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Introduction

In Mathematics, the theory of Optimal Transport has a long and interesting
history. It dates back to the work of G. Monge “Sur la théorie des déblais
et des remblais” (1781), where he investigated the cheapest way to transfer
mass from a source place to a target. Crucial contributions were then given
in the 20th century by A. N. Tolstoi, N. Kantorovich and may others. In
the last years, this branch is getting increasing popularity, due to the high
number of applications in different areas of mathematical analysis, physics,
chemistry. Also, a great boost to the subject was provided by the interest of
Fields’ medallists C. Villani and A. Figalli. For general monographs we refer
to the unsurpassed works of C. Villani [41, 42].

We will concentrate our attention to the problem of Optimal Transport
in the Euclidean space Rd. A great progress has also been made in more
general settings, but we prefer to treat problems which are open already in
the Euclidean setting and to keep an eye on applications (see for instance
chapter 5).

We start by recalling a modern formulation of the classical Monge’s Op-
timal Transport problem. Given a cost function c : Rd × Rd → R, and given
µ, ν ∈ P(Rd) probability measures, we state the minimization problem

(M2) = inf

{∫
Rd
c(x, T (x))dµ(x) | T#µ = ν

}
. (0.1)

Here T#µ denotes the push-forward of a measure, given by T#µ(E) =
µ(T−1(E)) for every E ⊆ Rd µ-measurable (when using this symbol we assume
that the map T is µ-measurable).

This formulation respects very well the application to a real-world trans-
port of mass from a source distribution to a target, as the transport map T
prescribes deterministically the destination of every source point. However,
when looking at this problem from a mathematical viewpoint, it was soon
realized that the space of admissible maps T does not enjoy a good structure
in order to treat a variational problem. For instance, given a minimizing se-
quence of maps (Tn)n∈N, in general there is no way to obtain a suitable limit
T = limn→∞ Tn, and the infimum in (0.1) is in general not a minimum.
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In view of this, it is often convenient to consider the Kantorovich relaxed
formulation of the same problem, described by

(K2) = min

{∫
Rd×Rd

c(x, y)dγ(x, y) | γ ∈ Π(µ, ν)

}
; (0.2)

here Π(µ, ν) is the set of admissible transport plans, given by

Π(µ, ν) =
{
γ ∈ P(Rd × Rd) | π1

#γ = µ, π2
#γ = ν

}
,

where π1, π2 denote the projection πj : Rd ×Rd → Rd on the first and second
component respectively. In other words, a transport plan γ should satisfy∫

φ(x)dγ(x, y) =

∫
φ(x)dµ(x) and

∫
φ(y)dγ(x, y) =

∫
φ(y)dν(y)

for every φ ∈ Cb(Rd).
This problem is much more stable from a variational viewpoint. The set

of transport plans Π(µ, ν) is convex and tight. Moreover, the problem is
stated as a minimum of a linear functional over a convex set, and this is a
well-understood class of problems in convex analysis.

Observe that (0.2) is indeed a relaxation of the problem (0.1), since every
map T corresponds to a plan γ = (id×T )#µ. As a consequence, (K2) ≤ (M2).
The converse is of course not true: not every transport plan is induced by a
map.

The question whether the equality (K2) = (M2) holds is much more in-
volved. As shown by A. Pratelli in [39], the equality holds for a continuous
cost function.

This does not say, however, that there exists always an optimal transport
map T which realizes the infimum in (0.1). A general positive result for the
existence of an optimal transport map is given by the following

Theorem 0.0.1. Suppose that c(x, y) = h(x− y) with h strictly convex, and
µ is absolutely continuous. Then there exists a unique optimal transport map
T such that

(M2) = (K2) =

∫
Rd
c(x, T (x)) dµ(x).

In the case h = |x|2, Theorem 0.0.1 is often referred to as “Brenier’s
theorem”, since it was first proven by Y. Brenier in [8].

Multi-marginal optimal transport The Kantorovich formulation of the
optimal transport problem admits a natural generalization to the so-called
multi-marginal optimal transport problem: given a cost function c : (Rd)N →
R, and given ρ1, . . . , ρN ∈ P(Rd), find

(KN ) = min

{∫
c(x1, . . . , xN )dγ(x1, . . . , xN ) | γ ∈ Π(ρ1, . . . , ρN )

}
; (0.3)
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here Π(ρ1, . . . , ρN ) denotes the set of admissible transport plans given by

Π(ρ1, . . . , ρN ) =
{
γ ∈ P((Rd)N ) | πj#γ = ρj ∀j = 1, . . . , N

}
,

where πj : (Rd)N → Rd denotes the projection on the j-th component.
This minimization problem shares the same good structure as the classi-

cal Kantorovich formulation with two marginals (linearity of the functional,
convexity and tightness of the set).

A first interesting question, which arises also in the classical 2-marginal
case, is the following. Suppose that the cost function c is not bounded: for
which marginals ρ1, . . . , ρN is the Kantorovich minimum (0.3) finite? This
is not a merely theoretical problem: for instance, in many applications, the
Riesz cost

cs(x1, . . . , xN ) =
∑

1≤i<j≤N

1

|xi − xj |s

(for some exponent s > 0) is of interest (see for instance [20, 38]), and in
general the theory for repulsive cost functions is well studied ([13, 23, 25, 16]).
We will study this question in Chapter 1, providing a sharp sufficient condition
for the finiteness of (0.3) in the case when all the marginals are equal.

The Monge formulation can be extended as well to the multi-marginal
case, by letting

(MN ) = inf

{∫
(Rd)N

c(x, T2(x), . . . , TN (x)) dρ1(x) | (Tj)#ρ1 = ρj

}
, (0.4)

where instead of searching for a single optimal map T as in (0.1), we search
for N − 1 maps, each transporting the first marginal ρ1 to one of the others.

Recalling the result of Pratelli [39] for two marginals, one could easily
get that (MN ) = (KN ) in the case of a continuous cost function and a non-
atomic first marginal ρ1. Indeed, as already pointed out in [15, Remark 1.3],
the problem (MN ) can be seen as a 2-marginal optimal transport problem
between Rd and (Rd)N−1.

This suggests that, even when the marginals ρ1, . . . , ρN enjoy some regu-
larity assumptions (e.g. they are absolutely continuous w.r.t. the Lebesgue
measure), the support of optimal transport plans tends to concentrate on
sets of zero Lebesgue measure. In the extreme case of a Monge solution,
the support is concentrated on the graph of a function T : Rd → (Rd)N−1.
However, for many application to physics, it is important to exhibit a dif-
fused transport plan γ which is “almost” optimal for (0.3), in the sense that∫
c(X) dγ(X) ≤ (KN ) + ε. We address this problem in Chapter 4, and we will

show how this has been applied to quantum physical systems in Chapter 5.
In many applications, included the latter to quantum systems, the multi-

marginal optimal transport problem is posed with N equal marginals ρ1 =
· · · = ρN = ρ ∈ P(Rd) and a symmetric cost function c, i.e., c(x1, . . . , xN ) =
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c(xσ(1), . . . , xσ(N)) for every permutation σ ∈ SN . In this setting, an alter-
native definition of the multi-marginal Monge problem can be given by the
following

(Mcyc) = inf

{∫
(Rd)N

c(x, T (x), . . . , TN−1(x)) dρ(x) | T#ρ = ρ, TN = id

}
,

(0.5)
where T j denotes the composition of T with itself j times. In [15], M. Colombo
and S. Di Marino proved that (Mcyc) = (KN ) in the case of a continuous cost
function c : (Rd)N → [0,+∞].

The existence of an optimal transport map T that realizes the infimum in
(Mcyc) is much more difficult. Some positive results (see [14]) are known in
dimension d = 1 for the Coulomb cost function

c(x1, . . . , xN ) =
∑

1≤i<j≤N

1

|xi − xj |
.

For particular classes of cost functions generated by vector fields, the ex-
istence of optimal maps was proven by N. Ghoussoub et al. in [30, 29]. In
general, the problem of finding optimal transport maps has been solved only
under special assumptions on the local behaviour of the cost (see [28, 35, 31]).

In chapter 2, inspired by [17], we will give an original contribute to the
“Monge question” in multi-marginal optimal transport, in the case of the
Coulomb cost function in dimension d = 2, for a spherically symmetric marginal
ρ. This is part of a work in collaboration with L. De PAscale and A. Kausamo.
As we already pointed out, the choice of the Coulomb cost is due to the large
number of applications of multi-marginal Optimal Transport to physical sys-
tems of charged particles (see [10, 21, 33]).

Remaining in this applied setting with equal marginals, one is often inter-
ested in the limit N → +∞ of a large number of particles. Some recent works
[36, 21] present some progress in this direction. However, the former treats
only the case of a positive-definite cost function, while the latter treats the
pointwise limit, obtaining a very sharp result. In chapter 3 we will study the
Γ-convergence of the multi-marginal OT functional in the case of a general
pairwise cost function. This will extend the result of B. Pass et al. [36].



Chapter 1

Marginals with finite
repulsive cost

In this chapter we consider a multi-marginal optimal transport problem with
a pairwise repulsive cost function c : (Rd)N → R, i.e.,

c(X) =
∑

1≤i<j≤N

1

ω(|xi − xj |)
, (1.1)

where X = (x1, . . . , xN ) ∈ (Rd)N and ω : R+ → R+ is continuous, strictly
increasing, differentiable on (0,+∞), with ω(0) = 0. The problem we want
to address is the following: for which probabilities ρ ∈ P(Rd) is the transport
cost

C(ρ) = inf

{∫
c(X) dγ(X) | γ ∈ Π(ρ, . . . , ρ)

}
finite?

Due to the fact that the cost function diverges on the diagonal

D =
{

(x1, . . . , xN ) ∈ (Rd)N | xi = xj for some i 6= j
}
, (1.2)

the question is not trivial. For instance, if ρ = δx0 , then the set of transport
plans Π(ρ, . . . , ρ) consists only of the element γ = ρ ⊗ · · · ⊗ ρ, and C(ρ) =∫
c(X) dγ(X) = +∞.

It turns out that the right quantity to consider is given by the following

Definition 1. If ρ ∈ P(Rd), the concentration of ρ is κ(ρ) = sup
x∈Rd

ρ({x}).

Let us state the main result of this chapter.

Theorem 1.0.1. Let c be a repulsive cost function, and ρ ∈ P(Rd) with

κ(ρ) <
1

N
. (1.3)

Then C(ρ) is finite.
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In an independent work by F. Stra, S. Di Marino and M. Colombo [16],
appeared after the publication of [2], the same result and some finer study of
the problem is obtained via a different technique, closer in the approach to
some arguments in [9].

Structure of the chapter The material for this chapter comes mainly
from [2]. In Section 1.1 we give some notation, and regroup some definitions,
constructions and results to be used later. In particular, we state and prove
a simple but useful result about partitioning Rd into measurable sets with
prescribed mass.

We then show in Section 1.2 that the condition (1.3) is sharp, i.e., given
any repulsive cost function, there exists ρ ∈ P(Rd) with κ(ρ) = 1/N , and
C(ρ) = ∞. The construction of this counterexample is explicit, but it is
important to note that the marginal ρ depends on the given cost function.

Finally we devote Sections 1.3 to 1.5 to the proof of Theorem 1.0.1. The
construction is universal, in the following sense: given ρ ∈ P(Rd) such that
(1.3) holds, we exhibit a symmetric transport plan γ which has support outside
the enlarged diagonal

Dα =
{

(x1, . . . , xN ) ∈ (Rd)N | ∃i 6= j with |xi − xj | < α
}

for some α > 0. This implies that
∫
c(X) dγ(X) is finite for any repulsive cost

function.

1.1 Notation and preliminary results

We will denote by B(xj , r) a ball with center xj ∈ Rd and radius r > 0. Where
it is not specified, the integrals are extended to all the space; if τ is a positive
measure over Rd, we denote by |τ | its total mass, i.e.,

|τ | =
∫
Rd

dτ.

If µ ∈M((Rd)N ) is any measure, we define

µsym =
1

N !

∑
s∈SN

φs#µ,

where SN is the premutation group of {1, . . . , N}, and φs : (Rd)N → (Rd)N
is the function φs(x1, . . . , xN ) = (xs(1), . . . , xs(N)). Note that µsym is a sym-
metric measure; moreover, if µ is a probability measure, then also µsym is a
probability measure.

Lemma 1.1.1. Let µ ∈M((Rd)N ). Then µsym has marginals equal to

1

N

N∑
j=1

πj#µ
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Proof. Since µsym is symmetric, me may calculate its first marginal:

π1
#µsym = π1

#

 1

N !

∑
s∈SN

φs#µ

 =
1

N !

∑
s∈SN

π1
#(φs#µ)

=
1

N !

∑
s∈SN

π
s(1)
# µ =

1

N

N∑
j=1

πj#µ,

where the last equality is due to the fact that for every j = 1, . . . , N there are
exactly (N − 1)! permutations in SN such that s(1) = j.

For a symmetric probability γ ∈ P((Rd)N ) we will use the shortened no-
tation π(γ) to denote its marginals πj#γ, which are all equal.

If σ1, . . . , σN ∈M(Rd), we define σ1 ⊗ · · · ⊗ σN ∈M((Rd)N ) as the usual
product measure. In similar fashion, if Q ∈ M((Rd)N−1), σ ∈ M(Rd) and
1 ≤ j ≤ N , we define the measure Q⊗j σ ∈M((Rd)N ) as∫

(Rd)N
f d(Q⊗j σ) =

∫
(Rd)N

f(x1, . . . , xN ) dσ(xj) dQ(x1, . . . , x̂j , . . . , xN )

(1.4)
for every f ∈ Cb((Rd)N ).

Partitions of non-atomic measures

Let σ ∈ M(Rd) be a finite non-atomic measure, and b1, . . . , bk real positive
numbers such that b1 + · · ·+ bk = |σ|. We may want to write

Rd =
k⋃
j=1

Ej ,

where the Ej ’s are disjoint measurable sets with σ(Ej) = bj . This is trivial
if d = 1, since the cumulative distribution function φσ(t) = σ((−∞, t)) is
continuous, and one may find the Ej ’s as intervals. However, in higher di-
mension, the measure σ might concentrate over (d− 1)-dimensional surfaces,
which makes the problem slightly more difficult. Therefore we present the
following

Proposition 1.1.2. Let σ ∈ M(Rd) be a finite non-atomic measure. Then
there exists a direction y ∈ Rd \ {0} such that σ(H) = 0 for all the affine
hyperplanes H such that H ⊥ y.

In order to prove Proposition 1.1.2, it is useful to present the following

Lemma 1.1.3. Let (X,µ) be a measure space, with µ(X) <∞, and {Ei}i∈I
a collection of measurable sets such that
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1. µ(Ei) > 0 for every i ∈ I;

2. µ(Ei ∩ Ej) = 0 for every i 6= j.

Then I is at most countable.

Proof. Let i1, . . . , in be a finite set of indices. Using the monotonicity of µ
and the fact that µ(Ei ∩ Ej) = 0 if i 6= j,

µ(X) ≥ µ

(
n⋃
k=1

Eik

)
=

n∑
k=1

µ(Eik).

Hence we have that

sup

∑
j∈J

µ(Ej) | J ⊂ I, J finite

 ≤ µ(X) <∞.

Since all the µ(Ei) are strictly positive numbers, this is possible only if I
is countable (at most).

Now we present the proof of Proposition 1.1.2.

Proof. For k = 0, 1, . . . , d− 1 we recall the definitions of the Grassmannian

Gr(k,Rd) =
{
v linear subspace of Rd | dim v = k

}
and the affine Grassmannian

Graff(k,Rd) =
{
w affine subspace of Rd | dimw = k

}
.

Given w ∈ Graff(k,Rd), we denote by [w] the unique element of Gr(k,Rd)
parallel to w.

If S ⊆ Graff(k,Rd), we say that S is full if for every v ∈ Gr(k,Rd) there
exists w ∈ S such that [w] = v. For every k = 1, 2, . . . , d − 1 let Sk ⊆
Graff(k,Rd) be the set

Sk =
{
w ∈ Graff(k,Rd) | σ(w) > 0

}
.

The goal is to prove that Sd−1 is not full, while by hypothesis we know
that S0 = ∅, since σ is non-atomic.

The following key Lemma leads to the proof in a finite number of steps:

Lemma 1.1.4. Let 1 ≤ k ≤ d− 1. If Sk−1 is not full, then Sk is not full.
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Proof. Let v ∈ Gr(k − 1,Rd), such that for every v′ ∈ Graff(k − 1,Rd) with
[v′] = v it holds σ(v′) = 0. Consider the collection

Wv =
{
w ∈ Graff(k,Rd) | v ⊆ [w]

}
.

If w,w′ ∈Wv are distinct, then w∩w′ ⊆ v′ for some v′ ∈ Graff(k−1,Rd) with
[v′] = v, thus σ(w ∩w′) = 0. Since the measure σ is finite, because of Lemma
1.1.3 at most countably many elements w ∈ Wv may have positive measure,
which implies that Sk is not full.

Corollary 1.1.5. Given b1, . . . , bk real positive numbers with b1+· · ·+bk = |σ|,
there exist measurable sets E1, . . . , Ek ⊆ Rd such that

(i) The Ej’s form a partition of Rd, i.e.,

Rd =
k⋃
j=1

Ej , Ei ∩ Ej = ∅ if i 6= j;

(ii) σ(Ej) = bj for every j = 1, . . . , k.

Proof. Let y ∈ Rd \ {0} given by Proposition 1.1.2, and observe that the
cumulative distribution function

F (t) = σ
({
x ∈ Rd | x · y < t

})
is continuous. Hence we may find E1, . . . , Ek each of the form

Ej =
{
x ∈ Rd | tj < x · y ≤ tj+1

}
for suitable −∞ = t1 < t2 < · · · < tk < tk+1 = +∞, such that σ(Ej) = bj .

Corollary 1.1.6. Given b1, . . . , bk non-negative numbers with b1 + · · ·+ bk <
|σ|, there exists measurable sets E0, E1, . . . , Ek ⊆ Rd such that

(i) the Ej’s form a partition of Rd;

(ii) σ(Ej) = bj for every j = 1, . . . , k;

(iii) the distance between Ei and Ej is strictly positive if i, j ≥ 1, i 6= j.

Proof. If k = 1 the results follows trivially by Corollary 1.1.5 applied to
b1, |σ| − b1. If k ≥ 2, define

ε =
|σ| − b1 − · · · − bk

k − 1
> 0.
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As before, letting y ∈ Rd \ {0} given by Proposition 1.1.2 and considering
the corresponding cumulative distribution function, we may find F1, . . . , F2k−1

each of the form
Fj =

{
x ∈ Rd | tj < x · y ≤ tj+1

}
for suitable −∞ = t1 < t2 < · · · < t2k−1 < t2k = +∞, such that

σ(F2j−1) = bj ∀j = 1, . . . , k

σ(F2j) = ε ∀j = 1, . . . , k − 1.

Finally we define

Ej = F2j−1 ∀j = 1, . . . , k

E0 =

k−1⋃
j=1

F2j .

The properties (i), (ii) are immediate to check, while the distance between
Ei and Ej , for i, j ≥ 1, i 6= j, is uniformly bounded from below by

min {t2j+1 − t2j | 1 ≤ j ≤ k − 1} > 0.

1.2 The condition (1.3) is sharp

In this section we prove that the condition (1.3) is sharp, in the sense that
given any repulsive cost function there exists ρ ∈ P(Rd) with µ(ρ) = 1/N
such that C(ρ) =∞.

Fix a repulsive cost as in (1.1), and set

k =

∫
B(0,1)

ω′(|y|)
|y|d−1

dy.

Note that k is a positive finite constant, depending only on ω and the
dimension d. In fact, integrating in spherical coordinates,

k =

∫ 1

0

ω′(r)

rd−1
αdr

d−1 dr = αdω(1),

where αd is the d-dimensional volume of the unit ball B(0, 1) ⊆ Rd.
Now define a probability measure ρ ∈ P(Rd) as∫
Rd
f dρ :=

1

N
f(0) +

N − 1

N

∫
B(0,1)

f(x)
ω′(|x|)
k |x|d−1

dx ∀f ∈ Cb(Rd). (1.5)

This measure has an atom of mass 1/N in the origin, and is absolutely
continuous on Rd \ {0}. Hence the concentration of ρ is equal to 1/N , even if
for every ball B around the origin one has ρ(B) > 1/N .
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We want to prove that any symmetric transport plan with marginals ρ
has infinite cost. Let us consider, by contradiction, a symmetric plan γ, with
π(γ) = ρ, such that ∫ ∑

1≤i<j≤N

1

ω(|xi − xj |)
dγ(X) <∞

Then one would have the following geometric properties.

Lemma 1.2.1. (i) γ(D) = 0, where D is the diagonal defined in (1.2);

(ii) γ is concentrated over the N coordinate hyperplanes {xj = 0}, j = 1, . . . , N ,
i.e.,

supp(γ) ⊆ E :=
N⋃
j=1

{xj = 0} .

Proof. (i) Since ω(0) = 0, recalling Definition 1.1, the cost function is iden-
tically equal to +∞ on the diagonal D. Therefore, since by assumption the
cost of γ is finite, it must be

γ(D) = 0.

(ii) Define

p1 = γ({x1 = 0})
p2 = γ({x1 = 0} ∩ {x2 = 0})

...

pN = γ((0, . . . , 0)).

Note that p1 = γ({x1 = 0}) = π(γ)({0}) = ρ({0}) = 1/N . We claim that
p2 = · · · = pN = 0. Indeed, {x1 = 0} ∩ {x2 = 0} ⊂ D, and hence p2 = 0; by
monotonicity of the measure γ we have p2 ≥ p3 ≥ · · · ≥ pN .

Now by inclusion-exclusion we have

P (E) =

N∑
j=1

(−1)j+1

(
N

j

)
pj = Np1 = 1,

and hence γ is concentrated over E.

In view of Lemma 1.2.1, letting Hj = {xj = 0} for j = 1, . . . , N ,

γ =
N∑
j=1

γ|Hj .

For every j = 1, . . . , N there exists a unique measure Qj over R(N−1)d such
that, recalling equation (1.4), γ|Hj = Qj ⊗j δ0, with Qj(R(N−1)d) = 1

N . Since
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γ is symmetric, considering a permutation s ∈ SN with s(j) = j, it follows
that Qj is symmetric; then, considering any permutation in SN we see that
there exists a symmetric probability Q over R(N−1)d such that Qj = 1

NQ for
every j = 1, . . . , N , i.e.,

γ =
1

N

N∑
j=1

Q⊗j δ0.

Projecting γ to its one-particle marginal and using the definition of ρ in
(1.5), we get that π(Q) is absolutely continuous w.r.t. the Lebesgue measure,
with

dπ(Q)

dLd
=
χB(0,1)(x)ω′(x)

k |x|d−1
.

Here we get the contradiction, because∫
c(X)dγ(X) ≥ 1

N

∫
1

ω(|x1 − x2|)
δ0(x1) dx1 dQ(x2, . . . , xN )

=
1

N

∫
1

ω(|x2|)
dQ(x2, . . . , xN ) =

1

N

∫
Rd

1

ω(|x|)
dπ(Q)(x)

=
1

N

∫
B(0,1)

ω′(|x|)
ω(|x|)

1

k |x|d−1
dx =

1

N

αd
k

∫ 1

0

ω′(r)

ω(r)
dr = +∞.

1.3 Non-atomic marginals

This short section deals with the case where ρ is non atomic, i.e., κ(ρ) = 0. In
this case the transport plan is given by an optimal transport map in Monge’s
fashion, which we proceed to construct.

Using Corollary 1.1.5, let E1, . . . , E2N be a partition of Rd such that

ρ(Ej) =
1

2N
∀j = 1, . . . , 2N.

Next we take a measurable function φ : Rd → Rd, preserving the measure
ρ and defined locally such that

φ(Ej) = Ej+2 ∀j = 1, . . . , N − 2

φ(E2N−1) = E1

φ(E2N ) = E2.

The behaviour of φ on the hyperplanes which separate the Ej ’s is arbitrary,
since they form a ρ-null set. Note that |x− φ(x)| is uniformy bounded from
below by some constant β > 0, as is clear by the construction of the Ej ’s (see
the proof of Corollary 1.1.5). A transport plan γ of finite cost is now defined
for every f ∈ Cb((Rd)N ) by∫

(Rd)N
f(X) dγ(X) =

∫
(Rd)N

f(x, φ(x), . . . , φN−1(x)) dρ(x),
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since ∫
(Rd)N

c(X) dγ(X) =

(
N

2

)∫
Rd

1

ω(|x− φ(x)|)
dρ(x) ≤

(
N

2

)
1

ω(γ)
.

1.4 Marginals with a finite number of atoms

This section constitutes the core of the proof, as we deal with measures of
general form with an arbitrary (but finite) number of atoms. Throughout this
and the next Section we assume that the marginal ρ fulfills the condition (1.3).

The number of atoms is less than or equal to N

Note that, if the number of atoms is at most N , then ρ must have a non-atomic
part σ, due to the condition (1.3). From here on we consider

ρ = σ +

k∑
i=1

biδxi ,

where b1 ≥ b2 ≥ · · · ≥ bk > 0.

We begin with the following

Definition 2. A partition of σ of level k ≤ N subordinate to (x1, . . . , xk;
b1, . . . , bk) is

σ = τ +
k∑
i=1

N∑
h=i+1

σih,

where:

(i) τ, σih are non-atomic measures;

(ii) for every i and every h 6= k, the distance between suppσih and suppσik
is strictly positive;

(iii) for every i, h, if j ≤ i then xj has a strictly positive distance from suppσih;

(iv) for every i, h,
∣∣σih∣∣ = bi, and |τ | > 0.

Note that such a partition may only exists if

|σ| >
k∑
i=1

(N − i)bi. (1.6)

On the other hand, the following Lemma proves that the condition (1.6)
is also sufficient to get a partition of σ.
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Lemma 1.4.1. Let (b1, . . . , bk) with k ≤ N , and

|σ| >
k∑
i=1

(N − i)bi.

Then there exists a partition of σ subordinate to (x1, . . . , xk; b1, . . . , bk).

Proof. Fix (x1, . . . , xk) and for every ε > 0 define

Aε =
k⋃
j=1

B(xj , ε).

and σε = σχAε . Then take ε small enough such that

|σ − σε| >
k∑
i=1

(N − i)bi, (1.7)

which is possibile because µ(σ) = 0 (σ has concentration zero), and hence
|σε| → 0 as ε→ 0. Due to Corollary 1.1.6, the set Rd \Aε may be partitioned
as

Rd \Aε =

(
k⋃
i=1

N⋃
h=i+1

Eih

)
∪ E,

with σ(Eih) = bi, and dist(Eih, E
i
k) is uniformly bounded from below.

Finally define σih = σχEih
, τ = σε + σχE .

Proposition 1.4.2. Suppose that k ≤ N and (b1, . . . , bk) are such that

|σ| > Nb1 −
k∑
j=1

bj . (1.8)

Then there exists a transport plan of finite cost with marginals

σ +

k∑
j=1

bjδxj .

Proof. In order to simplify the notation, set bk+1 = 0. First of all we shall fix
a partition of σ subordinate to (x1, . . . , xk; b1 − b2, . . . , bk−1 − bk, bk). To do
this we apply Lemma 1.6, since

k−1∑
i=1

(N − i)(bi − bi+1) + (N − k)bk = (N − 1)b1 −
k∑
i=2

bi < |σ| .
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Next we define the measures λi = δx1 ⊗ · · · ⊗ δxi ⊗ σii+1 ⊗ · · · ⊗ σiN ∈
M((Rd)N ). Let us calculate the marginals of λi: since

∣∣σih∣∣ = bi − bi+1 for all
h = i+ 1, . . . , N , we get

πj#λi =

{
(bi − bi+1)N−iδxj if 0 ≤ j ≤ i
(bi − bi+1)N−i−1σij if i+ 1 ≤ j ≤ N .

Let us define, for i = 1, . . . , k, the measure

Pi =
N

(bi − bi+1)N−i−1
(λi)sym,

where Pi = 0 if bi = bi+1. By Lemma 1.1.1, the marginals of Pi are equal to

π(Pi) =
1

(bi − bi+1)N−i−1

N∑
j=0

πj#λi =
i∑

j=1

(bi − bi+1)δxj +
N∑

h=i+1

σih,

so that
k∑
i=1

π(Pi) =
k∑
j=1

bjδxj +
k∑
i=1

N∑
h=i+1

σih

It suffices now to take any symmetric transport plan Pτ of finite cost with
marginals τ , given by the result of Section 1.3, and finally set

γ = Pτ +
k∑
i=1

Pi.

As a corollary we obtain

Theorem 1.4.3. If ρ has k ≤ N atoms, then there exists a transport plan of
finite cost.

Proof. Let

ρ = σ +
k∑
j=1

bjδxj .

Note that, since b1 < 1/N ,

|σ| = 1−
k∑
j=1

bj > Nb1 −
k∑
j=1

bj ,

hence we may apply Proposition 1.4.2 to conclude.
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The number of atoms is greater than N

Here we deal with the much more difficult situation in which ρ has N + 1 or
more atoms, i.e.,

ρ = σ +

k∑
j=1

bjδxj

with k ≥ N + 1 and as before b1 ≥ b2 ≥ · · · ≥ bk > 0. Note that in this case
it might happen that σ = 0.

The main point is to use a double induction on the dimension N and the
number of atoms k, as will be clear in Proposition 1.4.5. The following lemma
is a nice numerical trick needed for the inductive step in Proposition 1.4.5.

Lemma 1.4.4. Let (b1, . . . , bk) with k ≥ N + 2 and

(N − 1)b1 ≤
k∑
j=2

bj . (1.9)

Then there exist t2, . . . , tk such that

(i) t2 + · · ·+ tk = (N − 1)b1;

(ii) for every j = 2, . . . , k, 0 ≤ tj ≤ bj, and moreover

t2 ≥ · · · ≥ tk.

b2 − t2 ≥ b3 − t3 ≥ · · · ≥ bk − tk,

(iii)

(N − 2)t2 ≤
k∑
j=3

tj ;

(iv)

(N − 1)(b2 − t2) ≤
k∑
j=3

(bj − tj).

Proof. For j = 2, . . . , k define

pj =

k∑
h=j

bj ,

and let ̄ be the least j ≥ 2 such that (N − j + 2)bj ≤ pj ; note that j = N + 2
works — hence ̄ ≤ N + 2. Define

tj = bj −
p2 − (N − 1)b1

N
for j = 2, . . . , ̄− 1,

tj = bj −
bj
p̄

p2 − (N − 1)b1
N

(N − ̄+ 2) for j = ̄, . . . , k.

Next we prove that this choice fulfills the conditions (i)-(iv).
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Proof of (i)

k∑
j=2

tj = p2 −
p2 − (N − 1)b1

N
(̄− 2)− p2 − (N − 1)b1

N
(N − ̄+ 2)

= p2

(
1− ̄− 2

N
− N − ̄+ 2

N

)
+ (N − 1)b1

(
̄− 2

N
+
N − ̄+ 2

N

)
= (N − 1)b1.

Proof of (ii) In view of the fact that (N − 1)b1 ≤ p2 and ̄ ≤ N + 2, it is
clear that tj ≤ bj . If j < ̄ we have (N − j + 2)bj > pj , and hence

p2 = b2 + · · ·+ bj−1 + pj < (j − 2)b1 + (N − j + 2)bj .

Thus, since 2 ≤ j ≤ N + 1,

tj =
Nbj − p2 + (N − 1)b1

N
>
Nbj − (N − j + 2)bj − (j − 2)b1 + (N − 1)b1

N

=
(j − 2)bj + (N − j + 1)b1

N
≥ 0.

To show that tj ≥ 0 for j ≥ ̄, we must prove [p2− (N −1)b1](N − ̄+ 2) ≤
Np̄, which is trivial if ̄ = N − 2. Otherwise, it is equivalent to

−(̄− 2)[p2 − (N − 1)b1] +N [b2 + · · ·+ b̄−1 − (N − 1)b1] ≤ 0.

Since 2 ≤ ̄ ≤ N+1, the first term is negative and b2 + · · ·+b̄−1−(N−1)b1 ≤
−(N − ̄+ 1)b1 ≤ 0.

Using the fact that b2 ≥ · · · ≥ bk, it is easy to see that t2 ≥ · · · ≥ · · · t̄−1

and t̄ ≥ · · · ≥ tk — note that for j ≥ ̄ we have tj = αbj , for some 0 ≤ α ≤ 1.
As for the remaining inequality,

t̄−1 ≥ t̄ ⇐⇒ b̄−1 − b̄ ≥
p2 − (N − 1)b1

Np̄
[p̄ − (N − ̄+ 2)b̄],

we already proved
p2 − (N − 1)b1

Np̄
≤ 1

N − ̄+ 2
;

moreover, by definition of ̄, we have (N − ̄ + 3)b̄−1 > p̄−1, or equivalently
(N − ̄+ 2)b̄−1 > p̄. Thus

p2 − (N − 1)b1
Np̄

[p̄ − (N − ̄+ 2)b̄] ≤
p̄

N − ̄+ 2
− b̄ < b̄−1 − b̄,

as wanted.
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It is left to show that b2 − t2 ≥ · · · ≥ bk − tk. It is trivial to check that
b2 − t2 = · · · = b̄−1 − t̄−1, and b̄ − t̄ ≥ · · · ≥ bk − tk using b̄ ≥ · · · ≥ bk as
before. Finally,

b̄−1 − t̄−1 ≥ b̄ − t̄ ⇐⇒
p2 − (N − 1)b1

N
≥ b̄
p̄

p2 − (N − 1)b1
N

(N − ̄+ 2),

which is true since (N − ̄+ 2)b̄ ≤ p̄ and p2 − (N − 1)b1 ≥ 0.

Proof of (iii) The thesis is equivalent to

(N − 1)t2 ≤
k∑
j=2

tj ⇐⇒ (N − 1)t2 ≤ (N − 1)b1,

and this is implied by t2 ≤ b2 ≤ b1.

Proof of (iv) The thesis is equivalent to

N(b2 − t2) ≤ p2 − (N − 1)b1,

which is in fact an equality (see the definition of t2).

We are ready to present the main result of this Section, which provides
a transport plan of finite cost under an additional hypothesis on the tuple
(b1, . . . , bk). The result is peculiar for the fact that it does not involve the
non-atomic part of the measure – it is in fact a general discrete construction to
get a purely atomic symmetric measure having fixed purely atomic marginals.

Proposition 1.4.5. Let k > N and (b1, . . . , bk) with

(N − 1)b1 ≤ b2 + · · ·+ bk. (1.10)

Then for every x1, . . . , xk ∈ Rd distinct, there exists a symmetric transport
plan of finite cost with marginals ρ = b1δx1 + · · ·+ bkδxk .

Proof. For every pair of positive integers (N, k), with k > N , let P(N, k) be
the following proposition:

Let (x1, . . . , xk; b1, . . . , bk) with (N − 1)b1 ≤ b2 + · · · + bk. Then
for every (x1, . . . , xk) there exists a symmetric N -transport plan
of finite cost with marginals b1δx1 + · · ·+ bkδxk .

We will prove P(N, k) by double induction, in the following way: first we
prove P(1, k) for every k and P(N,N + 1) for every N . Then we prove

P(N − 1, k) ∧P(N, k − 1) =⇒ P(N, k).
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Proof of P(1, k) This is trivial: simply take b1δx1+· · ·+bkδxk as a “transport
plan”.

Proof of P(N,N + 1) Let us denote by AN the (N + 1)× (N + 1) matrix

AN =


0 1 · · · 1
1 0 · · · 1
...

. . .

1 · · · 1 0

 ,

whose inverse is

A−1
N =

1

N


−(N − 1) 1 · · · 1

1 −(N − 1) · · · 1
...

. . .

1 · · · 1 −(N − 1)


Define also the following (N + 1)×N matrix, with elements in Rd:

(xij) =


x2 x3 · · · xN+1

x1 x3 · · · xN+1
...

...
. . .

...
x1 x2 · · · xN

 ,

where the i-th row is (x1, . . . , xi−1, xi+1, . . . , xN+1). We want to construct a
transport plan of the form

P = N
N+1∑
i=1

ai(δxi1 ⊗ · · · ⊗ δxiN )sym,

where ai ≥ 0. Note that, by Lemma 1.1.1, the marginals of P are equal to

π(P ) =
N+1∑
j=1

N+1∑
i=1
i 6=j

ai

 δxj .

Thus, the condition on the ai’s to have π(P ) = ρ is

AN

 a1
...

aN+1

 =

 b1
...

bN+1

 ,

i.e.,  a1
...

aN+1

 = A−1
N

 b1
...

bN+1

 .
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Finally, observe that the condition (1.9) implies that a1 ≥ 0, while the fact
that b1 ≥ b2 ≥ · · · ≥ bN+1 leads to a1 ≤ a2 ≤ · · · ≤ aN+1, and hence ai ≥ 0
for every i and we are done.

Inductive step Let (b1, . . . , bk) satisfying (1.9), with k ≥ N + 2 (otherwise
we are in the case P(N,N + 1), already proved). Take t2, . . . , tk given by
Lemma 1.4.4, and apply the inductive hypotheses to find

• a symmetric transport plan Q1 of finite cost in (N − 1) variables, with
marginals

π(Q1) =
k∑
j=2

tjδxj ;

• a symmetric transport planR of finite cost inN variables, with marginals

π(R) =

k∑
j=2

(bj − tj)δxj .

Define

Q =
1

N − 1

N∑
j=1

(Q1 ⊗j δx1).

Since Q1 is symmetric, Q is symmetric. Moreover, using Lemma 1.4.4 (i),

π(Q) =
1

N − 1
δx1

k∑
j=2

tj +
k∑
j=2

tjδxj = b1δx1 +
k∑
j=2

tjδxj .

The transport plan P = Q + R is symmetric, with marginals π(P ) =
b1δx1 + · · ·+ bkδxk .

In order to conclude the proof of this Section, we must now deal not
only with the non-atomic part of ρ, but also with the additional hypothesis
of Proposition 1.4.5. Indeed, the presence of a non-atomic part will fix the
atomic mass exceeding the inequality (1.10), as will be seen soon.

Definition 3. Given N , we say that the tuple (b1, . . . , b`) is fast decreasing if

(N − j)bj >
∑̀
i=j+1

bi ∀j = 1, . . . , `− 1.

Remark 1. Note that if (b1, . . . , b`) is fast decreasing, then necessarily ` < N .
As a consequence, given any sequence (b1, b2, . . . ), even infinite, we may select
its maximal fast decreasing initial tuple (b1, . . . , b`) (which might be empty,
i.e., ` = 0).
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Theorem 1.4.6. If ρ is such that

ρ = σ +
k∑
j=1

bjδxj

with k > N atoms, then there exists a transport plan of finite cost.

Proof. Consider (b1, . . . , bk) and use the Remark 1 to select its maximal fast
decreasing initial tuple (b1, . . . , b`), ` < N . Thanks to Proposition 1.4.5, we
may construct a transport plan P`+1 over R(N−`)d with marginals b`+1δx`+1

+
· · ·+ bkδxk , since

(N − `− 1)b`+1 ≤
k∑

j=`+2

bj

by maximality of (b1, . . . , b`) — and this is condition (1.9) in this case. We
extend step by step P`+1 to an N -transport plan, letting

Pj =
1

N − j

N∑
i=j

(Pj+1 ⊗i δxj ),

for j = `, `− 1, . . . , 1.
Let p` = b`+1 + · · ·+bk, and q` = p`

N−` . We claim that |Pj | = (N − j+1)q`.
In fact, by construction |P`+1| = p`, and inductively

|Pj | =
1

N − j

N∑
i=j−1

|Pj+1| =
N − j + 1

N − j
(N − j)q` = (N − j + 1)q`.

Moreover,

π(Pj) =

k∑
i=j

q`δxi +

k∑
i=`+1

biδxi .

This is true by construction in the case j = `+ 1, and inductively

π(Pj) =
1

N − j
δxj |Pj+1|+

N − j
N − j

π(Pj+1) =
∑̀
i=j

q`δxi +
k∑

i=`+1

biδxi .

Note that, for every i = 1, . . . , `, bi ≥ b` > q`. We shall find, using
Proposition 1.4.2, a transport plan of finite cost with marginals

σ +
∑̀
i=1

(bi − q`)δxi ,

since the condition (1.8) reads

N(b1 − q`)−
∑̀
i=1

(bi − q`) = Nb1 −
∑̀
i=1

bi − (N − `)q` < 1−
k∑
i=1

bi = |σ| .
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1.5 Marginals with countably many atoms

In this Section we finally deal with the case of an infinite number of atoms,
i.e.,

ρ = σ +
∞∑
j=1

bjδxj

with bj > 0, bj+1 ≤ bj for every j ≥ 1.
The main issue is of topological nature: if the atoms xj are too close each

other (for example, if they form a dense subset of Rd) and the growth of bj for
j →∞ is too slow, the cost might diverge. With this in mind, we begin with
an elementary topological result, in order to separate the atoms in N groups,
with controlled minimal distance from each other.

Lemma 1.5.1. There exists a partition Rd = E2 t · · · t EN+1 such that:

(i) for every j = 2, . . . , N + 1, xj ∈ E̊j;

(ii) for every j = 2, . . . , N + 1, ∂Ej does not contain any xi.

Proof. For j = 3, . . . , N + 1 let rj > 0 small enough such that

xi /∈ B(xj , rj) for every i = 1, . . . , N , i 6= j.

Fixed any j = 3, . . . , N + 1, by a cardinality argument there must be a
positive real tj with 0 < tj < rj and ∂B(xj , tj) not containing any xi, i ≥ 1.
We take Ej = B(xj , tj) for j = 3, . . . , N + 1. Note that this choice fullfills the
conditions (i), (ii) for j = 3, . . . , N + 1. Finally, we take

E2 = Rd \

N+1⋃
j=3

Ej


Clearly x2 ∈ E̊2, and moreover the condition (ii) is satisfied, since

∂E2 =

N+1⋃
j=3

∂Ej .

Consider the partition given by Lemma 1.5.1, and define the corresponding
partition of N given by N = A2 ∪ · · · ∪AN+1, where

Aj = {i ∈ N | xi ∈ Ej} .

Next we consider, for every j = 2, . . . , N + 1 a threshold nj ≥ 2 large
enough such that, defining

εj =
∑
i≥nj
i∈Aj

bi,
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then

ε2 + · · ·+ εN+1 < min

{
bN+1,

1

N
− b1

}
. (1.11)

This may be done since the series
∑
bi converges, and hence for every

j = 2, . . . , N + 1 the series ∑
i∈Aj

bi

is convergent.

For every j = 2, . . . , N + 1 define the following transport plan:

Pj = N

 ∑
i∈Aj ,i≥nj

biδxi

⊗ δx2 ⊗ · · · ⊗ δ̂xj ⊗ · · · ⊗ δxN+1


sym

,

and note that, by Lemma 1.1.1,

π(Pj) = εj

N+1∑
h=2
h6=j

δxh +
∑
i≥nj
i∈Aj

biδxi .

Then let

P∞ =
N+1∑
j=2

Pj ,

and observe that

π(P∞) =
N+1∑
j=2

N+1∑
i=2
i 6=j

εi

 δxj +
N+1∑
j=2

∑
i≥nj
i∈Aj

biδxi .

Let now

b̃i =


bi −

N+1∑
h=2
h6=i

εh if 2 ≤ i ≤ N + 1

0 if i ≥ nj and i ∈ Aj for some j = 2, . . . , N + 1
bi otherwise.

We are left to find a transport plan of finite cost with marginals

σ +
∞∑
i=1

b̃iδxi ,
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which has indeed a finite number of atoms. Note that b̃i ≥ 0 for every i,
thanks to condition (1.11). Moreover, since b̃1 = b1 and b̃j ≤ bj , then b̃1 ≥ b̃j
for every j ∈ N, as is used in what follows. If

(N − 1)b̃1 ≤
∞∑
i=2

b̃i

we may conclude using Proposition 1.4.5. Otherwise, we proceed like in the
proof of Theorem 1.4.6, with {b̃j} replacing {bj}. At the final stage, it is left
to check that

N(b̃1 − q̃k+1)−
k∑
i=1

(b̃i − q̃k+1) < 1−
∞∑
i=1

bi = |σ| .

Indeed this is true, since using the condition (1.11) one gets

N(b̃1− q̃k+1)−
k∑
i=1

(b̃i− q̃k+1) = Nb1−
∞∑
i=1

bi+N(ε2 + . . .+ εN+1) < 1−
∞∑
i=1

bi.
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Monge solutions for spherical
densities

We consider a multi-marginal optimal transport problem with Coulomb cost
in the following setting: let d = 2, N = 3 and take ρ̃ ∈ P(R2) radially
distributed. To be formally precise, this means that there exists a positive
measure ρ ∈ P([0,∞)) such that∫

R2

φ(x, y)dρ̃(x, y) =

∫ +∞

0

(
1

2π

∫ 2π

0
φ(r, θ)dθ

)
dρ(r)

for every φ ∈ Cb(R2). If ρ̃ is absolutely continuous, this means that the density
of ρ̃ is a radial function.

As well discussed in [37], in this case the multi-marginal optimal transport
problem reduces to a one-dimensional one. To make this notion precise, we
define the radial cost c : (R+)3 → R ∪ {+∞},

c(r1, r2, r3) = min {c̃(v1, v2, v3) | |vi| = ri for i = 1, 2, 3}
for all (r1, r2, r3) ∈ (R+)3.

For a given triple (r1, r2, r3) there exist many differently-oriented vec-
tors (v1, v2, v3) that realize the above minimum. Once a triple of minimizers
(v1, v2, v3) has been fixed, the optimal configuration can be characterized by
giving the radii and the angles between them. We may always assume that
the vector v1 lies along the positive x-axis, as the Coulomb cost function is
invariant under the action of SO(2) on R2, i.e.,

c(x1, x2, x3) = c(A(x1), A(x2), A(x3)) ∀A ∈ SO(2).

With this choice in mind we denote by θ2 the angle between v1 and v2 and
by θ3 the angle between v1 and v3. For this radial and angular data that
corresponds to the triple of vectors (v1, v2, v3) ∈ (R2)3 we will sometimes use

27



28 Chapter 2

the notation C(r1, r2, r3, θ2, θ3) for the Coulomb cost c̃(v1, v2, v2). This allows
to rewrite the radial cost function c as

c(r1, r2, r3) = min
(θ2,θ3)∈T2

C(r1, r2, r3, θ2, θ3) (2.1)

Now solving the (MK) problem for the Coulomb cost and the marginal
measure ρ̃ is equivalent to solving the one-dimensional (MK) problem in the
class Π3(ρ) for the radial density ρ and the radial cost c, as will be made more
rigorous in the next theorem, first proven by Pass (see [37]).

Theorem 2.0.1. The full (MK) problem for the Coulomb cost

min

{∫
(R2)3

c̃(v1, v2, v3) dγ̃(v1, v2, v3) | γ̃ ∈ Π3(ρ̃)

}
(2.2)

and the corresponding radial problem

min

{∫
(R+)3

c(r1, r2, r3) dγ | γ ∈ Π3(ρ)

}
(2.3)

are equivalent in the following sense: the measure γ ∈ Π3(ρ) is optimal for
the problem (2.3) if and only if the measure

γ̃ := γ(r1, r2, r3)⊗ µr1,r2,r3

is optimal for the problem (2.2). Above, µr1,r2,r3 is the singular probability
measure on the 3-dimensional torus defined by

µr1,r2,r3 =
1

2π

∫ 2π

0
δtδθ2+tδθ3+t dt,

where (θ2, θ3) are minimizing angles θ2 = ∠(v1, v2), θ3 = ∠(v1, v3) for

c(r1, r2, r3) = min {c̃(v1, v2, v3) | |vi| = ri for i = 1, 2, 3} .

In [40] the authors conjectured the solution to the radial problem (2.3).
The conjecture is stated for all d and N but for the sake of clarity we formulate
it here for N = 3.

Conjecture 2.0.2 (Seidl). Let ρ̃ ∈ P(Rd) be radially-symmetric with the
radial density ρ. Let s1 and s2 be such that

ρ([0, s1)) = ρ([s1, s2)) = ρ([s2,∞)) =
1

3
.

We define the map T : [0,∞) to be the unique map that sends, in the way that
preserves the density ρ,
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• the interval [0, s1) to the interval [s1, s2) decreasingly,

• the interval [s1, s2) to the half-line [s2,∞) decreasingly, and

• the half-line [s2,∞) to the interval [0, s1) increasingly.

More formally, this map is defined as

T (x) =


F−1

(
2
3 − F (x)

)
when x ∈ [0, s1)

F−1
(

4
3 − F (x)

)
when x ∈ [s1, s2)

F−1 (1− F (x)) when x ∈ [s2,∞)

where F is the cumulative distribution function of ρ, that is, F (r) = ρ([0, r)).
Then the map T is optimal for the radial problem (2.3).

The map introduced in Conjecture 2.0.2 is also called “The Seidl map”
or “the DDI map” where the letters DDI stand for Decreasing, Decreasing,
Increasing, identifying the monotonicities in which the first interval is mapped
on the second, the second on the third, and finally the third back on the first.
In an analogous manner one can define maps with different monotonicities:
III, IID, DDI and so on. Since the marginals of our MOT problem are all
the same and equal to ρ, the only maps T that make sense satisfy T 3 = Id,
which leads us to the so-called T := {I,D}3 class, first introduced by Colombo
and Stra in [17]:

T := {III,DDI,DID, IDD}.

In [17] the authors were the first to disprove the Seidl conjecture. They
showed that for N = 3 and d = 2 the DDI map fails to be optimal if the
marginal measure is concentrated on a very thin annulus. They also provided
a positive example for the optimality of the DDI map: they constructed a
density, concentrated on a union of three disjointed intervals the last of which
is very far from the first two, so that the support of the transport plan given by
the DDI map is c-cyclically monotone. On the other hand, in [24] De Pascale
proved that also for the Coulomb cost the c-cyclical monotonicity implies
optimality: this implication had been previously proven only for cost functions
that can be bounded from above by a sum of ρ-integrable functions. Using
these results and making the necessary passage between the radial problem
(2.3) and the full problem (2.2) one gets the optimality of the DDI map
for the example of Colombo and Stra. In [17] the authors also provided a
counterexample for the non-optimality of all transport maps in the class T .

We will address the connection between the density ρ and the optimality
or non-optimality of the Seidl map for d = 2 and N = 3. Our main results
are the following:

Theorem 2.0.3. Let ρ ∈ P(R+) such that

r2(r3 − r1)3 − r1(r3 + r2)3 − r3(r1 + r2)3 ≥ 0 (2.4)
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for ρ-a.e. (r1, r2, r3) ∈ [0, s1]× [s1, s2]× [s2, s3]. Then the DDI map T provides
an optimal Monge solution γ = (Id, T, T 2)#(ρ) to the problem (2.3).

This theorem makes more quantitative the positive result of Colombo and
Stra (see Remarks 3 and 4 for a more detailed description). Its proof also gives
a necessary and sufficient condition for the radial Coulomb cost to coincide
with a much simpler cost that corresponds to the situation where all three
particles are aligned. More precisely, we show that

Theorem 2.0.4. Let 0 < r1 < r2 < r3. Then (θ2, θ3) = (π, 0) is optimal in
(2.1) if and only if

r2(r3 − r1)3 − r1(r3 + r2)3 − r3(r1 + r2)3 ≥ 0.

Moreover, if (2.4) holds, (θ2, θ3) = (π, 0) is the unique minimum point.

We continue by using this new condition to construct a wide class of coun-
terexamples for the optimality of the Seidl map. This class contains densities
that are rather physical, such as positive, continuous and differentiable.

Theorem 2.0.5. Let ρ ∈ P(R+) positive everywhere such that s1
s2
> 1+2

√
3

5
and

T (x)(T 2(x)− x)3 − x(T 2(x) + T (x))3 − T 2(x)(x+ T (x))3 ≥ 0 (2.5)

for ρ-a.e. x ∈ (0, s1), where T is the DDI map. Then the DDI maps does not
provide an optimal Monge solution γ = (Id, S, S2)#(ρ) to the problem (2.3).
Moreover, there exist smooth counterexample densities.

Structure of the chapter In section 2.1 we will present the proof of Theo-
rem 2.0.4, which is quite technical and long. This will require a careful study
of the stationary points for the radial cost C(r1, r2, r3, θ2, θ3) for fixed radii
and variable angles (θ2, θ3) ∈ T2.

In section 2.2 we will prove the main Theorems Theorem 2.0.3 and The-
orem 2.0.5, by applying the result of Theorem 2.0.4 and other techniques,
both original and derived from the literature concerning the multi-marginal
Optimal Transport with Coulomb cost in dimension 1.

2.1 Proof of Theorem 2.0.4

Let 0 < r1 < r2 < r3 be fixed. In order to lighten the notation, we will
omit the dependence on the radii when possible. We will also introduce the
following functions for i, j ∈ {1, 2, 3} and θ ∈ T1:

Dij(θ) = r2
i + r2

j − 2rirj cos θ, Fij(θ) =
1

Dij(θ)1/2
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It will be useful to compute the derivatives of Fij , so we do it now:

F ′ij(θ) = −rirj sin θ

D
3/2
ij

F ′′ij(θ) = −rirj cos θ

D
3/2
ij

+
3

2

2r2
i r

2
j sin2 θ

D
5/2
ij

= −
rirj(rirj cos2 θ + (r2

i + r2
j ) cos θ − 3rirj)

Dij(θ)5/2

In order to simplify the notation even more, we denote

Qij(t) = rirjt
2 + (r2

i + r2
j )t− 3rirj , t ∈ [−1, 1],

so that

F ′′ij(θ) = −rirjQij(cos θ)

Dij(θ)5/2
.

Observe that Qij(−1) = −(ri + rj)
2 and Qij(1) = (ri − rj)2, so that

F ′′ij(0) = − rirj

|ri − rj |3
and F ′′ij(π) =

rirj
(ri + rj)3

(2.6)

First we prove that if (α, β) = (π, 0) is optimal in (2.1), then (2.4) holds.
Recall that the function to minimize is

f(α, β) = F12(α) + F13(β) + F23(α− β)

and notice that f ∈ C∞(T2). Thus, if (π, 0) is minimal, it must be a stationary
point with positive-definite Hessian. Let us compute the gradient and the
Hessian of f :

∇f(α, β) = (F ′12(α) + F ′23(α− β), F ′13(β)− F ′23(α− β),

Hf(α, β) =

(
F ′′12(α) + F ′′23(α− β) −F ′′23(α− β)
−F ′′23(α− β) F ′′13(β) + F ′′23(α− β)

)
.

Using (2.6), we have

Hf(π, 0) =

(
r1r2

(r1+r2)3
+ r2r3

(r2+r3)3
− r2r3

(r2+r3)3

− r2r3
(r2+r3)3

− r1r3
(r3−r1)3

+ r2r3
(r2+r3)3

)
and

detHf(π, 0) = − r2
1r2r3

(r1 + r2)3(r3 − r1)3
− r1r2r

2
3

(r2 + r3)3(r3 − r1)3

+
r1r

2
2r3

(r1 + r2)3(r2 + r3)3

=
r1r2r3[r2(r3 − r1)3 − r1(r3 + r2)3 − r3(r1 + r2)3]

(r1 + r2)3(r2 + r3)3(r3 − r1)3
.
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The positivity of detHf(π, 0) implies the condition (2.4), which proves
the first part of 2.0.4.

Now we assume that (2.4) holds, and we want to get that (π, 0) is the
unique minimum point. The first (and most challenging) step is given by the
following

Proposition 2.1.1. Suppose that 0 < r1 < r2 < r3 satisfy (2.4). Then
(0, 0), (0, π), (π, 0), (π, π) are the only stationary points of f(α, β).

The proof of 2.1.1 is quite technical and long. For the sake of clarity we
postpone it to the end of this section, in order to keep focusing on the main
result.

Since {0, π}2 are the only stationary points, the global minimum of f must
be between them. By direct comparison of the values f(0, 0), f(0, π), f(π, 0),
f(π, π) we will conclude that (π, 0) is the unique minimum point.

We compute

f(0, 0) =
1

r2 − r1
+

1

r3 − r2
+

1

r3 − r1

f(0, π) =
1

r2 − r1
+

1

r3 + r2
+

1

r3 + r1

f(π, 0) =
1

r2 + r1
+

1

r3 + r2
+

1

r3 − r1

f(π, π) =
1

r2 + r1
+

1

r3 − r2
+

1

r3 + r1
,

and observe that clearly f(0, 0) > f(0, π). To deduce the other inequalities
we notice that the function

h(x, y) =
1

x− y
− 1

x+ y
for 0 < y < x.

is decreasing in x and increasing in y, so h(r3, r1) < h(r2, r1) ⇒ f(π, 0) <
f(0, π) and h(r3, r1) < h(r3, r2)⇒ f(π, 0) < f(π, π), as wanted.

Proof of 2.1.1. A stationary point (α, β) must solve ∇f = 0, i.e.,
− r1r2 sinα

D12(α)3/2
− r2r3 sin(α− β)

D23(α− β)3/2
= 0

− r1r3 sinβ

D13(β)3/2
+
r2r3 sin(α− β)

D23(α− β)3/2
= 0

which we rewrite as
r1r2 sinα

D12(α)3/2
+
r1r3 sinβ

D13(β)3/2
= 0

r1r3 sinβ

D13(β)3/2
− r2r3 sin(α− β)

D23(α− β)3/2
= 0.

(2.7)
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Observe that the four points (α, β) ∈ {0, π}2 are always solutions for (2.7).
We will study this system in detail for β ∈ [0, π]. The conclusions can then
be derived for β ∈ [−π, 0] by making use of the change of variables α̃ = −α,
β̃ = −β. To proceed in the computations, we perform a finer study of the
function

gij(θ) = −F ′ij(θ) =
rirj sin θ

Dij(θ)3/2
,

so that the optimality conditions (2.7) will be rewritten in the form{
g12(α) = −g13(β)

g13(β) = g23(α− β).
(2.8)

We now prove that for every β in [0, π] there exists at least one and at most
two α’s such that each of the two equations is satisfied.

The derivative of gij is

g′ij(θ) = rirj
Qij(cos θ)

Dij(θ)5/2

and it vanishes for

Qij(cos θij) = 0⇒ cos θij =
−r2

i − r2
j +

√
r4
i + 14r2

i r
2
j + r4

j

2rirj
∈ (0, 1).

By looking at the sign of the second degree polynomial Qij , we conclude that
gij(θ) is increasing from 0 to its maximum on [0, θij ] and decreasing to 0 on
[θij , π]

Lemma 2.1.2. For every θ ∈ [0, π], g13(θ) ≤ g12(θ) and g13(θ) ≤ g23(θ). (See
Fig. 2.1.)

Proof. We claim that 0 ≤ g′13(0) ≤ g′12(0) and g′13(π) ≥ g′12(π) ≥ 0. Indeed,
using 2.6,

g′13(0) = −F ′′13(0) =
r1r3

(r3 − r1)3
≥ 0, and g′12(0) =

r1r2

(r2 − r1)3
,

thus
g′13(0) ≤ g′12(0) ⇐⇒ r3(r2 − r1)3 ≤ r2(r3 − r1)3

which is weaker than (2.4).
On the other hand,

g′13(π) = −F ′′13(π) = − r1r3

(r3 + r1)3
≤ 0, and g′12(π) = − r1r2

(r1 + r2)3
,

thus
g′13(π) ≥ g′12(π) ⇐⇒ r3(r1 + r2)3 ≤ r2(r3 + r1)3
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β

α

g12

g13

Figure 2.1: The relative position of the graphs of g12 and g13 on the interval
[0, π]. However the strict inequality betwen the two maximal values is not
proved. See Lemma 2.1.2

which is once again weaker than (2.4).

Moreover, the equation g13(θ) = g12(θ) has at most one solution in (0, π),
since we have the following chain of equivalent equalities:

g13(θ) = g12(θ)
r1r3

D13(θ)3/2
=

r1r2

D12(θ)3/2

r
2/3
3 (r2

1 + r2
2 − 2r2r3 cos θ) = r

2/3
2 (r2

1 + r2
3 − 2r1r3 cos θ)

cos θ =
r

2/3
2 r

2/3
3 (r

4/3
3 − r4/3

2 )− r2
1(r

2/3
3 − r2/3

2 )

2r1r
2/3
2 r

2/3
3 (r

1/3
3 − r1/3

2 )
.

Recalling that both g13 and g12 vanish at the endpoints of [0, π], we get the
thesis. An analogous argument applies to the comparison between g13 and
g23.

Remark 2. It follows from the Lemma above that for every value of g13, and
so for every fixed β, there exists at least one α where g12(α) takes the same
value. If the value of g13 is not the maximal one then there are exactly two
different α’s such that the value is achieved. The same holds for g23(α − β).
See figure below.
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Lemma 2.1.3. If cos θ ∈ (cos θij , 1) then

g′ij(θ) < g′ij(0)
cos θ − cos θij

1− cos θij
;

if cos θ ∈ (−1, cos θij) then

g′ij(θ) < g′ij(π)
cos θ − cos θij
−1− cos θij

.

Proof. We omit for simplicity of notation the indices ij. Recall that

g′(θ) =
rirjQij(cos θ)

(r2
i + r2

j − 2rirj cos θ)
= h(cos θ)

, where h : [−1, 1]→ R, h(t) =
rirjQij(t)

(r2i+r2j−2rirjt)
.

The thesis is a weak version of the convexity of h: if h is convex, then the
inequalities hold by applying the Jensen’s inequality separately in the intervals
[−1, cos θij ] and [cos θij , 1]. It could happen, however, that h has a concave
part between −1 and a certain threshold ξ, and then it is convex. In this case
we prove the following:

• hij is decreasing between −1 and a certain threshold σ, where it reaches
the minimum;

• ξ < σ, i.e., in the interval [σ, 1] the function is convex.

Then we deduce that, for −1 ≤ t ≤ σ,

hij(t) ≤ hij(−1) ≤ hij(−1)
t− cos θij
−1− cos θij

(recall that h(−1) is negative).
On the other hand, for σ ≤ t ≤ cos θij ,

h(t) ≤ line joining (σ, h(σ)) and (cos θij , 0)

≤ line joining (−1, h(−1)) and (cos θij , 0)

since σ is a minimum point. See Figure 2.2 for a clearer graphical meaning of
the proof.

Here come the computations:

h′(t) =
r2
i r

2
j t

2 + 5rirj(r
2
i + r2

j )t+ r4
i − 13r2

i r
2
j + r4

j

(r2
i + r2

j − 2rirjt)7/2
.

We have that h′(t) = 0 for

t =
−5(r2

i + r2
j )±

√
21r4

i + 102r2
i r

2
j + 21r4

i

2rirj
.
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cos θij

h(t)

Figure 2.2: A graphical understanding of Lemma 2.1.3: the function h(t) stays
below two segments.

Observe that the smaller solution is always outside the interval [−1, 1], since

−5(r2
i + r2

j )−
√

21r4
i + 102r2

i r
2
j + 21r4

i < −
√

102rirj < −2rirj .

Denote by σ the bigger root.

We move on to the second derivative:

h′′(t) = 3rirj
r2
i r

2
j t

2 + 9rirj(r
2
i + r2

j )t+ 4r4
i − 27r2

i r
2
j + 4r4

j

(r2
i + r2

j − 2rirjt)9/2

We have that h′′(t) = 0 for

t =
−9(r2

i + r2
j )±

√
65r4

i + 270r2
i r

2
j + 65r4

j

2rirj
.

As above, the smaller root always lies outside the interval [−1, 1]. Denote
by ξ the bigger root. Now we prove that σ > ξ for any choice of the values
0 < ri < rj . By homogeneity, denoting by u = r2

i /r
2
j ∈ (0, 1), it suffices to

prove that

−5(1 + u) +
√

21u2 + 102u+ 21 > −9(1 + u) +
√

65u2 + 270u+ 65,
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i.e.,

4(1 + u) +
√

21u2 + 102u+ 21 >
√

65u2 + 270u+ 65

37u2 + 134u+ 37u+ 8(1 + u)
√

21u2 + 102u+ 21 > 65u2 + 270u+ 65

8(1 + u)
√

3
√

7u2 + 34u+ 7 > 28u2 + 136u+ 28

2
√

3(1 + u) >
√

7u2 + 34u+ 7

12(1 + u)2 > 7u2 + 34u+ 7

5(1− u)2 > 0,

as wanted.

Now the idea is the following: in view of Lemma 2.1.2, the first equa-
tion of (2.7) implicitly defines two C∞ functions α0(β) and απ(β) such that
α0(0) = 0, απ(0) = π. Analogously, the second equation implicitly defines two
functions α̂0(β) and α̂π(β) such that α̂0(0) = 0, α̂π(0) = π.

We want to prove that each curve α0,π intersects each curve α̂0,π only
in 0 or π. By sign considerations, we notice that the first equation implies
α(β) ∈ [π, 2π] and the second equation implies α̂(β) ∈ [β, π + β]. Hence, the
possible solutions lie in the region π ≤ α ≤ π + β, and when considering the
whole torus T2 the region has a “butterfly” shape.

This already shows that the curves α0(β) and α̂0(β) do not produce solu-
tions, since we have that β − π ≤ α0(β) ≤ 0 and 0 ≤ α̂0(β) ≤ π. Thus we can
concentrate our attention on the curves απ and α̂π.

The key observation lies in the fact that

π ≤ απ(β) ≤ π + α′π(0)β,

i.e., the function απ(β) stays below its tangent line at β = 0 (see Picture 2.4).
Likewise, the function α̂π(β) stays above its tangent line at β = 0. This allows
us to conclude that they do not intersect since, as we will see, the condition
(2.4) is equivalent to α′π(0) ≤ α̂′π(0).

Lemma 2.1.4. For β ∈ (0, π) let α(β) be the solution of{
g13(β) + gij(α) = 0

α(0) = α(π) = π.

Then
π ≤ α(β) < π + α′(0)β.

(See Figure 2.4 for a graphical understanding.)

Proof. Differentiating in β we get

g′13(β) + α′(β)g′ij(α(β)) = 0 =⇒ α′(β) =
g′13(β)

−g′ij(α(β))
.
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α̂0

απ

α̂π

α0

0 π 2π

π

2π

Figure 2.3: In blue, the “butterfly” region of admissible solutions to optimality
conditions (2.7). In black and orange, a plot of the curves α0,π and α̂0,π in
the region 0 ≤ β ≤ π.

Take β ∈ (0, θ13), where θ13 is the critical value of g13, so that cosβ >
cos θ13. By Lemma 2.1.2 we have that α ∈ [π, 2π − θij ], because the equation
g13(β) + gij(α) = 0 has two solutions in the interval [π, 2π] and by definition
α is the leftmost one. Using Lemma 2.1.3 we have

α′(β) ≤ g′13(0)

−g′ij(π)

cosβ − cos θ13

1− cos θ13

−1− cos θij
cosα(β)− cos θij

.

Since
g′13(0)
−g′ij(π)

= α′(0) ≥ 0, it suffices to show that

cosβ − cos θ13

1− cos θ13

−1− cos θij
cosα(β)− cos θij

≤ 1.
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απ(β)

π + α′π(0)β

π + α̂′π(0)βα̂π(β)

0

π

π

2π

Figure 2.4: A graphical understanding of Lemma 2.1.4: the function απ(β) is
confined by π ≤ απ(β) ≤ π+α′π(0)β, and similarly π+α̂′π(0)β ≤ α̂π(β) ≤ π+β.
This implies that the intersection between απ and α̂π is only at β = 0.
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Let α̃ = α(β)− π, so that 0 ≤ α̃ ≤ β. We must prove

cosβ − cos θ13

1− cos θ13

1 + cos θij
cos α̃+ cos θij

≤ 1.

(1 + cos θij)(cosβ − cos θ13) ≤ (1− cos θ13)(cos α̃+ cos θij)

(cosβ − cos α̃) + cos θij cosβ + cos θ13 cos α̃ ≤ cos θij + cos θ13.

But this is true, since α̃ ≤ β =⇒ cosβ − cos α̃ ≥ 0 and clearly

cos θij cosβ + cos θ13 cos α̃ ≤ cos θij + cos θ13.

We got the desired inequality for β ∈ (0, θ13). However, for β ≥ θ13 we
have α′(β) ≤ 0, hence the line α′(0)β is increasing and the function α(β) is
decreasing, giving the inequality for every β.

By Lemma 2.1.4, we obtain that the function απ(β) lies between the hor-
izontal line α = π and the line α = π + α′π(0)β (strictly for β > 0). Recall
that the function α̂π(β) satisfies the second equation of the stationary system
((2.7))

r1r3 sinβ

D13(β)3/2
− r2r3 sin(α̂− β)

D23(α̂− β)3/2
= 0

with α̂π(0) = π, α̂π(π) = 2π.

By a change of variables α̃(β) = 2π + β − α̂π(β), we get that α̃ satisfies{
g13(β) + g23(α̃) = 0

α̃(0) = α̃(π) = 0,

hence π < α̃(β) < π + α̃′(0)β, i.e.,

π + α̂′π(0)β < α̂π(β) < π + β

for β > 0. So the idea is that the two lines provide a separation of the curves,
so that no intersection can happen except at the starting point.

We conclude by observing that the condition (2.4) is equivalent to α̂′π(0) ≥
α′π(0): indeed we have

g13(β)− g23(α̂π(β)− β) = 0 =⇒

α̂′π(0) = 1 +
g′13(0)

g′23(π)
= 1− r1r3

(r3 − r1)3

(r2 + r3)3

r2r3
=
r2(r3 − r1)3 − r1(r2 + r3)3

r2(r3 − r3
1)

and

α′π(0) =
g′13(0)

−g′12(π)
=

r1r3

(r3 − r1)3

(r1 + r2)3

r1r2
=
r3(r1 + r2)3

r2(r3 − r1)3
.
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Before coming to the consequences and proving the main results of this
Chapter, let us present a couple of useful remarks.

Remark 3. We recall the polynomial condition (2.4):

r2(r3 − r1)3 − r1(r3 + r2)3 − r3(r1 + r2)3 ≥ 0 .

For fixed r1 and r2, the cubic polynomial in r3 that appears on the left-hand
side of (2.4) has three real roots. They are given by the following expressions:

−r2,
5r1r2 + r2

2 ± (r1 + r2)
√
r2

2 + 12r1r2 − 4r2
1

2(r2 − r1)
.

Since we are only interested in the region where r3 > 0 and since

5r1r2 + r2
2 + (r1 + r2)

√
r2

2 + 12r1r2 − 4r2
1

2(r2 − r1)

is the only positive root for every value of 0 < r1 < r2, the condition (2.4) can
be rewritten as

ϕ(r1, r2) :=
5r1r2 + r2

2 + (r1 + r2)
√
r2

2 + 12r1r2 − 4r2
1

2(r2 − r1)
≤ r3. (2.9)

Remark 4. In [17], a crucial role was played by Lemma 4.1. In our framework
this lemma can be obtained as a consequence of Theorem 2.0.4 by choosing
(following the notation of [17])

r−3 > max
[r−1 ,r

+
1 ]×[r−2 ,r

+
2 ]
ϕ(r1, r2) .

If r+
1 < r−2 , as assumed by the authors in [17], then the maximum above is

a real number and the threshold r−3 can be fixed. Thus our result gives a
quantitative optimal version of their choice. Moreover, Theorem 2.0.4 allows
us to deal with the case in which there is no gap between r+

1 and r−2 , since we
have an explicit control of the growth of ϕ(r1, r2) as r1 → r2.

2.2 Proofs of the main theorems

When ρ satisfies the assumptions of Theorem 2.0.4, we know that

cr(r1, r2, r3) =
1

r2 + r1
+

1

r3 + r2
+

1

r3 − r1

for (ρ⊗ρ⊗ρ)-a.e. (r1, r2, r3) ∈ [0, s1]×[s1, s2]×[s2,+∞). The key observation
lies in the fact that this can be viewed as a 1-dimensional Coulomb cost for
points −r2, r1, r3 ∈ R. We can now rely on a somewhat well-established theory
for the Coulomb cost in dimension d = 1: see for instance [15, 14, 23, 25].

This allows to prove Theorem 2.0.3.
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Proof of Theorem 2.0.3. This is a direct consequence of [14, Theorem 1.1].
Indeed, we can consider ρ̃ ∈ P(R) the absolutely continuous measure defined
by1

ρ̃(x) =


ρ(x) x ∈ [0, s1] ∪ [s2,+∞)

ρ(−x) x ∈ [−s2,−s1]

0 otherwise

and observe that the DDI map T for ρ corresponds to the optimal increasing
map S defined in [14, Theorem 1.1].

The optimality follows from the fact that

cr(x, T (x), T 2(x)) = c(y, S(y), S2(y))

for ρ-a.e. x ∈ [0, s1] and ρ̃-a.e. y ∈ [−s2,−s1], where c is the Coulomb cost,
as observed above.

The idea for the proof of Theorem 2.0.5 is to show that, on the support of
the DDI map, the cr-cyclical monotonicity is violated. We prepare a couple
of technical results.

Lemma 2.2.1. Let s1
s2
> 1+2

√
3

5 . Then there exist ε,M > 0 such that

2

s2 + ε
+

1

2s2 + ε
+

1

2s1 + ε
>

√
3

s1 − ε
+

1

s1
+

1

M − ε
. (2.10)

Proof. When ε = 0 and M = +∞, the inequality (2.10) reads

2

s2
+

1

2s2
+

1

2s1
>

√
3

s1
+

1

s1
,

which is equivalent to s1
s2
> 2

√
3+1
5 .

By continuity, there is a small ε such that

2

s2 + ε
+

1

2s2 + ε
+

1

2s1 + ε
>

√
3

s1 − ε
+

1

s1
.

Now choose M big enough such that the desired inequality (2.10) holds.

Lemma 2.2.2. Let s1, s2, ε and M as in Lemma 2.2.1, and let (r1, r2, r3) ∈
(0, ε) × (s2 − ε, s2) × (s2, s2 + ε) and (`1, `2, `3) ∈ (s1 − ε, s1) × (s1, s1 + ε) ×
(M,+∞). Suppose that the condition (2.9) is satisfied by both (r1, r2, r3) and
(`1, `2, `3). Then

cr(r1, r2, r3) + cr(`1, `2, `3) > cr(`1, r2, r3) + cr(r1, `2, `3).

1for simplicity we denote again by ρ(x) the density of the measure ρ.
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Proof. Since the condition (2.9) is satisfied, we have

cr(r1, r2, r3) = cπ(r1, r2, r3) =
1

r1 + r2
+

1

r2 + r3
+

1

r3 − r1

≥ 1

s2 + ε
+

1

2s2 + ε
+

1

s2 + ε

and

cr(`1, `2, `3) = cπ(`1, `2, `3) =
1

`1 + `2
+

1

`2 + `3
+

1

`3 − `1
≥ 1

2s1 + ε
+

1

`2 + `3
+ 0.

Now we analyze the other side. Since (`1, `2, `3) satisfy (2.9) and r1 < `1,
then also (r1, `2, `3) satisfy (2.9)2, so that

cr(r1, `2, `3) = cπ(r1, `2, `3) =
1

r1 + `2
+

1

`2 + `3
+

1

`3 − r1

≤ 1

s1
+

1

`2 + `3
+

1

M − ε
.

For the other term we have

cr(`1, r2, r3) ≤ c∆(`1, r2, r3) ≤ c∆(`1, `1, `1) =

√
3

`1
≤
√

3

s1 − ε
,

where c∆(r1, r2, r3) = c(r1, 0, r2,
2π
3 , r3,

4π
3 ) denotes the cost when the angles

are the ones of an equilateral triangle. The second inequality follows form
the fact that we are keeping the angles fixed, but decreasing the size of the
sides. By comparing the expressions and using Lemma 2.2.1 we get the desired
inequality.

Finally we come to the proof of Theorem 2.0.5.

Proof of Theorem 2.0.5. Let ε,M as in Lemma 2.2.1. Since ρ is fully sup-
ported and T is continuous, we have

T (x)→ s−2 and T 2(x)→ s+
2 as x→ 0,

and
T (x)→ s+

1 and T 2(x)→ +∞ as x→ s−1 .

This allows to choose triplets (r1, r2, r3) and (`1, `2, `3) as in the hypothesis
of Lemma 2.2.2 such that

(r1, r2, r3) = (x, T (x), T 2(x)) and (`1, `2, `3) = (y, T (y), T 2(y)).

Apply Lemma 2.2.2 to conclude that the support of the DDI map is not
cr-cyclically monotone.

2It can be computed that ϕ(r1, r2) it increasing in r1.
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We can exploit further Theorem 2.0.5 to produce a class of continuous
counterexamples to the optimality of the DDI map.

First note that it is easy to construct ρ positive everywhere such that the
condition

T (x)(T 2(x)− x)3 − x(T 2(x) + T (x))3 − T 2(x)(x+ T (x))3 ≥ 0

holds for every x ∈ (0, s1), where T is the DDI map.
Given s2 > 0, one can fix an arbitrary positive function ρ on the interval

[0, s2] such that
∫ s2

0 ρ(x)dx = 2
3 . Let s1 such that

∫ s1
0 ρ(x)dx = 1

3 . Observe
that this defines the DDI map T : [0, s1]→ [s1, s2] given by∫ x

0
ρ(t)dt =

∫ s2

T (x)
ρ(t)dt,

or equivalently by the Monge-Ampère equationT ′(x) = − ρ(x)

ρ(T (x))

T (0) = s2.

We can now transport ρ to the interval [s2,+∞) via the map ϕ(x, T (x)), where
ϕ was introduced in (2.9), i.e., define ρ on the interval [s2,+∞) by

ρ(ϕ(x, T (x)) =
ρ(x)

d
dxϕ(x, T (x))

.

This is possible because ϕ(0, s2) = s2, lim
x→s−1

ϕ(x, T (x)) = +∞ and ϕ(x, T (x))

is continuous.

Remark 5. In this construction, the transport function ϕ(x, T (x)) can be sub-
stituted with ϕ(x, T (x)) + h(x) if h is a C∞ function, h(0) = 0 and h ≥ 0.

Suppose we construct the density ρ as above, using the transport function
ϕ(x, T (x)) + h(x). When is the obtained density continuous?

Since the density is arbitrary in the interval [0, s2], we can choose it to
be continuous in that interval, and since the transport function is C∞, the
density will be continuous on [s2,+∞]. The problem is at the joining point
s2. On the one hand, from the Monge-Ampère equation we get

T ′(0) = − ρ(0)

ρ(s−2 )

and on the other hand we get[
d

dx
ϕ(x, T (x)) + h′(x)

]
x=0

=
ρ(0)

ρ(s+
2 )
,
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thus the continuity is equivalent to[
d

dx
ϕ(x, T (x)) + h′(x)

]
x=0

= −T ′(0).

By recalling that

ϕ(x, T (x)) =
5xT (x) + T (x)2 + (x+ T (x))

√
T (x)2 + 12xT (x)− 4x2

2(T (x)− x)
,

we get that [
d

dx
ϕ(x, T (x)) + h′(x)

]
x=0

= 7 + T ′(0) + h′(0),

hence the equation

7 + T ′(0) + h′(0) = −T ′(0) =⇒ −T ′(0) =
ρ(0)

ρ(s−2 )
=

7

2
+
h′(0)

2

The condition h ≥ 0 forces h′(0) ≥ 0, and we deduce that, if ρ(0) ≥
7
2ρ(s−2 ), then there exists a continuous density that satisfies the hypotheses
of Theorem 2.0.5, obtained for instance by choosing h(x) = λx for a suitable
parameter λ. This density provides a continuous counterexample to the Seidl
conjecture, which was so far missing in the literature.

One could, in principle, exploit the same idea in order to get differentiable
counterexamples, and in general Ck or even C∞ counterexamples, but the
explicit computations for dk

dxk
ϕ(x, T (x)) get very hard to treat. However, if ρ

satisfies the strict inequality

ρ(0) >
7

2
ρ(s−2 ),

then a C∞ counterexample can be implicitly constructed as follows. Let for
simplicity ψ(x) := ϕ(x) + h(x), and recall that we are searching for a C∞

function h such that h(0) = 0, h ≥ 0. By differentiating n times the Monge-
Ampère equation

ψ′(x)ρ(ψ(x)) = ρ(x) x ∈ [0, s1]

we get
n∑
k=0

(
n

k

)
ψ(n−k+1)(x)

dk

dxk
ρ(ψ(x)) = ρ(n)(x),

and (computing for x = 0)

n∑
k=0

(
n

k

)
ψ(n−k+1)(0)

[
dk

dxk
ρ(ψ(x))

]
x=0

= ρ(n)(0).
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Suppose that we already defined h′(0), . . . , h(n)(0). The only term con-
taining h(n+1)(0) is obtained for k = 0 in the LHS, and reads ψ(n+1)(0)ρ(s2).
Hence we can isolate it and get

ψ(n+1)(0)ρ(s2) = ρ(n)(0)−
n∑
k=1

(
n

k

)
ψ(n−k+1)(0)

[
dk

dxk
ρ(ψ(x))

]
x=0

.

Since ρ is positive everywhere, in particular ρ(s2) > 0 and get a well-
defined expression for h(n+1)(0) depending on h′(0), . . . , h(n)(0) (alredy previ-
ously defined by induction). The base step is given by h(0) = 0.

By Borel’s lemma there exists a smooth function f : R → R such that
f (k) = h(k) for all natural numbers k. Since the inequality ρ(0) > 7

2ρ(s−2 )
implies h′(0) > 0, there is a δ > 0 and an interval [0, δ] such that f(x) > 0
for all x ∈ [0, δ]. We now choose our h to coincide with f in the interval
[0, δ2) and to be constant, equal to f(δ) on the interval [δ,∞). On the interval

( δ2 , δ) we join these two parts smoothly, so that the function h is smooth on
all of its domain [0,∞) — at 0 we mean by smoothness the existence of all
derivatives from the right. This in turn defines a smooth density ρ on the
interval [s2,+∞) by transporting ρb[0,s1] with ψ = ϕ+ h.
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Many-body limit of the
multi-marginal OT functional

We consider a standard multi-marginal Optimal Transport (OT) problem de-
fined by

CN (ρ) = inf

{∫
cN (x1, . . . , xN )dP (x1, . . . , xN ) | P ∈ ΠN (ρ)

}
(3.1)

where ρ ∈ P(Rd).
As a cost function cN we treat a two-particle interaction of the form

cN (x1, . . . , xN ) =
2

N(N − 1)

∑
1≤i<j≤N

`(|xi − xj |) (3.2)

where ` : [0,+∞]→ R has the following properties:

(i) `(r) ≥ 0;

(ii) ` is lower semi-continuous;

(iii) lim
r→+∞

`(r) = 0;

(iv) ` is locally integrable on Rd, meaning

∫
B(0,R)

`(|z|)dz < +∞ for every

R > 0.

It is common in many applications (Density Functional Theory, crowd
motion, statistics) to encounter minimum problems of the form

inf
ρ∈P(Rd)

{CN (ρ) + F(ρ)} ,

where F is a suitable density functional. In this context it is important to
understand the behaviour of this value and the structure of the minimizers

47
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for a large number N of particles/people, as this can be used to approximate
the behaviour of large systems, often impossible to compute numerically in an
exact way.

The first step in order to treat rigorously these instances is to understand
the limit as N → ∞ of the multi-marginal OT functional. In this setting, a
natural tool is the notion of Γ-convergence with respect to the weak* topology
of Radon measures on Rd. In particular if C∞ := Γ-lim

n→∞
CN exists and can be

identified, it will possible to pass to the limit in minimum problems of the kind
infρ {CN (ρ) + F(ρ)}. In particular, if F is weakly continuous, by applying a
celebrated theorem of De Giorgi, we will obtain the convergence of the infima

lim
n→∞

inf
ρ
{CN (ρ) + F(ρ)} = min

ρ
{C∞(ρ) + F(ρ)}

and the weak* convergence of minimizing sequences P
(
Rd
)

to elements of
arg min {C∞ + F} . Let us mention that in such a setting the mimimizers of
the limit problem can be merely sub-probabilities due a possible loss of mass
at infinity.

Having in mind the result of C. Cotar and M. Petrache [21], an ideal
prospect for our work would be to get the next-order term of [21] as Γ-limit
of a suitable renormalized sequence.

Structure of the chapter The material for this chapter comes from a work
in collaboration with G. Bouchitté (Université de Toulon). I am grateful to
the financial support of INdAM (Istituto Nazionale d’Alta Matematica), via
the LIA LYSM project.

In Section 3.1 we introduce some notation and present some known results
of convex analysis and measure theory.

In Section 3.2, we extend to general costs ` the relaxation and duality
framework recently developed in the case of the Coulomb interaction energy
(see [6]). We also prove the Γ-convergence of (CN ) and provide a characteri-
zation of the limit functional C∞. We remark that the pointwise convergence
of the multi-marginal OT functional was studied, in the case of a positive
definite cost function, by B. Pass et al. in [36]. We give also a description
of the main properties of C∞ and of its Fenchel conjugate as a functional on
Cb(Rd).

In Section 3.3 we come back to the minimum problem

inf
ρ
{C∞(ρ) + F(ρ)}

in the special case of a linear and continuous functional F . We derive opti-
mality conditions and study the possibility of finding solutions of mass strictly
less than 1 — which reveals a loss of mass at infinity.

Finally, in the appendix we will present some explicit computations of
the relaxed functional CN for a single Dirac delta (Theorem 3.A.2) and for
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a convex combination of two Dirac deltas (Theorem 3.A.3). As we shall see,
even in these apparently simple cases the result is not trivial. Since in the
literature very few results are known about the relaxed multi-marginal OT
functional, we believe that every small step can be of interest.

3.1 Preliminary results

Tools and notation from convex analysis

Let X be a topological vector space, and f : X → [−∞,+∞]. The convex
hull of f , denoted by cl f , is the largest lower semi-continuous convex function
below f . It may be defined as the function whose epigraph is the closed convex
hull of the epigraph of f in X ×R. Notice that, if f is lower semi-continuous
and convex, cl f = f .

The Legendre-Fenchel conjugate of f , denoted by f∗, is defined on X∗ as

f∗(v) = sup {〈v, x〉 − f(x) | x ∈ X} .

The following properties are well-known in the literature. We refer to
[43, 7] for exhaustive treatments.

• f∗ is convex and lower semi-continuous;

• if f ≤ g, then f∗ ≥ g∗;

• f∗∗ = cl f .

The lower semi-continuous envelope of f , denoted f is the greatest lower
semi-continuous function below f , i.e.,

f(x) = sup {g ≤ f | g is l.s.c.} .

Lemma 3.1.1 ([7, Proposition 1.31]). Let f : X → [−∞,∞]. Then

f = inf
xn→x

lim inf
n→∞

f(xn).

Lemma 3.1.2. Let f : X → [−∞,∞]. Then (f)∗∗ = f∗∗.

Proof. Since f ≤ f , then (f)∗∗ ≤ f∗∗. Given x ∈ X and ε > 0, let (xn) be such
that f(x) ≥ limn→∞ f(xn) − ε. Since every element v ∈ X∗ is a continuous
linear functional,

〈x, v〉 − f(x) ≤ lim
n→∞

〈xn, v〉 − f(xn) + ε ≤ f∗(v) + ε.

By passing to the supremum over x ∈ X, since ε was arbitrary, we get

(f)∗(v) ≤ f∗(v),

which in turn implies (f)∗∗ ≥ f∗∗.
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Lemma 3.1.3. Let f : X → [−∞,∞] be convex. Then f = f∗∗.

Proof. Since f∗∗ ≤ f and is l.s.c., then f∗∗ ≤ f . On the other hand, f is
convex: given x, y ∈ X, let f(xn) → f(x) and f(yn) → f(y); if t ∈ [0, 1] we
have

f(tx+ (1− t)y) ≤ lim inf
n→∞

f(txn + (1− t)yn) ≤ lim inf
n→∞

[tf(xn) + (1− t)f(yn)]

= tf(x) + (1− t)f(y).

Since f is convex l.s.c. below f , f ≤ f∗∗.

Proposition 3.1.4 ([7, Proposition 1.32]). Let fn : X → [−∞,∞]. Then

Γ-lim
n→∞

fn = Γ-lim
n→∞

fn.

Tools and notation from measure theory

We will denote by 〈·, ·〉 the duality between the continuous functions vanishing
at infinity and the finite Borel measures on the Euclidean space:

〈v, µ〉 =

∫
vdµ.

We will denote by M the vector space of finite Borel measures, P the
set of non-negative probability measures, by P− the set of non-negative sub-
probability measures.

If v : Rd → R, we define SNv : (Rd)N → R as

SNv(x1, . . . , xN ) =
1

N

N∑
j=1

v(xj)

For a measure µ ∈ M((Rd)N ), we denote by Sym(µ) its symmetrization,
given by

Sym(µ)(E) =
1

N !

∑
σ∈SN

µ(σ(E)),

where σ(E) =
{

(x1, . . . , xN ) | (xσ(1), . . . , xσ(N)) ∈ E
}

for a permutation σ ∈
SN .

Given µ ∈M(Rd) and h ∈ Rd, let τhµ be the translation of µ by the vector
h, i.e., τhµ(E) = µ(E − h) for every Borel set E.

Lemma 3.1.5. Let µ ∈M(Rd). Then τhµ ⇀ 0 as |h| → ∞.
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Proof. By splitting µ = µ+ − µ−, we may assume µ to be a non-negative
measure. Given ε > 0 and f ∈ C0(Rd), let R > 0 such that |f(y)| < ε as
|y| ≥ R and µ(B(0, R)c) ≤ ε. Then, if |h| ≥ 2R, we have∣∣∣∣∫ f(x)dτhµ(x)

∣∣∣∣ =

∣∣∣∣∫ f(x+ h)dµ(x)

∣∣∣∣
≤
∫
B(0,R)

|f(x+ h)| dµ(x) +

∫
B(0,R)c

|f(x+ h)| dµ(x)

≤ εµ(B(0, R)) + ε sup |f | ≤ ε(µ(Rd) + sup |f |).

Moreover, we will make use of the following well-known result (see for
instance [1, Section 5.1]).

Theorem 3.1.6. Let µn, µ ∈M(Rd). Then the following are equivalent

(i) µn ⇀ µ;

(ii) lim infn→∞ 〈f, µn〉 ≥ 〈f, µ〉 for every f l.s.c. bounded from below;

(iii) lim supn→∞ 〈f, µn〉 ≤ 〈f, µ〉 for every f u.s.c. bounded from above.

3.2 Duality and Γ-convergence

Notice that the functional CN : P(Rd) → R is convex. Given ρ1, ρ2 ∈ P(Rd),
let P1 ∈ ΠN (ρ1) and P2 ∈ ΠN (ρ2) optimal in (3.1). Then tP1 + (1 − t)P2 ∈
ΠN (tρ1 + (1− t)ρ2), and thus

CN (tρ1 + (1− t)ρ2) ≤ 〈cN , tP1 + (1− t)P2〉
= t 〈cN , P1〉+ (1− t) 〈cN , P2〉
= tCN (ρ1) + (1− t)CN (ρ2).

In order to study the Γ-limit of CN as N → ∞, we consider the dual
formulation given by

MN (v) := C∗N (v) = sup
ρ∈P(Rd)

{〈v, ρ〉 − CN (ρ)} . (3.3)

for v ∈ C0(Rd) and

C∗∗N (ρ) = M∗N (ρ) = sup
v∈C0(Rd)

{〈v, ρ〉 −MN (v)} .

By Lemma 3.1.3 and convexity of CN , CN = C∗∗N . Notice moreover that,
if ρ /∈ P−(Rd), then CN (ρ) = +∞. This is expected, as P−(Rd) is the convex
closure of P(Rd).
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An explicit formula for CN (ρ) was given in [6, Theorem 2.3], and reads as
follows:

CN (ρ) = inf
a1,...,aN≥0

ρ1,...,ρN∈P(Rd)

{
N∑
k=2

ak
k(k − 1)

N(N − 1)
Ck(ρk) |

N∑
k=1

ak ≤ 1,

N∑
k=1

k

N
akρk = ρ

}
.

(3.4)

Observe in particular that, if |ρ| ≤ 1
N , then one can choose a1 = 1, a2 =

· · · = aN = 0 to get CN (ρ) = 0. Notice also that, if ρ ∈ P(Rd), the only choice
in (3.4) is a1 = · · · = aN−1 = 0, aN = 1, which yields CN (ρ) = CN (ρ).

The interested reader may look to [6, 21] for more insights on CN and the
link with the grand-canonical formulation of Optimal Transport.

Lemma 3.2.1. For every v ∈ C0(Rd) one has

MN (v) = sup
{
SNv(x1, . . . , xN )− cN (x1, . . . , xN ) | x1, . . . , xN ∈ Rd

}
. (3.5)

Proof. Given x1, . . . , xN ∈ Rd, let

ρ =
1

N

N∑
j=1

δxj and P =
1

N !

∑
σ∈SN

δxσ(1) ⊗ · · · ⊗ δxσ(N)
.

Observe that ρ ∈ P(Rd), and P ∈ ΠN (ρ). Hence

SNv(x1, . . . , xN )− cN (x1, . . . , xN ) =

∫
vdρ−

∫
cNdP

≤
∫
vdρ− CN (ρ) ≤MN (v),

which gives an inequality.

On the other hand, for any ρ ∈ P(Rd), if P ∈ ΠN (ρ) is optimal in (3.1)
one has ∫

vdρ− CN (ρ) =

∫
(SNv − cN )dP ≤ sup(SNv − cN )

Passing to the supremum on the left-hand side one gets the converse inequality,
and thus the thesis.

Lemma 3.2.2. The sequence (MN )N≥2 is monotone decreasing and equi-
Lipschitz (with Lipschitz constant equal to 1).

Proof. Let us start by observing that

cN+1(x1, . . . , xN+1) =
1

N + 1

N+1∑
k=1

cN (x1, . . . , x̂k, . . . , xN+1)
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and

SN+1v(x1, . . . , xN+1) =
1

N + 1

N+1∑
k=1

SNv(x1, . . . , x̂k, . . . , xN+1).

Hence, for every x1, . . . , xN+1 ∈ Rd,

SN+1v(x1, . . . , xN+1)− cN+1(x1, . . . , xN+1)

=
1

N + 1

N+1∑
k=1

(SNv(x1, . . . , x̂k, . . . , xN+1)− cN (x1, . . . , x̂k, . . . , xN+1))

≤ 1

N + 1

N+1∑
k=1

MN (v) = MN (v)

Passing to the supremum on the left-hand side we getMN+1 ≤MN , as wanted.
In order to prove the second part of the statement, let v1, v2 ∈ C0(Rd).

Take x1, . . . , xN ∈ Rd optimal up to a threshold ε for MN (v1) in (3.5). Then

MN (v1)−MN (v2) ≤ 1

N

N∑
j=1

(v1(xj)− v2(xj)) + ε ≤ ‖v1 − v2‖∞ + ε.

By letting ε→ 0, and then switching the roles of v1 and v2 we get the thesis.

Corollary 3.2.3. The sequence (CN )N≥1 is monotone increasing.

Proof. By Lemma 3.2.2 we have

CN (ρ) = sup
v∈C0(Rd)

{∫
vdρ−MN (v)

}
≥ sup

v∈C0(Rd)

{∫
vdρ−MN+1(v)

}
= CN+1(ρ).

We get from Lemma 3.2.2 and Corollary 3.2.3 the existence of the pointwise
limits

M∞(v) = lim
N→∞

MN (v) and C∞(ρ) = lim
N→∞

CN (ρ).

Remark 6. The uniform Lipschitz continuity of (MN )N≥2 implies the same
property for M∞: given v1, v2 ∈ C0(Rd), for every ε > 0 let N such that
MN (vj)−M∞(vj) ≤ ε for j = 1, 2. Then

|M∞(v1)−M∞(v2)| ≤ |MN (v1)−MN (v2)|+ 2ε ≤ ‖v1 − v2‖+ 2ε.

Letting ε → 0 we get that M∞ is a Lipschitz continuous functional (with
Lipschitz constant equal to 1).
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Remark 7. It is easy to prove that C∞ = M∗∞: due to Corollary 3.2.3 we have

C∞(ρ) = sup
N≥2

CN (ρ)

= sup
N≥2

sup
v∈C0(Rd)

〈v, ρ〉 −MN (v)

= sup
v∈C0(Rd)

sup
N≥2
〈v, ρ〉 −MN (v)

= sup
v∈C0(Rd)

〈v, ρ〉 −M∞(v) = M∗∞(ρ).

Besides the pointwise convergence, in the following results we show that
both the sequences (MN ) and (CN ) Γ-converge to their pointwise limits.

Theorem 3.2.4. The functionals MN Γ-converge as N →∞ to the functional
M∞.

Proof. When we have pointwise convergence of the functionals, the lim sup
inequality is trivial: take vN = v as a recovery sequence to get

lim sup
N→∞

MN (vN ) = lim sup
N→∞

MN (v) = M∞(v).

Let (vN )N≥2 be any sequence in C0(Rd) uniformly converging to v. Then
by Lemma 3.2.2 we have MN (vN ) ≥M∞(vN ). By taking the lim inf on both
sides and using the continuity of M∞ (see Remark 6) we get

lim inf
N→∞

MN (vN ) ≥M∞(v).

Theorem 3.2.5. The functionals CN Γ-converge as N →∞ to the functional
C∞ = M∗∞.

Proof. As before the pointwise convergence makes the lim sup inequality triv-
ially satisfied.

Take ρN ∈ P−(Rd), ρN ⇀ ρ. If M∗∞(ρ) = +∞, for any n ∈ N let vn ∈
C0(Rd) such that 〈vn, ρ〉 −M∞(vn) ≥ n. Then

CN (ρN ) = sup
v∈C0(Rd)

〈v, ρN 〉 −MN (v) ≥ 〈vn, ρN 〉 −MN (vn),

whence

lim inf
N→∞

CN (ρN ) ≥ lim inf
N→∞

〈vn, ρN 〉 −MN (vn) = 〈vn, ρ〉 −M∞(vn) ≥ n.

If on the contrary M∗∞(ρ) < +∞, given ε > 0, let vε ∈ C0(Rd) such that
M∗∞(ρ)− ε ≤ 〈vε, ρ〉 −M∞(vε). Then

CN (ρN ) = sup
v∈C0(Rd)

〈v, ρN 〉 −MN (v) ≥ 〈vε, ρN 〉 −MN (vε),
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whence

lim inf
N→∞

CN (ρN ) ≥ lim inf
N→∞

〈vε, ρN 〉 −MN (vε) = 〈vε, ρ〉 −M∞(vε) ≥M∗∞(ρ)− ε

In both cases we get the lim inf inequality and thus the thesis.

In the introduction we stated the minimum problem of interest using the
functional CN , but so far we treated the Γ-convergence of CN . This is justified
by Proposition 3.1.4.

Some consequences of our first results, which we state and prove here, will
be useful in the following.

Corollary 3.2.6. For every 2 ≤ k ≤ N one has

MN (v) ≥ k(k − 1)

N(N − 1)
Mk

(
N − 1

k − 1
v

)
.

Proof. Let x1, . . . , xk be optimal for Mk

(
N−1
k−1 v

)
in (3.5). Then we can send

xk+1, . . . , xN to ∞ to get

MN (v) ≥ 1

N

k∑
j=1

v(xj)−
2

N(N − 1)

∑
0≤i<j≤k

`(|xi − xj |)

=
k(k − 1)

N(N − 1)

 N − 1

k(k − 1)

k∑
j=1

v(xj)−
2

k(k − 1)

∑
0≤i<j≤k

`(|xi − xj |)


=

k(k − 1)

N(N − 1)

1

k

k∑
j=1

N − 1

k − 1
v(xj)− ck(x1, . . . , xk)


=

k(k − 1)

N(N − 1)
Mk

(
N − 1

k − 1
v

)
.

Corollary 3.2.7. For every v ∈ C0(Rd) and every N ≥ 2

sup v

N
≤MN (v) ≤ sup v.

Proof. First we prove the upper bound: since cN ≥ 0 we have

MN (v) ≤ sup
{
SNv(x1, . . . , xN ) | x1, . . . , xN ∈ Rd

}
= sup v.

Given ε > 0, fix x1 be such that v(x1) ≥ sup v − ε. Next send all the
other points x2, . . . , xN to ∞ in such a way that all the distances |xi − xj |
with 1 ≤ i < j ≤ N go to +∞. Since ` vanishes at infinity, we have that

MN (v) ≥ 1

N
(sup v − ε).

By letting ε→ 0 we get the thesis.
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Study of the limit functionals

We want to refine the study of the limit functionals M∞ and C∞. First of all
we prove that the domain of C∞ is a subset of P−(Rd).

Lemma 3.2.8. If ρ /∈ P−(Rd) then C∞(ρ) = +∞.

Proof. If ρ is not a positive measure, let v ∈ C0(Rd), v ≥ 0 be such that
〈v, ρ〉 = −λ < 0. For every n ∈ N, let vn = −nv, and notice that vn ∈ C0(Rd),
〈vn, ρ〉 = nλ. Hence

C∞(ρ) ≥ sup
n∈N
{〈vn, ρ〉 −M∞(vn)} = sup

n∈N
nλ = +∞.

Given ρ /∈ P−(Rd), let r > 0 be such that ρ(B(0, r)) > 1. For every n ∈ N
choose vn ∈ C0(Rd) radially decreasing such that vn ≥ 0 and vn(x) = n if
x ∈ B(0, r). Then we have sup vn = n, and recalling Corollary 3.2.7

C∞(ρ) ≥ sup
n∈N
{〈vn, ρ〉 −M∞(vn)} ≥ sup

n∈N
{nρ(B(0, r))− sup vn} = +∞.

Moreover, the domain of C∞ is a dense subset of P−(Rd). In order to
prove it, we prepare a technical result.

Lemma 3.2.9. For every ball B(0, r), the uniform measure ρr concentrated
on the ball is such that C∞(ρr) < +∞.

Proof. In order to bound CN (ρr), we consider the transport plan PN,r =
ρr ⊗ · · · ⊗ ρr︸ ︷︷ ︸

N times

, and observe that

CN (ρr) ≤
∫
c(x1, . . . , xN )dPN,r =

∫
c(x1, x2)d(ρr ⊗ ρr)

=

∫
1B(0,r)(x1)1B(0,r)(x2)`(|x1 − x2|)dx1dx2

=
1

2

∫
1B(0,2r)(w + z)1B(0,2r)(w − z)`(|z|)dzdw

≤ 1

2

∫
1B(0,2r)(w)1B(0,2r)(z)`(|z|)dzdw

= 2d−1rdωd

∫
B(0,2r)

`(|z|)dz = K(r, d),

where K(r, d) is a finite constant, in view of the property (iv) of `. Hence

C∞(ρr) = lim
N→+∞

CN (ρr) ≤ K(r, d) < +∞.

Corollary 3.2.10. The domain of C∞ is a dense subset of P−(Rd).
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Proof. It suffices to show that every atomic probability can be approximated
by elements of the domain. This amounts to prove that δx can be approxi-
mated for every x ∈ Rd. We consider the probability ρn given by the normal-
ized uniform measure restricted to the ball B(x, 1/n) of radius 1/n, i.e.,

dρn
dx

=
nd

ωd
1B(0,1/n),

where ωd is the measure of the unitary ball in Rd. As it is well-known, ρn ⇀ δx
as n → +∞. Moreover, since C∞ is invariant under translation, C∞(ρn) <
+∞ by Lemma 3.2.9.

In view of Lemma 3.2.8, we may study the restriction of C∞ to P−(Rd).
We characterize in the next result the trivial case in which C∞ ≡ 0 on P−(Rd).

Proposition 3.2.11. The following are equivalent:

(i) C∞(ρ) = 0 for every ρ ∈ P−(Rd);

(ii) M∞(v) = sup v for every v ∈ C0(Rd);

(iii) MN (v) = sup v for every N ∈ N, v ∈ C0(Rd);

(iv) `(0) = 0.

Proof. First we prove the equivalence between (i) and (ii). If (i) holds, then
we have

M∞(v) = C∗∞(v) sup
ρ∈P−(Rd)

{〈v, ρ〉 − C∞(ρ)} = sup
ρ∈P−(Rd)

〈v, ρ〉 = sup v.

On the other hand, if (ii) holds then

C∞(ρ) = M∗∞(ρ) = sup
v∈C0(Rd)

{〈v, ρ〉 − sup v} ≤ 0,

but C∞ is non-negative.

The equivalence between (ii) and (iii) follows easily from Corollary 3.2.7
and Lemma 3.2.2.

Finally, we prove the equivalence between (iii) and (iv). Suppose that (iii)
holds and choose v ∈ C0(Rd) such that it has a unique maximum point x0,
i.e., v(x) < sup v for every x 6= x0. If xj 6= x0 for some j, then

SNv(x1, . . . , xN )− cN (x1, . . . , xN ) < sup v = MN (v).

Hence the supremum is reached only for x1 = · · · = xN = x0. Thus

MN (v) = SNv(x0, . . . , x0)− `(0) = sup v − `(0),
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proving that `(0) = 0.
If (iv) holds, given v ∈ C0(Rd) let xε ∈ Rd such that v(xε) ≥ sup v − ε.

Choose x1 = · · · = xN = xε in (3.5) to get

MN (v) ≥ SNv(xε, . . . , xε)− `(0) ≥ sup v − ε.

This proves that MN (v) ≥ sup v, which combined with Corollary 3.2.7 allows
to conclude.

Recall that M∞ is continuous (actually 1-Lipschitz) and convex, since it
is the pointwise limit of the convex functionals MN . Hence, by duality,

M∞(v) = M∗∗∞ (v) = C∗∞(v) = sup
ρ∈P−(Rd)

〈v, ρ〉 − C∞(ρ). (3.6)

We give in the following result some alternative formulations.

Proposition 3.2.12. For every v ∈ C0(Rd) one has

M∞(v) = sup
ρ∈P−(Rd)

〈S2v − c2, ρ⊗ ρ〉 = sup
ν∈P−(P(Rd))

∫
〈S2v − c2, Q⊗Q〉 dν(Q)

= sup
ρ∈P(Rd)

〈S2v − c2, ρ⊗ ρ〉 = sup
ν∈P(P(Rd))

∫
〈S2v − c2, Q⊗Q〉 dν(Q).

Proof. Clearly each term of the first line is bigger than or equal to the corre-
sponding term of the second line.

Due to the pairwise-interaction structure of the cost cN , for every ρ ∈
P−(Rd) and every N ≥ 2 one has

〈S2v − c2, ρ⊗ ρ〉 = |ρ|2−N 〈SNv−cN , ρ⊗ · · · ⊗ ρ︸ ︷︷ ︸
N times

〉 ≤ |ρ|2 sup(SNv−cN ) ≤MN (v);

by taking the supremum in ρ on the left-hand side and the infimum in N on
the right-hand side we get

sup
ρ∈P−(Rd)

〈S2v − c2, ρ⊗ ρ〉 ≤M∞(v)

For every ν ∈ P−(P(Rd)) one has∫
〈S2v − c2, Q⊗Q〉 dν(Q) ≤ sup

ρ∈P(Rd)

〈S2v − c2, ρ⊗ ρ〉
∫
dν(Q)

≤ sup
ρ∈P(Rd)

〈S2v − c2, ρ⊗ ρ〉 ,

yielding

sup
ν∈P−(P(Rd))

∫
〈S2v − c2, Q⊗Q〉 dν(Q) ≤ sup

ρ∈P(Rd)

〈S2v − c2, ρ⊗ ρ〉 .
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Finally, for every N ≥ 2 let xN1 , . . . , x
N
N ∈ Rd be such that

MN (v) ≤ (SNv − cN )(xN1 , . . . , x
N
N ) +

1

N
,

and define

ρN =
1

N

N∑
j=1

δxNj
and PN =

1

N !

∑
σ∈SN

δxN
σ(1)
⊗ · · · ⊗ δxN

σ(N)
.

Observe that ρN ∈ P(Rd) and PN ∈ ΠN (ρN ). Denote by γN the 2-marginal
projection of PN , and notice that

(SNv − cN )(xN1 , . . . , x
N
N ) = 〈S2v − c2, γN 〉 .

A classical result by Diaconis and Freedman [26, Theorem 13] gives for ev-
ery N the existence of νN ∈ P(P(Rd)) such that

∥∥γN − ∫ (Q⊗Q)dνN (Q)
∥∥ ≤

2/N , where ‖·‖ denotes the total variation. Hence we have

MN (v) ≤ 〈S2v − c2, γN 〉+
1

N

=

〈
S2v − c2, γN −

∫
(Q⊗Q)dνN (Q)

〉
+

∫
〈S2v − c2, Q⊗Q〉 dνN (Q) +

1

N

≤
〈
S2v − c2, γN −

∫
(Q⊗Q)dνN (Q)

〉
+ sup
ν∈P(P(Rd))

∫
〈S2v − c2, Q⊗Q〉 dν(Q) +

1

N
.

By Theorem 3.1.6, since S2v − c2 is upper semi-continuous and bounded
from above and γN −

∫
(Q⊗Q)dνN (Q) converges to zero strongly, we have

lim sup
N→∞

〈
S2v − c2, γN −

∫
(Q⊗Q)dνN (Q)

〉
≤ 0.

Thus we get

M∞(v) = lim
N→∞

MN (v) ≤ sup
ν∈P(P(Rd))

∫
〈S2v − c2, Q⊗Q〉 dν(Q),

completing the proof.

Remark 8. The functionals MN and M∞ depend only on the positive part
of its argument. Given v ∈ C0(Rd), denote by v+ its positive part, i.e.,
v+ = max {v, 0}. For every choice of (x1, . . . , xN ) ∈ (Rd)N , if for some k
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we have v(xk) < 0, let xk → ∞ while keeping the other xj ’s fixed. This will
increase the value of v(xk) and decrease the value of cN (x1, . . . , xN ) by sending
to zero the terms `(|xj − xk|). Hence, the supremum in (3.5) is attained
for points (x1, . . . , xN ) such that v(xj) ≥ 0 for every j, thus proving that
MN (v) = MN (v+). By passing to the limit, we get the same property for
M∞.

Definition 4. The direct energy D : M(Rd)→ [0,+∞] is given by

D(ρ) =


∫
`(|x− y|)dρ(x)dρ(y) if ρ ∈ P(Rd)

+∞ otherwise.
(3.7)

The name “energy” is inherited from a physical model where ρ represents a
charge density, as this functional equals (up to constants) the potential energy
due to the self-interaction of the density ρ.

Lemma 3.2.13. For every v ∈ C0(Rd) we have M∞(v) = D∗(v).

Proof. Recall that the definition of D∗(v) is

D∗(v) = sup
ρ∈P(Rd)

〈v, ρ〉 −D(ρ)

and notice that 〈v, ρ〉 = 〈S2v, ρ⊗ ρ〉 and
∫
`(|x− y|)dρ(x)dρ(y) = 〈c2, ρ⊗ ρ〉

for every ρ ∈ P(Rd). The conclusion follows from Proposition 3.2.12

Corollary 3.2.14. For every ρ ∈M(Rd) we have C∞(ρ) = D∗∗(ρ).

Proof. Combine Lemma 3.2.13 and Remark 7.

In the aforementioned work by B. Pass et al. [36], it was proven that
limN→∞CN (ρ) = D(ρ) in the case of a positive-definite cost function, i.e.,
in the case when D is a convex functional. Corollary 3.2.14 is therefore an
extension of their result, valid for every pairwise cost function.

Definition 5. For 1 ≤ α ≤ 2, let us denote by Dα : M(Rd) → [0,+∞] the
α-homogeneous extension of D to sub-probabilities, i.e.,

Dα(ρ) =

|ρ|αD
(
ρ

|ρ|

)
if ρ ∈ P−(Rd)

+∞ otherwise.

Remark 9. Observe that D2(ρ) = 〈c2, ρ⊗ ρ〉 for every ρ ∈ P−(Rd).

Theorem 3.2.15. For every 1 ≤ α ≤ 2 we have C∞ = D∗∗α .
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Proof. We rely on Corollary 3.2.14 and prove that D∗∗ = D∗∗α . Clearly we have
Dα ≤ D for every α ∈ [1, 2], hence D∗∗α ≤ D∗∗. Moreover, since D2 ≤ Dα, it
suffices to prove that D∗∗ ≤ D∗∗2 . We will proceed by proving that D ≤ D2.
In view of Lemma 3.1.2, we will get D∗∗ = (D)∗∗ ≤ D∗∗2 , as wanted.

Recall that

D(ρ) = inf
ρn⇀ρ

lim inf
n→∞

D(ρn).

Let ρ ∈ P−(Rd) with compact support. If D2(ρ) = +∞ then there is
nothing to prove, so assume that D2(ρ) < +∞. Our goal is to construct a
sequence ρn ⇀ ρ such that lim inf D(ρn) ≤ D2(ρ). This will imply that

D(ρ) ≤ lim inf
n→∞

D(ρn) ≤ D2(ρ).

Let us introduce the following technical result.

Lemma 3.2.16. Let ρ ∈ P−(Rd) with compact support. Then

lim
|h|→∞

〈c2, ρ⊗ τhρ〉 = 0.

Proof. Given ε > 0, let R be such that ρ(B(0, R)c) = 0 and `(r) < ε for r ≥ R.
Then, if |h| ≥ 3R we have∫∫

`(|x− y|)dρ(x)dτhρ(y) =

∫∫
`(|x− y − h|)dρ(x)dρ(y)

=

∫∫
B(0,R)×B(0,R)

`(|x− y − h|)dρ(x)dρ(y) ≤ ε.

Fix a unitary direction u ∈ Rd. In view of Lemma 3.2.16, for every n ≥ 1
let Rn be such that

〈c2, ρ⊗ τruρ〉 ≤
1

n2

as |r| ≥ Rn. Let hn,j = Rnju for j = 0, . . . , n, so that hn,i − hn,j = ru with
|r| ≥ Rn for every i 6= j. We define

ρn = ρ+
1− |ρ|
n

n∑
j=1

τhn,jρ.

Notice that ρn ∈ P(Rd), and ρn ⇀ ρ by Lemma 3.1.5. By translation
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invariance of D2 and the choice of the hn,j ’s we get

D(ρn) = D2(ρ) +
2(1− |ρ|)

n

n∑
i,j=0
i 6=j

〈
c2, τhn,iρ⊗ τhn,jρ

〉

+
(1− |ρ|)2

n2

n∑
j=1

〈
c2, τhn,jρ⊗ τhn,jρ

〉
= D2(ρ) +

2(1− |ρ|)
n

n∑
i,j=0
i 6=j

〈
c2, ρ⊗ τ(hn,i−hn,j)ρ

〉
+

(1− |ρ|)2

n2

n∑
j=1

D2(ρ)

≤ D2(ρ) +
2(1− |ρ|)

n
+

(1− |ρ|)2

n
D2(ρ),

whence

lim inf
n→∞

D(ρn) ≤ D2(ρ).

If ρ ∈ P−(Rd) does not have compact support, consider for every n ∈ N the
measure ρn := ρbB(0,n). Notice that ρn ⇀ ρ, since

∣∣∫ f(x)d(ρ(x)− ρn(x))
∣∣ ≤

sup |f | ρ(B(0, n)c) → 0 for every f ∈ C0(Rd) — actually, the same holds for
every f ∈ Cb(Rd), i.e., ρn → ρ tightly. Then

D(ρ) ≤ lim inf
n→∞

D(ρn) ≤ lim inf
n→∞

D2(ρn) ≤ D2(ρ).

This concludes the proof of Theorem 3.2.15.

Understanding in general the behaviour of D∗∗, even on probabilities,
seems to be a difficult problem. This difficulty would be very much simplified,
at least for sub-probabilities, if we could prove some homogeneity.

Let us fix ρ ∈ P(Rd) and θ ∈ [0, 1], and go back to the stratification
formula (3.4), reported here for the sake of the reader:

CN (θρ) = inf
a1,...,aN≥0

ρ1,...,ρN∈P(Rd)

{
N∑
k=2

ak
k(k − 1)

N(N − 1)
Ck(ρk) |

N∑
k=1

ak ≤ 1,

N∑
k=1

k

N
akρk = θρ

}
.

In an optimal choice a1, . . . , aN there will be a minimum and a maximum
index k such that ak > 0, which we denote respectively by k(N, θρ) and
k(N, θρ). Observe that

N∑
k=1

k

N
akρk = θρ =⇒

N∑
k=1

kak = θN,

hence necessarily k(N, θρ) ≤ θN ≤ k(N, θρ).
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Conjecture 3.2.17. The gap between k(N, θρ) and k(N, θρ) vanishes (with
respect to N) as N →∞, i.e.,

lim sup
N→∞

k(N, θρ)

N
= lim inf

N→∞

k(N, θρ)

N
= θ.

This is weak version of the statement

k(N, θρ) = bθNc, k(N, θρ) = dθNe,

which was initially conjectured by some people in the field but is probably
not true, according to some recent works in preparation by S. Di Marino, M.
Lewin and L. Nenna.1

An immediate application of Conjecture 3.2.17 is given in the following

Theorem 3.2.18. Suppose that Conjecture 3.2.17 holds. Then the functional
C∞ is 2-homogeneous, i.e.,

C∞(θρ) = θ2C∞(ρ) ∀ρ ∈ P(Rd), ∀θ ∈ [0, 1].

Proof. It suffices to consider θ ∈ (0, 1). One inequality is true independently
from Conjecture 3.2.17, namely C∞(θρ) ≤ θ2C∞(ρ). Indeed, from Corol-
lary 3.2.6, by choosing a suitable sequence (kN )N≥2 such that lim kN

N = θ, we
get

M∞(θv) ≥ θ2M∞(v),

whence

C∞(ρ) = sup
v∈C0(Rd)

〈v, ρ〉−M∞(v) ≥ 1

θ2
sup

v∈C0(Rd)

〈θv, θρ〉−M∞(θv) =
1

θ2
C∞(θρ).

For the converse, let ρ1, . . . , ρN and a1, . . . , aN optimal in (3.4) for θρ, with
a1 = · · · = ak−1 = 0. Then by convexity of Ck we have

CN (θρ) =

N∑
j=k

aj
j(j − 1)

N(N − 1)
Cj(ρj)

≥ k − 1

N − 1

N∑
j=k

aj
j

N
Ck(ρj) ≥

k − 1

N − 1
θCk(ρ).

If there exists a sequence (Nh)h∈N such that limh→∞
k(Nh,θρ)
Nh

= θ (Conjec-

ture 3.2.17), then we can conclude that C∞(θρ) ≥ θ2C∞(ρ), as wanted.

1Personal communication.
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3.3 Minimizers and ionization effect

Finally we come back to the problem stated in the introduction, namely a
minimum problem of the form

inf
ρ∈P(Rd)

{CN (ρ) + F(ρ)} (3.8)

for some functional F(ρ). We want to address the instances of this problem
when F is linear and continuous, i.e.,

F(ρ) = −〈v, ρ〉

for some potential v ∈ C0. As we already observed, (3.8) in this case makes
sense only when sup v > 0, otherwise the infimum is zero, and a minimizing
sequence vanishes weakly by spreading mass to infinity.

Fix thus v ∈ C0(Rd) such that sup v > 0, and consider the function

gv : (0,+∞)→ (0, sup v]

λ 7→ M∞(λv)

λ
. (3.9)

Proposition 3.3.1. Let gv defined as in (3.9). Then

(i) gv is increasing;

(ii) lim
λ→+∞

gv(λ) = sup v.

Proof. Since M∞ is convex and M∞(0) = 0,

M∞(λv) = M∞

(
λ

λ′
λ′v +

λ′ − λ
λ′

0

)
≤ λ

λ′
M∞(λ′v) ∀0 < λ ≤ λ′,

thus proving (i).

(ii) Using Corollary 3.2.7 and Lemma 3.2.2, we have

M∞(λv) ≤MN (λv) ≤ λ sup v,

whence

lim sup
λ→+∞

M∞(λv)

λ
≤ sup v.

By Corollary 3.2.10, given ε > 0 let ρε ∈ P(Rd) such that:

• 〈v, ρε〉 ≥ (1− ε) sup v;

• C∞(ρε) < +∞.
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This can be achieved by taking a sequence {ρn} in the domain of C∞ such
that ρn ⇀ δx, where v(x) = sup v, and letting ρε = ρn for a suitable n large
enough. Then

M∞(λv) ≥ λ 〈v, ρε〉 − C∞(ρε) ≥ λ(1− ε) sup v − C∞(ρε),

whence

lim inf
λ→+∞

M∞(λv)

λ
≥ (1− ε) sup v.

Since ε was arbitrary we get

sup v ≤ lim inf
λ→+∞

M∞(λv)

λ
≤ lim sup

λ→+∞

M∞(λv)

λ
≤ sup v,

as wanted.

Given v ∈ C0(Rd) such that sup v > 0, we denoteM(v) the set of minimiz-
ers of the functional ρ 7→ C∞(ρ)− 〈v, ρ〉. In other words, for every ρ ∈ M(v)
we have M∞(v) = 〈v, ρ〉 − C∞(ρ). Here we see clearly the link between the
minimum problem (3.8) and the Γ-limit of the Legendre-Fenchel conjugate
M∞.

It is of great interest to understand if the minimizersM(v) are probabilities
or not. When the mass of a minimizing density ρ is less than one we have
the so-called ionization phenomenon, taking the name from the case where ρ
denotes the charge density of N electrons. For this reason we want to state,
up to our knowledge, some conditions to have probability solutions to the
problem (3.8).

Theorem 3.3.2. Suppose that C∞ is 2-homogeneous, i.e., C∞(tρ) = t2C∞(ρ)
∀t ∈ [0, 1], ∀ρ ∈ P(Rd). Then

|ρ| ≥ min

{
1,

2M∞(v)

sup v

}
∀ρ ∈M(v).

Proof. Let ρ ∈ M(v). If ρ is a probability, there is nothing to prove, so
assume that ρ = t0µ0 for some t0 ∈ [0, 1), µ0 ∈ P(Rd). In particular, t0 must
minimize the function g(t) = 〈v, tµ0〉−C∞(tµ0) = t 〈v, µ0〉−t2C∞(µ0). Hence,

by differentiating, t0 = 〈v,µ0〉
2C∞(µ0) . Recall however that ρ ∈M(v), whence

M∞(v) = 〈v, ρ〉 − C∞(ρ) = t0 〈v, µ0〉 − t20C∞(µ0) =
t0
2
〈v, µ0〉 ≤

t0
2

sup v,

as wanted, since t0 = |ρ|.

The Theorem 3.3.2 provides a sufficient condition in order to assure that
the minimum problem has only probability solutions.



66 Chapter 3

Corollary 3.3.3. Suppose that C∞ is 2-homogeneous, and let v ∈ C0(Rd)
such that M∞(v) ≥ sup v

2 > 0. Then M(v) ⊆ P(Rd).

Proof. It follows immediately from Theorem 3.3.2.

When we make the potential grow in size, there is a threshold past which
we always have probability solutions. This is reasonable: due to the minus
sign in front of the potential term, we are putting a very strong confining
potential, which does not allow the mass (or charge) to escape at infinity.

Proposition 3.3.4. For every v ∈ C0 such that sup v > 0, there exists a
threshold λ∗(v) ≥ 0 such that

M(λv) ⊆ P(Rd) ∀λ ≥ λ∗(v).

Proof. In view of Corollary 3.3.3, it suffices to show that M∞(λv) ≥ λ
2 sup v

for λ large enough. This follows from Proposition 3.3.1.

3.A Explicit computations for CN

An explicit computation of the relaxed transport cost CN (ρ) for a general sub-
probability ρ ∈ P−(Rd) is often much involved, and in most case impossible
to carry out. In this Section we present, to the best of our knowledge, some
examples for atomic probabilities. We begin with the following result about a
linear programming problem.

Lemma 3.A.1. Let 0 ≤ θ ≤ 1 and N ≥ 2. Then

max
a0,...,aN≥0

{∑
k2ak |

∑
ak = 1,

∑
kak = θN

}
= θN2,

min
a0,...,aN≥0

{∑
k2ak |

∑
ak = 1,

∑
kak = θN

}
= θ2N2 + {θN} (1− {θN}),

where {θN} denotes the fractional part of θN .

Proof. Let a0, . . . , aN ≥ 0 be admissible parameters. Observe that for every
k we have

∣∣k − N
2

∣∣ ≤ N
2 , which yields

N∑
k=0

k2ak =

N∑
k=0

(
k − N

2

)2

ak + θN2 − N

4

2

≤ N2

4
+ θN2 − N2

4
= θN2.

On the other hand, the choice a0 = 1− θ, aN = θ, ak = 0 for k 6= 0, N , fulfills
the constraints and gives

∑
k2ak = θN2.

Let k0 ≤ θN ≤ k0 +1. We claim that an optimal solution for the minimum
problem is given by ak0 = k0+1−θN , ak0+1 = θN−k0, ak = 0 if k 6= k0, k0+1.
Indeed, let b0, . . . , bN any admissible choice of parameters, observe that

ak0 =
N∑
k=0

(k0 + 1− k)bk, ak0+1 =
N∑
k=0

(k − k0)bk,
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whence

k2
0ak0 + (k0 + 1)2ak0+1 =

N∑
k=0

(k3
0 + k2

0 − k2
0k + (k0 + 1)2k − (k0 + 1)2k0)bk

=

N∑
k=0

(2k0k + k − k2
0 − k0)bk

=
N∑
k=0

k2bk −
N∑
k=0

((k0 − k)2 + (k0 − k))bk.

Since each term of the last sum is positive (both if k ≤ k0 and if k ≥ k0), we
proved that the choice ak0 = k0+1−θN = 1−{θN}, ak0+1 = θN−k0 = {θN}
is optimal. Finally, notice that

k2
0ak0 + (k0 + 1)2ak0+1 = (θN − k0)2ak0 + (k0 + 1− θN)2ak0+1 + θ2N2

= θ2N2 + a2
k0+1ak0 + a2

k0ak0+1 = θ2N2 + ak0ak0+1.

We want to compute the relaxed cost of a Dirac delta. Since every trans-
port plan must be a Dirac delta on its own, concentrated on a point X ∈ Rd
with equal coordinates, it is necessary to assume that `(0) is finite in order to
get a sensible result. From now on we assume thus that `(0) < +∞.

Theorem 3.A.2. Let θ ∈ [0, 1]. Then

CN (θδ0) =

0 if θN ≤ 1(
θ2N

N − 1
− θ

N − 1
+
{θN} (1− {θN})

N(N − 1)

)
`(0) otherwise.

Proof. As we already observed in section 3.2, if θ = |θδ0| ≤ 1
N , then CN (θδ0) =

0. Assume hence that θN > 1. Recalling that Ck(δ0) = `(0) for every k ≥ 2,
by (3.4) we have

CN (θδ0) =
2`(0)

N(N − 1)
inf

a1,...,aN≥0

{
N∑
k=2

k(k − 1)

2
ak |

N∑
k=1

ak = 1,

N∑
k=1

k

N
ak = θ

}

=
2`(0)

N(N − 1)
inf

a0,...,aN≥0

{
N∑
k=0

k(k − 1)

2
ak |

N∑
k=0

ak = 1,
N∑
k=0

k

N
ak = θ

}
.

Indeed, every a1, . . . , aN admissible in the first line produces a choice of
parameters for the second line by letting a0 = 0. Conversely, as we deduce
from the proof of Lemma 3.A.1, since θN > 1, in an optimal solution for the
second line we have a0 = 0, and we get a choice of parameters for the first
line. In view of Lemma 3.A.1, we conclude that

CN (θδ0) =
2`(0)

N(N − 1)

(
θ2N2 + {θN} (1− {θN})

2
− θN

2

)
,

as wanted.
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Recall that, by monotonicity, the Γ-limit of CN is also the pointwise limit
of CN . Observe that, by Theorem 3.A.2, we have

C∞(θδx) = lim
N→∞

CN (θδ0) = θ2`(0) = θ2C∞(δx),

since

CN (δx) = CN (δx) = `(0),

as the set of transport plans consists only of the element ρ ⊗ · · · ⊗ ρ. Thus,
at least in the case when `(0) < ∞, we get 2-homogeneity of C∞ for Dirac
masses, in agreement with Theorem 3.2.18.

The next step is to compute the relaxed transport cost for a convex com-
bination of two Dirac masses. As before, it is necessary to assume that `(0)
is finite.

Theorem 3.A.3. Let 0 ≤ θ ≤ 1, and ρ = θδx + (1− θ)δy. Then

CN (ρ) = [1− γ(N, θ)]`(0) + γ(N, θ) min {`(|x− y|), `(0)} ,

where

γ(N, θ) =
2θ(1− θ)N
N − 1

− 2 {θN} (1− {θN})
N(N − 1)

.

Proof. Every symmetric N -transport plan PN with marginals ρ is given by

PN =

N∑
k=0

ak Sym(δx ⊗ · · · ⊗ δx︸ ︷︷ ︸
k times

⊗ δy ⊗ · · · ⊗ δy︸ ︷︷ ︸
N−k times

)

where the ak’s must satisfy ak ≥ 0,
∑
ak = 1 and the marginal condition.

The latter may be written as follows:

N∑
k=0

k

N
ak = θ,

N∑
k=0

N − k
N

ak = 1− θ. (3.10)

Indeed, this is a general fact about the Sym operation: every marginal of
Sym(µ) is the arithmetic mean of the N marginals of µ.

In order to compute the cost of PN , it is useful to observe that, due to the
pairwise structure of the cost,

〈cN , PN 〉 =

∫
Rd×Rd

`(|u− v|)dπ2(PN )(u, v), (3.11)

where π2(PN ) denotes the 2-marginals projection of PN .
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Let us compute π2(PN ). Consider the
(
N
k

)
different permutations of the

string (x, . . . , x︸ ︷︷ ︸
k times

, y, . . . , y︸ ︷︷ ︸
N−k times

) given by the Sym operation: there are2

(
N − 2

k − 2

)
of them starting with (x, x),(

N − 2

k

)
of them starting with (y, y),(

N − 2

k − 1

)
of them starting with either (x, y) or (y, x).

The 2-marginals projection of PN , which can be computed by integrating
out all the variables except the first two, is given hence by

π2(PN ) =

N∑
k=0

ak(
N
k

)[(N − 2

k − 2

)
δx ⊗ δx +

(
N − 2

k

)
δy ⊗ δy

+

(
N − 2

k − 1

)
δx ⊗ δy +

(
N − 2

k − 1

)
δx ⊗ δy

]

Let us define for simplicity αk =
(N−2
k−2)+(N−2

k )
(Nk )

, βk = 2
(N−2
k−1)
(Nk )

, and observe

that αk + βk = 1 by the recursion formula for binomial coefficients. Recalling
(3.11), the transport cost of PN is given by

〈cN , PN 〉 =

N∑
k=0

ak [αk`(0) + βk`(|x− y|)] = `(0) + [`(|x− y|)− `(0)]

N∑
k=0

akβk

Observe that

N∑
k=0

akβk =
2

N(N − 1)

N∑
k=0

(−k2 + kN)ak =
2θN

N − 1
− 2

N(N − 1)

N∑
k=0

k2ak.

If `(|x− y|) ≥ `(0), by Lemma 3.A.1 the minimal value is

N∑
k=0

akβk =
2θN

N − 1
− 2

N(N − 1)
θN2 = 0.

If `(|x− y|) < `(0), again by Lemma 3.A.1 the minimal value is

N∑
k=0

akβk =
2θN

N − 1
− 2

N(N − 1)
(θ2N2 + {θN} (1− {θN}))

=
2θ(1− θ)N
N − 1

− 2 {θN} (1− {θN})
N(N − 1)

= γ(N, θ).

2Here and in the following, we adopt the convention that
(
N
k

)
= 0 if k ≤ 0 or k > N .
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As a consequence we get

C∞(θδx + (1− θ)δy) = (θ2 + (1− θ2))`(0) + 2θ(1− θ) min {`(|x− y|), `(0)} .

Let ρ = θδx + (1 − θ)δy. It may be interesting to observe that, in the case
when `(0) > `(|x− y|) we get

C∞(ρ) =

∫
`(
∣∣x′ − y′∣∣)dρ(x′)dρ(y′),

as in the Pass’ result [36], while in the case `(0) ≤ `(|x− y|) we get a Monge-
type integral

C∞(ρ) =

∫
`(
∣∣x′ − T (x′)

∣∣)dρ(x′),

with T = id.



Chapter 4

Smoothing of transport plans
with fixed marginals

In this Chapter we focus on a multi-marginal Optimal Transport problem
on the Euclidean space. Suppose we are given N Borel probability measures
ρ1, . . . , ρN ∈ P(Rd), and a transport plan µ ∈ Π(ρ1, . . . , ρn) — usually it
will be an optimal transport plan associated to some cost function. As we
already know from the previous chapters, even when ρ1, . . . , ρn share some
regularity properties (e.g., they are absolutely continuous w.r.t. the Lebesgue
measure, or their densities are in some class of regular functions), typically the
transport plan µ will not share the same regularity. In fact, optimal transport
plans tends to concentrate on sets of zero Lebesgue measure, as is for instance
the case when there is a Monge-type solution.

When considering quantum systems of particles, the Schrödinger equation
can be naturally stated for wave-functions with Sobolev regularity, i.e., a
wave-function ψ lies in H1((Rd)N ). If we consider, according to the Born
interpretation, the measure dµ(X) = |ψ(X)|2 dX on (Rd)N as the probability
distribution of finding the particles in positions X = (x1, dotsc, xN ), then the
marginals of µ are given by

ρj(xj) =

∫
(Rd)N−1

|ψ(x1, . . . , xN )|2 dx1 · · · dxj−1 dxj+1 · · · dxN .

It is not difficult to show (see for instance [34, Theorem 1.1]) that in this case√
ρj ∈ H1(Rd) for every j = 1, . . . , N . For this reason, we will concentrate

on the case when the measures ρ1, . . . , ρN have a Sobolev-type regularity, as
clarified in the following

Definition 6. If p > 1, we say that a probability measure µ ∈ P(Rm) is W 1,p-
regular if µ is absolutely continuous with respect to the Lebesgue measure Lm,
and (

dµ

dLm

)1/p

∈W 1,p(Rm).

71
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In other words, µ is W 1,p-regular if there exists f ∈ W 1,p(Rm), f ≥ 0, such
that

dµ

dLm
= fp.

Since in the following we will use this definition both for measures on Rd
and on (Rd)N , we keep a generic dimension m for the Euclidean space. We
will denote by Pp(Rm) the space of W 1,p-regular probability measures. This
definition arises naturally in the setting of Density Functional Theory as a
generalization of the one given by Lieb in [34] for p = 2, but since the theory
works for every Sobolev exponent p > 1, we prefer to keep it generic. Also, in
the Hilbertian case p = 2, some results enjoy a simplified proof and sharper
constants, as we will show in due time.

From here on, p will be a fixed real number greater than 1. The set Pp(Rm)
has a natural structure of metric space if endowed with the distance

dp(µ, ν) =

∥∥∥∥∥
(

dµ

dLm

)1/p

−
(

dν

dLm

)1/p
∥∥∥∥∥
W 1,p

,

which can be seen as a refined version of the Hellinger distance between two
absolutely continuous probability measures, where the Lp norm of the p-th
roots is replaced by the W 1,p norm. We delay to Section 4.1 a more detailed
study of the metric space Pp(Rm).

As we already noticed, even when the marginals ρ1, . . . , ρN are W 1,p-
regular, the plan µ will in general be singular. On the other hand, for many
applications, and in particular when dealing with Γ-convergence, it is useful
to have regular transport plans which are “close” to a given optimal one (see
for instance [4, 19, 32]). With this in mind, we want to address the following

Problem: Given ρ1, . . . , ρN ∈ Pp(Rd), and given µ ∈ Π(ρ1, . . . , ρN ),
find a family (µε)ε>0 such that:

(i) µε ∈ Pp((Rd)N ) for every ε > 0;

(ii) µε ∈ Π(ρ1, . . . , ρN );

(iii) µε → µ as ε→ 0 (for a suitable notion of convergence).

In other words, we search for W 1,p-regular multi-marginal transport plans
with marginals ρ1, . . . , ρN which approximate a (non regular) transport plan
µ. Since in general µ does not have any regularity property, the natural
topology for (iii) is the tight convergence of probability measures, i.e., weak
convergence in duality with Cb

(
(Rd)N

)
(continuous and bounded functions).

Notice that, if µ is an optimal transport plan for some cost function c, and
the cost function is upper semi-continuous and bounded from above, combin-
ing (iii) and the Portmanteau’s Theorem we get

lim
ε→0

∫
c(X) dµε(X) =

∫
c(X) dµ(X),
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whence we may say that µε is “almost” optimal for small ε.
One could think that a very common technique for regularizing, namely

the convolution with a smooth kernel, should be a good approach for dealing
with this type of problems. However, the marginal constraint, which is crucial
in all applications in optimal transport, is not stable under any convolution
operation, which makes the problem not trivial.

The main result of this chapter is the following

Theorem 4.0.1. Let µ ∈ P((Rd)N ) such that πk#µ ∈ Pp(Rd) for every k =

1, . . . , N . Then for every ε > 0 there exists Θε[µ] ∈ Pp(Rd) such that the
following hold.

(i) πk#Θε[µ] = πk#µ for every k = 1, . . . , N.

(ii) For every ε > 0,
W2(Θε[µ], µ) ≤ C(d)

√
Nε,

where W2 denotes the Wasserstein distance. If moreover µ ∈ Pp((Rd)N ),
then Θε[µ]→ µ in the dp-metric as ε→ 0.

Observe that Theorem 4.0.1.(ii) implies that Θε[µ] ⇀ µ as ε → 0, as
wanted. We will call Θε[µ] given by Theorem 4.0.1 a “smoothing operator”,
viewed as a functional

Θ: (0,+∞)× P
(

(Rd)N
)
−→ Pp

(
(Rd)N

)
(ε, µ) 7−→ Θε[µ]

The construction of the operator Θ will depend on the choice of a function
η ∈ C∞(Rd), which will play the role of a convolution kernel. Depending on
the choice of η we will have additional properties, as stated in the following

Theorem 4.0.2. Let η be supported on B(0, 1), and Ω ⊆ (Rd)N such that
Ω + B(0, r) ⊂ (Rd)N \ suppµ for some r > 0. Then Θε(µ) = 0 on Ω as soon
as ε < r/2.

Theorem 4.0.3. Let η be a Gaussian kernel, and suppose that µn ⇀ µ, and
π#µn → π#µ in the dp-topology. Then Θε(µn)→ Θε(µ) in the dp-topology for
every ε > 0.

In other words, when taking a Gaussian kernel, weak convergence is re-
inforced to Sobolev convergence as soon as the smoothing parameter ε is
positive, and the marginals converge in the Sobolev sense.

This results will prove very useful for the applications in the final chapter,
where we will choose the kernel η accordingly to our needs.

Finally, we want to point out that the definition of the smoothing operator,
which we give in the case of Sobolev spaces due to physical interest, works
in the same way for other classes of absolutely continuous measures, e.g.,
measures with Ck,α density, with analogous regularity and continuity results.
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Structure of the chpater The material of this chapter derives mainly
from [3]. In Section 4.1 we will introduce some notation and some preliminary
results about p-th powers and p-th roots of non-negative Sobolev functions.
Moreover a short overview of the space Pp is given, with special attention
to the map sending a measure to its marginals. Many of the proofs for this
Section will be put in the Appendix, in order to focus better on the proof of
Theorem 4.0.1.

In Section 4.2 we will present the proof of Theorem 4.0.1. In Section 4.3
we will prove Theorem 4.3.1 and Theorem 4.3.2. Finally, in the Appendix we
will complete the missing proofs from Section 4.1 and Section 4.2.

4.1 Preliminary results and the space Pp
Notation

If f : (Rd)N → R, and 1 ≤ k ≤ N , we denote by∫
f(X) dX̂k :=

∫
f(x1, . . . , xN ) dx1 · · · dx̂k · · · dxN

the integral of f with respect to all the variables except xk. This is a function
of the variable xk.

When f ∈W 1,p(Rm), we will adopt the convention that

|∇f | :=

 m∑
j=1

|∂xkf |
p

1/p

, (4.1)

i.e., when computing the norm of a gradient we take on Rm the p-th norm.

Roots and powers of Sobolev functions

When dealing with a smooth non-negative function u, we know that ∇(uα) =
αuα−1∇u. This is also true for Sobolev functions if the RHS has the right
summability. To make everything clear we state the following results, which
will be useful later in order to have an expression for the weak derivatives of
p-th powers and p-th roots of non-negative Sobolev functions. The proofs of
Proposition 4.1.1 and Proposition 4.1.2 will be given in the Appendix.

Proposition 4.1.1. Let p > 1. If u ∈W 1,p(Rm), u ≥ 0, then up ∈W 1,1(Rm),
and ∇up = pup−1∇u.

Viceversa, let u ∈W 1,1(Rm), u ≥ 0, such that∫
u1−p |∇u|p <∞. (4.2)

Then u1/p ∈W 1,p(Rm), and ∇u1/p = 1
pu

1−p
p ∇u.
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The condition (4.2) in Proposition 4.1.1 is necessary, as the following ex-
ample shows.

Example 1. In dimension m = 1, fix p > 1 and consider the W 1,1 function

f(x) =

{
sin(x)p−1 0 ≤ x ≤ π
0 otherwise,

whose weak derivative is f ′(x) = χ[0,π](p− 1) sin(x)p−2 cos(x). However, f1/p

does not belong to W 1,p(R), since the weak derivative of f1/p should be g(x) =
p−1
p χ[0,π] sin(x)

− 1
p cos(x), but∫ π

0
|g(x)|p dx =

(p− 1)p

pp

∫ π

0

|cos(x)|p

sin(x)
dx

diverges at both 0 and π.

Proposition 4.1.2. If un → u in W 1,p(Rm), un, u ≥ 0, then upn → up in
W 1,1(Rm).

Viceversa, let un → u in W 1,1(Rd), un, u ≥ 0. Let hn, h ∈ L1(Rm) such
that u1−p

n |∇un|p ≤ hn, u1−p |∇u|p ≤ h, and

lim
n→∞

∫
hn =

∫
h. (4.3)

Suppose also that for every subsequence {hnk} there exists a further subse-

quence converging to h pointwise a.e. Then u
1/p
n → u1/p in W 1,p(Rm).

The space Pp of regular measures

We aim to study the space
(
Pp
(
(Rd)N

)
, dp
)

in relation with the map which
sends a W 1,p-regular probability onto its marginals, namely

π : Pp
(

(Rd)N
)
−→ P(Rd)N (4.4)

µ 7−→
(
µ1, . . . , µN

)
.

We have the following

Proposition 4.1.3. Let p > 1. Then

(i) if µ ∈ Pp((Rd)N ), then µk ∈ Pp(Rd) for every k = 1, . . . , N ;

(ii) the map π : Pp
(
(Rd)N

)
−→ Pp(Rd)N is continuous with respect to the

distance dp and the relative product topology on the codomain.
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This will be proved in the Appendix. We remark that Proposition 4.1.3(ii)
was alredy proved by Brezis in [34, Appendix] in the case p = 2. In what
follows, if µ is W 1,p-regular, with a slight abuse of notation we will denote by
µ(X) its density, whose p-th root belongs to W 1,p

(
(Rd)N

)
. For k = 1, . . . , N

let

µk(xk) =

∫
µ(X) dX̂k, ∇µk(xk) =

∫
∇xkµ(X) dX̂k, (4.5)

where ∇xkµ is defined according to Proposition 4.1.1. It is easy to prove, ap-
proximating µ with smooth functions, that ∇µk is the distributional gradient
of µk, hence µk ∈W 1,1(Rd).
Remark 10. Notice that µk coincides with the (density of the) push-forward
measure under the projection πk : (Rd)N → Rd on the k-th factor, which makes
the notation consistent.

If µ ∈ Pp(Rm), it will be useful to deal with the Sobolev norm of µ1/p.
However, since µ is a probability,∥∥∥µ1/p

∥∥∥p
W 1,p

=

∫
µ(x) dx+

∫ ∣∣∣∇µ1/p(x)
∣∣∣p dx = 1 +

∫ ∣∣∣∇µ1/p(x)
∣∣∣p dx,

hence all the information is contained in the second summand. Therefore we
give the following

Definition 7. If µ ∈ Pp, the W 1,p-energy of µ is defined as

Ep(µ) =

∫ ∣∣∣∇µ1/p(x)
∣∣∣p dx. (4.6)

In the special case p = 2, this quantity may be seen as the kinetic en-
ergy

∫
|∇ψ|2 of a system described by a wave-function ψ ∈ W 1,2(Rm), which

justifies the name. It is well-known (see for instance [34]) that the kinetic
energy of a wave-function is bounded from below by (a constant times) the
kinetic energy of its marginals. This is also true in our setting, as stated in
the following

Lemma 4.1.4. Let µ ∈ Pp
(
(Rd)N

)
. Then

Ep(µ) ≥
N∑
k=1

Ep(µk).

Moreover, if ρ1, . . . , ρN ∈ Pp(Rd),

inf {Ep(µ) | µ ∈ Pp(Rm) ∩Π(ρ1, . . . , ρN )} =
N∑
k=1

Ep(ρk).

Proof. See Appendix.
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Finally, the following proves a monotonicity property and a continuity
property of the energy with respect to convolution, which will be useful later
(since convolution will be one of the main tools for the proof of Theorem 4.0.1).

Lemma 4.1.5. Let η ∈ C∞(Rm), η ≥ 0 such that
∫
η = 1 and define ηε(x) =

1
εm η

(
x
ε

)
, for ε > 0. Then, for every µ ∈ Pp(Rm),

Ep(µ ∗ ηε) ≤ Ep(µ) and lim
ε→0
Ep(µ ∗ ηε) = Ep(µ).

Proof. See Appendix.

4.2 Proof of Theorem 4.0.1

In this Section we deal with the proof of Theorem 4.0.1. To this end, we will
define an operator

Θ: R+ × P
(

(Rd)N
)
−→ P

(
(Rd)N

)
(ε, µ) 7−→ Θε[µ]

such that the following properties hold.

A. If µk ∈ Pp(Rd) for every k = 1, . . . , N , then

Θε[µ] ∈ Pp((Rd)N ).

B. For every ε > 0, for every k = 1, . . . , N ,

Θε[µ]k = µk.

C. For every ε > 0,
W2(Θε[µ], µ) ≤ C(d)

√
Nε;

if moreover µ ∈ Pp((Rd)N ), then

lim
ε→0

dp(Θ
ε[µ], µ) = 0.

Construction of Θ and proof of property B

Fix a radial function η ∈ C∞(Rd),
∫
η = 1, η ≥ 0. We require that there

exists c(η) ∈ (0,+∞) such that∫
|∇η(z)|p

η(z)p−1
dz ≤ c(η) and

∫
|z|2 η(z) dz ≤ c(η)

Examples of functions with this properties are

η(z) =

{
e
− 1

1−|z|2 |z| < 1

0 otherwise
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or any Gaussian

η(z) =
1

(2πσ)d/2
e−
|z|2
2σ .

Given ε > 0, let ηε : Rd → (0,+∞) be given by

ηε(z) =
1

εd
η
(z
ε

)
.

The following property, immediate to obtain with a change of variables
εu = z, will be useful in the following:∫

|∇ηε(z)|p

ηε(z)p−1
dz =

1

ε2

∫
|∇η(u)|p

η(u)p−1
du =

c(η)

ε2

For µ ∈ P
(
(Rd)N

)
, we define the measure Λε[µ] as the convolution of

µ with the kernel ηε(x1) · · · ηε(xN ), i.e., if ψ : (Rd)N → R is any continuous
bounded function,

∫
ψ(Y ) dΛε[µ](Y ) :=

∫∫
ψ(Y )

N∏
j=1

ηε(yk − xk) dµ(X) dY. (4.7)

Notice that Λε[µ] is absolutely continuous with respect to the Lebesgue
measure, with density

Λε[µ](Y ) =

∫ N∏
j=1

ηε(yk − xk) dµ(X).

Finally, if ψ : (Rd)N → R is any continuous bounded function, we define
Θε[µ] via the expression

∫
ψ(X)Θε[µ](X) :=

∫∫
ψ(X)

N∏
j=1

ηε(yk − xk)
(µk ∗ ηε)(yk)

dµk(xk)Λ
ε[µ](Y ) dY, (4.8)

where the denominator (µk ∗ηε)(yk) denotes the density of the measure µk ∗ηε
evaluated at yk.

Remark 11. If (µk ∗ ηε)(yk) = 0, we have

0 =

∫
ηε(yk − xk) dµk(xk) =

∫
Λε(Y ) dŶk,

so the numerator also vanishes everywhere. It is safe to define the integrand
to be zero for such Y ’s. This convention will be assumed in the following.
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Remark 12. This construction fits into the general framework for the com-
position of transport plans, as in [1, Section 5.3]. Indeed, the definition of
Θε[µ] may be seen as follows: as a first step we regularize µ by convolution;
secondly, we consider the 2-transport plans βk for k = 1, . . . , N defined by∫

φ(x, y) dβk(x, y) =

∫
φ(x, y)ηε(x− y) dµk(y) dy

for any φ ∈ Cb(Rd ×Rd). Notice that βk has marginals µk ∗ ηε and µk. Then
Θε[µ] corresponds to the composition of Λε[µ] with βk on each corresponding
k-th marginal.

Remark 13 (Property B). For every ε > 0 and for every k = 1, . . . , N , we have
Λε[µ]k = µk ∗ ηε. Indeed, using Fubini’s Theorem,

Λε[µ]k(yk) =

∫∫ N∏
j=1

ηε(yk − xk) dµ(X) dŶk

=

∫
ηε(yk − xk) dµ(X) =

∫
ηε(yk − xk) dµk(xk).

Moreover, we have that Θε[µ]k = µk, which proves property B. Again by
Fubini’s theorem, and using the previous result,∫

φ(xk) dΘε[µ](X) =

∫∫
φ(xk)

N∏
j=1

ηε(yk − xk)
(µk ∗ ηε)(yk)

dµk(xk)Λ
ε[µ](Y ) dY

=

∫
φ(xk)

ηε(yk − xk)
(µk ∗ ηε)(yk)

dµk(xk)Λ
ε[µ](Y ) dY

=

∫
φ(xk)η

ε(yk − xk) dµk(xk) dyk =

∫
φ(xk) dµk(xk).

Proof of property A and energy estimates

In this Section we prove that Θ satisfies property A. Moreover, we will give
upper bounds for the W 1,p-energy of Θε[µ]. Let µ ∈ P

(
(Rd)N

)
such that

µk ∈ Pp(Rd) for every k = 1, . . . , N . Then Θε[µ] is absolutely continuous with
respect to the Lebesgue measure, with density given by

Θε[µ](X) =

∫
P ε[µ](X,Y ) dY,

where we denote by P ε[µ] the integral kernel appearing in (4.8), namely

P ε[µ](X,Y ) :=
N∏
k=1

ηε(yk − xk)
(µk ∗ ηε)(yk)

µk(xk)Λ
ε[µ](Y ). (4.9)
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Let us denote by

∇xkΘε[µ](X) :=
∇µk(xk)
µk(xk)

Θε[µ](X)−
∫
∇ηε(yk − xk)
ηε(yk − xk)

P ε[µ](X,Y ) dY. (4.10)

We claim that ∇xkΘε[µ](X) is the weak gradient with respect to the k-
th variable of Θε[µ](X) in W 1,1((Rd)N ). Indeed, if ψ ∈ C∞c ((Rd)N ), by the
Fubini’s Theorem we may perform first the integration in xk to get

−
∫
∇xkψ(X)Θε[µ](X) dX = −

∫∫
∇xkψ(X)P ε[µ](X,Y ) dX dY

=

∫∫
ψ(X)

∇µk(xk)
µk(xk)

P ε[µ](X,Y ) dX dY

−
∫∫

ψ(X)
∇ηε(yk − xk)
ηε(yk − xk)

P ε[µ](X,Y ) dX dY

=

∫
ψ(X)

∇µk(xk)
µk(xk)

Θε[µ](X) dX

−
∫
ψ(X)

∫
∇ηε(yk − xk)
ηε(yk − xk)

P ε[µ](X,Y ) dY dX.

To conclude that Θε[µ] ∈ Pp
(
(Rd)N

)
, in view of Proposition 4.1.1, it

suffices to show a suitable domination, which is given in the following

Lemma 4.2.1. Let µ ∈ P((Rd)N ) such that µk ∈ Pp(Rd) for every k =
1, . . . , N . Then

|∇xkΘε[µ](X)|p Θε[µ](X)1−p

≤ 2p−1

(∣∣∇µk(xk)∣∣p
µk(xk)p

Θε[µ](X) +

∫
|∇ηε(yk − xk)|p

ηε(yk − xk)p
P ε[µ](X,Y ) dY

)

Proof. The triangular inequality for the p-th norm on Rd gives

|∇xkΘε[µ](X)| ≤
∣∣∇µk(xk)∣∣
µk(xk)

Θε[µ](X) +

∫
|∇ηε(yk − xk)|
ηε(yk − xk)

P ε[µ](X,Y ) dY.

Using the Hölder inequality with exponents p and p
p−1 ,∫

|∇ηε(yk − xk)|
ηε(yk − xk)

P ε[µ](X,Y ) dY

≤
(∫

|∇ηε(yk − xk)|p

ηε(yk − xk)p
P ε[µ](X,Y ) dY

) 1
p

Θε[µ](X)
p−1
p ,

and the thesis follows.

Finally we get the proof of property A, together with the usual explicit
formula for the weak gradient of Θε[µ]1/p.
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Theorem 4.2.2 (Property A). Let µ ∈ P
(
(Rd)N

)
such that µk ∈ Pp(Rd) for

every k = 1, . . . , N . Then Θε[µ] ∈ Pp
(
(Rd)N

)
, and

∇xkΘε[µ]1/p(X) =
1

p
Θε[µ](X)

1−p
p ∇xkΘε[µ](X).

Proof. Recalling Proposition 4.1.1, it suffices to check that condition (4.2)
holds. Using Lemma 4.2.1 we have∫
|∇xkΘε[µ](X)|p Θε[µ](X)1−p dX

≤ 2p−1

(∫ ∣∣∇µk(xk)∣∣p
µk(xk)p

Θε[µ](X) dX +

∫∫
|∇ηε(yk − xk)|p

ηε(yk − xk)p
P ε[µ](X,Y ) dY dX

)

= 2p−1

(∫ ∣∣∇µk(xk)∣∣p
µk(xk)p−1

dxk +

∫
|∇ηε(z)|p

ηε(z)p−1
dz

)
≤ 2p−1pp

∥∥∥∇(µk)1/p
∥∥∥p
p

+
c(η)

ε2
,

where c(d, p) is a constant depending on the dimension d and the exponent
p.

From Theorem 4.2.2 we get also estimates on the W 1,p-energy of Θε[µ], as
stated in the following

Theorem 4.2.3. Let µ ∈ P
(
(Rd)N

)
. Then there exists a constant c(η, p)

such that

Ep(Θε[µ]) ≤
N∑
k=1

(
Ep(µk)1/p +

c(η, p)

ε2/p

)p
. (4.11)

If in addition µ ∈ Pp
(
(Rd)N

)
and p > 1, then

Ep(Θε[µ]) ≤
N∑
k=1

(∥∥∥∇xkΛε[µ]1/p
∥∥∥
p

+ c(p)∆k(ε, p, µ)

)p
(4.12)

where

∆k(ε, p, µ) =


[(
Ep(µk) + Ep(µk ∗ ηε)

) 1
p−1 − 2

1
p−1Ep(µk ∗ ηε)

1
p−1

] p−1
p

1 < p < 2(
Ep(µk)− Ep(µk ∗ ηε)

) 1
p p ≥ 2

and c(p) is an explicit constant depending only on the exponent p.

Proof. Combining Theorem 4.2.2 and (4.10) we get∫ ∣∣∣∇xkΘε[µ]1/p(X)
∣∣∣p dX =

1

pp

∫
Θε[µ](X)1−p |∇xkΘε[µ](X)|p dX

=
1

pp

∫ ∣∣∣∣∇µk(xk)µk(xk)
Θε[µ](X)1/p + Θε[µ](X)

1−p
p

∫
∇ηε(yk − xk)
ηε(yk − xk)

P ε[µ](X,Y ) dY

∣∣∣∣p dX

=:
1

pp

∫
|f(X) + g(X)|p dX.
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Then we have

∫
|f(X)|p dX =

∫ ∣∣∇µk(xk)∣∣p
µk(xk)p

Θε[µ](X) dX =

∫ ∣∣∇µk(xk)∣∣p
µk(xk)p−1

dxk = ppEp(µk).

By the Hölder inequality (as in the proof of Lemma 4.2.1), we have

|g(X)|p = Θε[µ](X)1−p
∣∣∣∣∫ ∇ηε(yk − xk)ηε(yk − xk)

P ε[µ](X,Y ) dY

∣∣∣∣p
≤
∫
|∇ηε(yk − xk)|p

ηε(yk − xk)p
P ε[µ](X,Y ) dY,

thus, as in the proof of Theorem 4.2.2,∫
|g(X)|p dX ≤

∫∫
|∇ηε(yk − xk)|p

ηε(yk − xk)p
P ε[µ](X,Y ) dY dX ≤ c(η)

ε2
.

By the triangular inequality in Lp((Rd)N ) we conclude that

Ep(Θε[µ]) =
N∑
k=1

∫ ∣∣∣∇xkΘε[µ]1/p(X)
∣∣∣p dX ≤

N∑
k=1

(
Ep(µk)1/p +

c(η, p)

ε2/p

)p
,

as wanted.

When the measure µ is regular, we may perform a change of variable in
(4.10) to get

∇xkΘε[µ](X) =

∫ (
∇µk(xk)
µk(xk)

− ∇(µk ∗ ηε)(yk)
(µk ∗ ηε)(yk)

)
P ε[µ](X,Y ) dY

+

∫
∇xkΛε[µ](Y )

N∏
j=1

ηε(yj − xj)
(µj ∗ ηε)(yj)

µj(xj) dY

= : I(X) + II(X).

By the Hölder inequality with exponents p and p
p−1 ,

|I(X)|p ≤ Θε[µ](X)p−1

∫ ∣∣∣∣∇µk(xk)µk(xk)
− ∇(µk ∗ ηε)(yk)

(µk ∗ ηε)(yk)

∣∣∣∣p P ε[µ](X,Y ) dY,

|II(X)|p ≤ Θε[µ](X)p−1

∫
|∇xkΛε[µ](Y )|p

Λε[µ](Y )p
P ε[µ](X,Y ) dY.

When we integrate with respect to the X variable, the triangular inequality
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in Lp gives(∫
|∇xkΘε[µ](X)|p

Θε[µ](X)p−1
dX

)1/p

≤
(∫∫ ∣∣∣∣∇µk(xk)µk(xk)

− ∇(µk ∗ ηε)(yk)
(µk ∗ ηε)(yk)

∣∣∣∣p P ε[µ](X,Y ) dY dX

)1/p

+

(∫∫
|∇xkΛε[µ](Y )|p

Λε[µ](Y )p
P ε[µ](X,Y ) dY dX

)1/p

=

(∫∫ ∣∣∣∣∇µk(x)

µk(x)
− ∇(µk ∗ ηε)(y)

(µk ∗ ηε)(y)

∣∣∣∣p ηε(y − x)µk(x) dxdy

)1/p

+

(∫
|∇xkΛε[µ](Y )|p

Λε[µ](Y )p−1
dY

)1/p

=: D1/p + p
∥∥∥∇xkΛε[µ]1/p

∥∥∥
p

Now we recall the following inequalities by Clarkson [12]: if f, g ∈ Lp(ν),
then ∥∥∥∥f − g2

∥∥∥∥p ≤ 1

2
‖f‖p +

1

2
‖g‖p −

∥∥∥∥f + g

2

∥∥∥∥p p ≥ 2 (4.13)∥∥∥∥f − g2

∥∥∥∥ p
p−1

≤
(

1

2
‖f‖p +

1

2
‖g‖p

) 1
p−1

−
∥∥∥∥f + g

2

∥∥∥∥ p
p−1

1 < p < 2, (4.14)

where all the norms are Lp(ν) norms.

If we apply (4.13) on Rd × Rd with f(x, y) = ∇µk(x)
µk(x)

, g(x, y) = ∇(µk∗ηε)(y)
(µk∗ηε)(y)

and dν
dLd (x, y) = ηε(y − x)µk(x), we get for p ≥ 2

D ≤ 2p−1

∫∫ ∣∣∣∣∇µk(x)

µk(x)

∣∣∣∣p ηε(y − x)µk(x) dxdy

+ 2p−1

∫∫ ∣∣∣∣∇(µk ∗ ηε)(y)

(µk ∗ ηε)(y)

∣∣∣∣p ηε(y − x)µk(x) dxdy

−
∫∫ ∣∣∣∣∇µk(x)

µk(x)
+
∇(µk ∗ ηε)(y)

(µk ∗ ηε)(y)

∣∣∣∣p ηε(y − x)µk(x) dxdy

=: 2p−1pp
(
Ep(µk) + Ep(µk ∗ ηε)

)
− S.

Similarly, if 1 < p < 2, using (4.14) we have

D ≤
[
2p

p
p−1

(
Ep(µk) + Ep(µk ∗ ηε)

) 1
p−1 − S

1
p−1

]p−1

.

Finally, we consider the convex function ϕ(z) = |z|p on Rd, for which we
have ∇ϕ(z) = p(|z1|p−2 z1, . . . , |zd|p−2 zd). By convexity we have

ϕ(w + z) ≥ ϕ(2z) +∇ϕ(2z) · (w − z),
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so letting w = ∇µk(x)
µk(x)

and z = ∇(µk∗ηε)(y)
(µk∗ηε)(y)

we get

S ≥
∫∫ ∣∣∣∣2∇(µk ∗ ηε)(y)

(µk ∗ ηε)(y)

∣∣∣∣p ηε(y − x)µk(x) dxdy

+ 2p−1p

d∑
j=1

∫∫ ∣∣∣∣∂j(µk ∗ ηε)(y)

(µk ∗ ηε)(y)

∣∣∣∣p−2
∂j(µ

k ∗ ηε)(y)

(µk ∗ ηε)(y)

∂jµ
k(x)

µk(x)
ηε(y − x)µk(x) dxdy

− 2p−1p
d∑
j=1

∫∫ ∣∣∣∣∂j(µk ∗ ηε)(y)

(µk ∗ ηε)(y)

∣∣∣∣p−2 ∣∣∂j(µk ∗ ηε)(y)
∣∣2

(µk ∗ ηε)(y)2
ηε(y − x)µk(x) dxdy

= 2p
∫ ∣∣∇(µk ∗ ηε)(y)

∣∣p
(µk ∗ ηε)(y)p−1

dy = 2pppEp(µk ∗ ηε).

Hence, for p ≥ 2,

D ≤ 2p−1pp
(
Ep(µk)− Ep(µk ∗ ηε)

)
,

while for 1 < p < 2

D ≤ 2p−1pp
[(
Ep(µk) + Ep(µk ∗ ηε)

) 1
p−1 − 2

1
p−1Ep(µk ∗ ηε)

1
p−1

]p−1

,

Putting all together and summing on k we get the thesis.

In the particular case p = 2, the Hilbertian structure allows to simplify
some computations and to get slightly sharper constants, as stated in the
following result, which is proved in the Appendix.

Theorem 4.2.4. Let µ ∈ P
(
(Rd)N

)
such that µk ∈ P2(Rd) for every k =

1, . . . , N . Then

E2(Θε[µ]) ≤ Nc(η)

ε2
+

N∑
k=1

E2(µk), (4.15)

where c(η) is a constant depending on the choice of η.

Remark 14. As one would expect, if the measure µ is not regular then the
bound on the energy of Θε[µ] diverges as ε approaches zero, as in (4.11) and
(4.15). On the contrary, if µ is W 1,p-regular then the bound on the energy of
Θε[µ] in (4.12) converges to the energy of µ as ε→ 0. Indeed, on the one hand
∆k(ε, p, µ) converges to zero for every k = 1, . . . , N by Lemma 4.1.5. On the
other hand, let λε(z1, . . . , zN ) = ηε(z1) · · · ηε(zN ), we have Λε[µ] = µ ∗λε, and
hence ∥∥∥∇xk(µ ∗ λε)1/p

∥∥∥
p
→
∥∥∥∇xkµ1/p

∥∥∥
p
.

When we raise to the power p and sum over k we get Ep(µ) in view of the
usual condition (4.1).
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Proof of property C

For the proof of property C we do not need to assume that the marginals of
µ are regular. In order to simplify the notation, let as above P ε[µ] be the
measure over (Rd)N × (Rd)N given by∫∫

ψ(X,Y ) dP ε[µ](X,Y ) :=

∫∫
ψ(X,Y )

N∏
k=1

ηε(yk − xk)
(µk ∗ ηε)(yk)

dµk(xk) dΛε[µ](Y ),

already introduced above, and let Qε[µ] be the measure over (Rd)N × (Rd)N
given by∫∫

ψ(X,Y ) dQε[µ](X,Y ) :=

∫∫
ψ(X,Y )

N∏
k=1

ηε(yk − xk) dµ(X) dY

for any ψ : (Rd)N × (Rd)N → R bounded and countinuous.

Remark 15. Observe that P ε[µ](X,Y ) is the density of a transport plan be-
tween Θε[µ] and the measure Λε[µ] introduced in (4.7). Analogously, Qε[µ] is
a transport plan between Λε[µ] and µ.

Theorem 4.2.5 (Property C, first part). For every ε > 0,

W2(Θε[µ], µ) ≤ εC(η)
√
N,

where C(η) is a constant depending on the choice of η.

Proof. The idea is to estimate W2(Θε[µ],Λε[µ]) and W2(Λε[µ], µ), and then
use the triangular inequality for the Wasserstein distance. On the one hand,

W 2
2 (Λε[µ], µ) ≤

∫∫
|X − Y |2 dQε[µ](X,Y ) =

N∑
k=1

∫∫
|xk − yk|2 dQε[µ](X,Y )

=

N∑
k=1

∫∫
|xk − yk|2 ηε(yk − xk) dyk dµk(xk)

=
N∑
k=1

∫∫
|zk|2 ηε(zk) dzk dµk(xk)

≤ ε2
N∑
k=1

∫
Rd
|z|2 η(z) dz = Nε2c(η).

On the other hand,

W 2
2 (Θε[µ],Λε[µ]) ≤

∫∫
|X − Y |2 dP ε[µ](X,Y )

=

N∑
k=1

∫∫
|xk − yk|2 dP ε[µ](X,Y )

=

N∑
k=1

∫∫
|xk − yk|2 ηε(yk − xk) dyk dµk(xk) ≤ Nε2c(η),
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as before. In conclusion,

W2(Θε[µ], µ) ≤ 2ε
√
Nc(η).

Corollary 4.2.6. As ε → 0, Θε[µ] converges weakly to µ in duality with
Cb((Rd)N ).

Proof. As it is well-known, the Wasserstein convergence implies the weak con-
vergence — see e.g. [1, Proposition 7.1.5].

We conclude this section with the second part of property C. So far we
proved that Θε[µ] converges to µ in the Wasserstein and weak sense, which
is the natural notion of convergence as far as µ is no more regular than a
measure. However if µ is regular, since Θε[µ] ∈ Pp for every ε > 0 it is natural
to ask whether Θε[µ]→ µ in the dp-topology. The answer is positive, as stated
in the following

Theorem 4.2.7 (Property C, second part). Let µ ∈ Pp
(
(Rd)N

)
. Then

lim
ε→0

dp(Θ
ε[µ], µ) = 0.

Proof. Combining the fact that the family Θε[µ]1/p is bounded in W 1,p due to
Theorem 4.2.3 and the result of Corollary 4.2.6 we get that Θε[µ]1/p → µ1/p

weakly in W 1,p
(
(Rd)N

)
as ε → 0. Since W 1,p is uniformly convex, we need

only to check that

lim
ε→0

∥∥∥Θε[µ]
1
p

∥∥∥
W 1,p

=
∥∥∥µ 1

p

∥∥∥
W 1,p

.

The Lp-norms are identically equal to 1, so we need to prove the limit for

the norms of the gradients. The weak convergence of ∇Θε[µ]
1
p to ∇µ

1
p implies

that
lim inf
ε→0

∥∥∥∇Θε[µ]
1
p

∥∥∥
Lp
≥
∥∥∥∇µ 1

p

∥∥∥
Lp
.

The other inequality follows from Remark 14.

4.3 Proof of Theorems 4.3.1 and 4.3.2

We recall and prove Theorem 4.3.1.

Theorem 4.3.1. Let η be supported on B(0, 1), and Ω ⊆ (Rd)N such that
Ω + B(0, r) ⊂ (Rd)N \ suppµ for some r > 0. Then Θε(µ) = 0 on Ω as soon
as ε < r/2.

Proof. Let X ∈ Ω and ε < r/2. We have

Θε[µ](X) =

∫
P ε[µ](X,Y ) dY

=

∫
|X−Y |< r

2

P ε[µ](X,Y ) dY +

∫
|X−Y |≥ r

2

P ε[µ](X,Y ) dY,
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where we recall that

P ε[µ](X,Y ) =
N∏
k=1

ηε(yk − xk)µk(xk)
(µk ∗ ηε)(yk)

Λε[µ](Y ).

We claim that both integrals are equal to zero. If |X − Y | < r
2 , then

Y +B(0, r/2) ⊂ (Rd)N \ suppµ. Hence, Λε[µ] = 0 for ε < r
2
√
N

, since Λε[µ] =

µ ∗ λε and suppλε ⊆ B(0, ε
√
N).

On the other hand, if |X − Y | ≥ r
2 , then there exists k such that |xk − yk| ≥

r
2
√
N

. Once again, if ε < r
2
√
N

, then ηε(yk − xk) = 0, and so P ε[µ](X,Y ) =

0.

Finally we prove Theorem 4.3.2.

Theorem 4.3.2. Let η be a Gaussian kernel, and suppose that µn ⇀ µ, and
π#µn → π#µ in the dp-topology. Then Θε(µn)→ Θε(µ) in the dp-topology for
every ε > 0.

We fix ε > 0 and we take a Gaussian mollifier

ηε =
1

(2πε)d/2
e−
|z|2
2ε .

The main idea is to use the Dominated Convergence Theorem, but in
order to do so we must first prove some fine upper-bound on the integral
kernel P ε[µ]. With a slight abuse of notation, since Λε[µ] and µk ∗ ηε are
absolutely continuous with respect to the Lebesgue measure, we will use the
same symbol for the measure and its density.

Lemma 4.3.3. Let µ ∈ P
(
(Rd)N

)
. Then:

(i)

Λε[µ](Y ) ≤ (2πε)−
(N−1)d

2N

N∏
k=1

(µk ∗ ηε)(yk)
1
N .

(ii) Let R > 0, γ ∈ [0, 1] be such that µk(B(0, R)) ≥ γ. Then

(µk ∗ ηε)(yk) ≥
γ

(2πε)d/2
exp

(
−(|yk|+R)2

2ε

)
.
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Proof. (i) We apply a general version of the Hölder’s inequality with exponents
p1 = · · · = pN = N , and use the fact that ηε(z) ≤ ηε(0) = (2πε)−d/2, to get

Λε[µ](Y ) =

∫ N∏
k=1

ηε(yk − xk) dµ(X) ≤
N∏
k=1

(∫
ηε(yk − xk)N dµ(X)

) 1
N

≤ (2πε)−
(N−1)d

2N

N∏
k=1

(∫
ηε(yk − xk) dµ(X)

) 1
N

= (2πε)−
(N−1)d

2N

N∏
k=1

(µk ∗ ηε)(yk)
1
N .

as wanted.

(ii) We start by observing that

(µk ∗ ηε)(yk) =

∫
ηε(yk − xk) dµk(xk) ≥

∫
B(0,R)

ηε(yk − xk) dµk(xk).

When xk belongs to the ball B(0, R), the minimum value of ηε(yk − xk)
is attained at xk = −R yk

|yk| , or at any boundary point if yk = 0. Thus, in this
region,

ηε(yk − xk) ≥
1

(2πε)d/2
exp

(
−(|yk|+R)2

2ε

)
and the thesis follows.

Lemma 4.3.4. Let ρn, ρ ∈ Pp(Rd) such that ρn → ρ in the dp-topology.
Then, for every γ > 0 there exists R > 0 such that ρn(B(0, R)) ≥ 1 − γ and
ρ(B(0, R)) ≥ 1− γ.

Proof. It suffices to show that ρn ⇀ ρ, which implies that the family {ρn}n∈N
is tight; however, by Proposition 4.1.2 we have the stronger property ρn → ρ
in W 1,1(Rd).

Proposition 4.3.5. Suppose that µn ⇀ µ, with µkn → µk in Pp(Rd) and
µkn → µk pointwise a.e. on Rd for every k = 1, . . . , N . Then Θε[µn] → Θε[µ]
pointwise a.e. on (Rd)N .

Assume in addiction that ∇µkn → ∇µk pointwise a.e. on Rd. Then
∇Θε[µn]→ ∇Θε[µ] pointwise a.e. on (Rd)N .

Proof. Let P ε[µ](X,Y ) be the integral kernel defining Θε[µ], namely

P ε[µ](X,Y ) =
N∏
k=1

ηε(yk − xk)
(µk ∗ ηε)(yk)

µk(xk)Λ
ε[µ](Y ).
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We claim that P ε[µn] converges pointwise a.e. to P ε[µ]. For every Y ∈
(Rd)N and every k ∈ {1, . . . , N} we have∣∣∣(µkn ∗ ηε)(yk)− (µk ∗ ηε)(yk)

∣∣∣ ≤ ∫ ηε(yk − xk)
∣∣∣µkn(xk)− µk(xk)

∣∣∣ dxk

≤ 1

(2πε)
d
2

∥∥∥µkn − µk∥∥∥
1
→ 0

by Proposition 4.1.2. Moreover

|Λε[µn](Y )− Λε[µ](Y )|

≤

∣∣∣∣∣
∫ N∏

k=1

ηε(yk − xk) dµn(X)−
∫ N∏

k=1

ηε(yk − xk) dµ(X)

∣∣∣∣∣
goes to zero for every Y because

∏
ηε(yk−xk) is a fixed countinuous bounded

function, and µn ⇀ µ. Finally fix X ∈ (Rd)N in the set of full measure such
that µkn(xk)→ µk(xk) for every k = 1, . . . , N .

We need only to find a domination for P ε[µn]. For every k = 1, . . . , N let
Rk given by Lemma 4.3.4 for γ = 1

2 , and let R = maxk Rk. Using Lemma 4.3.3
(i) and (ii) one has

P ε[µn](X,Y ) ≤ (2πε)−
(N−1)d

2N

N∏
k=1

ηε(yk − xk)µkn(xk)

(µkn ∗ ηε)(yk)N−1/N

≤ 2N
N∏
k=1

ηε(yk − xk)µkn(xk) exp

(
(N − 1)(|yk|+R)2

2Nε

)

= 2Ne
(N−1)R2

2ε

N∏
k=1

µkn(xk)e
−|xk|

2

2ε e
−|yk|

2+(2N|xk|+2(N−1)R)|yk|
2Nε .

When X and ε are fixed, the latter is an integrable function of the variable
Y = (y1, . . . , yN ), and we conclude the first part of the proof thanks to the
Dominate Convergence Theorem.

Recalling (4.10) we have

∇xkΘε[µn](X) =
∇µkn(xk)

µkn(xk)
Θε[µn](X)−

∫
∇ηε(yk − xk)
ηε(yk − xk)

P ε[µn](X,Y ) dY

and

∇xkΘε[µ](X) =
∇µk(xk)
µk(xk)

Θε[µ](X)−
∫
∇ηε(yk − xk)
ηε(yk − xk)

P ε[µ](X,Y ) dY

Using the first part and the additional assumption on the pointwise con-
vergence of the gradients, we immediately see that

∇µkn(xk)

µkn(xk)
Θε[µn](X) −→ ∇µ

k(xk)

µk(xk)
Θε[µ](X),
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pointwise a.e. on Rd × Rd.
As for the second term, like before the integrands converge pointwise a.e.,

and the domination is obtained using Lemma 4.3.3 (i) and (ii).

From Proposition 4.3.5, using some dominations already seen for the proof
of Property A, we obtain the following corollary.

Corollary 4.3.6. Suppose that µn ⇀ µ, with µkn → µk in Pp(Rd) and µkn → µk

pointwise a.e. on Rd for every j = 1, . . . , N . Then Θε[µn]1/p → Θε[µ]1/p in
Lp((Rd)N ).

Assume in addiction that ∇µkn → ∇µk pointwise a.e. on Rd. Then
Θε[µn]1/p → Θε[µ]1/p in W 1,p((Rd)N ).

Proof. By Proposition 4.3.5 we already have pointwise a.e. convergence of the
functions. Using

|aγ − bγ | ≤ |a− b|γ ∀γ ∈ (0, 1],∀a, b > 0, (4.16)

we get ∣∣∣Θε[µn](X)1/p −Θε[µ](X)1/p
∣∣∣p ≤ |Θε[µn](X)−Θε[µ](X)|
≤ Θε[µn](X) + Θε[µ](X).

The latter converges pointwise to 2Θε[µ](X), and∫
Θε[µn](X) dX +

∫
Θε[µ](X) dX = 2,

which allows to conclude the first part of the proof thanks to the Dominated
Convergence Theorem.

Using the expression given by Theorem 4.2.2 and (4.16) we have∫ ∣∣∣∇xkΘε[µn]1/p(X)−∇xkΘε[µ]1/p(X)
∣∣∣p dX

≤ 1

pp

∫ ∣∣∣Θε[µn](X)
1−p
p ∇xkΘε[µn](X)−Θε[µ](X)

1−p
p ∇xkΘε[µ](X)

∣∣∣p dX.

By Proposition 4.3.5 we have pointwise convergence to zero of the inte-
grand. In order to control the gradients we recall Lemma 4.2.1 and get∣∣∣Θε[µn](X)

1−p
p ∇xkΘε[µn](X)−Θε[µ](X)

1−p
p ∇xkΘε[µ](X)

∣∣∣p
≤ 2p−1

(
Θε[µn](X)1−p |∇xkΘε[µn](X)|p + Θε[µ](X)1−p |∇xkΘε[µ](X)|p

)
≤ 4p−1

(∣∣∇µkn(xk)
∣∣p

µkn(xk)p
Θε[µn](X) +

∫
|∇ηε(yk − xk)|p

ηε(yk − xk)p
P ε[µn](X,Y ) dY

)

+ 4p−1

(∣∣∇µk(xk)∣∣p
µk(xk)p

Θε[µ](X) +

∫
|∇ηε(yk − xk)|p

ηε(yk − xk)p
P ε[µ](X,Y ) dY

)
=: 4p−1gn(X) + 4p−1g(X)
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By hypothesis we have that that gn → g pointwise a.e. as in the proof of
Proposition 4.3.5. Moreover, as already seen above,∫

gn(X) = pp
∫ ∣∣∣∣∇(µkn) 1

p
(xk)

∣∣∣∣p dxk +

∫
|∇ηε(z)|p

ηε(z)p−1
dz

and ∫
g(X) = pp

∫ ∣∣∣∣∇(µk) 1
p

(xk)

∣∣∣∣p dxk +

∫
|∇ηε(z)|p

ηε(z)p−1
dz,

which allows to conclude thanks to the Dominated Convergence Theorem.

As a final result we obtain the proof of Theorem 4.3.2

Proof of Theorem 4.3.2. By contradiction, suppose that there exist δ > 0 and
a subsequence of (µn) (denoted again (µn) for simplicity) such that

dp (Θε[µn],Θε[µ]) ≥ δ. (4.17)

Extract a further subsequence (µnj )j such that µknj → µk in Pp(Rd), and

in addition µknj → µk and ∇µknj → ∇µk pointwise a.e. on Rd for every

k = 1, . . . , N . Due to Corollary 4.3.6 we should have Θε[µnj ]
1/p → Θε[µ]1/p

in W 1,p((Rd)N ), contradicting (4.17).

4.4 Appendix

Here we complete the missing proofs from Sections 4.1-4.2. First we recall the
results of paragraph 4.1

Proposition 4.1.1. Let p > 1. If u ∈W 1,p(Rm), u ≥ 0, then up ∈W 1,1(Rm),
and ∇up = pup−1∇u.

Viceversa, let u ∈W 1,1(Rm), u ≥ 0, such that∫
u1−p |∇u|p <∞. (4.2)

Then u1/p ∈W 1,p(Rm), and ∇u1/p = 1
pu

1−p
p ∇u.

Proof. If u ∈ W 1,p(Rm) clearly up ∈ L1(Rm), and viceversa if u ∈ W 1,1(Rm)

then u
1
p ∈ Lp(Rm). Let un ∈ C∞(Rm) ∩ W 1,p(Rm) such that un → u in

W 1,p(Rm). Then by the Hölder inequality with exponents p and p
p−1∫ ∣∣up−1

n ∇un − up−1∇u
∣∣ ≤ ∫ up−1

n |∇un −∇u|+
∫
|∇u|

∣∣up−1
n − up−1

∣∣
= ‖un‖p−1

p ‖∇u−∇un‖p

+ ‖∇u‖p
∥∥∥∣∣up−1

n − up−1
∣∣ 1
p−1

p

∥∥∥p−1

.
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Recall that

|aq − bq| ≤ |a− b| |a+ b|q−1 ∀q ∈ [1,∞),∀a, b > 0. (4.18)

If p ≥ 2 we use (4.18) and the Hölder inequality to get∥∥∥∣∣up−1
n − up−1

∣∣ 1
p−1

∥∥∥p−1

p
≤ ‖un − u‖p ‖un + u‖p−2

p ;

if 1 < p < 2, let γ = p− 1 ∈ (0, 1) and use (4.16) to get∥∥∥∣∣up−1
n − up−1

∣∣ 1
p−1

∥∥∥p−1

p
≤ ‖un − u‖p−1

p .

This completes the proof of the first part. Suppose on the contrary that
u ∈ W 1,1(Rm), u ≥ 0, and that the condition (4.2) holds. Fix φ ∈ C∞c (Rm)
and ε > 0. We want to prove that∫

(u+ ε)
1
p∇φ = −1

p

∫
φ(u+ ε)

1−p
p ∇u. (4.19)

To this end, let un → u in W 1,1(Rm), where un ∈ C∞, un ≥ 0; up to a
subsequence we may suppose also un → u and ∇un → ∇u pointwise almost
everywhere. Putting un in place of u in (4.19) we have pointwise convergence
of both the integrands, and we conclude via the Dominated Convergence The-
orem using the dominations∣∣∣φ(un + ε)

1−p
p ∇un

∣∣∣ ≤ ε 1−p
p |φ| |∇un| ,

∣∣∣φ(u+ ε)
1−p
p ∇u

∣∣∣ ≤ ε 1−p
p |φ| |∇u| .

Finally, letting ε→ 0 in (4.19), we have once again pointwise convergence
of the integrands, and we conclude by the classical Lebesgue’s dominated
covergence Theorem thanks to the hypothesis and the domination∣∣∣φ(u+ ε)

1−p
p ∇u

∣∣∣p ≤ |φ|p u1−p |∇u|p .

Proposition 4.1.2. If un → u in W 1,p(Rm), un, u ≥ 0, then upn → up in
W 1,1(Rm).

Viceversa, let un → u in W 1,1(Rd), un, u ≥ 0. Let hn, h ∈ L1(Rm) such
that u1−p

n |∇un|p ≤ hn, u1−p |∇u|p ≤ h, and

lim
n→∞

∫
hn =

∫
h. (4.3)

Suppose also that for every subsequence {hnk} there exists a further subse-

quence converging to h pointwise a.e. Then u
1/p
n → u1/p in W 1,p(Rm).
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Proof of Proposition 4.1.2. If p = 1 there is nothing to prove, so assume p > 1,
and take un → u in W 1,p(Rm). Using (4.18) and the Hölder inequality with
exponents p and p

p−1 ,∫
|upn − up| ≤ ‖un − u‖p ‖un + u‖p−1

p .

Since un → u in W 1,p(Rm) and hence in particular un is bounded in
Lp(Rm), we get that upn → up (strongly) in L1(Rm).

Moreover, ∇upn = pup−1
n ∇un and ∇up = pup−1∇u by Proposition 4.1.1,

hence by the Hölder inequality∫
|∇upn −∇up| ≤ p

∫
up−1
n |∇un −∇u|+ p

∫
|∇u|

∣∣up−1
n − up−1

∣∣
≤ p ‖un‖p−1

p ‖∇un −∇u‖p + p

∫
|∇u|

∣∣up−1
n − up−1

∣∣ ,
which converges to zero as in the proof of Proposition 4.1.1.

To prove the converse, suppose by contradiction that there is a subsequence
(denoted again un) such that∥∥∥u1/p

n , u1/p
∥∥∥
W 1,p

≥ δ > 0. (4.20)

By hypothesis, up to a further subsequence we may assume that unj → u,
∇unj → ∇u and hnj → h pointwise almost everywhere. Then we have by
(4.16), with γ = 1

p ,∫ ∣∣∣u1/p
nj − u

1/p
∣∣∣p ≤ ∫ ∣∣unj − u∣∣ =

∥∥unj − u∥∥1
,

and ∥∥∥∇u1/p
nj −∇u

1/p
∥∥∥
p

=
1

pp

∫ ∣∣∣∣u 1−p
p

nj ∇unj − u
1−p
p ∇u

∣∣∣∣p .
Here the integrand converges to zero pointwise, and using the domination∣∣∣∣u 1−p

p
nj ∇unj − u

1−p
p ∇u

∣∣∣∣p ≤ 2p−1
(
u1−p
nj

∣∣∇unj ∣∣p + u1−p |∇u|p
)
≤ 2p−1(hnj + h)

and the condition (4.3) we conclude thanks to the Dominated Convergence

Theorem that u
1/p
nj → u1/p in W 1,p(Rm), contradicting (4.20).

We are ready for the proof of Proposition 4.1.3, which we recall for the
sake of the reader.

Proposition 4.1.3. Let p > 1. Then

(i) if µ ∈ Pp((Rd)N ), then µk ∈ Pp(Rd) for every k = 1, . . . , N ;
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(ii) the map π : Pp
(
(Rd)N

)
−→ Pp(Rd)N is continuous with respect to the

distance dp and the relative product topology on the codomain.

Proof. For the first part, by Proposition 4.1.1 it suffices to show that, if
µ ∈ Pp((Rd)N ), then

∫
µk(x)1−p ∣∣∇µk(x)

∣∣p dx is finite. Using the Hölder
inequality with exponents p

p−1 and p, we get

∣∣∣∇µk(xk)∣∣∣ ≤ p ∫ µ(X)
p−1
p

∣∣∣∇xkµ 1
p (X)

∣∣∣ dX̂k

≤ p
(∫

µ(X) dX̂k

) p−1
p
(∫ ∣∣∣∇xkµ 1

p (X)
∣∣∣p dX̂k

) 1
p

= pµk(xk)
p−1
p

(∫ ∣∣∣∇xkµ 1
p (X)

∣∣∣p dX̂k

) 1
p

.

Hence ∫
µk(xk)

1−p
∣∣∣∇µk(xk)∣∣∣p dxk ≤ pp

∫ ∣∣∣∇xkµ1/p(X)
∣∣∣p dX

which is finite by hypothesis.

Now we come to the second part. Let µn → µ in Pp
(
(Rd)N

)
and fix

k ∈ {1, . . . , k}. First of all we prove that µkn → µk in W 1,1(Rd). Using (4.18)
and the Hölder inequality,∫ ∣∣∣µkn(xk)− µk(xk)

∣∣∣ dxk =

∫ ∣∣∣∣∫ µ(X)− µn(X) dX̂k

∣∣∣∣ dxk

≤
∫
|µn(X)− µ(X)| dX

and∫ ∣∣∣∇µkn(xk)−∇µk(xk)
∣∣∣ dxk =

∫ ∣∣∣∣∫ ∇xkµn(X)−∇xkµ(X) dX̂k

∣∣∣∣ dxk

≤
∫
|∇xkµn(X)−∇xkµ(X)| dX.

We deduce that µkn → µk in W 1,1(Rd), since µn → µ in W 1,p((Rd)N ) by
Proposition 4.1.1. Now we want to apply Proposition 4.1.2, with

hn(xk) = pp
∫ ∣∣∣∇xkµ1/p

n (X)
∣∣∣p dX̂k, h(xk) = pp

∫ ∣∣∣∇xkµ1/p(X)
∣∣∣p dX̂k

in order to conclude that (µkn)1/p → (µkn)1/p in W 1,p(Rd).
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By the first part we have (µkn)1−p ∣∣∇µkn∣∣p ≤ hn and (µk)1−p ∣∣∇µk∣∣p ≤ h.
Condition (4.3) is ensured by

lim
n→∞

∫
hn(xk) dxk = pp lim

n→∞

∫ ∣∣∣∇xkµ1/p
n (X)

∣∣∣p dX

= pp lim
n→∞

∥∥∥∇xkµ1/p
n

∥∥∥p
p

= pp
∥∥∥∇xkµ1/p

∥∥∥p
p

=

∫
h(xk) dxk.

We now follow a construction similar to the one of the Riesz-Fischer the-
orem, and already used for the analogous result by Brezis in [34, Appendix].
Recall that, by Proposition 4.1.2, µn → µ in W 1,1

(
(Rd)N

)
. For every subse-

quence of (hn)n(denoted again (hn)n for simplicity), extract a further subse-
quence (hnj )j such that:

(i) ∇µ1/p
nj → ∇µ1/p pointwise a.e.;

(ii)
∥∥∥∇µ1/p

nj −∇µ1/p
∥∥∥p
Lp
≤ 2−j .

Let

F (X) =
∣∣∣∇µ1/p(X)

∣∣∣p +
∞∑
j=1

∣∣∣∇µ1/p
nj (X)−∇µ1/p(X)

∣∣∣p .
Since F ∈ L1

(
(Rd)N

)
and clearly∣∣∣∇µ1/p

nj (X)
∣∣∣p ≤ 2p−1F (X),

∣∣∣∇µ1/p(X)
∣∣∣p ≤ F (X)

we have that hnj → h pointwise a.e. by dominated convergence.

Next we prove the estimates on the energy given in paragraph 4.1.

Lemma 4.1.4. Let µ ∈ Pp
(
(Rd)N

)
. Then

Ep(µ) ≥
N∑
k=1

Ep(µk).

Moreover, if ρ1, . . . , ρN ∈ Pp(Rd),

inf {Ep(µ) | µ ∈ Pp(Rm) ∩Π(ρ1, . . . , ρN )} =
N∑
k=1

Ep(ρk).
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Proof. Fix µ ∈ Pp
(
(Rd)N

)
. By Proposition 4.1.3 we have∣∣∣∇(µk)1/p(xk)

∣∣∣p =
1

pp
µk(xk)

1−p
∣∣∣∇µk(xk)∣∣∣p ≤ ∫ ∣∣∣∇xkµ1/p(X)

∣∣∣p dX̂k.

Summing on k and recalling the condition (4.1) we get the thesis. As for
the second statement, due to the first one clearly we have

inf {Ep(µ) | µ ∈ Π(ρ1, . . . , ρN )} ≥
N∑
k=1

Ep(ρk).

Let however µ(X) := ρ1(x1) · · · ρN (xN ); then µ is such that µ ∈ Pp
(
(Rd)N

)
and

∇xkµ
1/p = ∇ρ1/p

k

N∏
j=1
j 6=k

ρj(xj)
1/p;

hence ∫ ∣∣∣∇xkµ 1
p (X)

∣∣∣p dX =

∫ ∣∣∣∇ρ1/p
k (xk)

∣∣∣p dxk = Ep(ρk).

Finally summing on k and taking into account the usual condition (4.1),

Ep(µ) =
N∑
k=1

Ep(ρk).

Lemma 4.1.5. Let η ∈ C∞(Rm), η ≥ 0 such that
∫
η = 1 and define ηε(x) =

1
εm η

(
x
ε

)
, for ε > 0. Then, for every µ ∈ Pp(Rm),

Ep(µ ∗ ηε) ≤ Ep(µ) and lim
ε→0
Ep(µ ∗ ηε) = Ep(µ).

Proof. By the Hölder inequality with exponents p and p
p−1 we have

|∇(µ ∗ ηε)(x)| = |((∇µ) ∗ ηε)(x)|

≤
∫
|∇µ(y)| ηε(x− y) dy

≤
(∫

µ(y)1−p |∇µ(y)|p ηε(x− y) dy

) 1
p

(µ ∗ ηε)(x)
p−1
p .

Since µ ∗ ηε ∈ C∞(Rm) we have∣∣∣∇(µ ∗ ηε)1/p(x)
∣∣∣ =

1

p
(µ ∗ ηε)(x)

1−p
p |∇(µ ∗ ηε)(x)|

≤ 1

p

(∫
µ(y)1−p |∇µ(y)|p ηε(x− y) dy

)1/p

, (4.21)
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whence

Ep(µ ∗ ηε) =

∫ ∣∣∣∇(µ ∗ ηε)1/p(x)
∣∣∣p dx

≤ 1

pp

∫
µ(y)1−p |∇µ(y)|p ηε(x− y) dy dx

=

∫ ∣∣∣∇µ1/p(y)
∣∣∣p dy = Ep(µ).

In order to prove the second part, it suffices to show that (µ ∗ ηε)1/p

converges strongly to µ1/p in W 1,p to get that

lim
ε→0
Ep(µ ∗ ηε) = lim

ε→0

∥∥∥(µ ∗ ηε)1/p
∥∥∥p
W 1,p

− 1 =
∥∥∥µ1/p

∥∥∥
W 1,p

− 1 = Ep(µ).

Since (µ1−p |∇µ|p) ∗ ηε −→ µ1−p |∇µ|p pointwise a.e., the inequality (4.21)
gives a domination which allows to conclude thanks to Proposition 4.1.2.

Finally, we present a slight modification of Theorem 4.2.3 for the case
p = 2, which allows to get sharper constants, as stated in Theorem 4.2.4.

Theorem 4.2.4. Let µ ∈ P
(
(Rd)N

)
such that µk ∈ P2(Rd) for every k =

1, . . . , N . Then

E2(Θε[µ]) ≤ Nc(η)

ε2
+

N∑
k=1

E2(µk), (4.15)

where c(η) is a constant depending on the choice of η.

Proof. We use the formula for the gradient given by Theorem 4.2.2, and exploit
the Hilbertian structure of W 1,2((Rd)N ) to get

E2(Θε[µ]) =

∫ ∣∣∣∇√Θε[µ](X)
∣∣∣2 dX

=
1

4

∫
|∇Θε[µ](X)|2

Θε[µ](X)
dX

=
1

4

N∑
k=1

∫ ∣∣∇µk(xk)∣∣2
µk(xk)2

Θε[µ](X) dX

−
N∑
k=1

∫∫
∇µk(xk) · ∇ηε(yk − xk)
µk(xk)ηε(yk − xk)

P ε[µ](X,Y ) dX dY

+

N∑
k=1

∫
1

Θε[µ](X)

∣∣∣∣∫ ∇ηε(yk − xk)ηε(yk − xk)
P ε[µ](X,Y ) dY

∣∣∣∣2 dX

=: I − II + III.

We treat the three terms in order. First we have

I =
1

4

N∑
k=1

∫ ∣∣∇µk(xk)∣∣2
µk(xk)

dxk =
N∑
k=1

∫ ∣∣∣∇√µk(xk)∣∣∣2 dxk =
N∑
k=1

E2(µk).
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The second term vanishes. Indeed, using Fubini’s theorem and a change
of variables,

II =

∫∫
∇µk(xk) · ∇ηε(yk − xk)
µk(xk)ηε(yk − xk)

ηε(yk − xk)
(µk ∗ ηε)(yk)

µk(xk)Λ
ε[µ](Y ) dxk dY

=

∫∫
∇µk(xk) · ∇ηε(yk − xk) dxk dyk

=

(∫∫
∇µk(xk) dxk

)
·
(∫
∇ηε(z) dz

)
,

and the second term is zero, as it can be seen, for instance, integrating in
spherical coordinates — recall that we chose a radial kernel η.

Finally, by the Cauchy-Schwarz inequality,∣∣∣∣∫ ∇ηε(yk − xk)ηε(yk − xk)
P ε[µ](X,Y ) dY

∣∣∣∣2
≤
∫
|∇ηε(yk − xk)|2

ηε(yk − xk)2
P ε[µ](X,Y ) dY

∫
P ε[µ](X,Y ′) dY ′

= Θε[µ](X)

∫
|∇ηε(yk − xk)|2

ηε(yk − xk)2
P ε[µ](X,Y ) dY.

Hence

III ≤
N∑
k=1

∫∫
|∇ηε(yk − xk)|2

ηε(yk − xk)2
P ε[µ](X,Y ) dY dX

=
N∑
k=1

∫∫
|∇ηε(yk − xk)|2

ηε(yk − xk)
µk(xk)Λ

ε[µ](Y ) dY dxk

=

N∑
k=1

∫∫
|∇ηε(yk − xk)|2

ηε(yk − xk)
µk(xk) dyk dxk = N

∫
|∇ηε(z)|2

ηε(z)
dz ≤ Nc(η)

ε2
.

where c(η) is a constant depending on the choice of η.
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Applications to
Density Functional Theory

Introduction

Consider a system of N particles (e.g. electrons) interacting through Coulomb
force both with each other and with M other fixed particles (e.g. nuclei)
at positions (r1, . . . , rM ) with charges (−Z1, . . . ,−ZM ). According to the
Schrödinger equation, the ground state energy of the system is given by

min
ψ wave-function

{
~2T (ψ) + Vee(ψ) + Vne(ψ)

}
(5.1)

where

T (ψ) =
1

2

∫
|∇ψ(X)|2 dX is the kynetic energy,

Vint(ψ) =
∑

1≤i<j≤N

∫
|ψ(X)|2

|xi − xj |
dX is the internal interaction energy,

Vext(ψ) = −
M∑
k=1

N∑
i=1

∫
Zk |ψ(X)|2

|xi − rk|
dX is the external interaction energy

and ~ is the Planck constant.
We must now specify which is the set of admissible wave-functions. If the

particles are electrons (or, more in general, fermions), then they follow the
Fermi-Dirac statistics and the set of wave-functions is given by

A =

{
ψ ∈ H1((R3 × {↑, ↓})N ;C) |

∫
|ψ(X)|2 dX = 1, ψ is antisymmetric

}
,

where we say that a wave-function is antisymmetric if

ψ(x1, α1, . . . , xN , αN ) = sign(σ)ψ(xσ(1), ασ(1), . . . , xσ(N), ασ(N))

99
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for every permutation σ ∈ SN . On the contrary, if the particles are bosons,
then they follow the Bose-Einstein statistics and the set of wave-functions is
given by

S =

{
ψ ∈ H1((R3 × {↑, ↓})N ;C) |

∫
|ψ(X)|2 dX = 1, ψ is symmetric

}
,

where we say that a wave-function is symmetric if

ψ(x1, α1, . . . , xN , αN ) = ψ(xσ(1), ασ(1), . . . , xσ(N), ασ(N))

In the above we adopted the common notation∫
f(X)dX :=

∑
(α1,...,αN )∈{↑,↓}N

∫
(R3)N

f(x1, α1, . . . , xN , αN )dx1 · · · dxN

for every f : (R3 × {↑, ↓})N → C.
According to the usual Born interpretation, |ψ(x1, α1, . . . , xN , αN )|2 is the

probability distribution of finding the N particles in positions (x1, . . . , xN )
with spin values (α1, . . . , αN ) and, in agreement with the indistinguishabil-
ity principle, it is invariant with respect to permutations of the N variables
(xi, αi).

Computing the ground values above amounts to solving a Schrödinger
equation in R3N and the numerical cost scales exponentially with N . The
Density Functional Theory (DFT from now on) is an alternative introduced
in the late sixties by Hohenberg, Kohn and Sham. However the desire to
describe the system in term of a different variable is much older and we may
consider the Thomas-Fermi model as a precursor of this theory. Nowadays,
DFT is recognized as the absolute best tool for computing the ground state of
complex systems, in virtue of its excellent compromise between computational
efficiency and accuracy. See [27] for a classical monography, and the works
of P. Gori-Giorgi, M. Seidl, A. Gerolin, S. Di Marino for recent contributions
and the current state-of-art.

The idea is to associate to every wave function ψ a probability density on
R3 defined as follows 1:

ρ[ψ](x) :=
∑

(α1,...,αN )∈{↑,↓}N

∫
(R3)N−1

|ψ(x, α1, x2, α2, . . . , xN , αN )|2 dx2 · · · dxN .

It can be shown (see for instance [34, Theorems 1.1 and 1.2]) that the set
of feasible densities is given by

R :=
{
ρ ∈ P(R3) | ρ = ρ[ψ] for some ψ ∈ A

}
=
{
ρ ∈ P(R3) | ρ = ρ[ψ] for some ψ ∈ S

}
=

{
ρ : R3 → [0,+∞] |

∫
ρ = 1,

√
ρ ∈ H1(Rd)

}
1In the usual definition in quantum chemistry, the integral in the definition of ρψ is

also multiplied by a factor N , but for our presentation from the mathematical viewpoint we
prefer to deal with probability measures.
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The key remark which constitutes the starting point of DFT is the follow-
ing: the minimum problem (5.1) can be factorized as

min
ρ∈R

min
ψ 7→ρ

{
~2T (ψ) + Vint(ψ) + Vext(ψ)

}
,

where ψ 7→ ρ denotes the fact that ρ = ρ[ψ].

Observe that, if ψ 7→ ρ, then by symmetry

Vext(ψ) = −
N∑
i=1

M∑
k=1

∫
Zk |ψ(X)|2

|xi − rk|
dX = −N

M∑
k=1

∫
R3

Zkρ(x)

|x− rk|
dx = vext(ρ).

Hence, it is natural to define the Levy-Lieb functional

F~(ρ) = min
ψ 7→ρ

{
~2T (ψ) + Vint(ψ)

}
,

so that we reduce (5.1) to the minimum problem

min
ρ∈R
{F~(ρ) + vext(ρ)} .

The Levy-Lieb functional F~ is also called “universal Levy-Lieb func-
tional”, since it does not depend on the specific external potential — it only
depends on the density ρ, the number of particles N and the parameter ~.
We should be careful, however, in the definition of the Levy-Lieb functional,
to distinguish between the fermionic and the bosonic case. For the sake of
clarity, let us define

FA~ := min
{
~2T (ψ) + Vint(ψ) | ψ ∈ A, ψ 7→ ρ

}
when we consider fermionic particles, and by

FS~ := min
{
~2T (ψ) + Vint(ψ) | ψ ∈ S, ψ 7→ ρ

}
when we consider bosonic particles.

In this chapter we are going to deepen the study of the Levy-Lieb functional
by treating two main topics of DFT:

(1) Continuity of the Levy-Lieb functional

(2) Semiclassical limit of the Levy-Lieb functional

In order to give a more general mathematical framework, in the following
we will denote by d the spatial dimension of the system of particles, without
necessarily reducing the setting to the physical case d = 3.
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5.1 Continuity of the Levy-Lieb functional

The main question of this Section is the following: is the Levy-Lieb functional
continuous with respect to the density ρ?

First of all we need to specify the topology for the space R of the densities.
Recall that

R =

{
ρ : R3 → [0,+∞] |

∫
ρ = 1,

√
ρ ∈ H1(R3)

}
.

A natural topology is given by considering R as a metric space endowed with
the distance

δ(ρ1, ρ2) = ‖ρ1 − ρ2‖H1(R3) .

This turns out to be also a physically meaningful topology, since we have the
following

Theorem 5.1.1 ([34, Theorem 1.3]). Let ψn, ψ ∈ A or S, and suppose that
ψn → ψ ∈ H1((Rd × {↑, ↓})N ;C). Then

√
ρ[ψn]→

√
ρ[ψ] ∈ H1(Rd).

This amounts to say that the map ψ 7→ ρ[ψ] is continuous, but it is quite
clear that this map is not invertible — in fact, different wave-functions may
well share the same single particle density. However, suppose that (

√
ρk)k≥1

converge to
√
ρ in H1, and take ψ such that ρ = ρ[ψ]. Can we find (ψk)k≥1

such that ρk = ρ[ψk] and ψk → ψ in H1? In other words, is the map ψ 7→ ρ[ψ]
open? This problem, to our knowledge first stated in [34, Question 2], is still
open.

This question is strongly related to the continuity of the Levy-Lieb func-
tional, since we have the following result.

Theorem 5.1.2. If the map ψ 7→ ρ[ψ] is open, the Levy-Lieb functional is
continuous.

Proof. The idea is to use the De Giorgi’s main theorem on Γ-convergence (see
[22, Theorem 7.4]). Given a sequence (ρk) such that ρk → ρ ∈ R, consider
the functionals

Fk(ψ) = ~2T (ψ) + Vint(ψ) + χ{ψ∈A|ψ 7→ρk}(ψ)

and
F(ψ) = ~2T (ψ) + Vint(ψ) + χ{ψ∈A|ψ 7→ρ}(ψ),

where χ is the characteristic function of a set, taking values 0 on the set and
+∞ outside. By definition we have that FA~ (ρk) = min

{
Fk(ψ) | ψ ∈ H1

}
and

FA~ (ρk) = min
{
F(ψ) | ψ ∈ H1

}
. Thus, we need to prove that Fk Γ-converges

to F .2

2The condition ρk → ρ implies tightness of the set S = {ρ} ∪ {ρk}k∈N, and taking the
counterimage of a tight set by the map sending a measure to its marginal preserves tightness.
Thus the set {ψ | ρ[ψ] ∈ S} is sequentially compact.
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lim inf-inequality Take any sequence ψk → ψ. If ρ 6= ρ[ψ], then by Theo-
rem 5.1.1 we have that ρ[ψk] 6= ρk definitively, so that the lim inf-inequality is
trivially satisfied. Hence we can assume that ρ[ψ] = ρ. Since the functionals
T and Vint are continuous3, we get

F(ψ) = lim
k→∞

~2T (ψk) + Vint(ψk) ≤ lim inf
k→∞

Fk(ψk).

lim sup-inequality If ρ[ψ] 6= ρ there is nothing to prove, so assume that
ρ = ρ[ψ]. Take as a recovery sequence the one given by the openness of the
map ψ 7→ ρ[ψ], i.e., take (ψk) such that ρ[ψk] = ρk and ψk → ψ ∈ H1. Then
we have

F(ψ) = ~2T (ψ) + Vint(ψ) = lim
k→∞

~2T (ψk) + Vint(ψk) = lim
k→∞

Fk(ψk).

We will provide a partial positive answer when the spin variables are not
taken into account. In particular, we prove the following results.

Theorem 5.1.3 ([5, Theorem 1.1]). Let ψ ∈ H1((Rd)N ;R) symmetric and
non-negative. Given (ρn)n≥1 such that

√
ρn →

√
ρ[ψ] in H1(Rd), there exist

(ψn)n≥1 symmetric and non-negative such that ρn = ρ[ψn] and ψn → ψ in
H1((Rd)N ;R).

Theorem 5.1.4 ([5, Theorem 1.2]). Let ψ ∈ H1((Rd)N ;R) symmetric. Given
(ρn)n≥1 such that

√
ρn →

√
ρ[ψ] in H1(Rd), there exist (ψn)n≥1 symmetric

and complex-valued such that ρn = ρ[ψn] and ψn → ψ in H1((Rd)N ;C).

Notice that the first result is already of physical interest, since in many
cases the ground state of a system of N -particles is non-negative.

The main tools will be the smoothing of transport plans as introduced
and studied in [3, 4] and an application of the weighted Sobolev spaces. In
Section 5.1 we will start by constructing explicitly an L2 approximation of |ψ|
which respects the marginal constraint. Then in Section 5.1 we regularize it in
order to obtain a Sobolev regular sequence which converges in H1 to |ψ| and
still maintains the marginal constraint. The main tool will be the smoothing
operator defined in Chapter 4. This will complete the proof of Theorem 5.1.3.
In the final Section 5.2, making use of a suitable weighted Sobolev space, we
show how to deal with the sign of the wave-function, finally proving the main
result in its completeness.

Construction of L2 wavefunctions

In this section we start the construction by proving the following

3The fact that Vint is continuous on the set of wave functions follows from the observation
that f(z) = 1

|z| is such that f ∈ L∞(Rd)+Ld/2(Rd), and the Hölder and Sobolev inequalities.
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Theorem 5.1.5. Let ρn, ρ ∈ L1(Rd) such that
√
ρn →

√
ρ in L2(Rd),

∫
ρ =∫

ρn = 1 and let ϕ ∈ L2((Rd)N ) symmetric, ϕ ≥ 0, such that ρ = ρ[ϕ].
Then there exists a sequence (ϕn) ⊆ L2((Rd)N ) such that ϕn is symmetric,
ρn = ρ[ϕn] and ϕn → ϕ in L2((Rd)N ).

For fixed n ∈ N, let σ0
n = ρ and ϕ0

n = ϕ and define inductively for k ≥ 0

Ekn =
{
x ∈ Rd | σkn(x) > ρn(x)

}
,

Skn(X) =
1

N

N∑
j=1

σkn(xj)− ρn(xj)

σkn(xj)
χEkn(xj),

ϕk+1
n (X) = ϕkn(X)

√
1− Skn(X),

σk+1
n (x) =

∫
ϕk+1
n (x, x2, . . . , xN )2dx2 · · · dxN .

Notice that, for every k, n, the function ϕkn is symmetric. The sequence
(ϕkn)k≥0 is monotone decreasing, as proved in the following

Lemma 5.1.6. (i) 0 ≤ ϕk+1
n ≤ ϕkn ≤ ϕ;

(ii) 0 ≤ σk+1
n ≤ σkn ≤ ρ;

(iii) Ek+1
n ⊆ Ekn ⊆ E0

n.

Proof. Since 0 ≤ Skn(X) ≤ 1, the factor
√

1− Skn(X) is less or equal than 1,
and the inequalities in (i) are obvious; (ii) and (iii) follow.

In order to estimate some L2 norms which will appear later, the following
lemma will also prove useful.

Lemma 5.1.7. If k ≥ 0 and E ⊆ Ekn, then∫
E

(σkn(x)− ρn(x))dx ≤
(
N − 1

N

)k ∫
E

(ρ(x)− ρn(x))dx.

Proof. By induction on k. For k = 0 the inequality is in fact an equality.

Suppose now the thesis is true for k, and fix E ⊆ Ek+1
n . Using the fact

that Ek+1
n ⊆ Ekn one has

∫
E

(σk+1
n (x)− ρn(x))dx =

∫
E×(Rd)N−1

ϕkn(X)2(1− Skn(X))dX −
∫
E
ρn(x)dx

=

∫
E

(σkn(x)− ρn(x))dx−
∫
E×(Rd)N−1

ϕkn(X)2Skn(X)dX.
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Notice that∫
E×(Rd)N−1

ϕkn(X)2Skn(X)dX

=
1

N

N∑
j=1

∫
E×(Rd)N−1

ϕkn(X)2σ
k
n(xj)− ρn(xj)

σkn(xj)
χEkn(xj)dX

≥ 1

N

∫
E×(Rd)N−1

ϕkn(X)2σ
k
n(x1)− ρn(x1)

σkn(x1)
χEkn(x1)dX

=
1

N

∫
E

(σkn(x)− ρn(x))dx,

because the (first) marginal of ϕkn is σkn, and E ⊆ Ekn. Hence, using the
inductive hypothesis,∫

E
(σk+1
n (x)− ρn(x))dx ≤

(
1− 1

N

)∫
E

(σkn(x)− ρn(x))dx

≤
(

1− 1

N

)k+1 ∫
E

(ρ(x)− ρn(x))dx.

as wanted.

The following proposition specifies that the sequence (ϕkn)k≥0 is not too
far away from the target function ϕ with respect to the L2 topology.

Proposition 5.1.8. For every k ≥ 0,

‖ϕ‖2L2((Rd)N ) −
∥∥∥ϕkn∥∥∥2

L2((Rd)N )
≤ 2N ‖√ρ−√ρn‖L2(Rd) .

Proof. We denote for simplicity the L2-norm as ‖·‖ both on (Rd)N and on Rd,
since there cannot be any confusion. By the definition of the ϕjn’s we may
compute for every j ≥ 0∥∥ϕj+1

n

∥∥2
=

∫
ϕjn(X)2(1− Sjn(X))dX =

∥∥ϕjn∥∥2 −
∫
Ejn

(σjn(x)− ρn(x))dx.

Hence, using Lemma 5.1.7,

‖ϕ‖2 −
∥∥∥ϕkn∥∥∥2

=

k−1∑
j=0

(∥∥ϕjn∥∥2 −
∥∥ϕj+1

n

∥∥2
)

=
k−1∑
j=0

∫
Ejn

(σjn − ρn)

≤
k−1∑
j=0

(
N − 1

N

)j ∫
Ejn

(ρ− ρn) =

k−1∑
j=0

(
N − 1

N

)j ∫
Ejn

|ρ− ρn|

≤
k−1∑
j=0

(
N − 1

N

)j ∫
|ρ− ρn| ≤ N

∫
|ρ− ρn|,



106 Chapter 5

Now the Hölder inequality and the elementary estimate (
√
a +
√
b)2 ≤

2(a+ b) lead to∫
|ρ− ρn| ≤

(∫
|√ρ+

√
ρn|2

)1/2(∫
|√ρ−√ρn|2

)1/2

=

(
2

∫
(ρ+ ρn)

)1/2

‖√ρ−√ρn‖ = 2 ‖√ρ−√ρn‖ .

We are ready to define the functions ϕn. Let

ϕ∞n (X) = lim
k→∞

ϕkn

σ∞n (x) =

∫
ϕ∞n (x, x2, . . . , xN )2dx2 · · · dxN .

They are well defined due to Lemma 5.1.6, and ϕ∞n is symmetric, since it
is the pointwise limit of symmetric functions; let moreover

qn =

∫
(ρn(x)− σ∞n (x)) dx

αn(X) =
1

qN−1
n

N∏
j=1

(ρn(xj)− σ∞n (xj))

ϕn(X) =
√
ϕ∞n (X)2 + αn(X).

where the second term is set to zero if qn = 0. Observe that the function
ϕn is symmetric, because αn is symmetric by construction. The definition is
well-posed since αn is non-negative, as proved in the following

Lemma 5.1.9. ρn(x)− σ∞n (x) ≥ 0.

Proof. Using that σkn−ρn
σkn

χEkn ≥ 0, one has

ρn(x)− σk+1
n (x) = ρn(x)−

∫
(Rd)N−1

ϕk+1
n (X)2dx2 · · · dxN

= ρn(x)− σkn(x) +

∫
R(N−1)d

ϕkn(X)2Skn(X)dx2 · · · dxN

≥ (ρn(x)− σkn(x))

(
1− 1

N
χEkn(x)

)
If x ∈ Ekn then

(ρn(x)− σkn(x))

(
1− 1

N
χEkn(x)

)
=
N − 1

N
(ρn(x)− σkn(x));
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on the other hand, if x ∈ (Ekn)c, then ρn(x)− σkn(x) ≥ 0, and hence

(ρn(x)− σkn(x))

(
1− 1

N
χEkn(x)

)
= ρn(x)− σkn(x) ≥ N − 1

N
(ρn(x)− σkn(x)).

So that for every x ∈ Rd,

ρn(x)− σk+1
n (x) ≥ N − 1

N
(ρn(x)− σkn(x)),

and letting k →∞,

ρn(x)− σ∞n (x) ≥ N − 1

N
(ρn(x)− σ∞n (x)) =⇒ ρn(x)− σ∞n (x) ≥ 0.

Finally, ϕn → ϕ in L2 as n goes to ∞, as is proved in the following

Proposition 5.1.10.

‖ϕn − ϕ‖2L2 ≤ 2(2N + 1) ‖√ρ−√ρn‖L2

Proof. By the monotonicity described in Lemma 5.1.6, ϕ ≥ ϕ∞n and then

|ϕn − ϕ|2 = ϕ2 + (ϕ∞n )2 + αn − 2ϕ

√
(ϕ∞n )2 + αn

≤ ϕ2 + (ϕ∞n )2 + αn − 2ϕϕ∞n ≤ ϕ2 − (ϕ∞n )2 + αn

Integrating over Rd leads to

‖ϕn − ϕ‖2L2 ≤ ‖ϕ‖2L2 − ‖ϕ∞n ‖
2
L2 + ‖αn‖L1 .

Letting k →∞ in Proposition 5.1.8 and using the monotone convergence
theorem, one has

‖ϕ‖2L2 − ‖ϕ∞n ‖
2
L2 ≤ 2N ‖√ρ−√ρn‖L2 .

On the other hand, recalling the final step of the proof of Proposition 5.1.8
and using again the monotone convergence theorem,

‖αn‖L1 =

∫
(ρn(x)− σ∞n (x)) dx

≤
∫
|ρn(x)− ρ(x)| dx+

∫
(ρ(x)− σ∞n (x)) dx

≤ 2 ‖√ρ−√ρn‖L2 +

∫
ϕ(X)2dX −

∫
ϕ∞n (X)2dX

= 2 ‖√ρ−√ρn‖L2 + ‖ϕ‖2L2 − ‖ϕ∞n ‖
2
L2

≤ 2(N + 1) ‖√ρ−√ρn‖L2 .

This concludes the proof of Theorem 5.1.5.
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Sobolev regularity and convergence

Let ρn, ρ, ϕn and ϕ as in Section 5.1 and assume, additionally, that ϕ ∈ H1

and
√
ρn →

√
ρ in H1(Rd). The sequence (ϕn) constructed in Section 5.1 is

such that ϕn ∈ L2((Rd)N ) with ϕn → ϕ in L2((Rd)N ). We will now improve
the regularity and the convergence of (ϕn) using the results of Chapter 4.

Given ϕ ∈ L2((Rd)N ), we write for simplicity ϕε for the square root of the
density of the measure Θε(µϕ), where dµϕ(X) = |ϕ(X)|2 dX and Θ is the
smoothing operator of Theorem 4.0.1. We take in this case a Gaussian kernel,
since we need Theorem 4.3.2. By the results of Chapter 4, Θε(ϕ) is indeed ab-
solutely continuous w.r.t. the Lebesgue measure, and ϕε ∈ H1((Rd)N ). More-
over, if ϕ is a symmetric function, i.e., ϕ(x1, . . . , xN ) = ϕ(xσ(1), . . . , xσ(N))
for every permutation σ ∈ SN , the construction of Chapter 4 produces a
symmetric function ϕε.

We are now able to prove the following

Theorem 5.1.11. Let ρn, ρ ∈ R such that
√
ρn →

√
ρ in H1(Rd), and let

ϕ ∈ H1((Rd)N ) symmetric and non-negative be such that ρ[ϕ] = ρ. Then
there exist un ∈ H1((Rd)N ) such that un → ϕ in H1((Rd)N ) and ρ[un] = ρn.

Proof. In this proof we denote by ‖·‖ theH1-norm on (Rd)N . Let ϕn, ϕ defined

in Section 5.1: the idea is to take a suitable diagonal sequence un := ϕ
ε(n)
n .

Let N0 = 1, and for k ≥ 1 choose Nk ∈ N such that

(i) Nk > Nk−1;

(ii)
∥∥∥ϕ2−k

n − ϕ2−k
∥∥∥ ≤ 2−k for every n ≥ Nk.

The sequence (Nk)k≥0 is well defined due to Theorem 4.3.2.(iii) and in-
creasing. Given n ≥ 1, let k be such that Nk ≤ n < Nk+1, and set ε(n) = 2−k.
When Nk ≤ n < Nk+1, by construction we have∥∥∥ϕε(n)

n − ϕ
∥∥∥ ≤ ∥∥∥ϕ2−k

n − ϕ2−k
∥∥∥+

∥∥∥ϕ2−k − ϕ
∥∥∥ ≤ 2−k +

∥∥∥ϕ2−k − ϕ
∥∥∥ .

As n → ∞, also k → ∞ and the right-hand side goes to zero due to
Theorem 4.2.7.

To avoid any confusion, in the following we will denote by (ϕn)n∈N a
sequence such that ϕn → ϕ in H1((Rd)N ) and ρ[ϕn] = ρn.

Remark 16. If the original wave-function was symmetric and non-negative,
then by Theorem 5.1.11 we already get the desired approximating wave-
functions which are also symmetric and non-negative, thus proving Theorem
5.1.3.
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5.2 Approximation with signs

Let ρn, ρ, ϕn and ϕ like in the previous sections, and assume now that ϕ = |ψ|,
where ψ ∈ H1((Rd)N ;R). In this section, starting from ϕn, we will construct

ψn ∈ H1((Rd)N ;C) such that ψn 7→ ρn and ψn
H1

→ ψ. Some weighted Sobolev
spaces will be the main tool of the construction.

To every measurable λ : (Rd)N → Rn (scalar or vectorial) we may associate
some spaces related to the measure |λ|2(X)dX. In particular this will be used
for λ equal to the wave function ψ or equal to the gradient of the wave function
∇ψ. The most natural space is

L2(|λ|2dX;C) :=

{
f : (Rd)N → C |

∫
|f(X)|2|λ(X)|2dX < +∞

}
.

When λ ∈ H1((Rd)N ;R) we may define also the Sobolev spaces relative to the
measure |λ|2dX = λ2dX. First we need a definition of the gradient:

Definition 8. If λ ∈ H1((Rd)N ;R) and f ∈ L2(λ2dX), the gradient ∇λf is
defined by the identity∫

∇λfϕλ2dX = −
∫
f∇ϕλ2dX − 2

∫
fϕ
∇λ
λ
λ2dX ∀ϕ ∈ C∞c . (5.2)

It is then natural to define the Sobolev space

H1(λ2dX) :=

{
f ∈ L2(λ2dX) :

∫
|∇λf(X)|2λ2dX < +∞

}
.

Remark 17. If f is a C1 function then ∇λf = ∇f , the usual gradient. Indeed,
if ϕ ∈ C∞c , then∫

∇λfϕλ2dX = −
∫
f∇ϕλ2dX − 2

∫
fϕ
∇λ
λ
λ2dX

=

∫
∇fϕλ2dX + 2

∫
fϕ
∇λ
λ
λ2dX − 2

∫
fϕ
∇λ
λ
λ2dX

=

∫
∇fϕλ2dX.

Remark 18. If f, g ∈ H1(λ2dX), and fg, f∇λg, g∇λf ∈ L2(λ2dX), then fg ∈
H1(λ2dX) and ∇λ(fg) = f∇λg + g∇λf . This is Corollary 2.6 in [11].

The next construction relates these ideas to the objects we know from the
previous sections. Let ψ ∈ H1((Rd)N ;R) so that also |ψ| ∈ H1((Rd)N ); then
there exists a measurable function e : (Rd)N → {−1, 1} such that ψ = e|ψ|.
The function e coincides almost everywhere with ψ/|ψ| in the set where ψ 6= 0.
From now on, let λ = |ψ|.
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Lemma 5.2.1. It holds that e ∈ H1(|ψ|2dX) and ∇λe = 0 |ψ|2dX − a.e.
Moreover, since |e| ≤ 1, e ∈ L2(|∇ψ|2dX).

Proof. Since |e| = 1 |ψ|2dX − a.e., e ∈ L2(|ψ|2dX). Let ϕ ∈ C∞c ,∫
∇λeϕ|ψ|2dX = −

∫
e∇ϕ|ψ|2dX − 2

∫
eϕ|ψ| ψ

|ψ|
∇ψdX = 0,

since∫
e∇ϕ|ψ|2dX =

∫
∇ϕψ|ψ|dX = −

∫
ϕ∇ψ|ψ|dX −

∫
ϕψ

ψ

|ψ|
∇ψdX

= −2

∫
ϕ|ψ|∇ψdX.

We are interested in smooth approximations in these Sobolev spaces, a
well-studied question in the literature. The following is a consequence of [11,
Theorem 2.7]; we invite the reader to see also the references in that paper for
a more complete picture.

Theorem 5.2.2. There exists a sequence {en} ∈ C∞ ∩H1(|ψ|2dX) such that

(i) |en| ≤ 1,

(ii) en → e in H1(|ψ|2dX),

(iii) en → e in L2(|∇ψ|2dX).

Proof. Choose a sequence of smooth cut-off functions (cn)n≥1 such that:

• 0 ≤ cn ≤ 1;

• cn ≡ 1 on B(0, n− 1), cn ≡ 0 on B(0, n)c;

• Lip(cn) ≤ 2.

First we consider e · cn and we prove that it satisfies the properties (i)-(iii)
above. The property (i) is obvious. Also the L2-convergence is easy:∫
|ecn − e|λ2dX ≤

∫
B(0,n)c

λ2dX,

∫
|ecn − e| |∇λ|2 dX ≤

∫
B(0,n)c

|∇λ|2 dX

converge to zero since λ,∇λ ∈ L2(RNd). Combining Remark 17 and Remark
18 we have ∇λ(ecn) = cn∇λe + e∇λcn = e∇λcn = e∇cn, and we must prove
that it converge to 0 in L2(λ2dX). Indeed we have∫

|e∇cn|2 λ2dX ≤ 4

∫
B(0,n−1)c

λ2dX.

Now the second step is to regularize by convolution with a standard mol-
lifier of compact support Jε defined by Jε(X) = 1/εNdJ(X/ε), where J is
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non-negative and supported in the unit ball, with
∫
J = 1. It is shown in [11,

Theorem 2.7] that Jε ∗ (ecn) converge to ecn for fixed n as ε → 0. Thus it
suffices to take εn small enough so that ‖Jεn ∗ (ecn)− ecn‖H1(λ2dX) converges
to zero to conclude.

Remark 19. If the function e is symmetric, it is possible to make en to be
symmetric as well. It suffices to choose cn (the cut-off functions) to be sym-
metric. Then the process of convolution maintains symmetry if the kernel is
symmetric.

In order to have a good behaviour of the approximating sequence (en)n≥1

for the estimates that will be needed in the proof of Theorem 5.2.5, we must
also control the Lipschitz constant of en. This may be done as a consequence
of the following

Lemma 5.2.3. Given sequences of non-negative real numbers (Mn) and (ak)
such that ak → 0, there exists a choice (nk) of indexes such that

(i) nk ↗ +∞;

(ii) Mnkak → 0.

Proof. Given n, let K(n) such that Mnak < 2−n for all k ≥ K(n), and choose
also K(n+ 1) > K(n). Now we define the sequence (nk) as follows:

nk =

{
1 if k < K(1)

n if K(n) ≤ k < K(n+ 1).

By construction we have Mnkak < 2−n for all k ≥ K(n), thus proving (ii).
On the other hand, given L ∈ N, if k ≥ K(L) we have nk ≥ L, which proves
(i).

Corollary 5.2.4. Given (an) such that an → 0, the sequence in Theorem
5.2.2 may be chosen such that Lip(en)an → 0.

Proof. Apply Lemma 5.2.3 with Mn = Lip(en) to select a suitable sequence
(enk) with the desired property.

Definition 9. Let ω ∈ C1([−1, 1], S1
+) be defined by

s 7→ ei(1−s)
π
2 .

The function ω is such that |ω| = 1, ω(−1) = −1 and ω(1) = 1 so that
ω(e(x)) = e(x) a.e. in the set ψ 6= 0. Moreover, observe that |ω′| = π

2 and
|ω(s)− ω(t)| ≤ π

2 |s− t| for all s, t ∈ [−1, 1].

Theorem 5.2.5. Let ω be the function defined above. Let en ∈ C∞c with
values in [−1, 1] be such that en → e in H1(|ψ|2dX) and L2(|∇ψ|2dX). Then
ψn := ω(en)ϕn → ψ in H1.
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Proof. First the L2 convergence which is easier.

‖ψn − ψ‖L2 = ‖ω(en)ϕn − e|ψ|‖L2

≤ ‖ω(en)ϕn − ω(en)|ψ|‖L2 + ‖ω(en)|ψ| − e|ψ|‖L2

= ‖ϕn − |ψ|‖L2 + ‖ω(en)− e‖L2(|ψ|2dX)

≤ ‖ϕn − |ψ|‖L2 + ‖ω(en)− ω(e)‖L2(|ψ|2dX) + ‖ω(e)− e‖L2(|ψ|2dX)

≤ ‖ϕn − |ψ|‖L2 +
π

2
‖en − e‖L2(|ψ|2dX).

The last term converges to 0 by Theorem 5.2.2 above.
For the L2 convergence of gradients, let us first compute

∇ψn = ω′(en)∇enϕn + ω(en)∇ϕn,

∇ψ = ∇(e|ψ|) = e∇|ψ|,

and in the second computation we used that ∇e = 0 a.e. where |ψ| 6= 0.

‖∇ψn −∇ψ‖L2 = ‖ω′(en)∇enϕn + ω(en)∇ϕn − e∇|ψ‖
≤ ‖ω′(en)∇enϕn − ω′(en)∇en|ψ|‖+ ‖ω′(en)∇en|ψ|‖

+ ‖ω(en)∇ϕn − e∇|ψ|‖.

The three terms on the right-hand-side above may be studied separately, the
most difficult one being the first. We have∥∥ω′(en)∇enϕn − ω′(en)∇en|ψ|

∥∥2 ≤ π

2

∫
|∇en|2 |ϕn − |ψ||2 dX

≤ π

2
Lip(en)2

∫
|ϕn − |ψ||2 dX.

The last term of the inequality converges to 0 if we choose an = ‖ϕn − |ψ|‖L2

in Corollary 5.2.4.
The second term∥∥ω′(en)∇en |ψ|

∥∥2 ≤ π

2

∫
|∇en|2 |ψ|2 dX

and this goes to 0 by Theorem 5.2.2 ii) and Lemma 5.2.1. Finally we control
the third term by breaking it down again.

‖ω(en)∇ϕn − e∇ |ψ|‖L2 ≤ ‖ω(en)∇ϕn − ω(en)∇ |ψ|‖L2

+ ‖ω(en)∇ |ψ| − e∇ |ψ|‖L2

≤ ‖∇ϕn −∇ |ψ|‖L2 + ‖ω(en)∇ |ψ| − ω(e)∇ |ψ|‖L2

≤ ‖∇ϕn −∇ |ψ|‖L2 +
π

2
‖en − e‖L2(|∇ψ|2dX) .

The last term converges to 0 by the convergence of ϕn to |ψ| in H1((Rd)N )
and by Theorem 5.2.2 iii).
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In conclusion, notice that the approximating sequence built in this way
maintains the symmetry property. Indeed, ϕn is symmetric for every n, and
so is the sign function e. By Remark 19 we may choose en to be symmetric.
Finally, if en is symmetric, so is ω(en), and hence ω(en)ϕn is symmetric, finally
proving Theorem 5.1.4.

5.3 The semiclassical limit of the Hohenberg-Kohn
functional

In this Section we address the following problem: what is the behaviour of
FA~ and FS~ as ~→ 0?

This is a very relevant topic in physics, and is called the “semiclassical
limit”. It corresponds to the case of “strongly correlated electrons”, i.e., to
a system in which the internal potential energy Vint due to the interaction
between particles dominates the kinetic energy T .

Let us start with a crucial remark.

Remark 20. If we put ~ = 0 in the definition of FS~ we get

FS0 := inf {Vint(ψ) | ψ ∈ S, ψ 7→ ρ} .

Recall the Kantorovich formulation of the multi-marginal optimal trans-
port problem for a cost function c(x1, . . . , xN ) with all marginals equal to
ρ:

C(ρ) = min

{∫
c(X)dγ(X) | γ ∈ Π(ρ, . . . , ρ)

}
.

By considering the Coulomb cost function

c(x1, . . . , xN ) =
∑

1≤i<j≤N

1

|xi − xj |

and by viewing |ψ|2 as the density of a probability measure γ on (Rd)N , we
get

FS0 = inf

{∫
c(X)dγ(X) | γ ∈ Π(ρ, . . . , ρ),

√
γ ∈ H1((Rd)N )

}
≥ inf

{∫
c(X)dγ(X) | γ ∈ Π(ρ, . . . , ρ)

}
= C(ρ).

Thus, the two functionals look almost the same, except for the regularity
request on the transport plan. However, as we studied in detail in Chap-
ter 4, every transport plan can be approximated by a regular one, so the two
functionals are actually the same.4

4This still requires some work, since the Coulomb cost is not a continuous and bounded
function. Details will be made precise in the following.
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This raises the question of whether FA~ , F
S
~ → C in a suitable sense of

convergence. This connection between the Levy-Lieb functional and the multi-
marginal optimal transport functional was not realized until recent years —
see for instance [10, 18]. Since then, the semiclassical limit of the Levy-Lieb
functional was studied in [4, 32, 19], and finally now we have a complete
picture. We will devote the rest of this section to the proof of the following
results.

Theorem 5.3.1. For every ρ ∈ R,

lim
~→0

FS~ (ρ) = C(ρ).

Theorem 5.3.2. For every ρ ∈ R,

lim
~→0

FS~ (ρ) = C(ρ).

For the proof of Theorem 5.3.1 we will closely follow [4], and is based on
our smoothing procedure of Chapter 4.

A proof of Theorem 5.3.2 is given in [4] for N = 2, 3, and a very similar idea
was later developed in [19] to get the same result for any number of marginals.
However, in our opinion, the proof of Theorem 5.3.2 given by M. Lewin in
[32] is much more physically meaningful and elegant. Moreover, it exploits
once more the ideas coming from Chapter 4, and this give everything a nice
unique frame. For the main estimates, however, we will refer to the original
paper, because we want to focus on the link between Lewin’s contruction and
Chapter 4.

For both theorem, we will prove the result in the spinless case. The spin
dependence can be handled easily, e.g., by letting all the particles in the same
spin state with probability one.

Without further ado, let us move to the proofs. For clarity of presentation,
we separate the argument in two sections: the first one will show how to
deal with the bosonic case. In the second part, we will present how Lewin
generalized this construction to mixed quantum states to get Theorem 5.3.2.

Proof of Theorem 5.3.1

Let us fix ρ ∈ R. For every ψ ∈ S, ψ 7→ ρ we have

~2T (ψ) + Vint(ψ) ≥ Vint(ψ) ≥ C(ρ),

since the transport plan µ defined by dµ(X) = |ψ(X)|2 dX is an admissible
competitor for the multi-marginal optimal transport problem C(ρ).

By passing to the infimum on the left-hand side we get

FS~ (ρ) ≥ C(ρ),
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hence
lim inf
~→0

FS~ (ρ) ≥ C(ρ).

Let now µ ∈ P((Rd)N ) be an optimal transport plan for C(ρ), i.e.,∫ ∑
1≤i<j≤N

dµ(X)

|xi − xj |
= C(ρ).

First of all, notice that we can assume µ to be a symmetric measure:
indeed, if it is not the case, let

Symµ :=
1

N !

∑
σ∈SN

(Tσ)#(µ),

where Tσ : (Rd)N → (Rd)N is the permutation of coordinates defined by
Tσ(x1, . . . , xN ) = (xσ(1), . . . , xσ(N)). Because of the symmetry of the cost
function, Symµ will still be an optimal transport plan for C(ρ).

Now the idea of the proof is to let

ψ~ :=

√
Θ
√
~[µ],

where Θ is the smoothing operator defined in Chapter 4. In this case we take a
compactly supported kernel η, since we need to apply Theorem 4.3.1. Observe
that this defines ψ~ ∈ H1((Rd)N ), symmetric and positive.

Lemma 5.3.3. With the notation above,

lim
~→0

~2T (ψ~) = 0.

Proof. We apply the p = 2 version of the energy bound for Θ given by Theo-
rem 4.2.4 to get

T (ψ~) = E2(Θ~[µ]) ≤ Nc(η)

~
+N

∫
Rd
|∇√ρ|2 .

Since ρ ∈ R, the last integral is finite, and we get the thesis.

Lemma 5.3.4. With the notation above,

lim
~→0

Vint(ψ~) = C(ρ).

Proof. By a result of Buttazzo et al. [9, Theorem 2.4], there exists α > 0 such
that

µ(D2α) = 0,

where D2α denotes the “enlarged diagonal”

D2α =
{

(x1, . . . , xN ) ∈ (Rd)N | |xi − xj | ≤ 2α for some i 6= j
}
.
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We define the truncated Coulomb cost

cα(x1, . . . , xN ) =
∑

1≤i<j≤N
fα(xi, xj),

where

fα(x, y) =

{
1
|x−y| if |x− y| ≥ α
1
α otherwise.

Observe that cα is a bounded and continuous function which differ from
the Coulomb cost only on Dα ⊆ D2α, hence

C(ρ) =

∫
c(X)dµ(X) =

∫
cα(X)dµ(X).

By Corollary 4.2.6, we know that Θ
√
~[µ] ⇀ µ, so in particular

lim
~→0

∫
cα(X) |ψ~(X)|2 dX = lim

~→0

∫
cα(X)dΘ

√
~[µ](X) =

∫
cα(X)dµ(X) = C(ρ).

On the other hand by Theorem 4.3.1 with Ω = Dα, we know that, for ~
sufficiently small, ψ~ = 0 on Dα, hence

Vint(ψ~) =

∫
c(X) |ψ~(X)|2 dX =

∫
cα(X) |ψ~(X)|2 dX,

and we get the thesis.

This concludes the proof of Theorem 5.3.1, since we get

lim sup
~→0

FS~ (ρ) ≤ lim sup
~→0

(
~2T (ψ~) + Vint(ψ~)

)
= C(ρ).

Proof of Theorem 5.3.2

We get easily that

lim inf
~→0

FS~ (ρ) = C(ρ)

as in the proof of Theorem 5.3.1.
In order to get the (much harder) inequality, we give a brief quantum-

oriented introduction and notation, in order to clarify the similarities of Lewin’s
argument with our construction. As in quantum chemistry is often done, we
extend the set A of wave-function to the set of N -particles density matrix, as
for the following

Definition 10. The set of N -particles density matrices is the set of linear
operators Γ: A → A such that:

(i) Γ is trace-class, Tr Γ = 1;
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(ii) Γ = Γ∗, Γ ≥ 0.

The set of N -particles density matrices is convex. Observe also that any
ψ ∈ A provides an N -density matrix Γψ given by the orthogonal projection
on the linear subspace generated by ψ., so the notion of N -particles density
matrix effectively extends that of wave-function. To any given Γ, we can
associate a single-particle density ρΓ defined by duality by∫

Rd
φ(x)dρ(x) = Tr(φ(x1)Γ)

for every φ ∈ Cb(Rd). Notice that, consistently, if Γ = Γψ, then the density
ρΓ defined in this way coincides with the single particle density of the wave-
function ψ.

A crucial result in Density Functional Theory is the following by H. Lieb
[34, Section 4.B].

Theorem 5.3.5. Let ρ ∈ R. Then

FA~ (ρ) = inf {TrH0Γ | Γ N -particle density matrix, ρΓ = ρ}

Here H0 denotes the fundamental hamiltonian

H0 = −
N∑
k=1

∆xk + c(x1, . . . , xN ),

which is a non-negative self-adjoint operator on A, since the Coulomb cost
function c(x1, . . . , xN ) is non-negative.5

Let us take a symmetric optimal transport plan µ ∈ P((Rd)N ) for the
multi-marginal optimal transport problem. The idea to complete the proof of
Theorem 5.3.2 is thus to construct a suitable sequence Γ~ such that:

(A) Tr(−∆xk)Γ~ is controlled in terms of ~ for every k = 1, . . . , N ;

(B) Γ~ ⇀ µ and supp Γ~ ∩Dα = ∅ for ~ sufficiently small.

This will allow to conclude as in the previous section.

Lewin’s nice idea is to modify the smoothing operator of Chapter 4 in order
to get not a wave-function, but an N -particle denisty matrix. We take a com-
pactly supporte kernel ηε(z) ∈ C∞(Rd), and we start as usual by regularizing
µ by convolution. Let as in Chapter 4

Λε[µ](Y ) =

∫ N∏
k=1

ηε(yk − zk) dµ(Z).

5Here the Laplacian is naturally defined by duality using the Sobolev derivatives.



118 Chapter 5

Recall that we got back the original marginals by letting

Θε[µ](X) =

∫ N∏
k=1

ηε(yk − xk)ρ(xk)

(ρ ∗ ηε)(yk)
Λε[µ](Y ) dY,

and in this way we get a symmetric (bosonic) wave-function, because we are
averaging on Y the symmetric wave-functions

ψY (X) =
N∏
k=1

ηε(yk − xk)ρ(xk)

(ρ ∗ ηε)(yk)
.

If we want to get an N -particle density matrix, we should average on Y
suitable operators ΓY . A standard way to construct fermionic wave functions
is to take the so-called Slater determinant : given ϕ1, . . . , ϕN ∈ H1(Rd), the
wave-function

S(ϕ1, . . . , ϕN )(x1, . . . , xN ) := det

ϕ1(x1) . . . ϕ1(xN )
...

. . .
...

ϕN (x1) . . . ϕN (xN )


belongs to the set A.

Recalling that to each wave-function ψ we can associate Γ = Γψ, we define
the wave-function

ψε,Y (x1, . . . , xN ) := det


ηε(y1−x1)ρ(x1)

(ρ∗ηε)(y1) . . . ηε(y1−xN )ρ(xN )
(ρ∗ηε)(y1)

...
. . .

...
ηε(yN−x1)ρ(x1)

(ρ∗ηε)(yN ) . . . ηε(yN−xN )ρ(xN )
(ρ∗ηε)(yN )


and let ΓεY := Γψε,Y . When we average over Y , since Λε[µ] is a probability
measure, by convexity of the N -particles density matrices we get an admissible
trial state

Γε :=

∫
ΓεY Λε[µ](Y ) dY.

For the properties of Γε, which lead to the result and also to an additional
bound on the rate of convergence,we refer to [32] and in particular Theorem
1 therein.
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[7] Andrea Braides. Gamma-convergence for Beginners. Oxford University
Press, 2002.

[8] Yann Brenier. Polar factorization and monotone rearrangement of vector-
valued functions. Communications on pure and applied mathematics,
44(4):375–417, 1991.

[9] Giuseppe Buttazzo, Thierry Champion, and Luigi De Pascale. Conti-
nuity and estimates for multimarginal optimal transportation problems
with singular costs. Applied Mathematics & Optimization, 78(1):185–200,
2018.

[10] Giuseppe Buttazzo, Luigi De Pascale, and Paola Gori-Giorgi. Optimal-
transport formulation of electronic density-functional theory. Physical
Review A, 85(6):062502, 2012.

119



120 Chapter 5

[11] Patrick Cattiaux and Myriam Fradon. Entropy, reversible diffusion
processes, and Markov uniqueness. journal of functional analysis,
138(1):243–272, 1996.

[12] James A Clarkson. Uniformly convex spaces. Transactions of the Amer-
ican Mathematical Society, 40(3):396–414, 1936.

[13] Maria Colombo, Luigi De Pascale, and Simone Di Marino. Multimarginal
optimal transport maps for 1-dimensional repulsive costs. Canad. J.
Math, 67:350–368, 2013.

[14] Maria Colombo, Luigi De Pascale, and Simone Di Marino. Multimarginal
optimal transport maps for one–dimensional repulsive costs. Canadian
Journal of Mathematics, 67(2):350–368, 2015.

[15] Maria Colombo and Simone Di Marino. Equality between monge and kan-
torovich multimarginal problems with coulomb cost. Annali di Matem-
atica Pura ed Applicata (1923-), 194(2):307–320, 2015.

[16] Maria Colombo, Simone Di Marino, and Federico Stra. Continuity of
multimarginal optimal transport with repulsive cost. SIAM Journal on
Mathematical Analysis, 51(4):2903–2926, 2019.

[17] Maria Colombo and Federico Stra. Counterexamples in multimarginal
optimal transport with coulomb cost and spherically symmetric data.
Mathematical Models and Methods in Applied Sciences, 26(06):1025–
1049, 2016.

[18] Codina Cotar, Gero Friesecke, and Claudia Klüppelberg. Density func-
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