s)|2
[
q · χ̃0

i q̄ · χ̃0
j + q · χ̃0

j q̄ · χ̃0
i − ηiηjmχ̃0i

mχ̃0j
q · q̄

]
, (49.85)

Tq̃L = 4|Aq

χ̃0i
|2|Aq

χ̃0j
|2
{

q · χ̃0
i q̄ · χ̃0

j

[(χ̃0
i − q)2 −m2

q̃L
]2

+
q · χ̃0

j q̄ · χ̃0
i

[(χ̃0
j − q)2 −m2

q̃L
]2

− ηiηj

mχ̃0i
mχ̃0j

q · q̄

[(χ̃0
i − q)2 −m2

q̃L
][(χ̃0

j − q)2 −m2
q̃L

]

}
(49.86)

Tq̃R = 4|Bq

χ̃0i
|2|Bq

χ̃0j
|2
{

q · χ̃0
i q̄ · χ̃0

j

[(χ̃0
i − q)2 −m2

q̃R
]2

+
q · χ̃0

j q̄ · χ̃0
i

[(χ̃0
j − q)2 −m2

q̃R
]2

− ηiηj

mχ̃0i
mχ̃0j

q · q̄

[(χ̃0
i − q)2 −m2

q̃R
][(χ̃0

j − q)2 −m2
q̃R

]

}
(49.87)

TZq̃L = 16e(αq − βq)(s−M2
Z)|DZ(s)|2

{ Re(WijA
q∗
χ̃0i

Aq

χ̃0j
)

[(χ̃0
i − q)2 −m2

q̃L
]

[
2q · χ̃0

i q̄ · χ̃0
j − ηiηjmχ̃0i

mχ̃0j
q · q̄

]

+ηiηj

Re(WijA
q

χ̃0i
Aq∗
χ̃0j

)

[(χ̃0
j − q)2 −m2

q̃L
]

[
2q · χ̃0

j q̄ · χ̃0
i − ηiηjmχ̃0i

mχ̃0j
q · q̄

]}
(49.88)

TZq̃R
= 16e(αq + βq)(s−M2

Z)|DZ(s)|2

{ Re(WijB
q∗
χ̃0i

B
q

χ̃0j
)

[(χ̃0
i − q)2 −m2

q̃R
]

[
2q · χ̃0

i q̄ · χ̃0
j − ηiηjmχ̃0i

mχ̃0j
q · q̄

]

−
Re(WijB

q

χ̃0i
B

q∗
χ̃0j

)

[(χ̃0
j − q)2 −m2

q̃R
]

[
2q · χ̃0

j q̄ · χ̃0
i − ηiηjmχ̃0i

mχ̃0j
q · q̄

]}
. (49.89)

As before, ηi = ±1 corresponding to whether the neutralino mass
eigenvalue is positive or negative. When i = j in the above formula,
one must remember to integrate over just 2π steradians of solid angle
to avoid double counting in the total cross section.

49.9. Universal extra dimensions

In the Universal Extra Dimension (UED) model of Ref. [19] (see
Ref. [20] for a review of models with extra spacetime dimensions),
the Standard Model is embedded in a five dimensional theory, where
the fifth dimension is compactified on an S1/Z2 orbifold. Each SM
chirality state is then the zero mode of an infinite tower of Kaluza-
Klein excitations labelled by n = 0 − ∞. A KK parity is usually
assumed to hold, where each state is assigned KK-parity P = (−1)n.
If the compactification scale is around a TeV, then the n = 1 (or even
higher) KK modes may be accessible to collider searches.

Of interest for hadron colliders are the production of massive n ≥ 1
quark or gluon pairs. These production cross sections have been
calculated in Ref. [21,22]. We list here results for the n = 1 case
only with M1 = 1/R (R is the compactification radius) and s, t and
u are the usual Mandelstam variables; more general formulae can be
found in Ref. [22]. The superscript ∗ stands for any KK excited state,
while • stands for left chirality states and ◦ stands for right chirality
states.

dσ

dt
=

1

16πs2
T (49.90)

where

T (qq̄ → g∗g∗) =
2g4s
27

[
M2

1

(
− 4s3

t
′2u′2 +

57s

t′u′
− 108

s

)

+
20s2

t′u′
− 93 +

108t′u′

s2

]
(49.91)

and

T (gg → g∗g∗) =

9g4s
27

[
3M4

1
s2 + t

′2 + u
′2

t
′2u′2 − 3M2

1
s2 + t

′2 + u
′2

st′u′
+ 1

+
(s2 + t

′2 + u
′2)3

4s2t
′2u′2 − t′u′

s2

]
(49.92)

where t′ = t−M2
1 and u′ = u−M2

1 .

Also,

T (qq̄ → q∗
′

1 q̄∗
′

1 ) =
4g4s
9

[
2M2

1

s
+

t
′2 + u

′2

s2

]
,

T (qq̄ → q∗1 q̄
∗
1) =

g42
9

[
2M2

1

(
4

s
+

s

t
′2 − 1

t′

)

+
23

6
+

2s2

t
′2 +

8s

3t′
+

6t′

s
+

8t
′2

s2

]
,

T (qq → q∗1q
∗
1) =

g4s
27

[
M2

1

(
6
t′

u
′2 + 6

u′

t
′2 − s

t′u′

)

+2

(
3
t
′2

u
′2 + 3

u
′2

t
′2 + 4

s2

t′u′
− 5

)]
,

T (gg → q∗1 q̄
∗
1) = g4s

[
M4

1
−4

t′u′

(
s2

6t′u′
− 3

8

)

+M2
1
4

s

(
s2

6t′u′
− 3

8

)
+

s2

6t′u′
− 17

24
+

3t′u′

4s2

]
,

T (gq → g∗q∗1) =
−g4s
3

[
5s2

12t
′2 +

s3

t
′2u′

+
11su′

6t
′2 +

5u
′2

12t
′2 +

u
′3

st
′2

]
,

T (qq̄′ → q∗1 q̄
∗′
1 ) =

g4s
18

[
4M4

1
s

t
′2 + 5 + 4

s2

t
′2 + 8

s

t′

]
,

T (qq′ → q∗1q
∗′
1 ) =

2g4s
9

[
−M2

1
s

t
′2 +

1

4
+

s2

t
′2

]
,
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T (qq → q•1q
◦
1) =

g4s
9

[
M2

1

(
2s3

t
′2u′2 − 4s

t′u′

)
+ 2

s4

t
′2u′2 − 8

s2

t′u′
+ 5

]
,

T (qq̄′ → q•1 q̄
′◦
1 ) =

g4s
9

[
2M2

1

(
1

t′
+

u′

t
′2

)
+

5

2
+

4u′

t′
+

2u
′2

t
′2

]
,

and

T (qq′ → q•1q
′◦
1 ) =

g4s
9

[
−2M2

1

(
1

t′
+

u′

t
′2

)
+

1

2
+

2u
′2

t
′2

]
.

49.10. Large extra dimensions

In the ADD theory [23] with large extra dimensions (LED), the SM
particles are confined to a 3-brane, while gravity propagates in the
bulk. It is assumed that the n extra dimensions are compactified on an
n-dimensional torus of volume (2πr)n, so that the fundamental 4 + n
dimensional Planck scale M∗ is related to the usual 4-dimensional
Planck scale MP l by M2

P l = Mn+2∗ (2πr)n. If M∗ ∼ 1 TeV, then the
MW −MP l hierarchy problem is just due to gravity propagating in
the large extra dimensions.

In these theories, the KK-excited graviton states Gn
µν for n = 1−∞

can be produced at collider experiments. The graviton couplings to
matter are suppressed by 1/MP l, so that graviton emission cross
sections dσ/dt ∼ 1/M2

P l. However, the mass splittings between the
excited graviton states can be tiny, so the graviton eigenstates are
usually approximated by a continuum distribution. A summation
(integration) over all allowed graviton emissions ends up cancelling the
1/M2

P l factor, so that observable cross section rates can be attained.
Some of the fundamental production formulae for a KK graviton
(denoted G) of mass m at hadron colliders include the subprocesses

dσm
dt

(f f̄ → γG) =
αQ2

f

16Nf

1

sM2
P l

F1(
t

s
,
m2

s
), (49.93)

where Qf is the charge of fermion f and Nf is the number of QCD
colors of f . Also,

dσm
dt

(qq̄ → gG) =
αs

36

1

sM2
P l

F1(
t

s
,
m2

s
), (49.94)

dσm
dt

(qg → qG) =
αs

96

1

sM2
P l

F2(
t

s
,
m2

s
), (49.95)

dσm
dt

(gg → gG) =
3αs

16

1

sM2
P l

F3(
t

s
,
m2

s
), (49.96)

where

F1(x, y) =
1

x(y − 1− x)

[
−4x(1 + x)(1 + 2x+ 2x2)+

y(1 + 6x+ 18x2 + 16x3)− 6y2x(1 + 2x) + y3(1 + 4x)
]
(49.97)

F2(x, y) = −(y − 1− x)F1

(
x

y − 1− x
,

y

y − 1− x

)
(49.98)

and

F3(x, y) =
1

x(y − 1− x)

[
1 + 2x+ 3x2 + 2x3 + x4

−2y(1 + x3) + 3y2(1 + x2)− 2y3(1 + x) + y4
]
. (49.99)

These formulae must then be multiplied by the graviton density of

states formula dN = Sn−1
M2

P l

Mn+2∗
mn−1dm to gain the cross section

d2σ

dtdm
= Sn−1

M2
P l

Mn+2∗
mn−1 dσm

dt
(49.100)

where Sn =
(2π)n/2

Γ(n/2)
is the surface area of an n-dimensional sphere of

unit radius.

Virtual graviton processes can also be searched for at colliders. For
instance, in Ref. [24] the cross section for Drell-Yan production of
lepton pairs via gluon fusion was calculated, where it is found that, in
the center-of-mass system

dσ

dz
(gg → ℓ+ℓ−) =

λ2s3

64πM8∗
(1 − z2)(1 + z2) (49.101)

where z = cos θ and λ is a model-dependent coupling constant ∼ 1.
Formulae for Drell-Yan production via qq̄ fusion can also be found in
Refs. [24,25].

49.11. Warped extra dimensions

In the Randall-Sundrum model [26] of warped extra dimensions, the
arena for physics is a 5-d anti-deSitter (AdS5) spacetime, for which

a non-factorizable metric exists with a metric warp factor e−2σ(φ).
It is assumed that two opposite tension 3-branes exist within AdS5
at the two ends of an S1/Z2 orbifold parametrized by co-ordinate φ
which runs from 0 − π. The 4-D solution of the Einstein equations
yields σ(φ) = krc|φ|, where rc is the compactification radius of the
extra dimension and k ∼ MP l. The 4-D effective action allows one

to identify M
2
P l =

M3

k
(1 − e−2krcπ), where M is the 5-D Planck

scale. Physical particles on the TeV scale (SM) brane have mass
m = e−krcπm0, where m0 is a fundamental mass of order the Planck
scale. Thus, the weak scale-Planck scale hierarchy occurs due to the
existence of the exponential warp factor if krc ∼ 12.

In the simplest versions of the RS model, the TeV-scale brane
contains only SM particles plus a tower of KK gravitons. The RS
gravitons have mass mn = kxne

−krcπ , where the xi are roots of
Bessel functions J1(xn) = 0, with x1 ≃ 3.83, x2 ≃ 7.02 etc. While
the RS zero-mode graviton couplings suppressed by 1/MP l and are
thus inconsequential for collider searches, the n = 1 and higher modes
have couplings suppressed instead by Λπ = e−krcπMP l ∼ TeV . The
n = 1 RS graviton should have width Γ1 = ρm1x

2
1(k/MP l)

2, where
ρ is a constant depending on how many decay modes are open. The
formulae for dilepton production via virtual RS graviton exchange
can be gained from the above formulae for the ADD scenario via the
replacement [27]

λ

M4∗
→ i2

8Λ2
π

∞∑

n=1

1

s−m2
n + imnΓn

. (49.102)
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50. Neutrino Cross SectionMeasurements

Revised August 2017 by G.P. Zeller (Fermilab)

Neutrino cross sections are an essential ingredient in all neutrino
experiments. Interest in neutrino scattering has recently increased
due to the need for such information in the interpretation of neutrino
oscillation data [1]. Historically, neutrino scattering results on both
charged current (CC) and neutral current (NC) channels have been
collected over many decades using a variety of targets, analysis
techniques, and detector technologies. With the advent of intense
neutrino sources constructed for neutrino oscillation investigations,
experiments are now remeasuring these cross sections with a renewed
appreciation for nuclear effects† and the importance of improved
neutrino flux estimations. This work summarizes accelerator-based
neutrino cross section measurements performed in the ∼ 0.1 − 300
GeV range with an emphasis on inclusive, quasi-elastic, and pion
production processes, areas where we have the most experimental
input at present (Table 50.1). For a more comprehensive discussion of
neutrino cross sections, including neutrino-electron elastic scattering
and lower energy neutrino measurements, the reader is directed to a
review of this subject [2]. Here, we survey existing experimental data
on neutrino interactions and do not attempt to provide a census of the
associated theoretical calculations [3], which are both important and
plentiful.
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Fig. 50.1: Measurements of per nucleon νµ and νµ CC inclusive scattering cross sections divided by neutrino
energy as a function of neutrino energy. Note the transition between logarithmic and linear scales occurring at 100
GeV. Neutrino cross sections are typically twice as large as their corresponding antineutrino counterparts, although
this difference can be larger at lower energies. NC cross sections (not shown) are generally smaller compared to the
CC case.

† Nuclear effects refer to kinematic and final state effects which im-
pact neutrino scattering off nuclei. Such effects can be significant and
are particularly relevant given that modern neutrino experiments make
use of nuclear targets to increase their event yields.

50.1. Inclusive Scattering

Over the years, many experiments have measured the total inclusive
charged current cross section for neutrino (νµN → µ−X) and
antineutrino (νµN → µ+X) scattering off nucleons covering a broad
range of neutrino energies. As can be seen in Fig. 50.1, the inclusive
cross section approaches a linear dependence on neutrino energy.
Such behavior is expected for point-like scattering of neutrinos from
quarks, an assumption which breaks down at lower energies. Modern
measurements of inclusive scattering cross sections and their target
nuclei are summarized in Table 50.2.

To provide a more complete picture, differential cross sections for
such inclusive scattering processes have also been reported – these
include measurements on iron from NuTeV [18] and, more recently,
at lower neutrino energies on argon from ArgoNeuT [4,5] and carbon
from T2K [13]. MINERvA has also provided double differential cross
sections [8] as well as ratio measurements of muon neutrino inclusive
and deep inelastic scattering (DIS) cross sections on a variety of
nuclear targets such as lead, iron, and carbon [6,19]. At high energy,
the inclusive cross section is dominated by deep inelastic scattering.
Several high energy neutrino experiments have measured the DIS cross
sections for specific final states, for example opposite-sign dimuon
production. The most recent dimuon cross section measurements
include those from CHORUS [20], NOMAD [21], and NuTeV [22]. At
lower neutrino energies, the inclusive cross section is an additionally
complex combination of quasi-elastic scattering and pion production
processes, two areas we discuss next.
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Table 50.1: List of beam properties, nuclear targets, and
durations for modern accelerator-based neutrino experiments
studying neutrino scattering.

〈Eν〉, 〈Eν〉 neutrino run
Experiment beam GeV target(s) period

ArgoNeuT ν, ν 4.3, 3.6 Ar 2009 – 2010
ICARUS (at CNGS) ν 20.0 Ar 2010 – 2012
K2K ν 1.3 CH, H2O 2003 – 2004
MicroBooNE ν 0.8 Ar 2015 –
MINERvA ν, ν 3.5 (LE), 5.5 (ME) He, C, CH, H2O, Fe, Pb 2009 –
MiniBooNE ν, ν 0.8, 0.7 CH2 2002 – 2012
MINOS ν, ν 3.5, 6.1 Fe 2004 – 2016
NOMAD ν, ν 23.4, 19.7 C–based 1995 – 1998
NOvA ν, ν 2.0, 2.0 CH2 2010 –
SciBooNE ν, ν 0.8, 0.7 CH 2007 – 2008
T2K ν, ν 0.6, 0.6 CH, H2O, Fe 2010 –

Table 50.2: Summary of published measurements of neutrino
CC inclusive cross sections from modern accelerator-based
neutrino experiments.

experiment measurement target

ArgoNeuT νµ CC [4,5], νµ CC [5] Ar
MINERνA νµ CC [6,7,8], νµ CC [7], νµ/νµ CC [9] CH, C/CH, Fe/CH, Pb/CH
MINOS νµ CC [10], νµ CC [10] Fe
NOMAD νµ CC [11] C
SciBooNE νµ CC [12] CH
T2K νµ CC [13,14,15], νe CC [16,17] CH, H2O, Fe

Table 50.3: Published measurements of CC and NC scattering
cross sections with nucleon-only final states from modern
neutrino experiments.

experiment measurement target

ArgoNeuT 2p [27] Ar
K2K MA [28] H2O

MINERνA
dσ

dQ2
[29,30,31], 1p [32], νe [33] C, CH, Fe, Pb

MiniBooNE
d2σ

dTµdθµ
[23,24], MA [34], NC [35,36] CH2

MINOS MA [37] Fe
NOMAD MA, σ(Eν) [38] C

T2K
d2σ

dTµdθµ
[26], σ(Eν) [39], MA [40], NC [41] CH

50.2. Quasi-elastic scattering

Quasi-elastic (QE) scattering is the dominant neutrino interaction
for neutrino energies less than ∼ 1 GeV and represents a large fraction
of the signal samples in many neutrino oscillation experiments,
which is why this process is particularly important. Historically,
neutrino (antineutrino) quasi-elastic scattering refers to the process,
νµ n → µ− p (νµ p → µ+ n), where a charged lepton and single nucleon
are ejected in the elastic interaction of a neutrino (or antineutrino)
with a nucleon in the target material. This is the final state one would
strictly observe, for example, in scattering off of a free nucleon target.
There were many early measurements of neutrino QE scattering that
span back to the 1970’s [2]. In many of these initial measurements of
the neutrino QE cross section, bubble chamber experiments employed
light targets (H2 or D2) and required both the detection of the final
state muon and single nucleon‡; thus the final state was clear and
elastic kinematic conditions could be verified. The situation is more

‡ In the case of D2, many experiments additionally observed the
spectator proton.

complicated, of course, for the heavier nuclear targets used in modern
neutrino experiments. In this case, nuclear effects can impact the size
and shape of the cross section as well as the final state composition,
kinematics, and topology. Due to intranuclear hadron rescattering and
the possible effects of correlations between target nucleons, additional
nucleons may be ejected in the final state; hence, a QE interaction
on a nuclear target does not necessarily imply the ejection of a single
nucleon. One therefore needs to take some care in defining what
one means by neutrino QE scattering when scattering off targets
heavier than H2 or D2. Modern experiments tend to instead report
cross sections for processes involving nucleon-only final states (often
referred to as “CC 0π” or “QE-like” reactions). Such measurements
are summarized in Table 50.3. Many modern experiments have also
recently opted to report nucleon-only cross sections as a function of
final state particle kinematics [23,24,25,26]. Such distributions can
be more difficult to directly compare between experiments but are
much less model-dependent and provide more stringent tests of the
theory than historical cross sections as a function of neutrino energy
(Eν) or 4-momentum transfer (Q2).
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Adding to this complexity, MiniBooNE measurements of the νµ
and νµ QE scattering cross sections on carbon near 1 GeV revealed
a significantly larger cross section than originally anticipated [23,24].
Such an enhancement was observed many years prior in electron-
nucleus scattering [42] and is believed to be due to the presence
of correlations between target nucleons in the nucleus. As a result,
the impact of such nuclear effects on neutrino QE scattering has
recently been the subject of intense experimental and theoretical
scrutiny with potential implications on event rates, nucleon emission,
neutrino energy reconstruction, and neutrino versus antineutrino cross
sections. The reader is referred to recent reviews of the situation
in [3,43,44]. Additional measurements are clearly needed before a
complete understanding is achieved. To help drive further progress,
nucleon-only cross sections have been reported for the first time
in the form of double-differential distributions in muon kinematics,
d2σ/dTµd cos θµ, by both MiniBooNE [23,24] and T2K [26] thus
reducing some of the model-dependence of the reported data and
allowing a more rigorous two-dimensional test of the underlying nuclear
theory. Such double-differential cross sections in terms of final state
particle kinematics provide the most robust measurements available.
In addition, experiments such as ArgoNeuT have begun to provide
the first measurements of proton multiplicities in neutrino-argon
scattering [25,27], a critical ingredient in understanding the hadronic
side of these interactions and the impact of final state effects. MINOS,
NOvA, and T2K have also started to study nucleon-only final states
in their near detectors with sizable statistics [26,37,39,40,45]. Most
recently, MINERvA has produced a large body of work exploring this
reaction channel, having measured differential cross sections [8,29,30],
nuclear target dependencies [31], single proton emission [32],
and νe QE scattering [33]. With the MiniBooNE results having
first revealed these additional complexities in neutrino-nucleus QE
scattering, measurements from other neutrino experiments are crucial
for getting a better handle on the underlying nuclear physics impacting
neutrino-nucleus interactions. What we once thought was “simple”
QE scattering is in fact not so simple.

In addition to such charged current investigations, measurements
of the neutral current counterpart of this channel have also been
performed. The most recent NC elastic scattering cross section
measurements include those from BNL E734 [46], MiniBooNE [35,36],
and T2K [41]. A number of measurements of the Cabibbo-suppressed
antineutrino QE hyperon production cross section have additionally
been reported [47,48], although not in recent years.

50.3. Pion Production

In addition to such elastic processes, neutrinos can also inelastically
scatter producing a nucleon excited state (∆, N∗). Such baryonic
resonances quickly decay, most often to a nucleon and single-pion final
state. Historically, experiments have measured various exclusive final
states associated with these reactions, the majority of which have
been on hydrogen and deuterium targets [2]. There have been several
recent re-analyses of this data to better understand the consistency
between data sets [49], nucleon form factors [50], and non-resonant
contributions [51]. Also, modern measurements of neutrino-induced
pion production have since been performed on a variety of nuclear
targets (Table 50.4).

Table 50.4: Summary of modern measurements of NC and CC
scattering cross sections involving a pion (or pions) in the final
state.

experiment π± measurement π0 measurement target

ArgoNeuT CC [52] NC [53] Ar
K2K CC[54,55] CC [56], NC [57] CH, H2O
MINERνA CC [58,59,60] CC [59,61,62], NC [63] CH
MiniBooNE CC [64,65] CC [66], NC [67,68] CH2

MINOS – NC [69] Fe
NOMAD – NC [70] C
SciBooNE CC [71] NC [72,73] CH
T2K CC [74,75] – CH, H2O

In addition to resonance production processes, neutrinos can also
coherently scatter off of the entire nucleus and produce a distinctly
forward-scattered single pion final state. Both CC (νµA → µ−Aπ+,
νµA → µ+Aπ− ) and NC (νµA → νµAπ0, νµA → νµAπ

0) processes
are possible in this case. Even though the level of coherent pion
production is small compared to resonant processes, observations exist
across a broad energy range and on multiple nuclear targets [76].
More recently, several modern neutrino experiments have measured
or set limits on coherent pion production cross sections including
ArgoNeuT [52], K2K [55], MINERvA [60], MiniBooNE [68],
MINOS [69], NOMAD [70], SciBooNE [71,73], and T2K [75].
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Figure 50.2: Differential cross sections for CC and NC pion
production from MiniBooNE at a mean neutrino energy of 0.8
GeV. Shown here are the measurements as a function of the
momentum of the outgoing pion in the interaction, a kinematic
that is particularly sensitive to final state interactions. Other
distributions are also available in the publications listed in the
legend.

As with QE scattering, a new appreciation for the significance of
nuclear effects has surfaced in pion production channels, again due
to the use of heavy nuclear targets in modern neutrino experiments.
Many experiments have been careful to report cross sections for
various detected final states, thereby not correcting for large and
uncertain nuclear effects (e.g., pion rescattering, charge exchange, and
absorption) which can introduce significant sources of uncertainty
and model dependence. Providing the most comprehensive survey of
neutrino single-pion production to date, MiniBooNE has published
a total of 16 single- and double-differential cross sections for both
the final state muon (in the case of CC scattering) and pions in
these interactions; thus, providing the first measurements of these
distributions (Fig. 50.2) [64–67]. MINERvA has recently produced
similar kinematic measurements at higher neutrino energies [59,62]
and T2K at lower energies [74]. Importantly, MINERvA has been
working towards an improved nuclear model that can describe all
of the pion reaction channels simultaneously, an issue that many
experiments have struggled with up until now [59]. Regardless of the
interaction channel, such differential cross section measurements in
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terms of observed final state particle kinematics are now preferred
for their reduced model dependence and for the additional kinematic
information they provide. Such a new direction has been the focus
of modern measurements as opposed to the reporting of more
model-dependent, historical cross sections as a function of Eν or Q2.
Together with similar results for other interaction channels, a better
understanding and modeling of nuclear effects will be possible moving
forward.
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Figure 50.3: Differential cross sections for neutrino (W< 1.4
GeV) and antineutrino (W< 1.8 GeV) CC π0 production from
MINERvA at a mean neutrino energy of 3.3 GeV. Shown here
are the measurements as a function of the momentum of the
outgoing pion in the interaction, a kinematic that is particularly
sensitive to final state interactions. Other distributions are
available in the publications listed in the legend as well as for
charged pion production [59].

It should be noted that baryonic resonances can also decay to
multi-pion, other mesonic (K, η, ρ, etc.), and even photon final
states. Experimental results for these channels are typically sparse
or non-existent [2]; however, photon production processes can be
an important background for νµ → νe appearance searches and thus
have become the focus of some recent experimental investigations;
for example, in NOMAD [77]. There have also been several recent
measurements of kaon final states produced in neutrino NC and CC
scattering in MINERvA [78,79,80].

50.4. Outlook

Currently operating experiments will continue to produce additional
neutrino cross section measurements as they accumulate additional
statistics, while a few new experiments will soon be coming online.
In the coming years, analysis of a broad energy range of data on a
variety of targets in the MINERvA experiment will provide the most
detailed analysis yet of nuclear effects in neutrino interactions. Data
from ArgoNeuT, ICARUS, MicroBooNE, and SBND will probe deeper
into complex neutrino final states using the superior capabilities of
liquid argon time projection chambers, while the T2K and NOvA
near detectors will collect high statistics samples in intense neutrino
beams. Together, these investigations should significantly advance our
understanding of neutrino-nucleus scattering in the next decade.
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51. Plots of Cross Sections and Related Quantities

Updated in 2017. See various sections for details.

This section contains a compilation of plots and tables on cross sections and related quantities that
are not covered by other reviews but may be of interest to the community. The topics include:

– Pseudorapidity distributions in pp and pp interactions

– Table of average hadron multiplicities in hadronic e+e− annihilation events

– Cross section and R ratio in e+e− collisions

– R ratio in light-flavor, charm, and beauty threshold regions

– Annihilation cross section nearMZ

– Total cross section plots for hadronic (e.g. pp and pp collisions), γp, γd, and γγ processes

Pseudorapidity Distributions in pp and pp Interactions

ηPseudorapidity 
0 1 2 3 4 5

η
/dσ

 dσ
 1

/

0

1

2

3

4

5

6
Alice pp 2360 GeV
Alice pp 900 GeV

pS 900 GeVpUA5 S
pS 546 GeVpUA5 S
pS 200 GeVpUA5 S

p ISR 53 GeVpUA5 

Inclusive inelastic

ηPseudorapidity 
0 1 2 3 4 5

0

1

2

3

4

5

6

7

8
CMS pp 7000 GeV
CMS pp 2360 GeV
Alice pp 2360 GeV
CDF Tevatron 1800 GeV
CMS pp 900 GeV
Alice pp 900 GeV

pS 900 GeVpUA5 S
CDF Tevatron 630 GeV

pS 630 GeVpP238 S
pS 546 GeVpUA5 S
pS 200 GeVpUA5 S

Non single-diffractive

Figure 51.1: Charged particle pseudorapidity distributions in pp collisions for 53 GeV ≤ √
s ≤ 1800 GeV. UA5 data from the SppS are taken

from G.J.Alner et al., Z. Phys. C33, 1 (1986), and from the ISR from K.Alpgøard et al., Phys.Lett. 112B 193 (1982). The UA5 data are shown
for both the full inelastic cross-section and with singly diffractive events excluded. Additional non single-diffractive measurements are available
from CDF at the Tevatron, F.Abe et al., Phys. Rev. D41, 2330 (1990) and from P238 at the SppS, R.Harr et al., Phys. Lett. B401, 176 (1997).
These may be compared with both inclusive and non single-diffractive measurements in pp collisions at the LHC from ALICE, K.Aamodt et al.,
Eur. Phys. J. C68, 89 (2010) and for non single-diffractive interactions from CMS , V.Khachatryan et al., JHEP 1002:041 (2010), Phys. Rev.
Lett. 105, 022002 (2010). (Courtesy of D.R. Ward, Cambridge Univ., 2013)
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Average HadronMultiplicities in Hadronic e+e− Annihilation Events
Table 51.1: Average hadron multiplicities per hadronic e+e− annihilation event at

√
s ≈ 10, 29–35, 91, and 130–

200 GeV. The rates given include decay products from resonances with cτ < 10 cm, and include the corresponding
anti-particle state. Correlations of the systematic uncertainties were considered for the calculation of the averages.
Quoted errors are not increased by scale factor S. (Updated August 2017 by O. Biebel, LMU, Munich)

Particle
√
s ≈ 10 GeV

√
s = 29–35 GeV

√
s = 91 GeV

√
s = 130–200 GeV

Pseudoscalar mesons:

π+ 6.52± 0.11 10.3± 0.4 17.02± 0.19 21.24± 0.39

π0 3.2± 0.3 5.83± 0.28 9.42± 0.32

K+ 0.953± 0.018 1.48± 0.09 2.228± 0.059 2.82± 0.19

K0 0.91± 0.05 1.48± 0.07 2.049± 0.026 2.10± 0.12

η 0.20± 0.04 0.61± 0.07 1.049± 0.080

η′(958) 0.03± 0.01 0.26± 0.10 0.152± 0.020

D+ 0.194± 0.019(a) 0.17± 0.03 0.175± 0.016

D0 0.446± 0.032(a) 0.45± 0.07 0.454± 0.030

D+
s 0.063± 0.014(a) 0.45± 0.20(b) 0.131± 0.021

B(c) — — 0.134± 0.016(d)

B+ — — 0.141± 0.004(d)

B0
s — — 0.054± 0.011(d)

Scalar mesons:

f0(980) 0.024± 0.006 0.05± 0.02(e) 0.146± 0.012

a0(980)
± — — 0.27± 0.11(f)

Vector mesons:

ρ(770)0 0.35± 0.04 0.81± 0.08 1.231± 0.098

ρ(770)± — — 2.40± 0.43(f)

ω(782) 0.30± 0.08 — 1.016± 0.065

K∗(892)+ 0.27± 0.03 0.64± 0.05 0.714± 0.055

K∗(892)0 0.29± 0.03 0.56± 0.06 0.738± 0.024

φ(1020) 0.044± 0.003 0.085± 0.011 0.0963± 0.0032

D∗(2010)+ 0.177± 0.022(a) 0.43± 0.07 0.1937± 0.0057(g)

D∗(2007)0 0.168± 0.019(a) 0.27± 0.11 —

D∗
s(2112)

+ 0.048± 0.014(a) — 0.101± 0.048(h)

B∗ (i) — — 0.288± 0.026

J/ψ(1S) 0.00050± 0.00005(a) — 0.0052± 0.0004(j)

ψ(2S) — — 0.0023± 0.0004(j)

Υ(1S) — — 0.00014± 0.00007(j)

Pseudovector mesons:

f1(1285) — — 0.165± 0.051

f1(1420) — — 0.056± 0.012

χc1(3510) — — 0.0041± 0.0011(j)

Tensor mesons:

f2(1270) 0.09± 0.02 0.14± 0.04 0.166± 0.020

f ′2(1525) — — 0.012± 0.006

K∗
2 (1430)

+ — 0.09± 0.03 —

K∗
2 (1430)

0 — 0.12± 0.06 0.084± 0.022

B∗∗ (k) — — 0.118± 0.024

D±
s1 — — 0.0052± 0.0011(ℓ)

D∗±
s2 — — 0.0083± 0.0031(ℓ)

Baryons:

p 0.266± 0.008 0.640± 0.050 1.050± 0.032 1.41± 0.18

Λ 0.093± 0.006(a) 0.205± 0.010 0.3915± 0.0065 0.39± 0.03

Σ0 0.0221± 0.0018(a) — 0.078± 0.010

Σ− — — 0.081± 0.010

Σ+ — — 0.107± 0.011

Σ± — — 0.174± 0.009

Ξ− 0.0055± 0.0004(a) 0.0176± 0.0027 0.0262± 0.0009

∆(1232)++ 0.040± 0.010 — 0.085± 0.014

Σ(1385)− 0.006± 0.002 0.017± 0.004 0.0240± 0.0017

Σ(1385)+ 0.0062± 0.0011(a) 0.017± 0.004 0.0239± 0.0015

Σ(1385)± 0.0106± 0.0020 0.033± 0.008 0.0472± 0.0027

Ξ(1530)0 0.00130± 0.00010(a) — 0.00694± 0.00049

Ω− 0.00060± 0.00033(a) 0.014± 0.007 0.00124± 0.00018

Λ+
c 0.0479± 0.0038(a,m) 0.110± 0.050 0.078± 0.017

Λ0
b — — 0.031± 0.016

Σ0
c 0.0025± 0.0004(a) — —

Λ(1520) 0.0046± 0.0004(a) — 0.0222± 0.0027
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Notes for Table 51.1:
(a) σhad = 3.33 ± 0.05 ± 0.21 nb (CLEO: Phys. Rev. D29, 1254 (1984)) has been

used in converting the measured cross sections to average hadron multiplicities.

(b) B(Ds → ηπ, η′π) was used (RPP 1994).

(c) Comprises both charged and neutral B meson states.

(d) The Standard Model B(Z → bb) = 0.217 was used.

(e) xp = p/pbeam > 0.1 only.

(f) Both charge states.

(g) B(D∗(2010)+ → D0π+)× B(D0 → K−π+) has been used (RPP 2000).

(h) B(D∗
s → D+

S γ), B(D+
s → φπ+), B(φ → K+K−) have been used (RPP 1998).

(i) Any charge state (i.e., B∗
d , B

∗
u, or B

∗
s ).

(j) B(Z → hadrons) = 0.699 was used (RPP 1994).

(k) Any charge state (i.e., B∗∗
d , B∗∗

u , or B∗∗
s ).

(ℓ) Assumes B(D+
s1 → D∗+K0 +D∗0K+) = 100% and B(D+

s2 → D0K+) = 45%.

(m) The value was derived from the cross section of Λ+
c → pπK using (a) and

assuming the branching fraction to be (5.0± 1.3)% (RPP 2004).

References for Table 51.1:

RPP 1992: Phys. Rev. D45 (1992); RPP 1994: Phys. Rev. D50, 1173 (1994); RPP 1996: Phys. Rev.
D54, 1 (1996); RPP 1998: Eur. Phys. J. C3, 1 (1998); RPP 2000: Eur. Phys. J. C15, 1 (2000);
RPP 2002: Phys. Rev. D66, 010001 (2002); RPP 2004: Phys. Lett. B592, 1 (2004); RPP 2006:
J. Phys. G33, 1 (2006); RPP 2008: Phys. Lett. B667, 1 (2008); RPP 2010: J. Phys. G37, 075021
(2010); RPP 2012: Phys. Rev. D 86,010001(2012) and references therein; RPP 2014: Chin. Phys. C
38, 090001 (2014) and references therein; RPP 2016: Chin. Phys. C 40, 100001 (2016) and references
therein.

R. Marshall, Rept. on Prog. in Phys. 52, 1329 (1989). A. De Angelis, J. Phys. G19, 1233 (1993) and
references therein.

ALEPH: D. Buskulic et al.: Phys. Lett. B295, 396 (1992); Z. Phys. C64, 361 (1994); C69, 15 (1996);
C69, 379 (1996); C73, 409 (1997); and R. Barate et al.: Z. Phys. C74, 451 (1997); Phys. Reports 294,
1 (1998); Eur. Phys. J. C5, 205 (1998); C16, 597 (2000); C16, 613 (2000); and A. Heister et al.: Phys.
Lett. B526, 34 (2002); B528, 19 (2002).

ARGUS: H. Albrecht et al.: Phys. Lett. 230B, 169 (1989); Z. Phys. C39, 177 (1988); C44, 547 (1989);
C46, 15 (1990); C54, 1 (1992); C58, 199 (1993); C61, 1 (1994); Phys. Rep. 276, 223 (1996).

BaBar: B. Aubert et al.: Phys. Rev. Lett. 87, 162002 (2001); Phys. Rev. D65, 091104 (2002); Phys.
Rev. D75, 012003 (2007); J.P. Lees et al.: Phys. Rev. D88, 032011 (2013).

Belle: K. Abe et al., Phys. Rev. Lett. 88, 052001 (2002); R. Seuster et al., Phys. Rev. D73, 032002
(2006); M. Niijama et al., arXiv:1706.06791 .

CELLO: H.J. Behrend et al.: Z. Phys. C46, 397 (1990); C47, 1 (1990).

CLEO: S. Behrends et al., Phys. Rev. D31, 2161 (1985); D. Bortoletto et al., Phys. Rev. D37, 1719
(1988); erratum ibid. D39, 1471 (1989); and M. Artuso et al., Phys. Rev. D70, 112001 (2004).

Crystal Ball: Ch. Bieler et al., Z. Phys. C49, 225 (1991).

DELPHI: P. Abreu et al.: Z. Phys. C57, 181 (1993); C59, 533 (1993); C61, 407 (1994); C65, 587
(1995); C67, 543 (1995); C68, 353 (1995); C73, 61 (1996); Nucl. Phys. B444, 3 (1995); Phys. Lett.
B341, 109 (1994); B345, 598 (1995); B361, 207 (1995); B372, 172 (1996); B379, 309 (1996); B416,
233 (1998); B449, 364 (1999); B475, 429 (2000); Eur. Phys. J. C6, 19 (1999); C5, 585 (1998); C18,
203 (2000); and J. Abdallah et al., Phys. Lett. B569, 129 (2003); Phys. Lett. B576, 29 (2003); Eur.
Phys. J. C44, 299 (2005); and W. Adam et al.: Z. Phys. C69, 561 (1996); C70, 371 (1996).

HRS: S. Abachi et al., Phys. Rev. Lett. 57, 1990 (1986); and M. Derrick et al., Phys. Rev. D35, 2639
(1987).

L3: M. Acciarri et al.: Phys. Lett. B328, 223 (1994); B345, 589 (1995); B371, 126 (1996); B371, 137
(1996); B393, 465 (1997); B404, 390 (1997); B407, 351 (1997); B407, 389 (1997), erratum ibid.
B427, 409 (1998); B453, 94 (1999); B479, 79 (2000).

MARK II: H. Schellman et al., Phys. Rev. D31, 3013 (1985); and G. Wormser et al., Phys. Rev. Lett.
61, 1057 (1988).

JADE: W. Bartel et al., Z. Phys. C20, 187 (1983); and D.D. Pietzl et al., Z. Phys. C46, 1 (1990).

OPAL: R. Akers et al.: Z. Phys. C63, 181 (1994); C66, 555 (1995); C67, 389 (1995); C68, 1 (1995);
and G. Alexander et al.: Phys. Lett. B358, 162 (1995); Z. Phys. C70, 197 (1996); C72, 1 (1996); C72,
191 (1996); C73, 569 (1997); C73, 587 (1997); Phys. Lett. B370, 185 (1996); and
K. Ackerstaff et al.: Z. Phys. C75, 192 (1997); Phys. Lett. B412, 210 (1997); Eur. Phys. J. C1, 439
(1998); C4, 19 (1998); C5, 1 (1998); C5, 411 (1998); and G. Abbiendi et al.: Eur. Phys. J. C16, 185
(2000); C17, 373 (2000).

PLUTO: Ch. Berger et al., Phys. Lett. 104B, 79 (1981).

SLD: K. Abe, Phys. Rev. D59, 052001 (1999); Phys. Rev. D69, 072003 (2004).

TASSO: H. Aihara et al., Z. Phys. C27, 27 (1985).

TPC: H. Aihara et al., Phys. Rev. Lett. 53, 2378 (1984).
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σ andR in e+e− Collisions
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Figure 51.2: World data on the total cross section of e+e− → hadrons and the ratio R(s) = σ(e+e− → hadrons, s)/σ(e+e− → µ+µ−, s).
σ(e+e− → hadrons, s) is the experimental cross section corrected for initial state radiation and electron-positron vertex loops, σ(e+e− →
µ+µ−, s) = 4πα2(s)/3s. Data errors are total below 2 GeV and statistical above 2 GeV. The curves are an educative guide: the broken one
(green) is a naive quark-parton model prediction, and the solid one (red) is 3-loop pQCD prediction (see “Quantum Chromodynamics” section of
this Review, Eq. (9.7) or, for more details, K. G. Chetyrkin et al., Nucl. Phys. B586, 56 (2000) (Erratum ibid. B634, 413 (2002)). Breit-Wigner
parameterizations of J/ψ, ψ(2S), and Υ(nS), n = 1, 2, 3, 4 are also shown. The full list of references to the original data and the details of
the R ratio extraction from them can be found in [arXiv:hep-ph/0312114]. Corresponding computer-readable data files are available at
http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups, August 2017. Corrections
by P. Janot (CERN) and M. Schmitt (Northwestern U.))
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R in Light-Flavor, Charm, and Beauty Threshold Regions
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Figure 51.3: R in the light-flavor, charm, and beauty threshold regions. Data errors are total below 2 GeV and statistical above 2 GeV.
The curves are the same as in Fig. 51.2. Note: CLEO data above Υ(4S) were not fully corrected for radiative effects, and we retain
them on the plot only for illustrative purposes with a normalization factor of 0.8. The full list of references to the original data and
the details of the R ratio extraction from them can be found in [arXiv:hep-ph/0312114]. The computer-readable data are available at
http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups, August 2017.)
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Annihilation Cross Section NearMZ

 

 

Figure 51.4: Combined data from the ALEPH, DELPHI, L3, and OPAL Collaborations for the cross section in e+e− annihilation into
hadronic final states as a function of the center-of-mass energy near the Z pole. The curves show the predictions of the Standard Model with
two, three, and four species of light neutrinos. The asymmetry of the curve is produced by initial-state radiation. Note that the error bars have
been increased by a factor ten for display purposes. References:

ALEPH: R. Barate et al., Eur. Phys. J. C14, 1 (2000).
DELPHI: P. Abreu et al., Eur. Phys. J. C16, 371 (2000).
L3: M. Acciarri et al., Eur. Phys. J. C16, 1 (2000).
OPAL: G. Abbiendi et al., Eur. Phys. J. C19, 587 (2001).
Combination: The ALEPH, DELPHI, L3, OPAL, SLD Collaborations, the LEP Electroweak Working Group,
and the SLD Electroweak and Heavy Flavor Groups, Phys. Rept. 427, 257 (2006) [arXiv:hep-ex/0509008].

(Courtesy of M. Grünewald and the LEP Electroweak Working Group, 2007)
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Total Hadronic Cross Sections

(Updated August 2017, COMPAS group, IHEP, Protvino)

In this section, plots of total cross section for various processes are presented. The plots include data from hadronic collisions such as pp and
pp, as well as γp, γd, and γγ processes. The cross section data provide crucial inputs to the study of QCD physics. In particular, to probe
the non-perturbative part of QCD processes which are described by a number of diffractive models. We begin by introducing some models of
diffractive scatterings and listing references for further reading.

Diffractive scattering here means scattering of hadrons at small angles and exhibiting typical diffraction pattern in angular distribution
of scattered particles. Beyond purely elastic scattering diffraction phenomena include inelastic processes with large rapidity gaps: those of
single and double diffractive dissociation and ”central diffractive” events. In distinction from the most of other processes considered in the SM
diffraction processes (DP) are related to large spatio-temporal scales growing with energy of collision. Being caused by strong interactions DP
are a subject of the fundamental strong interaction theory, QCD, and hereby a part of the longstanding problem of QCD at large distances.

One of the most important basic notions and tools in general theoretical framework related to the diffractive processes is the notion of the
Regge poles, or Reggeons, generalizing the simple one-particle exchange (of Yukawa type) by virtual particles of fixed spin to exchanges by
states with ”running spin” dependent on the transferred momenta [1,2]. The simplest case of the one-Reggeon exchange amplitude is given by

the amplitude (at high c.m. energy
√
s and fixed (small) transferred momentum squared, t): T (s, t) = β(t)sα(t) which qualitatively exhibits

many typical features of generic diffractive processes (e.g. the growth of the interaction radius with energy). In practice the single-pole Reggeon
model is insufficient for many diffractive processes but still serves a building block for more sophisticated schemes. Up to now no firm results
concerning Regge trajectories α(t) and Regge residues β(t) were obtained from the first principles of QCD. General principles imply that both
α(t) and β(t)are analytic functions with right cuts from some t0 > 0 to positive infinity.

The theoretical requisite for analyzing diffractive phenomena is therefore represented by various model approaches. The more commonly
discussed models in the literatures are:

– Regge -Eikonal approach [3–10]: this approach automatically satisfy the s-channel unitarity condition and generalizes the impact
parameter approximation to the relativistic case.

– Regge pole models with minimal corrections due to two-Reggeon exchanges [11–13]: in this model, contribution of the leading
trajectory is supplemented by a two-Reggeon exchange with arbitrary coefficient chosen from the fitting details.

– U-matrix (or resonance) approach [14, 15]: the unitarity respecting approach with the scattering amplitude defined by a reaction
matrix.

– Direct functional modelling of the amplitudes without Regge trajectories [16, 17]: this approach appeals to only very general
properties of the amplitudes leaving aside all dynamical assumptions and mostly aiming at the best phenomenological description of the data.

– Quasi-classical approach [18–20]: based on the observation that diffractive processes deal with high quantum numbers, in particular with
large number of virtual quanta.

For readers who are interested in examples of both total and elastic cross section parametrizations and fits, see previous edition of the
Plots of Cross Sections and Related Quantities review [21]. For the cross section plots shown in the following pages, the example fits are using
parametrizations as described in [21] with the fit range starting at about

√
s = 5 GeV.
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Figure 51.5: Summary of hadronic, γp, γd, and γγ total cross sections, and ratio of the real to imaginary parts of the forward hadronic
amplitudes (T ). Corresponding computer-readable data files may be found at http://pdg.lbl.gov/current/xsect/. (Courtesy of the
COMPAS group, IHEP, Protvino, August 2017.)
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Figure 51.6: Total and elastic cross sections for pp and pp collisions as a function of laboratory beam momentum and total center-of-mass
energy. Corresponding computer-readable data files may be found at http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS group,
IHEP, Protvino, August 2017)
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Figure 51.7: Total and elastic cross sections for pd (total only), np, pd (total only), and pn collisions as a function of laboratory beam
momentum and total center-of-mass energy. Corresponding computer-readable data files may be found at http://pdg.lbl.gov/current/xsect/.
(Courtesy of the COMPAS Group, IHEP, Protvino, August 2017)
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Figure 51.8: Total and elastic cross sections for π±p and π±d (total only) collisions as a function of laboratory beam momentum and total
center-of-mass energy. Corresponding computer-readable data files may be found at http://pdg.lbl.gov/current/xsect/. (Courtesy of the
COMPAS Group, IHEP, Protvino, August 2017)
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Figure 51.9: Total and elastic cross sections for K−p and K−d (total only), and K−n collisions as a function of laboratory beam momentum
and total center-of-mass energy. Corresponding computer-readable data files may be found at http://pdg.lbl.gov/current/xsect/. (Courtesy
of the COMPAS Group, IHEP, Protvino, August 2017)
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Figure 51.10: Total and elastic cross sections for K+p and total cross sections for K+d and K+n collisions as a function of laboratory beam
momentum and total center-of-mass energy. Corresponding computer-readable data files may be found at http://pdg.lbl.gov/current/xsect/.
(Courtesy of the COMPAS Group, IHEP, Protvino, August 2017)
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Figure 51.11: Total and elastic cross sections for Λp, total cross section for Σ−p, and total hadronic cross sections for γd, γp, and γγ
collisions as a function of laboratory beam momentum and the total center-of-mass energy. Corresponding computer-readable data files may be
found at http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS group, IHEP, Protvino, August 2017)
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52.Mass andWidth of theW Boson

Revised March 2018 by M.W. Grünewald (U. College Dublin) and
A. Gurtu (Kyung Hee U.).

Precision determination of the W-mass is of great importance in
testing the internal consistency of the Standard Model. From the time
of its discovery in 1983, the W-boson has been studied and its mass
determined in pp̄ and e+e− interactions; it is currently studied in pp
interactions at the LHC. The W mass and width definition used here
corresponds to a Breit-Wigner with mass-dependent width.

Production of on-shell W bosons at hadron colliders is tagged by
the high pT charged lepton from its decay. Owing to the unknown
parton-parton effective energy and missing energy in the longitudinal
direction, the collider experiments reconstruct the transverse mass of
the W, and derive the W mass from comparing the transverse mass
distribution with Monte Carlo predictions as a function of MW . These
analyses use the electron and muon decay modes of the W boson.

In the e+e− collider (LEP) a precise knowledge of the beam
energy enables one to determine the e+e− → W+W− cross section
as a function of center of mass energy, as well as to reconstruct
the W mass precisely from its decay products, even if one of them
decays leptonically. Close to the W+W− threshold (161 GeV), the
dependence of the W-pair production cross section on MW is large,
and this was used to determine MW . At higher energies (172 to 209
GeV) this dependence is much weaker and W-bosons were directly
reconstructed and the mass determined as the invariant mass of its
decay products, improving the resolution with a kinematic fit.
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Figure 52.1: Measurements of the W-boson mass by the LEP,
Tevatron and LHC experiments.

In order to compute the LEP average W mass, each experiment
provided its measured W mass for the qqqq and qqℓνℓ, ℓ = e, µ, τ
channels at each center-of-mass energy, along with a detailed break-up
of errors: statistical, uncorrelated, partially correlated and fully
correlated systematics [1]. These have been combined to obtain a
LEP W mass of MW = 80.376±0.033 GeV. Errors due to uncertainties
in LEP energy (9 MeV), and possible effect of color reconnection (CR)
and Bose-Einstein correlations (BEC) between quarks from different
W’s (8 MeV) are included. The mass difference between qqqq and

qqℓνℓ final states (due to possible CR and BEC effects) is −12 ± 45
MeV. In a similar manner, the width results obtained at LEP have
been combined, resulting in ΓW = 2.195± 0.083 GeV [1].
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Figure 52.2: Measurements of the W-boson width by the LEP
and Tevatron experiments.

The two Tevatron experiments have also identified common
systematic errors. Between the two experiments, uncertainties due to
the parton distribution functions, radiative corrections, and choice
of mass (width) in the width (mass) measurements are treated as
correlated. An average W width of ΓW = 2.046 ± 0.049 GeV [2] is
obtained. Errors of 20 MeV and 7 MeV accounting for PDF and
radiative correction uncertainties in this width combination dominate
the correlated uncertainties. At the 2011/12 winter conferences, the
CDF and D0 experiments have presented new results for the mass
of the W boson based on 2 − 4 fb−1 of Run-II data, 80.387± 0.019
GeV [3] and 80.375 ± 0.023 GeV [4], respectively. The W-mass
determination from the Tevatron experiments has thus become very
precise. Combining all Tevatron results from Run-I and Run-II using
an improved treatment of correlations, a new average of 80.387± 0.016
GeV is obtained [5], with common uncertainties of 10 MeV (PDF)
and 4 MeV (radiative corrections).

Good agreement between the LEP and Tevatron results is
observed. Combining these results, assuming no common systematic
uncertainties between the LEP and the Tevatron measurements, yields
an average W mass of MW = 80.385± 0.015 GeV and a W width of
ΓW = 2.085± 0.042 GeV.

At the 2016/17 winter conferences, the ATLAS collaboration
presented a measurement of the mass of the W boson in pp collisions
at

√
s = 7 TeV, MW = 80.370± 0.019 GeV, since then published [6],

which is compatible with the above world average and of similar
precision to the best measurements of CDF and D0. Assuming a
Tevtaron/LHC common PDF uncertainty of 7 MeV [7], this results
in a new world average of MW = 80.379± 0.012 GeV.

The LEP, Tevatron and LHC results on mass and width, which
are based on all results available, are compared in Fig. 52.1 and
Fig. 52.2. The Standard Model prediction from the electroweak fit,
using Z-pole data plus mtop measurement, gives a W-boson mass of
MW = 80.363±0.020 GeV and a W-boson width of ΓW = 2.091±0.002
GeV [1].
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53. Extraction of Triple Gauge Couplings (TGCs)

Revised April 2017 by M.W. Grünewald (U. College Dublin) and
A. Gurtu (Formerly Tata Inst.).

Fourteen independent couplings, seven each for ZWW and γWW ,
completely describe the VWW vertices within the most general
framework of the electroweak Standard Model (SM) consistent with
Lorentz invariance and U(1) gauge invariance. Of each of the seven
TGCs, three conserve C and P individually, three violate CP , and
one violates C and P individually while conserving CP . Assumption
of C and P conservation and electromagnetic gauge invariance reduces
the number of independent VWW couplings to five: one common
set [1,2] is (κγ , κZ , λγ , λZ , g

Z
1 ), where κγ = κZ = gZ1 = 1 and λγ

= λZ = 0 in the Standard Model at tree level. The parameters κZ
and λZ are related to the other three due to constraints of gauge
invariance as follows: κZ = gZ1 − (κγ − 1) tan2 θW and λZ = λγ ,
where θW is the weak mixing angle. The W magnetic dipole moment,
µW , and the W electric quadrupole moment, qW , are expressed as
µW = e (1 + κγ + λγ)/2MW and qW = −e (κγ − λγ)/M

2
W .

Precision measurements of suitable observables at LEP1 has
already led to an exploration of much of the TGC parameter space. At
LEP2, the VWW coupling arises in W -pair production via s-channel
exchange, or in single W production via the radiation of a virtual
photon off the incident e+ or e−. At the Tevatron and the LHC,

hard-photon bremsstrahlung off a produced W or Z signals the
presence of a triple-gauge vertex. In order to extract the value of
one TGC, the others are generally kept fixed to their SM values.
While most analyses use the above gauge constraints in the extraction
of TGCs, one analysis of W -pair events also determines the real
and imaginary parts of all 14 couplings using unconstrained single-
parameter fits [3]. The results are consistent. Some experiments
have determined limits on the couplings under various non-LEP
scenarios and assuming different values of the form factor Λ, where the
coupling parameters are scaled by 1/(1+s/Λ2)2. For practical reasons
it is not possible to quote all such determinations in the listings. For
that the individual papers may be consulted. Recently, EFT-inspired
sets of couplings [4,5], such as cWWW /Λ2, cW /Λ2, cB/Λ

2 which are
linearly related to the couplings discussed above, are also determined
by the LHC experiments.
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54. AnomalousW/Z Quartic Couplings (QGCs)

Revised November 2015 by M.W. Grünewald (U. College Dublin) and
A. Gurtu (Formerly Tata Inst.).

Quartic couplings, WWZZ, WWZγ, WWγγ, and ZZγγ, were
studied at LEP and Tevatron at energies at which the Standard Model
predicts negligible contributions to multiboson production. Thus, to
parametrize limits on these couplings, an effective theory approach
is adopted which supplements the Standard Model Lagrangian with
higher dimensional operators which include quartic couplings. The
LEP collaborations chose the lowers dimensional representation of
operators (dimension 6) which presumes the SU(2)×U(1) gauge
symmetry is broken by means other than the conventional Higgs
scalar doublet [1–3]. In this representation possible quartic couplings,
a0, ac, an, are expressed in terms of the following dimension-6
operators [1,2];

L0
6 = − e2

16Λ2 a0 Fµν Fµν ~Wα · ~Wα

Lc
6 = − e2

16Λ2 ac F
µα Fµβ

~Wβ · ~Wα

Ln
6 = −i e2

16Λ2 anǫijk W
(i)
µα W

(j)
ν W (k)αFµν

L̃0
6 = − e2

16Λ2 ã0 Fµν F̃µν ~Wα · ~Wα

L̃n
6 = −i e2

16Λ2 ãnǫijk W
(i)
µα W

(j)
ν W (k)αF̃µν

where F,W are photon and W fields, L0
6 and Lc

6 conserve C, P

separately (L̃0
6 conserves only C) and generate anomalous W+W−γγ

and ZZγγ couplings, Ln
6 violates CP (L̃n

6 violates both C and P )
and generates an anomalous W+W−Zγ coupling, and Λ is an energy
scale for new physics. For the ZZγγ coupling the CP -violating term
represented by Ln

6 does not contribute. These couplings are assumed
to be real and to vanish at tree level in the Standard Model.

Within the same framework as above, a more recent description of
the quartic couplings [3] treats the anomalous parts of the WWγγ
and ZZγγ couplings separately, leading to two sets parametrized as
aV0 /Λ2 and aVc /Λ

2, where V = W or Z.

With the discovery of a Higgs at the LHC in 2012, it is then useful
to go to the next higher dimensional representation (dimension 8
operators) in which the gauge symmetry is broken by the conventional
Higgs scalar doublet [3,4]. There are 14 operators which can
contribute to the anomalous quartic coupling signal. Some of the
operators have analogues in the dimension 6 scheme. The CMS
collaboration, [5], have used this parametrization, in which the
connections between the two schemes are also summarized:

LAQGC =− e2

8

aW0
Λ2

FµνF
µνW+aW−

a

− e2

16

aWc
Λ2 FµνF

µa(W+νW−
a +W−νW+

a )

− e2g2
κW0
Λ2

FµνZ
µνW+aW−

a

− e2g2

2

κWc
Λ2

FµνZ
µa(W+νW−

a +W−νW+
a )

+
fT,0
Λ4 Tr[ŴµνŴ

µν ]× Tr[ŴαβŴ
αβ ]

The energy scale of possible new physics is Λ, and g = e/sin(θW ), e
being the unit electric charge and θW the Weinberg angle. The field
tensors are described in [3,4].

The two dimension 6 operators aW0 /Λ2 and aWc /Λ2 are associated

with the WWγγ vertex. Among dimension 8 operators, κW0 /Λ2 and

κWc /Λ2 are associated with the WWZγ vertex, whereas the parameter
fT,0/Λ

4 contributes to both vertices. There is a relationship between
these two dimension 6 parameters and the dimension 8 parameters
fM,i/Λ

4 as follows [3]:

aW0
Λ2 = −4M2

W

g2
fM,0

Λ4 − 8M2
W

g′2
fM,2

Λ4

aWc
Λ2 = −4M2

W

g2
fM,1

Λ4 − 8M2
W

g′2
fM,3

Λ4

where g′ = e/cos(θW ) and MW is the invariant mass of the
W boson. This relation provides a translation between limits on
dimension 6 operators aW0,c and fM,j/Λ

4. It is further required [4]
that fM,0 = 2fM,2 and fM,1 = 2fM,3 which suppresses contributions
to the WWZγ vertex. The complete set of Lagrangian contributions
as presented in [4] corresponds to 19 anomalous couplings in total –
fS,i, i = 1, 2, fM,i, i = 0, . . . , 8 and fT,i, i = 0, . . . , 9 – each scaled by

1/Λ4.

The ATLAS collaboration [6], on the other hand, follows a
K-matrix driven approach of Ref. 7 in which the anomalous couplings
can be expressed in terms of two parameters α4 and α5, which account
for all BSM effects.

It is the early stages in the determination of quartic couplings by
the LHC experiments. It is hoped that the two collaborations, ATLAS
and CMS, will agree to use at least one common set of parameters to
express these limits to enable the reader to make a comparison and
allow for a possible LHC combination.
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Revised September 2013 by M.W. Grünewald (U. College Dublin and
U. Ghent) and A. Gurtu (Formerly Tata Inst.).

Precision measurements at the Z-boson resonance using electron–
positron colliding beams began in 1989 at the SLC and at LEP. During
1989–95, the four LEP experiments (ALEPH, DELPHI, L3, OPAL)
made high-statistics studies of the production and decay properties
of the Z. Although the SLD experiment at the SLC collected much
lower statistics, it was able to match the precision of LEP experiments
in determining the effective electroweak mixing angle sin2θW and the
rates of Z decay to b- and c-quarks, owing to availability of polarized
electron beams, small beam size, and stable beam spot.

The Z-boson properties reported in this section may broadly be
categorized as:

• The standard ‘lineshape’ parameters of the Z consisting of its
mass, MZ , its total width, ΓZ , and its partial decay widths,
Γ(hadrons), and Γ(ℓℓ) where ℓ = e, µ, τ, ν;

• Z asymmetries in leptonic decays and extraction of Z couplings
to charged and neutral leptons;

• The b- and c-quark-related partial widths and charge asymmetries
which require special techniques;

• Determination of Z decay modes and the search for modes that
violate known conservation laws;

• Average particle multiplicities in hadronic Z decay;

• Z anomalous couplings.

The effective vector and axial-vector coupling constants describing
the Z-to-fermion coupling are also measured in pp̄ and ep collisions
at the Tevatron and at HERA. The corresponding cross-section
formulae are given in Section 39 (Cross-section formulae for specific
processes) and Section 16 (Structure Functions) in this Review. In this
minireview, we concentrate on the measurements in e+e− collisions at
LEP and SLC.

The standard ‘lineshape’ parameters of the Z are determined from
an analysis of the production cross sections of these final states
in e+e− collisions. The Z → νν(γ) state is identified directly by
detecting single photon production and indirectly by subtracting the
visible partial widths from the total width. Inclusion in this analysis

of the forward-backward asymmetry of charged leptons, A
(0,ℓ)
FB , of the

τ polarization, P (τ), and its forward-backward asymmetry, P (τ)fb,
enables the separate determination of the effective vector (gV ) and
axial vector (gA) couplings of the Z to these leptons and the ratio
(gV /gA), which is related to the effective electroweak mixing angle
sin2θW (see the “Electroweak Model and Constraints on New Physics”
review).

Determination of the b- and c-quark-related partial widths
and charge asymmetries involves tagging the b and c quarks for
which various methods are employed: requiring the presence of a
high momentum prompt lepton in the event with high transverse
momentum with respect to the accompanying jet; impact parameter
and lifetime tagging using precision vertex measurement with high-
resolution detectors; application of neural-network techniques to
classify events as b or non-b on a statistical basis using event–shape
variables; and using the presence of a charmed meson (D/D∗) or a
kaon as a tag.

55.1. Z-parameter determination

LEP was run at energy points on and around the Z mass (88–
94 GeV) constituting an energy ‘scan.’ The shape of the cross-section
variation around the Z peak can be described by a Breit-Wigner
ansatz with an energy-dependent total width [1–3]. The three main
properties of this distribution, viz., the position of the peak, the
width of the distribution, and the height of the peak, determine
respectively the values of MZ , ΓZ , and Γ(e+e−) × Γ(ff), where
Γ(e+e−) and Γ(ff) are the electron and fermion partial widths of
the Z. The quantitative determination of these parameters is done by
writing analytic expressions for these cross sections in terms of the
parameters, and fitting the calculated cross sections to the measured
ones by varying these parameters, taking properly into account all the

errors. Single-photon exchange (σ0γ) and γ-Z interference (σ0γZ ) are

included, and the large (∼25 %) initial-state radiation (ISR) effects
are taken into account by convoluting the analytic expressions over a
‘Radiator Function’ [1–5] H(s, s′). Thus for the process e+e− → ff :

σf (s) =

∫
H(s, s′) σ0f (s

′) ds′ (55.1)

σ0f (s) =σ0Z + σ0γ + σ0γZ (55.2)

σ0Z =
12π

M2
Z

Γ(e+e−)Γ(ff)
Γ2
Z

s Γ2
Z

(s−M2
Z)

2 + s2Γ2
Z/M

2
Z

(55.3)

σ0γ =
4πα2(s)

3s
Q2
fN

f
c (55.4)

σ0γZ =− 2
√
2α(s)

3
(QfGFN

f
c Ge

V Gf
V )

× (s−M2
Z)M

2
Z

(s−M2
Z)

2 + s2Γ2
Z/M

2
Z

(55.5)

where Qf is the charge of the fermion, N
f
c = 3 for quarks and

1 for leptons, and Gf
V is the vector coupling of the Z to the

fermion-antifermion pair ff .

Since σ0γZ is expected to be much less than σ0Z , the LEP
Collaborations have generally calculated the interference term in the
framework of the Standard Model. This fixing of σ0γZ leads to a
tighter constraint on MZ , and consequently a smaller error on its
fitted value. It is possible to relax this constraint and carry out the fit
within the S-matrix framework, which is briefly described in the next
section.

In the above framework, the QED radiative corrections have been
explicitly taken into account by convoluting over the ISR and allowing
the electromagnetic coupling constant to run [6]: α(s) = α/(1−∆α).
On the other hand, weak radiative corrections that depend upon
the assumptions of the electroweak theory and on the values of
Mtop and MHiggs are accounted for by absorbing them into the
couplings, which are then called the effective couplings GV and GA
(or alternatively the effective parameters of the ∗ scheme of Kennedy
and Lynn [7].)

Gf
V and Gf

A are complex numbers with small imaginary parts. As
experimental data does not allow simultaneous extraction of both
real and imaginary parts of the effective couplings, the convention

g
f
A = Re(Gf

A) and g
f
V = Re(Gf

V ) is used and the imaginary parts are
added in the fitting code [4].

Defining

Af = 2
gfV · gfA

(gfV )
2 + (gfA)

2
(55.6)

the lowest-order expressions for the various lepton-related asymmetries

on the Z pole are [8–10] A
(0,ℓ)
FB = (3/4)AeAf , P (τ) = −Aτ ,

P (τ)fb = −(3/4)Ae, ALR = Ae. The full analysis takes into account
the energy-dependence of the asymmetries. Experimentally ALR is
defined as (σL − σR)/(σL + σR), where σL(R) are the e+e− → Z

production cross sections with left- (right)-handed electrons.

The definition of the partial decay width of the Z to ff includes
the effects of QED and QCD final-state corrections, as well as the
contribution due to the imaginary parts of the couplings:

Γ(ff) =
GFM

3
Z

6
√
2π

Nf
c (

∣∣∣Gf
A

∣∣∣
2
Rf
A +

∣∣∣Gf
V

∣∣∣
2
Rf
V ) + ∆ew/QCD (55.7)

where Rf
V and Rf

A are radiator factors to account for final state QED
and QCD corrections, as well as effects due to nonzero fermion masses,
and ∆ew/QCD represents the non-factorizable electroweak/QCD
corrections.
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55.2. S-matrix approach to the Z

While most experimental analyses of LEP/SLC data have followed
the ‘Breit-Wigner’ approach, an alternative S-matrix-based analysis is
also possible. The Z, like all unstable particles, is associated with a
complex pole in the S matrix. The pole position is process-independent
and gauge-invariant. The mass, MZ , and width, ΓZ , can be defined
in terms of the pole in the energy plane via [11–14]

s = M
2
Z − iMZΓZ (55.8)

leading to the relations

MZ = MZ/
√
1 + Γ2

Z/M
2
Z

≈ MZ − 34.1 MeV (55.9)

ΓZ = ΓZ/
√
1 + Γ2

Z/M
2
Z

≈ ΓZ − 0.9 MeV . (55.10)

The LEP collaborations [15] have analyzed their data using
the S–matrix approach as defined in Eq. (55.8), in addition to the
conventional one. They observe a downward shift in the Z mass as
expected.

55.3. Handling the large-angle e+e− final state

Unlike other ff decay final states of the Z, the e+e− final state
has a contribution not only from the s-channel but also from the
t-channel and s-t interference. The full amplitude is not amenable to
fast calculation, which is essential if one has to carry out minimization
fits within reasonable computer time. The usual procedure is to
calculate the non-s channel part of the cross section separately using
the Standard Model programs ALIBABA [16] or TOPAZ0 [17], with
the measured value of Mtop, and MHiggs = 150 GeV, and add it
to the s-channel cross section calculated as for other channels. This
leads to two additional sources of error in the analysis: firstly, the
theoretical calculation in ALIBABA itself is known to be accurate to
∼ 0.5%, and secondly, there is uncertainty due to the error on Mtop

and the unknown value of MHiggs (100–1000 GeV). These errors are
propagated into the analysis by including them in the systematic error
on the e+e− final state. As these errors are common to the four LEP
experiments, this is taken into account when performing the LEP
average.

55.4. Errors due to uncertainty in LEP energy
determination

The systematic errors related to the LEP energy measurement, see
Refs. 18–23, can be classified as:

• The absolute energy scale error;

• Energy-point-to-energy-point errors due to the nonlinear response
of the magnets to the exciting currents;

• Energy-point-to-energy-point errors due to possible higher-order
effects in the relationship between the dipole field and beam
energy;

• Energy reproducibility errors due to various unknown uncertain-
ties in temperatures, tidal effects, corrector settings, RF status,
etc.

Precise energy calibration was done outside normal data-taking
using the resonant depolarization technique. Run-time energies were
determined every 10 minutes by measuring the relevant machine
parameters and using a model which takes into account all the known
effects, including leakage currents produced by trains in the Geneva
area and the tidal effects due to gravitational forces of the Sun and the
Moon. The LEP Energy Working Group has provided a covariance
matrix from the determination of LEP energies for the different
running periods during 1993–1995 [18].

55.5. Choice of fit parameters

The LEP Collaborations have chosen the following primary
set of parameters for fitting: MZ , ΓZ , σ0hadron, R(lepton),

A
(0,ℓ)
FB , where R(lepton) = Γ(hadrons)/Γ(lepton), σ0hadron =

12πΓ(e+e−)Γ(hadrons)/M2
ZΓ

2
Z . With a knowledge of these fitted

parameters and their covariance matrix, any other parameter can be
derived. The main advantage of these parameters is that they form a
physics motivated set of parameters with much reduced correlations.

Thus, the most general fit carried out to cross section and
asymmetry data determines the nine parameters: MZ , ΓZ , σ

0
hadron,

R(e), R(µ), R(τ), A
(0,e)
FB , A

(0,µ)
FB , A

(0,τ)
FB . Assumption of lepton

universality leads to a five-parameter fit determining MZ , ΓZ ,

σ0hadron, R(lepton), A
(0,ℓ)
FB .

55.6. Combining results from LEP and SLC
experiments

With a steady increase in statistics over the years and improved
understanding of the common systematic errors between LEP
experiments, the procedures for combining results have evolved
continuously [24]. The Line Shape Sub-group of the LEP Electroweak
Working Group investigated the effects of these common errors, and
devised a combination procedure for the precise determination of
the Z parameters from LEP experiments. Using these procedures,
this note also gives the results after combining the final parameter
sets from the four experiments, and these are the results quoted as
the fit results in the Z listings below. Transformation of variables
leads to values of derived parameters like partial decay widths and
branching ratios to hadrons and leptons. Finally, transforming the

LEP combined nine parameter set to (MZ , ΓZ , σ◦hadron, gfA, gfV ,
f = e, µ, τ) using the average values of lepton asymmetry parameters
(Ae, Aµ, Aτ ) as constraints, leads to the best fitted values of the
vector and axial-vector couplings (gV , gA) of the charged leptons to
the Z.

Brief remarks on the handling of common errors and their
magnitudes are given below. The identified common errors are those
coming from

(a) LEP energy-calibration uncertainties, and

(b) the theoretical uncertainties in (i) the luminosity determination
using small angle Bhabha scattering, (ii) estimating the non-s channel
contribution to large angle Bhabha scattering, (iii) the calculation
of QED radiative effects, and (iv) the parametrization of the cross
section in terms of the parameter set used.

55.7. Common LEP energy errors

All the collaborations incorporate in their fit the full LEP energy
error matrix as provided by the LEP energy group for their intersection
region [18]. The effect of these errors is separated out from that
of other errors by carrying out fits with energy errors scaled up and
down by ∼ 10% and redoing the fits. From the observed changes in
the overall error matrix, the covariance matrix of the common energy
errors is determined. Common LEP energy errors lead to uncertainties
on MZ , ΓZ , and σ◦hadron of 1.7, 1.2 MeV, and 0.011 nb, respectively.

55.8. Common luminosity errors

BHLUMI 4.04 [25] is used by all LEP collaborations for small-angle
Bhabha scattering leading to a common uncertainty in their measured
cross sections of 0.061% [26]. BHLUMI does not include a correction
for production of light fermion pairs. OPAL explicitly corrects for
this effect and reduces their luminosity uncertainty to 0.054%, which
is taken fully correlated with the other experiments. The other three
experiments among themselves have a common uncertainty of 0.061%.
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55.9. Common non-s channel uncertainties

The same standard model programs ALIBABA [16] and
TOPAZ0 [17] are used to calculate the non-s channel contribu-
tion to the large angle Bhabha scattering [27]. As this contribution
is a function of the Z mass, which itself is a variable in the fit, it is
parametrized as a function of MZ by each collaboration to properly
track this contribution as MZ varies in the fit. The common errors

on Re and A
(0,e)
FB are 0.024 and 0.0014 respectively, and are correlated

between them.

55.10. Common theoretical uncertainties: QED

There are large initial-state photon and fermion pair radiation
effects near the Z resonance, for which the best currently available
evaluations include contributions up to O(α3). To estimate the
remaining uncertainties, different schemes are incorporated in the
standard model programs ZFITTER [5], TOPAZ0 [17], and
MIZA [28]. Comparing the different options leads to error estimates
of 0.3 and 0.2 MeV on MZ and ΓZ respectively, and of 0.02% on
σ◦hadron.

55.11. Common theoretical uncertainties:
parametrization of lineshape and
asymmetries

To estimate uncertainties arising from ambiguities in the model-
independent parametrization of the differential cross-section near the
Z resonance, results from TOPAZ0 and ZFITTER were compared by
using ZFITTER to fit the cross sections and asymmetries calculated
using TOPAZ0. The resulting uncertainties on MZ , ΓZ , σ◦hadron,

R(lepton), and A
(0,ℓ)
FB are 0.1 MeV, 0.1 MeV, 0.001 nb, 0.004, and

0.0001 respectively.

Thus, the overall theoretical errors on MZ , ΓZ , σ◦hadron are
0.3 MeV, 0.2 MeV, and 0.008 nb respectively; on each R(lepton) is

0.004 and on each A
(0,ℓ)
FB is 0.0001. Within the set of three R(lepton)’s

and the set of three A
(0,ℓ)
FB ’s, the respective errors are fully correlated.

All the theory-related errors mentioned above utilize Standard
Model programs which need the Higgs mass and running electromag-
netic coupling constant as inputs; uncertainties on these inputs will
also lead to common errors. All LEP collaborations used the same set
of inputs for Standard Model calculations: MZ = 91.187 GeV, the
Fermi constant GF = (1.16637 ± 0.00001) × 10−5 GeV−2 [29],

α(5)(MZ) = 1/128.877 ± 0.090 [30], αs(MZ) = 0.119 [31],
Mtop = 174.3 ± 5.1 GeV [31] and MHiggs = 150 GeV. The only
observable effect, on MZ , is due to the variation of MHiggs between
100–1000 GeV (due to the variation of the γ/Z interference term
which is taken from the Standard Model): MZ changes by +0.23 MeV
per unit change in log10 MHiggs/GeV, which is not an error but a
correction to be applied once MHiggs is determined. The effect is much
smaller than the error on MZ (±2.1 MeV).

55.12. Methodology of combining the LEP
experimental results

The LEP experimental results actually used for combination are
slightly modified from those published by the experiments (which are
given in the Listings below). This has been done in order to facilitate
the procedure by making the inputs more consistent. These modified
results are given explicitly in [24]. The main differences compared
to the published results are (a) consistent use of ZFITTER 6.23 and
TOPAZ0 (the published ALEPH results used ZFITTER 6.10); (b)
use of the combined energy-error matrix, which makes a difference of
0.1 MeV on the MZ and ΓZ for L3 only as at that intersection the RF
modeling uncertainties are the largest.

Thus, nine-parameter sets from all four experiments with
their covariance matrices are used together with all the common
errors correlations. A grand covariance matrix, V , is constructed
and a combined nine-parameter set is obtained by minimizing
χ2 = ∆T V −1∆, where ∆ is the vector of residuals of the combined
parameter set to the results of individual experiments. Imposing

lepton universality in the combination results in the combined five
parameter set.

55.13. Study of Z → bb and Z → cc

In the sector of c- and b-physics, the LEP experiments have
measured the ratios of partial widths Rb = Γ(Z → bb)/Γ(Z →
hadrons), and Rc = Γ(Z → cc)/Γ(Z → hadrons), and the forward-

backward (charge) asymmetries Abb
FB and Acc

FB . The SLD experiment
at SLC has measured the ratios Rc and Rb and, utilizing the
polarization of the electron beam, was able to obtain the final
state coupling parameters Ab and Ac from a measurement of the
left-right forward-backward asymmetry of b− and c−quarks. The high
precision measurement of Rc at SLD was made possible owing to the
small beam size and very stable beam spot at SLC, coupled with a
highly precise CCD pixel detector. Several of the analyses have also
determined other quantities, in particular the semileptonic branching
ratios, B(b → ℓ−), B(b → c → ℓ+), and B(c → ℓ+), the average

time-integrated B0B
0
mixing parameter χ and the probabilities for a

c–quark to fragment into a D+, a Ds, a D∗+ , or a charmed baryon.
The latter measurements do not concern properties of the Z boson,
and hence they do not appear in the Listing below. However, for
completeness, we will report at the end of this minireview their values
as obtained fitting the data contained in the Z section. All these
quantities are correlated with the electroweak parameters, and since
the mixture of b hadrons is different from the one at the Υ(4S), their
values might differ from those measured at the Υ(4S).

All the above quantities are correlated to each other since:

• Several analyses (for example the lepton fits) determine more
than one parameter simultaneously;

• Some of the electroweak parameters depend explicitly on the
values of other parameters (for example Rb depends on Rc);

• Common tagging and analysis techniques produce common
systematic uncertainties.

The LEP Electroweak Heavy Flavour Working Group has
developed [32] a procedure for combining the measurements taking
into account known sources of correlation. The combining procedure
determines fourteen parameters: the six parameters of interest in the

electroweak sector, Rb, Rc, A
bb
FB , Acc

FB , Ab and Ac and, in addition,
B(b → ℓ−), B(b → c → ℓ+), B(c → ℓ+), χ, f(D+), f(Ds), f(cbaryon)

and P (c → D∗+) × B(D∗+ → π+D0), to take into account their
correlations with the electroweak parameters. Before the fit both
the peak and off-peak asymmetries are translated to the common
energy

√
s = 91.26 GeV using the predicted energy-dependence from

ZFITTER [5].

55.14. Summary of the measurements and of the
various kinds of analysis

The measurements of Rb and Rc fall into two classes. In the first,
named single-tag measurement, a method for selecting b and c events
is applied and the number of tagged events is counted. A second
technique, named double-tag measurement, has the advantage that the
tagging efficiency is directly derived from the data thereby reducing
the systematic error on the measurement.

The measurements in the b- and c-sector can be essentially grouped
in the following categories:

• Lifetime (and lepton) double-tagging measurements of Rb. These
are the most precise measurements of Rb and obviously dominate
the combined result. The main sources of systematics come from
the charm contamination and from estimating the hemisphere
b-tagging efficiency correlation;

• Analyses with D/D∗± to measure Rc. These measurements make
use of several different tagging techniques (inclusive/exclusive
double tag, exclusive double tag, reconstruction of all weakly
decaying charmed states) and no assumptions are made on the
energy-dependence of charm fragmentation;

• A measurement of Rc using single leptons and assuming
B(b → c → ℓ+);



55. Z boson 611

• Lepton fits which use hadronic events with one or more leptons in

the final state to measure the asymmetries Abb
FB and Acc

FB . Each
analysis usually gives several other electroweak parameters. The
dominant sources of systematics are due to lepton identification,
to other semileptonic branching ratios and to the modeling of the
semileptonic decay;

• Measurements of Abb
FB using lifetime tagged events with a

hemisphere charge measurement. These measurements dominate
the combined result;

• Analyses with D/D∗± to measure Acc
FB or simultaneously Abb

FB
and Acc

FB ;

• Measurements of Ab and Ac from SLD, using several tagging
methods (lepton, kaon, D/D∗, and vertex mass). These
quantities are directly extracted from a measurement of the
left–right forward–backward asymmetry in cc and bb production
using a polarized electron beam.

55.15. Averaging procedure

All the measurements are provided by the LEP and SLD
Collaborations in the form of tables with a detailed breakdown of the
systematic errors of each measurement and its dependence on other
electroweak parameters.

The averaging proceeds via the following steps:

• Define and propagate a consistent set of external inputs such as
branching ratios, hadron lifetimes, fragmentation models etc. All
the measurements are checked to ensure that all use a common
set of assumptions (for instance, since the QCD corrections
for the forward–backward asymmetries are strongly dependent
on the experimental conditions, the data are corrected before
combining);

• Form the full (statistical and systematic) covariance matrix of
the measurements. The systematic correlations between different
analyses are calculated from the detailed error breakdown
in the measurement tables. The correlations relating several
measurements made by the same analysis are also used;

• Take into account any explicit dependence of a measurement
on the other electroweak parameters. As an example of this
dependence, we illustrate the case of the double-tag measurement
of Rb, where c-quarks constitute the main background. The
normalization of the charm contribution is not usually fixed by
the data and the measurement of Rb depends on the assumed
value of Rc, which can be written as:

Rb = Rmeas
b + a(Rc)

(Rc −Rused
c )

Rc
, (55.11)

where Rmeas
b is the result of the analysis which assumed a value of

Rc = Rused
c and a(Rc) is the constant which gives the dependence

on Rc;

• Perform a χ2 minimization with respect to the combined
electroweak parameters.

After the fit the average peak asymmetries Acc
FB and Abb

FB are
corrected for the energy shift from 91.26 GeV to MZ and for QED
(initial state radiation), γ exchange, and γZ interference effects, to

obtain the corresponding pole asymmetries A
0,c
FB and A

0,b
FB.

This averaging procedure, using the fourteen parameters described
above, and applied to the data contained in the Z particle listing
below, gives the following results (where the last 8 parameters do not
depend directly on the Z):

R0
b = 0.21629± 0.00066

R0
c = 0.1721 ± 0.0030

A
0,b
FB = 0.0992 ± 0.0016

A
0,c
FB = 0.0707 ± 0.0035

Ab = 0.923 ± 0.020

Ac = 0.670 ± 0.027

B(b → ℓ−) = 0.1071 ± 0.0022

B(b → c → ℓ+) = 0.0801 ± 0.0018

B(c → ℓ+) = 0.0969 ± 0.0031

χ = 0.1250 ± 0.0039

f(D+) = 0.235 ± 0.016

f(Ds) = 0.126 ± 0.026

f(cbaryon) = 0.093 ± 0.022

P (c → D∗+)× B(D∗+ → π+D0) = 0.1622 ± 0.0048

Among the non–electroweak observables, the B semileptonic
branching fraction B(b → ℓ−) is of special interest, since the dominant
error source on this quantity is the dependence on the semileptonic
decay model for b → ℓ−, with ∆B(b → ℓ−)b→ℓ−−model = 0.0012.
Extensive studies have been made to understand the size of this
error. Among the electroweak quantities, the quark asymmetries
with leptons depend also on the semileptonic decay model, while the
asymmetries using other methods usually do not. The fit implicitely
requires that the different methods give consistent results and this
effectively constrains the decay model, and thus reduces in principle
the error from this source in the fit result.

To obtain a conservative estimate of the modelling error, the
above fit has been repeated removing all asymmetry measurements.
The results of the fit on B–decay related observables are [24]:
B(b → ℓ−) = 0.1069 ± 0.0022, with ∆B(b → ℓ−)b→ℓ−−model =

0.0013, B(b → c → ℓ+) = 0.0802 ± 0.0019 and χ = 0.1259 ± 0.0042.
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56. Anomalous ZZγ, Zγγ, and ZZV Couplings

Revised September 2013 by M.W. Grünewald (U. College Dublin) and
A. Gurtu (Formerly Tata Inst.).

In on-shell Zγ production, deviations from the Standard Model for
the Zγγ∗ and ZγZ∗ couplings may be described in terms of eight
parameters, hVi (i = 1, 4; V = γ, Z) [1]. The parameters hγi describe

the Zγγ∗ couplings and the parameters hZi the ZγZ∗ couplings. In

this formalism hV1 and hV2 lead to CP -violating and hV3 and hV4 to
CP -conserving effects. All these anomalous contributions to the cross
section increase rapidly with center-of-mass energy. In order to ensure
unitarity, these parameters are usually described by a form-factor
representation, hVi (s) = hVi◦/(1 + s/Λ2)n, where Λ is the energy scale
for the manifestation of a new phenomenon and n is a sufficiently
large power. By convention one uses n = 3 for hV1,3 and n = 4 for hV2,4.

Usually limits on hVi ’s are put assuming some value of Λ, sometimes
infinity.

In on-shell ZZ production, deviations from the Standard Model
for the ZZγ∗ and ZZZ∗ couplings may be described by means of
four anomalous couplings fVi (i = 4, 5;V = γ, Z) [2]. As above, the

parameters fγi describe the ZZγ∗ couplings and the parameters fZi
the ZZZ∗ couplings. The anomalous couplings fV5 lead to violation

of C and P symmetries while fV4 introduces CP violation. Also here,
formfactors depending on a scale Λ are used.

All these couplings hVi and fVi are zero at tree level in the Standard
Model; they are measured in e+e−, pp̄ and pp collisions at LEP,
Tevatron and LHC.
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57. MuonAnomalousMagneticMoment

Updated August 2017 by A. Hoecker (CERN) andW.J. Marciano (BNL).

The Dirac equation predicts a muon magnetic moment, ~M =

gµ
e

2mµ

~S, with gyromagnetic ratio gµ = 2. Quantum loop effects lead

to a small calculable deviation from gµ = 2, parameterized by the
anomalous magnetic moment

aµ ≡ gµ − 2

2
. (57.1)

That quantity can be accurately measured and, within the Standard
Model (SM) framework, precisely predicted. Hence, comparison of
experiment and theory tests the SM at its quantum loop level. A
deviation in aexpµ from the SM expectation would signal effects of
new physics, with current sensitivity reaching up to mass scales of
O(TeV) [1,2]. For recent and thorough muon g − 2 reviews, see
Refs. [3–5].

The E821 experiment at Brookhaven National Lab (BNL) studied
the precession of µ+ and µ− in a constant external magnetic field as
they circulated in a confining storage ring. It found [7] 1

aexpµ+ = 11 659 204(6)(5)× 10−10 ,

aexpµ− = 11 659 215(8)(3)× 10−10 , (57.2)

where the first errors are statistical and the second systematic.
Assuming CPT invariance and taking into account correlations
between systematic uncertainties, one finds for their average [6,7]

aexpµ = 11 659 209.1(5.4)(3.3)× 10−10 . (57.3)

These results represent about a factor of 14 improvement over the
classic CERN experiments of the 1970’s [8]. Improvement of the
measurement by a factor of four by setting up the E821 storage ring
at Fermilab, and utilizing a cleaner and more intense muon beam is in
progress with the commissioning of the experiment having started in
2017.

γ

γ

µ µ

γ

Z
µ µ

γ

W W

ν

µ µ

γ

γ γ

µ µhad

Figure 57.1: Representative diagrams contributing to aSMµ .
From left to right: first order QED (Schwinger term), lowest-
order weak, lowest-order hadronic.

The SM prediction for aSMµ is generally divided into three parts
(see Fig. 57.1 for representative Feynman diagrams)

aSMµ = aQED
µ + aEWµ + aHad

µ . (57.4)

The QED part includes all photonic and leptonic (e, µ, τ) loops
starting with the classic α/2π Schwinger contribution. It has been
computed through 5 loops [9]

aQED
µ =

α

2π
+ 0.765 857 425(17)

(α
π

)2
+ 24.050 509 96(32)

(α
π

)3

+ 130.879 6(6 3)
(α
π

)4
+ 753.3(1.0)

(α
π

)5
+ · · · (57.5)

1 The original results reported by the experiment have been updated
in Eqs. (57.2) and (57.3) to the newest value for the absolute muon-to-
proton magnetic ratio λ = 3.183 345 107(84) [6]. The change induced
in aexpµ with respect to the value of λ = 3.183 345 39(10) used in Ref. 7
amounts to +1.12× 10−10.

with no change in the coefficients since our previous update of this
review in 2013. Employing2 α−1 = 137.035 999 049(90), obtained [6]
from the precise measurements of h/mRb [11], the Rydberg constant
and mRb/me [6], leads to [9]

aQED
µ = 116 584 718.95(0.08)× 10−11 , (57.6)

where the small error results mainly from the uncertainty in α.

Loop contributions involving heavy W±, Z or Higgs particles are
collectively labeled as aEWµ . They are suppressed by at least a factor

of
α

π

m2
µ

m2
W

≃ 4× 10−9. At 1-loop order [12]

aEWµ [1-loop] =
Gµm

2
µ

8
√
2π2

[
5

3
+

1

3

(
1− 4 sin2θW

)2

+O
(

m2
µ

M2
W

)
+O

(
m2

µ

m2
H

)]
,

= 194.8× 10−11 , (57.7)

for sin2θW ≡ 1 − M2
W /M2

Z ≃ 0.223, and where Gµ ≃ 1.166 ×
10−5 GeV−2 is the Fermi coupling constant. Two-loop corrections
are relatively large and negative [13]. For a Higgs boson mass of
125 GeV [13]

aEWµ [2-loop] = −41.2(1.0)× 10−11 , (57.8)

where the uncertainty stems from quark triangle loops. The 3-loop
leading logarithms are negligible [13,14], O(10−12), implying in total

aEWµ = 153.6(1.0)× 10−11 . (57.9)

Hadronic (quark and gluon) loop contributions to aSMµ give rise to
its main theoretical uncertainties. At present, those effects are not
precisely calculable from first principles, but such an approach, at least
partially, may become possible as lattice QCD matures [15]. Instead,
one currently relies on a dispersion relation approach to evaluate the
lowest-order (i.e., O(α2)) hadronic vacuum polarization contribution
aHad
µ [LO] from corresponding cross section measurements [16]

aHad
µ [LO] =

1

3

(
α

π

)2 ∞∫

m2
π

ds
K(s)

s
R(0)(s) , (57.10)

where K(s) is a QED kernel function [17], and where R(0)(s) denotes
the ratio of the bare3 cross section for e+e− annihilation into hadrons
to the pointlike muon-pair cross section at center-of-mass energy

√
s.

The function K(s) ∼ 1/s in Eq. (57.10) gives a strong weight to the
low-energy part of the integral. Hence, aHad

µ [LO] is dominated by the
ρ(770) resonance.

Currently, the available σ(e+e− → hadrons) data give a leading-
order hadronic vacuum polarization (representative) contribution
of [18]

aHad
µ [LO] = 6 931(33)(7)× 10−11 , (57.11)

where the first error is experimental (dominated by systematic
uncertainties), and the second due to perturbative QCD, which is used
at intermediate and large energies to predict the contribution from the
quark-antiquark continuum. New data in particular from the BABAR

2 In early versions of this review we used the precise α value de-
termined from the electron ae measurement [9,10]. With the new
measurement [11] of the recoil velocity of Rubidium, h/mRb, an ae-
independent determination of α with sufficient precision is available
and preferred.

3 The bare cross section is defined as the measured cross section
corrected for initial-state radiation, electron-vertex loop contributions
and vacuum-polarization effects in the photon propagator. However,
QED effects in the hadron vertex and final state, as photon radiation,
are included.
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and VEPP-2000 experiments have led to a reduction by about 20%
in the uncertainty of the hadronic contribution compared to the 2013
PDG value.

Alternatively, one can use precise vector spectral functions from
τ → ντ + hadrons decays [20] that can be related to isovector
e+e− → hadrons cross sections by isospin symmetry. Analyses
replaced e+e− data in the two-pion and four-pion channels by
the corresponding isospin-transformed τ data, and applied isospin-
violating corrections [19]. Owing to the progress in the precision of
the e+e− data, the τ data are now less precise and less reliable due to
additional theoretical uncertainties. The τ -based result was therefore
not updated in the most recent aHad

µ [LO] evaluation [18].

Higher order hadronic contributions are obtained from dispersion
relations using the same e+e− → hadrons data [28], giving

aHad,Disp
µ [NLO] = (−98.7 ± 0.9) × 10−11 and aHad,Disp

µ [NNLO] =
(12.4 ± 0.1) × 10−11 [29], along with model-dependent estimates of

the hadronic light-by-light scattering contribution, aHad,LBL
µ [NLO],

motivated by large-NC QCD [30–36]. 4 Following [34], one finds for
the sum of the three terms

aHad
µ [N(N)LO] = 19(26)× 10−11 , (57.12)

where the error is dominated by hadronic light-by-light uncertainty.

Adding Eqs. (57.6), (57.9), (57.11) and (57.12) gives the represen-
tative e+e− data based SM prediction

aSMµ = 116 591 823(1)(34)(26)× 10−11 , (57.13)

where the errors are due to the electroweak, lowest-order hadronic,
and higher-order hadronic contributions, respectively. The difference
between experiment and theory

∆aµ = aexpµ − aSMµ = 268(63)(43)× 10−11 , (57.14)

where the errors are from experiment and theory prediction (with all
errors combined in quadrature), respectively, represents an interesting
but not conclusive discrepancy of 3.5 times the combined 1σ error.
All the recent estimates for the hadronic contribution compiled in
Fig. 57.2 exhibit similar discrepancies.

An exciting interpretation is that ∆aµ may be a new physics
signal with supersymmetric particle loops as the leading candidate
explanation. Such a scenario is quite natural, since generically,
supersymmetric models predict [1] an additional contribution to aSMµ

aSUSY
µ ≃ ± 130× 10−11 ·

(
100 GeV

mSUSY

)2
tanβ , (57.15)

wheremSUSY is a representative supersymmetric mass scale, tanβ ≃ 3–
40 a potential enhancement factor, and ±1 corresponds to the sign
of the µ term in the supersymmetric Lagrangian. Supersymmetric
particles in the mass range 100–500 GeV could be the source of the
deviation ∆aµ. If so, those particles should be directly observable at
the Large Hadron Collider at CERN. So far, there is however no direct
evidence in support of the supersymmetry interpretation.

New physics effects [1] other than supersymmetry could also
explain a non-vanishing ∆aµ. A popular scenario involves the “dark
photon”, a relatively light hypothetical vector boson from the dark
matter sector that couples to our world of particle physics through
mixing with the ordinary photon [38,39,40]. As a result, it couples
to ordinary charged particles with strength ε · e and gives rise to an
additional muon anomalous magnetic moment contribution

adark photon
µ =

α

2π
ε2F (mV /mµ) , (57.16)

where F (x) =
∫ 1
0 2z(1− z)2/[(1 − z)2 + x2z] dz. For values of ε ∼ 1–

2 · 10−3 and mV ∼ 10–100MeV, the dark photon, which was originally

4 Some representative recent estimates of the hadronic light-by-light

scattering contribution, a
Had,LBL
µ [NLO], that followed after the sign

correction of [32], are: 105(26) × 10−11 [34], 110(40) × 10−11 [30],
136(25)× 10−11 [31].
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Figure 57.2: Compilation of recent published results for aµ
(in units of 10−11), subtracted by the central value of the
experimental average (57.3). The shaded band indicates the
size of the experimental uncertainty. The SM predictions are
taken from: JN 2009 [4], HLMNT 2011 [23], DHMZ 2011 [19],
DHMZ 2017 [18], Note that the quoted errors in the figure
do not include the uncertainty on the subtracted experimental
value. To obtain for each theory calculation a result equivalent
to Eq. (57.14), the errors from theory and experiment must be
added in quadrature.

motivated by cosmology, can provide a viable solution to the muon
g − 2 discrepancy. However, recent experimental constraints disfavor
such a scenario [41] under the assumption that the dark photon decays
primarily into charged lepton pairs. Direct searches for the dark
photon continue to be well motivated [42]; but with guidance coming
from phenomena outside the muon anomalous magnetic moment
discrepancy.
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58. MuonDecay Parameters

Revised September 2013 by W. Fetscher and H.-J. Gerber (ETH
Zürich).

58.1. Introduction:

All measurements in direct muon decay, µ− → e−+2 neutrals, and
its inverse, νµ + e− → µ− + neutral, are successfully described by the
“V -A interaction,” which is a particular case of a local, derivative-free,
lepton-number-conserving, four-fermion interaction [1]. As shown
below, within this framework, the Standard Model assumptions,
such as the V -A form and the nature of the neutrals (νµ and ν̄e),
and hence the doublet assignments (νe e−)L and (νµ µ−)L, have
been determined from experiments [2,3]. All considerations on muon
decay are valid for the leptonic tau decays τ → ℓ + ντ + ν̄e with the
replacements mµ → mτ , me → mℓ.

58.2. Parameters:

The differential decay probability to obtain an e± with (reduced)
energy between x and x+ dx, emitted in the direction x̂3 at an angle
between ϑ and ϑ + dϑ with respect to the muon polarization vector
P µ, and with its spin parallel to the arbitrary direction ζ̂, neglecting
radiative corrections, is given by

d2Γ

dx d cosϑ
=
mµ

4π3
W 4

eµ G2
F

√
x2 − x20

×
(
FIS(x) ± Pµ cosϑ FAS(x)

)

×
[
1 + ζ̂ ·P e(x, ϑ)

]
. (58.1)

Here, Weµ = max(Ee) = (m2
µ +m2

e)/2mµ is the maximum e± energy,

x = Ee/Weµ is the reduced energy, x0 = me/Weµ = 9.67 × 10−3,

and Pµ = |P µ| is the degree of muon polarization. ζ̂ is the direction
in which a perfect polarization-sensitive electron detector is most
sensitive. The isotropic part of the spectrum, FIS(x), the anisotropic
part FAS(x), and the electron polarization, P e(x, ϑ), may be
parametrized by the Michel parameter ρ [1], by η [4], by ξ and
δ [5,6], etc. These are bilinear combinations of the coupling constants
gγεµ, which occur in the matrix element (given below).

If the masses of the neutrinos as well as x20 are neglected, the energy
and angular distribution of the electron in the rest frame of a muon
(µ±) measured by a polarization insensitive detector, is given by

d2Γ

dx d cosϑ
∼ x2 ·

{
3(1− x) +

2ρ

3
(4x− 3) + 3η x0(1− x)/x

± Pµ · ξ · cosϑ
[
1− x+

2δ

3
(4x− 3)

]}
. (58.2)

Here, ϑ is the angle between the electron momentum and the muon
spin, and x ≡ 2Ee/mµ. For the Standard Model coupling, we obtain
ρ = ξδ = 3/4, ξ = 1, η = 0 and the differential decay rate is

d2Γ

dx d cosϑ
=

G2
Fm

5
µ

192π3
[
3− 2x± Pµ cosϑ(2x− 1)

]
x2 . (58.3)

The coefficient in front of the square bracket is the total decay rate.

If only the neutrino masses are neglected, and if the e± polarization
is detected, then the functions in Eq. (58.1) become

FIS(x) = x(1 − x) + 2
9
ρ(4x2 − 3x− x20) + η · x0(1− x)

FAS(x) =
1
3
ξ
√
x2 − x20

× [1− x+ 2
3
δ(4x− 3 + (

√
1− x20 − 1))]

P e(x, ϑ) = PT1
· x̂1 + PT2

· x̂2 + PL · x̂3 . (58.4)

Here x̂1, x̂2, and x̂3 are orthogonal unit vectors defined as follows:

x̂3 is along the e momentum pe
x̂3 ×P µ

|x̂2 ×P µ|
= x̂2 is transverse to pe and perpendicular to

the “decay plane”

x̂2 × x̂3 = x̂1 is transverse to the pe and in the “decay
plane.”

The components of P e then are given by

PT1
(x, ϑ) = Pµ sinϑ · FT1

(x)/
(
FIS(x)± Pµ cosϑ · FAS(x)

)

PT2
(x, ϑ) = Pµ sinϑ · FT2

(x)/
(
FIS(x)± Pµ cosϑ · FAS(x)

)

PL(x, ϑ) =

(
±FIP(x) + Pµ cosϑ

× FAP(x)

)
/
(
FIS(x) ± Pµ cosϑ · FAS(x)

)
,

where

FT1
(x) = 1

12

{
−2

[
ξ′′ + 12(ρ− 3

4
)
]
(1− x)x0

−3η(x2 − x20) + η′′(−3x2 + 4x− x20)
}

FT2
(x) = 1

3

√
x2 − x20

{
3
α′

A
(1 − x) + 2

β′

A

√
1− x20

}

FIP(x) =
1
54

√
x2 − x20

{
9ξ′

(
−2x+ 2 +

√
1− x20

)

+ 4ξ(δ − 3
4
)(4x− 4 +

√
1− x20)

}

FAP(x) =
1
6

{
ξ′′(2x2 − x− x20) + 4(ρ− 3

4
)
(
4x2 − 3x− x20

)

+2η′′(1− x)x0
}

. (58.5)

For the experimental values of the parameters ρ, ξ, ξ′, ξ′′, δ, η, η′′,
α/A, β/A, α′/A, β′/A, which are not all independent, see the Data
Listings below. Experiments in the past have also been analyzed
using the parameters a, b, c, a′, b′, c′, α/A, β/A, α′/A, β′/A (and
η = (α − 2β)/2A), as defined by Kinoshita and Sirlin [5,6]. They
serve as a model-independent summary of all possible measurements
on the decay electron (see Listings below). The relations between the
two sets of parameters are

ρ− 3
4

= 3
4
(−a+ 2c)/A ,

η = (α− 2β)/A ,

η ′′ = (3α+ 2β)/A ,

δ − 3
4

= 9
4

· (a′ − 2c′)/A
1− [a+ 3a′ + 4(b+ b′) + 6c− 14c′]/A

,

1− ξ
δ

ρ
= 4

[(b+ b′) + 2(c− c′)]/A
1− (a− 2c)/A

,

1− ξ′ = [(a+ a′) + 4(b+ b′) + 6(c+ c′)]/A ,

1− ξ ′′ = (−2a+ 20c)/A ,

where
A = a + 4b + 6c . (58.6)

The differential decay probability to obtain a left-handed νe with
(reduced) energy between y and y+dy, neglecting radiative corrections
as well as the masses of the electron and of the neutrinos, is given
by [7]

dΓ

dy
=

m5
µ G2

F

16π3
· Qνe

L · y2
{
(1 − y)− ωL · (y − 3

4
)
}
. (58.7)

Here, y = 2 Eνe/mµ. Qνe
L and ωL are parameters. ωL is the neutrino

analog of the spectral shape parameter ρ of Michel. Since in the
Standard Model, Qνe

L = 1, ωL = 0, the measurement of dΓ/dy has
allowed a null-test of the Standard Model (see Listings below).

58.3. Matrix element:

All results in direct muon decay (energy spectra of the electron
and of the neutrinos, polarizations, and angular distributions), and in
inverse muon decay (the reaction cross section) at energies well below
mW c2, may be parametrized in terms of amplitudes g

γ
εµ and the Fermi

coupling constant GF , using the matrix element

4GF√
2

∑

γ=S,V,T
ε,µ=R,L

gγεµ〈ēε|Γγ |(νe)n〉〈(ν̄µ)m|Γγ |µµ〉. (58.8)
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We use the notation of Fetscher et al. [2], who in turn use the sign
conventions and definitions of Scheck [8]. Here, γ = S, V, T indicates
a scalar, vector, or tensor interaction; and ε, µ = R,L indicate a right-
or left-handed chirality of the electron or muon. The chiralities n
and m of the νe and ν̄µ are then determined by the values of γ, ε, and
µ. The particles are represented by fields of definite chirality [9].

As shown by Langacker and London [10], explicit lepton-num-
ber nonconservation still leads to a matrix element equivalent to
Eq. (58.8). They conclude that it is not possible, even in principle, to
test lepton-number conservation in (leptonic) muon decay if the final
neutrinos are massless and are not observed.

The ten complex amplitudes g
γ
εµ (gTRR and gTLL are identically zero)

and GF constitute 19 independent (real) parameters to be determined
by experiment. The Standard Model interaction corresponds to one
single amplitude gVLL being unity and all the others being zero.

The (direct) muon decay experiments are compatible with an
arbitrary mix of the scalar and vector amplitudes gSLL and gVLL – in

the extreme even with purely scalar gSLL = 2, gVLL = 0. The decision in
favour of the Standard Model comes from the quantitative observation
of inverse muon decay, which would be forbidden for pure gSLL [2].

58.4. Experimental determination of V –A:

In order to determine the amplitudes gγεµ uniquely from experiment,
the following set of equations, where the left-hand sides represent
experimental results, has to be solved.

a = 16(|gVRL|2 + |gVLR|2) + |gSRL + 6gTRL|2 + |gSLR + 6gTLR|2

a′ = 16(|gVRL|2 − |gVLR|2) + |gSRL + 6gTRL|2 − |gSLR + 6gTLR|2

α = 8Re
{
gVRL(g

S∗
LR + 6gT∗

LR) + gVLR(g
S∗
RL + 6gT∗

RL)
}

α′ = 8Im
{
gVLR(g

S∗
RL + 6gT∗

RL)− gVRL(g
S∗
LR + 6gT∗

LR)
}

b = 4(|gVRR|2 + |gVLL|2) + |gSRR|2 + |gSLL|2

b′ = 4(|gVRR|2 − |gVLL|2) + |gSRR|2 − |gSLL|2

β = −4Re
{
gVRRg

S∗
LL + gVLLg

S∗
RR

}

β′ = 4Im
{
gVRRg

S∗
LL − gVLLg

S∗
RR

}

c = 1
2

{
|gSRL − 2gTRL|2 + |gSLR − 2gTLR|2

}

c′ = 1
2

{
|gSRL − 2gTRL|2 − |gSLR − 2gTLR|2

}

and

Qνe
L = 1−

{
1
4
|gSLR|2 + 1

4
|gSLL|2 + |gVRR|2 + |gVRL|2 + 3|gTLR|2

}

ωL = 3
4

{|gSRR|2 + 4|gVLR|2 + |gSRL + 2gTRL|2}
|gSRL|2 + |gSRR|2 + 4|gVLL|2 + 4|gVLR|2 + 12|gTRL|2}

.

It has been noted earlier by C. Jarlskog [11], that certain experiments
observing the decay electron are especially informative if they yield the
V -A values. The complete solution is now found as follows. Fetscher
et al. [2] introduced four probabilities Qεµ(ε, µ = R,L) for the decay
of a µ-handed muon into an ε-handed electron, and showed that there
exist upper bounds on QRR, QLR, and QRL, and a lower bound on
QLL. These probabilities are given in terms of the gγεµ’s by

Qεµ = 1
4
|gSεµ|2 + |gVεµ|2 + 3(1− δεµ)|gTεµ|2 , (58.9)

where δεµ = 1 for ε = µ, and δεµ = 0 for ε 6= µ. They are related to
the parameters a, b, c, a′, b′, and c′ by

QRR = 2(b+ b′)/A ,

QLR = [(a− a′) + 6(c− c′)]/2A ,

QRL = [(a+ a′) + 6(c+ c′)]/2A ,

QLL = 2(b− b′)/A , (58.10)

with A = 16. In the Standard Model, QLL = 1 and the others are
zero.

Since the upper bounds on QRR, QLR, and QRL are found to
be small, and since the helicity of the νµ in pion decay is known
from experiment [12,13] to very high precision to be −1 [14], the
cross section S of inverse muon decay, normalized to the V -A value,
yields [2]

|gSLL|2 ≤ 4(1− S) (58.11)

and

|gVLL|2 = S . (58.12)

Thus the Standard Model assumption of a pure V -A leptonic
charged weak interaction of e and µ is derived (within errors) from
experiments at energies far below mass of the W±: Eq. (58.12)
gives a lower limit for V -A, and Eqs. (58.9) and (58.11) give upper
limits for the other four-fermion interactions. The existence of such
upper limits may also be seen from QRR + QRL = (1 − ξ′)/2 and
QRR + QLR = 1

2
(1 + ξ/3 − 16 ξδ/9). Table 58.1 gives the current

experimental limits on the magnitudes of the g
γ
εµ’s. More stringent

limits on the six coupling constants gSLR, g
V
LR, g

T
LR, g

S
RL, g

V
RL, and

gTRL have been derived from upper limits on the neutrino mass [18].
Limits on the “charge retention” coordinates, as used in the older
literature (e.g., Ref. 19), are given by Burkard et al. [20].

Table 58.1 Coupling constants gγεµ and some com-
binations of them. Ninety-percent confidence level
experimental limits. The limits on |gSLL| and |gVLL| are
from Ref. 15, and the others from a general analysis of
muon decay measurements. Top three rows: Ref. 22,
fourth row: Ref. 16, next three rows: Ref. 17, last row:
Ref. 21. The experimental uncertainty on the muon
polarization in pion decay is included. Note that, by
definition, |gSεµ| ≤ 2, |gVεµ| ≤ 1 and |gTεµ| ≤ 1/

√
3.

|gSRR| < 0.035 |gVRR| < 0.017 |gTRR| ≡ 0

|gSLR| < 0.050 |gVLR| < 0.023 |gTLR| < 0.015

|gSRL| < 0.420 |gVRL| < 0.105 |gTRL| < 0.105

|gSLL| < 0.550 |gVLL| > 0.960 |gTLL| ≡ 0

|gSLR + 6gTLR| < 0.143 |gSRL + 6gTRL| < 0.418

|gSLR + 2gTLR| < 0.108 |gSRL + 2gTRL| < 0.417

|gSLR − 2gTLR| < 0.070 |gSRL − 2gTRL| < 0.418

QRR +QLR < 8.2× 10−4
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18. G. Prézeau and A. Kurylov, Phys. Rev. Lett. 95,
101802 (2005).

19. S.E. Derenzo, Phys. Rev. 181, 1854 (1969).
20. H. Burkard et al., Phys. Lett. 160B, 343 (1985).
21. R. Bayes et al., Phys. Rev. Lett. 106, 041804 (2011).
22. A. Hillairet et al., Phys. Rev. D85, 092013 (2012).



620 59. τ branching fractions

59. τ Branching Fractions

Revised August 2017 by S. Banerjee (University of Louisville), K.
Hayes (Hillsdale College), A. Lusiani (Scuola Normale Superiore and
INFN, sezione di Pisa)

In order to make optimal use of the experimental data to determine
the τ branching fractions, their uncertainties, and their correlations,
we perform a global minimum χ2 fit using the measured values,
their uncertainties, their statistical correlations, their dependencies
on external parameters and common systematics, and the relations
that hold between the branching fractions, including a unitarity
constraint on the sum of all the exclusive τ decay branching fractions.
Starting with this edition, we use a new fit procedure, which has
been elaborated by the Tau Physics Group within the Heavy Flavour
Averaging Group (HFLAV) [1].

In the following, we use “branching fraction” to refer to the partial
decay fraction of a particle like the τ into a specific decay mode, and
“branching ratio” to refer to quantities derived from the branching
fractions [2], like for instance a ratio of two branching fractions, or a
ratio of two linear combinations of branching fractions.

This review contains only minor revisions with respect to the 2016
edition.

59.1. The constrained fit to τ branching fractions

The τ Listings contains 242 τ decay modes, out of which 61 are
Lepton Family number, Lepton number, or Baryon number violating
modes. The fit computes the branching fractions of 112 decay modes.
Although no new τ branching fraction and ratio measurements have
been released since the 2015 edition, the fit in this edition includes
more experimental measurements (169, up from 143 in 2015) and
determines in the fit several additional τ branching fractions and
ratios, relying on a larger and updated set of constraints that relate the
branching fractions and ratios between themselves. The measurements
are treated as follows [1].

Many published measurements depend on external parameters such
as the τ pair production cross-section in e+e− annihilations at the
Υ(4S) peak. We compute the size and sign of these dependencies
and update the measurements and their uncertainties to the current
values of the external parameters. The dependencies on common
systematic effects are also determined in size and sign, and all the
common systematic dependencies of different measurements are used
together with the published statistical and systematic uncertainties
and correlations in order to compute a single all-inclusive variance
and covariance matrix of the experimental measurements. All the
measurements, their uncertainties, and their correlations were taken
from the respective published papers. Their values and the constraints
used in the fit are reported in the τ Listings section that follows this
review. If only a few measurements are correlated, the correlation
coefficients are listed in the footnote for each measurement (see for
example Γ(particle− ≥ 0 neutrals ≥ 0K0ντ (“1-prong”))/Γtotal). If a
large number of measurements are correlated, then the full correlation
matrix is listed in the footnote to the measurement that first appears
in the τ Listings. Footnotes to the other measurements refer to the
first measurement. For example, the large correlation matrices for
the branching fraction or ratio measurements contained in Refs. [3,4]
are listed in Footnotes to the Γ(e−νeντ )/Γtotal and Γ(h−ντ )/Γtotal
measurements respectively. The constraints between the τ branching
fractions and ratios include coefficients that correspond to physical
quantities, like for instance the branching fractions of the η and ω
mesons. All quantities are taken from the 2015 edition of the Review
of Particle Physics. Their uncertainties are neglected in the fit.

Compared to the 2015 edition, the fit now includes several
additional modes, mainly related to the most recent BaBar papers on
high multiplicity modes [5] and K0

SK
0
S modes [6] and the Belle paper

on neutral kaon modes [7]:

B(τ → π−π0K0
SK

0
Sντ )

B(τ → K−K−K+ντ )

B(τ → K−π0ηντ )
B(τ → π−K̄0ηντ ) ;

Also, the following components of τ -decay modes are now in-
cluded [5,8,9]:
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Figure 59.1: Pulls of individual measurements against the
respective fitted quantity. No scale factor is used.

B(τ → π−2π0ηντ (η → π+π−π0) (ex. K0))

B(τ → 2π−π+ηντ (η → π+π−π0) (ex. K0))

B(τ → 2π−π+ηντ (η → γγ) (ex. K0))

B(τ → π−2π0ωντ (ex. K0))

B(τ → 2π−π+ωντ (ex. K0))

B(τ → π−f1ντ (f1 → 2π−2π+)) .
B(τ → K−φντ ) .

We obtain the branching fraction of τ → a−1 (→ π−γ)ντ using the

ALEPH estimate for B(a−1 → π−γ) [3], which uses the measurement

of Γ(a−1 → π−γ) [10]. In the fit, we assume that B(τ− → a−1 ντ ) is

equal to B(τ → π−π−π+ντ (ex. K0, ω))+B(τ → π−2π0ντ (ex. K0)).

In some cases, constraints describe approximate relations that
nevertheless hold within the present experimental precision. For
instance, the constraint B(τ → K−K−K+ντ ) = B(τ → K−φντ ) ×
B(φ → K+K−) is justified within the current experimental evidence.

In the fit, scale factors are applied to the published uncertainties
of measurements only if significant inconsistency between different
measurements remain after accounting for all relevant uncertainties
and correlations. After examining the data and the fit pulls, it has
been decided to apply just one scale factor of 5.4 on the measurements
of B(τ → K−K−K+ντ ). The scale factor has been computed and
applied according to the standard PDG procedure. Without the
scale factor applied, the χ2 probability of the fit is about 2%.
On a per-measurement basis, the pull distribution in figure 59.1
indicates that just a few measurements have more than 3σ pulls. (The
uncertainties to obtain the pulls are computed using the measurements
variance matrix and the variance matrix of the result, accounting for
the fact that the variance matrix of the result is obtained from the
measurement variance with the fit.) The pull probability distribution
in figure 59.2 is reasonably flat. With many measurements some
entries on the tails of the normal distribution must be expected. There
are 169 pulls, one per measurement. They are partially correlated,
and the effective number of independent pulls is equal to the number
of degrees of freedom of the fit, 124. Only the τ → K−K−K+ντ
decay mode has a pull that is inconsistent at the level of more than 3σ
even if considered as the largest pull in a set of 124. This confirms the
choice of adopting just that one scale factor.

After scaling the error the 2016 constrained fit has a χ2 of 134.9 for
124 degrees of freedom, corresponding to a χ2 probability of 24%. We
use 169 measurements and 84 constraints on the branching fractions
and ratios to determine 129 quantities, consisting of 112 branching
fractions and 17 branching ratios. A total of 85 quantities have at
least one measurement in the fit. The constraints include the unitarity
constraint on the sum of all the exclusive τ decay modes, Ball = 1. If
the unitarity constraint is released, the fit result for Ball is consistent
with unitarity with 1− Ball = (0.07± 0.10)%.

For the convenience of summarizing the fit results, we list in the
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Figure 59.2: Probability of individual measurement pulls
against the respective fitted quantity. No scale factor is used.

following the values and uncertainties for a set of 46 “basis” decay
modes, from which all remaining branching fractions and ratios can be
obtained using the constraints. Unlike in previous editions, the basis
decay modes are not intended to sum up to 1. The new unitarity
constraint corresponds to a linear combination of the basis modes
weighted by the coefficients listed in the following. The corresponding
correlation matrix is listed in the τ Listings.

decay mode fit result (%) coefficient

µ−ν̄µντ 17.3936± 0.0384 1.0000
e−ν̄eντ 17.8174± 0.0399 1.0000
π−ντ 10.8165± 0.0512 1.0000
K−ντ 0.6964± 0.0096 1.0000
π−π0ντ 25.4940± 0.0893 1.0000
K−π0ντ 0.4329± 0.0148 1.0000
π−2π0ντ (ex. K0) 9.2595± 0.0964 1.0021
K−2π0ντ (ex. K0) 0.0648± 0.0218 1.0000
π−3π0ντ (ex. K0) 1.0428± 0.0707 1.0000
K−3π0ντ (ex. K0, η) 0.0478± 0.0212 1.0000
h−4π0ντ (ex. K0, η) 0.1119± 0.0391 1.0000
π−K̄0ντ 0.8395± 0.0140 1.0000
K−K0ντ 0.1479± 0.0053 1.0000
π−K̄0π0ντ 0.3821± 0.0129 1.0000
K−π0K0ντ 0.1503± 0.0071 1.0000
π−K̄0π0π0ντ (ex. K0) 0.0263± 0.0226 1.0000
π−K0

SK
0
Sντ 0.0233± 0.0007 2.0000

π−K0
SK

0
Lντ 0.1080± 0.0241 1.0000

π−π0K0
SK

0
Sντ 0.0018± 0.0002 2.0000

π−π0K0
SK

0
Lντ 0.0325± 0.0119 1.0000

K̄0h−h−h+ντ 0.0247± 0.0199 1.0000
π−π−π+ντ (ex. K0, ω) 8.9870± 0.0514 1.0021
π−π−π+π0ντ (ex. K0, ω) 2.7404± 0.0710 1.0000
h−h−h+2π0ντ (ex. K0, ω, η) 0.0980± 0.0356 1.0000
π−K−K+ντ 0.1435± 0.0027 1.0000
π−K−K+π0ντ 0.0061± 0.0018 1.0000
π−π0ηντ 0.1389± 0.0072 1.0000
K−ηντ 0.0155± 0.0008 1.0000
K−π0ηντ 0.0048± 0.0012 1.0000
π−K̄0ηντ 0.0094± 0.0015 1.0000
π−π+π−ηντ (ex. K0) 0.0219± 0.0013 1.0000
K−ωντ 0.0410± 0.0092 1.0000
h−π0ωντ 0.4085± 0.0419 1.0000
K−φντ 0.0044± 0.0016 0.8310
π−ωντ 1.9494± 0.0645 1.0000
K−π−π+ντ (ex. K0, ω) 0.2927± 0.0068 1.0000
K−π−π+π0ντ (ex. K0, ω, η) 0.0394± 0.0142 1.0000
π−2π0ωντ (ex. K0) 0.0071± 0.0016 1.0000
2π−π+3π0ντ (ex. K0, η, ω, f1) 0.0014± 0.0027 1.0000
3π−2π+ντ (ex. K0, ω, f1) 0.0769± 0.0030 1.0000

K−2π−2π+ντ (ex. K0) 0.0001± 0.0001 1.0000
2π−π+ωντ (ex. K0) 0.0084± 0.0006 1.0000
3π−2π+π0ντ (ex. K0, η, ω, f1) 0.0038± 0.0009 1.0000
K−2π−2π+π0ντ (ex. K0) 0.0001± 0.0001 1.0000
π−f1ντ (f1 → 2π−2π+) 0.0052± 0.0004 1.0000
π−2π0ηντ 0.0194± 0.0038 1.0000

Applying the fit procedure on the PDG 2015 inputs, the fit results
differ from the 2015 fit by at most 20% of their uncertainty, for fitted
quantities that have measurements with asymmetric errors, and by at
most 5% of their uncertainty for the other quantities. The differences
originate from the different treatment of asymmetric errors. The
present fit procedure symmetrizes the errors as σ2symm = (σ2+ + σ2−)/2,
while the PDG 2015 fit did model the asymmetric error distributions
in the fit. Comparing the results of the previous edition with the
current fit, there are differences up to 2.3 times the fitted quantity
uncertainty (2.3σ) for quantities that have no measurement included
in the fit and are derived through the constraints. Those differences
arise mainly from three changes: the unitarity constraint has been
updated to accomodate several additional decay modes, the definitions
of the respective quantities have been updated to use the additional
decay modes, and the parameters of all constraints (typically, K, η, ω
branching fractions) have been updated to the values reported in the
last published PDG edition. For quantities that have measurements
in the fit, the fitted values changed at most by 1.1σ, reflecting the
inclusion of several additional measurements, especially on high-
multiplicity decay modes. The uncertainties on the fit results are
generally smaller than in 2015 because only one error scale factor is
used and some additional measurements have been used.

In defining the fit constraints and in selecting the modes that
sum up to one we made some assumptions and choices. We
assume that some channels, like τ− → π−K+π− ≥ 0π0ντ and
τ− → π+K−K− ≥ 0π0ντ , have negligible branching fractions as
expected from the Standard Model, even if the experimental limits for
these branching fractions are not very stringent. The 95% confidence
level upper limits are B(τ− → π−K+π− ≥ 0π0ντ ) < 0.25% and
B(τ− → π+K−K− ≥ 0π0ντ ) < 0.09%, values not so different from
measured branching fractions for allowed 3-prong modes containing
charged kaons. For decays to final states containing one neutral kaon
we assume that the branching fraction with the K0

L are the same as

the corresponding one with a K0
S . On decays with two neutral kaons

we assume that the branching fractions with K0
LK

0
L are the same as

the ones with K0
SK

0
S .

59.2. BaBar and Belle measure on average lower
branching fractions and ratios

We compare the BaBar and Belle measurements with the results of
a fit where all their measurements have been excluded. We find that
that BaBar and Belle tend to measure lower τ branching fractions
and ratios than the other experiments. Figure 59.3 shows histograms
of the 27 normalized differences between the B-factory measurements
and the respective non-B-factory fit results. The normalization is
the uncertainty on the difference. The average normalized difference
between the two sets of measurements is -0.8σ (-0.8σ for the 16 Belle
measurements and -0.9σ for the 11 BaBar measurements).

59.3. Overconsistency of Leptonic Branching
Fraction Measurements

As observed in the previous editions of this review, measurements
of the leptonic branching fractions are more consistent with each other
than expected from the quoted errors on the individual measurements.
When fitting just a single branching fraction using just its direct
measurements, the χ2 per number of degrees of freedom is 0.31/4 for
Be and 0.038/4 for Bµ. Assuming normal errors, the probability of a
smaller χ2 is 1.1% for Be and 0.20% for Bµ.
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Figure 59.3: Distribution of the normalized difference between
the 27 B-factory measurements and non-B-factory measure-
ments. The list includes 16 measurements of branching fractions
and ratios published by the Belle collaboration and 11 by the
BaBar collaboration that are used in the fit and for which
non-B-factory measurements exist.

59.4. Technical implementation of the fit

The fit computes a set of quantities denoted with qi by minimizing
a χ2 while respecting a series of equality constraints on the qi. The χ2

is computed using the measurements mi and their covariance matrix
Eij as χ2 = (mi − Aikqk)

tE−1
ij (mj − Ajlql) where the model matrix

Aij is used to get the vector of the predicted measurements m′
i from

the vector of the fit parameters qj as m′
i = Aijqj . In this particular

implementation the measurements are grouped by the quantity that
they measure, and all quantities with at least one measurement
correspond to a fit parameter. Therefore, the matrix Aij has one row
per measurement mi and one column per fitted quantity qj , with
unity coefficients for the rows and column that identify a measurement
mi of the quantity qj , respectively. The constraints are equations
involving the fit parameters. The fit does not impose limitations on
the functional form of the constraints. In summary, the fit requires:

min(mi −Aikqk)
tE−1

ij (mj −Ajlql), (59.1a)

subjected to fr(qs)− cr = 0, (59.1b)

where the left term of Eq. (59.1b) defines the constraint expressions.
Using the method of Lagrange multipliers, a set of equations is
obtained by taking the derivatives with respect to the fitted quantities
qk and the Lagrange multipliers λr of the sum of the χ2 and the

constraint expressions multiplied by the Lagrange multipliers λr , one
for each constraint:

min
[
(Aikqk−mi)

tE−1
ij (Ajlql−mj) + 2λr(fr(qs)− cr)

]
(59.2a)

(∂/∂qk, ∂/∂λr)[expression above] = 0 (59.2b)

Eq. (59.2b) defines a set of equations for the vector of the unknowns
(qk, λr), some of which may be non-linear, in case of non-linear
constraints. An iterative minimization procedure approximates at
each step the non-linear constraint expressions by their first order
Taylor expansion around the current values of the fitted quantities, q̄s:

fr(qs)− cr = fr(q̄s) +
∂fr(qs)

∂qs

∣∣∣∣
q̄s

(qs − q̄s)− cr, (59.3a)

which can be written as
Brsqs − c′r, (59.3b)

where c′r are the resulting constant known terms, independent of qs
at first order. After linearization, the differentiation by qk and λr is
trivial and leads to a set of linear equations

At
kiE

−1
ij Ajlql +Bt

krλr = At
kiE

−1
ij mj (59.4a)

Brsqs = c′r, (59.4b)

which can be expressed as:

Fijuj = vi (59.5)

where uj = (qk, λr) and vi is the vector of the known constant terms
running over the index k and then r in the right terms of Eq. (59.4a)
and Eq. (59.4b), respectively. Solving the equation set in Eq. (59.5)
by matrix inversion gives the the fitted quantities and their variance
and covariance matrix, using the measurements and their variance
and covariance matrix. The fit procedure starts by computing the
linear approximation of the non-linear constraint expressions around
the quantities seed values. With an iterative procedure, the unknowns
are updated at each step by solving the equations and the equations
are then linearized around the updated values, until the variation of
the fitted unknowns is reduced below a numerically small threshold.
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60. τ -Lepton Decay Parameters

Updated August 2011 by A. Stahl (RWTH Aachen).

The purpose of the measurements of the decay parameters (also
known as Michel parameters) of the τ is to determine the structure
(spin and chirality) of the current mediating its decays.

60.1. Leptonic Decays:

The Michel parameters are extracted from the energy spectrum
of the charged daughter lepton ℓ = e, µ in the decays τ → ℓνℓντ .
Ignoring radiative corrections, neglecting terms of order (mℓ/mτ )

2

and (mτ/
√
s)2, and setting the neutrino masses to zero, the spectrum

in the laboratory frame reads

dΓ

dx
=

G2
τℓ m5

τ

192 π3
×

{
f0 (x) + ρf1 (x) + η

mℓ

mτ
f2 (x)− Pτ [ξg1 (x) + ξδg2 (x)]

}
, (60.1)

with
f0 (x) = 2− 6 x2 + 4 x3

f1 (x) = −4

9
+ 4 x2 − 32

9
x3 g1 (x) = −2

3
+ 4 x− 6 x2 +

8

3
x3

f2 (x) = 12 (1− x)2 g2 (x) =
4

9
− 16

3
x+ 12 x2 − 64

9
x3 .

The quantity x is the fractional energy of the daughter lepton ℓ, i.e.,
x = Eℓ/Eℓ,max ≈ Eℓ/(

√
s/2) and Pτ is the polarization of the tau

leptons. The integrated decay width is given by

Γ =
G2
τℓ m5

τ

192 π3

(
1 + 4 η

mℓ

mτ

)
. (60.2)

The situation is similar to muon decays µ → eνeνµ. The generalized
matrix element with the couplings gγεµ and their relations to the
Michel parameters ρ, η, ξ, and δ have been described in the “Note on
Muon Decay Parameters.” The Standard Model expectations are 3/4,
0, 1, and 3/4, respectively. For more details, see Ref. 1.

60.2. Hadronic Decays:

In the case of hadronic decays τ → hντ , with h = π, ρ, or a1, the
ansatz is restricted to purely vectorial currents. The matrix element is

Gτh√
2

∑

λ=R,L

gλ 〈 Ψω(ντ ) | γµ | Ψλ(τ) 〉 Jh
µ (60.3)

with the hadronic current Jh
µ . The neutrino chirality ω is uniquely

determined from λ. The spectrum depends only on a single parameter
ξh

dnΓ

dx1dx2 . . . dxn
= f (~x) + ξhPτg (~x) , (60.4)

with f and g being channel-dependent functions of the n observables
~x = (x1, x2, . . . , xn) (see Ref. 2). The parameter ξh is related to the
couplings through

ξh = |gL|2 − |gR|2 . (60.5)

ξh is the negative of the chirality of the τ neutrino in these decays. In
the Standard Model, ξh = 1. Also included in the Data Listings for
ξh are measurements of the neutrino helicity which coincide with ξh,
if the neutrino is massless (ASNER 00 [3], ACKERSTAFF 97R [4],
AKERS 95P [5], ALBRECHT 93C [6], and ALBRECHT 90I [7]) .

60.3. Combination of Measurements:

The individual measurements are combined, taking into account
the correlations between the parameters. In a first fit, universality
between the two leptonic decays, and between all hadronic decays, is
assumed. A second fit is made without these assumptions. The results
of the two fits are provided as OUR FIT in the Data Listings below in
the tables whose title includes “(e or mu)” or “(all hadronic modes),”
and “(e),” “(mu)” etc., respectively. The measurements show good
agreement with the Standard Model. The χ2 values with respect to
the Standard model predictions are 24.1 for 41 degrees of freedom
and 26.8 for 56 degrees of freedom, respectively. The correlations are
reduced through this combination to less than 20%, with the exception
of ρ and η which are correlated by +23%, for the fit with universality
and by +70% for τ → µνµντ .

60.4. Model-independent Analysis:

From the Michel parameters, limits can be derived on the couplings
gκελ without further model assumptions. In the Standard model

gVLL = 1 (leptonic decays), and gL = 1 (hadronic decays) and all
other couplings vanish. First, the partial decay widths have to be
compared to the Standard Model predictions to derive limits on the
normalization of the couplings Ax = G2

τx/G
2
F with Fermi’s constant

GF :

Ae = 1.0029± 0.0046 ,

Aµ = 0.981± 0.018 ,

Aπ = 1.0020± 0.0073 . (60.6)

Then limits on the couplings (95% CL) can be extracted (see Ref. 8
and Ref. 9). Without the assumption of universality, the limits given
in Table 60.1 are derived.

Table 60.1: Coupling constants g
γ
εµ. 95% confidence level

experimental limits. The limits include the quoted values of Ae,
Aµ, and Aπ and assume Aρ = Aa1 = 1.

τ → eνeντ

|gSRR| < 0.70 |gVRR| < 0.17 |gTRR| ≡ 0

|gSLR| < 0.99 |gVLR| < 0.13 |gTLR| < 0.082

|gSRL| < 2.01 |gVRL| < 0.52 |gTRL| < 0.51

|gSLL| < 2.01 |gVLL| < 1.005 |gTLL| ≡ 0

τ → µνµντ

|gSRR| < 0.72 |gVRR| < 0.18 |gTRR| ≡ 0

|gSLR| < 0.95 |gVLR| < 0.12 |gTLR| < 0.079

|gSRL| < 2.01 |gVRL| < 0.52 |gTRL| < 0.51

|gSLL| < 2.01 |gVLL| < 1.005 |gTLL| ≡ 0

τ → πντ

|gVR | < 0.15 |gVL | > 0.992

τ → ρντ

|gVR | < 0.10 |gVL | > 0.995

τ → a1ντ

|gVR | < 0.16 |gVL | > 0.987

60.5. Model-dependent Interpretation:

More stringent limits can be derived assuming specific models.
For example, in the framework of a two Higgs doublet model, the
measurements correspond to a limit of mH± > 1.9 GeV× tanβ on the
mass of the charged Higgs boson, or a limit of 253 GeV on the mass
of the second W boson in left-right symmetric models for arbitrary
mixing (both 95% CL). See Ref. 9 and Ref. 10.
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61. Number of Light Neutrino Types fromCollider Experiments

Revised March 2008 by D. Karlen (University of Victoria and
TRIUMF).

The most precise measurements of the number of light neutrino
types, Nν , come from studies of Z production in e+e− collisions.
The invisible partial width, Γinv, is determined by subtracting the
measured visible partial widths, corresponding to Z decays into quarks
and charged leptons, from the total Z width. The invisible width is
assumed to be due to Nν light neutrino species each contributing
the neutrino partial width Γν as given by the Standard Model. In
order to reduce the model dependence, the Standard Model value
for the ratio of the neutrino to charged leptonic partial widths,
(Γν/Γℓ)SM = 1.991 ± 0.001, is used instead of (Γν)SM to determine
the number of light neutrino types:

Nν =
Γinv

Γℓ

(
Γℓ

Γν

)

SM
. (61.1)

The combined result from the four LEP experiments is Nν =
2.984± 0.008 [1].

In the past, when only small samples of Z decays had been recorded
by the LEP experiments and by the Mark II at SLC, the uncertainty
in Nν was reduced by using Standard Model fits to the measured
hadronic cross sections at several center-of-mass energies near the
Z resonance. Since this method is much more dependent on the
Standard Model, the approach described above is favored.

Before the advent of the SLC and LEP, limits on the number of
neutrino generations were placed by experiments at lower-energy e+e−
colliders by measuring the cross section of the process e+e− → ννγ.
The ASP, CELLO, MAC, MARK J, and VENUS experiments observed
a total of 3.9 events above background [2], leading to a 95% CL
limit of Nν < 4.8. This process has a much larger cross section at
center-of-mass energies near the Z mass and has been measured at
LEP by the ALEPH, DELPHI, L3, and OPAL experiments [3].

These experiments have observed several thousand such events, and
the combined result is Nν = 3.00 ± 0.08. The same process has also
been measured by the LEP experiments at much higher center-of-mass
energies, between 130 and 208 GeV, in searches for new physics [4].
Combined with the lower energy data, the result is Nν = 2.92± 0.05.

Experiments at pp colliders also placed limits on Nν by determining
the total Z width from the observed ratio of W± → ℓ±ν to Z → ℓ+ℓ−
events [5]. This involved a calculation that assumed Standard Model
values for the total W width and the ratio of W and Z leptonic partial
widths, and used an estimate of the ratio of Z to W production cross
sections. Now that the Z width is very precisely known from the LEP
experiments, the approach is now one of those used to determine the
W width.
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62. Neutrinoless Double-β decay

Revised August 2017 by P. Vogel (Caltech) and A. Piepke (University
of Alabama).

Observation of neutrinoless double-beta (0νββ) decay would signal
violation of total lepton number conservation. The process can
be mediated by an exchange of a light Majorana neutrino, or by
an exchange of other particles. However, the existence of 0νββ-
decay requires Majorana neutrino mass, no matter what the actual
mechanism is. As long as only a limit on the lifetime is available,
limits on the effective Majorana neutrino mass, on the lepton-number
violating right-handed current or other possible mechanisms mediating
0νββ-decay can be obtained, independently of the actual mechanism
by assuming that one of these “new physics” possibilities dominates.
These limits are listed in the next three tables.

In the following we assume that the exchange of light Majorana
neutrinos (mνi ≤ 10 MeV) contributes dominantly to the decay

rate. Besides a dependence on the phase space (G0ν) and the
nuclear matrix element (M0ν), the observable 0νββ-decay rate is
proportional to the square of the effective Majorana mass 〈mββ〉,
(T 0ν

1/2)
−1 = G0ν · |M0ν |2 · 〈mββ〉2, with 〈mββ〉2 = |∑i U

2
eimνi |2. The

sum contains, in general, complex CP-phases in U2
ei, i.e., cancellations

may occur. For three neutrino flavors, there are three physical phases
for Majorana neutrinos. There is only one phase if neutrinos are Dirac
particles. The two additional Majorana phase differences affect only
processes to which lepton-number-changing amplitudes contribute.
Given the general 3 × 3 mixing matrix for Majorana neutrinos, one
can construct other analogous lepton number violating quantities,
〈mℓℓ′〉 =

∑
i UℓiUℓ′imνi(l or l′ 6= e). However, these are currently

much less constrained than 〈mββ〉.
Nuclear structure calculations are needed to deduce 〈mββ〉 from

the decay rate. While G0ν can be calculated, the computation of
M0ν is subject to uncertainty. Comparing different nuclear model
evaluations indicates a factor ∼2 to 3 spread in the calculated nuclear
matrix elements. In addition, if the effective value of the axial current
coupling constant gA in nuclei is substantially smaller in absolute
value than its single nucleon value gA = −1.2723 ± 0.0023, the
decay rate might be further reduced. The particle physics quantities
to be determined are thus nuclear model-dependent, so the half-life
measurements are listed first. Where possible, we reference the nuclear
matrix elements used in the subsequent analysis. Since rates for the
conventional 2νββ decay serve to constrain the nuclear theory models,
results for this process are also given.

Oscillation experiments utilizing atmospheric-, accelerator-, solar-,
and reactor-produced neutrinos and anti-neutrinos yield strong
evidence that at least some neutrinos are massive. However, these
findings shed no light on the mass hierarchy (i.e., on the sign
of ∆m2

31), the absolute neutrino mass values or the properties of
neutrinos under CPT-conjugation (Dirac or Majorana).

All confirmed oscillation experiments can be consistently described
using three interacting neutrino species with two mass splittings and
three mixing angles. Full three flavor analyses such as e.g. Ref. 1
yield: |∆m2

31| = 2.55+0.04
−0.07 (2.49+0.04

−0.06) × 10−3 eV2 and sin2 θ23 =

0.430+0.020
−0.018 (0.596+0.017

−0.018) for the parameters observed in atmospheric
and accelerator experiments, where the values correspond to the
normal (inverted) hierarchies. Oscillations of solar νe and reactor ν̄e
lead to ∆m2

21 = 7.56 ± 0.19 × 10−5 eV2 and sin2 θ12 = 0.321+0.018
−0.016.

The electron type neutrinos couple only weakly to the third mass
eigenstate with sin2 θ13 = 2.155+0.090

−0.075(2.140
+0.082
−0.085)× 10−2. (All errors

correspond to 1σ.)

Based on the 3-neutrino analysis: 〈mββ〉2 = | cos2 θ13
cos2 θ12m1 + ei∆α21 cos2 θ13 sin

2 θ12m2 + ei∆α31 sin2 θ13m3|2, with
∆α21,∆α31 denoting the physically relevant Majorana CP-phase
differences (possible Dirac phase δ is absorbed in these ∆α). Given
the present knowledge of the neutrino oscillation parameters one
can derive the relation between the effective Majorana mass and
the mass of the lightest neutrino, as illustrated in the left panel of
Fig. 62.1. The three mass hierarchies allowed by the oscillation data:
normal (m1 < m2 < m3), inverted (m3 < m1 < m2), and degenerate
(m1 ≈ m2 ≈ m3), result in different projections. The width of the
innermost hatched bands reflects the uncertainty introduced by the

unknown Majorana and Dirac phases. If the experimental errors of the
oscillation parameters are taken into account, then the allowed areas
are widened as shown by the outer bands of Fig. 62.1. Because of the
overlap of the different mass scenarios a measurement of 〈mββ〉 in the
degenerate or inversely hierarchical ranges would not determine the
hierarchy. The middle panel of Fig. 62.1 depicts the relation of 〈mββ〉
with the summed neutrino mass mtot = m1 +m2 +m3, constrained
by observational cosmology. The oscillation data thus allow to test
whether observed values of 〈mββ〉 and mtot are consistent within the 3
neutrino framework. The right hand panel of Fig. 62.1, finally, shows
〈mββ〉 as a function of the average mass 〈mβ〉 = [Σ|Uei|2m2

νi
]1/2

determined through the analysis of the electron energy distribution
in low energy beta decays. The rather large intrinsic width of the
ββ-decay constraint essentially does not allow to positively identify
the inverted hierarchy, and thus the sign of ∆m2

31, even in combination
with these other observables. Naturally, if the value of 〈mββ〉 ≤ 0.01
eV, but non-zero is ever established then normal hierarchy becomes
the only possible scenario.

Figure 62.1: The left panel shows the dependence of 〈mββ〉
on the absolute mass of the lightest neutrino mmin. The middle
panel shows 〈mββ〉 as a function of the summed neutrino mass
mtot, while the right panel depicts 〈mββ〉 as a function of the
mass 〈mβ〉. In all panels the width of the hatched areas is due
to the unknown Majorana phases and thus irreducible. The
allowed areas given by the solid lines are obtained by taking
into account the errors of the oscillation parameters (at 90%
confidence level [1]) . The two sets of solid lines correspond
to the normal (blue) and inverted(red) hierarchies. These sets
merge into each other for 〈mββ〉 ≥ 0.1 eV, which corresponds to
the degenerate mass pattern.

It should be noted that systematic uncertainties of the nuclear
matrix elements are not folded into the mass projections shown
in Fig. 62.1. Taking this additional uncertainty into account would
further widen the allowed areas. The uncertainties in oscillation
parameters affect the width of the allowed bands in an asymmetric
manner, as shown in Fig. 62.1. For example, for the degenerate mass
pattern (〈mββ〉 ≥ 0.1 eV) the upper edge is simply 〈mββ〉 ∼ m, where
m is the common mass of the degenerate multiplet, independent
of the oscillation parameters, while the lower edge is m cos(2θ12).
Similar arguments explain the other features of Fig. 62.1. The plots
in Fig. 62.1 are based on a 3-neutrino analysis. If it turns out that
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additional, i.e. sterile light neutrinos exist, the allowed regions would
be modified substantially.

If the neutrinoless double-beta decay is observed, it will be possible
to fix a range of absolute values of the masses mνi . Unlike the direct
neutrino mass measurements, however, a limit on 〈mββ〉 does not
allow one to constrain the individual mass values mνi even when the

mass differences ∆m2 are known.

Neutrino oscillation data imply, for the first time, the existence
of a lower limit ∼ 0.014 eV for the Majorana neutrino mass for the
inverted hierarchy mass pattern while 〈mββ〉 could, by fine tuning,
vanish in the case of the normal mass hierarchy. Several new double
beta searches have been proposed to probe the interesting 〈mββ〉 mass
range, with the prospect of full coverage of the inverted mass hierarchy
region within the next decade.

The 0νββ decay mechanism discussed so far is not the only way in
which the decay can occur. Numerous other possible scenarios have
been proposed, however, all of them requiring new physics. It will be
a challenging task to decide which mechanism was responsible once
0νββ decay is observed. LHC experiments may reveal corresponding

signatures for new physics of lepton number violation. If lepton-
number-violating right-handed current weak interactions exist, their
strength can be characterized by the phenomenological coupling
constants η and λ (η describes the coupling between the right-handed
lepton current and left-handed quark current while λ describes the
coupling when both currents are right-handed). The 0νββ decay
rate then depends on 〈η〉 = η

∑
i UeiVei and 〈λ〉 = λ

∑
i UeiVei that

vanish for massless or unmixed neutrinos (Vℓj is a matrix analogous
to Uℓj but describing the mixing with the hypothetical right-handed
neutrinos). The observation of the single electron spectra could, in
principle, allow to distinguish this mechanism of 0νββ from the light
Majorana neutrino exchange driven mode. The limits on 〈η〉 and
〈λ〉 are listed in a separate table. The reader is cautioned that a
number of earlier experiments did not distinguish between η and λ. In
addition, see the section on Majoron searches for additional limits set
by these experiments.

References:

1. P.F. de Salas et al., arXiv:1708.01186 and private communication
with M. Tortola.



628 63. Neutrino properties

63. Neutrino Properties

Revised August 2013 by P. Vogel (Caltech) and A. Piepke (University
of Alabama).

The Neutrino Properties Listings concern measurements of various
properties of neutrinos. Nearly all of the measurements, all of which so
far are limits, actually concern superpositions of the mass eigenstates
νi, which are in turn related to the weak eigenstates νℓ, via the
neutrino mixing matrix

|νℓ〉 =
∑

i

Uℓi |νi〉 .

In the analogous case of quark mixing via the CKM matrix, the
smallness of the off-diagonal terms (small mixing angles) permits
a “dominant eigenstate” approximation. However, the results of
neutrino oscillation searches show that the mixing matrix contains
two large mixing angles and a third angle that is not exceedingly
small. We cannot, therefore, associate any particular state |νi〉 with
any particular lepton label e, µ or τ . Nevertheless, note that in the
standard labeling the |ν1〉 has the largest |νe〉 component (∼ 2/3), |ν2〉
contains ∼ 1/3 of the |νe〉 component and |ν3〉 contains only a small
∼ 2.5% |νe〉 component.

Neutrinos are produced in weak decays with a definite lepton flavor,
and are typically detected by the charged current weak interaction
again associated with a specific lepton flavor. Hence, the listings for
the neutrino mass that follow are separated into the three associated
charged lepton categories. Other properties (mean lifetime, magnetic
moment, charge and charge radius) are no longer separated this way.
If needed, the associated lepton flavor is reported in the footnotes.

Measured quantities (mass-squared, magnetic moments, mean
lifetimes, etc.) all depend upon the mixing parameters |Uℓi|2, but
to some extent also on experimental conditions (e.g., on energy
resolution). Most of these observables, in particular mass-squared,
cannot distinguish between Dirac and Majorana neutrinos, and are
unaffected by CP phases.

Direct neutrino mass measurements are usually based on the
analysis of the kinematics of charged particles (leptons, pions) emitted
together with neutrinos (flavor states) in various weak decays. The
most sensitive neutrino mass measurement to date, involving electron
type antineutrinos, is based on fitting the shape of the beta spectrum.
The quantity 〈m2

β〉 =
∑

i |Uei|2m2
νi

is determined or constrained,

where the sum is over all mass eigenvalues mνi that are too close
together to be resolved experimentally. If the energy resolution is bet-
ter than ∆m2

ij ≡ m2
νi
−m2

νj
, the corresponding heaviermνi and mixing

parameter could be determined by fitting the resulting spectral
anomaly (step or kink).

A limit on 〈m2
β〉 implies an upper limit on the minimum value m2

min

of m2
νi
, independent of the mixing parameters Uei: m2

min ≤ 〈m2
β〉.

However, if and when the value of 〈m2
β〉 is determined then its

combination with the results derived from neutrino oscillations
that give us the values of the neutrino mass-squared differences
∆m2

ij ≡ m2
i −m2

j and the mixing parameters |Uei|2, the individual

neutrino mass squaresm2
νj

= 〈m2
β〉−

∑
i |Uei|2∆m2

ij can be determined.

So far solar, reactor, atmospheric and accelerator neutrino
oscillation experiments can be consistently described using three
active neutrino flavors, i.e. two mass splittings and three mixing
angles. However, several experiments with radioactive sources,
reactors, and accelerators imply the possible existence of one or more
non-interacting neutrino species that might be observable since they
couple weakly to the flavor neutrinos |νl〉.

Combined three neutrino analyses determine the squared mass
differences and all three mixing angles to within reasonable accuracy.
For given |∆m2

ij | a limit on 〈m2
β〉 from beta decay defines an upper limit

on the maximum value mmax of mνi : m2
max ≤ 〈m2

β〉+
∑

i<j |∆m2
ij |.

The analysis of the low energy beta decay of tritium, combined
with the oscillation results, thus limits all active neutrino masses.
Traditionally, experimental neutrino mass limits obtained from pion
decay π+ → µ++νµ or the shape of the spectrum of decay products of
the τ lepton did not distinguish between flavor and mass eigenstates.
These results are reported as limits of the µ and τ based neutrino
mass. After the determination of the |∆m2

ij |’s and the mixing angles
θij , the corresponding neutrino mass limits are no longer competitive
with those derived from low energy beta decays.

The spread of arrival times of the neutrinos from SN1987A, coupled
with the measured neutrino energies, provided a time-of-flight limit

on a quantity similar to 〈mβ〉 ≡
√

〈m2
β〉. This statement, clothed

in various degrees of sophistication, has been the basis for a very
large number of papers. The resulting limits, however, are no longer
comparable with the limits from tritium beta decay.

Constraint on the sum of the neutrino masses can be obtained
from the analysis of the cosmic microwave background anisotropy,
combined with the galaxy redshift surveys and other data. These
limits are reported in a separate table ( Sum of Neutrino Masses,
mtot). Discussion concerning the model dependence of this limit is
continuing.
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64. Sum of NeutrinoMasses

Revised September 2017 by K.A. Olive (University of Minnesota).

The limits on low mass (mν
<∼ 1 MeV) neutrinos apply to mtot

given by

mtot =
∑

ν

(gν/2)mν ,

where gν is the number of spin degrees of freedom for ν plus ν: gν = 4
for neutrinos with Dirac masses; gν = 2 for Majorana neutrinos.
Stable neutrinos in this mass range make a contribution to the total
energy density of the Universe which is given by

ρν = mtotnν = mtot(3/11)nγ ,

where the factor 3/11 is the ratio of (light) neutrinos to photons.

Writing Ων = ρν/ρc, where ρc is the critical energy density of the
Universe, and using nγ = 412 cm−3, we have

Ωνh
2 = mtot/(94 eV) .

While an upper limit to the matter density of Ωmh2 < 0.12 would
constrain mtot < 11 eV, much stronger constraints are obtained from
a combination of observations of the CMB, the amplitude of density
fluctuations on smaller scales from the clustering of galaxies and
the Lyman-α forest, baryon acoustic oscillations, and new Hubble
parameter data. These combine to give an upper limit of around
0.2 eV, and may, in the near future, be able to provide a lower bound
on the sum of the neutrino masses. See Sec. 25 of this Review for more
details.
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65. Three-NeutrinoMixing Parameters

Updated August 2017 by M. Goodman (ANL).

65.1. Introduction and Notation

With the exception of possible short-baseline anomalies (such as
LSND), current accelerator, reactor, solar and atmospheric neutrino
data can be described within the framework of a 3× 3 mixing matrix
between the flavor eigenstates νe, νµ and ντ and mass eigenstates ν1,
ν2 and ν3. (See equation 14.6 of the review “Neutrino Mass, Mixing
and Oscillations” by K. Nakamura and S.T. Petcov.) Whether or not
this is the ultimately correct framework, it is currently widely used to
parametrize neutrino mixing data and to plan new experiments.

The mass differences are called ∆m2
21 ≡ m2

2 −m2
1 and ∆m2

32 ≡
m2

3 −m2
2. In these listings, we assume

∆m2
32 ∼ ∆m2

31 (65.1)

even though the experimental error is comparable to the difference
∆m2

31 −∆m2
32 = ∆m2

21. The measurements made by νµ disappear-
ance at accelerators and by νe disappearance at reactors are slightly
different mixtures of ∆m2

32 and ∆m2
31. The angles are labeled θ12,

θ23 and θ13. The CP violating phase is called δ. The familiar two
neutrino form for oscillations is

P (νa → νb; a 6= b) = sin2(2θ) sin2(∆m2L/4E). (65.2)

Despite the fact that the mixing angles have been measured to be
much larger than in the quark sector, the two neutrino form is often a
very good approximation and is used in many situations.

The angles appear in the equations below in many forms. They
most often appear as sin2(2θ). The listings currently now use sin2(θ)
because this distinguishes whether θ23 is larger or smaller than 45◦.

65.2. Accelerator neutrino experiments

Ignoring ∆m2
21, CP violation, and matter effects, the equations for

the probability of appearance in an accelerator oscillation experiment
are:

P (νµ → ντ ) = sin2(2θ23) cos
4(θ13) sin

2(∆m2
32L/4E) (65.3)

P (νµ → νe) = sin2(2θ13) sin
2(θ23) sin

2(∆m2
32L/4E) (65.4)

P (νe → νµ) = sin2(2θ13) sin
2(θ23) sin

2(∆m2
32L/4E) (65.5)

P (νe → ντ ) = sin2(2θ13) cos
2(θ23) sin

2(∆m2
32L/4E) . (65.6)

Current and future long-baseline accelerator experiments are
studying non-zero θ13 through P (νµ → νe). Including the CP terms
and low mass scale, the equation for neutrino oscillation in vacuum is:

P (νµ → νe) = P1 + P2 + P3 + P4

P1 = sin2(θ23) sin
2(2θ13) sin

2(∆m2
32L/4E)

P2 = cos2(θ23) sin
2(2θ13) sin

2(∆m2
21L/4E)

P3 = −/+ J sin(δ) sin(∆m2
32L/4E)

P4 = J cos(δ) cos(∆m2
32L/4E) (65.7)

where

J =cos(θ13) sin(2θ12) sin(2θ13) sin(2θ23)×
sin(∆m2

32L/4E) sin(∆m2
21L/4E) (65.8)

and the sign in P3 is negative for neutrinos and positive for
anti-neutrinos respectively. For most new long-baseline accelerator
experiments, P2 can safely be neglected but the other three terms
can all be large. Also, depending on the distance and the mass order,
matter effects need to be included.

65.3. Reactor neutrino experiments

Nuclear reactors are prolific sources of ν̄e with an energy near 4
MeV. The oscillation probability can be expressed

P (ν̄e → ν̄e) = 1− cos4(θ13) sin
2(2θ12) sin

2(∆m2
21L/4E)

− cos2(θ12) sin
2(2θ13) sin

2(∆m2
31L/4E)

− sin2(θ12) sin
2(2θ13) sin

2(∆m2
32L/4E) (65.9)

not using the approximation in Eq. (65.1). For short distances (L<5
km) we can ignore the second term on the right and can reimpose
approximation Eq. (65.1). This takes the familiar two neutrino form
with θ13 and ∆m2

32:

P (ν̄e → ν̄e) = 1− sin2(2θ13) sin
2(∆m2

32L/4E). (65.10)

65.4. Solar and Atmospheric neutrino experiments

Solar neutrino experiments are sensitive to νe disappearance and
have allowed the measurement of θ12 and ∆m2

21. They are also
sensitive to θ13. We identify ∆m2

⊙ = ∆m2
21 and θ⊙ = θ12.

Atmospheric neutrino experiments are primarily sensitive to νµ
disappearance through νµ → ντ oscillations, and have allowed the
measurement of θ23 and ∆m2

32. We identify ∆m2
A = ∆m2

32 and
θA = θ23. Despite the large νe component of the atmospheric neutrino
flux, it is difficult to measure ∆m2

21 effects. This is because of a
cancellation between νµ → νe and νe → νµ together with the fact that
the ratio of νµ and νe atmospheric fluxes, which arise from sequential
π and µ decay, is near 2.

65.5. Oscillation Parameter Listings

In Section (B) we encode the three mixing angles θ12, θ23, θ13 and
two mass squared differences ∆m2

21 and ∆m2
32. Our knowledge of θ12

and ∆m2
21 comes from the KamLAND reactor neutrino experiment

together with solar neutrino experiments. Our knowledge of θ23 and
∆m2

32 comes from atmospheric, reactor and long-baseline accelerator
neutrino experiments. For the earlier experiments, we identified the
large mass splitting as ∆m2

32. Now that σ(∆m2
32) ≈ ∆m2

21, some
experiments report separate values for the two mass orders. Results on
θ13 come from reactor antineutrino disappearance experiments. There
are also results from long-baseline accelerator experiments looking for
νe appearance. The interpretation of both kinds of results depends on
∆m2

32, and the accelerator results also depend on the mass order, θ23
and the CP violating phase δ.

Accelerator and atmospheric experiments have some sensitivity to
the CP violation phase δ through Eq. (65.7). Note that P3 depends
on the sign of ∆m2

32 so the sensitivity depends on the mass order.
For non-maximal θ23 mixing, it also depends on the octant of θ23, i.e.
whether θ23 > π/4 or θ23 < π/4. In this edition of the listings,
we report the mean values of sin2(θ). If θ23 deviates from 45 degrees,
this may not yield the correct best fit value.
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Updated March 2018 by A.V. Manohar (UC, San Diego), C.T. Sachra-
jda (University of Southampton), and R.M. Barnett (LBNL).

66.1. Introduction

This note discusses some of the theoretical issues relevant for the
determination of quark masses, which are fundamental parameters of
the Standard Model of particle physics. Unlike the leptons, quarks
are confined inside hadrons and are not observed as physical particles.
Quark masses therefore cannot be measured directly, but must be
determined indirectly through their influence on hadronic properties.
Although one often speaks loosely of quark masses as one would of the
mass of the electron or muon, any quantitative statement about the
value of a quark mass must make careful reference to the particular
theoretical framework that is used to define it. It is important to keep
this scheme dependence in mind when using the quark mass values
tabulated in the data listings.

Historically, the first determinations of quark masses were performed
using quark models. The resulting masses only make sense in the
limited context of a particular quark model, and cannot be related to
the quark mass parameters of the Standard Model. In order to discuss
quark masses at a fundamental level, definitions based on quantum
field theory must be used, and the purpose of this note is to discuss
these definitions and the corresponding determinations of the values
of the masses.

66.2. Mass parameters and the QCD Lagrangian

The QCD [1] Lagrangian for NF quark flavors is

L =

NF∑

k=1

qk (i /D−mk) qk − 1
4
GµνG

µν , (66.1)

where /D =
(
∂µ − igAµ

)
γµ is the gauge covariant derivative, Aµ is

the gluon field, Gµν is the gluon field strength, mk is the mass

parameter of the kth quark, and qk is the quark Dirac field. After
renormalization, the QCD Lagrangian Eq. (66.1) gives finite values for
physical quantities, such as scattering amplitudes. Renormalization
is a procedure that invokes a subtraction scheme to render the
amplitudes finite, and requires the introduction of a dimensionful
scale parameter µ. The mass parameters in the QCD Lagrangian
Eq. (66.1) depend on the renormalization scheme used to define the
theory, and also on the scale parameter µ. The most commonly
used renormalization scheme for QCD perturbation theory is the MS
scheme.

The QCD Lagrangian has a chiral symmetry in the limit that
the quark masses vanish. This symmetry is spontaneously broken
by dynamical chiral symmetry breaking, and explicitly broken by
the quark masses. The nonperturbative scale of dynamical chiral
symmetry breaking, Λχ, is around 1GeV [2]. It is conventional to call
quarks heavy if m > Λχ, so that explicit chiral symmetry breaking
dominates (c, b, and t quarks are heavy), and light if m < Λχ, so
that spontaneous chiral symmetry breaking dominates (the u and
d are light and s quarks are considered to be light when using
SU(3)L×SU(3)R chiral perturbation theory). The determination of
light- and heavy-quark masses is considered separately in Sec. 66.4
and Sec. 66.5 below.

At high energies or short distances, nonperturbative effects, such
as chiral symmetry breaking, become small and one can, in principle,
determine quark masses by analyzing mass-dependent effects using
QCD perturbation theory. Such computations are conventionally
performed using the MS scheme at a scale µ ≫ Λχ, and give the MS
“running” mass m(µ). We use the MS scheme when reporting quark
masses; one can readily convert these values into other schemes using
perturbation theory.

The µ dependence of m(µ) at short distances can be calculated
using the renormalization group equation,

µ2
dm (µ)

dµ2
= −γ(αs (µ)) m (µ) , (66.2)

where γ is the anomalous dimension which is now known to four-loop
order in perturbation theory [3,4]. αs is the coupling constant in the
MS scheme. Defining the expansion coefficients γr by

γ (αs) ≡
∞∑

r=1

γr

(
αs

4π

)r

,

the first four coefficients are given by

γ1 = 4,

γ2 =
202

3
− 20NL

9
,

γ3 = 1249 +

(
−2216

27
− 160

3
ζ (3)

)
NL − 140

81
N2

L,

γ4 =
4603055

162
+

135680

27
ζ (3)− 8800ζ (5)

+

(
−91723

27
− 34192

9
ζ (3) + 880ζ (4) +

18400

9
ζ (5)

)
NL

+

(
5242

243
+

800

9
ζ (3)− 160

3
ζ (4)

)
N2

L

+

(
−332

243
+

64

27
ζ (3)

)
N3

L,

where NL is the number of active light quark flavors at the scale
µ, i.e. flavors with masses < µ, and ζ is the Riemann zeta function
(ζ(3) ≃ 1.2020569, ζ(4) ≃ 1.0823232, and ζ(5) ≃ 1.0369278). In
addition, as the renormalization scale crosses quark mass thresholds
one needs to match the scale dependence of m below and above
the threshold. There are finite threshold corrections; the necessary
formulae can be found in Ref. [5].

The quark masses for light quarks discussed so far are often
referred to as current quark masses. Nonrelativistic quark models use
constituent quark masses, which are of order 350MeV for the u and
d quarks. Constituent quark masses model the effects of dynamical
chiral symmetry breaking, and are not directly related to the quark
mass parameters mk of the QCD Lagrangian Eq. (66.1). Constituent
masses are only defined in the context of a particular hadronic model.

66.3. Lattice Gauge Theory

The use of the lattice simulations for ab initio determinations of
the fundamental parameters of QCD, including the coupling constant
and quark masses (except for the top-quark mass) is a very active
area of research (see the review on Lattice Quantum Chromodynamics
in this Review). Here we only briefly recall those features which are
required for the determination of quark masses. In order to determine
the lattice spacing (a, i.e. the distance between neighboring points
of the lattice) and quark masses, one computes a convenient and
appropriate set of physical quantities (frequently chosen to be a set
of hadronic masses) for a variety of input values of the quark masses.
The true (physical) values of the quark masses are those which
correctly reproduce the set of physical quantities being used for the
calibration.

The values of the quark masses obtained directly in lattice
simulations are bare quark masses, corresponding to a particular
discretization of QCD and with the lattice spacing as the ultraviolet
cut-off. In order for these results to be useful in phenomenological
applications, it is necessary to relate them to renormalized masses
defined in some standard renormalization scheme such as MS.
Provided that both the ultraviolet cut-off a−1 and the renormalization
scale µ are much greater than ΛQCD, the bare and renormalized
masses can be related in perturbation theory. However, in order to
avoid uncertainties due to the unknown higher-order coefficients in
lattice perturbation theory, most results obtained recently use non-
perturbative renormalization to relate the bare masses to those defined
in renormalization schemes which can be simulated directly in lattice
QCD (e.g. those obtained from quark and gluon Green functions at
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specified momenta in the Landau gauge [62] or those defined using
finite-volume techniques and the Schrödinger functional [63]) . The
conversion to the MS scheme (which cannot be simulated) is then
performed using continuum perturbation theory.

The determination of quark masses using lattice simulations is
well established and the current emphasis is on the reduction and
control of the systematic uncertainties. With improved algorithms
and access to more powerful computing resources, the precision of the
results has improved immensely in recent years. Vacuum polarisation
effects are included with Nf = 2, 2 + 1 or Nf = 2 + 1 + 1 flavors
of sea quarks. The number 2 here indicates that the up and down
quarks are degenerate. In earlier reviews, results were presented from
simulations in which vacuum polarization effects were completely
neglected (this is the so-called quenched approximation), leading to
systematic uncertainties which could not be estimated reliably. It is
no longer necessary to include quenched results in compilations of
quark masses. Particularly pleasing is the observation that results
obtained using different formulations of lattice QCD, with different
systematic uncertainties, give results which are largely consistent
with each other. This gives us broad confidence in the estimates of
the systematic errors. As the precision of the results approaches (or
even exceeds in some cases) 1%, isospin breaking effects, including
electromagnetic corrections need to be included and this is beginning
to be done as will be discussed below. The results however, are still
at an early stage and therefore, unless explicitly stated otherwise, the
results presented below will neglect isospin breaking.

Members of the lattice QCD community have organised a Flavour
Lattice Averaging Group (FLAG) which critically reviews quantities
computed in lattice QCD relevant to flavor physics, including the
determination of light quark masses, against stated quality criteria
and presents its view of the current status of the results. The latest
(2nd) edition reviewed lattice results published before November 30th
2013 [16].

66.4. Light quarks

In this section we review the determination of the masses of the
light quarks u, d and s from lattice simulations and then discuss the
consequences of the approximate chiral symmetry.

66.4.1. Lattice Gauge Theory : The most reliable determinations
of the strange quark mass ms and of the average of the up and
down quark masses mud = (mu + md)/2 are obtained from lattice
simulations. As explained in section C above, the simulations are
generally performed with degenerate up and down quarks (mu = md)
and so it is the average which is obtained directly from the
computations. Below we discuss attempts to derive mu and md
separately using lattice results in combination with other techniques,
but we start by briefly present our estimate of the current status of
the latest lattice results in the isospin symmetric limit. Based largely
on references [21–25], which its authors considered to have the
most reliable estimates of the systematic uncertainties, the FLAG
Review [16] quoted as its summary of results obtained with Nf = 2+1
flavors of sea quarks:

ms = (93.8± 1.5± 1.9)MeV , (66.3)

mud = (3.42± 0.06± 0.07)MeV (66.4)

and
ms

mud
= 27.46± 0.15± 0.41 . (66.5)

The masses are given in the MS scheme at a renormalization scale of
2GeV. The first error comes from averaging the lattice results and
the second is an estimate of the neglect of sea-quark effects from the
charm and more massive quarks. Because of the systematic errors,
these results are not simply the combinations of all the results in
quadrature, but include a judgement of the remaining uncertainties.
Since the different collaborations use different formulations of lattice
QCD, the (relatively small) variations of the results between the
groups provides important information about the reliability of the
estimates.

Since the publication of the FLAG review [16] there have
been a number of studies with Nf = 2 + 1 + 1 [26–28] and
Nf = 2 + 1 [29] and a reasonable summary of the current
status may be mud = (3.4 ± 0.1)MeV, ms = (93.5 ± 2)MeV and
ms/mud = 27.5± 0.3.

To obtain the individual values of mu and md requires the
introduction of isospin breaking effects, including electromagnetism.
In principle this can be done completely using lattice field theory. Such
calculations are indeed beginning (note the recent computation of the
neutron-proton mass splitting [30]) but are still at a relatively early
stage. In practice therefore, mu and md are extracted by combining
lattice results with some elements of continuum phenomenology, most
frequently based on chiral perturbation theory. Such studies include
references [32,17,24,28,33,34] as well the Flavianet Lattice Averaging
Group [43]. Based on these results we summarise the current status
as

mu

md
= 0.46(5) , mu = 2.15(15)MeV , md = 4.70(20)MeV . (66.6)

Again the masses are given in the MS scheme at a renormalization
scale of 2GeV. Of particular importance is the fact that mu 6= 0 since
there would have been no strong CP problem had mu been equal to
zero.

The quark mass ranges for the light quarks given in the listings
combine the lattice and continuum values and use the PDG method
for determining errors given in the introductory notes.

66.4.2. Chiral Perturbation Theory : For light quarks, one can
use the techniques of chiral perturbation theory [6–8] to extract quark
mass ratios. The mass term for light quarks in the QCD Lagrangian is

ΨMΨ = ΨLMΨR +ΨRM
†ΨL, (66.7)

where M is the light quark mass matrix,

M =




mu 0 0
0 md 0
0 0 ms


 , (66.8)

Ψ = (u, d, s), and L and R are the left- and right-chiral components
of Ψ given by ΨL,R = PL,RΨ, PL = (1− γ5)/2, PR = (1 + γ5)/2. The
mass term is the only term in the QCD Lagrangian that mixes left-
and right-handed quarks. In the limit M → 0, there is an independent
SU(3)× U(1) flavor symmetry for the left- and right-handed quarks.
The vector U(1) symmetry is baryon number; the axial U(1) symmetry
of the classical theory is broken in the quantum theory due to the
anomaly. The remaining Gχ = SU(3)L × SU(3)R chiral symmetry of
the QCD Lagrangian is spontaneously broken to SU(3)V , which, in
the limit M → 0, leads to eight massless Goldstone bosons, the π’s,
K’s, and η.

The symmetry Gχ is only an approximate symmetry, since it
is explicitly broken by the quark mass matrix M . The Goldstone
bosons acquire masses which can be computed in a systematic
expansion in M , in terms of low-energy constants, which are unknown
nonperturbative parameters of the effective theory, and are not fixed by
the symmetries. One treats the quark mass matrix M as an external
field that transforms under Gχ as M → LMR†, where ΨL → LΨL
and ΨR → RΨR are the SU(3)L and SU(3)R transformations, and
writes down the most general Lagrangian invariant under Gχ. Then
one sets M to its given constant value Eq. (66.8), which implements
the symmetry breaking. To first order in M one finds that [9]

m2
π0

=B (mu +md) ,

m2
π± =B (mu +md) + ∆em ,

m2
K0 = m2

K
0 =B (md +ms) , (66.9)

m2
K± =B (mu +ms) + ∆em ,

m2
η =

1

3
B (mu +md + 4ms) ,



66. Quark masses 633

with two unknown constants B and ∆em, the electromagnetic mass
difference. From Eq. (66.9), one can determine the quark mass
ratios [9]

mu

md
=
2m2

π0
−m2

π+
+m2

K+ −m2
K0

m2
K0 −m2

K+ +m2
π+

= 0.56 ,

ms

md
=
m2

K0 +m2
K+ −m2

π+

m2
K0 +m2

π+
−m2

K+

= 20.2 , (66.10)

to lowest order in chiral perturbation theory, with an error which
will be estimated below. Since the mass ratios extracted using chiral
perturbation theory use the symmetry transformation property of M
under the chiral symmetry Gχ, it is important to use a renormalization
scheme for QCD that does not change this transformation law. Any
mass independent subtraction scheme such as MS is suitable. The
ratios of quark masses are scale independent in such a scheme, and
Eq. (66.10) can be taken to be the ratio of MS masses. Chiral
perturbation theory cannot determine the overall scale of the quark
masses, since it uses only the symmetry properties of M , and any
multiple of M has the same Gχ transformation law as M .

Chiral perturbation theory is a systematic expansion in powers
of the light quark masses. The typical expansion parameter is
m2

K/Λ2
χ ∼ 0.25 if one uses SU(3) chiral symmetry, and m2

π/Λ
2
χ ∼ 0.02

if instead one uses SU(2) chiral symmetry. Electromagnetic effects
at the few percent level also break SU(2) and SU(3) symmetry. The
mass formulæ Eq. (66.9) were derived using SU(3) chiral symmetry,
and are expected to have approximately a 25% uncertainty due to
second order corrections. This estimate of the uncertainty is consistent
with the lattice results found in Eq. (66.3) - Eq. (66.5) and more recent
calculations.

There is a subtlety which arises when one tries to determine quark
mass ratios at second order in chiral perturbation theory. The second
order quark mass term [10]

(
M †

)−1
detM † (66.11)

(which can be generated by instantons) transforms in the same
way under Gχ as M . Chiral perturbation theory cannot distinguish

between M and
(
M †

)−1
detM †; one can make the replacement

M → M(λ) = M + λM
(
M †M

)−1
detM † in the chiral Lagrangian,

M(λ) = diag (mu(λ) , md(λ) , ms(λ))

= diag (mu + λmdms , md + λmums , ms + λmumd) , (66.12)

and leave all observables unchanged.

The combination

(
mu

md

)2

+
1

Q2

(
ms

md

)2

= 1 (66.13)

where

Q2 =
m2

s − m̂2

m2
d −m2

u
, m̂ =

1

2
(mu +md) ,

is insensitive to the transformation in Eq. (66.12). Eq. (66.13) gives an
ellipse in the mu/md −ms/md plane. The ellipse is well-determined
by chiral perturbation theory, but the exact location on the ellipse,
and the absolute normalization of the quark masses, has larger
uncertainties. Q is determined to be in the range 21–25 from η → 3π
decay and the electromagnetic contribution to the K+–K0 and
π+– π0 mass differences [11].

The absolute normalization of the quark masses cannot be
determined using chiral perturbation theory. Other methods, such
as lattice simulations discussed above or spectral function sum
rules [12,13] for hadronic correlation functions, which we review next
are necessary.

66.4.3. Sum Rules : Sum rule methods have been used extensively
to determine quark masses and for illustration we briefly discuss
here their application to hadronic τ decays [14]. Other applications
involve very similar techniques.

C 1

C2

Im s

Re s

m2 4m2

m2

Figure 66.1: The analytic structure of Π(s) in the complex
s-plane. The contours C1 and C2 are the integration contours
discussed in the text.

The experimentally measured quantity is Rτ ,

dRτ

ds
=
dΓ/ds

(
τ− → hadrons + ντ (γ)

)

Γ (τ− → e−νeντ (γ))
(66.14)

the hadronic invariant mass spectrum in semihadronic τ decay,
normalized to the leptonic τ decay rate. It is useful to define q as the
total momentum of the hadronic final state, so s = q2 is the hadronic
invariant mass. The total hadronic τ decay rate Rτ is then given by
integrating dRτ /ds over the kinematically allowed range 0 ≤ s ≤ M2

τ .

Rτ can be written as

Rτ =12π

∫ M2
τ

0

ds

M2
τ

(
1− s

M2
τ

)2

×
[(

1 + 2
s

M2
τ

)
ImΠT (s) + ImΠL(s)

]
(66.15)

where s = q2, and the hadronic spectral functions ΠL,T are defined
from the time-ordered correlation function of two weak currents is
the time-ordered correlator of the weak interaction current (jµ(x) and
jν(0)) by

Πµν(q) =i

∫
d4x eiq·x 〈0|T

(
jµ(x)jν (0)†

)
|0〉 , (66.16)

Πµν(q) = (−gµν + qµqν)ΠT (s) + qµqνΠL(s), (66.17)

and the decomposition Eq. (66.17) is the most general possible
structure consistent with Lorentz invariance.

By the optical theorem, the imaginary part of Πµν is proportional to
the total cross-section for the current to produce all possible states. A
detailed analysis including the phase space factors leads to Eq. (66.15).
The spectral functions ΠL,T (s) are analytic in the complex s plane,
with singularities along the real axis. There is an isolated pole at
s = m2

π, and single- and multi-particle singularities for s ≥ 4m2
π,

the two-particle threshold. The discontinuity along the real axis is
ΠL,T (s+i0+)−ΠL,T (s−i0+) = 2iIm ΠL,T (s). As a result, Eq. (66.15)
can be rewritten with the replacement Im ΠL,T (s) → −iΠL,T (s)/2,
and the integration being over the contour C1. Finally, the contour
C1 can be deformed to C2 without crossing any singularities, and so
leaving the integral unchanged. One can derive a series of sum rules
analogous to Eq. (66.15) by weighting the differential τ hadronic decay
rate by different powers of the hadronic invariant mass,

Rkl
τ =

∫ M2
τ

0
ds

(
1− s

M2
τ

)k ( s

M2
τ

)l dRτ

ds
(66.18)
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where dRτ/ds is the hadronic invariant mass distribution in τ decay
normalized to the leptonic decay rate. This leads to the final form of
the sum rule(s),

Rkl
τ =− 6πi

∫

C2

ds

M2
τ

(
1− s

M2
τ

)2+k ( s

M2
τ

)l

×
[(

1 + 2
s

M2
τ

)
ΠT (s) + ΠL(s)

]
. (66.19)

The manipulations so far are completely rigorous and exact, relying
only on the general analytic structure of quantum field theory. The
left-hand side of the sum rule Eq. (66.19) is obtained from experiment.
The right hand-side can be computed for s far away from any physical
cuts using the operator product expansion (OPE) for the time-ordered
product of currents in Eq. (66.16), and QCD perturbation theory.
The OPE is an expansion for the time-ordered product Eq. (66.16) in
a series of local operators, and is an expansion about the q → ∞ limit.
It gives Π(s) as an expansion in powers of αs(s) and Λ2

QCD/s, and is

valid when s is far (in units of Λ2
QCD) from any singularities in the

complex s-plane.

The OPE gives Π(s) as a series in αs, quark masses, and
various non-perturbative vacuum matrix element. By computing Π(s)
theoretically, and comparing with the experimental values of Rkl

τ ,
one determines various parameters such as αs and the quark masses.
The theoretical uncertainties in using Eq. (66.19) arise from neglected
higher order corrections (both perturbative and non-perturbative),

Figure 66.2: The allowed region (shown in white) for up quark and down quark masses.
This region was determined in part from papers reporting values for mu and md (data
points shown) and in part from analysis of the allowed ranges of other mass parameters (see
Fig. 66.3). The parameter (mu +md)/2 yields the two downward-sloping lines, while mu/md
yields the two rising lines originating at (0,0). There are two overlapping data points, so one
of them is shown as a white diamond (it has very small error bars).

and because the OPE is no longer valid near the real axis, where Π has
singularities. The contribution of neglected higher order corrections
can be estimated as for any other perturbative computation. The
error due to the failure of the OPE is more difficult to estimate. In
Eq. (66.19), the OPE fails on the endpoints of C2 that touch the real
axis at s = M2

τ . The weight factor (1− s/M2
τ ) in Eq. (66.19) vanishes

at this point, so the importance of the endpoint can be reduced by
choosing larger values of k.

66.5. Heavy quarks

For heavy-quark physics one can exploit the fact that mQ ≫ ΛQCD
to construct effective theories (mQ is the mass of the heavy quark
Q). The masses and decay rates of hadrons containing a single heavy
quark, such as the B and D mesons can be determined using the heavy
quark effective theory (HQET) [45]. The theoretical calculations
involve radiative corrections computed in perturbation theory with
an expansion in αs(mQ) and non-perturbative corrections with an
expansion in powers of ΛQCD/mQ. Due to the asymptotic nature
of the QCD perturbation series, the two kinds of corrections are
intimately related; an example of this are renormalon effects in the
perturbative expansion which are associated with non-perturbative
corrections.

Systems containing two heavy quarks such as the Υ or J/Ψ are
treated using non-relativistic QCD (NRQCD) [46]. The typical
momentum and energy transfers in these systems are αsmQ, and

α2
smQ, respectively, so these bound states are sensitive to scales much
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smaller than mQ. However, smeared observables, such as the cross-

section for e+e− → bb averaged over some range of s that includes
several bound state energy levels, are better behaved and only
sensitive to scales near mQ. For this reason, most determinations of
the c, b quark masses using perturbative calculations compare smeared
observables with experiment [47–49].

Figure 66.3: The values of each quark mass parameter taken from the Data Listings. The points are in chronological order with the
more recent measurements at the top. Points from papers reporting no error bars are colored grey. The shaded regions indicate values
excluded by our evaluations; some regions were determined in part through examination of Fig. 66.2.

There are many continuum extractions of the c and b quark masses,
some with quoted errors of 10 MeV or smaller. There are systematic
effects of comparable size, which are typically not included in these
error estimates. Reference [41], for example, shows that even though
the error estimate of mc using the rapid convergence of the αs

perturbation series is only a few MeV, the central value of mc can
differ by a much larger amount depending on which algorithm (all
of which are formally equally good) is used to determine mc from

the data. This leads to a systematic error from perturbation theory
of around 20 MeV for the c quark and 25 MeV for the b quark.
Electromagnetic effects, which also are important at this precision,
are often not included. For this reason, we inflate the errors on the
continuum extractions of mc and mb. The average values of mc and
mb from continuum determinations are (see Sec. G for the 1S scheme)

mc(mc) = (1.28± 0.025)GeV

mb(mb) = (4.18± 0.03)GeV , m1S
b = (4.65± 0.03)GeV .

Lattice simulations of QCD lead to discretization errors which are
powers of mQ a (modulated by logarithms); the power depends on the
formulation of lattice QCD being used and in most cases is quadratic.
Clearly these errors can be reduced by performing simulations at
smaller lattice spacings, but also by using improved discretizations
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of the theory. Recently, with more powerful computing resources,
better algorithms and techniques, it has become possible to perform
simulations in the charm quark region and beyond, also decreasing
the extrapolation which has to be performed to reach the b-quark. A
novel approach proposed in [64] has been to compare the lattice results
for moments of correlation functions of cc quark-bilinear operators
to perturbative calculations of the same quantities at 4-loop order.
In this way both the strong coupling constant and the charm quark
mass can be determined with remarkably small errors; in particular
mc(mc) = 1.273(6)GeV [36]. This lattice determination also uses
the perturbative expression for the current-current correlator, and so
has the perturbation theory systematic error discussed above. Recent
updates using this correlator method, both with a very similar result,
can be found in [27,37]. It should be remembered that these results
were obtained in QCD with exact isospin symmetry; isospin breaking
effects, including electromagnetism may well be larger or of the order
of the quoted uncertainty.

As the range of heavy-quark masses which can be used in numerical
simulations increases, results obtained by extrapolating the results to
b-physics are becoming ever more reliable (see e.g. [27]) . Traditionally
however, the main approach to controlling the discretization errors in
lattice studies of heavy quark physics has been to perform simulations
of the effective theories such as HQET and NRQCD. This remains
an important technique, both in its own right and in providing
additional information for extrapolations from lower masses to the
bottom region. Using effective theories, mb is obtained from what
is essentially a computation of the difference of MHb

− mb, where
MHb

is the mass of a hadron Hb containing a b-quark. The relative
error on mb is therefore much smaller than that for MHb

−mb. The
principal systematic errors are the matching of the effective theories
to QCD and the presence of power divergences in a−1 in the 1/mb
corrections which have to be subtracted numerically. The use of
HQET or NRQCD is less precise for the charm quark, but in this case,
as mentioned above, direct QCD simulations are now possible.

66.6. Pole Mass

For an observable particle such as the electron, the position of
the pole in the propagator is the definition of its mass. In QCD this
definition of the quark mass is known as the pole mass. It is known
that the on-shell quark propagator has no infrared divergences in
perturbation theory [52,53], so this provides a perturbative definition
of the quark mass. The pole mass cannot be used to arbitrarily high
accuracy because of nonperturbative infrared effects in QCD. The full
quark propagator has no pole because the quarks are confined, so that
the pole mass cannot be defined outside of perturbation theory. The
relation between the pole mass mQ and the MS mass mQ is known to
three loops [54,55,56,57]

mQ = mQ(mQ)

{
1 +

4αs(mQ)

3π

+

[
−1.0414

∑

k

(
1− 4

3

mQk

mQ

)
+ 13.4434

][
αs(mQ)

π

]2

+
[
0.6527N2

L − 26.655NL + 190.595
] [αs(mQ)

π

]3}
, (66.20)

where αs(µ) is the strong interaction coupling constants in the MS
scheme, and the sum over k extends over the NL flavors Qk lighter
than Q. The complete mass dependence of the α2

s term can be found
in [54]; the mass dependence of the α3

s term is not known. For the
b-quark, Eq. (66.20) reads

mb = mb (mb) [1 + 0.10 + 0.05 + 0.03] , (66.21)

where the contributions from the different orders in αs are shown
explicitly. The two and three loop corrections are comparable in size
and have the same sign as the one loop term. This is a signal of the
asymptotic nature of the perturbation series [there is a renormalon
in the pole mass]. Such a badly behaved perturbation expansion can
be avoided by directly extracting the MS mass from data without
extracting the pole mass as an intermediate step.

66.7. Numerical values and caveats

The quark masses in the particle data listings have been obtained
by using a wide variety of methods. Each method involves its own
set of approximations and uncertainties. In most cases, the errors
are an estimate of the size of neglected higher-order corrections
or other uncertainties. The expansion parameters for some of
the approximations are not very small (for example, they are
m2

K/Λ2
χ ∼ 0.25 for the chiral expansion and ΛQCD/mb ∼ 0.1 for the

heavy-quark expansion), so an unexpectedly large coefficient in a
neglected higher-order term could significantly alter the results. It is
also important to note that the quark mass values can be significantly
different in the different schemes.

The heavy quark masses obtained using HQET, QCD sum
rules, or lattice gauge theory are consistent with each other if
they are all converted into the same scheme and scale. We have
specified all masses in the MS scheme. For light quarks, the
renormalization scale has been chosen to be µ = 2GeV. The light
quark masses at 1GeV are significantly different from those at
2GeV, m(1GeV)/m(2GeV) ∼ 1.33. It is conventional to choose the
renormalization scale equal to the quark mass for a heavy quark,
so we have quoted mQ(µ) at µ = mQ for the c and b quarks.
Recent analyses of inclusive B meson decays have shown that recently
proposed mass definitions lead to a better behaved perturbation series
than for the MS mass, and hence to more accurate mass values. We
have chosen to also give values for one of these, the b quark mass in
the 1S-scheme [58,59]. Other schemes that have been proposed are
the PS-scheme [60] and the kinetic scheme [61].

If necessary, we have converted values in the original papers
to our chosen scheme using two-loop formulæ. It is important to
realized that our conversions introduce significant additional errors.
In converting to the MS b-quark mass, for example, the three-loop
conversions from the 1S and pole masses give values about 35 MeV
and 135 MeV lower than the two-loop conversions. The uncertainty
in αs(MZ) = 0.1181(13) gives an uncertainty of ±10 MeV and
±35 MeV respectively in the same conversions. We have not added
these additional errors when we do our conversions. The αs value in
the conversion is correlated with the αs value used in determining the
quark mass, so the conversion error is not a simple additional error on
the quark mass.
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67.1. Introduction

In the Standard Model (SM), the left-handed top quark is the
Q = 2/3, T3 = +1/2 member of the weak-isospin doublet containing
the bottom quark, while the right-handed top is an SU(2)L singlet
(see the review on the “Electroweak Model and Constraints on New
Physics” for more information). Its phenomenology is driven by its
large mass. Being heavier than a W boson, it is the only quark
that decays semi-weakly, i.e., into a real W boson and a b quark.
Therefore, it has a very short lifetime and decays before hadronization
can occur. In addition, it is the only quark whose Yukawa coupling
to the Higgs boson is order of unity. For these reasons, the top quark
plays a special role in the Standard Model and in many extensions
thereof. Its phenomenology provides a unique laboratory where our
understanding of the strong interactions, both in the perturbative and
non-perturbative regimes, can be tested. An accurate knowledge of its
properties (mass, couplings, production cross section, decay branching
ratios, etc.) can bring key information on fundamental interactions
at the electroweak symmetry-breaking scale and beyond. This review
provides a concise discussion of the experimental and theoretical issues
involved in the determination the top-quark properties.

67.2. Top-quark production at the Tevatron and
LHC

In hadron collisions, top quarks are produced dominantly in pairs
through the processes qq → tt and gg → tt, at leading order in QCD.
Approximately 85% of the production cross section at the Tevatron
(pp̄ at 1.96 TeV) is from qq annihilation, with the remainder from
gluon-gluon fusion, while at LHC (pp) energies about 90% of the
production is from the latter process at

√
s = 14 TeV (≈ 80% at√

s = 7 TeV).

Predictions for the top-quark production total cross sections are
now available at next-to-next-to leading order (NNLO) with next-to-
next-to-leading-log (NNLL) soft gluon resummation [1]. Assuming
a top-quark mass of 173.3 GeV/c2, close to the Tevatron + LHC
average [2], the resulting theoretical prediction of the top-quark
pair cross-section at NNLO+NNLL accuracy at the Tevatron at√
s = 1.96 TeV is σt̄t = 7.16+0.11

−0.20
+0.17
−0.12 pb where the first uncertainty

is from scale dependence and the second from parton distribution
functions. At the LHC, assuming a top-quark mass of 172.5 GeV/c2

the cross sections are: σt̄t = 177.3+4.6
−6.0

+9.0
−9.0 pb at

√
s = 7 TeV,

σt̄t = 252.9+6.4
−8.6

+11.5
−11.5 pb at

√
s = 8 TeV, σt̄t = 831.8+19.8

−29.2
+35.1
−35.1 pb at√

s = 13 TeV, and σt̄t = 984.5+23.2
−34.7

+41.3
−41.3 pb at

√
s = 14 TeV [1].

Electroweak single top-quark production mechanisms, namely
from qq′ → tb [3], qb → q′t [4], mediated by virtual s-channel
and t-channel W -bosons, and Wt-associated production, through
bg → W−t, lead to somewhat smaller cross sections. For example,
t-channel production, while suppressed by the weak coupling with
respect to the strong pair production, is kinematically enhanced,
resulting in a sizable cross section both at Tevatron and LHC
energies. At the Tevatron, the t- and s-channel cross sections of
top and antitop are identical, while at the LHC they are not,
due to the charge-asymmetric initial state. Approximate NNLO
cross sections for t-channel single top-quark production (t + t̄)
are calculated for mt = 173.3 GeV/c2 to be 2.06+0.13

−0.13 pb in pp

collisions at
√
s = 1.96 TeV (scale and parton distribution functions

uncertainties are combined in quadrature) [5]. Recently, calculations
at NNLO accuracy for the t-channel cross section at the LHC have
appeared [6,7], predicting (mt = 172.5 GeV/c2): σt+t̄ = 64.0+0.77

−0.38 pb

at
√
s = 7 TeV, σt+t̄ = 84.6+1.0

−0.51 pb at
√
s = 8 TeV, σt+t̄ = 215+2.1

−1.3 pb

at
√
s = 13 TeV, and σt+t̄ = 245+2.7

−1.3 pb at
√
s = 14 TeV, where the

quoted uncertainties are from scale variation only. For the s-channel,
NNLO approximated calculations yield 1.03+0.05

−0.05 pb for the Tevatron,

and 4.5+0.2
−0.2(5.5

+0.2
−0.2) pb for

√
s = 7 (8) TeV at the LHC, with

69% (31%) of top (anti-top) quarks [8]. While negligible at the

Tevatron, at LHC energies the Wt-associated production becomes
relevant. At

√
s = 7 (8) TeV, an approximate NNLO calculation gives

15.5+1.2
−1.2(22.1

+1.5
−1.5) pb (t + t̄), with an equal proportion of top and

anti-top quarks [9].

Assuming |Vtb| ≫ |Vtd|, |Vts| (see the review “The CKM Quark-
Mixing Matrix” for more information), the cross sections for single
top production are proportional to |Vtb|2, and no extra hypothesis is
needed on the number of quark families or on the unitarity of the
CKM matrix in extracting |Vtb|. Separate measurements of the s- and
t-channel processes provide sensitivity to physics beyond the Standard
Model [10].

With a mass above the Wb threshold, and |Vtb| ≫ |Vtd|, |Vts|, the
decay width of the top quark is expected to be dominated by the
two-body channel t → Wb. Neglecting terms of order m2

b/m
2
t , α

2
s , and

(αs/π)M
2
W /m2

t , the width predicted in the SM at NLO is [11]:

Γt=
GFm

3
t

8π
√
2

(
1− M2

W

m2
t

)2 (
1 + 2

M2
W

m2
t

)[
1− 2αs

3π

(
2π2

3
− 5

2

)]
,

(67.1)
where mt refers to the top-quark pole mass. The width for a value
of mt = 173.3 GeV/c2 is 1.35 GeV/c2 (we use αs(MZ) = 0.118)
and increases with mass. With its correspondingly short lifetime of
≈ 0.5× 10−24 s, the top quark is expected to decay before top-flavored
hadrons or tt-quarkonium-bound states can form [12]. In fact, since
the decay time is close to the would-be-resonance binding time, a peak
will be visible in e+e− scattering at the tt threshold [13] and it is in
principle present (yet very difficult to measure) in hadron collisions,
too [14]. The order α2

s QCD corrections to Γt are also available [15],
thereby improving the overall theoretical accuracy to better than 1%.

The final states for the leading pair-production process can be
divided into three classes:

A. tt → W+ bW− b → q q′ b q′′ q′′′ b, (45.7%)
B. tt → W+ bW− b → q q′ b ℓ− νℓ b+ ℓ+ νℓ b q

′′ q′′′ b,(43.8%)
C. tt → W+ bW− b → ℓ+ νℓ b ℓ

′− νℓ′ b. (10.5%)

The quarks in the final state evolve into jets of hadrons. A, B, and C
are referred to as the all-jets, lepton+jets (ℓ+jets), and dilepton (ℓℓ)
channels, respectively. Their relative contributions, including hadronic
corrections, are given in parentheses assuming lepton universality.
While ℓ in the above processes refers to e, µ, or τ , most of the analyses
distinguish the e and µ from the τ channel, which is more difficult
to reconstruct. Therefore, in what follows, we will use ℓ to refer to
e or µ, unless otherwise noted. Here, typically leptonic decays of τ
are included. In addition to the quarks resulting from the top-quark
decays, extra QCD radiation (quarks and gluons) from the colored
particles in the event can lead to extra jets.

The number of jets reconstructed in the detectors depends on
the decay kinematics, as well as on the algorithm for reconstructing
jets used by the analysis. Information on the transverse momenta of
neutrinos is obtained from the imbalance in transverse momentum
measured in each event (missing pT , which is here also called missing
ET ).

The identification of top quarks in the electroweak single top
channel is much more difficult than in the QCD tt channel, due to a
less distinctive signature and significantly larger backgrounds, mostly
due to tt and W+jets production.

Fully exclusive predictions via Monte Carlo generators for the tt̄ and
single top production processes at NLO accuracy in QCD, including
top-quark decays and possibly off-shell effects are available [16,17]
through the MC@NLO [18] and POWHEG [19] methods.

Besides fully inclusive QCD or EW top-quark production, more
exclusive final states can be accessed at hadron colliders, whose cross
sections are typically much smaller, yet can provide key information
on the properties of the top quark. For all relevant final states (e.g.,
tt̄V, tt̄V V with V = γ,W,Z, tt̄H, tt̄+jets, tt̄bb̄, tt̄tt̄) automatic or
semi-automatic predictions at NLO accuracy in QCD also in the form
of event generators, i.e., interfaced to parton-shower programs, are
available (see the review “Monte Carlo event generators” for more
information).
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67.3. Top-quark measurements

Since the discovery of the top quark, direct measurements of tt
production have been made at five center-of-mass energies in pp or pp̄
and one in pPb collisions, providing stringent tests of QCD. The first
measurements were made in Run I at the Tevatron at

√
s = 1.8 TeV.

In Run II at the Tevatron relatively precise measurements were
made at

√
s = 1.96 TeV. Finally, beginning in 2010, measurements

have been made at the LHC at
√
s = 7 TeV,

√
s = 8 TeV, and√

s = 13 TeV, and recently also in a dedicated low energy run at√
s = 5.02 TeV and at 8.16 TeV in pPb collisions.

Production of single top quarks through electroweak interactions
has now been measured with good precision at the Tevatron at√
s = 1.96 TeV, and at the LHC at

√
s = 7 TeV,

√
s = 8 TeV, and

also at
√
s = 13 TeV. Measurements at the Tevatron have managed

to separate the s- and t-channel production cross sections, and at the
LHC, the Wt mechanism as well, though the t-channel is measured
with best precision to date. The measurements allow an extraction of
the CKM matrix element Vtb. Also more exclusive production modes
and top-quark properties have been measured in single-top production.

With approximately 10 fb−1 of Tevatron data, and almost 5 fb−1

at 7 TeV, 20 fb−1 at 8 TeV and 36 fb−1 at 13 TeV at the LHC, many
properties of the top quark have been measured with high precision.
These include properties related to the production mechanism, such
as tt spin correlations, forward-backward or charge asymmetries, and
differential production cross sections, as well as properties related
to the tWb decay vertex, such as the helicity of the W -bosons
from the top-quark decay. Recently, also studies of the tt̄γ and the
tt̄Z interactions have been made. In addition, many searches for
physics beyond the Standard Model or tt̄h or th production are
being performed with increasing reach in both production and decay
channels.

In the following sections we review the current status of
measurements of the characteristics of the top quark.

67.3.1. Top-quark production :

67.3.1.1. tt production:

Fig. 67.1 summarizes the tt production cross-section measurements
from both the Tevatron and LHC. Please note that some cross section
measurements at the LHC have luminosity-related uncertainties which
have improved in the meantime [20]. The most recent measurement
from DØ [21]( pp̄ at

√
s = 1.96 TeV), combining the measurements

from the dilepton and lepton plus jets final states in 9.7 fb−1, is
7.26± 0.13+0.57

−0.50 pb.

From CDF the most precise measurement made recently [22] is
in 8.8 fb−1 in the dilepton channel requiring at least one b-tag,
yielding 7.09 ± 0.84 pb. Both of these measurements assume a
top-quark mass of 172.5 GeV/c2. The dependence of the cross-section
measurements on the value chosen for the mass is less than that of the
theory calculations because it only affects the determination of the
acceptance. In some analyses also the shape of topological variables
might be modified.

Combining the recent cross section measurements with older
ones in other channels yields σt̄t = 7.63 ± 0.50 pb (6.6%) for CDF,
σt̄t = 7.56 ± 0.59 pb (7.8%) for DØ and σt̄t = 7.60± 0.41 pb (5.4%)
for the Tevatron combination [23] in good agreement with the SM
expectation of 7.35+0.28

−0.33 pb at NNLO+NNLL in perturbative QCD [1]
for a top mass of 172.5 GeV. The contributions to the uncertainty are
0.20 pb from statistical sources, 0.29 pb from systematic sources, and
0.21 pb from the uncertainty on the integrated luminosity.

CDF has measured the tt̄ production cross section in the dilepton
channel with one hadronically decaying tau in 9.0 fb−1, yielding
σt̄t = 8.1 ± 2.1 pb. By separately identifying the single-tau and
the ditau components, they measure the branching fraction of the
top quark into the tau lepton, tau neutrino, and bottom quark to
be (9.6 ± 2.8)% [24]. CDF also performs measurements of the tt̄
production cross section normalized to the Z production cross section
in order to reduce the impact of the luminosity uncertainty.

DØ has performed a measurement of differential tt cross sections in
9.7 fb−1 of lepton+jets data as a function of the transverse momentum
and absolute value of the rapidity of the top quarks as well as of the

invariant mass of the tt pair [25]. Observed differential cross sections
are consistent with standard model predictions.

The LHC experiments ATLAS and CMS use similar techniques
to measure the tt̄ cross section in pp collisions. The most precise
measurements come from the dilepton channel, and in particular the eµ
channel. At

√
s = 7 TeV, ATLAS uses 4.6 fb−1 of eµ events in which

they select an extremely clean sample and determine the tt̄ cross section
simultaneously with the efficiency to reconstruct and tag b-jets, yielding
σt̄t = 182.9 ± 7.1 pb, corresponding to 3.9% precision [26]. Other
measurements by ATLAS at

√
s = 7 TeV, include a measurement in

0.7 fb−1 in the lepton+jets channel [27], in the dilepton channel [28],
and in 1.02 fb−1 in the all-hadronic channel [29], which together yield
a combined value of σt̄t = 177± 3(stat.)+8

−7(syst.)± 7(lumi.) pb (6.2%)

assuming mt = 172.5 GeV/c2 [30]. In 4.7 fb−1 of all-jets events, they
obtain σt̄t = 168±62 pb [31]. Further analyses in the hadronic τ plus
jets channel in 1.67 fb−1 [32] and the hadronic τ + lepton channel
in 2.05 fb−1 [33], and the all-hadronic channel in 4.7 fb−1 [31] yield
consistent albeit less precise results. The most precise measurement
from CMS is also obtained in the dilepton channel, where they
measure σt̄t = 162±2(stat.)±5(syst.)±4(lumi.) pb, corresponding to
a 4.2% precision [34]. Other measurements at

√
s = 7 TeV from CMS

include measurements with 2.3 fb−1 in the e/µ+jets channel [35],
dilepton channel [34], with 3.5 fb−1 in the all-hadronic channel [36],
with 2.2 fb−1 in the lepton+τ channel [37], and with 3.9 fb−1 in the
τ+jets channel [38]. ATLAS and CMS also provide a combined cross
section at

√
s = 7 TeV of 173.3±2.3(stat.)±7.6(syst.)±6.3(lumi.) pb

using slightly older results based on 0.7− 1.1 fb−1 [39].

At
√
s = 8 TeV, ATLAS measures the tt̄ cross section with

20.3 fb−1 using eµ dilepton events, with a simultaneous measurement
of the b−tagging efficiency, yielding σt̄t = 242.4 ± 1.7(stat.) ±
5.5(syst.) ± 7.5(lumi.) ± 4.2(beamenergy) pb [26] assuming mt =
172.5 GeV/c2, which corresponds to a 4.7% precision. In the
lepton+jets channel, they measure σt̄t = 260 ± 1(stat.)+20

−23(syst.) ±
8(lumi.) ± 4(beamenergy) pb [41] in 20.3 fb−1 using a likelihood
discriminant fit and b-jet identification. Very recently, ATLAS
performed a new analysis in 20.2 fb−1 lepton+jets events. They
model the W+jets background using Z+jets data and employ
neural networks in three jet-multiplicity and b-jet multiplicity
regions for the signal and background separation, yielding σt̄t =
248.3±0.7(stat.)±13.4(syst.)±4.7(lumi.) pb [42]. Recently, ATLAS
also performed a cross section measurement in the hadronic τ+jets
channel yielding consistent, albeit less precise results [43]. CMS
performs a template fit to the Mlb mass distribution using 19.6 fb−1 in
the lepton+jets channel yielding σt̄t = 228.5±3.8(stat.)±13.7(syst.)±
6(lumi.) pb [44]. These 8 TeV measurements are in agreement with
QCD predictions up to next-to-next-to-leading order. In the eµ
channel, using 19.7 fb−1, the cross sections are extracted using a
binned likelihood fit to multi-differential final state distributions
related to identified b quark and other jets in the event, yielding
σt̄t = 244.9 ± 1.4(stat.)+6.3

−5.5(sys.) ± 6.4(lumi.) pb [46]. The cross
section and its ratio between 7 TeV and 8 TeV measurements
are found to be consistent with pQCD calculations. The cross
section is also measured in the hadronic τ+jets channel, yielding
σt̄t = 257±3(stat.)±24(syst.)±7(lumi.) pb [47] and in the all-jets final
state giving σt̄t = 275.6± 6.1(stat.)± 37.8(syst.)± 7.2(lumi.) pb [48].
In combination of the most precise eµ measurements in 5.3−20.3 fb−1,
ATLAS and CMS together yield at 8 TeV σt̄t = 241.5± 1.4(stat.) ±
5.7(syst.)± 6.2(lumi.) pb [49], which corresponds to a 3.5% precision,
challenging the precision of the corresponding theoretical predictions.

The LHCb collaboration presented the first observation of top-quark
production in the forward region in pp-collisions. The W + b final
state with W → µν is reconstructed using muons with a transverse
momentum, pT , larger than 25 GeV in the pseudorapidity range
2.0 < η < 4.5. The b-jets are required to have 50 GeV < pT < 100 GeV
and 2.2 < η < 4.2, while the transverse component of the sum of
the muon and b-jet momenta must satisfy pT > 20 GeV. The results
are based on data corresponding to integrated luminosities of 1.0
and 2.0 fb−1 collected at center-of-mass energies of 7 and 8 TeV
by LHCb. The inclusive top quark production cross sections in the
fiducial region are σt̄t = 239± 53(stat.)± 38(syst.) pb at 7 TeV, and
σt̄t = 289± 43(stat.)± 46(syst.) pb at 8 TeV [50].
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ATLAS and CMS have also measured the tt̄ production cross
section with early Run-II data at

√
s = 13 TeV in eµ events

with at least one b-tag. ATLAS uses 78 pb−1 and obtains σt̄t =
825 ± 114 pb [51]. CMS uses 42 pb−1 and measures σt̄t =
836 ± 27(stat.) ± 88(syst.) ± 100(lumi.) pb [52]. Very recently,
ATLAS used 3.2 fb−1 in the eµ channel, resulting in σt̄t =
818± 8(stat.)± 27(syst.)± 19(lumi.)± 12(beam) pb, consistent with
theoretical QCD calculations at NNLO [53].

A recent ‘fiducial’ measurement by ATLAS, corresponding to the
experimental acceptance of the leptons uses 85 pb−1 of lepton+jets
data and a simple counting approach. ATLAS measures a cross
section of σt̄t = 817 ± 13(stat.) ± 103(syst.) ± 88(lumi) pb [54].
CMS uses 2.2 fb−1 of eµ data with two or more jets and at least
one b-tag, yielding σt̄t = 815 ± 9(stat.) ± 38(syst.) ± 19(lumi.) pb,
in agreement with the expectation from the standard model [55].
In 2.2 fb−1 of lepton+jets events, CMS performs a likelihood
fit to the invariant mass distribution of the isolated lepton and
the b-tagged jet in categories of jet multiplicity, resulting in
σt̄t = 888± 2(stat.)+26

−28(syst.)± 20(lumi.) pb [56], in agreement with
the standard model prediction. This result is also used to extract the
top-quark mass. In the all-jets channel, CMS uses 2.53 fb−1 of data,
yielding a cross section of σt̄t = 834 ± 25(stat.) ± 23(lumi.) pb [57].
Also differential cross sections as a function of the leading top quark
transverse momentum are measured. The measured top quark pT
spectrum is found to be significantly softer than the theory predictions.

Recently, CMS has also measured the top-quark pair production
cross section in a special LHC run with

√
s = 5.02 TeV, accumulating

27.4 pb−1. The measurement is performed by analyzing events
with at least one charged lepton. The measured cross section is
σt̄t = 69.5 ± 8.4 pb [58], in agreement with the expectation from
the standard model. In order to test consistency of the cross-section
measurements with some systematic uncertainties cancelling out while
testing pQCD and PDFs, cross-section ratios between mesurements
at 7 TeV and at 8 TeV are performed and cited in several cases.
In other cases, the cross-section ratio between tt̄- and Z-production
is determined as that is independent of luminosity uncertainties,
but keeps its sensitivity to the ratio of gluon versus quark PDFs.
These experimental results should be compared to the theoretical
calculations at NNLO+NNLL that yield 7.16+0.20

−0.23 pb for top-quark

mass of 173.3 GeV/c2 [1] at
√
s = 1.96 TeV, and for top-quark

mass of 173.2 GeV/c2 σt̄t = 173.6+4.5
−5.9

+8.9
−8.9 pb at

√
s = 7 TeV,

σt̄t = 247.7+6.3
−8.5

+11.5
−11.5 pb at

√
s = 8 TeV, and σt̄t = 816.0+19.4

−28.6
+34.4
−34.4 pb

at
√
s = 13 TeV, at the LHC [1]. CMS also performed a

measurement of top-quark pair production in pPb heavy ion collisions
at

√
s = 8.16 TeV in 174 nb−1 of lepton+jets events. They measure

a cross section of σt̄t = 45 ± 8 pb, which is consistent with pQCD
calculations and with the scaled pp data [59].

In Fig. 67.1, one sees the importance of pp at Tevatron energies
where the valence antiquarks in the antiprotons contribute to the
dominant qq production mechanism. At LHC energies, the dominant
production mode is gluon-gluon fusion and the pp-pp difference
nearly disappears. The excellent agreement of these measurements
with the theory calculations is a strong validation of QCD and the
soft-gluon resummation techniques employed in the calculations. The
measurements reach high precision and provide stringent tests of
pQCD calculations at NNLO+NNLL level including their respective
PDF uncertainties.

Most of these measurements assume a t → Wb branching ratio
of 100%. CDF and DØ have made direct measurements of the
t → Wb branching ratio [61]. Comparing the number of events
with 0, 1 and 2 tagged b jets in the lepton+jets channel, and also
in the dilepton channel, using the known b-tagging efficiency, the
ratio R = B(t → Wb)/

∑
q=d,s,bB(t → Wq) can be extracted. In

5.4 fb−1 of data, DØ measures R = 0.90± 0.04, 2.5σ from unity. The
currently most precise measurement was made by CMS in 19.7 fb−1

at
√
s = 8 TeV. They find R = 1.014 ± 0.003(stat.) ± 0.032(syst.)

and R > 0.955 at 95% C.L. [62]. A significant deviation of R from
unity would imply either non-SM top-quark decay (for example a
flavor-changing neutral-current decay), or a fourth generation of
quarks.

Thanks to the large available event samples, the Tevatron
and the LHC experiments also performed differential cross-section
measurements in tt̄ production. Such measurements are crucial, as they
allow even more stringent tests of perturbative QCD as description of
the production mechanism, allow the extraction or the use of PDF
fits, and enhance the sensitivity to possible new physics contributions,
especially now that NNLO predictions for the main differential
observables in tt̄ prediction have become available [65]. Furthermore,
such measurements reduce the uncertainty in the description of
tt̄ production as background in Higgs physics and searches for
rare processes or beyond Standard Model physics. Differential cross
sections are typically measured by a selection of candidate events, their
kinematic reconstruction and subsequent unfolding of the obtained
event counts in bins of kinematic distributions in order to correct for
detector resolution effects, acceptance and migration effects. In some
cases a bin-by-bin unfolding is used, while other analyses use more
sophisticated techniques.
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Figure 67.1: Measured and predicted tt production cross sections
from Tevatron energies in pp collisions to LHC energies in pp collisions.
Tevatron data points at

√
s = 1.8 TeV are from Refs. [63,64]. Those

at
√
s = 1.96 TeV are from Refs. [21–23]. The ATLAS, CMS, and

LHCb data points are from Refs. [26,34,39,40,45,49,50,53,56], and [58],
respectively. Theory curves and uncertainties are generated using [1]
for mt = 172.5 GeV/c2, the mt value assumed in the cross-section
measurements. Figure adapted from Ref. [60].

Experiments at Tevatron and LHC measure the differential cross
section with respect to the tt̄ invariant mass, dσ/dMt̄t. The spectra
are fully corrected for detector efficiency and resolution effects and
are compared to several Monte Carlo simulations as well as selected
theoretical calculations.

Using 9.45 fb−1, CDF measured dσ/dMt̄t, in the lepton+jets
channel providing sensitivity to a variety of exotic particles decaying
into tt pairs [66]. In 9.7 fb−1 of lepton+jets data, DØ measured the
differential tt production cross section with respect to the transverse
momentum and absolute rapidity of the top quarks as well as of the
invariant mass of the tt̄ pair [25], which are all found to be in good
agreement with the SM predictions.

ATLAS measured the differential tt̄ production cross section with
respect to the top-quark transverse momentum, and of the mass,
transverse momentum and rapidity of the top quark, the antitop
quark as well as the tt̄ system in 4.6 fb−1 at

√
s = 7 TeV in the

lepton+jets channel [67–69]. It is found that data is softer than all
predictions for higher values of the mass of the tt̄ system as well
as in the tail of the top-quark pT spectrum beginning at 200 GeV,
particularly in the case of the Alpgen+Herwig generator. The Mt̄t
spectrum is not well described by NLO+NNLL calculations and there
are also disagreements between the measured rapidity of the tt system
spectrum and the MC@NLO+Herwig and POWHEG+Herwig generators,
both evaluated with the CT10 PDF set. All distributions show a
preference for HERAPDF1.5 when used for the NLO QCD predictions.
In 5.0 fb−1 of

√
s = 7 TeV data in the lepton+jets and the dilepton

channels, CMS measured normalised differential tt̄ cross sections with
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respect to kinematic properties of the final-state charged leptons and
jets associated to b-quarks, as well as those of the top quarks and
the tt̄ system. The data are compared with several predictions from
perturbative QCD calculations and found to be consistent [70].

ATLAS uses 4.6 fb−1 of data at 7 TeV and 20.2 fb−1 at 8 TeV
to measure the differential tt cross section as a function of the mass,
the transverse momentum and the rapidity of the tt system [71].
The results are compared with different Monte Carlo generators and
theoretical calculations of tt production and found to be consistent
with the majority of predictions in a wide kinematic range. Using
20.3 fb−1 of tt events in the lepton+jets channel, ATLAS measures
the normalized differential cross sections of tt production as a function
of the top-quark, tt system and event-level kinematic observables [72].
The observables have been chosen to emphasize the tt production
process and to be sensitive to effects of initial- and final-state
radiation, to the different parton distribution functions, and to
non-resonant processes and higher-order corrections. The results
are in fair agreement with the predictions over a wide kinematic
range. Nevertheless, most generators predict a harder top-quark
transverse momentum distribution at high values than what is
observed in the data. Predictions beyond NLO accuracy improve
the agreement with data at high top-quark transverse momenta.
Using the current settings in the Monte Carlo programs and
parton distribution functions, the rapidity distributions are not well
modelled by any generator under consideration. However, the level of
agreement is improved when more recent sets of parton distribution
functions are used. Recently, using 20.3 fb−1 of 8 TeV data, ATLAS
performed a dedicated differential tt̄ cross-section measurement of
highly boosted top quarks in the lepton+jets channel, where the
hadronically decaying top quark has a transverse momentum above
300 GeV [73]. Jet substructure techniques are employed to identify
top quarks, which are reconstructed with an anti-kt jet with a radius
parameters R = 1.0. The predictions of NLO and LO matrix element
plus parton shower Monte Carlo generators are found to generally
overestimate the measured cross sections. Using 5.0 fb−1 of data at
7 TeV and 19.7 fb−1 at 8 TeV in the lepton+jets channel, CMS
reports measurements of normalized differential cross sections for tt
production with respect to four kinematic event variables: the missing
transverse energy; the scalar sum of the jet transverse momentum
(pT ); the scalar sum of the pT of all objects in the event; and the
pT of leptonically decaying W bosons from top quark decays [74].
No significant deviations from the predictions of several standard
model event generators are observed. Using the full 19.7 fb−1 data
in the eµ channel, CMS measures normalized double-differential cross
sections for tt production as a function of various pairs of observables
characterizing the kinematics of the top quark and tt system [75].
The data are compared to calculations using perturbative quantum
chromodynamics at NLO and approximate NNLO orders. They
are also compared to predictions of Monte Carlo event generators
that complement fixed-order computations with parton showers,
hadronization, and multiple-parton interactions. Overall agreement
is observed with the predictions, which is improved when the
latest global sets (as determined here by CMS) of proton parton
distribution functions are used. The inclusion of the measured tt
cross sections in a fit of parametrized parton distribution functions
is shown to have significant impact on the gluon distribution [75].
Another analysis at high transverse momentum regime for the top
quarks, is performed by the CMS collaboration in 19.7 fb−1 at√
s = 8 TeV [76]. The measurement is performed for events in

electron/muon plus jets final states where the hadronically decaying
top quark is reconstructed as a single large-radius jet and identified
as a top candidate using jet substructure techniques. The integrated
cross section is measured at particle-level within a fiducial region
resembling the detector-level selection as well as at parton-level.
At particle-level, the fiducial cross section is measured to be
σt̄t = 1.28± 0.09(stat.+ syst.)± 0.10(pdf)± 0.09(scales)± 0.03(lumi.)
pb for pT > 400 GeV. At parton-level, it translates to σt̄t =
1.44± 0.10(stat.+ syst.)± 0.13(pdf)± 0.15(scales)± 0.04(lumi.) pb.

At parton-level, interations between incoming partons (quarks or
gluons) are considered via a gauge interation yielding final state
partons. While such interactions can be well described theoretically,

partons are not visible in the detector. At the particle-level, visible
and measurable hadrons, i.e. bound states of quarks and anti-quarks,
are considered to form jets. The hadronisation process takes us from
one level to the other.

Recently, in 19.7 fb−1 at
√
s = 8 TeV, CMS repeated those

measurements in the lepton+jets and in the dilepton channels [77].
While the overall precision is improved, no significant deviations from
the Standard Model are found, yet a softer spectrum for the top quark
at high pT with respect to theoretical available predictions has been
observed. This behaviour has been also observed in the all-jets final
state [78].

In 3.2 fb−1 at
√
s = 13 TeV, ATLAS measured the differential

tt cross section as a function of the transverse momentum and
absolute rapidity of the top quark, and of the transverse momentum,
absolute rapidity and invariant mass of the tt system [79]. The
measured differential cross sections are compared to predictions of
NLO generators matched to parton showers and the measurements
are found to be consistent with all models within the experimental
uncertainties with the exception of the Powheg-Box+ Herwig++
predictions, which differ significantly from the data in both the
transverse momentum of the top quark and the mass of the tt system.
Using 3.2 fb−1 of data in the lepton+jets channel, ATLAS measured
the differential cross sections of tt production in fiducial phase-spaces
as a function of top-quark and tt system kinematic observables [81].
Two separate selections are applied that each focus on different
top-quark momentum regions, referred to as resolved and boosted
topologies of the tt final state. The measured spectra are corrected for
detector effects and are compared to several Monte Carlo simulations
by means of calculated χ2 and p-values. At a center-of-mass energy
of 13 TeV, ATLAS presents a measurement of the boosted top quark
differential cross section in the all-hadronic decay mode [82]. They
require two top-quark candidates, one with pT > 500 GeV and a
second with pT > 350 GeV, with each candidate reconstructed as an
anti-kT jet with radius parameter R = 1.0. The top-quark candidates
are separated from the multijet background using the jet substructure
and the presence of a b-quark tag in each jet. The observed kinematic
distributions are unfolded to recover the differential cross sections
in a limited phase-space region and compared with Standard Model
predictions, showing agreement.

In 2.1 fb−1 at
√
s = 13 TeV, CMS measures the normalized

differential cross sections for tt production in the dilepton channels as
a function of the kinematic properties of the leptons, jets from bottom
quark hadronization, top quarks, and top quark pairs at the particle
and parton levels [83]. The results are compared to several Monte
Carlo generators that implement calculations up to next-to-leading
order in perturbative quantum chromodynamics interfaced with parton
showering, and also to fixed-order theoretical calculations of top quark
pair production up to NNLO, showing agreement. In 2.2 fb−1 of
events in the lepton+jets channel, CMS measures the differential and
double-differential cross sections for the tt production as a function of
jet multiplicity and of kinematic variables of the top quarks and the tt
system [84]. The differential cross sections are presented at particle
level, within a phase space close to the experimental acceptance, and
at parton level in the full phase space. The results are compared to
several standard model predictions.

Further cross-section measurements are performed for tt̄+ heavy
flavour [85] and tt̄+jets production as well as the differential
measurement of the jet multiplicity in tt̄ events [86,87]. Here,
MC@NLO+Herwig MC is found to predict too few events at higher
jet multiplicities. In addition, CMS measured the cross-section ratio
σt̄tbb̄/σt̄tjj using 19.6 fb−1 of 8 TeV data [88]. This is of high
relevance for top quark production as background to searches, for
example for the ongoing search for tt̄h production. Very recently,
ATLAS also measured the tt̄ production cross section along with as
the branching ratios into channels with leptons and quarks using
4.6 fb−1 of 7 TeV data [89]. They find agreement with the standard
model at the level of a few percent.

67.3.1.2. Single-top production:

Single-top quark production was first observed in 2009 by DØ [90]
and CDF [91,92] at the Tevatron. The production cross section at
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the Tevatron is roughly half that of the tt cross section, but the final
state with a single W -boson and typically two jets is less distinct than
that for tt and much more difficult to distinguish from the background
of W+jets and other sources. A comprehensive review of the first
observation and the techniques used to extract the signal from the
backgrounds can be found in [93].

The dominant production at the Tevatron is through s-channel and
t-channel W -boson exchange. Associated production with a W -boson
(Wt production) has a cross section that is too small to observe at
the Tevatron. The t-channel process is qb → q′t, while the s-channel
process is qq′ → tb. The s- and t-channel productions can be separated
kinematically. This is of particular interest because potential physics
beyond the Standard Model, such as fourth-generation quarks, heavy
W and Z bosons, flavor-changing-neutral-currents [10], or a charged
Higgs boson, would affect the s- and t-channels differently. However,
the separation is difficult and initial observations and measurements
at the Tevatron by both experiments were of combined s+ t-channel
production. The two experiments combined their measurements for
maximum precision with a resulting s + t-channel production cross
section of 2.76+0.58

−0.47 pb [94]. The measured value assumes a top-quark

mass of 170 GeV/c2. The mass dependence of the result comes
both from the acceptance dependence and from the tt background
evaluation. Also the shape of discriminating topological variables is
sensitive to mt. The dependence on mT is therefore not necessarily
a simple linear dependence but amounts to only a few tenths of
picobarns over the range 170 − 175 GeV/c2. The measured value
agrees well with the theoretical calculation at mt = 173 GeV/c2 of
σs+t = 3.12 pb (including both top and anti-top production) [5,8].

Using the full Run-II data set of up to 9.7 fb−1, CDF and
DØ have measured the t-channel single-top quark production to
be σt+t̄ = 2.25+0.29

−0.31 pb [96]. In the same publication, they also
present the simultaneously measured s− and t−channel cross sections
and the s + t combined cross section measurement resulting in
σs+t = 3.30+0.52

−0.40 pb, without assuming the SM ratio of σs/σt. The
modulus of the CKM matrix element obtained from the s+ t-channel
measurement is |Vtb| = 1.02+0.06

−0.05 and its value is used to set a
lower limit of |Vtb| > 0.92 at 95% C.L. Those results are in good
agreement with the theoretical value at the mass 172.5 GeV/c2 of
σt = 2.08± 0.13 pb [5]. It should be noted that the theory citations
here list cross sections for t or t alone, whereas the experiments
measure the sum. At the Tevatron, these cross sections are equal.
The theory values quoted here already include this factor of two.

Using datasets of 9.7 fb−1 each, CDF and DØ combine their analyses
and report the first observation of single-top-quark production in
the s-channel, yielding σs = 1.29+0.26

−0.24 pb [97]. The probability of
observing a statistical fluctuation of the background of the given size is
1.8× 10−10, corresponding to a significance of 6.3 standard deviations.

At the LHC, the t-channel cross section is expected to be more
than three times as large as s-channel and Wt production, combined.
Both ATLAS and CMS have measured single top production cross
sections at

√
s = 7 TeV in pp collisions (assuming mt = 172.5 GeV/c2

unless noted otherwise).

Using 4.59 fb−1 of data at
√
s = 7 TeV, ATLAS measures

the t-channel single-top quark cross section in the lepton plus 2
or 3 jets channel with one b-tag by fitting the distribution of a
multivariate discriminant constructed with a neural network, yielding
σt = 46± 6 pb, σt̄ = 23± 4 pb with a ratio Rt = σt/σt̄ = 2.04± 0.18
and σt+t̄ = 68 ± 8 pb, consistent with SM expectations [98]. CMS

follows two approaches in 1.6 fb−1 of lepton plus jets events. The first
approach exploits the distributions of the pseudorapidity of the recoil
jet and reconstructed top-quark mass using background estimates
determined from control samples in data. The second approach is
based on multivariate analysis techniques that probe the compatibility
of the candidate events with the signal. They find σt−channel

t+t̄
=

67.2± 6.1 pb, and |Vtb| = 1.020± 0.046(exp.)± 0.017(th.) [100].

At
√
s = 8 TeV, both experiments repeat and refine their

measurements. ATLAS uses 20.2 fb−1 of data. Total, fiducial and
differential cross-sections are measured for both top-quark and
top-antiquark production [101]. An artificial neural network is
employed to separate signal from background. The fiducial cross-

section is measured with a precision of 5.8% (top quark) and
7.8% (top antiquark), respectively. The total cross-sections are

measured to be σt−channel
t (tq) = 56.7+4.3

−3.8 pb for top-quark production

and σt−channel
t̄

(t̄q) = 32.9+3.0
−2.7 pb for top-antiquark production, in

agreement with the Standard Model prediction. In addition, the ratio
of top-quark to top-antiquark production cross-sections is determined
to be Rt = 1.72 ± 0.09. The total cross-section is used to extract
the Wtb coupling: fLV · |Vtb| = 1.029± 0.048, which corresponds to
|Vtb| > 0.92 at the 95% confidence level, when assuming fLV = 1
and restricting the range of |Vtb| to the interval [0, 1]. The differential
cross-sections as a function of the transverse momentum and rapidity
of both the top quark and the top antiquark are measured at both the
parton and particle levels. The transverse momentum and rapidity
differential cross-sections of the accompanying jet from the t-channel
scattering are measured at particle level. All measurements are
compared to various Monte Carlo predictions as well as to fixed-order
QCD calculations where available. The SM predictions provide good
descriptions of the data. CMS uses 19.7 fb−1 in the electron or muon
plus jets channel, exploiting the pseudorapidity distribution of the
recoil jet. They find σt = 53.8 ± 1.5(stat.) ± 4.4(syst.) pb and σt̄ =
27.6±1.3(stat.)±3.7(syst.) pb, resulting in an inclusive t-channel cross
section of σt+t̄ = 83.6± 2.3(stat.)± 7.4(syst.) [102]. They measure
a cross section ratio of Rt = σt/σt̄ = 1.95 ± 0.10(stat.)± 0.19(syst.),
in agreement with the SM. The CKM matrix element Vtb is extracted
to be |Vtb| = 0.998 ± 0.038(exp.) ± 0.016(th.). More recently, CMS
has also provided a fiducial cross section measurement for t-channel
single top at

√
s = 8 TeV with 19.7 fb−1 of data in signal events with

exactly one muon or electron and two jets, one of which is associated
with a b-hadron [103]. The definition of the fiducial phase space
follows closely the constraints imposed by event-selection criteria
and detector acceptance. The total fiducial cross section is measured
using different generators at next-to-leading order plus parton-
shower accuracy. Using as reference the aMC@NLO MC predictions
in the four-flavour scheme a σfidt = 3.38 ± 0.25(exp.) ± 0.20(th.)
pb is obtained, in good agreement with the theory predictions. At
13 TeV, ATLAS uses 3.2 fb−1 to measurement the t-channel cross
section. Using a binned maximum-likelihood fit to the discriminant
distribution of a neural network, the cross-sections are determined
to be σt(tq) = 156 ± 5(stat.) ± 27(syst.) ± 3(lumi.) pb and σ(t̄q) =
91± 4(stat.)± 18(syst.)± 2(lumi.) pb [104]. The cross-section ratio
is measured to be Rt = σt/σt̄ = 1.72 ± 0.09(stat.) ± 0.18(syst.). All
results are in agreement with Standard Model predictions.

A measurement of the t-channel single top-quark cross section
is also available at 13 TeV with the CMS detector, corresponding
to an integrated luminosity of 2.2 fb−1. Fits to the transverse
W -mass and the output of an artificial neural network allow the
determination of the background and the signal contribution. The
measured cross-section is σt = 238 ± 13 ± 29 pb [105]. The CKM
matrix is determined to |Vtb| = 1.05± 0.07(exp.)± 0.02(th.).

The Wt process has a theoretical cross section of 15.6± 1.2 pb [9].
This is of interest because it probes the Wtb vertex in a different
kinematic region than s- and t-channel production, and because of its
similarity to the associated production of a charged-Higgs boson and a
top quark. The signal is difficult to extract because of its similarity to
the tt signature. Furthermore, it is difficult to uniquely define because
at NLO a subset of diagrams have the same final state as tt and the
two interfere [106]. The cross section is calculated using the diagram
removal technique [107] to define the signal process. In the diagram
removal technique the interfering diagrams are removed, at the
amplitude level, from the signal definition (an alternative technique,
diagram subtraction removes these diagrams at the cross-section level
and yields similar results [107]) . These techniques work provided the
selection cuts are defined such that the interference effects are small,
which is usually the case.

Both, ATLAS and CMS, also provide evidence for the associate
Wt production at

√
s = 7 TeV [108,109]. ATLAS uses 2.05 fb−1 in

the dilepton plus missing ET plus jets channel, where a template
fit to the final classifier distributions resulting from boosted decision
trees as signal to background separation is performed. The result is
incompatible with the background-only hypothesis at the 3.3σ (3.4σ
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expected) level, yielding σWt = 16.8 ± 2.9(stat.)± 4.9(syst.) pb and
|Vtb| = 1.03+0.16

−0.19 [108]. CMS uses 4.9 fb−1 in the dilepton plus jets
channel with at least one b-tag. A multivariate analysis based on
kinematic properties is utilized to separate the tt̄ background from the
signal. The observed signal has a significance of 4.0σ and corresponds
to a cross section of σWt = 16+5

−4 pb [109].

Both experiments repeated their Wt-analyses at
√
s = 8 TeV.

ATLAS uses 20.3 fb−1 to select events with two leptons and one
central b-jet. The Wt signal is separated from the backgrounds
using boosted decision trees, each of which combines a number of
discriminating variables into one classifier. Production of Wt events
is observed with a significance of 7.7σ. The cross section is extracted
in a profile likelihood fit to the classifier output distributions. The
Wt cross section, inclusive of decay modes, is measured to be
σWt = 23.0 ± 1.3(stat.)+3.2

−3.5(syst.) ± 1.1(lumi.) pb, yielding a value
for the CKM matrix element |Vtb| = 1.01 ± 0.10 and a lower limit
of 0.80 at the 95% C.L. [110]. A fiducial cross section is also
measured. CMS uses 12.2 fb−1 in events with two leptons and a jet
originated from a b quark. A multivariate analysis based on kinematic
properties is utilized to separate the signal and background. The Wt
associate production signal is observed at the level of 6.1σ, yielding
σWt = 23.4 ± 5.4 pb and |Vtb| = 1.03 ± 0.12(exp.) ± 0.04(th.) [111].
ATLAS and CMS also combine their measurements and obtain
σWt = 25.0±1.4(stat.)±4.4(syst.)±0.7(lumi.) pb = 25.0±4.7 pb [112],
in agreement with the NLO+NNLL expectation. They extract a 95%
C.L. lower limit on the CKM matrix element of |Vtb| > 0.79.

At 13 TeV in the Wt-channel, ATLAS uses 3.2 fb−1 of events
with two opposite sign isolated leptons and at least one jet; they
are separated into signal and control regions based on their jet
multiplicity and the number of jets with b-tags. Signal is separated
from background in two regions using boosted decision trees. The cross
section is extracted by fitting templates to the data distributions, and
is measured to be σWt = 94± 10(stat.)+28

−22(syst.)± 2(lumi.) pb [113].
The measurement is in agreement with the Standard Model prediction.
CMS uses 36 fb−1 of events with two opposite sign isolated leptons,
one tight and one loose jet and one b-tag. Signal and background
is separated in categories depending on the number of jets and the
subset of b-tagged jets using a boosted decision tree. A maximum
likelihood fits yields σWt = 63.1± 6.6 pb [114].

At ATLAS, a search for s-channel single top quark production is
performed in 0.7 fb−1 at 7 TeV using events containing one lepton,
missing transverse energy and two b-jets. Using a cut-based analysis,
an observed (expected) upper limit at 95% C.L. on the s-channel
cross-section of σs < 26.5 (20.5) pb is obtained [115]. In 8 TeV data,
both ATLAS and CMS search for s-channel production. ATLAS uses
20.3 fb−1 of data with one lepton, large missing transverse momentum
and exactly two b-tagged jets. They perform a maximum-likelihood fit
of a discriminant based on a Matrix Element Method and optimized
in order to separate single top-quark s-channel events from the main
background contributions which are top-quark pair production and
W boson production in association with heavy flavour jets. They
find σs = 4.8 ± 0.8(stat.)+1.6

−1.3(syst.) pb with a signal significance
of 3.2 standard deviations [116], which provides first evidence for
s-channel single-top production at 8 TeV. The signal is extracted
through a maximum-likelihood fit to the distribution of a multivariate
discriminant defined using boosted decision trees to separate the
expected signal contribution from background processes. At 7 TeV
and 8 TeV, CMS uses 5.1 fb−1 and 19.3 fb−1, respectively, and
analyses leptonic decay modes by performing a maximum likelihood fit
to a multivariate discriminant defined using a Boosted Decision Tree,
yielding cross sections of σs = 7.1 ± 8.1 pb and σs = 13.4 ± 7.3 pb,
respectively, and a best fit value of 2.0 ± 0.9 for the combined ratio
of the measured σs values and the ones expected in the Standard
Model [117]. The signal significance is 2.5 standard deviations. Both,
ATLAS and CMS, also measured the electroweak production of singel
top-quarks in association with a Z-boson, see section C.2.4 of this
review.

Fig. 67.2 provides a summary of all single top cross-section
measurements at the Tevatron and the LHC as a function of the
center-of-mass energy. All cross-section measurements are very well
described by the theory calculation within their uncertainty.
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Figure 67.2: Measured and predicted single top production cross
sections from Tevatron energies in pp collisions to LHC energies
in pp collisions. Tevatron data points at

√
s = 1.96 TeV are from

Refs. [96,97]. The ATLAS and CMS data points at
√
s = 7 TeV are

from Refs. [98,100,108,109,115,117]. The ones at
√
s = 8 TeV are

from Refs. [101,102,110,111,116,117]. The ones at
√
s = 13 TeV are

from Refs. [104,105] Theory curves are generated using [5,8,9].

Thanks to the large statistics now available at the LHC, both
CMS and ATLAS experiments also performed differential cross-section
measurements in single-top t-channel production [98], [118]. Such
measurements are extremely useful as they test our understanding of
both QCD and EW top-quark interactions. The CMS collaboration
has measured differential single top quark t-channel production cross
sections as functions of the transverse momentum and the absolute
value of the rapidity of the top quark. The analysis is performed in
the leptonic decay channels of the top quark, with either a muon
or an electron in the final state, using data collected with the
CMS experiment at the LHC at

√
s = 8 TeV and corresponding

to an integrated luminosity of 19.7 fb−1. Neural networks are used
to discriminate the signal process from the various background
contributions. The results are found to agree with predictions from
Monte Carlo generators [118]. Using the same data set and under
the assumption that the spin analyzing power of a charged lepton
is 100% as predicted in the SM, they are also able to measure the
polarization of the top quark Pt = 0.82±0.12(stat.)±0.32(syst.) [119].
At 13 TeV, CMS measures the differential t-channel cross section with
respect to the transverse momentum or the rapidity of the top- or
the antitop-quark [120]. ATLAS has measured the differential Wt
cross section in 36.1 fb−1 at 13 TeV with respect to the energy of
the b-jet, the energy of the system of the two leptons and b-jet, and
the transverse mass or mass of combinations of leptons, the b-jet and
neutrinos [121].

67.3.1.3. Top-Quark Forward-Backward & Charge Asymmetry:

A forward-backward asymmetry in tt production at a pp collider
arises starting at order α3

S in QCD from the interference between the
Born amplitude qq → tt with 1-loop box production diagrams and
between diagrams with initial- and final-state gluon radiation. The
asymmetry, AFB, is defined by

AFB=
N(∆y > 0)−N(∆y < 0)

N(∆y > 0) +N(∆y < 0)
, (67.2)

where ∆y = yt − yt is the rapidity difference between the top- and
the anti-top quark. Calculations at α3

S predict a small AFB at the

Tevatron. The most recent calculations up to order α4
S , including

electromagnetic and electroweak corrections, yield a predicted
asymmetry of (≈(9.5 ± 0.7)% [122]. This is about 10% higher
than the previous calculation at NLO [123,124], and improves the
agreement with experiment.

Both CDF and DØ measured asymmetry values in excess of the SM
prediction, fueling speculation about exotic production mechanisms
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(see, for example, [125] and references therein). The first measurement
of this asymmetry by DØ in 0.9 fb−1 [126] found an asymmetry
at the detector level of (12 ± 8)%. The first CDF measurement in
1.9 fb−1 [127] yielded (24 ± 14)% at parton level. Both values were
higher, though statistically consistent with the SM expectation. With
the addition of more data, the uncertainties have been reduced, and
the central values, if somewhat smaller, have remained consistent with
the first measurements. At the same time, the improved calculations
from theory have increased the predicted asymmetry values to the
point where the discrepancy is no longer statistically significant.

CDF and DØ have now combined results using the full Tevatron
dataset at

√
s = 1.96 TeV [128]. Three combined asymmetries are

reported: Att
FB as defined in Eq. 2 for fully-reconstructed tt events,

a single-lepton asymmetry, Aℓ
FB defined as in Eq. 2 but with ∆y

replaced by the product of the lepton charge and pseudo-rapidity,
and a dilepton asymmetry, Aℓℓ

FB, defined as in Eq. 2 but with ∆y
replaced by ∆η between the two leptons. The combined results are

Att
FB = 0.128±0.021±0.014,Aℓ

FB = 0.073±0.016±0.012, and Aℓℓ
FB =

0.108±0.043±0.016. In each case the first uncertainty is statistical and
the second systematic. These are to be compared to SM predictions

at NNLO QCD and NLO electroweak of Att
FB = 0.095± 0.007 [122],

Aℓ
FB = 0.038± 0.003, and Aℓℓ

FB = 0.048± 0.004 [124], respectively.
Both experiments have also measured differential asymmetries, in bins
of Mtt, ∆y, qℓ × ηℓ, and ∆ηℓℓ, with consistent results, though the

growth of Att
FB with increasing Mtt and ∆y appears somewhat more

rapid than the SM prediction [128].

At the LHC, where the dominant tt production mechanism
is the charge-symmetric gluon-gluon fusion, the measurement is
more difficult. For the sub-dominant qq production mechanism, the
symmetric pp collision does not define a forward and backward
direction. Instead, the charge asymmetry, AC , is defined in terms of a
positive versus a negative t− t rapidity difference, ∆y

Att
C =

N(∆|y| > 0)−N(∆|y| < 0)

N(∆|y| > 0) +N(∆|y| < 0)
. (67.3)

Both CMS and ATLAS have measured AC in the LHC dataset.
Using lepton+jets events in 4.7 fb−1 of data at

√
s = 7 TeV, ATLAS

measures Att
C = (0.6 ± 1.0)% [129]. ATLAS has reported on the

same measurement performed at
√
s = 8 TeV with at 20.3 fb−1 of

data, with a result of Att
C = (0.009 ± 0.005) [130]. In the dilepton

channel at
√
s = 8 TeV, ATLAS measures [131] Att

C = 0.021± 0.016,

and Aℓℓ
C = 0.008 ± 0.006 (defined in terms of the ∆η of the two

leptons) in agreement with the SM predictions of (1.11 ± 0.04)%
and (0.64 ± 0.03)%, respectively [124]. CMS, in 5.0 (19.7) fb−1

of
√
s = 7(8) TeV data uses lepton+jets events to measure

Att
C = (0.4±1.5)% (Att

C = (0.33±0.26(stat.)±0.33(syst.))%) [132,133].
Both measurements are consistent with the SM expectations of

Att
C = 1.23 ± 0.05% at

√
s = 7 TeV and 1.11 ± 0.04% at

√
s = 8

TeV [124], although the uncertainties are still too large for a precision
test. In 19.5 fb−1 of dilepton events at

√
s = 8 TeV, CMS measures

Att
C = 0.011 ± .013 and Aℓℓ

C = 0.003 ± 0.007, consistent with SM
expectations [124].

In their 7 and 8 TeV analyses ATLAS and CMS also provide
differential measurements as a function of Mtt and the transverse
momentum pT and rapidity y of the tt system. To reduce model-
dependence, the CMS Collaboration has performed a measurement
in a reduced fiducial phase space [134], with a result of AC =
−0.0035 ± 0.0072(stat.) ± 0.0031(syst.), in agreement with SM
expectations.

To specifically address the dependence of the asymmetry on Mtt,
ATLAS has performed a measurement in boosted tt events [135]. In
20.3 fb−1 of data at

√
s = 8 TeV, in events with Mtt > 0.75 TeV,

and |(∆|y|)| < 2, ATLAS measures Att
C = (4.2 ± 3.2)% compared to

a NLO SM prediction of (1.60 ± 0.04)%. The measurement is also
presented in three bins of Mtt, each in agreement, though with large
uncertainties, with the SM expectations.

Both ATLAS and CMS have measured asymmetries in the
distribution of leptons from tt decays. ATLAS, in 4.6 fb−1 of

√
s = 7 TeV data, has measured Aℓℓ = (2.4 ± 1.5 ± 0.9)% in

dilepton events [136]. Using a neutrino weighting technique in
the same dataset to reconstruct the top quarks, ATLAS measures
AC = (2.1 ± 2.5 ± 1.7)%. CMS, in 5.0 fb−1 of

√
s = 7 TeV

data, uses dilepton events to measure AC = (1.0 ± 1.5 ± 0.6)%,
where a matrix weighting technique is used to reconstruct the
top quarks, and Aℓℓ = (0.9 ± 1.0 ± 0.6)% [137]. An earlier result
using lepton+jets events from the same CMS dataset found
AC = (0.4 ± 1.0 ± 1.1)% [132]. Combined results from ATLAS
and CMS have recently been released [138]. At

√
s = 7 TeV the

combined result is AC = (0.5 ± 0.7 ± 0.6)%, and at
√
s = 8 TeV

it is AC = (0.55 ± 0.23 ± 0.25)%. These results are all consistent,
within their large uncertainties, with the SM expectations of
Aℓℓ = (0.70± 0.03)% and AC = (1.23± 0.05)% [124].

A model-independent comparison of the Tevatron and LHC results
is made difficult by the differing tt production mechanisms at work at
the two accelerators and by the symmetric nature of the pp collisions
at the LHC. Given a particular model of BSM physics, a comparison
can be obtained through the resulting asymmetry predicted by the
model at the two machines, see for example [135].

67.3.2. Top-Quark Properties :

67.3.2.1. Top-Quark Mass Measurements:

The most precisely studied property of the top quark is its mass.
The top-quark mass has been measured in the lepton+jets, the
dilepton, and the all-jets channel by all four Tevatron and LHC
experiments. The latest and/or most precise results are summarized
in Table 67.1. The lepton+jets channel yields the most precise single
measurements because of good signal to background ratio (in particular
after b-tagging) and the presence of only a single neutrino in the final
state. The momentum of a single neutrino can be reconstructed (up
to a quadratic ambiguity) via the missing ET measurement and the
constraint that the lepton and neutrino momenta reconstruct to the
known W boson mass. In the large data samples available at the
LHC, measurements in the dilepton channel can be competitive and
certainly complementary to those in the lepton+jets final state.

A large number of techniques have now been applied to measuring
the top-quark mass. The original ‘template method’ [143], in which
Monte Carlo templates of reconstructed mass distributions are fit to
data, has evolved into a precision tool in the lepton+jets channel,
where the systematic uncertainty due to the jet energy scale (JES)
uncertainty is controlled by a simultaneous, in situ fit to the W → jj
hypothesis [144]. All the latest measurements in the lepton+jets and
the all-jets channels use this technique in one way or another. In
4.6 fb−1 of data at

√
s = 7 TeV in the lepton+jets channel, ATLAS

achieves a total uncertainty of 0.73% with a statistical component of
0.44% [145]. The measurement is based on a 3-dimensional template
fit, determining the top-quark mass, the global jet energy scale and
a b-to-light jet energy scale factor. The most precise CMS result in
the lepton+jets channel uses an ideogram method and comes from
a so-called ‘hybrid’ approach in which the prior knowledge about
the jet energy scale is incorporated as a Gaussian constraint, with a
width determined by the uncertainty on the jet energy corrections.
In 19.7 fb−1 of

√
s = 8 TeV data, CMS achieves a total uncertainty

of 0.30% with a statistical component of 0.09% with the hybrid
approach [146]. Using this same method, CMS has recently released
the first top-mass measurement from

√
s = 13 TeV data. Using

35.9 fb−1 of lepton+jets events they measure the top mass with a
precision of 0.36%, with a statistical component of 0.05%.

The template method is complemented by the ‘matrix element’
method. This method was first applied by the DØ Collaboration [147],
and is similar to a technique originally suggested by Kondo et al. [148]
and Dalitz and Goldstein [149]. In the matrix element method a
probability for each event is calculated as a function of the top-quark
mass, using a LO matrix element for the production and decay of tt̄
pairs. The in situ calibration of dijet pairs to the W → jj hypothesis
is now also used with the matrix element technique to constrain the
jet energy scale uncertainty. In the lepton+jets channel, DØ uses the
full Tevatron dataset of 9.7 fb−1 and yields an uncertainty of about
0.43% [150].
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In the dilepton channel, the signal to background is typically very
good, but reconstruction of the mass is non-trivial because there are
two neutrinos in the final state, yielding a kinematically unconstrained
system. A variety of techniques have been developed to handle this.
An analytic solution to the problem has been proposed [151], but
this has not yet been used in the mass measurement. One of the
most precise measurements in the dilepton channel comes from using
the invariant mass of the charged lepton and b-quark system (Mℓb),
which is sensitive to the top-quark mass and avoids the kinematic
difficulties of the two-neutrino final state. In 4.6 fb−1 of

√
s = 7

TeV data, ATLAS has measured the top-quark mass in the dilepton
channel to a precision of 0.81% using a template fit to the Mℓb
distribution [145]. Recently, using 19.7 fb−1 of data at

√
s = 8 TeV,

CMS has released [152] a mass measurement in the dilepton channel
based on a simultaneous fit to Mℓb and a transverse-mass-like variable
MT2 [153]. The most precise result in this analysis, which comes
from a linear combination of fits with the jet energy scale fixed at its
nominal value and one that simultaneously determines the top mass
and jet energy scale, has a total uncertainty of 0.54%. At the LHC,
because of their precision, these techniques have largely displaced a
number of earlier techniques in the dilepton channel, though these
techniques are still included, and described, in the combined results
from CMS, reported in Ref. [146].

Table 67.1: Measurements of top-quark mass from Tevatron and LHC.
∫
Ldt is given in fb−1.

The results are a selection of both published and preliminary (not yet submitted for publication
as of August 2017) measurements. For a complete set of published results see the Listings.
Statistical uncertainties are listed first, followed by systematic uncertainties.

mt (GeV/c2) Source
∫
Ldt Ref. Channel

172.99± 0.48± 0.78 ATLAS 4.6 [145] ℓ+jets+ℓℓ

172.44± 0.13± 0.47 CMS 19.7 [146] ℓ+jets+ℓℓ+All jets

172.35± 0.16± 0.48 CMS 19.7 [146] ℓ+jets

172.22± 0.18+0.89
−0.93 CMS 19.7 [152] ℓℓ

173.72± 0.55± 1.01 ATLAS 20.2 [158] All jets

172.25± 0.08± 0.62 CMS 35.9 [159] ℓ+jets

174.30± 0.35± 0.54 CDF,DØ (I+II) ≤9.7 [174] publ. or prelim.

173.34± 0.27± 0.71 Tevatron+LHC ≤8.7+≤4.9 [2] publ. or prelim.

In the neutrino weighting technique, used by CDF to analyze
the full Run 2 dilepton dataset of 9.1 fb−1, a weight is assigned by
assuming a top-quark mass value and applying energy-momentum
conservation to the top-quark decay, resulting in up to four possible
pairs of solutions for the neutrino and anti-neutrino momenta. The
missing ET calculated in this way is then compared to the observed
missing ET to assign a weight [156]. The CDF result achieves a
precision of 1.8% using a combination of neutrino weighting and an
”alternative mass”, which is insensitive to the jet energy scale [157].
The alternative mass depends on the angles between the leptons and
the leading jets and the lepton four-momenta.

In the all-jets channel there is no ambiguity due to neutrino
momenta, but the signal to background is significantly poorer due to
the severe QCD multijets background. The emphasis therefore has
been on background modeling, and reduction through event selection.
The most recent measurement in the all-jets channel, by CMS in
18.2 fb−1 of

√
s = 8 TeV data [146], uses an ideogram method

and a 2-dimensional simultaneous fit for mt and the jet energy scale
to extract the top-quark mass and achieves a precision of 0.56%. A
recent measurement from ATLAS [158] uses a template fit to the ratio
of three-jet (mt) to two-jet (MW ) mass in the all-hadronic channel,
the two-jet denominator provides an in situ, fit to the W → jj
hypothesis. In 20.2 fb−1 of data at

√
s = 8 TeV, the result has a

precision of 0.65%. A measurement from CDF in 9.3 fb−1 uses a

two-dimensional template fit and achieves a precision of 1.1% [160].

The CMS Collaboration has, for the first time, extracted a
top-quark mass measurement from single-top events [161], something
not previously done because of the poor signal to background ratio.
The mass is extracted from the invariant mass of the muon, bottom
quark, and missing transverse energy. In 19.7 fb−1 of data at

√
s = 8

TeV, a precision of 0.71% is achieved.

A dominant systematic uncertainty in these methods is the
understanding of the jet energy scale, and so several techniques
have been developed that have little sensitivity to the jet energy
scale uncertainty. In addition to Reference [157] mentioned above,
these include the measurement of the top-quark mass using the
following techniques: Fitting of the lepton pT spectrum of candidate
events [162]; fitting of the transverse decay length of the b-jet
(Lxy) [163]; fitting the invariant mass of a lepton from the W -decay
and a muon from the semileptonic b decay [168], kinematic properties
of secondary vertices from b−quark fragmentation [164], the invariant
mass of the J/ψ + ℓ system in events in which a b−quark fragments
to a J/ψ particle [165], fitting the b−jet energy peak [166], and
dilepton kinematics in eµ events citetopquark:CMS-PAS-TOP-16-002.

Several measurements have now been made in which the top-quark
mass is extracted from the measured tt cross section using the

theoretical relationship between the mass and the production cross
section. These determinations make use of predictions calculated at
higher orders, where the top mass enters as an input parameter defined
in a given scheme. At variance with the usual methods, which involve
the kinematic properties of the final states and therefore the pole
mass, this approach can also directly determine a short-distance mass,
such as the MS mass [169]. With an alternative method ATLAS
recently extracted the top-quark pole mass using tt events with at
least one additional jet, basing the measurement on the relationship
between the differential rate of gluon radiation and the mass of the
quark [170]. A similar analysis by CMS used the differential cross
section as a function of the invariant mass of the tt system and the
leading jet not associated with the top decays [171].

Each of the experiments has produced a measurement combining
its various results. The combined measurement from CMS with up
to 19.7 fb−1 of data achieves statistical and systematic uncertainties
of 0.08% and 0.27%, respectively [146]. The combined measurement
from ATLAS, with 4.6 fb−1 yields statistical and systematic
uncertainties of 0.28% and 0.45%, respectively [145]. CDF has
combined measurements with up to 9.3 fb−1 [172] and achieves
a statistical precision of 0.33% and a systematic uncertainty of
0.43%. DØ achieves a 0.33% statistical+JES and a 0.28% systematic
uncertainty by combining results in 9.7 fb−1 [173].

Combined measurements from the Tevatron experiments and
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from the LHC experiments take into account the correlations
between different measurements from a single experiment and between
measurements from different experiments. The Tevatron average [174],
using up to 9.7 fb−1 of data, now has a precision of 0.37%. The
LHC combination, using up to 4.9 fb−1 of data, has a precision of
0.56% [175], where more work on systematic uncertainties is required.
A Tevatron-LHC combination has been released, combining the results
of all four experiments, using the full Tevatron dataset and the

√
s = 7

TeV LHC data, with a resulting precision of 0.44% [2]

The direct measurements of the top-quark mass, such as those
shown in Table 67.1, correspond to the parameter used in the Monte
Carlo generators, which is generally agreed to be the pole mass. The
relation between the pole mass and short-distance masses, such as MS,
is affected by non-perturbative effects. Recent calculations evaluate
the size of this ambiguity to be below 250 MeV and therefore still
smaller than the current measurement uncertainty [176,177].

With the discovery of a Higgs boson at the LHC with a mass
of about 125 GeV/c2 [178,179], the precision measurement of the
top-quark mass takes a central role in the question of the stability of
the electroweak vacuum because top-quark radiative corrections tend
to drive the Higgs quartic coupling, λ, negative, potentially leading
to an unstable vacuum. A recent calculation at NNLO [180] leads
to the conclusion of vacuum stability for a Higgs mass satisfying
MH ≥ 129.4 ± 5.6 GeV/c2 [181]. Given the uncertainty, a Higgs
mass of 126 GeV/c2 satisfies the limit, but the central values of the
Higgs and top-quark masses put the electroweak vacuum squarely in
the metastable region. The uncertainty is dominated by the precision
of the top-quark mass measurement and its interpretation as the pole
mass. For more details, see the Higgs boson review in this volume.

As a test of the CPT-symmetry, the mass difference of top-
and antitop-quarks ∆mt = mt − mt̄, which is expected to be zero,
can be measured. CDF measures the mass difference in 8.7 fb−1 of
1.96 TeV data in the lepton+jets channel using a template methode
to find ∆mt = −1.95 ± 1.11(stat.)± 0.59(syst.) GeV/c2 [182] while
DØ uses 3.6 fb−1 of lepton+jets events and the matrix element
method with at least one b-tag. They find ∆mt = 0.8 ± 1.8(stat.) ±
0.5(syst.) GeV/c2 [183]. In 4.7 fb−1 of 7 TeV data, ATLAS
measures the mass difference in lepton+jets events with a double
b-tag requirement and hence very low background to find ∆mt =
0.67 ± 0.61(stat.) ± 0.41(syst.) GeV/c2 [184]. CMS measures the
top-quark mass difference in 5 fb−1 of 7 TeV data in the lepton+jets
channel and finds ∆mt = −0.44±0.46(stat.)±0.27(syst.) GeV/c2 [185].
They repeat this measurement with 19.6 fb−1 of 8 TeV data to
find ∆mt = −0.15 ± 0.19(stat.) ± 0.09(syst.) GeV/c2 [186]. All
measurements are consistent with the SM expectation.

67.3.2.2. Top-Quark Spin Correlations, Polarization, and Width:

One of the unique features of the top quark is that it decays
before its spin can be flipped by the strong interaction. Thus
the top-quark polarization is directly observable via the angular
distribution of its decay products. Hence, it is possible to define and
measure observables sensitive to the top-quark spin and its production
mechanism. Although the top- and antitop-quarks produced by strong
interactions in hadron collisions are essentially unpolarized, the spins
of t and t̄ are correlated. For QCD production at threshold, the
tt̄ system is produced in a 3S1 state with parallel spins for qq̄
annihilation or in a 1S0 state with antiparallel spins for gluon-gluon
fusion. Hence, the situations at the Tevatron and at the LHC are
somewhat complementary. However, at the LHC production of tt̄
pairs at large invariant mass occurs primarily via fusion of gluons with
opposite helicities, and the tt̄ pairs so produced have parallel spins
as in production at the Tevatron via qq̄ annihilation. The direction
of the top-quark spin is 100% correlated to the angular distributions
of the down-type fermion (charged leptons or d-type quarks) in the
decay. The joint angular distribution [187–189]

1

σ

d2σ

d(cos θ+)d(cos θ−)
=

1 +B+ cos θ+ +B− cos θ− + κ · cos θ+ · cos θ−
4

,

(67.4)
where θ+ and θ− are the angles of the daughters in the top-quark rest
frame with respect to a particular spin quantization axis (assumed

here to be the same for θ+ and θ−), is a very sensitive observable.
The maximum value for κ, 0.782 at NLO at the Tevatron [190], is
found in the off-diagonal basis [187], while at the LHC the value
at NLO is 0.326 in the helicity basis [190]. The coefficients B+ and
B− are near zero in the SM because the tops are unpolarized in tt̄
production. In place of κ, Aα+α− is often used, where αi is the spin
analyzing power, and A is the spin correlation coefficient, defined as

A=
N(↑↑) +N(↓↓)−N(↑↓)−N(↓↑)
N(↑↑) +N(↓↓) +N(↑↓) +N(↓↑) , (67.5)

where the first arrow represents the direction of the top-quark spin
along a chosen quantization axis, and the second arrow represents the
same for the antitop-quark. The spin analyzing power αi is +0.998
for positively charged leptons, -0.966 for down-type quarks from W
decays, and -0.393 for bottom quarks [191]. The sign of α flips for
the respective antiparticles. The spin correlation could be modified
by a new tt̄ production mechanism such as through a Z ′ boson,
Kaluza-Klein gluons, or a Higgs boson.

CDF used 5.1 fb−1 in the dilepton channel to measure the
correlation coefficient in the beam axis [193]. The measurement
was made using the expected distributions of (cos θ+, cos θ−) and
(cos θb, cos θb̄) of the charged leptons or the b-quarks in the tt̄ signal
and background templates to calculate a likelihood of observed
reconstructed distributions as a function of assumed κ. They
determined the 68% confidence interval for the correlation coefficient κ
as −0.52 < κ < 0.61 or κ = 0.04± 0.56 assuming mt = 172.5 GeV/c2.

CDF also analyzed lepton+jets events in 5.3 fb−1 [194] assuming
mt = 172.5 GeV/c2. They form three separate templates - the
same-spin template, the opposite-spin template, and the background
template for the 2-dimensional distributions in cos(θl) cos(θd) vs.
cos(θl) cos(θb). The fit to the data in the helicity basis returns an
opposite helicity fraction of FOH = 0.74 ± 0.24(stat.) ± 0.11(syst.).
Converting this to the spin correlation coefficient yields κhelicity =
0.48 ± 0.48(stat.) ± 0.22(syst.). In the beamline basis, they find
an opposite spin fraction of FOS = 0.86 ± 0.32(stat.) ± 0.13(syst.)
which can be converted into a correlation coefficient of κbeam =
0.72± 0.64(stat.)± 0.26(syst.).

DØ performed a measurement of the ratio f of events with
correlated t and t̄ spins to the total number of tt̄ events in 5.3 fb−1

in the lepton+jets channel using a matrix element technique [195].
The SM expectation is f = 1. From 729 events, they obtain
fexp. = 1.15+0.42

−0.43(stat.+ syst.) and can exclude values of f < 0.420 at
the 95% C.L. In the dilepton channel [196], they also use a matrix
element method and can exclude at the 97.7% C.L. the hypothesis
that the spins of the t and t̄ are uncorrelated. The combination [195]
yields fexp. = 0.85 ± 0.29 (stat + syst) and a tt̄ production cross
section which is in good agreement with the SM prediction and
previous measurements. For an expected fraction of f = 1, they
can exclude f < 0.481 at the 95% C.L. For the observed value of
fexp. = 0.85, they can exclude f < 0.344(0.052) at the 95(99.7)% C.L.
The observed fraction fexp. translates to a measured asymmetry value
of Aexp. = 0.66± 0.23(stat.+ syst.). They obtained the first evidence
of SM spin correlation at 3.1 standard deviations.

Using 5.4 fb−1 of data, DØ measures the correlation in the dilepton
channel also from the angles of the two leptons in the t and t̄ rest
frames, yielding a correlation strength C = 0.10 ± 0.45 [197] (C is
equivalent to negative κ in Eq. 4), in agreement with the NLO QCD
prediction, but also in agreement with the no correlation hypothesis.

Spin correlations have been conclusively measured at the LHC
by both the ATLAS and CMS collaborations. In the dominant
gluon fusion production mode for tt̄ pairs at the LHC, the angular
distribution between the two leptons in tt̄ decays to dileptons is
sensitive to the degree of spin correlation [198].

The ATLAS collaboration has measured spin correlations in tt̄
production at

√
s = 7 TeV using 4.6 fb−1 of data. Candidate events

are selected in the dilepton and lepton plus jets topologies. Four
observables are used to extract the spin correlation: The difference,
∆φ in azimuthal angle between the two charged leptons in dilepton
events or the lepton and down-quark or bottom-quark candidate
from the hadronic W -decay; An observable based on the ratio matrix
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elements with and without spin correlation; The double differential
distribution of Eq. 4 in two different bases. The most sensitive
measurement comes from using ∆φ in dilepton events and results in
fSM = 1.19± 0.09± 0.18. Using the helicity basis as the quantization
axis, the strength of the spin correlation between the top- and
antitop-quark is measured to be Aexp.

helicity = 0.37± 0.03 ± 0.06 [199],

which is in agreement with the NLO prediction of about 0.31 [200].
Using the same events but converting fexp. into Aexp.

maximal yields

Aexp.
maximal = 0.52± 0.04± 0.08, to be compared to the NLO prediction

of 0.44. In a similar analysis using 20.3 fb−1 of data at
√
s = 8 TeV,

ATLAS measures fSM = 1.20±0.05(stat.)±0.13(syst.), corresponding
to A

exp.
helicity = 0.38 ± 0.04 [201], which compares well to the SM

expectation of ASM
helicity = 0.318± 0.005 [200]. ATLAS has released

a measurement based on the correlation between the polar angles of
the lepton in dilepton events [202]. The result, in the helicity basis,
A
exp.
helicity = 0.315 ± 0.061 ± 0.049 is in good agreement with the SM

prediction.

The CMS collaboration uses angular asymmetry variables in
dilepton events, unfolded to the parton level. The most sensitive
measurement is made using

A∆φ=
N(∆φℓ+ℓ− > π/2)−N(∆φℓ+ℓ− < π/2)

N(∆φℓ+ℓ− > π/2) +N(∆φℓ+ℓ− < π/2)
. (67.6)

In 5.0 fb−1 of pp collisions at
√
s = 7 TeV, CMS measures

A∆φ = 0.113 ± 0.010± 0.006 ± 0.012 [203], where the uncertainties
are statistical, systematic, and due to the reweighting of the top pT in
the Monte Carlo to match data.

Recent results from both CMS and ATLAS top spin measurements
made at

√
s = 8 TeV. In 19.7 fb−1 of data, using a matrix element

technique, CMS measures fSM = 0.72 ± 0.08+0.15
−0.13, corresponding to

Aexp.
helicity = 0.23 ± 0.03+0.05

−0.04 [204]. Corresponding results obtained

by studying the dilepton final state also show consistency with the
SM expectations [192]. ATLAS has published an analysis of ten
top-quark spin observables [205], corresponding to the coefficients in
Eq. 4, and linear combinations thereof, measured in three different
bases (including measuring the coefficient κ using a different basis for
the top and anti-top decay products). The spin-correlation coefficient
κ is measured in the helicity basis to be κ = 0.296 ± 0.093 in
good agreement with the SM expectation of 0.318. The polarization
coefficients, B, in Eq. 4 are measured, also in the helicity basis, to be
B+ = −0.044± 0.038 and B− = −0.064± 0.040, consistent with the
SM predictions of 0.0030± 0.0010 and 0.0034± 0.00104, respectively.

ATLAS and CMS have also produced measurements of the
polarization of top quarks in tt production at

√
s = 7 TeV. In 4.7 fb−1

of data, ATLAS measures the product of the leptonic spin-analyzing
power (αℓ) and the top quark polarization. The measurement is made
in one or two lepton final states, assuming that the polarization is
introduced by a CP-conserving (CPC) or maximally CP-violating
(CPV) process. The results are αℓPCPC = −0.035 ± 0.014 ± 0.037
and αℓPCPV = 0.020 ± 0.016+0.013

−0.017 [206], where the uncertainties
are statistical and systematic, respectively. The CMS measurement is
made with 5.0 fb−1 of dilepton events. The polarization is extracted
through an asymmetry, AP , in the angular distribution of the two
leptons, AP , defined as

AP =
N(cos θ∗ℓ > 0)−N(cos θ∗ℓ < 0)

N(cos θ∗ℓ > 0) +N(cos θ∗ℓ < 0)
, (67.7)

where θ∗ is the angle of the charged lepton in the rest frame of its
parent top quark or antiquark. The polarization, P in the helicity
basis is given by P = 2AP . After unfolding to the parton level, the
measurement yields AP = 0.005± 0.013± 0.014± 0.008 [203], where
the uncertainties are, respectively, statistical, systematic, and from
top-quark pT reweighting. Both the ATLAS and CMS results are
consistent with the SM expectation of negligible polarization.

A recent DØ publication [207] presents a measurement of top-quark
polarization in tt production at the Tevatron. In 9.7 fb−1 of pp̄
collisions, DØ uses lepton angular distributions in lepton+jets events
to measure polarization in the beam, helicity, and transverse bases.

The measurements are, respectively, 0.081 ± 0.048, − 0.102 ± 0.061
and, 0.040± 0.035, where the beam-basis result is a combination with
an earlier DØ result in dilepton events [208]. These results are all
consistent near-zero polarization, as predicted in the SM.

Observation of top-quark spin correlations requires a top-quark
lifetime less than the spin decorrelation timescale [209]. The top-
quark width, inversely proportional to its lifetime, is expected to be of
order 1 GeV/c2 (Eq. 1). The sensitivity of current experiments does
not approach this level in direct measurements. Nevertheless, several
measurements have been made.

CDF presents a direct measurement of the top-quark width in
the lepton+jets decay channel of tt̄ events from a data sample
corresponding to 8.7 fb−1 of integrated luminosity. The top-quark
mass and the mass of the hadronically decaying W boson that
comes from the top-quark decay are reconstructed for each event
and compared with templates of different top-quark widths (Γt)
and deviations from nominal jet energy scale (∆JES) to perform
a simultaneous fit for both parameters, where ∆JES is used for
the in situ calibration of the jet energy scale. By applying a
Feldman-Cousins approach, they establish an upper limit at 95%
C.L. of Γt < 6.38 GeV and a two-sided 68% C.L. interval of
1.10 GeV < Γt < 4.05 GeV, corresponding to a lifetime interval of
1.6 × 10−15 < τtop < 6.0 × 10−25 [210], consistent with the SM
prediction. For comparison, a typical hadronization timescale is an
order of magnitude larger than these limits. CMS uses partially
reconstructed top-quarks in a clean sample of dilepton events to bound
the top-quark width. In 12.9 fb−1 of data at

√
s = 13 TeV, CMS

reports a 95% C.L. interval of 0.6 ≤ Γt ≤ 2.5 GeV [211]. Recently
ATLAS has provided a measurement by directly fitting reconstructed
lepton+jets events in 20.2 fb−1 of data at

√
s = 8 TeV. They find

Γt = 1.76± 0.33+0.79
−0.68 GeV [212].

The total width of the top-quark can also be determined from the
partial decay width Γ(t → Wb) and the branching fraction B(t → Wb).
DØ obtains Γ(t → Wb) from the measured t-channel cross section for
single top-quark production in 5.4 fb−1, and B(t → Wb) is extracted
from a measurement of the ratio R = B(t → Wb)/B(t → Wq) in
tt̄ events in lepton+jets channels with 0, 1 and 2 b-tags. Assuming
B(t → Wq) = 1, where q includes any kinematically accessible
quark, the result is: Γt = 2.00+0.47

−0.43 GeV which translates to a

top-quark lifetime of τt = (3.29+0.90
−0.63) × 10−25 s. Assuming a high

mass fourth generation b′ quark and unitarity of the four-generation
quark-mixing matrix, they set the first upper limit on |Vtb′ | < 0.59
at 95% C.L. [213]. A similar analysis has performed by CMS in
19.7 fb−1 of

√
s = 8 TeV data. It provides a better determination

of the total width with respect to the measurement by DØ giving
Γt = 1.36± 0.02(stat.)+0.14

−0.11(syst.) GeV [214].

67.3.2.3. W-Boson Helicity in Top-Quark Decay:

The Standard Model dictates that the top quark has the same
vector-minus-axial-vector (V − A) charged-current weak interactions(
−i

g√
2
Vtbγ

µ 1

2
(1− γ5)

)
as all the other fermions. In the SM, the

fraction of top-quark decays to longitudinally polarized W bosons is
proportional to its Yukawa coupling and hence enhanced with respect
to the weak coupling. It is expected to be [215] FSM

0 ≈ x/(1 + x),

x = m2
t /2M

2
W (FSM

0 ∼ 70% for mt = 175 GeV/c2). Fractions of
left-handed, right-handed, or longitudinal W bosons are denoted as
F−, F+, and F0 respectively. In the SM, F− is expected to be ≈ 30%
and F+ ≈ 0%. Predictions for the W polarization fractions at NNLO
in QCD are available [216].

The Tevatron and the LHC experiments use various techniques to
measure the helicity of the W boson in top-quark decays, in both the
lepton+jets and in dilepton channels in tt̄ production.

The first method uses a kinematic fit, similar to that used
in the lepton+jets mass analyses, but with the top-quark mass
constrained to a fixed value, to improve the reconstruction of
final-state observables, and render the under-constrained dilepton
channel solvable. Alternatively, in the dilepton channel the final-state
momenta can also be obtained through an algebraic solution of the
kinematics. The distribution of the helicity angle (cos θ∗) between the
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lepton and the b quark in the W rest frame provides the most direct
measure of the W helicity. In a simplified version of this approach,
the cos θ∗ distribution is reduced to a forward-backward asymmetry.

The second method (pℓT ) uses the different lepton pT spectra from
longitudinally or transversely polarized W -decays to determine the
relative contributions.

A third method uses the invariant mass of the lepton and the
b-quark in top-quark decays (M2

ℓb) as an observable, which is directly
related to cos θ∗.

At the LHC, top-quark pairs in the dilepton channels are
reconstructed by solving a set of six independent kinematic equations
in the missing transverse energy in x- and in y-direction, two
W -masses, and the two top/antitop-quark masses. In addition, the
two jets with the largest pT in the event are interpreted as b-jets. The
pairing of the jets to the charged leptons is based on the minimization
of the sum of invariant masses Mmin. Simulations show that this
criterion gives the correct pairing in 68% of the events.

Finally, the Matrix Element method (ME) has also been used, in
which a likelihood is formed from a product of event probabilities
calculated from the ME for a given set of measured kinematic variables
and assumed W -helicity fractions.

The results of recent CDF, DØ, ATLAS, and CMS analyses are
summarized in Table 67.2. The datasets are now large enough to allow
for a simultaneous fit of F0, F− and F+, which we denote by ‘3-param’
or F0 and F+, which we denote by ‘2-param’ in the table. Results
with either F0 or F+ fixed at its SM value are denoted ‘1-param’.
For the simultaneous fits, the correlation coefficient between the two
values is about −0.8. A complete set of published results can be found
in the Listings. All results are in agreement with the SM expectation.

CDF and DØ combined their results based on 2.7 − 5.4 fb−1

[217] for a top-quark mass of 172.5 GeV/c2. ATLAS presents results
from 1.04 fb−1 of

√
s = 7 TeV data using a template method for

the cos θ∗ distribution and angular asymmetries from the unfolded
cos θ∗ distribution in the lepton+jets and the dilepton channel [219].
CMS performs a similar measurement based on template fits to the
cos θ∗ distribution with 5.0 fb−1 of 7 TeV data in the lepton+jets
final state [220]. As the polarization of the W bosons in top-
quark decays is sensitive to the Wtb vertex Lorentz structure and
anomalous couplings, both experiments also derive limits on anomalous
contributions to the Wtb couplings. Recently, both experiments also
combined their results from 7 TeV data to obtain values on the helicity
fractions as well as limits on anomalous couplings [221].

At 8 TeV, ATLAS came out with a measurement of the W-helicity
fractions in 20.2 fb−1 in lepton+jets events with at least one
b-tag [222]. Using 19.8 fb−1 of 8 TeV data, CMS measured the
W-helicity in lepton + 4 jet events with two b-tags [223]. In tt events
with two opposite-sign leptons (electron or muon) in the final state in
this dataset, CMS applied six kinematic constraints on the kinematics
of the produced particles [224]. Also, using the same dataset a first
measurement of the W -boson helicity in top-quark decays was made
in electroweak single top production [225], yielding similarly precise
and consistent results.

67.3.2.4. Top-Quark Electroweak Charges:

The top quark is the only quark whose electric charge has not
been measured through production at threshold in e+e− collisions.
Furthermore, it is the only quark whose electromagnetic coupling has
not been observed and studied until recently. Since the CDF and DØ
analyses on top-quark production did not associate the b, b̄, and W±
uniquely to the top or antitop, decays such as t → W+b̄, t̄ → W−b
were not excluded. A charge 4/3 quark of this kind is consistent with
current electroweak precision data. The Z → ℓ+ℓ− and Z → bb̄ data,
in particular the discrepancy between ALR from SLC at SLAC and

A0,b
FB of b-quarks and A0,ℓ

FB of leptons from LEP at CERN, can be

fitted with a top quark of mass mt = 270 GeV/c2, provided that the
right-handed b quark mixes with the isospin +1/2 component of an
exotic doublet of charge −1/3 and −4/3 quarks, (Q1, Q4)R [226,227].

DØ studied the top-quark charge in double-tagged lepton+jets
events, CDF did it in single tagged lepton+jets and dilepton events.
Assuming the top- and antitop-quarks have equal but opposite electric

Table 67.2: Measurement and 95% C.L. upper limits of the W
helicity in top-quark decays. The table includes both preliminary,
as of September 2017, and published results. A full set of published
results is given in the Listings.

W Helicity Source
∫
Ldt Ref. Method

(fb−1)

F0 = 0.722± 0.081 CDF+DØ Run II 2.7-5.4 [217] cos θ∗ 2-param

F0 = 0.682± 0.057 CDF+DØ Run II 2.7-5.4 [217] cos θ∗ 1-param

F0 = 0.726± 0.094 CDF Run II 8.7 [218] ME 2-param

F0 = 0.67± 0.07 ATLAS (7 TeV) 1.0 [219] cos θ∗ 3-param

F0 = 0.682± 0.045 CMS (7 TeV) 5.0 [220] cos θ∗ 3-param

F0 = 0.626± 0.059 ATLAS+CMS (7 TeV)2.2 [221] cos θ∗ 3-param

F0 = 0.709± 0.019 ATLAS (8 TeV) 20.2 [222] cos θ∗ 3-param

F0 = 0.681± 0.026 CMS (8 TeV) 19.8 [223] cos θ∗ 3-param

F0 = 0.653± 0.029 CMS (8 TeV) 19.7 [224] cos θ∗ 3-param

F0 = 0.720± 0.054 CMS (8 TeV) 19.7 [225] cos θ∗ 3-param

F+ = −0.033± 0.046CDF+DØ Run II 2.7-5.4 [217] cos θ∗ 2-param

F+ = −0.015± 0.035CDF+DØ Run II 2.7-5.4 [217] cos θ∗ 1-param

F+ = −0.045± 0.073CDF Run II 8.7 [218] ME 2-param

F+ = 0.01± 0.05 ATLAS (7 TeV) 1.0 [219] cos θ∗ 3-param

F+ = 0.008± 0.018CMS (7 TeV) 5.0 [220] cos θ∗ 3-param

F+ = 0.015± 0.034ATLAS+CMS (7 TeV)2.2 [221] cos θ∗ 3-param

F+ = −0.008± 0.014ATLAS (8 TeV) 20.2 [222] cos θ∗ 3-param

F+ = −0.004± 0.015CMS (8 TeV) 19.8 [223] cos θ∗ 3-param

F+ = 0.018± 0.027CMS (8 TeV) 19.7 [224] cos θ∗ 3-param

F+ = −0.018± 0.022CMS (8 TeV) 19.7 [225] cos θ∗ 3-param

charge, then reconstructing the charge of the b-quark through jet
charge discrimination techniques, the |Qtop| = 4/3 and |Qtop| = 2/3
scenarios can be differentiated. For the exotic model of Chang
et al. [227] with a top-quark charge |Qtop| = 4/3, CDF excluded the
model at 99% C.L. [228] in 5.6 fb−1, while DØ excluded the model at
a significance greater than 5 standard deviations using 5.3 fb−1 and
set an upper limit of 0.46 on the fraction of such quarks in the selected
sample [229]. These results indicate that the observed particle is
indeed consistent with being a SM |Q| = 2/3 quark.

In 2.05 fb−1 at
√
s = 7 TeV, ATLAS performed a similar analysis,

reconstructing the b-quark charge either via a jet-charge technique
or via the lepton charge in soft muon decays in combination with
a kinematic likelihood fit. They measure the top-quark charge to
be 0.64± 0.02(stat.)± 0.08(syst.) from the charges of the top-quark
decay products in single lepton tt̄ events, and hence exclude the exotic
scenario with charge −4/3 at more than 8σ [230].

In 4.6 fb−1 at
√
s = 7 TeV, CMS discriminates between the

Standard Model and the exotic top-quark charge scenario in
the muon+jets final states in tt̄ events. They exploit the charge
correlation between high-pt muons from W -boson decays and
soft muons from B-hadron decays in b-jets. Using an asymmetry
technique, where A = −1 represent the exotic Q = −4/3 scenario
and A = +1 the Standard Model Q = +2/3 scenario, they find
Ameas = 0.97 ± 0.12(stat.) ± 0.31(sys.), which agrees with the
Standard Model expectation and excludes the exotic scenario at 99.9%
C.L. [231].

The electromagnetic or the weak coupling of the top quark can be
probed directly by investigating tt̄ events with an additional gauge
boson, such as tt̄γ, tt̄W , and tt̄Z events.

CDF performed a search for events containing a lepton, a photon,
significant missing transverse momentum, and a jet identified as
containing a b-quark and at least three jets and large total transverse
energy in 6.0 fb−1. They reported evidence for the observation of tt̄γ
production with a cross section σt̄tγ = 0.18 ± 0.08 pb and a ratio of
σt̄tγ/σt̄t = 0.024± 0.009 [232].
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ATLAS performed a first measurement of the tt̄γ cross section in pp
collisions at

√
s = 7 TeV using 4.6 fb−1 of data. Events are selected

that contain a large transverse momentum electron or muon and a
large transverse momentum photon, yielding 140 and 222 events in
the electron and muon samples, respectively. The production of tt̄γ
events was observed with a significance of 5.3% standard deviations.
The resulting cross section times branching ratio into the single lepton
channel for tt̄γ production with a photon with transverse momentum
above 20 GeV is σfid.(tt̄γ)×BR = 63±8(stat.)+17

−13(syst.)±1(lumi.) pb
per lepton flavour [233], which is consistent with leading-order
theoretical calculations. Using 19.7 fb−1 of data at 8 TeV, CMS
performed a similar measurement of the tt̄γ production cross
section in the lepton+jets decay mode with a photon transverse
momentum above 25 GeV and |η| <1.44. They obtain a normalized
cross section R = σt̄t+γ/σt̄t = (5.7 ± 1.8) × 10−4 in e+jets and

(4.7 ± 1.3) × 10−4 in µ+jets. The fiducial tt̄γ cross section is
obtained by multiplying by the measured tt̄ fiducial cross section of
244.9± 1.4(stat.)+6.3

−5.5(sys.) ± 6.4(lumi.)pb. Extrapolating to the full
phase space, the result is σt̄tγ×BR=(515± 108) fb, per lepton+jets
final state [234], in good agreement with the theoretical prediction.
Also at 8 TeV, ATLAS has used 20.2 fb−1 of data to measure the tt̄γ
cross section with a photon above 15 GeV and |η| < 2.37. The fiducial
cross section is measured to be 139± 18 fb [235], in good agreement
with the NLO prediction. A precision test of the vector and axial
vector couplings in tt̄γ events or searches for possible tensor couplings
of top-quarks to photons will only be feasible with an integrated
luminosity of several hundred fb−1 in the future.

ATLAS and CMS have also studied the associate production of
top-antitop quark pairs along with an electroweak gauge boson, where
in the Standard Model the W -boson is expected to be produced via
initial state radiation, while the Z-boson can also be radiated from a
final-state top-quark and hence provides sensitivity to the top-quark
neutral current weak gauge coupling, which implies a sensitivity to the
third component of the top-quark’s weak isospin.

CMS performed measurements of the tt̄W and tt̄Z production
cross section at

√
s = 7 TeV with 5 fb−1, yielding results at about 3

standard deviations significance [236]. ATLAS performed a similar
analysis with 4.7 fb−1 in the three-lepton channel and set an upper
limit of 0.71 pb at 95% C.L. [237].

Using 20.3 fb−1 of 8 TeV data, ATLAS performs a simultaneous
measurement of the tt̄W and tt̄Z cross section. They observe the
tt̄W and tt̄Z production at the 5.0σ and 4.2σ level, respectively,
yielding σt̄tW = 369+100

−91 fb and σt̄tZ = 176+58
−52 fb [238]. CMS

performs an analysis where signal events are identified by matching
reconstructed objects in the detector to specific final state particles
from tt̄W and tt̄Z decays. using 19.5 fb−1 of 8 TeV data. They obtain
σt̄tW = 382+117

−102 fb and σt̄tZ = 242+65
−55 fb, yielding a significance of 4.8

and 6.4 standard, respectively [239]. These measurements are used
to set bounds on five anomalous dimension-six operators that would
affect the tt̄W and tt̄Z cross sections.

The most recent measurements in these channels are made at 13
TeV from ATLAS and CMS in multilepton final states. Using 3.2 fb−1

of data, ATLAS has made measurements of the tt̄W and tt̄Z cross
sections in multilepton final states. Using a likelihood technique to fit
signal and control regions, ATLAS measured tt̄W and tt̄Z production
cross sections of 1.5±0.8 pb and 0.9±0.3 pb, and significances over the
background-only hypotheses of 2.2σ and 3.9σ, respectively [240]. The
results are consistent with Standard Model expectations. CMS uses
35.9 fb−1 of data to measure tt̄W and tt̄Z production cross sections
of 0.80+0.12 +0.13

−0.11 −0.12 pb and 1.00+0.09 +0.12
−0.08 −0.10 pb, and significances over

the background-only hypotheses of 5.5σ and 9.5σ, respectively [241],
firmly establishing the observation of these processes.

The electroweak couplings can also be probed in single-top
production in association with a Z boson. The pp → tZq process at
the LHC probes both the WWZ coupling in the case where the Z
emerges from the t-channel W in single-top production and, in the case
where the Z is radiated from the top quark, the tZ coupling. A CMS
search at 8 TeV produced a hint of a tZq signal in tri-lepton events,
with a significance compared to the background-only hypothesis of
2.4σ [242]. At 13 TeV the signal has begun to emerge. ATLAS uses

36.1 fb−1 of 13 TeV data in events with three leptons and two jets,
at least one of which is b-tagged, to extract with a neural-network
technique, a tZq cross section of 600± 170± 140 fb, with a significance
of 4.2σ [243]. The result is in agreement with the Standard Model
NLO calculation, which predicts a production cross section of 800 fb.
In the same final state, and with a BDT analysis, CMS uses 35.9 fb−1

of 13 TeV data to measure σ(pp → tZq → Wbℓ+ℓ−q) = 123+44
−39fb,

where the leptons include electrons, muons, and taus [244]. The
observed significance is 3.7σ.

67.3.3. Searches for Physics Beyond the Standard Model :

The top quark plays a special role in the SM. Being the only quark
with a coupling to the Higgs boson of order one, it provides the most
important contributions to the quadratic radiative corrections to the
Higgs mass exposing the issue of the naturalness of the SM. It is
therefore very common for models where the naturalness problem
is addressed to have new physics associated with the top quark. In
SUSY, for instance, naturalness predicts the scalar top partners to
be the lightest among the squarks and to be accessible at the LHC
energies (see the review ”Supersymmetry: Theory”). In models where
the Higgs is a pseudo-Goldstone boson, such as Little Higgs models,
naturalness predicts the existence of partners of the top quarks with
the same spin and color, but with different electroweak couplings,
the so-called vectorial t′. Stops and t′’s are expected to have sizable
branching ratios to top quarks. Another intriguing prediction of SUSY
models with universal couplings at the unification scale is that for
a top-quark mass close to the measured value, the running of the
Yukawa coupling down to 1 TeV naturally leads to the radiative
breaking of the electroweak symmetry [245]. In fact, the top quark
plays a role in the dynamics of electroweak symmetry breaking in
many models [246]. One example is topcolor [247], where a large
top-quark mass can be generated through the formation of a dynamic
tt̄ condensate, X , which is formed by a new strong gauge force
coupling preferentially to the third generation. Another example is
topcolor-assisted technicolor [248], predicting the existence of a heavy
Z ′ boson that couples preferentially to the third generation of quarks.
If light enough such a state might be directly accessible at the present
hadron collider energies, or if too heavy, lead to four-top interactions
possibly visible in the tt̄tt̄ final state, for which limits on production
cross sections at the LHC

√
s = 8 and 13 TeV exist [249–252].

Current strategies to search for new physics in top-quark events
at hadron colliders are either tailored to the discovery of specific
models or model independent. They can be broadly divided in two
classes. In the first class new resonant states are looked for through
decay processes involving the top quarks. Current searches for bosonic
resonances in tt̄ final states, or for direct stop and t′ production, or
for a charged Higgs in H+ → tb̄ fall in the category. On the other
hand, if new states are too heavy to be directly produced, they might
still give rise to deviations from the SM predictions for the strength
and Lorentz form of the top-quark couplings to other SM particles.
Accurate predictions and measurements are therefore needed and the
results be efficiently systematized in the framework of an effective field
theory [253,254]. For instance, the efforts to constrain the structure
of the top couplings to vector bosons (g, γ, Z,W ) and to the Higgs
boson, including flavor-changing neutral currents involving the top
quark, fall in this second category.

67.3.3.1. New Physics in Top-Quark Production:

Theoretical [255–256] and experimental efforts have been devoted
to the searches of tt resonances.

At the Tevatron, both the CDF and DØ collaborations have
searched for resonant production of tt̄ pairs in the lepton+jets
channel [257,258]. In both analyses, the data indicate no evidence
of resonant production of tt̄ pairs. They place upper limits on the
production cross section times branching fraction to tt̄ in comparison
to the prediction for a narrow (ΓZ′ = 0.012MZ′) leptophobic topcolor
Z ′ boson. Within this model, they exclude Z ′ bosons with masses
below 915 (CDF-full data set) and 835 (DØ, 5 fb−1) GeV/c2 at the
95% C.L. These limits turn out to be independent of couplings of the
tt̄ resonance (pure vector, pure axial-vector, or SM-like Z ′). A similar
analysis has been performed by CDF in the all-jets channel using
2.8 fb−1 of data [259].
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At the LHC, both the CMS and ATLAS collaborations have
searched for resonant production of tt̄ pairs, employing different
techniques and final-state signatures (all-jets, lepton+jets, dilepton)
at

√
s = 7, 8 and 13 TeV. In the low mass range, from the tt̄ threshold

to about one TeV, standard techniques based on the reconstruction
of each of the decay objects (lepton, jets and b-jets, missing ET )
are used to identify the top quarks, while at higher invariant mass,
the top quarks are boosted and the decay products more collimated
and can appear as large-radius jets with substructure. Dedicated
reconstruction techniques have been developed in recent years for
boosted top quarks [260] that are currently employed at the LHC.
Most of the analyses are model-independent (i.e., no assumption on
the quantum numbers of the resonance is made) yet they assume a
small width and no signal-background interference.

Using lepton+jets and fully hadronic channels in a data set
corresponding to an integrated luminosity of 2.6 fb−1 at 13 TeV,
the CMS collaboration finds no significant deviations from the SM
background [261] and improves the limits obtained at 8 TeV for
resonances with masses above 2TeV/c2. In particular, the existence
of a leptophobic topcolor particle Z ′ is excluded at the 95%
confidence level for resonances in the mass range 0.6 < MZ′ < 2.5
TeV/c2, 0.5 < MZ′ < 3.9 TeV/c2, and 0.5 < MZ′ < 4.0 TeV/c2

for ΓZ′ = 1%, 10%, 30%MZ′, respectively [261]. Kaluza-Klein
excitations of a gluon with masses between 0.5 < MGKK

< 3.3 TeV/c2

(at 95% confidence level) in the Randall-Sundrum model are also
excluded.

The ATLAS collaboration has performed a search for resonant tt̄
production in the lepton+jets channel using 4.7 fb−1 (20.3 fb−1) of
proton-proton (pp) collision data collected at a center-of-mass energy√
s = 7(8) TeV [262,263]. The tt̄ system is reconstructed using both

small-radius and large-radius jets, the latter being supplemented by a
jet substructure analysis. A search for local excesses in the number
of data events compared to the Standard Model expectation in the tt̄
invariant mass spectrum is performed. No evidence for a tt̄ resonance
is found and 95% confidence-level limits on the production rate are
determined for massive states predicted in two benchmark models.
The most stringent limits come from the sample collected at 8 TeV.
The upper limits on the cross section times branching ratio of a
narrow Z ′ boson decaying to top-quark pairs range from 4.2 pb for a
resonance mass of 0.4 TeV/c2 to 0.03 pb for a mass of 3 TeV/c2. A
narrow leptophobic topcolor Z ′ boson with a mass below 1.8 TeV/c2

is excluded. Upper limits are set on the cross section times branching
ratio for a broad color-octet resonance with Γ/m = 15% decaying
to tt̄. These range from 2.5 pb for a mass of 0.4 TeV/c2 to 0.03 pb
for a mass of 3 TeV/c2. A Kaluza-Klein excitation of the gluon in a
Randall-Sundrum model (a slightly different model is used compared
to CMS) is excluded for masses below 2.2 TeV/c2.

ATLAS has also conducted a search in the all-jet final state at
7 TeV corresponding to an integrated luminosity of 4.7 fb−1 [264].
The tt̄ events are reconstructed by selecting two top quarks in
their fully hadronic decay modes which are reconstructed using the
Cambridge/Aachen jet finder algorithm with a radius parameter of
1.5. The substructure of the jets is analysed using the HEPTopTagger
algorithm [265] to separate top-quark jets from those originating from
gluons and lighter quark jets. The invariant mass spectrum of the
data is compared to the SM prediction, and no evidence for resonant
production of top-quark pairs is found. The data are used to set
upper limits on the cross section times branching ratio for resonant
tt̄ production in two models at 95% confidence level. Leptophobic
Z ′ bosons with masses between 700 and 1000 GeV/c2 as well as
1280 − 1320 GeV/c2 and Kaluza-Klein-Gluons with masses between
700 and 1620 GeV/c2 are excluded at the 95% confidence level.

Heavy charged bosons, such as W ′ or H+, can also be searched for
in tb̄, tj final states (for more information see the review ”W ′-boson
searches” and ”Higgs Bosons: theory and searches”), while heavy
fermion resonances, such as vectorial or excited quarks, in final states
such as tZ, tH, tW, bW .

CMS has performed several searches in this context, the most
stringent limits coming from those at at

√
s = 13 TeV [266–272].

For instance, a W ′ → tb̄ has been searched for in both lepton+jets in
35.9 fb−1. No evidence has been found for a right-handed W ′ boson

and masses below 3.6 TeV/c2 are excluded at 95% confidence level
providing the most stringent limits for right-handed W ′ bosons in the
top and bottom quark decay channel to date [266]. Single production
of a vector-like quark T decaying to a Z boson and a top quark,
with the Z boson decaying leptonically and the top quark decaying
hadronically, has also been searched for in the same data set. At
the 95% confidence level, the product of cross section and branching
fraction has been excluded above values in the range 0.27-0.04 pb for
vector-like quark masses in the range 0.7-1.7 TeV/c2. In the same
selection, the production of a heavy Z ′ boson decaying to T t, with T
decaying to tZ, has been also searched for and limits on the product of
cross section and branching fractions for this process are set between
0.13 and 0.06 pb for Z ′ boson masses in the range from 1.5 to 2.5
TeV/c2 [267]. Finally, a search for the production of heavy partners
of the top quark with charge 5/3 decaying into a top quark and a W
boson has been performed with a data sample corresponding to an
integrated luminosity of 2.3 fb−1, considering final states with either
a pair of same-sign leptons or a single lepton plus jets. In absence of
an excess, a 5/3 charged top quark with right-handed (left-handed)
couplings has been excluded at 95% confidence level for masses below
1020 (990) GeV [268].

ATLAS has performed searches for heavy bosons and fermions
decaying to one top quark at

√
s = 7 and 8 TeV. For example, t-jet

resonances have been searched in the lepton+jets channel of tt̄+ jets
events in 4.7 fb−1 at

√
s = 7 TeV [273]. A heavy new particle, assumed

to be produced singly in association with a t(t̄) quark, decays to a
t(t̄) quark and a light flavor quark, leading to a color singlet (triplet)
resonance in the t(t̄)+jet system. The full 2011 ATLAS pp collision
dataset from the LHC (4.7 fb−1) is used to select tt̄ events. The data
are consistent with the SM expectation and a new particle with mass
below 350 (430) GeV/c2 for W (color triplet) models is excluded with
a 95% confidence level, assuming unit right-handed coupling. ATLAS
has conducted a search for the single and pair production of a new
charge +2/3 quark (T) decaying via T → Zt (and also -1/3 quark
(B) decaying via B → Zb) in a dataset corresponding to 20.3 fb−1

luminosity at
√
s = 8 TeV [274]. Selected events contain a high

transverse momentum Z-boson candidate reconstructed from a pair
of oppositely charged electrons or muons. Additionally, the presence
of at least two jets possessing properties consistent with the decay of
a b-hadron is required, as well as large total transverse momentum
of all central jets in the event. No significant excess of events above
the SM expectation is observed, and upper limits are derived for
vector-like quarks of various masses in a two-dimensional plane of
branching ratios. Under branching ratio assumptions corresponding
to a weak-isospin singlet scenario, a T quark with mass lower than
655 GeV/c2 is excluded at the 95% confidence level. Under branching
ratio assumptions corresponding to a particular weak-isospin doublet
scenario, a T quark with mass lower than 735 GeV/c2 is excluded at
the 95% confidence level.

A complementary search performed by ATLAS in the lepton+jets
final state of the same dataset [250], characterized by an isolated
electron or muon with moderately high transverse momentum,
significant missing transverse momentum, and multiple jets is
performed to look for T (B) → Wb,Zt,Ht(Wt,Zb,Hb) decays. No
significant excess of events above the SM expectation is observed, and
upper limits are derived for vector-like quarks of various masses under
several branching ratio hypotheses. The 95% C.L. observed lower
limits on the T quark mass range between 715 GeV and 950 GeV for
all possible values of the branching ratios into the three decay modes.
In addition this study provides limits on four top-quark production
and production of two positively-charged top quarks. No significant
excess of events over the background expectation is observed. The
four top-quark production cross section must be less than 23 fb in
the SM and less than 12 fb for production via a contact interaction;
in the case of sgluon pair production decaying to tt̄, where a sgluon
is a scalar partner of the gluino [275], the mass of a sgluon must
be greater than 1.06 TeV/c2. Finally, limits in the context of models
featuring two extra dimensions are also set.

In many models top-quark partners preferably decay to top quarks
and weakly interacting neutral stable particles, i.e., possibly dark
matter candidates, that are not detected. An observable especially


