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Introduction

This Thesis is organized as a collection of two different parts. The first studies the

problem of identification and estimation of peer effects in the Money Market Mutual

Fund industry and their impact on its financial stability with respect to widespread

redemption shocks. The second part focuses on the modeling of longevity risk in a

multi-population setting and the assessment of basis risk in the context of dynamic

hedging and international expansions.

While the first part is closely connected to the financial literature about mutual funds

and fire-sales spillovers, the second part contributes instead to the actuarial literature on

continuous time stochastic mortality models. Despite being different from many point

of views, the two parts share a very simple and important common objective: modeling

and assessing Risks.

0.1 Peer effects and financial stability

Money Market Mutual Funds (MMMFs) have attracted the attention of both academics

and regulators due to the several runs they have suffered in recent years. In particular,

the 2007-2008 financial crisis marked a significant shift in the opinion about the riskiness

of the MMMF industry and its importance for the stability of the entire financial sys-

tem. Money market funds were traditionally considered by market participants very safe

investments, similar to bank deposits. This widespread belief was generally supported

by the historical evidence - since no major money market fund had ever failed before the

crisis - and by their regulatory constraints. Indeed, under Rule 2a-7 of the Investment

1
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Company Act of 1940, MMFs were required to invest only in high quality short-term

money market instruments, they could not be exposed for more than 5% to any single

issuer, and were allowed to maintain a stable Net Asset Value (NAV) of $1.00 per share

by valuing their portfolios at “amortized cost”.

However, in September 2008, the default of Lehman Brothers caused the NAV/Share

of the Reserve Primary Fund to fall below the value of $ 0.9951 triggering widespread

redemptions in the entire industry. The failure of the Reserve Primary Fund showed

firstly that MMFs were bearing significant risks - Kacperczyk and Schnabl [2013] high-

lights that in the year prior the crisis the excess yield of MMF with respect to US

Treasuries rose from 15bp to 90bp with a substantial increase in the cross-sectional dis-

persion - and secondly that the entire industry was at risk for run-like behaviors. As

described in Schmidt et al. [2016], during the week of September 15 2008 other prime

funds suffered large outflows - many amounting to more than 10% of their asset under

management in a single day - totaling about $300 billion. Given the already difficult

conditions of the credit market, money market funds were struggling to sell securities in

order to meet redemptions, showing they could be vulnerable to aggregate risks such as

the risk of run-like behavior or the risk of fire sales spillovers.

Similar risks, although at a much smaller scale, materialized during the European

Sovereign Debt Crisis of summer 2011 in what has been named the "slow-motion run"

(see Chernenko and Sunderam [2014]). Investors feared the funds exposure to European

banks and redeemed about $180 billion from the entire industry during the months from

June to August 2011.

Motivated by these episodes, in Chapter 1 we study the contemporaneous flow depen-

dence within the industry of US Money Market Mutual Funds and its resilience to

widespread flow shocks. In particular, we empirically investigate the presence of peer

effects within funds flows and their effect on the vulnerability of the industry.

Peer effects refer to the influence on an individual outcome of its peers outcomes, and

1The event of the NAV/Share of a money market mutual fund falling below $ 0.995 is usually referred
to as “breaking the buck”.
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have been studied in many different domains, such as school achievement (see Sacerdote

[2001]). However, since the influential work of Manski [1993], peer effects have been

divided in two categories: endogenous peer effects, i.e. the influence of peer outcomes,

and exogenous peer effects, i.e. the influence of peer characteristics, leaving researchers

with the complex challenge of distinguishing between the two effects in order to iden-

tify the drivers behind the peer outcome correlation. In the school achievement domain

this amounts to understanding whether an individual test score is influenced by the

achievement of its peers or by their exogenous characteristics such as social or economic

background. This distinction becomes particularly important from a policy point of view

because of the social multiplier entailed by endogenous peer effects: when endogenous

peer effects are present, the average peer group outcome can be greater than the average

outcome of the individuals if they where not interacting in groups.

In the context of money market mutual funds we define peers as those funds holding

similar portfolios and peer (flow) effects are interpreted as the impact of a fund flow on

the flows of similar funds. A possible mechanism behind peer flow effects are fire-sales

spillovers. For instance, Falato et al. [2016] investigate peer effects in open-end fixed-

income mutual funds and provide a detailed accounting of the chain of events behind the

transmission of a flow shock between peers. A fund receiving unexpected outflows may

be forced to sell securities. When forced sales happen, security prices may be depressed

(see for instance Coval and Stafford [2007], Greenwood and Thesmar [2011]). In turn,

this may hurt the performance of the funds holding the same securities causing them to

experience new redemptions, because of the positive flow-performance relationship, and

leading to a second round of forced sales.

We abstract from the mechanism behind peer effects and, instead, take on the empirical

and theoretical challenge of identifying endogenous and exogenous peer flow effects. In

particular, using a rich and granular dataset of security-level holdings of US MMMFs

constructed from regulatory N-MFP filings submitted to the SEC between 2010 and

2016, we propose a spatial dynamic model where the spatial structure is given by a sim-

ilarity temporal network based on fund portfolios. Similarly to Bramoullé et al. [2009],
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we prove the theoretical condition for peer effects identification in terms of topological

properties of the underlying network structure and find evidence of positive and sta-

tistically significant peer flow effects, implying that an initial flow shock to a fund can

potentially be endogenously amplified through indirect impacts on similar funds. These

indirect impacts are statistically and economically significant for first and second order

neighbors and their magnitude is decreasing with the network distance between the two

funds.

We also study how peer effects change the resiliency of the MMMFs industry to wide-

spread flow shocks. In order to simplify the analysis we assume that a run-like event

is characterized by two dimensions: the magnitude of a flow shock and the percentage

of funds shocked. A run-like event is said to generate fire-sales spillovers if the percent-

age of funds forced to sell less liquid assets is above a given threshold. The resilience

of the MMFs industry to run-like events can then be defined as its capacity to absorb

widespread flow shocks without triggering fire sales spillovers. Intuitively, without peer

effects, if every fund has 10% holding in liquid assets, a flow shock less than 10% will not

lead to the sale of less liquid assets, independently of the percentage of funds receiving

the flow shock. However, when peer effects are present, we find that the endogenous

amplification of flow shocks creates a non linear relationship between the initial per-

centage of funds receiving a flow shock and final percentage of funds forced to sell less

liquid assets, with a non trivial impact on the ability of the MMMFs industry to absorb

widespread flow shocks. For instance, a flow shock below the percentage of daily liquid

assets can still force some funds to sell less liquid assets if the percentage of funds initially

shocked is high enough.

0.2 Longevity risk modeling

Life-insurance companies and annuity providers such as pension funds are exposed to a

number of risks, including market, credit, lapse, longevity, operational. For insurance

companies, the Solvency II regulation has been addressing both the definition, measure-
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ment, monitoring and disclosure of such risks. As a result of both realized losses in

the financial sector at large and of a general concern about potential crises and sudden

crashes in the future, even the consciousness of risks has been growing. The number of

monitoring tools and organizational checks apt to keep risks under control, as well as the

number of deals aiming at transferring those risks, has been steadily growing [Cummins

and Weiss, 2009].

Our main focus is on the risks coming from the liabilities of insurance companies. These

liabilities are mainly subject to longevity risk, or improvements in the survivorship of

annuity beneficiaries, and interest rate risk, since the level of interest rates affects the

fair value of liabilities. Longevity risk is the inability to correctly forecast improvements

in the survivorship of a population or, equivalently, from the point of view of a life in-

surance company, longevity risk is the risk the policy holders live longer than expected

when the company priced and reserved their policies. So, while increasing longevity is

welcome from the social point of view, it is a risk for annuity providers because it may

cause them to face higher than expected pay-outs. Longevity risk can be remarkable if

we consider that, in the last century, the life expectancy of individuals has been under-

estimated by as much as 3 years [International Monetary Fund (IMF), 2012].

The actuarial literature has seen the development of two broad classes of stochastic

mortality models, namely, discrete and continuous time models. Discrete time stochas-

tic mortality models have the advantage of being straightforward to simulate but do not

provide a closed formula expression for the survival probabilities. One of the earliest

model, that is now still used as a benchmark model and applied to data from many

countries and time-periods, was proposed by Lee and Carter [1992] and models the log

mortality rate of an individual aged x at time t as a function of age and period effects.

Over the years many other discrete time mortality models have been introduced. For

instance, Renshaw and Haberman [2006] propose an extension of the Lee-Carter model

that incorporates a cohort (or year-of-birth) effect, and Cairns et al. [2006] introduces a

two factor model allowing for mortality improvements that are non perfectly correlated

across ages. The detailed discussion of discrete time mortality models is outside the
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scope of this thesis, but the interested reader can find a review of both discrete and

continuous time models in Cairns et al. [2008].

We place ourselves in the continuous time framework whose main advantage, over dis-

crete time models, is the analytical tractability for the survival probability and the

pricing of many insurance contracts. In particular, we model mortality risk by means

of a Cox or a doubly stochastic counting process (see Milevsky and Promislow [2001]

and Dahl [2004]). In particular the time-to-death of an individual, analogously to the

time-to-default in credit risk literature, is assumed to be the first jump time of a Poisson

process with stochastic intensity which is, on the other hand, modeled as a diffusion pro-

cess. In addition, we assume the instantaneous mortality intensity process to be affine,

leading to closed form expression for the survival probabilities and insurance contract

prices [Luciano and Vigna, 2008].

In Chapter 2 we proposes dynamic hedging strategies of interest rate and longevity risk,

when longevity basis risk is present. We model mortality intensity using a parsimonious

model, that allows to disentangle the effects of basis risk. We consider the uncertainty in

interest rates, that affects the fair-valuation of the liabilities of the annuity provider. We

compare the effectiveness of different hedging strategies by comparing the risk margins

that the annuity provider has to charge to keep the value-at-risk- (VaR-) based solvency

of its hedged portfolio to a fixed 99.5% level. Our calibrated example, based on UK

data, highlights that considering the uncertainty in interest rates affects the positions

in longevity-linked instruments when hedging longevity exposures, and can significantly

increase the variability of the hedging errors. However, we find that, at a long, 30-year

horizon, 90% of the risk margin for an annuity contract on a 65-year old male is ex-

plained by the uncertainty in the longevity risk factor, while interest rate risk accounts

only for 10% of the total risk margin.

In Chapter 3 we provide a method to assess the risk relief from a foreign expansion by

a life-insurance company. We build a parsimonious continuous-time model for longevity

risk, that captures the dependence across the different ages of two populations. We

provide three measures of the diversification effects of expanding an annuity portfolio
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internationally. The reduction in the risk margin, computed à la Solvency II, provides

a regulation-consistent measure of the tail risk benefit. The change in the volatility of

the average mortality intensity of a portfolio provides an intuitive measure of the change

in its longevity risk. The Diversification Index provides a synthetic assessment of the

diversification benefit of combining different populations. We calibrate the model to the

case of a UK annuity portfolio expanding internationally towards Italian policyholders.

Our application shows that the longevity risk diversification benefits of an international

expansion are sizable, in particular when interest rates are low.
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Chapter 1

Peer Effects and Spillovers in

Money Market Mutual Funds

Flow1

1.1 Introduction

In recent years, prime money market mutual funds (MMMFs) have suffered several runs

that were sector-wide and unfolded during the span of few weeks. For instance, during

the week of September 15th 2008, the default of Lehman Brothers caused the Reserve

Primary Fund to break the buck, resulting in widespread redemptions - totaling about

$300 billion - that affected also funds with no exposure to Lehman papers. One of the

possible explanations for the vulnerability of the MMMF industry to the aggregate risk

of run-like behaviours could be the amplification of an initial flow shock through fire-sales

spillovers (Falato et al. [2016], Chernenko and Sunderam [2020]). Redemptions to one

fund may induce the fund’s portfolio managers to sell some of their assets, potentially

depressing their price. This may, in turn, hurt the performance of other funds holding

the same securities and lead to more redemptions because of the flow-performance rela-

1The material for this chapter is taken from De Rosa, La Spada, and Lillo [2020].

11



12

tionship. Due to the importance of MMMFs for financial stability, especially their role

in providing short-term liquidity to financial institutions, these episodes have attracted

the attention of many researchers (Schmidt et al. [2016], Kacperczyk and Schnabl [2013],

Brady et al. [2012], Chernenko and Sunderam [2014]).

We empirically investigate the vulnerability of the MMMFs industry stemming from

the endogenous amplification of an initial flow shock. Following Falato et al. [2016], we

borrow from the applied literature on peer effects in order to study the contemporaneous

dependence between the flow of a fund and the flows of its peers, defined as the funds

with the most similar portfolios. Differently from Falato et al. [2016], however, we

abstract from the mechanisms or chain of events that could give rise to peer effects2

and focus, instead, on a two-fold objective. First, we construct a temporal network

based on portfolio similarities that provides the spatial structure for our model and

allow us to disentangle the impact of peer flows (endogenous peer effects3) from the

impact of peer characteristics (exogenous peer effects), such as past yield. Second,

we study how the presence of endogenous peer effects changes the MMMFs industry

vulnerability with respect to run-like behaviours, where we say that the industry is

vulnerable to the combination of an initial flow shock and a percentage of funds shocked

if the final percentage of funds forced to sell less liquid assets is above a given threshold.

In particular, we perform a simulation study to characterize the vulnerability region for

different values of this threshold.

Using a dataset of detailed portfolio level holdings of US MMMFs coming from regu-

latory N-MFP filings, we find evidence of positive and statistically significant peer effects

implying that an initial flow shock to a fund can potentially be endogenously amplified

through indirect impacts on similar funds. These indirect impacts are statistically and

economically significant for first and second order neighbors and their magnitude is de-

creasing with the network distance between the two funds. A fund may suffer a 0.75%

flow shock from the indirect impact of a 1% shock to its peers. We also find that the

2For instance, fire sales spillovers or herding behaviors between investors with asymmetric information.
3If not specified, in the following we will denote endogenous peer effects simply with the term peer

effects.
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presence of peer effects creates a non linear relationship between the initial percentage of

funds receiving a flow shock and final percentage of funds forced to sell less liquid assets,

with a non trivial impact on the ability of the MMMFs industry to absorb widespread

flow shocks. For instance, a flow shock below the percentage of daily liquid assets can

still force some funds to sell less liquid assets if the percentage of funds initially shocked

is high enough.

These results are robust to different methodologies and measures for the construc-

tion of the similarity temporal network as well as to the introduction of fund and time

fixed effects. Moreover, we employ different strategies to address the endogeneity con-

cerns typical in peer effects models. Specifically, we solve the reflection problem [Manski,

1993] regarding the identification of endogenous and exogenous peer effects by providing,

similarly to Bramoullé et al. [2009], an identification condition based on the topologi-

cal properties of the underlying similarity temporal network. In order to rule out the

possibility of common portfolio characteristics driving our results, we also test their

robustness with respect to the inclusion of controls for the portfolio weighted average

maturity and credit risk exposure. Finally, we tackle the possibility that unobserved

common components could be driving our results by performing a quasi-random experi-

ment that exploits, as a source of exogenous variation, the different exposures of money

market funds to European banks during summer 2011.

Our work is related to two main strands of the literature. First, we contribute to

growing literature on peer effects and fire-sales spillovers in the mutual fund industry.

Coval and Stafford [2007], Ellul et al. [2011] and Feldhütter [2012] find evidence of sig-

nificant price impact in equity and corporate debt markets for instruments under selling

pressure by large mutual funds or insurance companies. Chernenko and Sunderam [2020]

provide evidence of meaningful fire sales externalities in the US domestic equity mutual

fund industry, showing that funds internalizing more the pricing impact of their trading

use their cash holdings more aggressively in order to manage their inflows and outflows.

Falato et al. [2016] investigate peer effects in open-end fixed-income mutual funds and

provide a detailed accounting of the chain of events behind the transmission of a flow
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shock between peers. We contributes to this literature by extending the evidence on peer

flow effects to the MMMFs industry and by tackling the identification of endogenous and

exogenous peer effects which, to the best of our knowledge, has not been studied yet

in the context of mutual funds. Second, we contribute to the recent literature on the

riskiness of the MMMFs industry (see Schmidt et al. [2016], Strahan and Tanyeri [2015],

McCabe [2010]) by investigating how the endogenous amplification of flow shocks caused

by peer effects changes the vulnerability of the industry to run-like behaviours.

The chapter is organized as follows. Section 1.2 provides a general description of

Money Market Mutual Funds and their regulatory framework while Section 1.3 details

the source and characteristics of the data set used. Section 1.4 introduces our model

and Section 1.5 describe our methodology for the construction of the similarity temporal

network. Section 1.6 describes the main empirical results while Section 1.7 analyzes their

financial stability implications. Finally, Section 1.8 concludes.

1.2 Money Market Mutual Funds

Money market mutual funds (MMMFs) are open-ended mutual funds that invest in

short-term, high credit-quality, money-market instruments. MMMFs are an important

part of the financial system. As of the end of June 2020, MMMFs had about $5 trillion

in assets under management (AUM). They are a key source of short-term financing for

financial institutions [Hanson et al., 2015] and are the largest cash lender in the repo

market [Afonso et al., 2020].

MMMFs can be categorized into four types according to their investment universe.

Treasury MMMFs can invest only in US Treasuries or repurchase agreements (repos)

collateralized by Treasuries; Government MMMFs can also invest in agency debt or repos

collateralized by agency debt; Prime MMMFs can also buy private debt, both secured

(e.g., repos) and unsecured (e.g., certificates of deposit); and Municipal MMMFs can only

invest in short-term debt issued by states and other local authorities. Finally, based on

the profile of their investors, MMMFs share classes can be divided into institutional and
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retail.

Similarly to other mutual funds, MMMFs levy fees as a fixed percentage of their

AUM; as a result, they are subject to the tournament-like incentives generated by the

positive flow-performance relationship observed in the data (Kacperczyk and Schnabl

[2013]; La Spada [2018]). However, in contrast to other mutual funds, until October

2016, all MMMFs were allowed to maintain a stable net asset value (NAV) of $1.00 per

share; they did so by valuing assets at amortized cost and distributing daily dividends as

securities approach their maturity date. Since their shares are not insured by the govern-

ment and are daily redeemable, this stable-NAV feature makes MMMFs susceptible to

runs. If a fund “breaks the buck,” i.e., the market value of the fund’s NAV drops below

$0.995, the fund manager has to disclose it to investors and reprice the fund shares. Such

event gives investors a strong incentive to redeem their shares en masse to preserve the

value of their capital, as it happened on September 16, 2008, when the Reserve Primary

Fund broke the buck after writing off Lehman Brothers debt. The 2008 run on Reserve

Primary Fund quickly spread to the whole prime and municipal money market industry:

investors redeemed more than $300 billion within a few days after Lehman’s default. In

the summer of 2011, another run hit the prime fund industry; amid the European debt

crisis, investors became concerned of funds’ exposure to troubled European banks and

redeemed prime fund shares for more than $170 billion in less than two months. Both

episodes caused a severe shortage of credit to the banking sector (both in the US and in

Europe) and large disruptions in the money markets more generally.

In response to the 2008 financial crisis, the SEC adopted in 2010 a first set of amend-

ments to Rule 2a-7 of the Investment Company Act that were mainly focused on improv-

ing the quality and the risk exposure of MMMFs portfolios. The main characteristics of

this new regulation can be summarized into four main points. First, in order to reduce

the credit risk exposure of MMMFs, the limit of their holdings in second tier securities

has been reduced from 5% to 3% of the portfolio, and the concentration limit in any

issuer of such securities set to 0.5% of the fund assets. Second, the maximum weighted

average maturity and life of money market funds’ portfolios have also been reduced to 60
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and 120 days, respectively. Third, taxable MMMFs were required to maintain at least

10% of their holdings in daily liquid assets and all funds were required to maintain at

least 30% of their total assets in weekly liquid assets. Fourth, in order to enhance the

SEC oversight ability, money market funds were required to provide a monthly electronic

filing of detailed portfolio holdings information using a new form called N-MFP Form,

through the EDGAR system. All of these regulatory constraints were in effect during

our analysis period, that goes from November 2010 to September 2015. However, it is

worth noticing that in July 2014 a new set of structural changes to the MMMFs industry

was approved, but came in effect only 2016. These changes introduced the ability, by

MMMFs, to impose liquidity fees and redemption gates in certain circumstances. Under

the new regulation, if the weekly liquid assets of a fund fall below 30% of its total assets,

the fund can4 impose a 2% liquidity fee or suspend redemptions for up to 10 business

days in a 90 day period. Moreover, if the percentage of weekly liquid assets falls below

10%, then the fund is required5 to impose a 1% liquidity fee. Furthermore, MMMFs

other than Government and Retail funds were required to transact at a Floating Net

Asset Value rather than a Stable NAV and to be valued at market value rather than

amortized cost. The shift towards a floating net asset value has the aim of eliminat-

ing, for the affected funds, the risk of breaking the buck and, therefore, reducing the

incremental redemption incentive for investors.

1.3 Data Set description

Our data come from the regulatory N-MFP filings that all US MMMFs have to submit

monthly to the Securities and Exchange Commission (SEC). The dataset covers the

whole universe of US MMMFs and contain detailed fund-level, share-class level and

portfolio-level information as of the end of each month.

The fund level data contains information such as total net asset value of the fund,

4If the fund’s board of directors determines that such choice would be in the fund’s best interest.
5Unless the fund’s board of directors determines that imposing such liquidity fee would not be in the

fund best interest.
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fund name, adviser name, the annualized 7-day gross yield for the month, the fund

type, the end of month fund portfolio weighted average maturity and dummy variables

indicating whether a fund is merging, liquidating or in a master-feeder relationship. Each

fund can have different share classes for which the fund reports additional information

such as the share class minimum initial investment, the share class monthly redemptions

and subscriptions and a variable indicating whether the share class is for institutional

or retail investors.

For each filing date of a given fund, we also have access to the full portfolio composi-

tion of the fund. For each security in the portfolio, we know the cusip, the issuer name,

the instrument category, its principal, its yield, its maturity, its fair value and amortized

cost valuation. The total number of unique securities contained in the dataset is 246, 676

corresponding to 37, 933 unique borrowers.

The dataset covers a total of 715 unique money market mutual funds. Within our

observation period, funds are closed, reclassified, merged and new funds are opened.

Hence, the number of funds reporting each month is not constant. For instance, in

January 2011 we observe reporting for 667 unique funds, while in November 2016 this

number is 414.

1.4 Peer Effects

Run-like events are sudden and the bulk of redemptions may unfold in the span of very

few days (see Schmidt et al. [2016]). Hence, in order to assess the potential vulnerability

of the MMMFs industry to the risk of runs, we focus on the study of the contemporaneous

dependence among fund flows, that we call endogenous peer (flow) effects because we

borrow from the methodologies of the applied literature on peer effects.

To identify the simultaneous dependence among MMMF flows, we propose a spatial

dynamic model where the spatial structure is given by a similarity network based on

fund portfolios. The idea is that a fund’s flow may have a stronger impact on MMMFs

with similar portfolios. As shown in Falato et al. [2016], this may happens because funds
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under flow pressure may be forced to sell securities, depressing their prices and hurting

the performances of other funds holding the same instruments which, in turn, could

suffer new outflows because of a positive flow-performance relationship.6

More precisely, we study endogenous peer effects by investigating the relationship

between the flow at time t of fund i, yit, and the average of contemporaneous flows

of similar funds. The average peer flow is computed among the first degree neighbors

of i given the network Wt. Since there is empircal evidence supporting a dependence

between the previous performance of a fund the its current flow (see La Spada [2018]),

we use the lagged own performance as an exogenous regressor, but we also include an

exogenous peer group effect given by the average past performance of fund i first degree

neighbors a time t− 1.

Hence, our baseline regression is:

yt = αtι+ ζn + λWtyt + β1Wt−1xt−1 + β2xt−1 + Ctδ′ + εt, (1.1)

where yt is the N × 1 vector containing the cross-sectional flows at time t, Wt is the

N ×N adjacency matrix at time t, xt−1 is the N × 1 vector containing the prior month

funds’ yield, Ct is a N × K matrix of control variables, αt and ζn are time and fund

fixed effects, while εt = (ε1t, . . . , εit, . . . , εNt)′ is a vector of disturbances. As standard in

the literature, we use as controls the logarithm of the fund size and fund’s family size

expressed in millions. Moreover, as a robustness check, we also consider an extended

version of model (1.1) which includes as exogenous regressors the past flow of a fund and

the average flow at time t − 1 of similar funds, where the average is computed among

the first degree neighbors given by the network Wt−1:

yt = αtι+ ζn + λWtyt + ρyt−1 + γWt−1yt−1 + β1Wt−1xt−1 + β2xt−1 + Ctδ′ + εt. (1.2)

Defining Pi,t as the set of fund i’s neighbors derived from the network structure at time
6It is worth noticing that a different, but possible, explanation for this phenomenon could be in-

vestors following the behavior of other investors in similar funds because of incomplete and asymmetric
information. However, we do not aim at disentangling this two mechanisms.
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t, and assuming that the element wtij of Wt is 1
|Pi,t| ∀j ∈ Pi,t and zero otherwise, then

the i-th component of the endogenous peer effect term Wtyt can be rewritten as

∑
j∈Pi,t yj,t

|Pi,t|
, (1.3)

and interpreted as the average simultaneous flows of the peers. Similarly, the exogenous

peer effects Wt−1yt−1 and Wt−1xt−1 can be read as the average t − 1 flow and yield of

the peers, respectively.

1.4.1 Identification: Reflection Problem

It is well known that identification of endogenous peer group effects may be hindered by

the so called reflection problem [Manski, 1993]. One instance of the reflection problem

is that it may be difficult to distinguish between endogenous and exogenous peer effects,

due to the perfect collinearity introduced by the simultaneous dependence between the

flows. In other words, it may be difficult to assess whether the "similarity" between the

flows of a fund i and the flows of its peer group is due to the influence of the peers or

due to the fact that similar funds may have similar characteristics driving the flows. To

prove identification of our model we follow the approach of Bramoullé et al. [2009], which

studies the identification of models with peer-group effects when links follow a social

network structure. They consider a simple model with contemporaneous endogenous and

exogenous peer group effects and prove that identification is achieved if simple conditions

on the network structure are met. These identification conditions cannot be directly

applied to our case, since in our model endogenous and exogenous peer group effects

are determined by two different network structures or, more precisely, by two different

time instants of the temporal network. Hence, we prove new sufficient conditions for

identification based on the topological properties of the underlying temporal network.
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Model (1.2) can be rewritten in reduced form as :

yt = αt(I − λWt)−1ι+ (I − λWt)−1ζn+ (1.4)

+ (I − λWt)−1(ρI + γWt−1)yt−1+

+ (I − λWt)−1(β2I + β1Wt−1)xt−1+

+ (I − λWt)−1Ctδ′ + (I − λWt)−1εt,

and we say that the structural model (1.2) is not identifiable if we can find two sets

of different structural parameters that lead to the same reduced form model (1.4). To

prove identificability of the model, we need the following definitions:

Definition 1. We say that the nodes (i, j, k) form an Intransitive Temporal Triad at

time t if j is influenced by k at time t − 1, i is influenced by j at time t, but i is not

influenced by k neither at time t− 1 nor at time t (see Figure 1.1).

Definition 2. We say that the temporal network {Wt} is row-normalized if ∀t the row

sums of Wt are 1.

Definition 3. We say that the temporal network {Wt} has no isolated fund if each fund

always belongs to a non empty peer group or, equivalently, Wt has no zero rows ∀t.

Definition 4. We say that the temporal network {Wt} is non trivial if ∃ t such that

Wt 6= Wt−1.

A path between two funds i and j is defined as a sequence of distinct funds

k1, . . . , ks, . . . , km

where k1 is influenced by i, ks is influenced by ks−1, and j is influenced by km. The

length of a path {i, k1, . . . , ks, . . . , km, j} is defined as the number of similarity links it

contains. The distance between two funds i and j is defined as the length of the shortest

path connecting them. The diameter of a network is then defined as the greatest distance
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Figure 1.1: Graphical representation of an Intransitive Temporal Triad as described in
Definition 1.

between any two pairs of funds. We can now prove the following sufficient condition for

identification for model (1.2):

Proposition 1.4.1. Suppose that the temporal network {Wt} is non trivial, row-normalized,

has no isolated fund and that ργ 6= 0 or β2β2 6= 0.

If there exists a t such that the network W 2
t Wt−1 has diameter greater or equal than 3,

then the model (1.2) is identified.

Proof. See Appendix 1.A.3.

If we consider the case without fixed effects:

yt = αι+ λWtyt + ρyt−1 + γWt−1yt−1 + β1Wt−1xt−1 + β2xt−1 + Ctδ′ + εt, (1.5)

we can also prove the following:

Proposition 1.4.2. Suppose that the temporal network {Wt} is non trivial, row-normalized,

has no isolated fund and that ργ 6= 0 or β2β2 6= 0.

If there exists at least one Intransitive Temporal Triad, then model (1.5) is identified.

Proof. See Appendix 1.A.1.
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1.4.2 Identification: Correlated Effects

Besides the reflection problem, another identification issue that could hinder the estima-

tion is the presence of correlated effects, i.e., unobserved shocks that may be common

to funds that hold similar portfolios. The inclusion of time fixed effects partly helps

in reducing this problem but does not eliminate it. Hence, we address this concern in

two ways. First, we consider a version of model that includes controls for own and peers

portfolio characteristics, such as weighted average portfolio maturity and portfolio credit

risk exposure. The weighted average portfolio maturity of fund i at time t, WAMi,t, is

defined as:

WAMi,t =
∑
k∈Ki,t

ωki,tm
k
i,t, (1.6)

where Ki,t is the set of securities in fund i portfolio at time t, ωki,t is the weight of security

k at time t andmk
i,t is its maturity in days. Similarly, the peer weighted average portfolio

maturity for fund i at time t, PeerWAMi,t, is defined as:

PeerWAMi,t =
∑
j∈Pi,tWAMj,t

|Pi,t|
. (1.7)

In order to measure a fund i credit risk exposure we use, as a proxy, the portfolio

weighted average credit default spread, CDSi,t. In particular, let Bi,t be the set of all

issuers in the portfolio of fund i at time t and, for b ∈ Bi,t, let sb,t be the average credit

default spread of issuer b for the month t. Then CDSi,t is defined as:

CDSi,t =
∑
b∈Bi,t

ωbi,tsb,t, (1.8)

where ωbi,t is the weight at time t of issuer b in the portfolio of fund i. Similarly, the peer

portfolio weighted average credit default spread, PeerCDSi,t, is defined as:

PeerCDSi,t =
∑
j∈Pi,t CDSj,t

|Pi,t|
. (1.9)
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Our second strategy to address this endogeneity problem is the design a quasi-random

experiment exploiting the different portfolio exposures of each fund to European banks

during summer 2011. The intuition behind this choice is based on the anecdotal evi-

dence that, during the peak of the 2011 European debt, MMMFs with high exposure

to European banks suffered large outflow shocks. Identification is achieved by showing

that fund flows are significantly correlated with an exogenous characteristic of the peers,

their exposure to European banks, that is relevant for peer flow but otherwise random for

fund flows. We define a peer treatment flow variable, Wty
Treatment
t , whose i-th element

is given by: ∑
j∈Pi,t yj,t1{Treatment=1}

|Pi,t|
, (1.10)

where the treatment variable is equal to 1 for the funds that, from May to December

2011, were in the top quartile with the highest exposure to European banks. In Appendix

1.B.1 we then estimate model (1.2) by substituting the peer flow variable Wtyt with its

treatment counterpart.

1.5 Portfolio Similarity Measure and Similarity Temporal

Network

The definition of a similarity measure between funds’ portfolios is not a trivial task and

inherently entails the choice of the dimensions along which similarities are more relevant.

For instance, two funds may have portfolios that are similar in terms of instrument types

allocation but with completely different borrowers or, on the other hand, they may

have portfolios similar in terms of borrowers but with very different maturities. In our

application, we measure similarities by aggregating the securities in each portfolio at the

borrower level. However, in order to reduce the information loss at the maturity level,

we also adjust each borrower exposure for the corresponding maturities. Specifically, let

B be the set of all possible borrowers and let |B| = B. For each fund i and borrower
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b ∈ B, we define the Weighted Maturity Exposure of i to b at time t as:

WMEbi,t =
∑
k∈Kbi,t

ωki,tm
k
i,t, (1.11)

where Kbi,t is the set of instruments in the portfolio of i at time t whose issuer is b, ωki,t is

the weight of that instrument and mk
i,t its effective maturity. Then, for each fund i we

have the B-dimensional vector

WMEi,t =
(
WME1

i,t,WME2
i,t, . . . ,WMEBi,t

)
. (1.12)

of the weighted maturity exposures. If i and j are two funds, we define the Weighted

Maturity Similarity between them at time t, denoted WMSt(i, j), as the cosine similarity

between their vectors of weighted maturity exposure, i.e.:

WMSt(i, j) = WMEi,t ·WMEj,t
||WMEi,t|| ||WMEj,t||

. (1.13)

By definition, WMSt(i, j) = 1 if and only if i and j are exposed to the same borrowers

with the same weighted maturity exposures. Also, WMSt(i, j) = 0 if and only if i and j

do not have any borrower in common at time t. As shown in Figure 1.2, Treasury Funds

exhibit the highest similarity, with an average value of 0.94, followed by the Government

Agency Funds with an average pairwise similarity of 0.61. Then we have the Prime

Funds with an average weighted maturity similarity of 0.31 and Single State Funds with

an average similarity of only 0.04. Thus, the similarity within fund categories seems to

decrease with the increase in the size of the available investable universe. Given that

different fund categories can invest in different types of asset, we also have that the cross

similarity between funds of different types is low with an high probability mass at zero,

as shown in Table 1.1. Figure 1.3 shows that the evolution over time of the average WMS

within fund categories. There is a slight increase over time for the average similarity of

Treasury funds, while Prime funds show a small but steady decline in similarity from

the second half of 2012. Interestingly, we observe an increase in the average similarity
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Table 1.1: Average cross similarity between fund categories where the similarity is mea-
sured with the Weighted Maturity Similarity measures defined in (1.13).

Treasury Government Prime Single State

Treasury 0.94 0.31 0.37 0.003
Government 0.31 0.61 0.25 0.004
Prime 0.37 0.25 0.31 0.005
Single State 0.003 0.004 0.005 0.04

of government funds from the beginning of 2013 up to the first half of 2014.

Given the weighted maturity similarity introduced before, we are now able to con-

struct the Similarity Temporal Network. In order to do so, we restrict our focus only

on the funds that are always present throughout the entire period of our analysis. This

leaves us with a subset of 363 MMMFs.

At each time t, we say that there is a link from a fund i to a fund j, i.e. j belongs to the

Peer Group of i, if and only if j belongs to the 10% of funds with the highest weighted

maturity similarity to i. In Appendix 1.B we show the robustness of our results to the

choice of this threshold. For each fund i the outgoing links have weights normalized to

sum 1:

wi,j = 1
kouti

, (1.14)

where kouti is out-degree of node i. Hence for each period t, we construct a directed

network with adjacency matrix Wt, that is row-normalized by (1.14). The temporal

network is then given by the collection of adjacency matrices over time:

W = {W1,W2, . . . ,WT }, (1.15)

where T is the length of the time series. The in-degree of a fund i can be interpreted

as the number of funds that could potentially be affected by the flows of fund i, while

its out-degree represents the number of funds whose flows could potential spillover to

i. In our analysis, peers are those funds that bear an high degree of similarity in their
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holdings according to the weighted maturity similarity.
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Figure 1.2: Histogram of the Weighted Maturity Similarity within each MMMF category.

1.6 Estimation results

The empirical application uses monthly data7 from regulatory filings of US Money Mar-

ket Mutual funds, from January 2011 to September 2015, and as usual in the literature,

7See Section 1.3 for more details about the data-set.
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Figure 1.3: Evolution over time of the average Weighted Maturity Similarity measure
within each MMMF category.

we estimate the dependent variable Flowi,t as

Flowi,t = TNAi,t − (1 + ri,t)TNAi,t−1
TNAi,t−1

, (1.16)

where ri,t is the yield of fund i during the period (t − 1, t) and TNAi,t is the total net

asset value of fund i at time t. In order to reduce the impact of outliers we trim the data

on the dependent variable using the 0.5th and 99.5th percentiles as cutoff. Moreover,

to keep the data-set balanced, for each extreme value, we remove all the observations

for that fund. Our main focus is on the universe composed of all funds except Treasury

money market funds and the corresponding results are those we will maily describe.

However, we also estimate the model and present the results when considering all funds

and only Prime funds.

Table 1.2 contains basic statistics about the data. The dependent variable Flow is

expressed in percentage terms, the monthly fund Y ield is instead expressed in basis

points, while the control variables LogFundSize and LogFamilySize are defined as the

natural logarithm of the fund or fund family size expressed in millions. Model (1.2) can
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Table 1.2: Main statistics of data set from monthly regulatory filings of US Money
Market Mutual funds covering the period from January 2011 to September 2015.

count mean std min 25% 50% 75% max

Flow (y) 17442 −0.28 5.35 −25.96 −2.51 −0.55 1.64 36.66

Y ield (x) 17442 1.44 0.73 0.00 0.92 1.38 1.91 5.98

WFlow (Wy) 17442 −0.21 1.65 −6.70 −1.16 −0.21 0.71 8.04

WY ield (Wx) 17442 1.41 0.49 0.38 1.02 1.37 1.75 3.21

LogFundSize 17442 7.33 1.84 2.83 5.89 7.15 8.72 11.81

LogFamilySize 17442 10.31 2.15 4.09 8.69 10.87 11.92 13.03

be rewritten in stacked form as:

y = α⊗ ι+ ιT ⊗ ζn + λWy+ ρy−1 + γW−1y−1 + β1W−1x−1 + β2x−1 + Cδ+ ε, (1.17)

where y,y−1,x−1 and ε are TN column vectors, C is a TN × K matrix, and W and

W−1 are block diagonal TN ×TN matrices. Using the two demeaning operators defined

in Appendix 1.A:

B = F ′T,T−1 ⊗ IN , (1.18)

(I −H) =
(
I − IT ⊗

1
N

(ιNι′N )
)
, (1.19)

we can rewrite the model after removing the fixed effects as:

B(I −H)y =λB(I −H)Wy + ρB(I −H)y−1 + γB(I −H)W−1y−1+

+ β2B(I −H)x−1 + β1B(I −H)W−1x−1 +B(I −H)Cδ + ν∗. (1.20)

As already observed the variable B(I−H)Wy is endogenous but, due to the demeaning

operation, also B(I − H)y−1 and B(I − H)W−1y−1 may be correlated with the error

term. Hence, we need instruments for [B(I−H)Wy, B(I−H)y−1, B(I−H)W−1y−1].

Let X =
[
x−1,W−1x−1,C

]
be the matrix of all exogenous regressors. It is easy to
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verify that I,W,W−1, WW−1, W 2 and W 2W−1 are linearly independent, hence the

parameters are identified and we can use B(I − H)WX, B(I − H)W 2X,..., as valid

instruments for B(I−H)Wy. As common in the dynamic panel literature, and following

Lee and Yu [2014], (I −H)y−1, W (I −H)y−1, W 2(I −H)y−1,..., and (I −H)W−1y−1,

W (I − H)W−1y−1, W 2(I − H)W−1y−1,..., can be instruments for B(I − H)y−1 and

B(I −H)W−1y−1.

Therefore, in order to estimate model (1.20) we use a 2SLS procedure that can be seen

a special case of the approach proposed in Lee and Yu [2014].

Let Z =
[
B(I −H)Wy, B(I −H)y−1, B(I −H)W−1y−1, B(I −H)X

]
, and define the

instrument matrix

Q =
[
(I −H)y−1,W (I −H)y−1,W

2(I −H)y−1, . . . ,

(I −H)W−1y−1,W (I −H)W−1y−1,W
2(I −H)W−1y−1, . . . , (1.21)

B(I −H)X, B(I −H)WX, B(I −H)W 2X, ...
]
. (1.22)

Thus if we define PQ = Q(Q′Q)−1Q′ and y∗ = B(I −H)y, then

θ̂ = (Z ′PQZ)−1Z ′PQy
∗. (1.23)

When estimating the model without fixed effects or with only time fixed effect we use,

instead, the Generalized Spatial 2SLS method introduced by Kelejian and Prucha [1998]

and further developed by Lee [2003] which yield an asymptotically optimal estimator

when the error are i.i.d.. For instance, let consider the model with only time fixed

effects

y = α⊗ ι+ λWy + ρy−1 + γW−1y−1 + β1W−1x−1 + β2x−1 + Cδ + ε, (1.24)
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and demeaned representation

(I −H)y = λ(I −H)Wy + ρ(I −H)y−1 + γ(I −H)W−1y−1+

+ β1(I −H)W−1x−1 + β2(I −H)x−1 + (I −H)Cδ + ν.

(1.25)

In our case the Generalized Spatial 2SLS reduces to a two-step procedure. Let define

the matrix of all exogenous regressors X =
[
y−1,W−1y−1,x−1,W−1x−1,C

]
and let Z =[

(I−H)Wy, (I−H)X
]
. During the first step of the procedure, we estimate a 2SLS using

as instruments Q̃ =
[
(I −H)X, (I −H)WX, (I −H)W 2X

]
. Let P

Q̃
= Q̃(Q̃′Q̃)−1Q̃′,

then we get a consistent estimator given by θ̃ = (Z ′P
Q̃
Z)−1Z ′P

Q̃
y.

Using this first step estimate and the reduced form of (1.25) we can compute

E
[
(I −H)Wy(θ̃)|X

]
= (I −H)W (I−λ̃W )−1(ρ̃I + γ̃W−1)y−1+

+(I −H)W (I − λ̃W )−1(β̃2I + β̃1W−1)x−1.

(1.26)

The second step consists in estimating a 2SLS using as instruments

Q =
[
E
[
(I −H)Wy(θ̃)|X

]
, (I −H)X

]
.

Hence, since the model is just-identified we obtain that:

θ̂ = (Q′Z)−1Q′y. (1.27)

From Table 1.3 we see that the coefficient (λ) of the contemporaneous peer flows is

positive, statistically significant, and robust to the introduction of time and fund fixed

effects. Moreover, peer effects are also robust to the introduction of control variables for

fund own and peer portfolio characteristics. For instance, column (4) shows the results

of the estimation when controlling for fund own portfolio weighted maturity WAMi,t−1,

peer portfolio weighted maturity PeerWAMi,t−1, fund and peer portfolio credit risk
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exposure CDSi,t−1 and PeerCDSi,t−1. Peer effects remain positive and statistically

significant also when considering all fund categories or only Prime funds.

The presence of positive peer effects causes the, so called, spatial multiplier effect. That

is, an initial exogenous flow shock may be endogenously amplified by the system resulting

in a total higher impact to the industry and potentially also affecting funds that did not

initially received the shock but holds similar portfolios, causing selling pressure on funds

that hold similar securities that, in turn, may have limited liquidity. The financial

stability implications of peer effects will be analyzed in detail in Section 1.7.

We also find a positive and statistically significant relationship with the lagged peer

flows, suggesting the presence of temporal flow shocks spillovers from peers which will

be studied in more details in Section 1.6.1. In line with the literature on the Flow-

Performance relationship, our empirical results show that this relationship is positive

and statistically significant in the Money Market Mutual Fund industry.

As shown in Appendix 1.B and Table 1.5, these results are robust to the inclusion of

Treasury MMMFs and to different ways to construct the similarity network.

1.6.1 Impact Measures

Due to the presence of spatial interactions, interpretation of spatial models based on

parameters point estimates may lead to misleading conclusions. Indeed, in a classical

linear regression model, the parameters estimates represent the (direct) marginal effect

of the exogenous variables on the dependent one. On the contrary, this is not true for

spatial models. As suggested in [LeSage and Pace, 2009], a partial derivatives approach

to assess the impact of changes in the value of an independent variable should be preferred

for spatial models. The reduced form of model (1.17) is given by:

y =(I − λW )−1(ρI + γW−1
)
y−1 + (I − λW )−1(β2I + β1W−1

)
x−1+

+ (I − λW )−1(Cδ +α⊗ ι+ ιT ⊗ ζn) + (I − λW )−1ε. (1.28)
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Hence the matrices of partial derivatives of y with respect to the error term, past flow

and yield are given respectively by:

∂yt
∂εt

= (I − λWt)−1, (1.29)

∂yt
∂yt−1

= (I − λWt)−1(ρI + γWt−1
)
, (1.30)

∂yt
∂xt−1

= (I − λWt)−1(β2I + β1Wt−1
)
, (1.31)

where, for instance, we can interpret the element
(
∂yt
∂εt

)
ij

as the impact on the flow of

fund i of a simultaneous unit shock to the flow of fund j. Each one of the previous

partial derivatives is a matrix usually referred to as an impact matrix. Let denote by

Sx(W ), with x ∈ {ε,y−1,x−1}, the generic TN ×TN block diagonal impact matrix8 for

model (1.17). Moreover, we define Sx(Wt) as the generic time t impact matrix obtained

considering only the time t similarity network Wt. In order to provide insights on the

spatial dependence between the flows of MMMFs, we will, for simplicity, focus only on

the generic time t impact matrix of simultaneous flow shocks Sε(Wt). This is an N ×N

matrix given by:

Sε(Wt) = ∂yt
∂εt

= (I − λWt)−1 =



Sε(Wt)11, Sε(Wt)12, . . . , Sε(Wt)1N

Sε(Wt)21, Sε(Wt)22, . . . , Sε(Wt)2N
...

... . . . ...

Sε(Wt)N1, Sε(Wt)N2, . . . , Sε(Wt)NN


. (1.32)

The diagonal elements of (1.32) measure the direct effect of a shock εi on the flow of the

same crossectional unit i, while the off-diagonal elements measure the indirect effect of a

shock εi on the flow of funds other than i. For instance, Sε(Wt)ij measures the indirect

effect that a shock to the flow of fund j has on the contemporaneous flow of fund i.

Moreover, the sum of the off-diagonal elements of column i measures the total impact

8Here Sx(W ) is a block diagonal matrix that represent the impact matrix for the overall stacked
observations. Since we are considering a temporal network, a similar matrix could be defined for each
time period t.
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that a shock to fund i has on the flows of all the other funds. Instead, the sum of the

off-diagonal elements in row i measures the impact that the shocks to all other funds

have on the flow of fund i, or in other words, the vulnerability of fund i to peers shocks.

Furthermore, using the series expansion of (I − λWt)−1, the impact matrix Sε(Wt) can

be decomposed as:

Sε(Wt) = (I − λWt)−1 = I + λWt + λ2W 2
t + λ3W 3

t . . . . (1.33)

Since in the identity matrix the diagonal elements are all one and the off-diagonal el-

ements are all zero, the first term in (1.33) can be interpreted as the first order direct

effects of ε on y. By construction, the diagonal elements of Wt are all zero, hence, this

term can be interpreted as a first order indirect effect of ε on y, i.e. the impact on y of

shocks to the first-degree neighbors. The diagonal elements of W 2
t are not necessarily

zero, and represent the second order direct effect of ε on y, i.e. the impact from a length

2 feedback loop. In this case a length 2 feedback loop is a situation in which a shock εi
has an indirect impact on the flow yj of a neighbor which, in turn, has an indirect impact

back on yi (see Figure 1.4). It is important to note that, due to the presence of these

feedback loops, a one unit change in εi may have a direct impact on yi greater than 1.

The off-diagonal elements ofWt represent the first order indirect effects of neighbors, i.e.

the impact on yi of a flow shock εj to a first degree neighbor j. Similarly, the off-diagonal

elements of the second term W 2
t in (1.33) can be interpreted as a second order indirect

effect, i.e. the impact from the second degree neighbors. An example of second order

indirect impact of j on i is shown in Figure 1.5, where j has an indirect impact on a

neighbor k that has, in turn, and indirect impact on i.

Since the impacts change for each observation, a series of summary scalar impact mea-

sures for Sx(W ) have been proposed in the literature [Elhorst, 2014], [Arbia et al., 2019].

The first one is called Average Direct Impact, and measures the average total impact on

yi of a unit change of the variable xi for i = 1, . . . , TN , and is defined as the average of



35

Figure 1.4: Simultaneous flow shock second order direct impact.

εi,t

yj,t

yi,t

Figure 1.5: Simultaneous flow shock second order indirect impact.

εi,t

yj,tεj,t

yk,t

yi,t

all the diagonal elements in Sx(W ):

Average Direct Impact = M̄(x)direct = 1
TN

TN∑
i=1

Sx(W )ii. (1.34)

The second one is a global measure called Average Total Impact and is defined as the

average of all the row or column sums in Sx(W ):

Total Direct Impact = M̄(x)total = 1
TN

TN∑
i=1

TN∑
j=1

Sx(W )ij . (1.35)

The difference between the Average Total Impact and the Average Direct Impact is

another measure called Average Indirect Impact. It can be computed as the average of

the row or column sum of the off-diagonal elements in Sx(W ), and can be interpreted

as a measure of Spatial Spillovers:

Average Indirect Impact = M̄(x)indirect = M̄(x)total − M̄(x)direct. (1.36)
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Panel A, B and C of Table 1.4 contain the estimated impact measures corresponding to

columns (3), (9) and (12) of Table 1.3 respectively. The significance levels are computed

by simulating each impact measure using the estimated parameters and their clustered

covariance matrix as suggested in [LeSage and Pace, 2009].

It is worth noticing that the average direct impact of a flow shock ε is greater than

1 because the Average Direct Impact takes also into account any feedback loop where

the shock to i has a contemporaneous indirect impact on fund j that has an indirect

impact on .... that has an indirect impact on i. Using (1.33) we can partition the impact

measures into the contribution of first, second and higher degree neighbors, which are

shown, for the case of all fund categories except Treasuries, in Panel A of Table 1.4 and

Figure 1.6.

Peer Flow Effects

We have defined Peer Flow Effects as the contemporaneous dependence between the flows

of similar funds. From Panel A of Table 1.4 we see that the average indirect impact of

a flow shock is positive but not statistically significant. However, if we decompose the

measure as a function of the peers order we have that the average indirect impacts of

a flow shock from first and second order peers are positive and statistically significant,

supporting the evidence of a contemporaneous dependence between the flows of similar

funds. This dependence may allow the transmission of outflow shocks between peers

that, in turn, may result in widespread run like events. If wee look at Figure 1.6, we

see that the magnitude of peer flow effects is decreasing with the order of the neighbor

degree. Thus, the impact from first and second order neighbors, which have a higher

degree of similarity, is higher than the impact from higher order neighbors.

The estimated indirect impact measure of first degree neighbors is 0.7 which means that

for a fund i, on average, a one percent flow shock to the top 10% most similar funds

may result in 0.7% indirect flow shock to i, even though i did not originally received a

direct shock.



37

Another way to see the impact of peer flow effects is considering the case in which every

fund in the network receives a one percent flow shock. Without spatial interaction, the

average total impact on each fund would be equal to a one percent shock. However

when peer effects are present, if we only consider the contributions from the statistically

significant lags, the average total impact on each fund is equal to about a 2.3% percent

shock. This increase is due to the spatial multiplier caused by the spatial interactions.

Flow Spillovers

We have defined flow spillovers as the dependence between current flows and lagged peer

flows. From Panel A of Table 1.4 we see a negative and statistically significant direct

impact of lagged flows. From (1.33) we can rewrite the lagged flow impact matrix as

∂yt
∂yt−1

= (I − λWt)−1(ρI + γWt−1
)
, (1.37)

= (I + λWt + λ2W 2
t + λ3W 3

t . . . )
(
ρI + γWt−1

)
. (1.38)

Hence, it is easy to see that, for instance, the Lag 0 impact matrix is given by:

ρI, (1.39)

while the Lag 1 impact matrix is:

ρλWt + γWt−1, (1.40)

and, similarly, the Lag 2 impact matrix is:

ρλ2W 2
t + λγWtWt−1. (1.41)

The off-diagonal elements of the first term in (1.40) represent the indirect impact of the

time t first degree neighbors, while the off-diagonal elements of the second term represent
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the indirect impact of the time t− 1 first degree neighbors. What (1.40) implies is that

the flow at time t− 1 of a fund j, may have a first order indirect impact on the flow at

time t of a fund i both if j was a first degree neighbor of i at time t− 1, but also if j is

a first degree neighbor of i at time t.

It is important to highlight that the Lag 2 impact matrix (1.41) captures the impact of

both, spatial and temporal, second order degree neighbors. On the one hand, a fund j

is a second order spatial neighbor of i if, at time t, j is a neighbor of a fund k, which

is also a neighbor, at time t, of fund i. On the other hand, a fund j is a second order

temporal neighbor of i if, at time t− 1, j is a neighbor of a fund k which, at time t, is a

neighbor of i.

We find a positive and weakly significant indirect impact of lagged peer flows on cur-

rent flows from first and second degree neighbors, supporting the evidence of temporal

spillovers between the flows of similar funds. Hence, a 1% change in peer flows at time

t− 1 of a fund i, may result on average in a 0.12% change in the time t flows of fund i.

Moreover, as shown in Figure 1.6, the magnitude of indirect impact for lagged flows is

rapidly decreasing with the order of the neighbor degree.

Flow Performance Relationship

The yield impact matrix (1.31) can be interpreted as the flow-performance relationship

implied by our spatial model. The literature on the flow performance relationship studies

the dependence between the flows of a fund and its own past performance. In our model,

this dependence is summarized by average direct impact measure for the past yield in

Tables 1.4. Consistently with the empirical evidence, this impact measure is positive

and statistically significant. From (1.33) we have that:

∂yt
∂xt−1

= (I − λWt)−1(β2I + β1Wt−1
)
, (1.42)

= (I + λWt + λ2W 2
t + λ3W 3

t . . . )
(
β2I + β1Wt−1

)
. (1.43)
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Hence the Lag 0 impact matrix is given by:

β2I, (1.44)

while the Lag 1 and 2 impact matrices are, respectively:

β2λWt + β1Wt−1, (1.45)

and

β2λ
2W 2

t + β1λWtWt−1. (1.46)

It is important to highlight that the Lag 1 impact matrix (1.45), accounts for the past

yield impact of both current and t − 1 first degree neighbors. Table 1.4 suggest the

existence of a positive and significant dependence between the flow a fund and the

past performance of its peers. In particular, we find this relationship to be statistically

significant for first and second degree neighbors and decreasing with the peer spatial lag.

1.7 Resilience to widespread flow shocks

When a fund receives an extreme outflow, in the absence of redemption gates, the fund

is forced to sell an equivalent amount of assets to generate liquidity and meet the re-

demption demand. If the extreme outflow is greater than its percentage holding in daily

liquid assets, the fund manager may also need to sell part of its holdings in less liquid

assets that may also be present in the portfolio of other Money Market Funds. If a large

proportion of funds is forced to - simultaneously - sell holdings in less liquid assets, then

fund managers may incur in losses due to the fire-sale mechanism and the assets finite

liquidity.

It is therefore important to asses the magnitude of the shock that the MMMFs indus-

try is able to withstand without triggering potential fire-sales spillovers. The answer is

trivial if there exist no spatial dependence between fund flows. If each fund is required

to maintain a 10% holding in daily liquid assets, then the MMMFs industry should be
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able to withstand a system wide 10% flow shock.

However, this is not the case when Peer Flow Effects are presents. For instance, from

Table 1.4 we know that a flow shock to a given fund may have indirect impacts on other

funds resulting in a total impact greater than the initial shock. Moreover, the total im-

pact of a flow shock is not homogeneous among funds and depends on the fund’s position

within the network and its connections.

As described in Section 1.5, the in-degree kini of a fund i can be interpreted as number

of funds that could, potentially, be indirectly affected by a flow shock to i. If N is the

total number of funds in the network, the in-degree centrality of fund i is defined as

Cni = kini
N
. (1.47)

Fixing a time instant t and using the estimate of the spatial dependence parameter

λ̂ = 0.7597, we can measure the total impact of flow shock s to a fund i as

∑
i,j

[(
I − λ̂Wt

)−1
εis

]
ij
, (1.48)

where εis is an N × 1 flow shock vector such that (εis)j = 0 for j 6= i and (εis)i = s.

Equation (1.48) considers the impact of neighbors for every possible lag, however, as we

have seen in Table 1.4, the impact of peers flow shock is statistically significant only

up to the second order lag. Thus, in order to study the resiliency of the money market

industry and focus only on the statistically significant relationships, we consider in this

Section the decomposition of the impact matrix up to the first two lags:

∑
i,j

[(
I + λ̂Wt + λ̂2W 2

t

)
εis

]
ij
. (1.49)

Figure 1.7 reports, for a sample of months, the relationship between the total impact

of a 10% flow shock to a fund (y axis) and its in-degree centrality (x axis). We see

that shocks to funds with higher in-degree centrality tend to have a higher total impact,
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consistently across the different dates.

In order to study the resilience of the MMMFs industry to widespread flow shocks

we analyze how the percentage of funds that receive a total outflow greater than the

percentage of daily liquid assets (assumed to be 10%), i.e. the percentage of funds

forced to sell less liquid assets, changes as function of the percentage of funds shocked

and the magnitude of the flow shock. Without spatial interactions, if the magnitude of

the outflow shock is less than 10% then we expect the percentage of funds forced to sell

less liquid assets to be equal to 0% independently of the percentage of funds initially

shocked, while, if the magnitude of the outflow shock is greater or equal than 10%, we

expect the percentage of funds forced to sell less liquid assets to increase linearly with

the percentage of funds initially shocked.

Let us define fin as the percentage of funds initially receiving a flow shock and fout as the

percentage of funds forced to sell less liquid assets. Using the September 2015 snapshot

of the similarity temporal network defined in Section 1.5, for each fin ∈ (0%, 100%) and

for each outflow shock s in [5%, 7%, 10%, 20%, 30%, 40%, 50%], we randomly select 1000

times N · fin unique funds and we simultaneously shock them while leaving all the other

funds shock equal to zero. After the shock, for each pair (fin, s), we compute fout as the

average percentage of funds resulting in a total outflow that is grater than 10%. The

results are shown in the left panel of Figure 1.8. If the flow shock magnitude is s = 5%,

no fund is forced to sell less liquid assets. However, focusing on the case s = 7% we

see that, due to the spatial interaction, if the percentage of funds contemporaneously

receiving the shock is high enough, then fout starts becoming greater than zero and grows

rapidly even if the initial flow shock is below the level of daily liquid assets. Fixing the

percentage of funds shocked fin, we also see that fout is increasing in the shock magnitude

s meaning that, if the flow shock is strong enough, then fewer funds need to be shocked

in order for the industry to observe a high percentage of funds forced to sell less liquid

assets. For instance, if 50% of the funds receive an outflow shock of 40%, more than 90%

of the funds may suffer a total outflow of 10% or more. The black dashed line represents,
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for comparison, the relationship between fin and fout for any flow shock greater than

10% assuming instead no spatial interactions.

Furthermore, the right panel of Figure 1.8 shows how fout changes as function of s when

the 20% of funds shocked have a high in-degree centrality (blue line) or low in-degree

centrality (red line). If the funds shocked can have an impact only on few funds, then

fout stays almost constant with respect to s. On the other hand, if the funds receiving

the initial shock have the potential to influence a high number of funds, then fout rapidly

grows as the shock magnitude s increases.

It is not possible to identify, a priori, the number of funds simultaneously selling less

liquid assets that will likely trigger fire sales spillovers, because it may depend on the

market conditions and the asset liquidity. However, for our analysis we can define a

threshold τ , corresponding to the number of funds simultaneously selling less liquid

assets, i.e. simultaneously receiving a flow shock greater than the percentage of daily

liquid assets, to characterize the resilience the MMF industry. The two dimensions of a

run-like event are the magnitude of the flow shock and the percentage of funds shocked.

For each combinations of the two, if the resulting percentage of funds selling less liquid

assets is greater than τ , then we say that we are in the fire-sales spillover or vulnerability

region. Figure 1.9 shows for various values of τ the different fire-sales regions in grey,

and its lower boundary as a solid black line. The red dashed line shows the lower bound

for the fire-sales region assuming no Peer Effects. The first observation stemming from

Figure 1.9 is that, independently of the threshold τ , accounting for the presence of Peer

Effects shows a larger vulnerability region than predicted by the case without spatial

interaction. If τ = 50%, not accounting for Peer Effects shows that the risk of fire sales

spillovers exists only if 50% of more of the industry receives a shock greater than 10%.

However, the presence of spatial interactions highlights that the fire sales risk may be

present also if a smaller percentage of funds receives a strong enough shock. For instance,

if 20% of the funds receive a flow shock greater than 80%. Obviously, the greater τ the

smaller is the fire sales spillover region.
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1.8 Conclusion

Using a novel data-set of portfolio-level holdings of US Money Market Mutual Funds we

find evidence of positive and statistically significant endogenous peer flow effects. Their

economic implication is also significant. A fund may indirectly suffer a 0.75% flow shock

as a result of a 1% shocks to its most similar funds. These indirect impacts are decreasing

with the network distance between two funds and statistically significant up to second

order neighbors. Moreover, we show that the endogenous amplification of a flow shock

caused by peer effects has a substantial implications for the vulnerability of the MMMFs

industry to run-like behaviours. The total impact of a flow shock is heterogeneous and

depends on the centrality of the fund shocked. More importantly, peer effects create a

non linear vulnerability region suggesting that flow shocks below the percentage of daily

liquid assets can still generate fire-sale spillovers if the percentage of funds shocks is high

enough.
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Appendix 1.A Proofs: Identification

1.A.1 No Fixed Effects

Without loss of generality, and for ease of explanation, we will not consider the control

variables Ctδ′ in this section. Let first start by rewriting the structural model without

any fixed effect as:

y = αι+ λWy + ρy−1 + γW−1y−1 + β1W−1x−1 + β2x−1 + ε, (1.50)

where y, y−1, x−1 and ε are TN column vectors given by:

y = (y1,y2, . . . ,yT )′,

y−1 = (y0,y1, . . . ,yT−1)′,

x−1 = (x0,x1, . . . ,xT−1)′,

ε = (ε1, ε2, . . . , εT )′.

Moreover,W andW−1 are TN×TN block diagonal matrices given by diag(W1, . . . ,WT )

and diag(W0, . . . ,WT−1), respectively. The reduced form of (1.50) can then be written

as:

y = α(I − λW )−1ι+ (I − λW )−1(ρI + γW−1)y−1+

+ (I − λW )−1(β2I + β1W−1)x−1+

+ (I − λW )−1ε. (1.51)

Let assume that W and W−1 are distinct, row normalized and do not contain any zero

row. In order to prove Proposition 1.4.2, we first prove the following Lemma:

Lemma 1.A.1. Suppose that the previous mild conditions are satisfied and that ργ 6= 0

or β2β2 6= 0. Model (1.50) is identified if and only if ∃ t such that the matrices I,Wt,Wt−1

and WtWt−1 are linearly independent.
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Proof. Let assume that (α, λ, ρ, γ, β1, β2) and (α′, λ′, ρ′, γ′, β′1, β′2) are two set of struc-

tural parameters that lead to the same reduced form model. Then we have

α(I − λW )−1ι = α′(I − λ′W )−1ι (1.52)

(I − λW )−1(ρI + γW−1) = (I − λ′W )−1(ρ′I + γ′W−1) (1.53)

(I − λW )−1(β2I + β1W−1) = (I − λ′W )−1(β′2I + β′1W−1). (1.54)

Since ∀λ we have that9 W (I−λW )−1 = (I−λW )−1W , if we multiply by (I−λ′W )(I−

λW ) equalities (1.53) and (1.54) , we get

(ρ− ρ′)I + (λρ′ − λ′ρ)W + (γ − γ′)W−1 + (λγ′ − λ′γ)WW−1 = 0, (1.55)

and

(β2 − β′2)I + (λβ′2 − λ′β2)W + (β1 − β′1)W−1 + (λβ′1 − λ′β1)WW−1 = 0. (1.56)

If I,W,W−1 and WW−1 are linearly independent, then from (1.55) and (1.56) the fol-

lowing two systems of equations must be satisfied:



ρ− ρ′ = 0

λρ′ − λ′ρ = 0

γ − γ′ = 0

λγ′ − λ′γ = 0

(1.57)



β2 − β′2 = 0

λβ′2 − λ′β2 = 0

β1 − β′1 = 0

λβ′1 − λ′β1 = 0

(1.58)

9This can be easily seen if we consider the series expansion (I − λW )−1 =
∑∞

k=0 λ
kW k.
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Solving (1.57) and (1.58) yields then α = α′, λ = λ′, ρ = ρ′, γ = γ′, β1 = β′1 and β2 = β′2,

which means that Model (1.50) is identified.

Let now suppose that I,W,W−1 andWW−1 are linearly dependent, i.e. ∃ θ1, θ2, θ3, with

at least one different from zero, such that:

WW−1 = θ1I + θ2W + θ3W−1. (1.59)

Since, by assumption, W and W−1 are row-normalized, we have that W ι = W−1ι = ι,

which implies θ1 + θ2 + θ3 = 1. By substituting (1.59) into (1.53), we obtain:

(
ρ−ρ′+θ1(λγ′−λ′γ)

)
I+

(
λρ′−λ′ρ+θ2(λγ′−λ′γ)

)
W +

(
γ−γ′+θ3(λγ′−λ′γ)

)
W−1 = 0.

(1.60)

Since, by assumption,W andW−1 are different and both have zeros on the main diagonal

( because no fund is connected to itself), I, W and W−1 are linearly independent.

Therefore the coefficients of (1.60) satisfy:


ρ− ρ′ + θ1(λγ′ − λ′γ) = 0

λρ′ − λ′ρ+ θ2(λγ′ − λ′γ) = 0

γ − γ′ + θ3(λγ′ − λ′γ) = 0

(1.61)

If we sum the first two equations of (1.61) we obtain:

ρ− ρ′ + θ1(λγ′ − λ′γ) + λρ′ − λ′ρ+ θ2(λγ′ − λ′γ) = 0,

=⇒ ρ− ρ′ + λρ′ − λ′ρ+ (1− θ3)(λγ′ − λ′γ) = 0,

=⇒ ρ− ρ′ + λρ′ − λ′ρ+ λγ′ − λ′γ − θ3(λγ′ − λ′γ) = 0,

=⇒ ρ(1− λ′)− ρ′(1− λ) + λγ′ − λ′γ − θ3(λγ′ − λ′γ) = 0,

=⇒ ρ(1− λ′)− ρ′(1− λ) + λγ′ − λ′γ + γ − γ′ − γ + γ′ − θ3(λγ′ − λ′γ) = 0,

=⇒ ρ(1− λ′)− ρ′(1− λ) + γ(1− λ′)− γ′(1− λ)− γ + γ′ − θ3(λγ′ − λ′γ) = 0,

=⇒ (ρ+ γ)(1− λ′)− (ρ′ + γ′)(1− λ)− γ + γ′ − θ3(λγ′ − λ′γ) = 0.
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Since γ − γ′ + θ3(λγ′ − λ′γ) = 0, from the last equation we also have that

(ρ+ γ)(1− λ′)− (ρ′ + γ′)(1− λ) = 0, (1.62)

which implies that the third equation of (1.61) can be obtained as the sum of the first

two. Hence, in order for (ρ, λ, γ) and (ρ′, λ′, γ′) to lead to the same reduced form, only

two equations need to be satisfied. Therefore, Model (1.50) is not identified.

We have proven, so far, that Model (1.50) is identified if and only if I,W,W−1 andWW−1

are linearly independent. The lemma is then obtained by observing that W,W−1 and

WW−1 are block diagonal. Thus I,W,W−1 and WW−1 are linearly independent if and

only if ∃ t such that the matrices I,Wt,Wt−1 and WtWt−1 are linearly independent.

The result and proof of Lemma 1.A.1 is similar to Proposition 1 in [Bramoullé et al.,

2009], with the main difference being that in our case endogenous and exogenous peer

effects are not transmitted through the same network but rather, through two consecu-

tive time instant of a more general temporal network.

Proposition 1.A.1. Suppose that the previous mild conditions are satisfied and that

ργ 6= 0 or β2β2 6= 0. If there exists at least one Intransitive Temporal Triad, then model

(1.50) is identified.

Proof. Let now assume that there exist at least one Intransitive Temporal Tried. This

means that ∃ t and i, j, k such that i is influenced by j at time t, j is influenced by

k at time t − 1, but i is not influenced by k at time t of t − 1. In other words we

have that (Wt)ik = (Wt−1)ik = 0, (Wt)ij 6= 0 and (Wt−1)jk 6= 0. This implies that

(WtWt−1)ik = (Wt)i, · (Wt−1),k ≥ (Wt)i,j(Wt−1)j,k > 0. Hence, I,Wt,Wt−1 and WtWt−1

are linearly independent, which implies by Lemma 1.A.1, that Model (1.50) is identified.
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1.A.2 With time fixed effects

Without loss of generality, and for ease of explanation, we will not consider the control

variables Ctδ′ in this section. Let first start by rewriting the structural model with time

fixed effects as:

y = α⊗ ι+ λWy + ρy−1 + γW−1y−1 + β1W−1x−1 + β2x−1 + ε, (1.63)

where α is the T × 1 vector of time fixed effects, y, y−1, x−1 and ε are TN column

vectors given by:

y = (y1,y2, . . . ,yT )′,

y−1 = (y0,y1, . . . ,yT−1)′,

x−1 = (x0,x1, . . . ,xT−1)′,

ε = (ε1, ε2, . . . , εT )′.

Local Demeaning

Similarly to [Bramoullé et al., 2009], we first eliminate the Time Fixed Effects using a

demeaning operator. In this section we first focus on the local demeaning operator, i.e.

for each variable we subtract from each fund the average taken over its neighbors in the

network:

(I −W )y = (I −W )λWy + ρ(I −W )y−1 + γ(I −W )W−1y−1 + β1(I −W )W−1x−1

+ β2(I −W )x−1 + (I −W )ε. (1.64)
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The demeaned structural model (1.64) has now no time fixed effect, and in this context

the demeaned reduced form becomes:

(I −W )y =(I −W )(I − λW )−1(ρI + γW−1)y−1+

+(I −W )(I − λW )−1(β2I + β1W−1)x−1+

+(I −W )(I − λW )−1ε. (1.65)

As in the previous Section, we assume that W and W−1 are distinct, row normalized

and do not contain any zero row. Hence, in order to prove Proposition 1.4.1, we first

prove the following Lemma:

Lemma 1.A.2. Suppose that the previous mild conditions are satisfied and that ργ 6=

0 or β2β2 6= 0. Model (1.64) is identified if and only if ∃ t such that the matrices

I,Wt,Wt−1, WtWt−1, W 2
t and W 2

t Wt−1 are linearly independent.

Proof. Let assume that (α, λ, ρ, γ, β1, β2) and (α′, λ′, ρ′, γ′, β′1, β′2) are two set of struc-

tural parameters that lead to the same reduced form model (1.65). Then we have

(I −W )(I − λW )−1(ρI + γW−1) = (I −W )(I − λ′W )−1(ρ′I + γ′W−1), (1.66)

(I −W )(I − λW )−1(β2I + β1W−1) = (I −W )(I − λ′W )−1(β′2I + β′1W−1), (1.67)

or equivalently, since W (I − λW )−1 = (I − λW )−1W for every λ,

(I − λW )−1(I −W )(ρI + γW−1) = (I − λ′W )−1(I −W )(ρ′I + γ′W−1), (1.68)

(I − λW )−1(I −W )(β2I + β1W−1) = (I − λ′W )−1(I −W )(β′2I + β′1W−1). (1.69)

If we multiply both members of the previous two equalities by (I − λ′W )(I − λW ), we

then get

(ρ− ρ′)I + (γ − γ′)W−1 + (ρ′ − ρ+ λρ′ − λ′ρ)W + (γ′ − γ + λγ′ − λ′γ)WW−1+

+ (λ′ρ− λρ′)W 2 + (λ′γ − λγ′)W 2W−1 = 0, (1.70)
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and

(β2 − β′2)I + (β′1 − β1)W−1 + (β2 − β′2 + λβ′2 − λ′β2)W + (β1 − β′1 + λ′β1 − λβ′1)WW−1+

+ (λ′β2 − λβ′2)W 2 + (λβ′1 − λ′β1)W 2W−1 = 0. (1.71)

If I,W,W−1, WW−1, W 2 and W 2W−1 are linearly independent, then from (1.70) and

(1.71) the following two systems of equations must be satisfied:



ρ− ρ′ = 0

γ − γ′ = 0

ρ− ρ′ + λρ′ − λ′ρ = 0

γ − γ′ + λ′γ − λγ′ = 0

λ′ρ− λρ′ = 0

λγ′ − λ′γ = 0

(1.72)



β2 − β′2 = 0

β1 − β′1 = 0

β2 − β′2 + λβ′2 − λ′β2 = 0

β1 − β′1 + λ′β1 − λβ′1 = 0

λ′β2 − λβ′2 = 0

λβ′1 − λ′β1 = 0

(1.73)

Since by assumption ργ 6= 0 or β2β2 6= 0, from (1.72) and (1.73) we have that the model

is identified.

Suppose now that I,W,W−1, WW−1, W 2 and W 2W−1 are linearly dependent. If

WW−1 = θ1I + θ2W−1 + θ3W, (1.74)

then θ1+θ2+θ3 = 1, and by substitution in (1.70), (α, λ, ρ, γ, β1, β2) and (α′, λ′, ρ′, γ′, β′1, β′2)
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lead to the same reduced form model if and only if



ρ− ρ′ + θ1(γ′ − γ + λγ′ − λ′γ) = 0

γ − γ′ + θ2(γ′ − γ + λγ′ − λ′γ) = 0

ρ′ − ρ+ λρ′ − λ′ρ+ θ3(γ′ − γ + λγ′ − λ′γ) = 0

λ′ρ− λρ′ = 0

λ′γ − λγ′ = 0

(1.75)

which is implies


ρ− ρ′ + λ′ρ− λρ′ + θ1(γ − γ′ + λ′γ − λγ′) = 0

γ′ − γ + λγ′ − λ′γ + θ2(γ − γ′ + λ′γ − λγ′) = 0

ρ′ − ρ+ λρ′ − λ′ρ+ θ3(γ − γ′ + λ′γ − λγ′) = 0

(1.76)

From (1.76) it is easy to see that the third equation can be obtained as the sum of

the first two. Hence, only two equations need to be satisfied for (α, λ, ρ, γ, β1, β2) and

(α′, λ′, ρ′, γ′, β′1, β′2) to lead to the same reduced form model. Therefore the model is not

identified. If instead

W 2 = θ1I + θ2W−1 + θ3W + θ4WW−1, (1.77)

then θ1 + θ2 + θ3 + θ4 = 1. The two set of parameters lead to the same reduced form

model if and only if



ρ− ρ′ + θ1(λ′ρ− λρ′) = 0

γ − γ′ + θ2(λ′ρ− λρ′) = 0

ρ′ − ρ+ λρ′ − λ′ρ+ θ3(λ′ρ− λρ′) = 0

γ′ − γ + λγ′ − λ′γ + θ4(λ′ρ− λρ′) = 0

λ′γ − λγ′ = 0

(1.78)
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Since the last equation of (1.78) can be obtained as the sum of the first four, the following

system has the same solution set:



ρ− ρ′ + θ1(λ′ρ− λρ′) = 0

γ − γ′ + λ′γ − λγ′ + θ2(λ′ρ− λρ′) = 0

ρ′ − ρ+ λρ′ − λ′ρ+ θ3(λ′ρ− λρ′) = 0

γ′ − γ + λγ′ − λ′γ + θ4(λ′ρ− λρ′) = 0

(1.79)

It is easy to see that in (1.79) the last equation can be obtained as the sum of the first

three. Hence, without altering the solution set, we can consider the following system of

equations: 
ρ− ρ′ + θ1(λ′ρ− λρ′) = 0

(θ2 + θ3)(λ′ρ− λρ′) = 0

ρ′ − ρ+ λρ′ − λ′ρ+ θ3(λ′ρ− λρ′) = 0

(1.80)

Again, since the third equation can be obtained as the sum of the first two, only two

equation need to be satisfied for (α, λ, ρ, γ, β1, β2) and (α′, λ′, ρ′, γ′, β′1, β′2) to lead to the

same reduced form, and the model is not identified. If instead

W 2W = θ1I + θ2W−1 + θ3W + θ4WW−1 + θ5W
2, (1.81)

with θ1 + θ2 + θ3 + θ4 + θ5 = 1. By substitution into (1.70), the two set of parameters

lead to the same reduced form model if and only if



ρ− ρ′ + θ1(λ′γ − λγ′) = 0

γ − γ′ + θ2(λ′γ − λγ′) = 0

ρ′ − ρ+ λρ′ − λ′ρ+ θ3(λ′γ − λγ′) = 0

γ′ − γ + λγ′ − λ′γ + θ4(λ′γ − λγ′) = 0

λ′ρ− λρ′ + θ5(λ′γ − λγ′) = 0

(1.82)

Since the last equation of (1.82) can be obtained as the sum of the first four, an equivalent
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system with the same solution set is given by



ρ− ρ′ + λ′ρ− λρ′ + (θ1 + θ5)(λ′γ − λγ′) = 0

γ − γ′ + θ2(λ′γ − λγ′) = 0

ρ′ − ρ+ λρ′ − λ′ρ+ θ3(λ′γ − λγ′) = 0

γ′ − γ + λγ′ − λ′γ + θ4(λ′γ − λγ′) = 0

(1.83)

Again, we have that the last equation can be obtained as the sum of the first three,

which implies 
ρ− ρ′ + λ′ρ− λρ′ + (θ1 + θ5)(λ′γ − λγ′) = 0

λγ′ − λ′γ + (θ2 + θ4)(λ′γ − λγ′) = 0

ρ′ − ρ+ λρ′ − λ′ρ+ θ3(λ′γ − λγ′) = 0

(1.84)

From (1.84) it is easy to see that only two equations need to be satisfied for (α, λ, ρ, γ, β1, β2)

and (α′, λ′, ρ′, γ′, β′1, β′2) to lead to the same reduced form, and the model is not iden-

tified. Since I,W,W−1, WW−1, W 2 and W 2W−1 are all block-diagonal matrices, we

have that model (1.64) is identified if and only if ∃ t such that the matrices I,Wt,Wt−1,

WtWt−1, W 2
t and W 2

t Wt−1 are linearly independent.

We can now prove the following proposition.

Proposition 1.A.2. Suppose that the usual mild conditions are satisfied and that ργ 6= 0

or β2β2 6= 0. If there exist a t such that the network W 2
t Wt−1 has diameter greater or

equal than 3, then model (1.64) is identified.

Proof. Let’s assume that ∃ t such that the network W 2
t Wt−1 has diameter greater or

equal than 3. This implies that we can find two funds i and j in W 2
t Wt−1 such

that (W 2
t Wt−1)ij > 0, and (W 2

t )ij = (WtWt−1)ij = (Wt)ij = (Wt−1)ij = 0. Hence,

I,Wt,Wt−1, WtWt−1, W 2
t and W 2

t Wt−1 are linearly independent and model (1.64) is

identified.
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Global Demeaning

As standard in the panel literature and similarly to [Lee and Yu, 2010], we can also

eliminate the time fixed effects using a global demeaning operator. Hence, let define the

demeaning operator Jn as Jn = In − 1
nιnι

′
n = In −Hn. Since Wt is row-normalized, we

have that JnWt = JnWt(Jn + 1
nιnι

′
n) = JnWtJn. Therefore, the demeaned structural

model has no time fixed effects and can be written as:

Jnyt = λJnWtyt + ρJnyt−1 + γJnWt−1yt−1 + β1JnWt−1xt−1 + β2Jnxt−1 + Jnεt, (1.85)

or equivalently

Jnyt = λ(JnWt)(Jnyt) + ρ(Jnyt−1) + γ(JnWt−1)(Jnyt−1)

+ β1(JnWt−1)(Jnxt−1) + β2(Jnxt−1) + Jnεt.

(1.86)

It is worth noticing that (1.86) is a spatial dynamic model without fixed effects similar

to (1.50) but with demeaned variables. However, its identification cannot be proved

by using Proposition 1.A.2 because the matrix JnWt is not row-normalized in general.

Starting with the stacked structural model with time fixed effects (1.63) and considering

the block diagonal global demeaning operator I −H, we have the following form for the

demeaned structural model

(I−H)y = (I−H)λWy+(I−H)(ρI+γW−1)y−1+(I−H)(β2I+β1W−1)x−1+(I−H)ε,

(1.87)

and the following demeaned reduced form model

(I −H)y =(I −H)(I − λW )−1(ρI + γW−1)y−1+

+(I −H)(I − λW )−1(β2I + β1W−1)x−1+

+(I −H)(I − λW )−1ε. (1.88)
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Lemma 1.A.3. Suppose that W and W−1 are distinct, row normalized, do not contain

zero rows and that I,Wt,Wt−1, WtWt−1, W 2
t and W 2

t Wt−1 are linearly independent. If

θ1I + θ2Wt−1 + θ3Wt + θ4WtWt−1 has identical rows, then θ1 = θ2 = θ3 = θ4 = 0.

Proof. Let suppose that θ1I+θ2W−1+θ3W+θ4WW−1 has identical rows. SinceW ι = ι,

left multiplying θ1I+θ2W−1 +θ3W +θ4WW−1 byW does not change the matrix. Hence

θ1I + θ2W−1 + θ3W + θ4WW−1 = θ1W + θ2WW−1 + θ3W
2 + θ4W

2W−1, (1.89)

which implies

θ1I + θ2W−1 + (θ3 − θ1)W + (θ4 − θ2)WW−1 + θ3W
2 + θ4W

2W−1 = 0. (1.90)

Since by assumption I,W,W−1,WW−1,W 2 andW 2Wt−1 are linearly independent, then

we have that θ1 = θ2 = θ3 = θ4 = 0.

Lemma 1.A.4. Suppose that the usual mild conditions are satisfied and that ργ 6=

0 or β2β2 6= 0. If ∃ t such that I,Wt,Wt−1, WtWt−1, W 2
t and W 2

t Wt−1 are linearly

independent, then model (1.88) is identified.

Proof. Let assume that (λ, ρ, γ, β1, β2) and (λ′, ρ′, γ′, β′1, β′2) are two set of structural

parameters that lead to the same reduced form model (1.88) and let define η = (λ, ρ, γ)

and β = (λ, β1, β2). Hence, we have that ∀yt−1 and ∀xt−1

(I−λWt)−1(ρI+γWt−1)yt−1−ϕ(yt−1,η)ι = (I−λ′Wt)−1(ρ′I+γ′Wt−1)yt−1−ϕ(yt−1,η
′)ι,

(1.91)

and

(I−λWt)−1(β2I+β1Wt−1)xt−1−ϕ(xt−1,β)ι = (I−λ′Wt)−1(β′2I+β′1Wt−1)xt−1−ϕ(xt−1,β
′)ι,

(1.92)



56

where

ϕ(yt−1,η) = 1
N
ι′(I − λWt)−1(ρI + γWt−1)yt−1, (1.93)

ϕ(xt−1,β) = 1
N
ι′(I − λWt)−1(β2I + β1Wt−1)xt−1. (1.94)

Multiplying (1.91) by (I − λ′Wt)(I − λWt) we obtain

[(ρ− ρ′)I + (γ − γ′)Wt−1 + (λρ′ − λ′ρ)Wt + (λγ′ − λ′γ)WtWt−1]yt−1 =

= (1− λ′)(1− λ)[ϕ(yt−1,η)− ϕ(yt−1,η
′)]ι.

(1.95)

Since the right-hand side of equation (1.95) is a constant vector and since (1.95) must

be satisfied for every yt−1, we have that the matrix (ρ − ρ′)I + (γ − γ′)Wt−1 + (λρ′ −

λ′ρ)Wt+(λγ′−λ′γ)WtWt−1 has equal rows. From Lemma 1.A.3, if I,Wt,Wt−1,WtWt−1,

W 2
t and W 2

t Wt−1 are linearly independent, then



ρ− ρ′ = 0

λρ′ − λ′ρ = 0

γ − γ′ = 0

λγ′ − λ′γ = 0

(1.96)

Since, by assumption, ργ 6= 0, system (1.96) implies that λ = λ′, ρ = ρ′, γ = γ′. Similarly

we can prove that, if I,Wt,Wt−1, WtWt−1, W 2
t and W 2

t Wt−1 are linearly independent,

then also β1 = β′1 and β2 = β′2. Hence, model (1.88) is identified.

1.A.3 With fund and time fixed effects

If we have both time and fund fixed effects, the structural equation of the model can be

written as:

yt = αtι+ ζn + λWtyt + ρyt−1 + γWt−1yt−1 + β1Wt−1xt−1 + β2xt−1 + εt, (1.97)
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where ζn is the vector of fund fixed effects, which is equal to

ζn = (f1, f2, . . . , fn)′. (1.98)

It is convenient to rewrite model (1.97) in a stacked structural form as:

y = α⊗ ι+ ιT ⊗ ζn + λWy + ρy−1 + γW−1y−1 + β1W−1x−1 + β2x−1 + ε, (1.99)

with ιT being the T × 1 column vector of ones. Time fixed effects α⊗ ι can be removed

as in Appendix 1.A.2 using the global demeaning operator I −H, i.e.

(I −H)y = (I −H)λWy + (I −H)(ρI + γW−1)y−1

+ (I −H)(β2I + β1W−1)x−1 + (I −H)(ιT ⊗ ζn) + ν,

(1.100)

where (I−H)(ιT⊗ζn) could be interpreted as transformed fund fixed effects. In order to

remove the fund fixed effects, we use the Forward Orthogonal Deviation (FOD) operator

which has been widely employed in the dynamic panel literature [Arellano and Bover,

1995] and, recently, also applied to spatial dynamic panel models with fixed effects [Lee

and Yu, 2014]. In our case, the FOD operator is defined as:

B = F ′T,T−1 ⊗ IN , (1.101)
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where FT,T−1 is T × T − 1 matrix given by

FT,T−1 = diag

[
T−1
T , . . . , 1

2

] 1
2
× (1.102)

1 −(T − 1)−1 −(T − 1)−1 . . . −(T − 1)−1 −(T − 1)−1 −(T − 1)−1

0 1 −(T − 2)−1 . . . −(T − 2)−1 −(T − 2)−1 −(T − 2)−1

...
...

...
...

...
...

0 0 0 . . . 1 −1
2 −1

2

0 0 0 . . . 0 1 −1



′

.

(1.103)

The intuition behind the operator B is that ∀ i and ∀ t = 1, . . . , T − 1, the observation

yit is transformed into y∗it =
√

T−t
T−t+1 ·

[
yit − 1

T−t
∑T
h=t+1 yih

]
, hence y∗it depends only on

current and future values, but not on past ones. The advantage of using the operator B

is that it does not introduce autocorrelation in the error term, but requires the loss of

the last temporal observation for each cross-sectional unit. After the application of B,

the demeaned structural equation becomes:

B(I−H)y = B(I−H)λWy+B(I−H)(ρI+γW−1)y−1+B(I−H)(β2I+β1W−1)x−1+ν∗,

(1.104)

Similarly, the demeaned reduced form model without fixed effects is given by:

B(I −H)y =B(I −H)(I − λW )−1(ρI + γW−1)y−1+

+B(I −H)(I − λW )−1(β2I + β1W−1)x−1+

+B(I −H)(I − λW )−1(ιT ⊗ ζn)+

+B(I −H)(I − λW )−1ε. (1.105)

We observe that, while the fund fixed effects are in general still present in the re-

duced form model, our focus remains on the identification of the structural parameters

(λ, ρ, γ, β1, β2).
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Lemma 1.A.5. Suppose that the usual mild conditions are satisfied and that ργ 6=

0 or β2β2 6= 0. If ∃ t such that I,Wt,Wt−1, WtWt−1, W 2
t and W 2

t Wt−1 are linearly

independent, then model (1.104) is identified.

Proof. Let define η = (λ, ρ, γ) and β = (λ, β1, β2). The demeaned reduced form (1.105)

can be rewritten as:

B(I −H)y =B(I − λW )−1(ρI + γW−1)y−1 −Bϕ(y−1,η)+

+B(I − λW )−1(β2I + β1W−1)x−1 −Bϕ(x−1,η)+

+B(I −H)(I − λW )−1(ιT ⊗ ζn)+

+B(I −H)(I − λW )−1ε, (1.106)

where

ϕ(y−1,η) = H(I − λW )−1(ρI + γW−1)y−1 (1.107)

ϕ(x−1,β) = H(I − λW )−1(β2I + β1W−1)x−1. (1.108)

Let (λ, ρ, γ, β1, β2) and (λ′, ρ′, γ′, β′1, β′2) be two set of structural parameters that lead to

the same reduced form model (1.106). Hence, we have that ∀y−1 and ∀x−1:

B(I−λW )−1(ρI+γW−1)y−1−Bϕ(y−1,η) = B(I−λ′W )−1(ρ′I+γ′W−1)y−1−Bϕ(y−1,η
′),

(1.109)

and

B(I−λW )−1(β2I+β1W−1)x−1−Bϕ(x−1,β) = B(I−λ′W )−1(β′2I+β′1W−1)x−1−Bϕ(x−1,β
′).

(1.110)

From (1.109) we have that:

B
[
(I−λW )−1(ρI+γW−1)y−1−(I−λ′W )−1(ρ′I+γ′W−1)y−1+ϕ(y−1,η

′)−ϕ(y−1,η)
]

= 0.

(1.111)

The matrix B is right invertible with null space of dimension 1 that is spanned by the
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unit vector, therefore ∀y−1 ∃ ky such that:

(I−λW )−1(ρI+γW−1)y−1−(I−λ′W )−1(ρ′I+γ′W−1)y−1+ϕ(y−1,η
′)−ϕ(y−1,η) = kyι.

(1.112)

Similarly, from (1.110) we have that

(I−λW )−1(β2I+β1W−1)x−1−(I−λ′W )−1(β′2I+β′1W−1)x−1+ϕ(x−1,β
′)−ϕ(x−1,β) = kxι.

(1.113)

Multiplying (1.112) by (I − λ′W )(I − λW ) we obtain that ∀y−1:

[
(ρ− ρ′)I + (γ − γ′)W−1 + (λρ′ − λ′ρ)W + (λγ′ − λ′γ)WW−1

]
y−1 =

(I − λ′W )(I − λW )
[
ϕ(y−1,η)−ϕ(y−1,η

′)
]

+ ky(1− λ)(1− λ′)ι.

(1.114)

The matrix inside the square brackets on the left-hand side of (1.114) is a block-diagonal

matrix, ky(1−λ)(1−λ′)ι is a constant vector, while ϕ(y−1,η)−ϕ(y−1,η
′) is a stacked

vector that can be rewritten as

ϕ(y−1,η)−ϕ(y−1,η
′) = (1.115)(

ϕ(y0,η)− ϕ(y0,η
′), . . . , ϕ(yt−1,η)− ϕ(yt−1,η

′), . . . , ϕ(yT−1,η)− ϕ(yT−1,η
′)
)′
.

(1.116)

It is easy to see that if we focus on a generic time instant t− 1, equation (1.114) implies

that

(ρ− ρ′)I + (γ − γ′)Wt−1 + (λρ′ − λ′ρ)Wt + (λγ′ − λ′γ)WtWt−1

has identical rows. Hence, by Lemma 1.A.3, we can prove that if I,Wt,Wt−1, WtWt−1,

W 2
t and W 2

t Wt−1 are linearly independent, model (1.105) is identified.
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Appendix 1.B Robustness Analysis

In this appendix we study the robustness of peer flow effects to different methodologies

and similarity measures for the construction of the similarity temporal network. In

particular, focusing on all funds except Treasury MMMFs, as in Section 1.6, in the first

4 cases we fix the similarity measure to be the weighted maturity similarity WMS and

consider different ways to define the network, while in the last 4 cases we fix network

construction methodology to be the same as the one described in Section 1.5 and consider

different similarity measures. Hence, we consider a total of eight cases as described below:

Case 1: Here the network construction methodology is similar to the one described in

Section 1.5, but outgoing links from a fund i are created only with the top 5% of

most similar funds according with the WMS measure.

Case 2: Here the network construction methodology is similar to the one described in

Section 1.5, but outgoing links from a fund i are created only with the top 15% of

most similar funds according with the WMS measure.

Case 3: Here the similarity temporal network is constructed by linking together all the

funds belonging to the same fund category.

Case 4: Here the similarity temporal network is constructed by linking together all the

funds with a WMS measure different from zero, weighting each link by the simi-

larity itself.

Case 5: Here we measure the similarity between fund portfolios using the cosine similarity.

In particular, let B be the set of all possible borrowers and let |B| = B. For

each fund i, time period t and borrower b ∈ B, wbi,t is the weight of issuer b in

the portfolio of fund i at time t. Hence, the portfolio of fund i at time t can be

represented by the B-dimensional vector

wi,t =
(
w1
i,t, w

2
i,t, . . . , w

B
i,t

)
. (1.117)
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Thus, if i and j are two funds, the cosine similarity between i and j at time t is

given by:

CosineSimilarityt(i, j) = wi,t · wj,t
||wi,t|| ||wj,t||

. (1.118)

The similarity temporal network is then constructed creating outgoing links from

a fund i only with the top 10% of most similar funds.

Case 6: Here we measure the similarity between fund portfolios using a measure, that we

call Weighted Life Similarity that is similar to the WMS but uses the weighted

life instead of weighted maturity as a proxy for interest rate risk. In particular,

let B be the set of all possible borrowers and let |B| = B. For each fund i and

borrower b ∈ B, we define the Weighted Life Exposure of i to b at time t as:

WLEbf,t =
kb∑
k=1

wklk, (1.119)

where kb is the number of instruments in the portfolio of i whose issuer is b, wk
is the weight of that instrument and lk its effective life. Then, for each fund i we

have the B-dimensional vector

WLEi,t =
(
WLE1

i,t,WLE2
i,t, . . . ,WLEBi,t

)
. (1.120)

of the weighted life exposures. If i and j are two funds, we define the Weighted Life

Similarity between i and j at time t, denoted WLSt(i, j), as the cosine similarity

between their vectors of weighted life exposures, i.e.:

WLSt(i, j) = WLEi,t ·WLEj,t
||WLEi,t|| ||WLEj,t||

. (1.121)

The similarity temporal network is then constructed creating outgoing links from

a fund i only with the top 10% of most similar funds.

Case 7: Here we measure the similarity between fund portfolios using the weighted maturity

similarity that is computed not only on the borrower level, but on the borrower-
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asset class level. In particular, let B be the set of all possible borrowers and A be

the set of all possible instrument asset classes, with |B| = B and |A| = A. For each

fund i, borrower b ∈ B and asset class a ∈ A, we define the Weighted Maturity

Exposure of i to b and a at time t as:

WMEa,bi,t =
ka,b∑
k=1

wkmk, (1.122)

where ka,b is the number of instruments in the portfolio of i whose issuer is b that

belong to the asset class a, wk is the weight of that instrument and mk its effective

maturity. Then, for each fund i we have the A×B-dimensional vector

WMEA,Bi,t =
(
WLE1,1

i,t ,WLE2,1
i,t , . . . ,WLEA,1i,t , . . . ,WLEA,Bi,t

)
. (1.123)

of the weighted maturity exposures. If i and j are two funds, we define theWeighted

Maturity Similarity between i and j at time t, denoted WMSA,Bt (i, j), as the cosine

similarity between their vectors of weighted maturity exposures, i.e.:

WMSA,Bt (i, j) =
WMEA,Bi,t ·WMEA,Bj,t

||WMEA,Bi,t || ||WMEA,Bj,t ||
. (1.124)

The similarity temporal network is then constructed creating outgoing links from

a fund i only with the top 10% of most similar funds.

Case 8: Here we measure the similarity between fund portfolios using the weighted maturity

similarity that is computed not on the borrower level, but only on the asset class

level. In particular, let A be the set of all possible instrument asset classes, with

|A| = A. For each fund i and asset class a ∈ A, we define the Weighted Maturity

Exposure of i to a at time t as:

WMEai,t =
ka∑
k=1

wkmk, (1.125)
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where ka is the number of instruments in the portfolio of i that belong to the asset

class a, wk is the weight of that instrument and mk its effective maturity. Then,

for each fund i we have the A-dimensional vector

WMEAi,t =
(
WLE1

i,t,WLE2
i,t, . . . ,WLEAi,t

)
. (1.126)

of the weighted maturity exposures. If i and j are two funds, we define theWeighted

Maturity Similarity between i and j at time t, denoted WMSAt (i, j), as the cosine

similarity between their vectors of weighted maturity exposures, i.e.:

WMSAt (i, j) =
WMEAi,t ·WMEAj,t
||WMEAi,t|| ||WMEAj,t||

. (1.127)

The similarity temporal network is then constructed creating outgoing links from

a fund i only with the top 10% of most similar funds.

From Panel A of Table 1.5 we see that the estimate of peer effects remains positive

and statistically significant if we change the threshold for the construction of the similar-

ity temporal network from the top 10% to the top 5% or top 15% of most similar funds.

Moreover, the analysis of Case 3 and 4 shows that this result is not specific of the way

we have used to define the spatial dependence. Indeed, if we construct the network by

simply linking together funds belonging to the same category, we still find a positive and

statistically significant spatial correlation coefficient, and the same is true if the network

is constructed by linking all the funds with a similarity different from zero and each link

is weighted by the similarity itself.

Moreover, from Panel B of Table 1.5 peer effects also appear to be robust to the choice of

the particular similarity measure. For instance, peer effects remain positive and statis-

tically significant when the similarity measure does not uses any proxy for interest rate

risk (Case 5) or uses a different proxy such as instrument effective life (Case 6). The

same is true when the weighted maturity similarity is computed at joint level issuer-asset

class (Case 7) or only at the asset class level (Case 8).
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The estimated impact measures and their partitioning as function of the neighbor or-

der are shown in Tables 1.6 and 1.7 for the cases using different network construction

methodologies and different similarity measures, respectively. In each case we find that

the indirect impact of a flow shock to first and second degree neighbors is positive and

statistically significant, except for Case 7 where only first degree indirect impact are

statistically significant.

1.B.1 Quasi-Random Experiment

One identification challenge for Peer Effects, besides the reflection problem, may be due

to the presence of unobserved common shocks that affects the flows of similar funds.

In order to tackle this problem we design a quasi-random experiment exploiting the

funds different exposure to European banks during summer 2011. The success of the

experiment is deeply connected to the choice of the treatment variable and its ability to

provide a source of exogenous variation, not driven by unobserved common factors, that

is relevant for fund peer flows but otherwise random for fund own flows.

The intuition behind our experiment choice is based on the evidence that, during the

peak of the European Sovereign Debt Crisis, money market funds with high exposure to

European Banks suffered larger outflows relative to funds with low exposure [Chernenko

and Sunderam, 2014]. Hence, our treatment variable is constructed as the interaction

of two dummy variables. The first is a dummy that is equal to one for the funds with

European exposure in the top quartile, while the second one is a variable that identifies

the crisis period, i.e. is equal to one if the date is between May and September 2011.

Hence the model estimated in this quasi-random experiment is given by:

yt = αtι+ ζn +λWty
Treatment
t + ρyt−1 + γWt−1yt−1 + β1Wt−1xt−1 + β2xt−1 + Ctδ′+ εt,

(1.128)

where the i-th component of the peer treatment flow variable is equal to

∑
j∈Pi,t yj,t1{Treatment=1}

|Pi,t|
. (1.129)
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A graphical analysis of our experiment is shown in Figure 1.10. The plot in the bottom

panel shows the average flow over time for funds with relative high and low European

exposure. Outside the crisis period, we observe a substantial similarity between the

flows, which is also confirmed by looking at the flow distributions conditional on the

dummy variable for European exposure (first plot in the top row). However, during the

crisis period, we observe a sharp divergence in behavior, which justifies the definition of

the treatment variable as an interaction, since the overall distribution of flows during

the crisis period is qualitatively similar to the flow distribution outside the crisis (second

plot in the top row). Thus, unobserved common factors affecting the flows of similar

funds over time or in the cross section are differenced out by the treatment variable.

The strength and power of any results from this experiment is also connected to treat-

ment group variation between a fund and its peers. Given the definition of the treatment

variable, a fund belonging to one treatment group is likely to have peers, defined as the

top 10% of most similar funds, also belonging to the same treatment group. If indeed

there was no variation between the treatment group of a fund and that of its peers,

it could be difficult to translate any evidence of peer effects outside of the experiment

boundaries, even if theoretically justified. Fortunately, this is not the case here. The

third plot in the first row of Figure 1.10 shows the distribution of the average peer

treatment status for the two treatment groups. We see that funds with low European

exposure have on average 20% of their peers belonging to the treatment group 1, with

cases where this percentage can be as high as 60%. Hence, any evidence of peer effects

would account for dependencies both within and between treatment groups.

From Table 1.8 we find a positive and strongly significant relationship between own flows

and the treated version of peer flows, which is consistent with our main empirical results

presented in Section 1.6 and also suggests that Peer Effects do not seems to be driven

by unobserved common factors. The result is also robust to the inclusion of controls for

own and peer European exposure.
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Appendix 1.C Counterfactual Experiment

In order to better understand and interpret the empirical results in Section 1.6 we pro-

vide here a simulated counterfactual experiment study in which the model is estimated

on data where the dependent variable Flowsi,t (yi,t) is simulated using different data

generating processes. In particular, the objective of this section is to understand how the

estimate of the spatial dependence coefficient λ and its statistical significance changes

in cases when the assumed similarity temporal network does not reflect the real spatial

dependence structure. For instance, we want to understand how the model coefficient es-

timate behaves when there is, actually, no spatial dependence between the flow of funds

or when the real spatial dependence structure is different from the similarity temporal

network used for the model estimation.

The data generating process for yt is defined as:

yt = αtι+ ζn + λGyt + εt, (1.130)

where αt and ζn are, respectively, the time and fund fixed effects, G is the row-normalized

adjacency matrix corresponding to the spatial structure, λ is the spatial dependence

parameter and εt is the vector of error terms distributed as N(0, σI). For the time

and fund fixed effects we use the estimated effects from the data, moreover, we assume

that λ = 0.5 and σ is equal to the empirical flow standard deviation. The simulation of

(1.130), is then performed using the corresponding reduced form

yt = (I − λG)−1(αtι+ ζn + εt
)
, (1.131)

In order to simulate the data generating process for the flow variable yt we need, how-

ever, to define the spatial dependence structure. We assume that the network guiding

the dependence between the funds belongs to the Erdös-Rényi family of random graphs

G(n, p) [Erdös et al., 1959], where n represents the number of nodes in the graph - in

our case the number of funds - and p represents the probability of link formation. In
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the G(n, p) model, a graph is constructed by starting with n nodes and then edges are

added independently from each other with probability p. The value of p is also equal to

the expected density of the network. Hence, for each simulation, we use an adjacency

matrix G that is randomly drawn from G(n, p) and row-normalized. After simulating

(1.131) for t = 1, ..., T , we estimate the model (1.2) using the similarity temporal network

defined in Section 1.5 and the empirical data for the exogenous variables. We perform

1000 simulations for different values of the link probability p. The case in which p = 0

represent the situation where there exists no spatial dependence between the funds flow.

For each value of p Table 1.9 reports the average estimated λ, the average standard

error of the estimate and its average p-value. The simulation study shows that when

there is no spatial dependence or when the real spatial structure is different from the one

used for the estimation, on average, the spatial dependence parameter is not statistically

significant. This results does not change by changing the expected density of the network.
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Appendix 1.D Temporal Network Description

Figure 1.11 gives a static representation of the similarity temporal network, where only

the links that are present at least 70% of the time are shown. We see that there is high

connectivity within funds category and 4 clusters can be clearly identified.

It is interesting to look at the in-degree distribution of the network since the in-degree

of a fund i represents the number of funds that could potentially be affected by a flow

shock to i. Figure 1.12 shows the in-degree distribution of all funds (top left corner)

aggregated over all the time periods. We see that there are funds with a low in-degree,

but also funds that could potentially have an impact on the flows of more than 100

other MMMFs. This means that the in-degree is not uniform among funds and that

the impact, on the rest of the industry, of a shock to a fund vastly depends on which

is the fund that has suffered the shock. The other panels of Figure 1.12 show the in-

degree distribution for the different categories of MMMFs. The Prime MMMFs in-degree

distribution exhibits a positive skew, while the in-degree distribution of Treasury funds

show a negative skew. In a temporal network setting it is natural to study how links

between nodes change over time. In particular, it is interesting to analyze the persistence

of the links in the network. A link between two funds at time t is said to be persistent if

there is a non-negligible probability that they will be connected at time t+ ∆t. In order

to measure link persistence (see Nicosia et al. [2013] and Tang et al. [2010]), let consider

the unweighted temporal network {At}t=0,...,T , with:

(At)ij =


1 if (Wt)ij 6= 0,

0 otherwise.
(1.132)

If we consider a fund i and two consecutive time instants t and t + 1, the topological

overlap of the neighborhood of i in t and t+ 1 is defined as:

Ci(t, t+ 1) =
∑
j(At)ij(At+1)ij√

[
∑
j(At)ij ][

∑
j(At+1)ij ]

. (1.133)
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Taking the average of (1.133) over all possible consecutive time intervals [t, t + 1], we

obtain a measure of the link persistence of fund i:

Ci = 1
T

T−1∑
t=0

Ci(t, t+ 1). (1.134)

Ci is equal to 1 if and only if fund i has the same links in all the possible time intervals

[t, t+1], and is equal to 0 if no link is ever observed in two consecutive time instants. An

overall measure of link persistence for the temporal network {Wt}t=0,...,T , called temporal

correlation coefficient, can be obtained by averaging (1.134) over all the funds:

C = 1
N

N∑
i=1

Ci. (1.135)

The similarity temporal network defined in (1.15) has an high link persistence measure

C = 0.7883 suggesting that the degree of similarity between funds tends to be stable

over time. Figure 1.13 shows the link persistence distribution for all the funds in the

network (top left panel) and for the different types of money market funds. If we focus

on Prime funds, it is worth noticing that, if on average we observe a link persistence of

0.71, there are funds exhibiting a temporal correlation coefficient as high as 0.96.
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Table 1.4: This table contains the estimated impact measures and their partitioning for
the first 5 lags. Each panel is dedicated to one of the three fund universes considered
in Table 1.3 and the impact measures are computed using the corresponding estimated
parameters with both fund and time fixed effects. Significance Levels: 0.01 ’***’, 0.05
’**’, 0.1 ’*’.

Panel A: All Funds except Treasuries

εt Flowt−1 Y ieldt−1

ADI AII ADI AII ADI AII

Lag 0 1.000∗∗∗ −0.1270∗∗∗ 0.3408∗∗

Lag 1 0.7597∗∗∗ 0.0713∗ 0.5270∗∗∗

Lag 2 0.0108∗∗ 0.5663∗∗ 0.0008∗ 0.0534∗ 0.0072∗∗ 0.3932∗∗

Lag 3 0.0054 0.4330 0.0004 0.0407 0.0037 0.3932

Lag 4 0.0035 0.3295 0.0003 0.0309 0.0024 0.2286

Total impacts 1.0285∗∗∗ 3.1336 −0.1247∗∗∗ 0.2947 0.3601∗∗ 2.1743

Panel B: All Funds

εt Flowt−1 Y ieldt−1

ADI AII ADI AII ADI AII

Lag 0 1.000∗∗∗ −0.1340∗∗∗ 0.2627∗

Lag 1 0.3929∗∗∗ 0.0786∗ 0.5247∗∗∗

Lag 2 0.0022∗ 0.1521 0.0004∗ 0.0304∗ 0.002∗ 0.2033∗

Lag 3 0.0005 0.1521 0.0001 0.0120 0.0007 0.0802

Lag 4 0.0002 0.0236 3.9 · 10−5 0.0047 0.0002 0.0315

Total impacts 1.0031∗∗∗ 0.6441∗ −0.1334∗∗∗ 0.1289∗ 0.2667 0.8603∗

Panel C: Only Prime Funds

εt Flowt−1 Y ieldt−1

ADI AII ADI AII ADI AII

Lag 0 1.000∗∗∗ −0.1113∗∗∗ 0.2219

Lag 1 0.3611∗ 0.0957 −0.09948

Lag 2 0.0042 0.1261 0.0009 0.0336 −0.0009 −0.0350

Lag 3 0.0009 0.0461 0.0002 0.0122 −0.0002 −0.0127

Lag 4 0.0002 0.0167 6.7 · 10−5 0.0044 −0.0001 −0.0046

Total impacts 1.0056∗∗∗ 0.5595 −0.1100∗∗∗ 0.1486 0.2207 −0.1545
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Figure 1.6: This Figure shows the first 10 lag partitioning of the impact measures for
model (3) in Table 1.3. The first row contains the impact measure plots for a contem-
poraneous flow shock ε, while the second and third row contains the impact measures
for past flow and past yield, respectively.
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Figure 1.7: This Figure shows the scatter plot of a fund in-degree centrality and the
total impact of a 10% flow shock to that fund according to the impact matrix (1.46).
Each panel refers to the network snapshot of a single date.
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Figure 1.8: This Figure describes the implications of model (3) in Table 1.3 for the
resilience of the Money Market Mutual Fund Industry. Using the September 2015 snap-
shot of the similarity temporal network defined in Section 1.5, the left panel shows how
the percentage of funds forced to sell less liquid assets changes as a function of the per-
centage of fund shocked under different assumptions on the magnitude of the flow shock.
The black dashed line shows the relationship under the assumption of no peer effects.
Instead, the right panel shows how the percentage of funds forced to sell less liquid assets
changes with respect to the magnitude of a flow shock when the funds shocked are the
20% of funds with the highest (blue line) and lowest (red line) in-degree centrality.
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Figure 1.9: This Figure shows the resilience regions of Money Market Mutual Fund
Industry, as defined in Section 1.7, for the September 2015 snapshot of the similarity
temporal network. Each panel considers a different threshold, from 5% to 99%, that
represents the percentage of funds that need to be simultaneously receiving a flow shock
greater than the percentage of daily liquid assets in order for fire-sales spillovers to be
triggered. Each plot uses as axes the two dimensions of a run like event: the x-axis
is the magnitude of the flow shock and the y-axis is the percentage of funds shocked.
The grey area, delimited by the tick black line, denotes the (vulnerability) region on
the plane where the threshold τ is reached or surpassed. This region is computed under
the assumption of peer effects using the impact matrix (1.49). The dashed red line is,
instead, the the boundary of the vulnerability region assuming no peer effects.
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Table 1.5: This Table contains the robustness results for model (1.2) with respect to the
definition of the spatial dependence between the funds. Panel A contains the estimated
parameters in four cases where the spatial dependence id defined using the Weighted
Maturity Similarity and four different methodologies for the construction of the similarity
network. Instead, the four cases considered in Panel B use the same network construction
methodology as in the main empirical results of Section 1.6 but four different similarity
measures. Standard errors are clustered with respect to time and fund. Significance
Levels: 0.01 ’***’, 0.05 ’**’, 0.1 ’*’.

Panel A: Different network

Flowt

Case 1 Case 2 Case 3 Case 4

Wt × Flowt 0.8077∗∗∗ 0.7402∗∗∗ 0.8952∗∗∗ 0.6639∗∗∗
(0.2599) (0.1987) (0.2505) (0.1800)

Flowt−1 −0.1272∗∗∗ −0.1271∗∗∗ −0.1291∗∗∗ −0.1271∗∗∗
(0.0184) (0.0181) (0.0188) (0.0186)

Wt−1 × Flowt−1 0.2112∗∗∗ 0.1264∗∗∗ 0.1703∗∗∗ 0.1314∗∗∗
(0.0504) (0.0248) (0.0285) (0.0377)

Y ieldt−1 0.3193∗∗ 0.3820∗∗ 0.3836∗∗ 0.3791∗∗
(0.1590) (0.1700) (0.1914) (0.1701)

Wt−1 × Y ieldt−1 0.3936 0.1385 0.0980 0.1172
(0.2557) (0.2203) (0.2315) (0.2597)

Controls: Yes Yes Yes Yes
Additional controls: No No No No
Spatial lag IV: 4 4 4 4
Fixed Effects: Fund, Time Fund, Time Fund, Time Fund, Time
N. Obs. 17, 442 17, 442 17, 442 17, 442

Panel B: Different similarity measure

Flowt

Case 5 Case 6 Case 7 Case 8

Wt × Flowt 0.9451∗∗∗ 0.7441∗∗∗ 0.6317∗∗ 0.9305∗∗∗
(0.2477) (0.2353) (0.3049) (0.2965)

Flowt−1 −0.1293∗∗∗ −0.1266∗∗∗ −0.1272∗∗∗ −0.1304∗∗∗
(0.0181) (0.0185) (0.0185) (0.0177)

Wt−1 × Flowt−1 0.1289∗∗∗ 0.1260∗∗∗ 0.1857∗∗∗ 0.1587∗∗∗
(0.0397) (0.0344) (0.0386) (0.0244)

Y ieldt−1 0.1615 0.2891∗ 0.3588∗∗ 0.4548∗∗∗
(0.1499) (0.1601) (0.1633) (0.1592)

Wt−1 × Y ieldt−1 0.4750∗∗ 0.2940 0.2382 −0.0464
(0.2290) (0.2328) (0.2465) (0.2081)

Controls: Yes Yes Yes Yes
Additional controls: No No No No
Spatial lag IV: 2 2 2 2
Fixed Effects: Fund, Time Fund, Time Fund, Time Fund, Time
N. Obs. 17, 442 17, 442 17, 442 17, 442
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Table 1.6: This Table contains the estimated impact measures and their first 5 lags
partitioning for the four robustness cases presented in Panel A of Table 1.5. Significance
Levels: 0.01 ’***’, 0.05 ’**’, 0.1 ’*’.

Case 1

εt Flowt−1 Y ieldt−1

ADI AII ADI AII ADI AII

Lag 0 1.000∗∗∗ −0.1272∗∗∗ 0.3193∗
Lag 1 0.8076∗∗∗ 0.1083∗∗ 0.6514∗∗∗
Lag 2 0.0087∗∗ 0.6435∗∗ 0.0010∗∗ 0.0865∗∗ 0.0068∗ 0.5193∗∗
Lag 3 0.0049 0.5219 0.0006∗ 0.0700∗ 0.0039∗ 0.4210
Lag 4 0.00344 0.4221 0.0004 0.0566 0.0027 0.3405

Total impacts 1.0275∗∗∗ 4.1723 −0.1238∗∗∗ 0.5601∗∗ 0.3410∗∗ 3.3658

Case 2

εt Flowt−1 Y ieldt−1

ADI AII ADI AII ADI AII

Lag 0 1.000∗∗∗ −0.1270∗∗∗ 0.3819∗∗
Lag 1 0.7401∗∗∗ 0.0322 0.4212∗∗
Lag 2 0.0182∗∗ 0.5296∗∗ 0.0004 0.0234 0.0100∗ 0.3017∗
Lag 3 0.0080 0.3974 0.0003 0.0174 0.0044 0.2263
Lag 4 0.0051 0.2950 0.0001 0.0129 0.0028 0.1679

Total impacts 1.0424∗∗∗ 2.8063 −0.1258∗∗∗ 0.1229 0.4055∗∗ 1.5977

Case 3

εt Flowt−1 Y ieldt−1

ADI AII ADI AII ADI AII

Lag 0 1.000∗∗∗ −0.1291∗∗∗ 0.3835∗∗
Lag 1 0.8951∗∗∗ 0.0547∗∗ 0.4413∗∗∗
Lag 2 0.0106∗∗ 0.7906∗∗ 0.0006∗∗∗ 0.0483∗∗∗ 0.0052∗∗ 0.3898∗∗
Lag 3 0.0093∗ 0.7079∗ 0.0005∗∗∗ 0.0483∗∗∗ 0.0046∗ 0.3490∗
Lag 4 0.0083 0.6337 0.0005∗∗∗ 0.0387∗∗∗ 0.0041 0.3124

Total impacts 1.1001∗∗∗ 8.4380 −0.1230∗∗∗ 0.5158∗∗∗ 0.4329∗∗∗ 4.1605

Case 4

εt Flowt−1 Y ieldt−1

ADI AII ADI AII ADI AII

Lag 0 1.000∗∗∗ −0.1270∗∗∗ 0.3791∗∗
Lag 1 0.66391∗∗∗ 0.0470 0.3689∗
Lag 2 0.0142∗∗ 0.4265∗∗ 0.0008 0.0303 0.0077 0.2371
Lag 3 0.0030 0.2896 0.0002 0.0205 0.0016 0.1609
Lag 4 0.0027 0.1915 0.0001 0.0135 0.0015 0.1064

Total impacts 1.0228∗∗∗ 1.95285 −0.1256∗∗∗ 0.1385 0.3916∗∗ 1.0852
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Table 1.7: This Table contains the estimated impact measures and their first 5 lags
partitioning for the four robustness cases presented in Panel B of Table 1.5. Significance
Levels: 0.01 ’***’, 0.05 ’**’, 0.1 ’*’.

Case 5

εt Flowt−1 Y ieldt−1

ADI AII ADI AII ADI AII

Lag 0 1.000∗∗∗ −0.1292∗∗∗ 0.1614
Lag 1 0.9450∗∗∗ 0.0067 0.6275∗∗∗
Lag 2 0.0169∗∗∗ 0.8762∗∗∗ −9.2 · 10−5 0.0064 0.0104∗∗∗ 0.5826∗∗∗
Lag 3 0.0100∗∗ 0.8340∗∗ 2.3 · 10−6 0.0060 0.0064∗∗ 0.5541∗∗
Lag 4 0.0080∗ 0.7896∗ 1.4 · 10−5 0.0056 0.0052∗ 0.5245∗

Total impacts 1.1195∗∗∗ 17.090∗ −0.1289∗∗∗ 0.1223 0.2390 11.3505∗

Case 6

εt Flowt−1 Y ieldt−1

ADI AII ADI AII ADI AII

Lag 0 1.000∗∗∗ −0.1266∗∗∗ 0.2890∗∗
Lag 1 0.7440∗∗∗ 0.0318 0.5091∗∗
Lag 2 0.0109∗∗ 0.5427∗∗ 0.0003 0.0233 0.0071∗ 0.3716∗
Lag 3 0.0109 0.4066 0.0002 0.0174 0.0035 0.2783
Lag 4 0.0109 0.3031 0.0001 0.0129 0.0022 0.2074

Total impacts 1.0273∗∗∗ 2.8799 −0.1256∗∗∗ 0.1233 0.3072∗∗ 1.9711

Case 7

εt Flowt−1 Y ieldt−1

ADI AII ADI AII ADI AII

Lag 0 1.000∗∗∗ −0.1271∗∗∗ 0.3587∗∗
Lag 1 0.6317∗∗ 0.1053∗∗ 0.4648∗∗
Lag 2 0.0073 0.3917 0.0010∗ 0.0655∗ 0.0052 0.2884
Lag 3 0.0030 0.2490 0.0005 0.0415 0.0022 0.1832
Lag 4 0.0016 0.1575 0.0003 0.0263 0.0012 0.1159

Total impacts 1.0144∗∗∗ 1.7009 −0.1249∗∗∗ 0.2839∗∗∗ 0.3690∗∗∗ 1.2518

Case 8

εt Flowt−1 Y ieldt−1

ADI AII ADI AII ADI AII

Lag 0 1.000∗∗∗ −0.1304∗∗∗ 0.4548∗∗∗
Lag 1 0.9304∗∗∗ 0.0372∗ 0.3768
Lag 2 0.0195∗∗ 0.8462∗∗ 0.0004 0.0343∗∗ 0.0080 0.3426
Lag 3 0.0130∗ 0.7924∗ 0.0003 0.0319∗∗ 0.0053 0.3209
Lag 4 0.0105 0.7390 0.0003 0.0297∗ 0.0042 0.2992

Total impacts 1.1448∗∗∗ 13.2368 −0.1256∗∗∗ 0.5313∗∗ 0.5138∗∗ 5.3609
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Figure 1.10: This Figure is a graphical analysis of the quasi-random experiment described
in Section 1.B.1. The first plot in the top row shows the flow distributions conditional
on the value of the dummy variable for european exposure. The second plot shows the
flow distributions conditional on the value of the dummy variable for the crisis period.
Instead, the last plot in the top row shows the distribution of the average peer treatment
status for the two treatment groups. Finally, the bottom plot shows the average flow
over time for the two treatment groups.
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Table 1.8: This Table contains the estimation results for the quasi-random experiment
expressed by model (1.128). The reported standard errors are the HAC standard errors
proposed by Driscoll and Kraay [1998] and the significance levels are as follows: 0.01
’***’, 0.05 ’**’, 0.1 ’*’.

Flowt

Wt × FlowTreatmentt 0.8752∗∗∗ 0.8018∗∗∗ 0.8301∗∗∗ 0.8025∗∗∗
(0.0992) (0.0914) (0.0899) (0.1112)

Flowt−1 −0.1221∗∗∗ −0.1171∗∗∗ −0.1175∗∗∗ −0.1175∗∗∗
(0.0222) (0.0199) (0.0199) (0.0199)

Wt−1 × Flowt−1 0.1421∗∗∗ 0.1628∗∗∗ 0.1610∗∗∗ 0.1631∗∗∗
0.0477) (0.0451) (0.0441) (0.0445)

Y ieldt−1 −0.1508∗∗ 0.2988∗ 0.3485∗∗ 0.3371∗∗
(0.0685) (0.1564) (0.1423) (0.1453)

Wt−1 × Y ieldt−1 0.1731 0.2532 0.2818 0.2678
(0.1967) (0.2012) (0.1979) (0.2039)

Controls: Yes Yes Yes Yes

Additional Controls: No No European expo-
sure

European expo-
sure,
Peer European
exposure

Fixed Effects: Time Fund, Time Fund, Time Fund, Time
N. Obs. 17, 442 17, 442 17, 442 17, 442

Table 1.9: This Table contains the results of the counterfactual experiment described
in Section 1.C. Using the data generating process (1.131), where the spatial dependence
parameter λ = 0.5 and the adjacency matrix G is random draw from the Erdös-Rényi
family of random graphs G(n, p), we perform 1000 simulations for each value of the link-
ing probability p and estimate the peer effect model (1.2) using the similarity temporal
network defined in Section 1.5. Here we report the average estimated spatial parameter,
the average standard error and the percentage of the simulations where the p-value of λ
is less than 1%.

λ S.E. % p-value < 0.01

p = 0 0.4746 0.4514 4.4%

p = 0.1 0.4980 0.4540 3.1%

p = 0.3 0.4382 0.4466 2.4%

p = 0.5 0.4291 0.4529 2.7%
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Figure 1.11: Aggregate representation of the similarity temporal network where only the
links that are present at least 70% of the time are shown.
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Figure 1.12: In-degree distribution for the aggregate of all funds (top left panel) and for
each fund category (from top right panel to bottom right).
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Figure 1.13: Distribution of the link persistence measure defined in (1.134) for the
aggregate of all funds (top left panel) and for each fund category (from top right panel
to bottom right).
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Part II

Longevity risk modeling
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Chapter 2

Annuity portfolios: risk margin,

longevity and interest rate

hedging1

2.1 Introduction

Assessing and hedging the longevity risk, i.e. the risk of unexpected changes in the

survivorship of individuals, has become increasingly important for insurance companies

and pension funds in the last decades. The unprecedented and unforeseen increase in

the file expectancy of individuals and, in particular, of policyholders, annuitants and

pension fund members, is posing serious threats in terms of solvency to insurance port-

folios and pension funds. The need to manage longevity risk generated the potential

for the creation of a new market. Longevity bonds were first proposed by the academic

literature [Blake and Burrows, 2001] at the beginning of the 2000s, as instruments to

hedge against the fluctuations of mortality likelihoods in a portfolio of policies. Interest-

ingly, the first market transactions followed few years later. However, the first attempts

to transfer longevity risk to capital markets were unsuccessful, mainly because of the

1The material for this chapter is taken from De Rosa, Luciano, and Regis [2016].
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lack of standardization and high charges [Cairns et al., 2008]. It has been only in the

last few years that the volume of longevity transfers boomed. Before this peak, many

researchers studied the optimal design of these transfers [Dowd et al., 2006] and their

effectiveness [Ngai and Sherris, 2011], paving the way to the actual start of the mar-

ket. As of today, the number and the size of the transactions concerning the transfer

of longevity risk exposures from insurers and pension plans to reinsurance or specialist

is growing fast. Trades completed in 2015 only accounted for nearly 40 billion euros of

notional. More and more often, longevity transfers take the form of longevity swaps,

that are standardized, indexed-based solutions. These deals call for a cheaper coverage

for longevity sellers on the one hand, but forces them to deal with basis risk on the other.

Basis risk arises because of the non-customized nature of the transfer. Technically, it is

caused by the difference between the dynamics of the mortality pattern of the seller’s

portfolio and the dynamics of the reference population that serves as an index in the

transaction.

We propose dynamic hedging strategies for annuity portfolios, that use standardized

longevity contracts, and we evaluate their effectiveness. We consider the impact of basis

risk and of the strategy rebalancing frequency, as in De Rosa et al. [2017], but we account

also for the presence of interest rate risk, due to the stochastic nature of the short rate.

The inclusion of this source of risk in our analysis is relevant, for many reasons. First,

the need to evaluate insurance liabilities at fair value requires careful consideration of

the impact of interest rate risk in the management of the whole risk profile of annuity

providers. We highlight that the mathematical reserve, which is the quantity that needs

to be hedged, is affected by the stochastic nature of the discount factors, as well as by the

randomness in mortality rates. Second, considering uncertain interest rates allows us to

clarify that the management of the assets and liabilities of an insurer or annuity provider

is intertwined, because the exposure to the same source of risk (interest rate variability)

affects both their investments and their obligations. Third, our work sheds light on the

importance of assessing how coverage of longevity through indexed instruments, such as

synthetic longevity bonds, may vary the exposure to interest rate risk.
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Previous actuarial literature mostly focused on longevity risk hedging strategies, when

interest rates are deterministic. Only a few papers stressed the importance of jointly

considering longevity and interest rate risk coverage when interest rates are uncertain.

Stevens et al. [2011] evaluated the effect of investment risk on the effectiveness of natu-

ral hedging of mortality and financial risk. Tsai et al. [2011] considered a static annuity

hedging strategy to cover the aggregate risk deriving from both mortality and interest

rate stochasticity when the short rate follows a [Cox et al., 1985a] model. They find

that hedging with a longevity bond improves the effectiveness of the hedge, which is

highly sensitive to the parameters of the interest rate process. We extend their analysis,

by considering longevity basis risk as well. We model interest rates following the well-

known Vasicek (1977) mode, that allows us to include the possibility of negative rates.

We consider Greek-based dynamic hedges as in Luciano et al. [2012b] and Cairns [2013],

for instance.

To evaluate the effectiveness of our strategies, we track the hedging errors and we analyze

their moments. Moreover, in order to compare the relative impact of the different risk

sources (longevity risk and interest rate risk), we compute the risk margins of different

hedging strategies when longevity basis risk is present and interest rate is stochastic.

The risk margin is defined as the 99.5% Value-at-Risk of the hedged portfolio at a future

time horizon t = 30 years. We consider such a long-time horizon, having in mind that

the liabilities of an insurer can be very volatile in very distant future. We evaluate dif-

ferent longevity hedging strategies when the interest rate risk is fully hedged, partially

hedged or left completely unhedged.

Our calibrated example, based on UK data, shows that the impact of interest rate risk

on the moment of the hedging error of the strategies is substantial. For instance, the

standard deviation of the hedging error of the Delta-Gamma strategy doubles when in-

terest rate risk is present and left unhedged. However, if we measure the effectiveness of

each strategy in terms of the required risk margin, the picture changes significantly. The

risk margins required for an unhedged annuity contract are comparable both with or

without interest rate risk. Interestingly, we find that, when interest rate risk is present,
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it accounts only for 10% of the total risk margin. The remaining 90% of the risk margin

is, instead, required only by the uncertainty about the future mortality rates.

2.2 Longevity and interest rate risk modeling

We consider a standard filtered probability space (Ω,H,Q) satisfying the usual assump-

tions and a filtration on this space, Ht, that collects all the information available from the

financial market we will describe below and all the information concerning the longevity

dynamics relevant for the insurance products entering the portfolio or hedging strate-

gies. The measure Q is the so-called risk-neutral measure. In order to keep the notation

simple, we assume that there is no risk premium in the longevity market or, equiva-

lently, that the dynamics of the mortality intensities we will describe hereafter are the

same under such measure and the historical one. The interest rate dynamics under the

risk-neutral measure will instead incorporate a risk premium, that we will estimate.

2.2.1 Longevity risk model

We assume that the time to death τ of an individual is modeled by a doubly stochastic

process, namely a Poisson process with stochastic intensity. Such mortality intensity is

homogeneous for individuals belonging to the same cohort and population. The dynamics

of the mortality of a given cohort x in a population is described by a square-root process

of the type:

dλx(t) = (ax + bxλx(t))dt+ σx
√
λxdWx(t), (2.1)

with ax > 0, bx > 0, σx > 0, λx(0) = λ0 ∈ R++. The assumption bx > 0 ensures that

the process has no mean reversion. The individual ages over time, and the drift simply

ensures that the expected change in the intensity is affine and increasing in the intensity

itself. This model, in particular, is akin to the well-known Gompertz mortality law in

the traditional actuarial literature, because the mortality intensity of an individual is

expected to increase exponentially with age.

If the initial point λ0 is strictly positive, we can impose a restriction on the coefficients
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that guarantees that the mortality intensity λx(t) is strictly positive for every t, almost

surely. This condition reads:

ax ≥
σ2
x

2 . (2.2)

It is convenient, for many purposes, especially when considering hedging solutions, hav-

ing a model that describes the joint mortality dynamics of two populations: the pop-

ulation of insureds of a company, Portfolio population, and the population underlying

the payoffs of longevity hedging instruments Reference population. When the two pop-

ulations differ, basis risk needs to be accounted for when hedging instruments are used

by the company. Hence, we assume that the intensity of cohort x in the Reference

population follows SDE (2.1).

Basis risk

We assume that the individuals in the insurance portfolio represent a subsample of this

Reference population. The mortality intensity of cohort x belonging to the Portfolio

population is

λppx = δxλx(t) + (1− δx)λ′x(t), (2.3)

with

dλ′x(t) = (a′ + b′λ′x(t))dt+ σ′
√
λ′x(t)dW ′x(t), (2.4)

where Wx and W
′
x are two independent standard Brownian Motions, a′ > 0, σ′ > 0,

b′ ∈ R and 0 ≤ δx ≤ 1.

The intensity of the insurer’s Portfolio population λppx is a convex combination of the

Reference population’s intensity λx and an idiosyncratic component λ′x orthogonal to

λx. As a consequence, applying Ito’s Lemma, it is easy to show that the dynamics of

λppx follow a two-factor CIR process. The idiosyncratic component λ′x is specific to the

Portfolio population and cannot be hedged using instruments written on the reference

population. The parameter δx measures the dependence between the two mortality

intensities and 1− δx can be easily taken as a measure of basis risk.
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It is important to justify properly our interpretation of δx as a measure of comovement

between the intensity of the two populations. Assuming 0 ≤ u ≤ t, in particular, the

conditional correlation between λx(t) and λppx (t) is

Corru
[
λppx (t), λx(t)

]
= δx

√√√√ V aru
(
λx(t)

)
V aru

(
λppx (t)

) , (2.5)

where

V aru
[
λx(t)

]
= aσ2

2b2
(
eb(t−u) − 1

)2 + σ2

b
eb(t−u)(eb(t−u) − 1

)
λx(u), (2.6)

V aru
[
λ
′
x(t)

]
= a

′(σ′)2

2(b′)2
(
eb
′ (t−u) − 1

)2 + (σ′)2

b′
eb
′ (t−u)(eb′ (t−u) − 1

)
λ
′
x(u), (2.7)

V aru
[
λppx (t)

]
= δ2

xV aru
[
λx(t)

]
+ (1− δx)2V aru

[
λ
′
x(t)

]
. (2.8)

Indeed, when δx = 0 the two intensities have zero correlation, while δx = 1 implies

perfect positive correlation. Having δx positive ensures that λpp is strictly positive.

Corru
[
λppx (t), λx(t)

]
stays between 0 and 1. Though this may seem restrictive, this

assumption is justified by the intuition that when a shock hits the Reference population,

increasing for example its mortality intensity, the sub-population is affected similarly,

but with a different sensitivity, while divergence between the two intensities is entirely

captured by the idiosyncratic risk factor λ′ .

Survival probabilities

In this framework, it is easy to derive the conditional survival probability from t to T is

the probability that the individual will be alive at T , given that he or she is alive at t.

Indeed,

S(t, T ) = Q (τ > T | τ > t) = EQ
[
exp

(
−
∫ T

t
λx(s)ds

)
| Ft

]
. (2.9)

Given our model 2.1, the expectation for the Reference Population becomes:

S(t, T ) = A(t, T )e−B(t,T )λ(t), (2.10)
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where A(t, T ) and B(t, T ) solve an appropriate system of Riccati equations, being

A(t, T ) = A(t, T ; a, b, σ) =
(

2γe
1
2 (γ−b)(T−t)

(γ − b)
(
eγ(T−t) − 1

)
+ 2γ

) 2a
σ2

, (2.11)

B(t, T ) = B(t, T ; a, b, σ) =
2
(
eγ(T−t) − 1

)
(γ − b)

(
eγ(T−t) − 1

)
+ 2γ

, (2.12)

where γ =
√
b2 + 2σ2. As shown in Fung et al. [2014], the above specification guarantees

also that the limit of the survival probability, when T diverges, is zero.

The survival probabilities of the Portfolio population can be written as functions of the

common and idiosyncratic intensities as follows:

Spp(t, T ) = S̃(t, T )S̃′(t, T ) (2.13)

= Ã(t, T )Ã′(t, T )e−B̃(t,T )δxλx(t)−B̃′ (t,T )(1−δx)λ′x(t), (2.14)

where

Ã(t, T ) = A(t, T ;α, β, η),

B̃(t, T ) = B(t, T ;α, β, η),

Ã′(t, T ) = A(t, T ;α′, β′, η′),

B̃′(t, T ) = B(t, T ;α′, β′, η′),

γ̃ =
√
β2 + 2η2,

γ̃
′ =

√
(β′)2 + 2(η′)2,
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and

α = δxa,

β = b,

η2 = δxσ
2,

α′ = (1− δx)a′,

β′ = b′,

(η′)2 = (1− δx)(σ′)2.

2.2.2 Interest rate model

We assume that the spot interest rate - or interest rate intensity - follows, under the

risk-neutral measure, the well-known Vasicek [1977] process, of the type:

dr(t) = ā(b̄− r(t))dt+ σ̄dWr(t), (2.15)

with ā > 0, b̄ > 0, σ̄ > 0, r(0) = r0 ∈ R++, where the Wiener process Wr is independent

of Wx and W ′x: longevity and interest rate risks are independent. Given the above

assumptions, the process is mean reverting to a long-run value, b̄, with speed ā. This

short rate can display negative paths with positive probability. The discount factor or

bond price at time t, for maturity T , associated to our process 2.15, is

D(t, T ) = E
[
exp

(
−
∫ T

t
r(u)du

)
|Ft

]
= Ā(t, T )e−B̄(t,T )r(t),

where Ā(t, T ) and B̄(t, T ) are solutions to the Riccati ODEs,

Ā(t, T ) = exp

[(
b̄− σ̄2

2ā2

)(
B̄(t, T )− T + t

)
− σ̄2

4aB̄(t, T )2
]
, (2.16)

B̄(t, T ) = 1− e−ā(T−t)

ā
. (2.17)
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2.2.3 Risk factors

Following a technique described in Jarrow and Turnbull [1994] and Luciano et al. [2012a],

which exploits the definitions of "forward" interest rate and mortality intensity respec-

tively, we obtain a rewriting of the zero-coupon bond prices and survival probabilities

in terms of risk factors that are very easy to interpret:

S(t, T ) = e−X(t,T )I(t)+Y (t,T ), (2.18)

where

X(t, T ) = B(t, T ),

Y (t, T ) = lnA(t, T )−B(t, T )
[
−∂lnA(t, T )

∂T

∣∣
(0,t) + λx(0)∂B(t, T )

∂T

∣∣
(0,t)

]
,

and

D(t, T ) = e−X̄(t,T )J(t)+Ȳ (t,T ), (2.19)

where

X̄(t, T ) = B̄(t, T ),

Ȳ (t, T ) = lnĀ(t, T )− B̄(t, T )
[
−∂lnĀ(t, T )

∂T

∣∣
(0,t) + r(0)∂B̄(t, T )

∂T

∣∣
(0,t)

]
,

and where the two risk factors I(t) and J(t) are defined as

I(t) = λx(t)− f(0, t),

J(t) = r(t)− F (0, t).

Here, f(0, t) denotes the forward mortality intensity and F (0, t) the forward interest

rate. These risk factors are the difference between the actual realizations of the intensity

and short rate at time t and their best forecasts at time 0. They can intuitively be

interpreted as forecast errors and they will be the quantities whose exposures we will
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hedge. In our setting, it is very important to remark that even the survival probabilities

of the Portfolio population can be rewritten as functions of the longevity risk factor I(t),

since

Spp(t, T ) = e−X
pp(t,T )δxI(t)−X

′ (t,T )(1−δx)λ′x(t)+Y pp(t,T ),

where

Xpp(t, T ) = B̃(t, T ), (2.20)

X
′(t, T ) = B̃

′(t, T ), (2.21)

Y pp(t, T ) = lnÃ(t, T ) + lnÃ
′(t, T )− B̃(t, T )fx(0, t). (2.22)

2.3 Hedging an annuity portfolio

2.3.1 Annuity fair value and sensitivities to the risk factors

Our goal is to show how to construct hedging strategies for an annuity contract, that,

abstracting from idiosyncratic risk and policyholders’ heterogeneity, represents the port-

folio of an annuity provider. The annuity has maturity T and annual installments R paid

at year-end – written on an individual aged x at time 0. This individual belongs to the

portfolio population whose mortality we previously defined and that follows the mortal-

ity intensity described by equation (2.3). The fair-value of the annuity is the quantity

the annuity provider needs to hedge. This fair value, that is equal to the mathematical

reserve of the policy, is computed as

Npp(t, T ) = R
T−t∑
u=1

D(t, t+ u)Spp(t, t+ u), (2.23)

that can be equivalently written as

Npp(t, T ) = (2.24)

= R
T−t∑
u=1

e−X̄(t,t+u)J(t)+Ȳ (t,t+u) · e−Xpp(t,t+u)δxI(t)−X
′ (t,t+u)(1−δx)λ′x(t)+Y pp(t,t+u). (2.25)
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This value is sensitive to changes in the interest rates and in the dynamics of the mortality

of the portfolio population. The marginal effect on the value of the reserve caused by

any unexpected change in the risk factors can approximated as:

dNpp = ∂Npp

∂t
dt+ ∂Npp

∂I
dI + 1

2
∂2Npp

∂I2 (dI)2 + ∂Npp

∂λ′
dλ′ + 1

2
∂2Npp

∂(λ′)2 (dλ′)2+

+ ∂Npp

∂J
dJ + 1

2
∂2Npp

∂J2 (dJ)2 , (2.26)

where

∂Npp

∂I
= R

T−t∑
u=1

D(t, t+ u)∆M
pp(t, t+ u),

∂2Npp

∂I2 = R
T−t∑
u=1

D(t, t+ u)ΓMpp(t, t+ u),

∂Npp

∂λ′
= R

T−t∑
u=1

D(t, t+ u)∆′pp(t, t+ u),

∂2Npp

∂(λ′)2 = R
T−t∑
u=1

D(t, t+ u)Γ′pp(t, t+ u),

∂Npp

∂J
= R

T−t∑
u=1

∆F (t, t+ u)Spp(t, t+ u),

∂2Npp

∂J2 = R
T−t∑
u=1

ΓF (t, t+ u)Spp(t, t+ u),
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with

∆M
pp(t, T ) := ∂Spp(t, T )

∂I
= −Xpp(t, T )δxSpp(t, T ) ≤ 0, (2.27)

ΓMpp(t, T ) := ∂2Spp(t, T )
∂I2 =

(
Xpp(t, T )δx

)2
Spp(t, T ) ≥ 0, (2.28)

∆′pp(t, T ) := ∂Spp(t, T )
∂λ′

= −X ′(t, T )(1− δx)Spp(t, T ) ≤ 0, (2.29)

Γ′pp(t, T ) := ∂2Spp(t, T )
∂(λ′)2 =

(
X ′(t, T )(1− δx)

)2
Spp(t, T ) ≥ 0, (2.30)

∆F (t, T ) := ∂D(t, T )
∂J

= −X̄(t, T )D(t, T ) ≤ 0, (2.31)

ΓF (t, T ) := ∂2D(t, T )
∂J2 = X̄(t, T )2D(t, T ) ≥ 0. (2.32)

∆M
pp and ∆F are negative because, as one would expect, the value of the annuity is

decreasing in both risk factors. The second order sensitivities are instead positive and

the higher I or J , the higher is the sensitivity to the changes in the risk factors. Equa-

tion (2.27) highlights that the sensitivity of the annuity with respect to the longevity

risk factor I is directly proportional to the parameter δx. This is intuitive, given the

interpretation of δx as the degree of co-movement of the portfolio and of the reference

population.

2.3.2 Dynamic hedging strategies using longevity bonds

In this subsection, we propose a dynamic hedging strategy that covers the fair value of

the reserve of the annuity described above using longevity bonds. The longevity bonds

we consider are instruments written on the survivorship of a Reference population, that

follows the dynamics described by equation (2.1). The payoff at maturity T of such an

instrument is

exp
(
−
∫ T

t
λx(s)ds

)
.
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The value of the longevity bond, as a consequence, is

M(t) = D(t, T )S(t, T ),

= e−X̄(t,T )J(t)+Ȳ (t,T ) · e−X(t,T )I(t)+Y (t,T ), (2.33)

while its dynamics can be written as

dM = ∂M

∂t
dt+ ∂M

∂I
dI + 1

2
∂2M

∂I2 (dI)2 + ∂M

∂J
dJ + 1

2
∂2M

∂J2 (dJ)2 , (2.34)

where

∂M

∂I
= D(t, T )∆M (t, T ),

∂2M

∂I2 = D(t, T )ΓM (t, T ),

∂M

∂J
= ∆F (t, T )S(t, T ),

∂2M

∂J2 = ΓF (t, T )S(t, T ),

and ∆M (t, T ) = −X(t, T )S(t, T ),ΓM (t, T ) = X(t, T )2S(t, T ). ∆F (t, T ),ΓF (t, T ) are

given by (2.31), (2.32), respectively. A perfect hedge of longevity risk cannot be achieved,

unless δx = 1, even trading continuously in the hedging instrument. This happens

because changes in the idiosyncratic component λ′ influence Npp, but do not affect M ,

as one can conclude by comparing (2.26) and (2.34). Indeed, the value of the hedging

portfolio will not perfectly replicate the value of the insurance liabilities, i.e. the overall

hedging error will differ from zero. Still, we can disentangle the exposures to the source

of risk that can be covered, i.e. I(t), from the unhedgeable risk, i.e. λ′x(t). We consider

hedging strategies based on the Greeks we computed above. At a given point in time

t, we aim to build an hedging portfolio that nullifies the overall exposure to the risk

factors. These strategies (see De Rosa et al. [2017]) are defined according to which Greeks

are offset by taking appropriate positions in the hedging instruments. Delta (Gamma)

strategies nullify first- (second-) order changes in the longevity and/or financial risk
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factors, while Theta strategies nullify first-order time changes effects. Strategies can

also be constructed to be self-financing. Computing the hedging strategy, at time t,

amounts to solving an appropriate system of equations. For the sake of simplicity, we

assume that there exists a number K of hedging instruments (longevity bonds written on

generation x of the Reference population or zero coupon bonds, with different maturities

Ti, i = 1, ...K, to which we refer as Hi), sufficient to guarantee a unique solution to the

system of equations:



−∂Npp(t)
∂I dI +

∑K
i=1 ni

∂Hi(t)
∂I dI = 0,

−∂2Npp(t)
∂I2 (dI)2 +

∑K
i=1 ni

∂2Hi(t)
∂I2 (dI)2 = 0,

−∂Npp(t)
∂J dJ +

∑K
i=1 ni

∂Hi(t)
∂J dJ = 0,

−∂2Npp(t)
∂J2 (dJ)2 +

∑K
i=1 ni

∂2Hi(t)
∂J2 (dJ)2 = 0,

−∂Npp(t)
∂t dt +

∑K
i=1 ni

∂Hi(t)
∂t dt = 0,

−Npp(t) +
∑K
i=1 niHi(t) = 0.

(2.35)

When the system above is considered in its entirety, the strategy is the Delta-Gamma-

Theta hedging strategy of longevity and interest rate risk, and K ≥ 6 in order to

ensure uniqueness of the solution. The first two equations nullify the Delta and Gamma

exposure to the longevity risk factor, respectively, while the third and fourth nullify the

Delta and Gamma exposure to the financial risk factor, respectively. The fifth equation

nullifies the Theta, i.e. the deterministic change of the value of the portfolio in time.

The sixth equation guarantees that the portfolio is self-financing. Considering only a

part of the equations in (2.35) leads to different strategies, named after the Greeks that

are nullified. The strategy is applied at any rebalancing date, using the same set of

instruments. Right before the rebalancing date t, we evaluate the portfolio. This value
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is the profit or loss of the hedge. We finance this quantity through a bank account,

that accrues or charges a fixed rate r0. From this bank account the payments related

to the annuity contract are also taken. As usual, we define the hedging error of the

dynamic strategy as the absolute value of the bank account. At any t, then, the system

of equations is solved and the hedge, i.e. the positions in the hedging instruments, are

computed.

2.4 Numerical analysis: Longevity and Interest Rate risk

effects on Risk Margins

In this section, we consider an insurer who has sold an annuity contract to a Scottish

male born in 1946, who was aged 64 on 31/12/2010 (i.e. x = 65). We compare the risk

margins to be set apart in order to meet the obligations at a future date equal to t = 30

years with a confidence level of 99.5%, when both longevity and interest rate risk are

present, and different dynamic hedging strategies are performed. We consider a realistic

situation in which longevity risk cannot be fully hedged through dynamic hedging, due

to the presence of Basis Risk. Moreover, we assume that the insurer computes risk

margins consistently with the Solvency II regulation, that is, as the 99.5% confidence

level Value-at-Risk of her portfolio at a future date. Despite the fact that solvency

capital requirements are computed with a time horizon of 1 year, we use a time horizon

30 years, consistently with a long-term view of the risks of an annuity provider.

2.4.1 Calibration

The fit of the mortality model follows the procedure described by De Rosa et al. [2017].

We jointly calibrate the parameters of our Reference and Portfolio mortality models to

the generations of UK and Scottish males born in 1946, who were aged 64 on 31/12/2010

(i.e. x = 65), using the data provided by the Human Mortality Database. Under the con-

straint given by condition (2.2), we fix 01/01/1991 as the observation point (individuals

have all reached age 44) and we fit the observed survival probabilities S(0, t), Spp(0, t)
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Table 10: Reference and Portfolio population joint calibration results.

a b σ δx a
′

b
′

σ
′

3.3357·10−5 0.0727 0.0082 0.9897 0.0077 0.0155 4.4463 ·
10−08

Table 11: Vasicek calibrated parameters.

ā b̄ σ̄ r(0)

0.233821 0.030637 0.009400 0.007600

with t=1,...20. We fit our models minimizing the Rooted Mean Squared Error (RMSE)

between the model-implied and the observed survival probabilities. The calibration error

is 0.00015, and the values of the calibrated parameters are shown in Table 10.

Consistently, the interest rate model is calibrated to the UK Government Bond mar-

ket2. In particular, the diffusion parameter σr of the Vasicek model is derived from a

monthly time series of short rates (source: OECD) going from January 1978 to Decem-

ber 2010, using maximum likelihood estimation. The other parameters (ā and b̄) are

then estimated fitting the model implied term structure to the observed one given UK

government bonds at 31st of December 2010, by minimizing the rooted mean square

error. Table 11 reports the values of the calibrated parameters. As one would expect

from the Vasicek model, and to represent the current situation of interest rate markets,

we allow for the possibility of negative interest rates. Figure 14 shows the simulated

percentiles, from 0.01 to 0.99, of the short rate rt.

2.4.2 Delta-Gamma hedging with Basis and Interest Rate Risk

In this section, we analyze the effectiveness of a Delta-Gamma hedging strategy for

longevity risk, when interest rate is stochastic. We compare two different scenarios. In

the first, the financial risk factor is left unhedged. In the second, it is Delta hedged. We

compare the results with the ones described in De Rosa et al. [2017], where interest rate
2Parameters are taken from Jevtić and Regis [2015].
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Figure 14: Percentiles of the Interest Rate from 1% to 99%.

risk was fully hedged, assuming a constant short rate r0 = 2%. We report this last case

here not only for completeness, but also because it provides a benchmark to understand

the effect of interest rate risk in longevity hedges.

Delta-Gamma hedging of longevity risk is performed at three different rebalancing fre-

quencies (3, 6 and 12 months), using three longevity bonds with rolling maturities of

10, 15, 20 years. From system (2.35), we understand that three longevity bonds are

needed to build a self-financing strategy. Being the strategy self-financing, we track the

hedging error simply by storing, in a Bank Account, the difference between the value of

the hedging portfolio and value of the annuity at each rebalancing date.

We perform Delta-hedging of interest rate risk as well, by adding a fourth longevity

bond (with rolling matuirty of 5 years) to the hedging portfolio, rather than using a

zero-coupon bond. By doing so, the composition of the hedging portfolio at each re-

balancing date can be determined by solving the following system of 4 equations in 4
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unknowns: 

−∂Npp(t)
∂I dI +

∑4
i=1 ni

∂Mi(t)
∂I dI = 0,

−∂2Npp(t)
∂I2 (dI)2 +

∑4
i=1 ni

∂2Mi(t)
∂I2 (dI)2 = 0,

−∂Npp(t)
∂J dJ +

∑4
i=1 ni

∂Mi(t)
∂J dJ = 0,

−Npp(t) +
∑4
i=1 niMi(t) = 0.

(2.36)

The third equation in system (2.36) is the Interest Rate risk Delta condition, which sets

the first order sensitivity of the hedging portfolio to the financial risk factor J equal to

the one of the annuity.

Figure 15 shows the simulated percentiles of the Bank Account, from the 5th to the 95th,

when longevity risk is Delta-Gamma hedged and interest rate risk is unhedged (Figure

15a) and Delta hedged (Figure 15b). In each case, the differences due to the rebalancing

frequency are minimal, but we immediately see that Delta-hedging the interest rate risk

substantially reduces the variability of the hedging error. To compare the two cases

more in detail, Figure 16a and Figure 16b show, the distribution of the Bank Account

at t = 30 years, for each rebalancing frequency, when longevity risk is Delta-Gamma

hedged and interest rate risk is unhedged and when also Delta-hedging of the interest

rate is performed, respectively.

We observe that, in both cases, the Bank account is not centered at zero and, even

though the two distributions have similar means, when the financial risk factor is Delta

hedged the standard deviation of the Bank Account is significantly lower. The moments

of the two distributions are listed in Panel B and C of Table 12. If we compare them

with those in Pane A, that refers to the case without interest rate risk, we see that when

the financial risk factor is hedged, either fully or partially, the standard deviation of the

Bank Account reduces by more than 50%.
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(b) ∆-Γ Longevity + ∆ Interest Rate

Figure 15: Percentiles, from the 5th to the 95th, of the Bank Account for different
rebalancing frequencies.

2.4.3 Delta-Gamma-Theta hedging with Basis and Interest Rate Risk

We now turn our attention to the effects of interest rate risk on the effectiveness of the

Delta-Gamma-Theta longevity risk hedging strategy. Again, our base-line case is the one

presented in De Rosa et al. [2017], where the mortality risk factor is Delta-Gamma-Theta

hedged and the interest rate risk is fully hedged and kept constant at r0 = 2%. Here, we

analyze the performance of a mortality Delta-Gamma-Theta hedge when interest rate

risk is unhedged or Delta-Theta hedged. In order to hedge the longevity risk factor,

we use three longevity bonds with rolling maturities Ti, i = 1, 2, 3 of 10, 15, 20 years

respectively and a deterministic deposit account, K(t, dt). Its maturity is equal to the

rebalancing frequency, allowing us to cover the deterministic changes in the value of the
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Table 12: Moments of the hedging error of the Delta-Gamma strategy under different
rebalancing frequencies and different assumptions on interest rate risk.

Panel A: ∆-Γ Longevity + No Interest Rate

3 months 6 months 1 year

Mean 2.08373 2.09597 2.11164
Std 0.20691 0.20715 0.20850

Panel B: ∆-Γ Longevity + Unhedged Interest Rate

3 months 6 months 1 year

Mean 1.9458 1.9605 1.9803
Std 0.4723 0.4642 0.4427

Panel C: ∆-Γ Longevity + ∆ Interest Rate

3 months 6 months 1 year

Mean 1.9416 1.9560 1.9729
Std 0.1861 0.1866 0.1873
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Figure 16: (a) Distribution of the value of the Bank Account, under the assumption
of basis risk, at t=30 years for different rebalancing frequencies with unhedged Interest
Rate risk. (b) Distribution of the value of the Bank Account, under the assumption of
basis risk, at t=30 years for different rebalancing frequencies with Delta hedged Interest
Rate risk.

Annuity. The Delta-Theta hedging of the interest rate risk is, instead, performed using

a zero-coupon bond D(t, T ), with a rolling maturity of T = 10 years. In this case the

composition of the hedging portfolio can be determined, at each rebalancing date, by

solving the following system of 5 equations in 5 unknowns:
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−∂Npp(t)
∂I dI +

∑3
i=1 ni

∂Mi(t)
∂I dI = 0,

−∂2Npp(t)
∂I2 (dI)2 +

∑3
i=1 ni

∂2Mi(t)
∂I2 (dI)2 = 0,

−∂Npp(t)
∂t dt +

∑3
i=1 ni

∂Mi(t)
∂t dt + n4

∂K
∂t dt+ n5

∂D(t,T )
∂t dt = 0,

−∂Npp(t)
∂J dJ +

∑3
i=1 ni

∂Mi(t)
∂J dJ + n5

∂Z
∂J dJ = 0,

−Npp(t) +
∑3
i=1 niMi(t) + n4K(t) + n5D(t, T ) = 0.

(2.37)

The third equation of system (2.37) is the Theta condition, while the fourth one is the

Delta condition with respect to interest rate risk. It is worth noticing that Delta-Theta

hedging of the interest rate risk does not require any additional instrument with respect

to the Delta hedging strategy only.

Figure 17 shows the evolution over time of the simulated percentiles of the Bank

Account of the Delta-Gamma-Theta strategy, when the interest rate risk is left unhedged

(left panel) and when it is instead Delta-Theta hedged (right panel). In the latter case,

the variability of the Bank Account is considerably reduced, compared to the unhedged

interest rate case. Moreover, the average hedging error is also closer to zero. It is clearly

possible to identify a reduction in the variability of the hedging error, as the rebalancing

frequency increases. In these figures, the percentiles of the Bank Account range between

−0.8 and 0.2 when the interest rate risk is not hedged and between −0.15 and 0.25 when

we cover it through Delta-Theta hedging.

Figures 18a and 18b show the distribution of the Bank Account at time t = 30 years

for the two cases considered, while Panel B and C of Table 13 report the means and

standard deviations of the corresponding hedging errors. If the rebalancing frequency is

1 year, not covering the interest rate increases both the mean and the variance of the

hedging error by a factor 10, compared to the case when interest rate risk is fully hedged
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Figure 17: Percentiles, from the 5th to the 95th, of the Bank Account for different
rebalancing frequencies.

(Panel A Table 13). However, simply adding a zero-coupon bond to the hedging portfolio

and performing a Delta-Theta hedge of J significantly improves the performances of the

strategy.

2.4.4 Risk Margins

We assume that, when an annuity contract is sold, the Insurer has to compute a risk

margin, in order to ensure her solvency at a future instant t = 30 years. Consistently

with the Solvency II framework, the risk margin is computed as the 99.5% confidence
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Table 13: Moments of the hedging error of the Delta-Gamma-Theta strategy under
different rebalancing frequencies and different assumptions on interest rate risk.

Panel A: ∆-Γ-Θ Longevity + No Interest Rate

3 months 6 months 1 year

Mean 0.00897 0.01146 0.02362
Std 0.00522 0.00797 0.01657

Panel B: ∆-Γ-Θ Longevity + Unhedged Interest Rate

3 months 6 months 1 year

Mean 0.2295 0.2483 0.2724
Std 0.1588 0.1665 0.1737

Panel C: ∆-Γ-Θ Longevity + ∆-Θ Interest Rate

3 months 6 months 1 year

Mean 0.0162 0.0292 0.0555
Std 0.0123 0.0222 0.0422
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Figure 18: (a) Distribution of the value of the Bank Account, under the assumption
of basis risk, at t=30 years for different rebalancing frequencies with ∆-Γ-Θ hedged
Longevity and unhedged Interest Rate risk. (b) Distribution of the value of the Bank
Account, under the assumption of basis risk, at t=30 years for different rebalancing
frequencies with ∆-Γ-Θ hedged Longevity and ∆-Θ hedged Interest Rate risk.

level Value-at-Risk of portfolio value. We compare the value of this risk margin under

different assumptions regarding the hedging of longevity and interest rate risk. We

express these risk margins as a percentage of the annuity price at time zero. Our results

are summarized in Table 14. The risk margin for the annuity is about 27% either when

the interest rate risk is fully hedged, either when it is completely unhedged. In both
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Annuity Unhedged - No Interest Rate Risk

3 months 6 months 1 year
27.85% 27.85% 27.63%

Annuity ∆-Γ Hedged - No Interest Rate Risk

3 months 6 months 1 year
9.32% 9.34% 9.42%

Annuity ∆-Γ-Θ Hedged - No Interest Rate Risk

3 months 6 months 1 year
0.077% 0.126% 0.263%

Annuity Unhedged - Interest Rate Risk Unhedged

3 months 6 months 1 year
27.28% 27.49% 27.27%

Annuity ∆-Γ Hedged - Interest Rate Risk Unhedged

3 months 6 months 1 year
11.25% 11.18% 11.04%

Annuity ∆-Γ Hedged - Interest Rate Risk ∆ Hedged

3 months 6 months 1 year
8.94% 9.02% 9.06%

Annuity ∆-Γ-Θ Hedged - Interest Rate Risk Unhedged

3 months 6 months 1 year
2.60% 2.73% 2.84%

Annuity ∆-Γ-Θ Hedged - Interest Rate Risk ∆-Θ Hedged

3 months 6 months 1 year
0.208% 0.374% 0.713%

Table 14: Risk Margins

cases, Delta-Gamma hedging the mortality risk factor reduces the risk margin by about

two thirds. When interest rate risk is fully hedged, the Delta-Gamma-Theta strategy

is able to reduce the risk margin to almost zero3. Therefore, from the case when the

Delta-Gamma-Theta strategy is performed and the financial risk factor is left unhedged,

we can quantify how much the interest rate risk is contributing to the total risk margin.

In particular, we see that hedging the financial risk reduces the risk margin between

2%-3% of the initial price of the annuity. By comparing the totally unhedged strategy
3Especially when the rebalancing frequency is low, that is, more frequent rebalancing.
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and the Delta-Gamma-Theta longevity hedged one, interestingly, we find that interest

rate risk accounts only for 10% of the total risk margin. The remaining 90% of the risk

margin is, instead, due to the uncertainty about the future mortality rates.

2.5 Summary and conclusions

The consideration of interest rate risk is important when insurance liabilities are eval-

uated at fair value because it affects the computation of actuarial reserves through

the discount factors. Moreover, careful attention should be used when Asset-Liability

management is performed, because both the Assets and the Liabilities of the annuity

providers and insurers are affected by a common source of risk, namely, the financial

risk factor.

In this paper we first studied the impact of interest rate risk on the effectiveness of

dynamic longevity hedging strategies when also basis risk is present. Second, we inves-

tigated how risk margins change as consequence of different hedging choices.

We found that hedging only the longevity risk factor and leaving the financial one un-

hedged can significantly increase the variability of the hedging error of the strategy. The

standard deviation of the hedging error of a longevity Delta-Gamma hedge doubles when

interest rate risk is present and not managed. The impact is even higher for the Delta-

Gamma-Theta hedge, where the standard deviation increases by more than 10 times.

However, as shown in Tables 12 and 13, a partial interest rate hedge, such as a Delta or

Delta-Theta hedge, can substantially improve the overall effectiveness of the strategy.

Even if the impact of interest rate risk on the effectiveness of longevity hedging strategies

can be high, its contribution to the risk margin of an annuity contract can be signif-

icantly smaller than the mortality risk factor when the horizon of interest lenghtens.

In particular, we found that, in the very long-run (30 years), the longevity risk factor

accounts for 90% of the total risk margin, while the financial risk factor accounts only

10% of the risk margin.
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Chapter 3

Geographical diversification and

longevity risk mitigation in

annuity portfolios1

3.1 Introduction

In the last twenty years, insurance companies have been expanding internationally, via

subsidiaries operating in different countries or via cross-border mergers and acquisi-

tions. The largest insurers and re-insurers are indeed multinational companies, with

subsidiaries and branches located in several countries. Between 1990 and 2003, namely

before the introduction of Solvency II, the internationalization of banks and insurance

companies followed similar patterns, as argued by Focarelli and Pozzolo, 2008. As of

2012, namely after the adoption of Solvency II, instead, Schoenmaker and Sass [2016]

argue that the share of cross-border activity in the insurance sector is higher than in

the banking one, and that the degree of internationalization of the 25 largest European

insurers increased over the period 2000-2012, despite the financial crisis.

A possible explanation for the higher level of internationalization of insurance companies

1The material for this chapter is taken from De Rosa, Luciano, and Regis [2019].
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relative to banks after the adoption of Solvency II in 2009 is the fact that, on top of fi-

nancial risks, whose diversification costs and benefits may be similar between banks and

insurers, through internationalization insurers and re-insurers may reap also longevity

risk diversification benefits, and the consequent regulatory burden relief.

Longevity risk is the risk of experiencing losses, due to unexpected fluctuations in mor-

tality rates. It affects annuity providers in particular when, as occurred in the last

decades, policyholders’ longevity exceeds the expectations. Why is international diver-

sification of life insurance portfolios beneficial in terms of risk? Because, even if – in

expectation – longevity has been steadily increasing on a worldwide scale, idiosyncratic

longevity risks of different populations may be non-perfectly correlated across countries.

As a result, pooling portfolios of policies written on the lives of different populations

allows to diversify longevity risk and reduce the regulatory capital required by Solvency

to face it.

This work aims at filling a gap in the literature by providing three measures of the

diversification effects deriving from longevity risk pooling across populations. As an

example of the extra-benefit of international diversification proper of life insurers and

re-insurers, we consider an annuity provider, who can decide to expand her portfolio

by selling policies to members of a population different from the one to which she is

currently exposed. Our goal is to quantify the diversification benefit deriving from such

an expansion, relative to an expansion of the portfolio not involving internationalization.

To this end, we first introduce a novel parsimonious model for the joint mortality dy-

namics of policyholders in different countries, which extends the model presented in

De Rosa et al. [2017] to a multi-population setting. We set ourselves in the continuous-

time framework, which has gained increasing popularity, alongside the more traditional

discrete-time one, because of its analytical tractability. The model we propose is a

stochastic, continuous-time multi-population extension of the deterministic Gompertz

mortality law, a benchmark in the classical modelling of mortality arrival rates. It al-

lows to compute survival probabilities and hedge ratios in closed form, differently from
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models à la Lee-Carter. At the same time, it allows a rich description of the mortality

dynamics of multiple populations, and generations within them. In the continuous-time

framework, some models cope with the longevity risk of two cohorts or populations

(Dahl et al., 2008), or several cohorts within one population (Blackburn and Sherris,

2013; Jevtić et al., 2013). Up to our knowledge, only Sherris et al. [2018] and Jevtić and

Regis [2019] have attempted to combine the description of the mortality intensities of

multiple populations and generations together in a continuous-time setting. Both these

papers apply models driven by three independent Brownian motions (risk factors) and

entail Gaussian intensities. Our model is richer, because we assume as many dependent

risk factors as domestic generations and an idiosyncratic source that drives the mortality

intensity of the foreign population. Thus, we are able to capture the correlation struc-

ture of different generations within and across populations accurately, while preserving

a good level of parsimony. Our intensities follow square-root processes, and therefore

can not become negative.

Building on our model, we provide three measures for the longevity risk of a portfolio,

which we use to describe the effects of geographical diversification on a portfolio. The

first is the percentage risk margin, computed à la Solvency II. To evaluate it, we define

the value of the portfolio as the sum of the actuarial value of the policies (best estimate)

and of a risk margin, i.e. an amount that the insurer has to set aside to cover up for

the unhedgeable risks. The risk margin is defined as the value at risk (VaR) of the

unexpected loss in the portfolio value at a certain confidence level. If it decreases, after

an international expansion, its change provides a dollar-based measure of the benefits

of diversification, because its reduction is the capital requirement relief for the insurer.

The second measure is the standard deviation of the portfolio mortality intensity, which

measures the volatility of the cohort-based intensity, weighted by the relevance of each

cohort in the portfolio. It gives an indication of the longevity risk of the portfolio, be-

cause it measures the dispersion around the mean of the average mortality intensity. The

third measure, that we call “Diversification Index” is an average of the dissimilarities

between the same cohorts in different populations, present in both the initial portfolio
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and in the portfolio after the expansion, weighted by the percentage of policies belong-

ing to the cohort. The three measures, analyzed together, provide three complementary

views to assess the risk effects of the international expansion. The risk margin reduc-

tion offers a measure of the mitigation of the “tail” risk, because it represents the loss

in a worst-case scenario occurring with a low probability. The standard deviation of

the portfolio mortality intensity provides a measure of volatility of the portfolio, due to

longevity risk. The diversification index, finally, assesses in a simple way how dissimilar

a portfolio after an international expansion is relative to the initial one.

In a numerical application, which portrays the situation of a UK annuity provider that

can expand to Italy, we first assess that the model is able to fit well the observed mor-

tality rates of individuals aged 65-75 in the two populations, while capturing, using the

Gaussian mapping technique, the imperfect correlations observed across ages and popu-

lations. Based on our model estimates, we then compute our international diversification

measures for different portfolio expansions. We show that the risk margin reduction can

be as high as 3% as a proportion of the actuarial value, in the case of a foreign expan-

sion, targeted to those cohorts in the Italian population who have low covariance with

the initial annuity portfolio. We also highlight that longevity risk mitigation effects are

more sizable when the interest rate – a flat term structure, for simplicity – is lower.

The expansion can be performed, at a practical level, by starting foreign branches, ac-

quiring foreign undertakings or, as shown in an appendix, through the use of longevity

derivatives.

3.2 Set up

We consider a filtered probability space (Ω,F ,P) , endowed with the usual properties,

where F is the filtration containing the information regarding all the relevant variables

and P is the historical probability measure. In this probability space, the mortality

intensities of individuals are described as stochastic processes, and longevity risk, i.e.

the risk of unexpected fluctuations in the likelihood of deaths of individuals, arises. In
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what follows, we will consider longevity risk as the only source of risk in our setup.

We consider an Annuity Provider, or Life-Insurer, based in a certain country (that

we call Domestic), having a portfolio of deferred annuities written on different cohorts

belonging to the Domestic Population. Let X = {x1, . . . , xm} be the set of annuitants’

ages at time zero, and let ni, for i = 1, . . . ,m, be the number of annuities sold to people

aged xi. When an annuity is sold at time zero, the annuitant pays an initial premium.

We compute the actuarial value of the liabilities net of that premium. After signing

the contract, the annuitant will receive a series of fixed annual instalments R, starting

from the year-end of his 65-th birthday if xi < 65, or immediately if xi ≥ 65, until his

death, that may happen at most when he reaches a final age ω, at which he will die with

probability 1.

3.2.1 Portfolio value

In Europe, the life-insurance business falls under the Solvency II regulation, that requires

insurers to value their liabilities at market value and set aside VaR-based risk margins

with respect to the sources of risk that affect these valuations. These risk margins

are amounts prudentially set aside by the insurer, meant as financial covers for the

unhedgeable risk that the insurer bears. We consider, then, that the overall value Π0(t)

of the liability portfolio of a life insurer at time t is the sum of two components: the

Actuarial Value AVΠ0(t), which is the sum of the actuarial values of each individual

contract Ni(t) and represents a best estimate of the liabilities of the insurer, and the

Risk Margin RMΠ0(t) of the portfolio itself. In formulas, we have that:

Π0(t) = AVΠ0(t) +RMΠ0(t) =
m∑
i=1

niNi(t) +RMΠ0(t). (3.1)

We now detail further the assumptions we make to compute the two components. The

actuarial value of the contract is its fair premium. To compute it, we first define the

number of years before the individual i aged xi reaches age 65 as τ = max(65 − xi, 0).

If τ > 0, then the contract is a deferred annuity, while if τ = 0 the contract is an
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immediate annuity. Because we consider no risk source other then longevity risk, the

actuarial value of an annuity can be expressed as

Ni(t) = D(t, t+ τ)Si(t, t+ τ)
[
R
ω−t−τ∑
u=1

D(t+ τ, t+ τ + u)Si(t+ τ, t+ τ + u)
]
, (3.2)

where D(t, s), s ≥ t denotes the deterministic financial discount factor, D(t, s) =

e−r(s−t), r ∈ R and Si(t, ·) is the time-t survival probability curve of the individual

aged xi at time t.

We define the portfolio risk margin RMΠ0(t) as the discounted Value-at-Risk, at a given

confidence level α ∈ (0, 1), of the unexpected portfolio’s future actuarial value at a given

time horizon T :

RMΠ0(t) = D(t, t+ T ) · V aRα
(
AVΠ0(t+ T )− Et[AVΠ0(t+ T )]

)
, (3.3)

= D(t, t+ T ) · inf{l ∈ R+ : P(AVΠ0(t+ T )− Et[AVΠ0(t+ T )] > l) < 1− α},

(3.4)

where P(·) denotes the probability of the event that the future actuarial value exceeds

its time-t expected value by more than l.

3.2.2 Portfolio Expansion

In our setup, we consider the case in which the Insurer wants to expand the size of

her annuity portfolio and can choose between two alternative strategies. The first one

consists simply in selling new contracts to her own Domestic population. In this case,

we denote with n′i the number of new contracts sold to individuals aged xi, with ΠD

the portfolio composed of just these new annuities, and with Π1 the portfolio after the

expansion, composed of the old and the new contracts. The actuarial value of the new

portfolio is simply

AVΠD(t) =
m∑
i=1

n′iNi(t), (3.5)
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and

AVΠ1(t) = AVΠ0(t) +AVΠD(t). (3.6)

The value of the total portfolio Π1 is the sum of the actuarial value of the old portfolio,

the actuarial value of the new portfolio and the risk margin of the total portfolio:

Π1(t) = AVΠ1(t) +RMΠ1(t) = AVΠ0(t) +AVΠD(t) +RMΠ1(t). (3.7)

The second possible strategy is to acquire a new portfolio of annuities ΠF , written on

a foreign population. We assume that, for each age xi, the number of annuities written

on people aged xi in the foreign population is nfi . The actuarial value of portfolio ΠF is

AVΠF (t) =
m∑
i=1

nfiN
F
i (t). (3.8)

We denote with Π2 the portfolio obtained after the expansion towards the foreign coun-

try. The actuarial value of such portfolio is

AVΠ2(t) = AVΠ0(t) +AVΠF (t) (3.9)

and its overall value is

Π2(t) = AVΠ2(t) +RMΠ2(t) = AVΠ0(t) +AVΠF (t) +RMΠ2(t). (3.10)

Notice that the original portfolio and the one obtained after the expansion do not have

the same actuarial value, neither when the expansion is domestic nor foreign. The risk

margin of the two portfolios is different as well. Our aim is to measure the effects of

the two alternative strategies on the longevity risk profile of the insurer. To this end, in

the next sections we introduce a novel longevity risk model and three measures of the

diversification effects.
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3.3 Longevity Risk Modeling

We now turn to the description of the source of uncertainty that affects the value of

the Insurer’s portfolio: the risk of longevity, i.e. the risk that her policyholders live

longer than expected. We set ourselves in the well-established continuous-time stochastic

mortality setting initiated by Milevsky and Promislow [2001] that models the death of

individuals as a Cox process. The time to death of an individual belonging to cohort xi is

the first jump time of a Poisson process with stochastic intensity. This intensity is indeed

the force of mortality of the individual. When we consider different populations, and

different cohorts within each population, it is reasonable to assume that their mortality

intensities processes will be different, even though they may be (even closely) related

one another. In this section, we propose a novel, parsimonious model to describe the

evolution of the mortality intensities of several cohorts in two different populations.

The parsimony of our approach stems from making the intensity of one population (the

“foreign” one) a linear combination of the other, benchmark, population’s intensity (the

“domestic” one) and of an idiosyncratic risk factor. This makes the whole correlation

structure across populations dependent on the weight of the linear combination.

To preserve tractability, allowing for closed form expressions for the survival probabil-

ities, but at the same time ensuring non-negativity of the intensities, we adopt stochastic

processes belonging to the affine family, of the Cox et al. [1985b] type. These models

have been used in single-country longevity modeling by Dahl et al. [2008] and Luciano

et al. [2012b].

3.3.1 Mortality intensities and survival probabilities

Let us consider two populations, each containing m different cohorts. The first popula-

tion is called the Domestic population and the second one is called the Foreign population.

A given cohort i, with i = 1, . . . ,m, belonging to one of the two populations, is identified

by the (common) initial age xi at time zero. The set X of initial ages is common to the

two populations.
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Domestic Population

The mortality intensity of each cohort xi, for i = 1, . . . ,m, belonging to the Domestic

population is denoted with λdi , and follows a non-mean reverting CIR process:

dλdi (t) = (ai + biλ
d
i (t))dt+ σi

√
λdi (t)dWi(t), (3.11)

where ai, bi, σi, λdi (0) ∈ R++ are strictly positive real constants and the Wi’s are in-

stantaneously correlated standard Brownian Motions: dWi(t)dWj(t) = ρijdt with i, j ∈

{1, . . . ,m}. As a consequence, the mortality intensities of two different cohorts belong-

ing to the Domestic Population are instantaneously correlated, as soon as ρi,j 6= 0.

Foreign Population

The mortality intensity of cohort xi belonging to the Foreign population is denoted with

λfi , and is given by the convex combination of the mortality intensity of the corresponding

cohort belonging to the Domestic population λdi and an idiosyncratic component λ′,

which affects the Foreign population only and that depends on the initial age xi in a

deterministic way2, i.e.

λfi (t) = δiλ
d
i (t) + (1− δi)λ′(t;xi), (3.12)

where

dλ′(t;xi) = (a′ + b′dλ′(t;xi))dt+ σ′
√
dλ′(t;xi)dW ′(t), (3.13)

with δi ∈ [0, 1].3 The parameters a′, b′ and σ′ are positive constants, while W ′ is a

standard Brownian Motion, that is assumed to be independent of Wi for each i =

1, . . . , N .

Intuitively, the idiosyncratic risk source W ′ is population-specific, in the sense that it is

2For the empirical application in Section 3.5 we will consider the easiest case of no dependence on
the initial age xi.

3In principle, linear affine coefficients a′, b′ and σ′ could be chosen.
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common to all the cohorts of the Foreign population. Nonetheless, each foreign cohort

xi has a specific sensitivity to the idiosyncratic component λ′(t;xi), that is given by the

parameter δi, which is, instead, cohort-specific. The mortality intensities of two different

cohorts of the Foreign population are correlated, and the correlation between λfi and

λfj depends both on the correlation between λdi and λdj and on the weights δi and δj .

Moreover, thanks to the presence of the idiosyncratic component λ′ affecting the Foreign

population, our model allows to account for the non-perfect correlation between cohorts

across the two populations. The correlation structure among the different cohorts of the

two populations will be derived in Section 3.5.2.

From (3.11) we have that the survival probability of generation xi in the Domestic

population is given by:

Sdi (t, T ) = Adi (t, T )e−Bdi (t,T )λdi (t), (3.14)

where

Adi (t, T ) =
(

2γie
1
2 (γi−bi)(T−t)

(γi − bi)
(
eγi(T−t) − 1

)
+ 2γi

) 2ai
σ2
i

, (3.15)

Bd
i (t, T ) =

2
(
eγi(T−t) − 1

)
(γi − bi)

(
eγi(T−t) − 1

)
+ 2γi

, (3.16)

with γi =
√
b2i + 2σ2

i . Similarly, for the Foreign population we have:

Sfi (t, T ) = Adi (t, T )A′(t, T )e−Bdi (t,T )δiλdi (t)−B′(t,T )(1−δi)λ′i(t), (3.17)

where

A′(t, T ) =
(

2γ′e
1
2 (γ′−b′)(T−t)

(γ′ − b′)
(
eγ′(T−t) − 1

)
+ 2γ′

) 2a′
(σ′)2

, (3.18)

B′(t, T ) =
2
(
eγ
′(T−t) − 1

)
(γ′ − b′)

(
eγ′(T−t) − 1

)
+ 2γ′

, (3.19)

with γ′ =
√

(b′)2 + 2(σ′)2. The time-t survival probability curves of the two populations
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are thus both available in closed form, and depend on the parameters of the model.

3.3.2 Variance Covariance Structure

The model we proposed allows the computation of the variance of each generation’s

mortality intensity, as well as the covariance between generations within and across pop-

ulation.

The time-t variance of the intensity of a generation i belonging to the Domestic popula-

tion, λdi , conditional on the information at time 0 is available in closed form and is equal

to

V ar0
(
λdi (t)

)
= aiσ

2
i

2b2i

(
ebit − 1

)2 + σ2
i

bi
ebit
(
ebit − 1

)
λdi (0). (3.20)

Similarly, the conditional variance of λfi (t) is

V ar0
(
λfi (t)

)
= δ2

i V ar0
(
λdi (t)

)
+ (1− δi)2V ar0

(
λ′(t)

)
, (3.21)

where

V ar0
(
λ′(t)

)
= a′(σ′)2

2(b′)2
(
eb
′t − 1

)2 + (σ′)2

b′
eb
′t(eb′t − 1

)
λ′(0). (3.22)

Since the mortality of the Domestic generations follow a square-root process, there is no

closed form expression for the covariance between the intensities two generations i and

j. However, we can obtain a closed form approximation using the Gaussian Mapping

technique described in Section 3.5.2 and in Appendix3.A. Indeed, referring the reader

to those sections for further details, we have that

Cov0
(
λdi (t), λdj (t)

)
=
σVi σ

V
j ρij

bi + bj

(
e(bi+bj)t − 1

)
, (3.23)

where σVi and σVj are the instantaneous volatilities resulting from the mapping of λdi
and λdj into Gaussian processes.

From (3.11) and (3.12) we have that the covariance between the same generation i
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belonging to the Domestic and Foreign population can be written as:

Cov0
(
λdi (t), λ

f
i (t)

)
= δiV ar0

(
λdi (t)

)
. (3.24)

Considering, instead, two different generations i and j belonging to the Foreign popula-

tion, we have that

Cov0
(
λfi (t), λfj (t)

)
= δiδjCov0

(
λdi (t), λdj (t)

)
+ (1− δi)(1− δj)V ar0

(
λ′(t)

)
. (3.25)

Finally, the covariance between the mortality intensity of generation i belonging to the

Foreign population and generation j belonging to the Domestic is given by:

Cov0
(
λfi (t), λdj (t)

)
= δiCov0

(
λdi (t), λdj (t)

)
. (3.26)

From (3.26), it is interesting to notice that the covariance between λfi and λdj depends

both on δi, which measures the dependence between the same generation i across the

two populations, and on Cov0
(
λdi , λ

d
j

)
, which instead measures the dependence between

the generations i and j within the Domestic population.

λfi λdi

λdj

Cov
(
λfi , λ

d
j

)

δi

Cov
(
λdi , λ

d
j

)

(3.27)

Diagram (3.27) visualizes that, when computing the covariance λfi and λdj , we are able

to disentangle the effect of the two types of dependence: the within-population and

the cross-population ones. The importance of (3.27) can be explained with a simple
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example. Suppose there are two portfolios belonging to two populations f1 and f2 that

are competing targets of a foreign expansion, and suppose that each portfolio is composed

of annuities sold only to one generation k. The objective of the expansion is to find a

foreign portfolio that minimizes Cov
(
λf∗k , λ

d
j

)
, to obtain the maximum level of longevity

risk diversification. Since we cannot change the covariance structure of the Domestic

population, the solution to the problem is to find the portfolio Πf∗ such that

f∗ = arg min
x∈{f1,f2}

(
δxk
)
. (3.28)

Then, it is sufficient to compare the δ’s of the two competing foreign populations. For

instance, if δf1
k < δf2

k , then the optimal foreign expansion target portfolio is Πf1 .

3.4 Measuring the longevity risk effects of geographical

diversification

In the following paragraphs we introduce some measures of longevity risk in a portfolio,

which allow us to appreciate the degree of geographical diversification achieved through

a foreign expansion of the annuity portfolio. The first measure is the Percentage Risk

Margin of the portfolio, computed à la Solvency II. Comparing this measure before and

after a portfolio expansion allows to appreciate the economic benefit of a foreign expan-

sion. A reduction in the percentage risk margin is connected with a reduction of tail

risk, evaluated as the portfolio losses in a worst-case scenario. This measure follows the

principle with which capital requirements are computed in the current regulation. Re-

ducing the Percentage Risk Margin of a portfolio can thus be connected to a reduction

in the regulatory capital requirement for longevity risk.

The second measure we propose is the Standard Deviation of the Portfolio Mortality In-

tensity. We define the portfolio mortality intensity as a weighted average of the cohort-

based mortality intensities entering a portfolio, with weights equal to the percentage of

policies written on each generation. A reduction of this quantity indicates a stronger
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concentration of the distribution of the portfolio mortality intensity around its mean,

denoting a reduction of longevity risk. Finally, the Diversification Index is an average of

the degree of dissimilarity of the mortality intensities of the cohorts in different popula-

tions. This measure is a synthetic way of quantifying the level of diversification achieved

by a foreign expansion.

3.4.1 Percentage Risk Margin

To be able to compare the effects of an expansion, we consider first a normalized quantity,

i.e. the ratio of the risk margin and the actuarial value of a portfolio Π, which we call

percentage risk margin:

%RMΠ = RMΠ(t)
AVΠ(t) . (3.29)

A lower percentage risk margin denotes a lower percentage loss in the worst-case scenario,

relative to portfolio value. Hence, reducing this measure is beneficial for the company in

two respects. First, it indicates a mitigation in the risk connected to adverse scenarios.

In this sense, the risk margin can be considered as a measure of the systemic risk that

the company may generate, by triggering losses that will hit its creditors. Second, it

represents a capital requirement reduction, which frees up resources. Because the risk

margin can be interpreted as both a capital requirement and a measure of the loss the

company can generate – at a given level of confidence – among its creditors, it is then

conceivable that minimizing the percentage risk margin aligns the interests of both the

insurance company and its regulators. In what follows we take the point of view of the

insurer, taking for granted the alignment of her interest with the ones of the regulator.

3.4.2 Standard Deviation of the Portfolio Mortality Intensity

Another measure of the diversification effects deriving from longevity risk pooling across

populations can be derived by looking at the change in the standard deviation of the

portfolio mortality intensity pre- and post-foreign expansion. Given an annuity portfolio

Π, we define its portfolio mortality intensity λΠ as the weighted average of the mortality
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intensities of each generation in the portfolio, where the weights are the percentages of

contracts written on each generation. Considering the initial Domestic portfolio Π0, let

ndi be the number of contracts sold to generation i belonging to the Domestic population,

and let nd =
∑m
i=1 n

d
i be the total number of contracts in the portfolio. Then, we define

λΠ0 as:

λΠ0(t) =
m∑
i=1

ndi
nd
λdi (t) =

m∑
i=1

wdi λ
d
i (t), (3.30)

where ωdi = ndi
nd

is the weight for each generation i of the domestic population. Similarly,

let n = nd + nf be the total number of contracts in the portfolio, Π2, after a foreign

expansion in which nf contracts are written on the target foreign population, nfi on each

generation i. The mortality intensity of the portfolio Π2 is given by:

λΠ2(t) =
m∑
i=1

ndi
n
λdi (t) + nfi

n
λfi (t)

=
m∑
i=1

ndi
n
λdi (t) +

m∑
i=1

nfi
n
λfi (t)

=
m∑
i=1

wd,Π
2

i λdi (t) +
m∑
i=1

wf,Π
2

i λfi (t), (3.31)

where wd,Π
2

i = ndi
n and wf,Π

2

i = nfi
n represent the weights in the portfolio for each gen-

eration of the domestic and foreign population, respectively. Starting with the initial

Domestic portfolio Π0 and its mortality intensity λΠ0 defined in (3.30), we have that:

V ar0
(
λΠ0(t)

)
= V ar0

( m∑
i=1

wdi λ
d
i (t)

)
(3.32)

=
m∑
i=1

(wdi )2V ar0
(
λdi (t)

)
+ 2

∑
i<j

wdiw
d
jCov0

(
λdi (t), λdj (t)

)
. (3.33)

Thus we define the standard deviation of the portfolio Π0 mortality intensity as:

σλ(Π0) =
√
V ar0

(
λΠ0(t)

)
. (3.34)
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Similarly, considering the post expansion portfolio Π2, we have that:

V ar0(λΠ2(t)) = V ar0
( m∑
i=1

wd,Π
2

i λdi (t) +
m∑
i=1

wf,Π
2

i λfi (t)
)

(3.35)

= V ar0
( m∑
i=1

wd,Π
2

i λdi (t)
)

+ V ar0
( m∑
i=1

wf,Π
2

i λfi (t)
)
+ (3.36)

+ 2Cov0
( m∑
i=1

wd,Π
2

i λdi (t),
m∑
i=1

wf,Π
2

i λfi (t)
)

(3.37)

=
m∑
i=1

[
(wd,Π

2

i )2 + (wf,Π
2

i )2δ2
i

]
V ar0(λdi (t))+ (3.38)

+
m∑
i=1

(wf,Π
2

i )2(1− δi)2V ar0(λ′(t))+ (3.39)

+ 2
∑
i<j

(wd,Π
2

i wd,Π
2

j + wf,Π
2

i wf,Π
2

j δiδj)Cov0(λdi (t), λdj (t))+ (3.40)

+ 2
∑
i<j

wf,Π
2

i wf,Π
2

j (1− δi)(1− δj)V ar0(λ′(t))+ (3.41)

+ 2
m∑
i=1

m∑
j=1

wd,Π
2

i wf,Π
2

j δjCov0(λdi (t), λdj (t)), (3.42)

and

σλ(Π2) =
√
V ar0

(
λΠ2(t)

)
. (3.43)

A foreign expansion provides a diversification benefit if

σλ(Π2) < σλ(Π0).

This can happen because, after the expansion, λΠ2(t) depends on λdi , but also on the

different risk source λfi that may be non perfectly correlated with λdi for i = 1, . . . ,m.

Moreover, if there are multiple target portfolios for a foreign expansion, a possible way to

decide about the optimal expansion target would be for instance to choose the portfolio

that provides the lowest σλ(Π∗).
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3.4.3 Similarity/Diversification index

Building up on the characteristics of the longevity model described in the previous

section, finally, we propose a synthetic measure to describe the similarity/dissimilarity

between the annuity portfolios written on two populations, that we define as Similarity

and Diversification index. Let ndi be the number of annuities written on cohort xi
belonging to the domestic population, nfi the number of annuities written on cohort xi
belonging to the foreign population, ni = ndi + nfi and m the number of generations in

the initial, domestic portfolio. Then the Diversification Index (DI) is equal to:

DI = 1
m

m∑
i=1

nfi (1− δi)
ni

, (3.44)

and the Similarity Index (SI)4 is:

SI = 1−DI. (3.45)

The Diversification Index represents a weighted average of the dissimilarities between

the same cohorts in different populations5, present in both the initial portfolio and in

the portfolio after the expansion. Dissimilarities are captured by the complement to 1

of δi, the generation-specific parameter that captures the degree of correlation between

the same generation of the different populations. The weights, nfi /ni, are given, for

each cohort in the initial portfolio, by the number of annuities in the foreign population

(after the expansion) relative to the total number of annuities written on that cohort in

both populations. We average the weighted dissimilarities across all the m cohorts of

the domestic population initially present in the annuity portfolio.

Our proposed indicator has the following properties. First, 0 ≤ DI ≤ 1. If δi = 1 for

every i, i.e. the two portfolios are written on perfectly correlated populations, then,
4Since we are only averaging over the generations belonging to the domestic portfolio, the Similarity

Index defined in equation (3.45) should be interpreted as a synthetic measure of the similarity relative
to the domestic population. If instead m is defined as the number of generations in the foreign portfolio,
the resulting measure should be interpreted as the similarity with respect to the foreign portfolio.

5Indeed, by construction, the Diversification Index does not take into account the diversification
benefit across different generations in the two populations.
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obviously, SI = 1 and DI = 0. On the other hand, if δi = 0, for every i, which

means that the intensities of the foreign population are independent of the risk factor

of the domestic, the DI does not go to 1 independently of the portfolio composition.

If nfi → ∞ and ndi remains constant, then SI → 0, DI → 1. This happens because

the longevity risk of the foreign population is completely idiosyncratic and therefore

diversification is reaped only enlarging the foreign portfolio as much as possible. This

shows that the Diversification Index appropriately reflects both the properties of the

intensity correlation structure and the portfolio mix chosen by the underwriter.

Let us conclude this section with some intuition behind the derivation of the DI and a

comparison with σλ(Π2). From the definition of λΠ2(t) and from (3.12) we observe that:

λΠ2(t) =
m∑
i=1

wd,Π
2

i λdi (t) +
m∑
i=1

wf,Π
2

i λfi (t)

=
m∑
i=1

wd,Π
2

i λdi (t) +
m∑
i=1

wf,Π
2

i δiλ
d
i (t) +

m∑
i=1

wf,Π
2

i (1− δi)λ′(t). (3.46)

The last term in (3.46) can be interpreted as the source of the diversification benefit,

and each coefficient of the summation wf,Π
2

i (1− δi) can be interpreted as the diversifica-

tion contribution of each foreign generation i. Hence the DI can be seen as the average

diversification contribution of each generation in the foreign portfolio.

Recalling diagram (3.27) for the dependence structure between the foreign and domes-

tic generations, we could say that σλ(Π2) captures both the horizontal and the vertical

dependence, while DI only focuses on the first one.

Further insights on the properties and indications deriving from the three measures pre-

sented will emerge from the application in Section 3.5, but let us comment briefly on

them before going on.

The percentage risk margin has the advantage of being expressed in economic terms,

allowing a comparison between the economic benefit of a foreign expansion and its im-

plementation cost, and between the benefits of competing target portfolios. Among the

three measures, the percentage risk margin is the only one that can capture the impact

of the term structure of interest rates on the economic benefit of geographical longevity
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risk diversification. However, computing it – for our proposed model, at least – requires

Monte Carlo simulations, making it the most computationally expensive measure among

the ones presented.

The standard deviation of the portfolio mortality intensity does not require Monte Carlo

simulations and can provide similar information to the risk margin when comparing dif-

ferent expansion strategies. It is able to capture the entire dependence structure between

the domestic and foreign generations, but it is simply a distributional property and not

a monetary measure.

The Diversification Index is the easiest measure to compute, because it does not require

Monte Carlo simulations or the estimation of a correlation matrix. However, it does not

capture the entire dependence structure between the domestic and foreign generations

and, therefore, can provide useless indications when the target foreign portfolio popu-

lation shows low dependence across generations and when the diversification benefit of

grouping different cohorts belonging to different populations is large.

3.5 Application

In this section, we calibrate our proposed model and try to quantify the diversification

gains deriving from an international expansion towards Italy of an initially UK-based

annuity portfolio. The situation we consider is that of a UK annuity provider who

has the option of expanding her business either in her home country or abroad, selling

additional policies to Italian policyholders. In practice, this expansion can be performed

by creating an Italian branch or acquiring an Italian undertaking. As an alternative,

the geographical diversification can be obtained through the use of longevity derivatives

(see Blake et al., 2006b for instance), which allow the insurer to gain some exposure to

the mortality development of a different population. We explore this case in Appendix

A.
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3.5.1 Mortality intensities estimation

To calibrate our model, we proceed in two steps. First, we calibrate the parameters of

the two intensity processes, of the domestic and of the foreign population respectively.

Then, in a second step, we calibrate the correlation parameters ρij . We calibrate the

parameters of the mortality model to the generations of UK and Italian males whose age,

at 31/12/2012, is between 65 and 75, that is, the cohorts born between 1937 and 1947.

We consider thus 11 different cohorts present in the initial portfolio: xi = 65, . . . , 75.

We use the 1-year×1-year cohort death rates data provided by the Human Mortality

Database and recover, using the 20 observations from 1993 and 20126 the observed

conditional survival probabilities, for each cohort, for the individuals alive in 1993. The

estimation of the parameters is performed minimizing the Rooted Mean Squared Error

(RMSE) between the observed and the model-implied survival probabilities. Tables 1

and 2 report the calibrated parameters for the two populations, while Figures 1 and 2

report the actual and fitted survival probabilities and the calibration errors, respectively.

The model, although parsimonious, is able to capture well the survival probability curves

of the two populations, for all the cohorts considered.

Table 15: Domestic Population (UK) calibration results.

Age a b σ λ0 RMSE

65 2.7878 · 10−5 0.0723 0.0075 0.0116 0.00035
66 6.5423 · 10−5 0.0652 0.0059 0.0124 0.00028
67 1.8424 · 10−5 0.0740 0.0080 0.0135 0.00035
68 5.3144 · 10−5 0.0685 0.0084 0.0160 0.00043
69 1.2500 · 10−4 0.0589 0.0091 0.0164 0.00039
70 8.4734 · 10−5 0.0646 0.0108 0.0189 0.00056
71 7.1323 · 10−5 0.0667 0.0106 0.0212 0.00038
72 4.1759 · 10−5 0.0688 0.0073 0.0239 0.00040
73 2.2984 · 10−5 0.0689 0.0066 0.0262 0.00063
74 9.6036 · 10−5 0.0663 0.0131 0.0282 0.00040
75 3.3898 · 10−5 0.0684 0.0077 0.0316 0.00049

6These correspond to the last 20 observations available to date for the Italian males. However, since
the UK dataset is updated until 31/12/2013, we have excluded the last available observation for the UK
cohorts.
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Figure 19: Observed and theoretical survival probabilities. The left panel shows the
observed vs. fitted survival probabilities for the Foreign population, while the right
reports the figures for the Domestic population.
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Table 16: Foreign Population (IT) calibration results.

Age a′ b′ σ′ δ RMSE λ′0

65

1.1785 · 10−4 4.7825 · 10−7 0.0153

0.7939 0.00045

0.0022

66 0.8528 0.00017
67 0.9369 0.00038
68 0.8289 0.00036
69 0.9039 0.00045
70 0.8362 0.00032
71 0.8548 0.00034
72 0.8210 0.00036
73 0.8203 0.00036
74 0.8484 0.00071
75 0.8683 0.00078

3.5.2 Correlation matrix estimation

After having estimated the cohort-specific parameters of the two populations, we turn

to the estimation of their correlation structure. Having chosen a non-Gaussian process

for the mortality intensities of the cohorts, we are not able to derive a formula for

their correlations in closed form. However, to estimate correlations, we can apply the

Gaussian Mapping technique, which has been used extensively in the pricing of Credit

Default Swaps (see Brigo and Mercurio, 2001). Such technique allows to obtain a closed-

form approximation of the correlations between the intensities of the different cohorts,

in turn permitting the direct estimate of the correlation parameters ρij . Technically,

it consists in mapping a CIR process into a Vasicek process that is as close as possible

to the original one, i.e. returning the same survival probability. Since we are able to

compute analytically the correlations between each λdi and λdj , with i, j = 1, . . . , N in the

mapped Vasicek process, we can then retrieve our desired parameters in closed-form.

Starting from the CIR process (3.11) describing the mortality intensity of cohort xi
belonging to the domestic population, we consider a Vasicek process driven by the same

Brownian Motion Wi(t), having the same drift and the same initial point:

dλVi (t) = (ai + biλ
V
i (t))dt+ σVi dWi(t), λVi (0) = λdi (0). (3.47)
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The instantaneous volatility coefficient σVi of (3.47) is then determined by making the

two processes as close as possible. Here, having fixed a maturity T, by close we mean

that the two processes return the same survival probability:

Sdi (t, T ) = SVi (t, T ;σVi ). (3.48)

Then, we approximate the correlation between λdi (t) and λdj (t) by the correlation between

λVi (t) and λVj (t):

Corr0(λdi (t), λdj (t)) ≈ Corr0(λVi (t), λVj (t)), (3.49)

since this last correlation can be computed analytically. Each pair-wise correlation is a

function of the parameters bi and bj of the mapped Vasicek process and of ρij :

Corr0(λVi (t), λVj (t)) =
Cov0(λVi (t), λVj (t))√

V ar0
[
λVi (t)

]
V ar0

[
λVj (t)

]
= 2ρij
bi + bj

· e(bi+bj)t − 1√
(e2bit−1)(e2bjt−1)

bibj

(3.50)

To estimate the correlation parameters, first the parameters of the process described by

(3.47) are recovered. Then, using the central mortality rates data available in the UK life

tables7, we estimate the instantaneous correlations ρij between dλi and dλj by inverting

the approximated correlation expression (3.50). To compute the correlations between the

11 cohorts involved, we start from the central mortality rates in 1968 of the people aged

between 1 and 11, and we follow the diagonal of the life table until we reach the central

mortality rates of the people aged between 65 and 75 in 2012. The central mortality rates

table constructed this way has dimension 65× 11 and allows to estimate the correlation

coefficients which we report in Table 17. The upper and lower confidence bounds are

computed with bootstrapping from 10, 000 resampled samples with replacement. Each

sample has dimension 65 × 11, and is obtained by randomly choosing 65 times with
7Source: Human Mortality Database.



136

UK Covariance Matrix

65 66 67 68 69 70 71 72 73 74 75

UK

65

66

67

68

69

70

71

72

73

74

75

U
K

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

10
-6

UK-ITA Covariance Matrix

65 66 67 68 69 70 71 72 73 74 75

ITA

65

66

67

68

69

70

71

72

73

74

75

U
K

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

10
-6

Figure 21: Left Panel: Covariance matrix between UK generations. Right Panel: Co-
variance matrix between Italian and UK generations.

replacement a row of our original central mortality table. As expected, because of the

similarity between the UK and the Italian populations, correlations are close to 1 with

tight 95% confidence bounds, but they tend to decrease with the distance between the

initial ages of the two considered cohorts. This behaviour aligns with the intuition

that the changes leading to longevity improvements (such as healthy habits or medical

advancements) have different impact on different generations and that cohort effects are

at play. Table 18 reports instead the correlations across the two populations. Also in

this case, the correlations appearing in the diagonals are the highest, and they tend

to decrease along the rows and column dimensions, indicating the presence of common

cohort effects across populations. Figure 21 shows the covariances between the different

UK cohorts, and between the UK and Italian cohorts. The two generations with the

lowest covariance are the 66 years old UK and 66 years old Italian cohorts. Both the UK

and Italian 66 years old cohorts are the ones with the lowest covariance with all other

generations in the other country.
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3.5.3 Evaluating the diversification gains in terms of risk margin

Because the oldest cohort considered in our application is 75, and we assume a maxi-

mum life span of ω = 105 years, we fix the time horizon of our simulations to 30 years.

Consistent with this choice, we consider a constant interest rate of 2%, matching the

30-year risk-free-rate indicated by EIOPA for the calculation of technical provisions.

The choice of a constant interest rate term structure allows us to isolate and capture

any possible added benefit specifically due to the geographical diversification of an an-

nuity portfolio. The time horizon at which the Risk Margin is computed is 15 years.

This choice is justified because we want to focus on the medium-long term benefits of

geographical diversification. Consistently with the Solvency II regulation, we select a

confidence level α = 99.5% when calculating the Risk Margin associated to the portfolio.

Initial Portfolio

We consider a UK Insurer with an initial portfolio Π0, made of 1000 contracts sold to

males whose age, at 31/12/2012, is between 65 and 75. The distribution of contracts

among ages reflects the proportions of individuals aged between 65 and 75 in the UK

national population. For instance, since in the general UK population 69 years old

constitute 11.00% of all the people aged between 65 and 75, the domestic portfolio

contains 110 contracts sold to 69 years old (see Table 19). The initial Actuarial Value

AVΠ0(0) of the portfolio is:

AVΠ0(0) = 1.4104 · 104, (3.51)

while the Risk Margin computed at time 0 is

RMΠ0(0) = 1.1838 · 103. (3.52)

Hence, the initial portfolio value is

Π0(0) = AVΠ0(0) +RMΠ0(0) = 1.5288 · 104. (3.53)
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The Risk Margin accounts for 8.39% of the initial portfolio Actuarial Value and σλ(Π0) =

0.00124.

Portfolio ΠF is exposed to the foreign population only, distributed among ages according

to Table 20, useful for comparison. As we did for the initial portfolio, we assume that

the policyholders’ distribution reflects the proportion of individuals belonging to each

generation between 65 and 75 in the Italian population (see Table 20). Figure 22 shows

the different percentage of individuals per cohort in the UK and Italian population. For

the foreign portfolio ΠF , the risk margin is 7.39% and σλ(ΠF ) = 0.00107. One could

guess that by expanding towards Italy, the UK underwriter could, at most, reduce his

risk margin to this level. However, we will show later on that, thanks to the diversifica-

tion effect, the risk margin of the underwriter can be even lower.

Domestic Expansion

With a Domestic Expansion, we assume that the Insurer doubles the size of her annuity

portfolio, selling additional policies to her domestic population, i.e. the UK population.

The new portfolio Π1 is therefore composed of 2000 contracts and is obtained by simply

doubling the number of contracts for each generation. Hence,

AVΠ1(0) = 2.8208 · 104, (3.54)

RMΠ1(0) = 2.3676 · 103, (3.55)

Π1(0) = 3.0576 · 104. (3.56)

The Risk Margin proportion relative to actuarial value is unaffected by the size of the

portfolio, and still accounts for 8.39% of the Actuarial Value of the Domestically Ex-

panded portfolio. Similarly, also the portfolio mortality standard deviation remains

unchanged. In this case, the diversification index between Π0 and Π1−Π0 is 0, as no di-

versification gain can be obtained. However, some diversification gains could be obtained

through a domestic expansion, in case the new portfolio had a different composition, in
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terms of policyholders’ ages, than the initial one.

Foreign Expansion

In case of a Foreign Expansion, we assume that the Insurer doubles the number of

policies in its annuity portfolio by selling contracts written on policyholders belonging

to the Foreign population. The composition of the Foreign portfolio per cohort is as-

sumed to follow the same proportions of the Italian population8 (see Figure 22). The

new portfolio Π2 is, therefore, composed of 1000 contracts sold to the UK population

composing the initial portfolio and of 1000 contracts written on the Italian population,

Π2 = Π0 +ΠF (both distributed as described in Table 19). It has the following actuarial

value and risk margin:

AVΠ2(0) = 2.8872 · 104, (3.57)

RMΠ2(0) = 2.2749 · 103, (3.58)

As a consequence,

Π2(0) = 3.1147 · 104. (3.59)

For this portfolio, the Risk Margin accounts for 7.87% of the Actuarial Value, reduced,

as expected, by 0.52 percentage points relative to the one of the initial portfolio. The

portfolio mortality standard deviation σλ(Π2) consistently decreases to 0.00115, and the

diversification index increases to 0.0746.

The diversification gain provided by the Foreign portfolio just described can be further

exploited. We then explore alternative portfolios and summarize the results in terms

of actuarial values, risk margins and total values in Table 21. Portfolio Π3 represents

a more aggressive foreign expansion, where the number of policies sold to each genera-

tion of foreign policyholders is twice the number of policies in ΠF . Tilting the portfolio

towards the foreign population has the effect of decreasing the percentage risk margin

8Inserting the exact composition of the UK population is a trivial extension.



140

65

66

67

68

69

70

71

72

73

74

75

100 50 0 50 100

Count

A
ge

Portfolio

Domestic

Foreign

Figure 22: Domestic and Foreign Portfolio Composition.

(7.71%) and the portfolio mortality standard deviation (0.00112), while increasing the

diversification index (0.0992). However, it is evident that, at most, by increasing the

exposure to the Italian population, the risk margin can not be lower than 7.39%, which

is the risk margin of the Foreign portfolio. This suggests to optimize the portfolio mix

using not only the diversification across populations, but also across generations.

The portfolio Π1
opt is obtained diversifying within the UK population. Its composition is

optimized to obtain the minimum risk margin achievable, under the constraint that the

number of new contracts is 1000. It can then be considered as the maximally diversified

portfolio, in the absence of geographical diversification. The maximum diversification is

thus obtained by selling 1000 annuities to the UK 66 years old, whose mortality intensity

process shows the minimum covariance with the other UK cohorts (see the left panel of

Figure 3). Notice that the percentage risk margin of this portfolio is 6.61%, which is

lower than 7.39%. Being entirely composed of UK annuitants, this portfolio has a null

Diversification Index, but due to its composition, is able to reduce σλ to 0.00096.

Similarly, Π2
opt is obtained allowing for geographical diversification and optimizing the

composition of the foreign portfolio. The optimization is performed by looking at the co-

variance matrix between the two populations(see right panel of Figure 3) and choosing to



141

concentrate the foreign expansion on the Italian 66 years old males, who have the lowest

covariance with all the cohorts of the UK population. The risk margin of Π2
opt is 6.17%

and σλ is 0.00091. The percentage risk margin of portfolio Π2
opt and its σλ are the lowest

among the portfolios we have considered. The DI of this last portfolio is small compared

to the DIs of the other portfolios involving an international expansion, being 0.0121. It

is small because the expansion is performed by concentrating the sales of policies in the

foreign population in one generation only. Notice that the DI and %RM reduction differ

more when the portfolio added to the initial one is optimized across generations than

when it is not. This happens because the DI - by definition, to be kept simple - does not

capture the effects of putting different weights on generations with low within popula-

tion covariance, while the percentage risk margin and the portfolio mortality standard

deviation capture the entire dependence structure between populations and generations.

Indeed, the Diversification Index provides a non-dollar measure of diversification which

"averages" the contributions of different generations and penalizes any concentration in a

particular one, even though the latter is justified by a strategy which aims at minimizing

the risk margin reduction. This is why we presented all the three measures.

3.5.4 Sensitivity Analysis

Table 22 reports the results for the different portfolios considered in Section 3.5.3, un-

der the assumption of a zero interest rate, i.e. r = 0%. Under this lower interest rate

level, the magnitude of longevity risk is more severe, as expected: the percentage Risk

Margins are higher for all portfolios, increasing in the best-case scenario to 8.07%, up

from 6.17%. However, diversification as measured by the %RM is even more valuable,

because the reduction from the initial portfolio to Π2
opt portfolio is almost 4 percentage

points. The Diversification Index and portfolio mortality standard deviation, instead,

by definition, are not affected by the change in the interest rate, because the weights

appearing in (3.31) and (3.44) are expressed in nominal terms (number of annuities

written on a generation) rather than in value terms (value of the annuity portfolios on

the different generations, for instance). We finally assess the impact of the parameter δi
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Figure 23: Left Panel: Percentage Risk Margin reduction under different exogenous
δi = δ for every i assumption. Center Panel: Portfolio Mortality Standard Deviation
under different exogenous δi = δ for every i. Right Panel: Diversification under different
exogenous δi = δ for every i.

on portfolio diversification following an expansion. In Section 3.5.3, we considered two

countries, the UK and Italy, that belong to the same continent and share many similar

features. As a consequence, also their past mortality dynamics were not so dissimilar.

We expect, however, that more different countries show way lower similarity, and thus

lower δ’s between cohort intensities. We perform, then, a simulation study where the

parameters of the foreign population are set as in Table 16, with the only exception

of the parameters δi, which we assume to be a constant δ for every generation i. The

interest rate is set to r = 2%, as in our base case. We exogenously set δ to a value that

ranges from 0.1 to 0.9. When δ is close to 0, the dynamics of the mortality intensities

of the domestic and the foreign populations are orthogonal. Thus, the international ex-

pansion targets a foreign population whose mortality dynamics is very different from the

domestic one. In this case, we expect the maximum level of diversification gains from an

international expansion. As δ increases, the correlation between the mortality intensities

of the two populations increases as well. When δ is close to 1, the mortality dynamics

of the domestic and foreign population are perfectly correlated. In this last case, we

can expect the lowest level of longevity risk diversification gains from an international

expansion strategy. We compute, for each level of δi, the DI, the portfolio mortality

standard deviation and the percentage risk margin reduction, for the portfolios Π2 and
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Π2
opt described in Section 3.5.3.

As expected, the highest values of both the percentage risk margin reduction and the Di-

versification Index, for both portfolios, are achieved when δi is close to 0. The percentage

risk margin reduction is 4% in this case, showing that sizable benefits from geographical

diversification are possible. Such benefits, measured in terms of either the risk margin

reduction or the Diversification Index, decrease as δ approaches 1. The optimal portfolio

expansion Π2
opt provides consistently higher risk margin reduction than Π2, and the gap

between the two strategies widens as δ increases (see the left panel of Figure 23). On

the contrary, strategy Π2 shows a higher DI with respect to Π2
opt, for every δ.

The Diversification Index tends to 0 for both portfolios as δ goes to 1. Instead, while

the percentage risk margin reduction for Π2 goes to zero when δ is 1, portfolio expansion

Π2
opt offers a diversification benefit relative to the initial portfolio even in that case. This

happens because the expansion is targeted in this case to a specific generation. The

effects of the international expansion are analogous to those that can be obtained by

targeting the domestic expansion to the generation which shows the lowest covariance

with the others: Π2
opt reduces the percentage risk margin as much as Π1

opt.

Given their properties, and the evidence from this sensitivity analysis, the Diversification

Index and the standard deviation of the portfolio mortality intensity can be an extremely

easy-to-handle and useful tools when choosing among competing target foreign popu-

lations in an international expansion. The percentage risk margin reduction, being a

monetary measure of the diversification gains, is better suited, instead, to select the

best strategy when different alternative foreign portfolio compositions can be targeted,

once the candidate foreign population has been selected.

3.6 Conclusions

In this paper, we discussed the benefits of geographically diversified portfolios, due to

the non-perfect correlation between the dynamics of the mortality rates of different pop-

ulations. We have considered the problem of an insurer who has to decide whether to
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expand his portfolio in the country where it is based or in a foreign country. Some

diversification gains can be realized when expanding internationally, due to the mitiga-

tion of the exposure to domestic longevity risk. To discuss whether these gains may

be sizable in an annuity portfolio, we built a longevity risk model that, while being

parsimonious, can capture the non-perfect correlations among the different cohorts of

two different populations. We then provided three indicators of the diversification of an

international expansion. The percentage risk margin reduction is computed coherently

with the Solvency II modeling approach. The standard deviation of portfolio mortality

intensity is the volatility of the distribution of a weighted average of the cohort-based

mortality intensities, where the weights are the relative contributions of each cohort to

the portfolio. The Diversification Index is a weighted average which depends on both

the portfolio mix and the weight of the idiosyncratic foreign risk factor. This last mea-

sure is a very easy-to-handle indicator which, however may be unreliable when different

cohorts compose the domestic portfolio and the foreign one. It is instead very useful

when comparing expansions towards the same target portfolios in different populations.

Our application, based on an annuity portfolio written on the UK and the Italian popu-

lations, shows that the effects of an international diversification are sizable. Expanding

internationally decreases the volatility of the portfolio mortality intensity up to 26%.

Under a 0% interest rate assumption, we showed that an optimally designed expansion

can lower the percentage risk margin, relative to the actuarial value of the portfolio, by

almost 4 percentage points. The example in the paper can be considered as conservative,

since the two populations of UK and Italy present rather similar historical mortality dy-

namics. The diversification effect is shown to be more relevant the lower the correlation

between intensities.

The diversification benefits of an international expansion may happen to be counterbal-

anced by the costs connected to the foreign portfolio acquisition process. These costs,

that are - say - the fixed costs of opening a foreign affiliate, or the fees required by the

agents involved in the M & A operation, etc., may be substantial. As an alternative to a

physical expansion, the insurer may obtain the same diversification benefit operating on
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the longevity derivatives market. Longevity derivatives, and longevity swaps in partic-

ular, are bespoke transactions between (re)insurers and funds or companies, that agree

to exchange fixed cash flows and cash flows linked to the survivorship of a particular

population (see Blake et al., 2006a for instance). The buyer of the protection provided

by a longevity swap transfers the longevity risk linked to a given reference population to

the seller, who in turn becomes exposed to such risk. In our case, the insurer can expand

internationally by receiving a fixed periodical fee and paying the realized survivorship of

the foreign cohorts. Thus, the risk margin reduction benefits of a foreign expansion can

be replicated by selling protection through a swap. Even in this case, however, the costs

of structuring the agreement and coping with informational asymmetries (Biffis et al.,

2016), can substantially reduce the diversification gains. We interpret our results as a

possible explanation of the higher degree of internationalization of insurance companies

with respect to banks after the adoption of Solvency II. Because of the synthetic possi-

bility to diversify through longevity transfer agreements and longevity swaps, our results

may also explain the high number of such contracts recently signed in the marketplace

and the attention dedicated to the growth of the market capacity (Blake et al., 2018).

Appendix 3.A Gaussian Mapping Covariance

A simple application of Itô’s Lemma allows us to show that the solution to the SDE

(3.47) is given by:

λVi (t) = λVi (0)ebit + ai
bi

(
1− ebit

)
+ σVi

∫ t

0
ebi(t−s) dWi(s). (3.60)

Therefore, we have that:

E0
[
λVi (t)

]
= λVi (0)ebit + ai

bi

(
1− ebit

)
(3.61)

V ar0
[
λVi (t)

]
= (σVi )2

2bi

√
e2bit − 1. (3.62)
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Since λVi (t)−E0
[
λVi (t)

]
= σVi

∫ t
0 e

bi(t−s) dWi(s), the covariance between λVi (t) and λVj (t)

is:

Cov0(λVi (t), λVj (t)) = E0

[
σVi σ

V
j

( ∫ t

0
ebi(t−s) dWi(s)

)( ∫ t

0
ebj(t−s) dWj(s)

)]

= E0

[
σVi σ

V
j ρij

∫ t

0
e(bi+bj)(t−s) ds

]

= σVi σ
V
j ρij

∫ t

0
e(bi+bj)(t−s) ds

=
σVi σ

V
j ρij

bi + bj

(
e(bi+bj)t − 1

)
. (3.63)

Finally, we have:

Corr0(λVi (t), λVj (t)) =
Cov0(λVi (t), λVj (t))√

V ar0
[
λVi (t)

]
V ar0

[
λVj (t)

]
= 2ρij
bi + bj

· e(bi+bj)t − 1√
(e2bit−1)(e2bjt−1)

bibj

(3.64)

Thanks to the Gaussian Mapping technique we can also compute the conditional cor-

relation between two generations belonging to two different populations. Considering

0 ≤ u ≤ t, the conditional correlation between λdxi(t) and λfxj (t) is given by:

Corru
[
λdxi(t), λ

f
xj (t)

]
= δj

Covu(λdxi(t), λ
d
xj (t))√

V aru(λdxi(t)) · V aru(λfxj (t))
, (3.65)

where Covu(λdxi(t), λ
d
xj (t)) is computed using the Gaussian mapping technique, and

V aru(λfxj (t)) = δ2
jV aru(λdxj (t)) + (1− δj)2V aru(λ′(t;xj)). (3.66)
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Table
18:
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Table 19: Domestic portfolio composition.

65 66 67 68 69 70 71 72 73 74 75

% in the national population 9.68% 9.79% 9.98% 10.34%11.00%10.10%10.10%8.43% 8.10% 7.36% 6.56%

Π0 97 98 100 103 110 101 86 84 81 74 66

Table 20: Foreign portfolio composition.

65 66 67 68 69 70 71 72 73 74 75

% in the national population 10.31%10.73%10.48%10.39%8.01% 8.18% 8.26% 8.09% 8.09% 8.86% 8.60%

ΠF 103 107 105 104 80 82 83 81 81 89 86

Table 21: Effects of geographical diversification (r = 2%)

Portfolio AV RM Π %RM σλ(Π) DI

Π0 1.4104 ·104 1.1838 ·103 1.5288 ·104 8.39% 0.00124 -
ΠF 1.4768 · 104 1.0912 · 103 1.5586 · 104 7.39% 0.00107 -
Π1 2.8208 · 104 2.3676 · 103 3.0576 · 104 8.39% 0.00124 0
Π2 2.8872 · 104 2.2749 · 103 3.1147 · 104 7.87% 0.00115 0.0746
Π3 4.3631 · 104 3.3646 · 103 4.7005 · 104 7.71% 0.00112 0.0992
Π1
opt 3.0187 · 104 1.9950 · 103 3.2182 · 104 6.61% 0.00096 0

Π2
opt 3.0790 · 104 1.8998 · 103 3.2690 · 104 6.17% 0.00091 0.0121

Table 22: Effects of geographical diversification (r = 0%)

Portfolio AV RM Π %RM σλ(Π) DI

Π0 1.7656 ·104 1.9408 ·103 1.9596 ·104 10.99% 0.00124 -
ΠF 1.8614 ·104 1.8109 ·103 2.0425 ·104 9.72% 0.00107 -
Π1 3.5311 ·104 3.8815 ·103 3.9193 ·104 10.99% 0.00124 0
Π2 3.6270 ·104 3.7701 ·103 4.0040 ·104 10.39% 0.00115 0.0746
Π3 5.4885 ·104 5.5786 ·103 6.0464 ·104 10.16% 0.00112 0.0992
Π1
opt 3.8182 ·104 3.3155 ·103 4.1497 ·104 8.68% 0.00096 0

Π2
opt 3.9079 ·104 3.1565 ·103 4.2235 ·104 8.07% 0.00091 0.0121
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