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ABSTRACT

Motivated by the continuous advancements in the miniaturization of devices down

to reveal the quantum nature of matter, in this thesis we investigate the way a quantum

system is affected by the presence of a thermal environment and propose methodologies

to exploit this kind of sensitivity for quantum technologies. Since treating exactly the

dynamics of the full system-environment compound is generally problematic for the

diverging number of degrees of freedom involved in the calculation, effective master

equations for the reduced system density matrix were developed in literature during the

last century. Among them, the Redfield approach is an equation obtained under weak-

coupling (or Born) and Markovian assumptions. Despite offering effective descriptions

in a plethora of situations, it was criticized for not preserving the positivity (and hence

the complete positivity) of the system density matrix. The latter property is in general a

fundamental feature for assigning a probabilistic interpretation to the theory. We hence

begin by facing the problem of the non-positivity character of the Redfield equation,

curing it of the strict amount that is necessary via coarse-grain averaging performed

on the Redfield equation in the interaction picture. In the analysis a central role is

played by the coarse grain timescale. Once set it equal to a critical threshold value, the

resulting equation (CP-Redfield) enables conserving the predictive power of the Red-

field approach and preserving positivity at the same time. About it, we report both

practical estimation and self-consistent methods to evaluate the critical timescale. Our

strategy also allows to continuously map the Redfield equation into the secular master

equation (diverging coarse-grain time interval) by appropriately tuning the coarse grain

time, the latter being the equation usually adopted in the literature for ensuring ther-

modynamic consistency by enforcing a rotating-wave approximation. Starting from a

minimal example concerning the dipole coupling between a qubit and a bosonic bath,

we then apply this methodology to dissipative multipartite systems, for which the local

vs global debate is of current interest. The local master equation is instead the equation

that is obtained by assigning to each subsystem its proper thermal dissipator, preserv-

ing the local character of the microscopic interactions, while the global approach is the

Redfield equation in the secular limit. In this context, we studied an asymmetric en-
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ergy transfer model constituted by harmonic oscillators which, being exactly solvable,

provides the appropriate benchmark for testing the efficiency of the different master

equations. Beyond finding useful the application of the CP-Redfield equation, we point

out a sensible convex-mixture of the local and global solutions based on the timescale

separation of the two strategies. The local approach is then applied in the context of

quantum batteries, a field that was previously analyzed under closed (i.e. Hamiltonian)

settings. We hence provide one of the first attempts of schematizing an open quantum

battery, where, recalling in part the aforementioned asymmetric model, the charging

process originates from external sources (coherent and/or noisy) and is mediated by a

proper quantum charger. By studying different implementations, particular attention

was devoted to find possible interplay between coherent and incoherent energy supply

mechanisms in producing stored energy and ergotropy, the latter being defined in liter-

ature as the maximum extractable work. As a central result, increasing temperature is

not always detrimental for the stored ergotropy. Going beyond the particular instance

of bosonic bath, the sensitivity of a quantum system to its surrounding environment is

finally exploited in the context of statistical tagging, where one aims to guess the quan-

tum statistics (fermionic or bosonic) of a thermal bath of interest, introducing in this

way a novel research line in the field of quantum metrology. We propose an indirect

measurement protocol in which a quantum probe is let to interact with the unknown

bath and relies on the consideration that, despite the final probe equilibrium configura-

tion is not necessarily influenced by the bath nature, the latter generally leaves residual

imprintings in the probe state before thermalization, i.e. out-of-equilibrium. Using fig-

ures of merit taken from quantum metrology such as the Holevo-Helstrom probability

of error and the quantum Chernoff bound, we treated the cases of qubit and harmonic

oscillator probes, finding that, generally, the presence of coherences in the input state of

the probe is beneficial for the discrimination capability and noticing a bosonic advan-

tage in reducing to zero the error probability.

Keywords: Open quantum systems, Redfield equation, Open quantum batteries, Statis-

tics tagging, Quantum metrology.
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CHAPTER 1

Introduction

We start discussing the motivations which led to the writing of this thesis, giving an
overview of the research environment in which we carried out the research, and provid-
ing a brief summary of the personal contributions in the field of open quantum systems,
both at a fundamental level of the theory and regarding some applications that may be
useful for current and future nano-technology advancements.

1.1 Preface

It is now established that, for describing phenomena at the nano-scale, classical physics
fails miserably in the majority of cases, while the principles of quantum mechanics
represent building blocks for modeling and, therefore, for making predictions. The fun-
damental laws of quantum mechanics have been set during the last century. The super-
position principle and the tensor product structure of the Hilbert space are the elements
which entail the novel resources of the theory: quantum coherence and entanglement.
In our era it is the time of developing new technologies based on these new principles
at a fundamental level, trying to exploit the new resources with the ideal perspective
of getting some advantages with respect to the classical processes. In such a sense, we
are in the middle of a second quantum revolution (Dowling and Milburn 2003). How-
ever, even in the cases where quantum coherence does not imply relevant technological
advantages, in the nano-scale world we are often still constrained to take into account
the new actual rules of the game. Put differently, one can state that, depending on
the context, the new rules can lead to technological advantages or even disadvantages.
However, since those rules do control the nano-scale phenomena, they certainly must
be taken into account for an accurate modeling. Here some examples:
• One can think to build a thermal engine at the nano-scale or to model some small bi-

ological mechanism of interest, entering in the context of quantum thermodynamics
(Vinjanampathy and Anders 2016);
• One can need to measure the temperature or any parameters of very small systems or

subsystems, entering in the framework of quantum thermometry and, more generally,
of quantum metrology (Giovannetti et al. 2006);
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• One can aim to overcome the efficiency of the existing security protocols using quan-
tum mechanics, entering in the field of quantum cryptography and quantum commu-
nication (Gisin and Thew 2007);
• Finally, probably the most attracting context where quantum mechanics is expected

to provide a fundamental improvement is quantum computation. Exploiting quan-
tum resources into the data processing, protocols which are of exponential overhead
on classical computers become (in principle) of polynomial overhead on a quantum
computer, one of the most famous examples being the Peter Shor’s factoring algo-
rithm (Shor 1994).

However, in most of the cases, protocols that are theoretically perfectly consistent with
the quantum theory are very difficult to implement in a laboratory. This happens be-
cause a quantum system is never completely isolated, but, unavoidably, interacts with
unwanted external degrees of freedom, that are generically referred as environment.
Basic examples are vibrations or spurious light on the sample. The effect of this sur-
roundings is generally detrimental, destroying those quantum resources that make the
gap with classical protocols. Paradoxically, this happens just because the environment
establishes quantum correlations with the system, inducing decoherence locally on the
reduced state of the latter, formally obtained by tracing out the environmental degrees
of freedom. Intuitively, this can be understood thinking at the case of a Bell’s state, i.e.
a maximally entangled state, whose parts are locally completely mixed, i.e. without any
coherence. On the opposite side, an interesting aspect to mention is that the interaction
with the environment can be engineered in some cases in order to generate quantum
correlations into the system. This happens, for instance, in the non-equilibrium steady
state of a two-qubit entanglement engine described by Khandelwal et al. (2020), where
instead of work, entanglement is the resource generated from the incoherent interaction
of the system with two thermal baths.
Such considerations lead to the necessity of having at disposal methods to appropri-
ately model the effect of the environment on the system and, for doing so, of tagging
key features of the environment itself. In the cases one knows precisely the details of the
microscopic model underlying the experimental setup of interest, a first naive attempt is
to consider the system-environment compound as a closed object, hence jointly evolv-
ing through a unitary map. This route is usually computationally unsuccessful: being
the environment a macroscopic object, finding the exact dynamics of the whole com-
pound can be very problematic. Fortunately, under some often reliable assumptions,
the reduced dynamics of the system can be approximated through the so-called Gorini-
Kossakowski-Lindblad-Sudarshan master equation (Gorini et al. 1976, Lindblad 1976),
that for brevity we call Lindblad ME throughout the text. It appears as a correction
to the quantum Liouville equation for the closed system dynamics: the new Liouvillian
generator is composed of the original free system Hamiltonian term plus a term account-
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ing for the environmental disturbance, with the main characteristics of the environment
- temperature, statistics etc. - being encoded in the coefficients of this second term.
The steps for deriving a Lindblad ME starting from the exact microscopic model of
the system-environment compound are essentially three: the Born, Markov and Secular
approximations (Breuer et al. 2002). Whether the Born approximation is based on the
assumption of weak system-environment coupling and the Markovian approximation is
generally justified by the narrowness of the bath correlation functions (leading to a time
independent generator, hence implying the lack of any memory effects in the dynam-
ics), the main role of the secular approximation is to guarantee the complete-positivity
of the resulting transformation. Such property is necessary for a map (intended as an
application from density matrices to density matrices) to be consistent with the Copen-
hagen interpretation of quantum mechanics and is generally lost as a consequence of
the previous approximations. The equation that is obtained after the Born and Markov
approximation, without the implementation of the secular approximation, is referred as
Redfield equation (Redfield 1957). Despite being ill-defined for its non-positivity char-
acter, this equation often provides better results than the equation which results from the
indiscriminate implementation of the secular approximation. As we shall see next, the
superiority of the Redfield equation is manifested especially if one takes into account
the whole evolution of the system density matrix, namely both the transient regime and
the steady state.

1.2 Brief summary

Open quantum system dynamics

In Farina and Giovannetti (2019) we faced the problem of the non-positive character of
the Redfield equation. We constructed a continuous mapping from the Redfield equa-
tion to the Secular Lindblad master equation, by modulating the free coarse-grain time
interval related to a temporal coarse-grain averaging applied on the Redfield equation
in interaction picture. More importantly, there exist a finite threshold value of such
coarse-grain time-scale above which the “corrected” Redfield equation is ensured to
be completely-positive. Now, to cure the non-positivity character one has two choices
at disposal: taking very large coarse grain times obtaining the Secular Lindblad master
equation (i.e., remaining in the standard microscopic derivation framework) or setting it
to the finite threshold value still obtaining a well defined ME. The last approach, allows
to preserve positivity still conserving the predictive power of the Redfield equation and
turns out to be particularly useful when the system is multipartite.
The dissipative dynamics of a multipartite quantum system is currently under the so
called local vs global debate. For a first understanding of the problem, one can consider
the case of two interacting subsystems, each, in turn, microscopically coupled to a given
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own thermal reservoir, still keeping in mind that the same problematic naturally applies
to more complex structures. In this scenario, in order to describe the steady state of
the system, one must choose either the local or the global master equation depending
on the parameters of the model (González et al. 2017, Hofer et al. 2017). In the local
master equation the dissipators act locally on the two subsystems, mimicking the orig-
inal Hamiltonian interaction between subsystems and respective environments. On the
contrary, in the global master equation, which is obtained through the secular approxi-
mation, the dissipators are built up through the eigenstates of the system Hamiltonian,
including the internal coupling between the two subsystems. González et al. (2017) and
Hofer et al. (2017) showed that, in order accurately approximate the out-of-equilibrium
steady state of the system, for weak internal coupling the local master equation is the
correct method, while in the opposite regime the right choice turns out to be the global
master equation.

In Farina et al. (2020), we tried to go beyond the descriptive power of the global and
local master equations, not restricting ourselves to an analysis of the steady state proper-
ties but including the transient evolution as well. We considered the following asymmet-

ric thermal charging configuration: the system is composed of two interacting harmonic
oscillators A and B, with only A interacting with a thermal bath - collection of other
harmonic oscillators - and we studied the equilibration process of the system initially in
the ground state with the bath finite temperature. By evaluating the exact dynamics of
this minimal model and using it as benchmark, we showed that the completely-positive
version of the Redfield equation - obtained through the tight coarse-grain average pro-
cedure of Farina and Giovannetti (2019), i.e., with the coarse-grain time interval being
set at threshold value - and an appropriate time-dependent convex mixture of the local
and global solutions give rise to the most accurate approximations of the whole exact
system dynamics, i.e. both at short and at long time scales, outperforming the local and
global approaches. Regarding the last method, intuitively it was expected the local mas-
ter equation to accurately predict the transient properties of the dynamics, that involve
coherent internal energy exchanges between the subsystems A and B, and the global
master equation to yield the correct equilibrium steady state. In full accordance with
thermodynamic expectations, the latter is the Gibbsian thermal state, whose Hamilto-
nian includes the internal interaction term. Based on this reasoning, we considered a
time-dependent convex mixture of the local and global quantum channels - which is
still a well defined quantum channel - such that the local and the global components
matter at short and at long time-scales, respectively. We also found that the corrected
version of the Redfield equation yields comparable accuracy, a result of the fact that the
Redfield equation is the starting point - i.e. one approximation back - for both the local
(Hofer et al. 2017) and global (Breuer et al. 2002) approximations. Regarding the topic
of positivity, we showed that while the non-positive nature of the uncorrected Redfield
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equation implies a breaking of the uncertainty relation, its positivity-corrected version
is well behaving. Furthermore the latter, as well as the original equation, is able to
capture some non-weak coupling corrections for the steady state of the system that are
completely neglected when using the local, global and convex mixture approaches. Our
general results hold true at any internal coupling strengths, even in those intermediate
regimes where the choice between the local and global MEs is more subtle.

Applications to quantum nano-technology

Despite the asymmetric thermal charging model treated in Farina et al. (2020) was cho-
sen primarily for its minimal character, possible implementations of the set up can
be found in cavity (or in circuit) quantum electrodynamics. An example is the open
Dicke model (Dicke 1954) for large enough number of two-level atoms inside the cav-
ity (Emary and Brandes 2003) and assuming that the interaction of the cavity mode with
the radiation field is more relevant than the direct coupling of the radiation field with
the atoms. Alternatively, our bipartite system may directly describe coupled cavities
in an array (Hartmann et al. 2008) in the instance of two cavities. About the kind of
dynamics we chose, it may be of interest for ground state storage in quantum compu-
tation (Nielsen and Chuang 2010) or, conversely, for thermal charging tasks (Farina,
Andolina, Mari, Polini and Giovannetti 2019, Hovhannisyan et al. 2020).
In fact, from the technological point of view, we can think at the asymmetric thermal
charging scheme presented above as a first attempt to model the energy charging pro-
cess of an open quantum battery by exploiting a thermal energy supply. For Alicki
and Fannes (2013), a quantum battery is an object at the nano-scale able to be ener-
getically charged, store the energy for a certain time period and finally provide it to a
consumption center (see also a recent review on the topic by Campaioli et al. (2018)).

In Farina, Andolina, Mari, Polini and Giovannetti (2019) we analyzed the energy
charging of a quantum battery in an open setting. In our scheme, the interaction be-
tween the battery element B and the external power source is mediated by an ancillary
system - the quantum charger A - that acts as a controllable switch. By analyzing differ-
ent implementations, we studied the effects of coherent energy pumping and thermal-
ization, being particularly interested to possible interplay mechanisms between the two
sources. The coherent source was schematized as a resonant driving field also applied
to the subsystem A. As a quantifier of the stored energy fraction that can be extracted
as work, we considered the ergotropy of B, which can be defined as the maximum ex-
tractable work from B via unitary operations (Allahverdyan et al. 2004). Whether by
using a purely thermal charging protocol no work can be extracted from the battery (i.e.
the ergotropy is zero), in a mixed protocol where both coherent and thermal sources are
present, temperature plays a role in even increasing the ergotropy of B. As a key result
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of the analysis, we found that, allowing the presence of effective non-linearities in the
system - A and B are both two-level systems in the example provided in the paper -
increasing temperature can decrease or, quite interestingly, increase the ergotropy of B.
On the contrary, this does not happens when considering a linear system - two-harmonic
oscillator model in the paper. There, extractable work only comes from the coherent
source because an energetic separation between coherent and incoherent components is
present. It is worth mentioning that the best condition for realizing a coherent charging
by exploiting the out-of-equilibrium properties is provided by the hybrid model, where
A is a quantum harmonic oscillator and B is a qubit. In this hybrid model, the large
amount of energy hosted by the unbounded spectrum of the harmonic oscillator implies
a speedup in the charging of the two-level system. This last result was consistent with
a previous paper of our group: Andolina et al. (2018), where we analyzed the same
combinations of qubit and harmonic oscillators for describing the charger-battery com-
pound, but without additional external sources and dissipative mechanisms, with the
initial energy being contained in the charger itself.

Regarding the nature of the environment we considered, in Farina, Andolina, Mari,
Polini and Giovannetti (2019) we restricted the analysis to a thermal environment com-
posed of non-interacting bosons, a common situation encountered in experiments of
quantum optics and solid state physics. However, in principle, the environmental com-
ponent could belong to different classes: for instance it could be characterized by
fermionic statistics. In this respect, we found useful to develop techniques to recognize
at least the statistical nature of a quantum environment, being a key ingredient in setting
the thermalization decay rate. Specifically, we developed a protocol - called “Quantum
bath statistics tagging” - to answer this necessity (Farina, Cavina and Giovannetti 2019),
assuming equal temperature for the two bath hypotheses. In this scheme, the discrim-
ination of the statistics of a thermal bath is achieved through indirect measurements
performed on a quantum probe. The tagging capability relies on the fact that, when
weakly coupled with the environment of interest, the transient evolution of the probe
toward its final thermal configuration is strongly affected by the fermionic or bosonic
nature of the bath excitations. Notice that in our setting no information can be encoded
in the probe state at time zero - where the probe is in the initial preparation state - and
at asymptotically large times - where the probe has reached its thermal state indepen-
dently of the bath statistics. Hence, there must exist an intermediate time instant that is
the most suitable for the statistics tagging. Using figures of merit taken from quantum
metrology such as the Holevo-Helstrom probability of error and the quantum Chernoff
bound, we discussed how to achieve the greatest precision in this statistics tagging pro-
cedure, analyzing different models of probes and different initial preparations and by
optimizing over the time of exposure of the probe. We derived analytic expressions for
such time-scale both for the case of qubit probe and for the case of quantum harmonic
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oscillator probe. Regarding the corresponding minimal error probability, whether for
the qubit case it is lower bounded by a finite value, we found that for the quantum
harmonic oscillator probe it can be sent to zero by exploiting the possibility of consid-
ering arbitrary high energy in the initial preparation of the probe state. For showing
that behavior, we restricted for simplicity the analysis to Gaussian states, finding a clear
analytic result when the probe initial state has the same temperature as the thermal bath,
but a certain initial displacement.
The analysis has been naturally extended to the case where the two thermal baths we
want to distinguish have both different statistics and temperatures (Gianani et al. 2020).
Notice that in the case of unequal temperatures finite discrimination capability is found
also at large time scales since the two thermal states now differ. In this study, we re-
stricted ourselves to the case of a qubit probe because that was suitable for experimental
linear-optical simulations. As intuitively expected, the best discrimination capability
can only be attained by enforcing the probe initial state to be pure. For input energy
eigenstates, our inspection has revealed a transition between temperature regimes in
which either equilibrium (large time-scales) or nonequilibrium states (short time-scales)
are optimal. Such behavior has been illustrated both theoretically and in a linear-optical
simulation. However, only the inclusion of input states with quantum coherence al-
lows one to reach the highest possible discrimination capability and also implies that
non-equilibrium measurement conditions are generally optimal, breaking in this way
the aforementioned transition.

Final remarks

The thesis, despite containing different topics, generally puts emphasis on the impor-
tance of precisely treat and recognize the environment that implies disturbance on the
quantum system of interest. In this direction novel methods have been developed both
for bath tagging purposes and for precisely describing the effects of the environment on
the system dynamics. Applications to open quantum batteries are also provided as an
example where the theory can be applied for clear nano-technological scopes.

1.3 Structure of the thesis

A literature review, divided in three main research areas, is reported in Chapter 2, while
the remaining chapters are dedicated to our research findings. Specifically, in Chapter
3, the formalism of the coarse-grained Redfield equation is introduced together with
the related discussion on the complete-positivity of the channel (Farina and Giovannetti
2019). The theory finds its application when we present methods to go beyond the
local and global approaches for multipartite system dissipation (Farina et al. 2020). In
Chapter 4 the local master equation is used to describe an open quantum battery (Farina,

7



Andolina, Mari, Polini and Giovannetti 2019). Chapter 5 deals with the statistics and
temperature discrimination problem of quantum baths (Farina, Cavina and Giovannetti
2019, Gianani et al. 2020). Finally, Chapter 6 contains a brief summary and the main
conclusions of the thesis.
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CHAPTER 2

Literature Review

In this Chapter we prepare the ground for the three macro research areas. Specifically,
• Sec. 2.1 introduces theoretical concepts - quantum channels, Born-Markov-secular

microscopic derivation of Lindblad master equations - which are the starting point
for Chapter 3, which is dedicated to our contributions to the foundations of the theory
of open quantum systems;
• Sec. 2.2 reviews the literature of quantum batteries, useful for Chapter 4, treating the

concept of ergotropy and introducing the formalism of single-mode gaussian states;
• and, finally, Sec. 2.3 gives an outline of the field of quantum metrology, linked to

the bath tagging problems of Chapter 5, with a specific focus on quantum state dis-
crimination by introducing the Helstrom error probability and the quantum Chernoff
bound.

A reader interested only in a specific topic can here refer to the appropriate section and
then go to the related research chapter.
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2.1 Open quantum systems

In the rising field of quantum technology (Riedel et al. 2017), considering a quantum
system isolated from its surroundings is a non-realistic idealization. In the majority of
the implementations of quantum information algorithms (Nielsen and Chuang 2010)
and quantum computation (Arute et al. 2019), the interaction with the environment is
detrimental for quantum resources, becoming a crucial ingredient to monitor, with the
scope of reducing its effects or with the aim of accounting for it by applying quantum
error correction methods. Interestingly, in more rare cases the environment itself acts as
a mediator for the production of quantum correlations into the system [see e.g. Benatti
et al. (2003a)].

Unfortunately, our ability in accounting for environmental effects is severely lim-
ited by the difficulty of keeping track of the exact dynamics of the entire system-
environment compound: a problem which is made computationally hard by the large
number of degrees of freedom involved in the process. For this reason, effective mod-
els for the way the environment acts on the reduced system density matrix have been
developed, leading to the master equation (ME) formalism (Lindblad 1976, Gorini
et al. 1976). The lowest level of approximation contemplates the assumption of weak
system-environment coupling (Born approximation) and time-divisibility for the sys-
tem dynamics (Markov approximation). This leads to the Redfield equation (Redfield
1957, Breuer et al. 2002, Jeske and Cole 2013) which regrettably, while being able
to capture some important features of the model (Lim et al. 2017, Purkayastha et al.
2016), does not ensure positive (and hence completely positive) evolution (Gaspard
and Nagaoka 1999, Argentieri et al. 2014, Ishizaki and Fleming 2009, Benatti et al.
2003b, Wilkie 2001, Suárez et al. 1992, Dümcke and Spohn 1979, Benatti and Flore-
anini 2005). In quantum mechanics, the positivity of density matrices – i.e. the fact
that all their eigenvalues are non-negative – is an essential property imposed by the
probabilistic interpretation of the theory (Nielsen and Chuang 2010). Allowing for
mathematical structures that do not comply with such requirement paves the way to a
series of inconsistencies that include negative probabilities of measurements outcomes,
violation of the uncertainty relation (an example will be given in Sec. 3.3), and, ulti-
mately, the non-contractive character of the underlying dynamics. Ways to correct or
to circumvent the pathology exhibited by the Redfield equation typically relay on the
full (Breuer et al. 2002) or the partial (Schaller and Brandes 2008, Cresser and Facer
2017, Seah et al. 2018, Jeske et al. 2015, Rivas 2017, Farina and Giovannetti 2019)
implementation of the secular approximation: a coarse-grain temporal average of the
system dynamics which, performed in conjunction with the above mentioned Born and
Markov approximations, leads to a more reliable differential equation for the system
density matrix known as the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) master

10



equation (Lindblad 1976, Gorini et al. 1976).

2.1.1 Quantum channels

Working in the most general scenario, a physical super-operator (i.e. a proper quantum
channel) must necessarily satisfy three structural properties: it has to be linear, trace
preserving and completely positive (CPT). We clarify here what one means with these
three requirements (Holevo 2012).
Let us call Φ a generic super-operator that maps linear operators defined on the Hilbert
space HS of the system S into linear operators defined on the same Hilbert space:

Φ : ρ→ ρ′, with ρ, ρ′ linear operators on HS. (2.1)

Such super-operator has to be

Linear

Φ(αρ1 + βρ2) = αΦ(ρ1) + βΦ(ρ2), (2.2)

∀ρ1, ρ2 linear operators on HS, ∀α, β ∈ C.

Trace-preserving

Tr[Φ(ρ)] = Tr[ρ], ∀ρ linear operator on HS. (2.3)

This property ensures that the evolved state is normalized as well as the input
state.

Completely positive Let us call A an ancillary system which is allowed to be in

a joint state ρSA with the system S. Being ρSA a state, it certainly holds that the

matrix ρSA is positive semi-definite (we use for it the shorthand notation ρSA ≥ 0).

A property that must be preserved when applying locally on S the transformation

Φ, namely:

(Φ⊗ I)(ρSA) ≥ 0 , ∀ρSA . (2.4)

This requirement avoids having encoded in the system state “negative probabili-
ties” for measurement outcomes, hence preserving the probabilistic interpretation
of the theory.

As we shall see in the following, the last property can be violated by some kind of
ill-defined master equations, as well as it happens for the less stringent positivity re-
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quirement

Φ(ρS) ≥ 0, ∀ρS ≥ 0 linear operator on HS. (2.5)

Notice that the last property is automatically guaranteed when complete positivity does
hold. To see this, just take a factorized state ρS ⊗ ρA as ρSA in (2.4).

2.1.2 Microscopic derivation of the Lindblad master equation: general formalism

Passing to more concrete treatments, we now review the microscopic derivation of the
Redfield equation and how one can arrive from it to a proper GKSL form via secular ap-
proximation. Following Breuer et al. (2002), we shall work in a general setting, limiting
to a minimum all the assumptions on the system Hamiltonian and on its environment.

Let S be a quantum system interacting with an external environment E. Follow-
ing conventional approach we assume the SE compound to be isolated and describe
their joint evolution in terms of a total Hamiltonian HSE composed of three (time-
independent) terms:

HSE = HS +HE +H1 , (2.6)

withHS andHE being local contributions, and withH1 being the coupling Hamiltonian
which, in full generality, we express as

H1 =
M∑

α=1

Aα ⊗Bα , (2.7)

where Aα and Bα are not-null self-adjoint operators acting on S and E, respectively,
and where the parameter M enumerates the number of non trivial terms entering the
decomposition. As input state we take a factorized density matrix of the form

ρSE(0) = ρS(0)⊗ ρE(0) , (2.8)

with the ρE(0) environment component fulfilling the following stationary conditions:

• invariance under the action of the local Hamiltonian, i.e. ,

[
ρE(0), HE

]
−

= 0 ; (2.9)

where hereafter the symbols [· · · , · · · ]± will be used to represent the commutator
(−) and the anti-commutator (+), respectively;

• zero expectation value of the operatorsBα entering the coupling Hamiltonian (2.7),
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i.e. ,

TrE{ρE(0)Bα} = 0 , ∀α ∈ {1, · · · ,M} , (2.10)

the symbol TrE{· · · } representing the partial trace with respect to the environ-
ment degrees of freedom.

As we shall see in the following, condition (2.10) is essential for dropping first order
contributions in the system master equation: it should be stressed that however it is
not as stringent as it may looks at first site, as it can always be enforced by properly
redefining the free Hamiltonian of S.

We hence move in the interaction picture in which the free Hamiltonian of the uni-
verse H0 = HS +HE is integrated away, introducing the operators

H̃1(t) := eiH0tH1e
−iH0t , (2.11)

ρ̃SE(t) := eiH0tρSE(t)e−iH0t , (2.12)

ρ̃S(t) := TrE{ρ̃SE(t)} = eiHStρS(t)e−iHSt , (2.13)

with ρSE(t) the density matrix of SE at time t and ρS(t) := TrE{ρSE(t)} its reduced
form describing the corresponding state of S (~ having been set equal to 1). Accordingly
the dynamics of the joint system reads ˙̃ρSE(t) = −i[H̃1(t), ρ̃SE(t)]− , which, upon
formal integration, can be equivalently expressed as

˙̃ρSE(t) = −i
[
H̃1(t), ρSE(0)

]
−

(2.14)

−
∫ t

0

dτ
[
H̃1(t),

[
H̃1(t− τ), ρ̃SE(t− τ)

]
−

]
−
.

Taking the partial trace with respect to E the left-hand-side of Eq. (2.14) reduces to the
first derivative of ρ̃S(t) while the first term on the right-hand-side disappears thanks to
the cooperative effect of the stationary conditions (2.9) and (2.10).

2.1.2.1 Born and Markov approximations

The integral contribution in (2.14), on the contrary, still exhibits a non-trivial functional
dependence on the joint state ρ̃SE(t) which we treat by invoking the Born (or weak-

coupling) approximation, requiring that the state of the environment is not affected by
the presence of S, i.e. writing

ρ̃SE(t) ' ρ̃S(t)⊗ ρ̃E(0) . (2.15)
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Under this condition we hence arrive to the homogenous equation for S

˙̃ρS(t) '
∫ t

0

dτ
M∑

α,β=1

cαβ(τ)
(
Ãβ(t− τ)ρ̃S(t− τ)Ãα(t)

− Ãα(t)Ãβ(t− τ)ρ̃S(t− τ)
)

+ h.c. , (2.16)

with Ãα(t) = eiHStAαe
−iHSt and where cαβ(τ) are environment correlation functions

defined as

cαβ(τ) := TrE{ρE(0)eiHEτBαe
−iHEτBβ} , (2.17)

that, exploiting Eq. (2.9) and the fact that the Bαs are self-adjoint operators, can be
shown to fulfil the condition

c∗αβ(τ) = cβα(−τ) . (2.18)

Next assumption concerns the memory properties of the environment. We call τE the
characteristic width of the environment correlation functions cαβ(τ) and we assume that
the time scales δt over which the system S significantly evolves in the interaction picture
satisfy the condition δt � τE . This hypothesis justifies the Markov approximation

which in Eq. (2.16) neglects i) the τ dependence of the state and ii) substitutes the
upper extreme of integration with +∞, leading to the Redfield equation (Redfield 1957,
Breuer et al. 2002)

˙̃ρS(t) '
∫ ∞

0

dτ
M∑

α,β=1

cαβ(τ)
(
Ãβ(t− τ)ρ̃S(t)Ãα(t)− Ãα(t)Ãβ(t− τ)ρ̃S(t)

)
+ h.c.

=
∑

ij

Γij(t)
(
A†j ρ̃S(t)Ai − AiA†j ρ̃S(t)

)
+ h.c. , (2.19)

where the last identity has been obtained by decomposing the operators Aα in terms of
the eigenvectors of the free system Hamiltonian. Specifically, we write

Aα =
∑

ω

Aαω , (2.20)

with

Aαω :=
∑

ε1 , ε2:ε1−ε2=ω

πε1Aαπε2 =
∑

ε

πε+ωAαπε , (2.21)

where πε is the projector associated with the eigenvalue ε ofHS, i.e. HS =
∑

ε ε πε. The
new variable ω := ε1 − ε2 spans a range of G different cases, counting all the energy
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differences of HS (including the zero energy gap value associated with the terms where
ε1 = ε2) that are different in value. Introducing then the collective indices i = (α, ω)

and j = (β, ω′) which run over a set of N = GM different entries, and noticing that
Aβ−ω′ = A†βω′ , the right-hand side of the Redfield equation in the first line of (2.19) can
hence be arranged as shown in its last line, with the N ×N matrix Γij(t) given by

Γij(t) = ei(ω−ω
′)tΩαβ(ω′) , (2.22)

where, for each value of the energy gap ω, the coefficients

Ωαβ(ω) :=

∫ ∞

0

dτcαβ(τ)eiωτ (2.23)

identify an M×M complex matrix Ω(ω) that is going to play an important role in what
follows.

2.1.2.2 Secular approximation

Equation (2.19) can be further simplified by neglecting the terms with unequal energy
gaps, i.e., the contributions for which ω 6= ω′ (non-secular terms), that are all consid-
ered fast oscillating on the relevant timescales. This procedure is referred as secular ap-
proximation, formally justified only when the smallest difference between energy gaps
is much larger than the characteristic rate of the system in interaction picture (Breuer
et al. 2002). In formulas:

min
ω,ω′:ω 6=ω′

|ω − ω′| � 1/δt . (2.24)

Going back in Schrödinger picture, one obtains a secular master equation with constant
generator terms

ρ̇S(t) ' −i
[
H

(∞)
S , ρS(t)

]
−

+
∑

αβω

γαβ(ω)
(
A†βωρS(t)Aαω −

1

2

[
AαωA

†
βω, ρS(t)

]
+

)
,

(2.25)

where

H
(∞)
S := H

(∞)
LS +HS , (2.26)

H
(∞)
LS :=

∑

αβω

ηαβ(ω)AαωA
†
βω , (2.27)
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and

γαβ(ω) := Ωαβ(ω) + Ω∗βα(ω) , (2.28)

ηαβ(ω) := [Ωαβ(ω)− Ω∗βα(ω)]/(2i) (2.29)

are the dissipation and Lamb shift (hermitian) matrices, respectively. The last passage
needed to put Eq. (2.25) in GKSL form is the diagonalization of the dissipation matrices
γαβ(ω). We show now that all the eigenvalues of such matrix are non-negative, a con-
dition that guarantees the complete positivity of the resulting transformation (Lindblad
1976, Alicki and Lendi 2007).

2.1.2.3 Positive semi-definiteness of the secular dissipation matrix

We discuss here the positivity of the matrix

γαβ(ω) =

∫ +∞

−∞
cαβ(τ)eiωτdτ , (2.30)

with cαβ(τ) being the bath correlation functions given in Eq. (2.17). We should prove
that ∑

αβ

u∗α(ω)γαβ(ω)uβ(ω) ≥ 0 (2.31)

for any ~u(ω) ∈ CM . The above expression is actually the Fourier transform of a func-
tion f(τ) :

∑

αβ

u∗α(ω)γαβ(ω)uβ(ω) =

∫ +∞

−∞
eiωτf(τ)dτ (2.32)

with
f(τ) := 〈Θ†(τ)Θ(0)〉 , (2.33)

Θ(τ) :=
∑

α

uαB̃α(τ) , (2.34)

with B̃α(τ) being the operators on the thermal bath (in interaction picture) appearing in
Eqs. (2.7) and (2.17). From the function f(τ) it is possible to define an n × n matrix
flm in the following way:

flm := f(τl − τm) = 〈Θ†(τl)Θ(τm)〉 , (2.35)

with τi ∈ {τ1, τ2, ..., τn} . Such matrix is positive semi-definite for any choices of the
times τl and of the dimension n. This can be proven by using the fact that the trace of
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the product of two positive semi-definite operators is non negative. In formulas:

∑

lm

v∗l flmvm = 〈∆†∆〉 := TrE{ρE∆†∆} ≥ 0 , (2.36)

for any complex vectors ~v , with

∆ :=
∑

m

vmΘ(τm) . (2.37)

From the positivity of the matrix flm it follows that the Fourier transform of f(τ) is
always non-negative (Bochner’s theorem) and hence the positivity of the matrix γαβ(ω)

is guaranteed (see Eq. (2.32)).
This can be understood by thinking integrals as summations. Indeed the Fourier trans-
form in the right-hand side of Eq. (2.32) can be written in a form which is analogous to
the left-hand side of Eq. (2.36) which we know to be a positive quantity:

∫ +∞

−∞
ds′eiωs

′
f(s′) (2.38)

=
1

2T

∫ +T

−T
dl

∫ +∞

−∞
ds u∗(s)f(s− l)u(l) ≥ 0 ,

with u(τ) := e−iωτ and for any T .

2.1.3 Dissipation of multipartite systems: Local vs Global debate

When the system is composed of two or more interacting subsystems that are locally
coupled to possibly independent reservoirs (Cattaneo et al. 2019), a brute force applica-
tion of a full secular approximation leads to the so called global ME, a GKSL equation
obtained under the implicit assumption that the environment will perceive the com-
posite system as a unique body irrespectively from the local structure of their mutual
interactions. While formally correct in terms of the positivity and complete positivity
requirements and predicting long term behaviours which are thermodynamically con-
sistent, the resulting ME is prone to introduce errors in the short term description of
the dynamical process. A suitable alternative is provided by the so called local ME ap-
proach where, contrarily to the global ME, each subsystem is assumed to independently
interact with its own environment, keeping track of the local nature of the microscopic
interaction. Despite in certain situations it can imply the breaking of the second law of
thermodynamics (Levy and Kosloff 2014), as we will explicitly see in Sec. 3.3 it allows
for a more precise description of the short term dynamics of the composite system. A
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local approach is usually justified when the subsystems interact weakly between each
other (Hofer et al. 2017, González et al. 2017, Rivas et al. 2010). As well as the global
ME, the local ME can be microscopically derived (Hofer et al. 2017) and is in GKSL
form. Notably, such master equation has recently acquired full dignity showing that it
exactly describes the dynamics induced by an engineered bath schematized by a col-
lisional model (De Chiara et al. 2018). Furthermore, even under a more conventional
description of the environment, thermodynamics inconsistencies only occur at the order
of approximation where the local approach is not guaranteed to be valid and, eventually,
it is possible to completely cure such inconsistencies by implementing a perturbative
treatment around the local approximation (Trushechkin and Volovich 2016).

2.1.4 Existent literature

In Sec. 3.3 we shall test the effectiveness of different classes of MEs to describe the sys-
tem dynamics, particularly focusing on alternative approaches beyond those adopted in
deriving the local and global MEs and using as benchmark a model that we are able
to solve exactly. Differently from previous studies (Hofer et al. 2017, González et al.
2017), where the focus was on the steady state properties of a bipartite system with
each subsystem coupled to a different thermal reservoir, we deal with a bipartite system
asymmetrically coupled to a single thermal bath and analyze its whole dynamics includ-
ing both the transient and asymptotic regime. More specifically, in our case the system
of interest will be composed of two interacting harmonic oscillators A and B, with only
A microscopically coupled with an external bosonic thermal bath described as a collec-
tion of extra harmonic oscillators. About the exact dynamics benchmark, the unitary
evolution of the joint system+environment compound has been calculated by restricting
ourself to exchange interactions and gaussian states (Serafini 2017). Anticipating some
of the conclusions of Sec. 3.3, the completely positive version of the Redfield equation
obtained as described in Sec. 3.1 (Farina and Giovannetti 2019) by applying the secular
approximation via coarse-grain averaging in a partial and tight way, provides a semi-
group description of the system dynamics that outperforms both the local and global
ME approaches.
About this, we take here the opportunity to clarify that various strategies for avoiding
non-positive behaviors have been developed in literature. First of all, choosing appro-
priate initial conditions often allows one to preserve positivity, while retaining all the
advantageous features of the Redfield equation (Purkayastha et al. 2016). Alternatively,
second-order approximation to the full density matrix in interaction picture and sub-
sequent – eventually dynamically adapted – coarse-grain averaging was proposed by
Schaller and Brandes (2008) as a consistent method for all coarse-grain time-scales and
factorized initial conditions. It was also noted that not performing the Markovian ap-
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proximation which enforces semigroup dynamics can lead to completely-positive evo-
lutions (Whitney 2008). These last two approaches completely circumvent the Redfield
equation in its handy semigroup form. Recently, some of us have proposed instead a
procedure (working for any factorized initial conditions) to tightly cure the non-positive
character by performing coarse-grain averaging directly on the “fully Markovian” Red-
field equation in interaction picture [see Farina and Giovannetti (2019) and Sec. 3.1].
Responding to the question on which is the most accurate method for this particular
task – i.e. both ensuring positivity and providing an effective approximation of the sys-
tem state, by using Redfield-like approaches – is beyond the scope of the present work
(see Hartmann and Strunz (2020) for this issue). Specifically, as already mentioned, in
Sec. 3.3 (Farina et al. 2020) we will test the version of the partial secular approximation
described in Sec. 3.1 (Farina and Giovannetti 2019). We also anticipate that analogous
advantages can be obtained by adopting a phenomenological description of the system
dynamics, constructed in terms of an appropriate time-dependent convex mixture of the
local and global ME solutions.
Regarding the model selected in Sec. 3.3, despite it has been chosen primarily for its
minimal character (Deçordi and Vidiella-Barranco 2017), possible implementations of
the set up we deal with can be found in cavity (or in circuit) quantum electrodynamics.
An example is the open Dicke model (Dicke 1954) for large enough number of two-level
atoms inside the cavity (Emary and Brandes 2003) and assuming that the interaction of
the cavity mode with the radiation field is more relevant than the direct coupling of the
radiation field with the atoms. Alternatively, our bipartite system may directly describe
coupled cavities in an array (Hartmann et al. 2008) in the instance of two cavities. About
the kind of dynamics we will present, it may be of interest for ground state storage in
quantum computation (Nielsen and Chuang 2010) or, conversely, for thermal charging
tasks (Farina, Andolina, Mari, Polini and Giovannetti 2019, Hovhannisyan et al. 2020)
as we will see in Chapter 4.
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2.2 Quantum batteries

Markovian master equations represent a useful tool for schematizing the energy transfer
for open quantum batteries (Farina, Andolina, Mari, Polini and Giovannetti 2019).
A battery is a physical system that is capable to store energy supplied by an external
source, making it available to other devices. Its performance is characterized by several
figures of merit gauging the amount of energy it can store and/or deliver as a function
of its mass/volume and how these quantities vary over time. Motivated by the constant
progress of miniaturization of electronic devices and stimulated by the success obtained
in other sectors by adopting analogous approaches (Riedel et al. 2017, Acı́n et al. 2018),
increasing interest has been recently devoted to analyze the performances of “quantum
batteries”, i.e. energy storing systems which, at least in principle, could exploit genuine
quantum effects to obtain improved performances with respect to conventional (say
classical) schemes (Alicki and Fannes 2013, Hovhannisyan et al. 2013, Binder et al.
2015, Campaioli et al. 2017, Ferraro et al. 2018, Le et al. 2018, Andolina et al. 2018,
Campaioli et al. 2018, Andolina et al. 2019).

The core of this idea ultimately relies on the possibility of achieving superior perfor-
mances in the manipulation of energy by cleverly exploiting quantum resources (Vin-
janampathy and Anders 2016, Alicki and Kosloff 2018, Goold et al. 2016, Campisi
et al. 2011, Horodecki and Oppenheim 2013, Gelbwaser-Klimovsky et al. 2015, Stras-
berg et al. 2017). Starting from the seminal, but abstract works by Alicki and Fannes
(2013), Hovhannisyan et al. (2013), Binder et al. (2015), Campaioli et al. (2017), con-
crete implementations of quantum batteries have been proposed in Ferraro et al. (2018),
Le et al. (2018). At the same time, more sophisticated modelizations of the charging
process have been presented (Andolina et al. 2018, 2019) which put emphasis on the
problems that could arise at the interface between a quantum battery B and its exter-
nal energy supply A, the “quantum charger” (also modelled as a quantum system). In
particular, in Ref. Andolina et al. (2019) it was pointed out that quantum correlations
between B and A, while possibly playing an important role in speeding up the charging
of the battery, could result in a net detrimental effect by reducing the amount of energy
that one could transform in useful work once having access to B alone (a reasonable
scenario in any relevant practical applications).

2.2.1 Ergotropy

In Chapter 4 we will be interested in characterizing how efficiently energy can be trans-
ferred into the battery, the last being characterized by a local Hamiltonian HB. For this
purpose, we will study the mean energy contained in B at the end of the charging pro-
cess and the corresponding ergotropy (Allahverdyan et al. 2004), i.e., respectively, the
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quantities

EB(τ) ≡ tr[HBρB(τ)] , (2.39)

EB(τ) ≡ EB(τ)−min
UB

tr
[
HBUBρB(τ)U †B

]
, (2.40)

where ρB(τ) ≡ trA[ρAB(τ)] is the reduced state of the battery at time τ , and where
minimization in Eq. (2.40) is performed over all the unitaries UB acting locally on such
system. The first of these functions measures the total amount of energy that has been
transferred to B thanks to the mediation of the charger A. The second, instead, provides
us with the part of EB(τ) which can be turned into work while having access to the
battery alone, a reasonable scenario in many applications where A is not available to a
generic end user (Andolina et al. 2019). Indeed, it may happen that part of the mean
energy of B will be locked into correlations between such system and the charging
device, preventing one from accessing it via local operations on the battery. The term
we are subtracting from EB(τ) in right-hand-side of Eq. (2.40) exactly targets such
contributions. It formally corresponds to the expectation value of HB computed on
the passive state ρ(p)

B (τ), obtained by properly reordering the spectrum of ρB(τ) and
replacing the associated eigenvectors with those of the system Hamiltonian, as we will
see in Sec. 2.2.1.2.

2.2.1.1 Work extraction

We provide now the physical interpretation of the ergotropy (2.40) following Allahverdyan
et al. (2004). Not restricting to the case where the system of interest is the battery B (in
principle, we could be interested in the ergotropy of A or of the joint AB system), let
ρ(t) be the density matrix of a generic system of interest characterized by a Hamiltonian
HS. Work extraction is obtained thorough an additional time varying Hamiltonian op-
erator V(t) which is turned on at time τ and off at time τ + T, i.e. V(τ) = V(τ + T) = 0.
Furthermore, let us consider the system isolated in the time window [τ, τ + T] in which
the work extraction is performed, in such a way that the full average energy variation
can be interpreted as work made on the system. Accordingly, the extracted workW(extr)

reads as

W(extr) = tr {HS

[
ρ(τ)− ρ(τ + T)

]
} , (2.41)

ρ(τ + T) = Uρ(τ)U † , U =←−exp

[
−i
∫ τ+T

τ

ds {HS + V(s)}
]
,

where “←−exp” is the time-ordered exponential. As a key result, by properly adapting
the shape of the operator V(t) as function of time (still under the constraint V(τ) =

V(τ + T) = 0), the maximum over U ofW(extr) in (2.41) can always be attained. One
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then arrives to the definition of the ergotropy

E(τ) = max
U
W(extr) , (2.42)

same as (2.40), which was applied explicitly to the battery system B.

2.2.1.2 Construction of the passive state

Let us present the state ρ(τ) (ρ for brevity) and the Hamiltonian HS in terms of their
spectral decompositions:

ρ =
∑

n

rn|rn〉〈rn| , (2.43)

HS =
∑

n

en|en〉〈en| . (2.44)

Here, {|rn〉}n and {|en〉}n represent the eigenvectors of ρ and HS, respectively, and
r0 ≥ r1 ≥ · · · and ε0 ≤ ε1 ≤ · · · are the associated eigenvalues, which we have
been properly ordered. The passive counterpart of ρ is defined as the following density
matrix (Allahverdyan et al. 2004, Pusz and Woronowicz 1978)

ρ(p) ≡
∑

n

rn|en〉〈en| . (2.45)

By construction, its mean energy is given by

E(p) ≡ tr[HSρ
(p)] =

∑

n

rnεn , (2.46)

corresponding to the last term in the right-hand side of Eq. (2.40) and making explicit
the form of the unitary Ū giving the maximum extractable work:

E(p) = min
U

tr
[
HSUρU

†] = tr
[
HSŪρŪ

†] , Ū =
∑

n

|en〉 〈rn| . (2.47)

Accordingly, the ergotropy E of the state ρ can be conveniently expressed as

E = E − E(p) = tr[HS(ρ− ρ(p))] , (2.48)

which makes it evident that zero values of E can be obtained only for those density
matrices which are passive, i.e. for ρ = ρ(p). From the above construction it is also
clear that states differing by a unitary transformation V (e.g. ρ and ρ′ = V ρV †) will
have the same passive state. Accordingly, we can write the ergotropy of ρ′ as

E ′ = tr[HS(ρ′ − ρ(p))] = E ′ − E + E , (2.49)
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with E = tr[HSρ] and E ′ = tr[HSρ
′] the mean energies of ρ and ρ′, respectively. Prop-

erty (2.49) turns out to be particularly useful in interaction picture, as we will see in
Chapter 4.

2.2.2 Qubit system

Exploiting the above identities we can produce closed-form expressions for the er-
gotropy of special cases. Consider the case of a qubit with an Hamiltonian of the form

HS = ω0(σz + 12)/2 (2.50)

and density matrix

ρ =
1

2
(12 + ~a · ~σ) , (2.51)

where 12 is the 2× 2 identity and

~σ ≡ (σx, σy, σz) , with

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
, (2.52)

and ~a are the Pauli and Bloch vectors, respectively. Then algebraic manipulations yield

E =
ω0

2
(a+ az) , (2.53)

with a = |~a|, or introducing the ladder operators

σ+ = (σx + iσy)/2 and σ− = (σx − iσy)/2 , (2.54)

the ergotropy can be alternatively written in terms of average values of operators as

E =
ω0

2

(√
〈σz〉2 + 4 〈σ+〉 〈σ−〉+ 〈σz〉

)
. (2.55)
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2.2.3 Quantum harmonic oscillator system

Considering the case of a quantum harmonic oscillator, the ergotropy turns out to have
a compact expression when the bosonic state of interest is Gaussian (Lörch et al. 2018,
Brown et al. 2016). We give below a short introduction to the theory of single-mode
Gaussian states, whose content is not only functional to Sec. 4.2 where we analyze
a quantum harmonic oscillator battery, but also to Sec. 5.4 in the context of statisti-
cal tagging and to Sec. 2.3.2.1 concerning the quantum Chernoff bound in the case of
single-mode Gaussian states.

2.2.3.1 Single-mode Gaussian states

The most general single-mode Gaussian state can be expressed as a squeezed-displaced-
thermal state of the form

ρG(β̄, ξξξ, χ) := D†(ξξξ)S†(χ)
e−β̄ωa

†a

tr
[
e−β̄ωa†a

]S(χ)D(ξξξ) . (2.56)

In the above expression a and a† are the bosonic ladder operators satisfying

[
a, a†

]
− = 1 , (2.57)

β̄ ≥ 0 defines the inverse temperature of the state (ω being some relevant energy scale
fixing the temperature units), while the complex parameter χ and the 2-D real vector
ξξξ = (ξ1, ξ2)T define the squeezing and the displacement operators respectively, i.e.

S(χ) = exp

[
1

2

(
χ∗a2 − χa†2

)]
, (2.58)

D(ξξξ) = exp[−i(ξ2x− ξ1p)] , (2.59)

with the operators

x = (a+ a†)/
√

2 and p = (a− a†)/(
√

2i) (2.60)

being the canonical quadratures of the model, with
[
x, p
]
− = i.

Displacement and squeezing The displacement operator D(ξξξ) of Eq. (2.59) sets the
first moments of the state (2.56). Its action on the canonical variables is the following

D(ξξξ) rrr D†(ξξξ) = rrr + ξξξ , (2.61)
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with rrr :=

(
x

p

)
.

The squeezing operator defined in Eq. (2.58) transforms the ladder operators a and a†

as follows (Olivares 2012, Ferraro et al. 2005):

S(χ) aaa S†(χ) = SA(χ) aaa , (2.62)

SA(χ) :=

(
cosh(|χ|) ei2φ sinh(|χ|)

e−i2φ sinh(|χ|) cosh(|χ|)

)
, (2.63)

where aaa :=

(
a

a†

)
and with 2φ being the phase of χ, i.e χ = |χ|ei2φ. Alternatively this

can also be expressed as

S(χ) rrr S†(χ) = S(χ) rrr , (2.64)

where now

S(χ) =

(
cosh(|χ|) + sinh(|χ|) cos(2φ) sinh(|χ|) sin(2φ)

sinh(|χ|) sin(2φ) cosh(|χ|)− sinh(|χ|) cos(2φ)

)
, (2.65)

the matrices S(χ) and SA(χ) being related via the transformation

S(χ) = USA(χ)U † , (2.66)

with U being the unitary matrix

U = 1/
√

2

(
1 1

−i i

)
. (2.67)

First and second moments of the Gaussian state Define the vector

AAA = 〈aaa〉 =

(
〈a〉
〈a†〉

)
, (2.68)

and the matrix

σA =

(
2〈a2〉 − 2〈a〉2 2〈a†a〉+ 1− 2|〈a〉|2

2〈a†a〉+ 1− 2|〈a〉|2 [2〈a2〉 − 2〈a〉2]
∗

)
,
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where 〈...〉 represents the average value computed on the Gaussian state of Eq. (2.56).
From these expressions one can then easily retrieve the canonical first moments

RRR = 〈rrr〉 =

(
〈x〉
〈p〉

)
, (2.69)

and the (real-symmetric) covariance matrix

σij = 〈
[
ri − 〈ri〉, rj − 〈rj〉

]
+
〉 , (2.70)

Indeed, one has

RRR = UAAA , σ = UσAU
T , (2.71)

with U as in Eq. (2.67). From the above analysis it follows that the moments of a
Gaussian state (2.56) hold

RRR = ξξξ , σ = νβ̄S(χ)ST (χ) , (2.72)

with

νβ̄ = 2Nb(β̄) + 1 = coth
(
β̄ω/2

)
. (2.73)

Equation (2.72) is better understood once it is written as

σ = S(χ)σβ̄ST (χ) , σβ̄ = νβ̄12 , (2.74)

where σβ̄ is the covariance matrix of the thermal state e−β̄ωa†a/tr
[
e−β̄ωa

†a
]
. Further-

more, exploiting the fact that

det[S(χ)] = det[ST (χ)] = 1 , (2.75)

one can extract the inverse temperature β̄ of the state ρG using the following relation

νβ̄ =
√

det[σ] =
√
−det[σA] . (2.76)

Another quantity of interest is the mean excitation number of a Gaussian state, whose
expression in terms of the parameters (β̄, ξξξ, χ) reads as (Lörch et al. 2018)

〈a†a〉 =
1

2
{cosh(2|χ|)[2Nb(β̄) + 1] + |ξξξ|2 − 1} . (2.77)
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The passive state connected to ρG is the thermal state obtained by undoing displacement
and squeezing in (2.56). Given the Hamiltonian of the oscillator

HS = ω0a
†a (2.78)

and by applying (2.48), one hence gets (Lörch et al. 2018)

E = ω0(〈a†a〉 − 〈a†a〉β̄) , (2.79)

where
〈a†a〉β̄ =

1

2
(νβ̄ − 1) = Nb(β̄) , (2.80)

with νβ̄ evaluated as in (2.76) (this result will be next applied in Eq. (4.17), where the
harmonic oscillator of interest is the quantum battery of bosonic operators b and b†).

Dynamical Evolution A generator that is quadratic in the bosonic ladder operators in-
duces a Gaussian mapping, meaning that it transforms Gaussian states into other Gaus-
sian states: namely, for single-mode Gaussian states, the time evolution from time 0 to
time t simply maps

ρG(β̄0, ξξξ0, χ0)→ ρG(β̄(t), ξξξ(t), χ(t)).

To retrieve the explicit temporal dependence of the quantities β̄(t), ξξξ(t), χ(t) from the
dynamical expressions for the first and second moments one can follow the same path
we have detailed previously to link β̄, ξξξ, χ toRRR and σ. Finally, the same machinery can
be used to relate the initial conditions to the parameters (β̄0, ξξξ0, χ0) of the input state,
giving

〈a(0)〉 = A1(0) , (2.81)

〈a2(0)〉 =
1

2
σA11(0) + A1(0)2 , (2.82)

〈a†a(0)〉 =
1

2
[σA12(0)− 1] + |A1(0)|2 , (2.83)

with

AAA(0) = U †ξξξ0 , (2.84)

σA(0) = νβ̄0
U †S(χ0)ST (χ0)U∗ (2.85)

and eventually one can monitor the initial mean excitation number by applying Eq. (2.77)
to the initial state.

27



2.3 Elements of quantum metrology

Quantum metrology (Giovannetti et al. 2006, 2011) is the branch of quantum informa-
tion theory treating the optimization of the estimation of a physical parameter, influenc-
ing (naturally or artificially) the dynamics of a quantum system, by measuring the latter.
It is based on the idea that quantum effects generally imply some kind of enhancement
- in precision, efficiency or simplicity of implementation - for measurements and dis-
crimination procedures (Giovannetti et al. 2011).
In literature, one usually distinguishes between quantum estimation theory (Paris 2009)
and quantum state discrimination (Helstrom 1976, Nielsen and Chuang 2010). Whether
quantum estimation theory focuses on optimizing the precision in the estimation of a
continuous parameter and typically relies on the evaluation of the quantum Fisher infor-
mation (Braunstein and Caves 1994, Cramér 1999, Giovannetti et al. 2011), quantum
state discrimination suitably applies for the tagging of discrete parameters.
For the topic developed in Chapter 5, we naturally focus on the latter, with a parame-
ter that can assume only two discrete values. When facing this kind of problems, one
typically works with the most general quantum measurements. Including projective
measurements on the system as special cases, they allow to formalize the possibility
of performing projective measurements on an ancilla, i.e. a probe, that interacting
with the system to be measured delivers information on it, and even more sophisti-
cated setups are contained where non-local projective measurements concern the whole
system-ancilla compound. Such measurements are described by a complete set of pos-
itive operators, referred as positive-operator-valued measure (POVM, cfr. e.g. Nielsen
and Chuang (2010)). Conversely, given a POVM, there always exist an ancilla and a
unitary channel such that the measure can be viewed as a projective measurement on the
ancilla. These generalized measurements represent hence the ideal tool for optimizing
quantum state discrimination.

2.3.1 Helstrom error probability

Let us suppose that the state ρ of the quantum system of interest can assume either
the value ρ0 or the value ρ1 and we are interested in discriminating the two instances.
Accordingly, by performing a single quantum measurement having two outcomes, we
would like to associate an outcome, say 0, which allows to argue that the hypothesis
ρ0 is true with the highest possible efficiency, and, conversely, an outcome 1 for the
opposite situation. In general, the two outcomes are connected to the elements of a
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POVM, a set of operators

{E0, E1} , with (2.86)

E0, E1 ≥ 0 , (2.87)

E0 + E1 = 1 , (2.88)

E0 (E1) being the element of the POVM related to the outcome 0 (1). As usual, (2.87)
means that E0, E1 are positive-semidefinite (positive) operators, property that guaran-
tees the non-negativity of the conditional probabilities

p(i|ρ) = tr(Eiρ) (2.89)

of obtaining a certain outcome i ∈ {0, 1}, while (2.88) ensures the normalization con-
dition

∑
k p(k|ρ) = 1.

For flat priors (i.e. the two hypotheses are equally probable), the error probability,
namely the probability of making the wrong guess, is defined as (Helstrom 1976)

perr =
1

2
[p(0|ρ1) + p(1|ρ0)] , (2.90)

which, using (2.89) and (2.88), assumes the form

perr =
1

2
{1− tr[E0(ρ0 − ρ1)]} . (2.91)

The goal is to find the best POVM (2.86) which minimizes the right-hand side of the
above expression1. Let us notice that the operator ρ0 − ρ1 is traceless and Hermitian.
We separate its spectral decomposition

ρ0 − ρ1 =
d∑

l=1

λl |l〉 〈l| := ∆ρ01 (2.92)

(d being the dimension of the Hilbert space of the system) in two parts, containing each
non-negative, λ(+)

l ≥ 0, and negative, λ(−)
l < 0, eigenvalues:

∆ρ01 =

n+∑

l=1

λ
(+)
l |l〉 〈l|(+) +

n−∑

l=1

λ
(−)
l |l〉 〈l|(−) := ∆ρ

(+)
01 −∆ρ

(−)
01 , (2.93)

with ∆ρ
(+)
01 =

∑n+

l=1 λ
(+)
l |l〉 〈l|(+) , ∆ρ

(−)
01 =

∑n−
l=1(−λ(−)

l ) |l〉 〈l|(−) and n+ + n− = d.
Notice that ∆ρ

(+)
01 and ∆ρ

(−)
01 are positive operators with orthogonal support.

1Refer, e.g., to Nielsen and Chuang (2010), page 404, or to Calsamiglia et al. (2008).
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Exploiting this decomposition, (2.91) becomes

perr =
1

2
{1− tr[E0(∆ρ

(+)
01 −∆ρ

(−)
01 )]} (2.94)

which gets minimum when tr[E0∆ρ
(+)
01 ] = tr[∆ρ

(+)
01 ] and tr[E0∆ρ

(−)
01 ] = 0. The last

conditions are satisfied when setting E0 as the projector on the subspace of positive
eigenvalues of ∆ρ01, i.e. choosing

E0 ≡ Ē0 =

n+∑

l=1

|l〉 〈l|(+) . (2.95)

Since ∆ρ01 is traceless, tr[∆ρ
(+)
01 ] = tr[∆ρ

(−)
01 ] = 1

2
tr[∆ρ

(+)
01 + ∆ρ

(−)
01 ], and we arrive to

the expression of the Helstrom error probability (Helstrom 1976)

p(min)
err := H(ρ0, ρ1) :=

1

2

(
1− 1

2
‖ρ0 − ρ1‖1

)
, (2.96)

which hence represents the saturable lowest bound for perr in (2.90), with ‖ρ0 − ρ1‖1

denoting the trace norm of the operator ρ0 − ρ1, i.e. the sum of the modulus of its
eigenvalues:

‖ρ0 − ρ1‖1 =
d∑

l=1

|λl| . (2.97)

Furthermore, Eq. (2.96) highlights the fact that two states ρ0 and ρ1 are perfectly dis-
tinguishable (again, having the freedom of choosing the best single-shot POVM) when
they have orthogonal support (i.e. they coincide with ∆ρ

(+)
01 and ∆ρ

(−)
01 , respectively,

and H(ρ0, ρ1) = 0) and completely indistinguishable when they are equal (in this case
∆ρ

(+)
01 = ∆ρ

(−)
01 = 0 and H(ρ0, ρ1) = 1/2).

2.3.2 Quantum Chernoff bound

A natural quantifier of the discrimination capability is given by 1− p(min)
err , where p(min)

err

is the Helstrom error probability (2.96). More generally, if we have N ≥ 1 identical
copies at disposal, the discrimination process involves ρ⊗N0 and ρ⊗N1 , while the mini-
mum probability of error reads as

p(min)
err = H(ρ⊗N0 , ρ⊗N1 ) =

1

2

(
1− 1

2
‖ρ⊗N0 − ρ⊗N1 ‖1

)
≤ QN/2, (2.98)

where Q is the minimum of the Chernoff function Qr, i.e.

Q = min
r∈[0,1]

Qr , Qr := tr
[
ρr0ρ

1−r
1

]
. (2.99)
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The result (2.98) is known as Quantum Chernoff Bound (Ogawa and Hayashi 2004, Au-
denaert et al. 2007) and the related rate exponent is asymptotically attainable (Audenaert
et al. 2007, Nussbaum and Szkoła 2009). Furthermore, for large N , the computation
of the trace norm in (2.98) is tedious and the use of the Chernoff approach represents a
valuable choice.

2.3.2.1 Harmonic oscillator

The Chernoff quantity (2.99) takes a compact expression in the case of the single-mode
Gaussian states introduced in Sec. 2.2.3.1. Let us suppose we want to distinguish be-
tween two hypotheses, say ρb and ρf (whose meaning will be clear in Chapter 5), of the
single-mode Gaussian state ρ. Following Calsamiglia et al. (2008), we can compute the
value of the Chernoff quantity Qr (2.99) via the expression

Qr =
2 Nβ̄b,r Nβ̄f ,1−r e−δ

δδT [σ̃b(r)+σ̃f (1−r)]
−1
δδδ

√
det [σ̃b(r) + σ̃f (1− r)]

, (2.100)

where δδδ = ξξξb − ξξξf is the difference between the first moments of the two states;
νβ̄q = coth(β̄qω/2) =

√
det[σq] [see (2.76)] ; Nβ̄q ,r = (1−e−β̄qω)r

1−e−β̄qωr ; σ̃q(r) =
νrβ̄q
νβ̄q

σq

and σq is the covariance matrix [see (2.70)] of the state ρq, for q ∈ {b, f}.
To conclude, the quantities defined in Eq. (2.99) - particularly useful in the case of
single-mode Gaussian states - and Eq. (2.96) - which will be widely applied to qubits in
Chapter 5 - provide operationally well defined figures of merit for the precision in the
discrimination between two hypotheses of a quantum state.
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CHAPTER 3

Formal aspects of open quantum system dynamics

3.1 Completely-Positive Redfield Equation: general formalism

We now introduce another way of curing the non-positive character of the Redfield
equation, which does not rely on the assumption (2.24), i.e. , differs from the indiscrim-
inate implementation of the secular approximation.

3.1.1 Coarse grain averaging

The Redfield equation in interaction picture (2.19) can be alternatively simplified by
performing a temporal averaging over coarse grain time intervals ∆t which are much
smaller than the timescale δt where ρ̃S(t) varies appreciably, i.e.

∆t� δt . (3.1)

This averaging is along the same line of reasoning with the hypothesis underlying the
Markov approximation and, as we shall see in the following, is essential in order to
recover the GKSL structure of the generator. In particular using the fact that the coarse
graining does not affect ρ̃S(t), we can replace (2.19) with

˙̃ρS(t) '
∑

ij

Γ
(∆t)
ij (t)

(
A†j ρ̃S(t)Ai − AiA†j ρ̃S(t)

)
+ h.c. , (3.2)

where now

Γ
(∆t)
ij (t) :=

1

∆t

∫ t+∆t/2

t−∆t/2

ds Γij(s) = Γij(t) S
(∆t)
ω−ω′ (3.3)

and we introduced the function

S
(∆t)
ω−ω′ := sinc[(ω − ω′)∆t/2] , (3.4)

with sinc[x] := sin x/x being the cardinal sinus.
Then we express the matrix Γ

(∆t)
ij (t) in terms of its hermitian and anti-hermitian
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components, writing

Γ
(∆t)
ij (t) = γ

(∆t)
ij (t)/2 + i η

(∆t)
ij (t) , (3.5)

with

γ
(∆t)
ij (t) := Γ

(∆t)
ij (t) + (Γ

(∆t)
ji (t))∗ , (3.6)

η
(∆t)
ij (t) :=

(
Γ

(∆t)
ij (t)− (Γ

(∆t)
ji (t))∗

)
/(2i) . (3.7)

With this choice, the terms on the r.h.s. of Eq. (3.2) can be expressed as

˙̃ρS(t) ' −i
[
H̃

(∆t)
LS (t), ρ̃S(t)

]
−

(3.8)

+
∑

ij

γ
(∆t)
ij (t)

(
A†j ρ̃S(t)Ai −

1

2

[
AiA

†
j, ρ̃S(t)

]
+

)
,

where
[
· · · , · · ·

]
+

in the second line represents the anti-commutator and H̃(∆t)
LS (t) the

Lamb shift term

H̃
(∆t)
LS (t) :=

∑

ij

η
(∆t)
ij (t) AiA

†
j . (3.9)

Going back in Schrödinger picture, we can finally remove the time dependence of the
coefficients γ(∆t)

ij (t) and η(∆t)
ij (t) obtaining (as it happened for the secular approxima-

tion) a master equation with constant generator terms

ρ̇S(t) ' −i
[
H

(∆t)
S , ρS(t)

]
−

(3.10)

+
∑

ij

γ
(∆t)
ij

(
A†jρS(t)Ai −

1

2

[
AiA

†
j, ρS(t)

]
+

)
,

where now

H
(∆t)
S := H

(∆t)
LS +HS , (3.11)

H
(∆t)
LS := H̃

(∆t)
LS (0) =

∑

ij

η
(∆t)
ij AiA

†
j . (3.12)

Explicitly, the N × N matrices γ(∆t)
ij and η(∆t)

ij appearing in these expressions can be
shown to correspond to

γ
(∆t)
ij := γ

(∆t)
ij (0) = γ

(+)
αω,βω′ S

(∆t)
ω−ω′ , (3.13)

η
(∆t)
ij := η

(∆t)
ij (0) =

γ
(−)
αω,βω′

2i
S

(∆t)
ω−ω′ , (3.14)
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with

γ
(±)
αω,βω′ := Ωαβ(ω′)± Ω∗βα(ω) . (3.15)

The last step needed to put Eq. (3.10) in GKSL form is the diagonalization of γ(∆t)
ij .

It, however, works if and only if such matrix is positive semi-definite (or equivalently
non-negative), the presence of negative eigenvalues being formally incompatible with
the complete-positivity requirement (Lindblad 1976, Alicki and Lendi 2007) of the re-
sulting dynamics of ρS(t).
This is the reason for which one introduces the coarse graining transformation (3.3).
Indeed thanks to the fact that

lim
∆t→∞

S
(∆t)
ω−ω′ = δω,ω′ , (3.16)

as ∆t diverges the N × N matrix γ(∆t)
ij reduces to a block diagonal form with respect

to the frequency labels,

γ
(∞)
ij := lim

∆t→∞
γ

(∆t)
ij = γ

(+)
αω,βωδω,ω′ , (3.17)

where for each ω the coefficients γ(+)
αω,βω identify M ×M matrices

γ(+)(ω, ω) := Ω(ω) + Ω†(ω) , (3.18)

that, coinciding with the matrices we defined in (2.28), are, by construction, non-
negative (see Sec. 2.1.2.3 for details). Indeed, the ∆t → ∞ limit identifies the secular
approximation we introduced to obtain (2.25) that is the last step one traditionally en-
forces in order to recover the GKSL form.
The coarse grained Redfield equation (3.10) provides hence a way of mapping in a
continuous way the original uncorrected Redfield equation, ∆t = 0 (i.e. no average
has been performed), with the secular ME, ∆t = ∞, by moving the parameter ∆t.
More interestingly, there typically exist a finite threshold for ∆t above which complete
positivity is guaranteed.
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3.1.2 Complete positivity: sufficient conditions for the coarse graining time

We are now interested in determining general conditions which guarantee that a certain
finite coarse graining time ∆t can be adopted to ensure that the matrix γ(∆t) of elements
γ

(∆t)
ij defined in Eq. (3.13) is positive semi-definite, i.e. γ(∆t) ≥ 0. Formally speaking

this consists in finding the values of ∆t such that

~u† · γ(∆t) · ~u =
∑

ij

u∗i γ
(∆t)
ij uj ≥ 0 , (3.19)

for all choices of the column vector ~u ∈ CN or, equivalently, such that the minimum
eigenvalue Λmin(∆t) of γ(∆t) is non-negative, i.e.

Λmin(∆t) ≥ 0 . (3.20)

For small values of N , Eq. (3.20) turns out to be the proper way to go. However,
as N increases, determining Λmin(∆t) can be problematic. In what follows we hence
present an alternative, computationally less demanding approach which allows one to
characterize the set of suitable ∆t, by only focusing on the properties of the M ×M
blocks Ω(ω) defined in Eq. (2.23). The main result of this analysis is the identification
of a critical threshold ∆tc above which the coarse graining time ∆t is guaranteed to
yield a positive semi-definite γ(∆t), i.e.

∆t ≥ ∆tc =⇒ γ(∆t) ≥ 0 . (3.21)

Specifically, indicating with ‖Ω(ω)‖∞ the operator norm of Ω(ω), i.e.

‖Ω(ω)‖∞ := sup
~v(ω)

√
~v†(ω)·Ω†(ω)Ω(ω)·~v(ω)

|~v(ω)| , (3.22)

and with λmin(ω) the minimum eigenvalue of its Hermitian component γ(+)(ω, ω) de-
fined in Eq. (3.18) (which is non-negative by construction), in Sec. 3.1.3 we shall proof
that one can identify ∆tc with the quantity

∆t(1)
c := 2(G− 1) max

ω,ω′:ω 6=ω′

(
‖Ω(ω)‖∞+‖Ω(ω′)‖∞
|ω−ω′| λmin(ω)

)
, (3.23)

or with its pejorative, but more compact, version

∆t(2)
c :=

4(G− 1)‖Ω‖max

νmin λmin

, (3.24)
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where λmin := minω λmin(ω), ‖Ω‖max := maxω ‖Ω(ω)‖∞, and where

νmin := min
ω,ω′:ω 6=ω′

|ω − ω′| (3.25)

is the minimum among all the gaps differences. As ∆t
(2)
c is always larger than ∆t

(1)
c ,

it provides a worst estimation of the real critical threshold ∆tc. Still Eq. (3.24) is more
informative as it makes explicit that ∆tc should scale as the inverse of the minimal
difference νmin. An estimation of the critical time ∆tc that is provably better, but more
involved than ∆t

(1)
c is finally given by the quantity

∆t(0)
c := max

ω

(
2

Q(ω)K(ω)λmin(ω)

)
, (3.26)

obtained by the functions

Q(ω) :=
∑

ω′:ω′ 6=ω

|ω−ω′|
‖Ω(ω)‖∞+‖Ω(ω′)‖∞ , (3.27)

q
(ω)
ω′ := |ω−ω′|

‖Ω(ω)‖∞+‖Ω(ω′)‖∞
1

Q(ω)
(∀ω′ 6= ω) , (3.28)

K(ω) :=
1∑

ω′:ω′ 6=ω
1

q
(ω)

ω′

. (3.29)

Beyond providing the practical upper bounds

∆t(0)
c ≤ ∆t(1)

c ≤ ∆t(2)
c

for the critical coarse grain time ∆tc in a general formalism, the previous analysis gives
a hint of the fact that such time scale is possibly finite in reliable situations. The reader
interested in the formal derivations of such bounds can find them in Sec. 3.1.3 or, alter-
natively, can skip it, passing to concrete examples where the main concepts are applied.

3.1.3 Derivation of the bounds via matrix dilution

Here we explicitly show that both the terms (3.23) and (3.26) are suitable choices for
the critical time ∆tc entering Eq. (3.21).

We start by observing that by expanding the indexes i and j, Eq. (3.19) can be
conveniently arranged in the following form

∑

ω

~u†(ω) · γ(+)(ω, ω) · ~u(ω) (3.30)

+
∑

ω,ω′:ω 6=ω′
S

(∆t)
ω−ω′ ~u

†(ω) · γ(+)(ω, ω′) · ~u(ω′) ≥ 0 ,
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where for given ω and ω′,

γ(+)(ω, ω′) := Ω†(ω) + Ω(ω′) , (3.31)

represents theM×M matrix with elements provided by the terms γ(+)
αω,βω′ of Eq. (3.15),

and where ~u(ω) is theM -dimensional vector defined by the components of ~u associated
with the corresponding block ω. Indeed, making the blocks explicit, the vector ~u reads
~u = (~u(ω1), ..., ~u(ωG))T .

It is worth observing that the first contribution of Eq. (3.30) corresponds to the term
one would get when enforcing the secular approximation (i.e. , enforcing the ∆t→∞
limit): accordingly, for all choices of ~u this term can always be guaranteed to be non
negative, i.e.

∑

ω

~u†(ω) · γ(+)(ω, ω) · ~u(ω) ≥ 0 . (3.32)

Problems on the contrary can arise from the second contribution which involves the off-
diagonal blocks γ(+)(ω, ω′) with ω 6= ω′. To treat them we adopt the following dilution

technique dividing the contribution coming from the diagonal block terms ω = ω′ into
fractions which are then added to the terms associated with the off-diagonal blocks
ω 6= ω′. Specifically, for each given ω let us introduce a set of numbers {p(ω)

ω′ }ω′ such
that

p
(ω)
ω′ ≥ 0 , ω′ 6= ω and

∑

ω′:ω′ 6=ω
p

(ω)
ω′ = 1 . (3.33)

They form G sets of probabilities with G − 1 entries, which we shall employ as free
parameters in our analysis and which allow us to rewrite (3.30) in the following sym-
metrized form

∑

ω,ω′:ω′>ω

{
p

(ω)
ω′ ~u

†(ω) · γ(+)(ω, ω) · ~u(ω) + p(ω′)
ω ~u†(ω′) · γ(+)(ω′, ω′) · ~u(ω′)

+ 2 S
(∆t)
ω−ω′ Re

[
~u†(ω) · γ(+)(ω, ω′) · ~u(ω′)

] }
≥ 0 , (3.34)

where we grouped together all the contributions of all the couples ω and ω′ 6= ω,
used the fact that S(∆t)

ω−ω′ is invariant under exchange of ω and ω′, and the identity
γ(+)(ω′, ω) = [γ(+)(ω, ω′)]†.

Now a sufficient condition ensuring that Eq. (3.34) holds for all ~u, can be obtained
by forcing each one of such contributions to verify the same property. More specifically,
we can claim that the matrix γ(∆t) is non-negative at least for those ∆t such that there
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exists a proper choice of the probabilities {p(ω)
ω′ }ω′ for which

F (∆t)
ω,ω′ (~u(ω), ~u(ω′)) := p

(ω)
ω′ ~u

†(ω) · γ(+)(ω, ω) · ~u(ω) + p
(ω′)
ω ~u†(ω′) · γ(+)(ω′, ω′) · ~u(ω′)

+2 S
(∆t)
ω−ω′ Re

[
~u†(ω) · γ(+)(ω, ω′) · ~u(ω′)

]
≥ 0 , (3.35)

for all possible choices of ω, ω′, ~u(ω) and ~u(ω′), with ω 6= ω′. Next step is to construct
a lower bound for the quantity F (∆t)

ω,ω′ (~u(ω), ~u(ω′)). For this purpose we begin observing
that, indicating with λmin(ω) the minimum eigenvalue of the matrix γ(+)(ω, ω), we have

~u†(ω) · γ(+)(ω, ω) · ~u(ω) ≥ |~u(ω)|2 λmin(ω) , (3.36)

with |~u(ω)| being the norm of the vector ~u(ω). Then by using Eq. (3.31), the triangle
inequality, the Cauchy-Schwarz inequality, and the fact that, for generic ~u, one has√
~u†(ω) · Ω†(ω)Ω(ω) · ~u(ω) ≤ |~u(ω)| ‖Ω(ω)‖∞, we observe that

∣∣∣Re
[
~u†(ω) · γ(+)(ω, ω′) · ~u(ω′)

] ∣∣∣
≤ |~u†(ω) · γ(+)(ω, ω′) · ~u(ω′)| ≤ |~u†(ω) · Ω†(ω) · ~u(ω′)|+ |~u†(ω) · Ω(ω′) · ~u(ω′)|
≤ |~u(ω′)|

√
~u†(ω) · Ω†(ω)Ω(ω) · ~u(ω) + |~u(ω)|

√
~u†(ω′) · Ω†(ω′)Ω(ω′) · ~u(ω′)

≤ |~u(ω′)||~u(ω)| (‖Ω(ω)‖∞ + ‖Ω(ω′)‖∞) , (3.37)

which implies

2 S
(∆t)
ω−ω′ Re

[
~u†(ω) · γ(+)(ω, ω′) · ~u(ω′)

]

≥ −2 |S(∆t)
ω−ω′|

∣∣∣Re
[
~u†(ω) · γ(+)(ω, ω′) · ~u(ω′)

] ∣∣∣

≥ −2|S(∆t)
ω−ω′ ||~u(ω′)||~u(ω)| (‖Ω(ω)‖∞ + ‖Ω(ω′)‖∞) . (3.38)

Replacing hence (3.36) and (3.38) into the definition of F (∆t)
ω,ω′ (~u(ω), ~u(ω′)) we arrive to

establish the following bound

F (∆t)
ω,ω′ (~u(ω), ~u(ω′)) ≥ F̄ (∆t)

ω,ω′ (~u(ω), ~u(ω′)) , (3.39)

with F̄ (∆t)
ω,ω′ (~u(ω), ~u(ω′)) being the function

F̄ (∆t)
ω,ω′ (~u(ω), ~u(ω′)) := p

(ω)
ω′ |~u(ω)|2 λmin(ω) + p(ω′)

ω |~u(ω′)|2 λmin(ω′)

−2|S(∆t)
ω−ω′ ||~u(ω′)||~u(ω)| (‖Ω(ω)‖∞ + ‖Ω(ω′)‖∞)

= |~u(ω)|2(Aω,ω′ −B(∆t)
ω,ω′ ) + |~u(ω′)|2(Aω′,ω −B(∆t)

ω,ω′ ) +B
(∆t)
ω,ω′ (|~u(ω)| − |~u(ω′)|)2 ,

(3.40)
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with

Aω,ω′ := p
(ω)
ω′ λmin(ω) , (3.41)

B
(∆t)
ω,ω′ := |S(∆t)

ω−ω′| (‖Ω(ω)‖∞ + ‖Ω(ω′)‖∞) , (3.42)

From Eq. (3.39) it then follows that a sufficient condition for Eq. (3.35) is the positivity
of the function F̄ (∆t)

ω,ω′ (~u(ω), ~u(ω′)), which by looking at (3.40), can be guaranteed by
imposing the function B(∆t)

ω,ω′ to be smaller than Aω,ω′ and Aω′,ω, i.e.

B
(∆t)
ω,ω′ ≤ min{Aω,ω′ , Aω′,ω} , (3.43)

which can be cast in the equivalent form

|S(∆t)
ω−ω′ | ≤

p
(ω)
ω′ λmin(ω)

‖Ω(ω)‖∞ + ‖Ω(ω′)‖∞
, (3.44)

by exploiting the symmetry B(∆t)
ω,ω′ = B

(∆t)
ω′,ω

1. Noticing that from Eq. (3.4) we have
|S(∆t)
ω−ω′| ≤ 2/(|ω− ω′|∆t), the latter can then be replaced by the (stronger) requirement

∆t ≥ 2

p
(ω)
ω′

‖Ω(ω)‖∞ + ‖Ω(ω′)‖∞
|ω − ω′| λmin(ω)

. (3.45)

To summarize, any coarse graining time ∆t admitting a set of probability functions
{p(ω)

ω′ }ω′ for which the inequality (3.45) holds for all ω and ω′, with ω 6= ω′, ensures
the fulfillment of Eq. (3.34), hence the non-negativity of the matrix γ(∆t) (notice that
if λmin(ω) = 0 for some ω, Eq. (3.45) can still be used: simply it implies that ∆t has
to be infinite). Alternatively, we can say that, for each assigned choice of the dilution
probabilities (3.33), the fulfillment of the inequality (3.34) allows us to identify a coarse
graining time ∆t that implies the non-negativity of γ(∆t). Taking for instance {p(ω)

ω′ }ω′
to be flat distributions, i.e.

p
(ω)
ω′ = 1/(G− 1) , ∀ω′ 6= ω (3.46)

equation (3.45) becomes

∆t ≥ 2(G− 1)
‖Ω(ω)‖∞ + ‖Ω(ω′)‖∞
|ω − ω′| λmin(ω)

, (3.47)

which, maximizing the right-hand side term with respect to all possible choices of ω
and ω′ 6= ω, allows us to claim that a sufficient condition for the non-negativity of γ(∆t)

can be obtained by taking ∆t larger than the quantity ∆t
(1)
c of Eq. (3.23).

1See Eq. (3.121) for an application of the (3.44) in a particular case.

39



To prove that also Eq. (3.26) yields a legitimate estimation of ∆tc, we look for the
optimal choice of the probability functions {p(ω)

ω′ } entering Eq. (3.45). To see this let us
use the functions (3.27)-(3.29) to rewrite the latter inequality as

2

λmin(ω)∆t
≤ p

(ω)
ω′ |ω − ω′|

‖Ω(ω)‖∞ + ‖Ω(ω′)‖∞
= Q(ω)p

(ω)
ω′ q

(ω)
ω′ , (3.48)

∀ω and ω′ 6= ω.

Now observe that for given ω, similarly to the {p(ω)
ω′ }ω′ , the terms {q(ω)

ω′ }ω′ define a
proper set of probabilities with G − 1 entries. As we have the freedom to arbitrarily
choose whatever set of {p(ω)

ω′ }ω′ , in order to get a less stringent condition on ∆t , we
want to focus on those that maximize the right-hand side of Eq. (3.48). A proof by con-
tradiction2 shows that this can be achieved by ensuring that, for all given ω, the quantity
p

(ω)
ω′ q

(ω)
ω′ should be constant in ω′, for all ω′ 6= ω. By imposing the normalization condi-

tion it then follows that such constant must coincide with the function K(ω) defined in
Eq. (3.29), i.e. p(ω)

ω′ q
(ω)
ω′ = K(ω) which inserted into Eq. (3.48) yields

2

λmin(ω)∆t
≤ Q(ω)K(ω)⇐⇒ ∆t ≥ 2

λmin(ω)Q(ω)K(ω)
(3.49)

that, upon maximization over ω, finally leads to Eq. (3.26).

2 In this regard, notice that, for fixed ω, searching the best distribution {pωω′}ω′ for the right-hand
side of Eq. (3.48), means finding the solution of the problem

max
{pω

ω′}ω′

{
min

ω′:ω′ 6=ω

[
Q(ω)p

(ω)
ω′ q

(ω)
ω′

]}
.

Suppose the best distribution {p̄(ω)
ω′ }ω′ is such that p̄(ω)

ω′ 6= K(ω)/q
(ω)
ω′ , implying that there exist an ω̄′

(as usual 6= ω) such that p̄(ω)
ω̄′ q

(ω)
ω̄′ > K(ω). Consequently, for the normalization condition of {p̄(ω)

ω′ }ω′ to
be preserved, there must exist (at least) another ¯̄ω′, such that p̄(ω)

¯̄ω′ q
(ω)
¯̄ω′ < K(ω), that is, in turn, the one

selected by the minimum over ω′. We then arrive to the contradiction we were looking for.
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3.1.4 Non-commuting generator components

As previously emphasized, the ∆t→∞ limit goes under the name of secular approxi-

mation and it is the last step one typically enforces in order to recover the GKSL form
of the generator (Breuer et al. 2002). This is a rather drastic approximation, which
forces structural constraints on the resulting master equation. Specifically, from (3.14)
it follows that under the secular approximation also the matrix η(∆t)

ij gets block diagonal
with respect to the gap indexes ω and ω′,

η
(∞)
ij := lim

∆t→∞
η

(∆t)
ij =

γ
(−)
αω,βω

2i
δω,ω′ , (3.50)

yielding the following properties:

(i) Commutation between the Lamb shift Hamiltonian operator H(∞)
LS and the free

Hamiltonian operator HS;

(ii) Commutation between the free Hamiltonian,HS, and the dissipative,D(∞), super-
operator components of the generator;

(iii) In reliable situations, commutation between the full Hamiltonian super-operator
H(∞)

S and D(∞).

Property (i) can be easily verified by expanding the indexes i, j appearing in Eq. (3.12)
and using the identities

HSπε = πεHS = επε . (3.51)

Accordingly, we get

[
HS, H

(∆t)
LS

]
−

=
∑

αβωω′

(ω − ω′) η(∆t)
αω,βω′

∑

ε

πε+ωAαπεAβπε+ω′ , (3.52)

which in the secular limit, where Eq. (3.50) forces η(∆t)
αω,βω′ to be proportional to the

Kronecker delta δω,ω′ , gets explicitly null:

lim
∆t→∞

[
HS, H

(∆t)
LS

]
−

=
[
HS, H

(∞)
LS

]
−

= 0 . (3.53)

To properly express property (ii), let us rewrite the right-hand side of Eq. (3.10) in the
formal compact way

L(∆t)[ρS(t)] := H(∆t)[ρS(t)] +D(∆t)[ρS(t)] , (3.54)
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where H(∆t)
S := HS +H(∆t)

LS and D(∆t) represent the Hamiltonian and dissipative con-
tributions to the super-operator L(∆t) generating the dynamics, namely:

HS[· · · ] := −i
[
HS, · · ·

]
−
, (3.55)

H(∆t)
LS [· · · ] := −i

[
H

(∆t)
LS , · · ·

]
−
, (3.56)

D(∆t)[· · · ] :=
∑

ij

γ
(∆t)
ij

(
A†j · · ·Ai −

1

2

[
AiA

†
j, · · ·

]
+

)
. (3.57)

The commutator betweenHS and D(∞) is zero, i.e.

[
HS,D(∞)

]
− := HS ◦ D(∞) −D(∞) ◦ HS = 0 , (3.58)

with “◦” being the composition of super-operators:

A ◦B[· · · ] := A[B[· · · ]] . (3.59)

Eq. (3.58) can be proven by inspection, exploiting that, by construction, the operators
Aαω are eigen-operators ofHS , i.e. (Breuer et al. 2002)

iHS[Aαω] = [HS, Aαω]− = ωAαω . (3.60)

In reliable situations, commutation between the (full) Hamiltonian and the dissipator is
also achieved in the secular limit:

[
H(∞)

S ,D(∞)
]
−

= 0 . (3.61)

Remarkably, as we shall see explicitly in the next Sections, going beyond the secular
approximation by working with finite values of the coarse graining time ∆t, in general
one has

[
HS, H

(∆t)
LS

]
−
6= 0 , (3.62)

and

[
HS,D(∆t)

]
− 6= 0 . (3.63)

Furthermore, when Eq. (3.61) is satisfied, the breaking of commutation rules in Eqs. (3.62)
and (3.63) can induce non-commutation also betweenH(∆t)

S and D(∆t), i.e.

[
H(∆t)

S ,D(∆t)
]
−
6= 0 . (3.64)
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Having strong implications on the spectral properties of the generator, Eqs. (3.62)-
(3.64) can imply dramatic consequences on the steady state of the system, which can
show deviations from the Gibbsian state asymptotic limit predicted by conventional sec-
ular treatment of the Redfield equation, as well as non-trivial transient dynamics. An
example of the breaking of commutation rules described by Eqs. (3.63) and (3.64) will
be presented in Sec. 3.2 [cfr. Eq. (3.100)], while deviations from the Gibbsian state
in the long time limit and an example for Eq. (3.62) will be shown in Sec. 3.3 in the
context of multipartite open quantum systems [cfr. Eq. (3.149) and Fig. 3.9].
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3.2 Tightly recovering complete positivity: an example

3.2.1 The model: dipole-like interaction

The methods of the previous sections can be applied in the case of a single qubit coupled
to a bosonic thermal bath at temperature 1/β via dipole-like interaction, describing
the well known spin-boson model (Leggett et al. 1987). In this case, when using the
Redfield approach, the presence of counter-rotating terms in the interaction Hamiltonian
originates non-positive behaviors. The Hamiltonian components of Eq. (2.6) now read
as follows

HS = ω0σ+σ− , (3.65)

HE =
∑

k

ωkc
†
kck , (3.66)

H1 =
∑

k

γk(c
†
k + ck)(σ− + σ+) , (3.67)

where we assumed ω0, ωk, γk ≥ 0.
Equations (3.65) and (3.66) account for the free Hamiltonians of the system and en-
vironment, respectively, and Eq. (3.67) is the system-environment interaction which
contains both excitation-number-conserving terms, ckσ+, c†kσ−, and counter-rotating
terms, ckσ−, c†kσ+. The ladder operators of the system σ− = |0〉 〈1| and σ+ = |1〉 〈0|
and the ones of the bosonic environment ck and c†k satisfy the following commutation
rules:

σ−σ+ + σ+σ− = 12 (3.68)

ckc
†
k′ − c†k′ck = δk,k′ (3.69)

ckck′ − ck′ck = 0 . (3.70)

In the framework set by Eqs. (3.65)–(3.70), the Redfield ME in interaction picture of
Eq. (2.19) reduces to

˙̃ρS(t) =

∫ ∞

0

dτ c(τ)[Ã(t− τ)ρ̃S(t)Ã(t)− Ã(t)Ã(t− τ)ρ̃S(t)] + h.c. , (3.71)

where, at variance with (2.19), the index α does not appear because the interaction in
Eq. (3.67) is a single tensor product (M = 1) of two hermitian operators A and B, the
first on the system and the second on the bath, that read as

A = σ− + σ+, B =
∑

k

γk(ck + c†k) . (3.72)
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This leads to a single bath correlation function (see Eq. (2.17))

c(τ) :=
〈
B̃(τ)B

〉
= c1(τ) + c2(τ) , with (3.73)

c1(τ) =
∑

k

γ2
kNb(ωk)eiωkτ , (3.74)

c2(τ) =
∑

k

γ2
k[Nb(ωk) + 1]e−iωkτ , (3.75)

with Nb(ωk) := 〈c†kck〉 being the occupation number at wave vector k , following the
Bose-Einstein distribution

Nb(ωk) =
1

eβωk − 1
. (3.76)

The expression of the system operator A in interaction picture,

Ã(t) = σ−e
−iω0t + σ+e

iω0t, (3.77)

makes explicit its eigenstate representation:

A =
∑

ω∈{−ω0,ω0}
Aω, with (3.78)

A−ω0 = σ− and Aω0 = σ+ (3.79)

and also the value of G = 2 in this particular example.
Once performed coarse-grain averaging on the Redfield equation in interaction picture
(3.71), we obtain the following master equation in the Shrödinger picture:

ρ̇S(t) = −i
[
HS +H

(∆t)
LS , ρS(t)

]
−

+ (3.80)

∑

ωω′

γ
(∆t)
ωω′

{
A†ω′ρS(t)Aω −

1

2

[
AωA

†
ω′ , ρS(t)

]
+

}
,

H
(∆t)
LS =

∑

ωω′

η
(∆t)
ωω′ AωA

†
ω′ , (3.81)

where, indicating for brevity the subscripts ±ω0 as ± and introducing the system decay
rate function

κ(ε) = 2π
∑

k

δ(ωk − ε)γ2
k , (3.82)
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the secular components of the dissipation and Lamb shift matrices read as

γ−− = κ(ω0)Nb(ω0) , (3.83)

γ++ = κ(ω0)[1 +Nb(ω0)] , (3.84)

η−− =
1

2π
−
∫ ∞

0

dε κ(ε)

[ Nb(ε)
−ω0 + ε

+
1 +Nb(ε)
−ω0 − ε

]
, (3.85)

η++ =
1

2π
−
∫ ∞

0

dε κ(ε)

[Nb(ε)
ω0 + ε

+
1 +Nb(ε)
ω0 − ε

]
, (3.86)

which, explicitly, do not depend upon ∆t. The non-secular entries are instead

γ
(∆t)
−+ = γ

(∆t) ∗
+− (3.87)

=

[
γ++ + γ−−

2
+ i(η++ − η−−)

]
sinc(ω0∆t) ,

η
(∆t)
−+ = η

(∆t) ∗
+− (3.88)

=

[
η++ + η−−

2
+

1

4i
(γ++ − γ−−)

]
sinc(ω0∆t) ,

that we conveniently expressed in terms of the secular ones.
Using the relations (3.79) and the fact that σ2

± = 0, Eqs. (3.80) and (3.81) can be
rewritten as

ρ̇S(t) = −i
[
HS +H

(∆t)
LS , ρS(t)

]
−

+ (3.89)

γ−−

(
σ+ρS(t)σ− −

1

2

[
σ−σ+ , ρS(t)

]
+

)
+ γ++

(
σ−ρS(t)σ+ −

1

2

[
σ+σ− , ρS(t)

]
+

)

+γ
(∆t)
−+ σ−ρS(t)σ− + γ

(∆t)
+− σ+ρS(t)σ+

and

HS +H
(∆t)
LS = ω̄ σ+σ− , where ω̄ := ω0 + η++ − η−− . (3.90)

In particular, notice that, because σ2
± = 0, the Hamiltonian of the system is modified just

by a change of the two level spacing that is independent of ∆t and the anti-commutator
terms in the non-secular part of the dissipator nullify.
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3.2.2 Dynamics

To study the pathology of the Redfield ME, the most informative dynamics we can
choose concerns the local application of the channel described by Eq. (3.89) on the
qubit system S when it is initially entangled to an additional (ancillary) qubit A. In
this case the positivity of the joint state ρSA(t) (Choi state) will encode information on
the complete positivity of the channel 3. Furthermore, notice that, by doing so, we re-
propose the construction of Eq. (2.4) with a particular choice of the input state.

To begin, let us observe that the right-hand side of Eq. (3.89) concerns the action of
a time independent generator L(∆t) (which depends on the coarse grain parameter) on
the system state at time t. Hence, let us rewrite Eq. (3.89) as

ρ̇S(t) = L(∆t)ρS(t) , (3.91)

which defines the channel Φ
(∆t)
t mapping the state of the system from time 0 to time t :

ρS(t) = Φ
(∆t)
t ρS(0) , Φ

(∆t)
t = etL

(∆t)

. (3.92)

By applying the channel locally on S, we get

ρSA(t) := ({Φ(∆t)
t }S ⊗ IA) (ρSA(0)) , (3.93)

where the initial state

ρSA(0) = |ψ〉 〈ψ|SA , |ψ〉SA :=
1√
2

(|00〉SA + |11〉SA) (3.94)

is a maximally entangled state. Hence, once represented in the basis (|11〉SA, |01〉SA,
|10〉SA, |00〉SA), ρSA(t) is a 4× 4-matrix having the following block form:

ρSA(t) =
1

2

(
Φ

(∆t)
t (|1〉 〈1|) Φ

(∆t)
t (|1〉 〈0|)

Φ
(∆t)
t (|0〉 〈1|) Φ

(∆t)
t (|0〉 〈0|)

)
, (3.95)

with Φ
(∆t)
t (|i〉 〈j|) being the 2× 2-matrix calculated as the solution of the ME

d

dt

[
Φ

(∆t)
t (|i〉 〈j|)

]
= L(∆t)

[
Φ

(∆t)
t (|i〉 〈j|)

]
, (3.96)

under the initial condition Φ
(∆t)
t=0 (|i〉 〈j|) = |i〉 〈j|. 4

3 More deeply, the state ρSA(t) is in one-to-one correspondence with the channel Φ
(∆t)
t , formally in-

troduced in Eq. (3.92): Choi-Jamiołkowski isomorphism (Choi 1972, Jamiołkowski 1972, Holevo 2012).
4 Notice that these initial conditions, as well as Φ

(∆t)
t (|i〉 〈j|), have not to be interpreted as states
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Finally, the occurrence of negative eigenvalues of ρSA(t) encodes the non-complete
positivity of the map Φ

(∆t)
t , namely of the coarse-grained Redfield ME (3.89).

3.2.2.1 Commutation properties and asymptotic state

To study the asymptotic state it is convenient to find a representation of the generator
L(∆t) = H(∆t)

S +D(∆t). We hence vectorize the operator basis

|1〉 〈1| → ||1〉〉 , |0〉 〈0| → ||2〉〉 , |1〉 〈0| → ||3〉〉 , |0〉 〈1| → ||4〉〉 , (3.97)

finding the following representations for the components of the generator:

H(∆t)
S ≡ −iω̄




0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 −1




, (3.98)

D(∆t) ≡




−γ++ γ−− 0 0

γ++ −γ−− 0 0

0 0 −1
2
(γ++ + γ−−) γ

(∆t)
+−

0 0 γ
(∆t)
−+ −1

2
(γ++ + γ−−)




. (3.99)

We notice that, in general, the two matrices do not commute,

[
D(∆t),H(∆t)

S

]
−
≡ −2iω̄




0 0 0 0

0 0 0 0

0 0 0 −γ(∆t)
+−

0 0 γ
(∆t)
−+ 0




, (3.100)

thus providing an example for the general statement (3.64) (commutation is achieved in
the secular limit ∆t → ∞). However, for the selected model, both the matrices (3.98)
and (3.99) have (γ−−, γ++, 0, 0)T as eigenvector with eigenvalue 0. Such eigenvector is
proportional to the vectorization of the Gibbsian state of Hamiltonian HS and tempera-
ture 1/β, the fixed point of the dynamics induced by the map Φ

(∆t)
t .

The structure of the generator hence implies the following asymptotic expression
for the state (3.95):

ρSA(∞) =
1

2

(
ρβ 0

0 ρβ

)
=
{
ρβ

}
S
⊗
{12

2

}
A
, (3.101)

(|1〉 〈0| and |0〉 〈1| are trace-less and non-hermitian), but, consistently, the construction ensures that
ρSA(t) is a proper joint state.
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with ρβ being the Gibbsian state of the qubit at temperature 1/β:

ρβ =

(
Nf (ω0) 0

0 1−Nf (ω0)

)
, (3.102)

Nf (ω0) :=
1

eβω0 + 1
. (3.103)

As a consequence, for t→∞we expect two eigenvalues to converge to the value Nf (ω0)

2

and the remaining two eigenvalues to converge to the value 1−Nf (ω0)

2
. In formulas,

calling λ(∆t)
1 (t), λ(∆t)

2 (t), λ(∆t)
3 (t), λ(∆t)

4 (t) the four eigenvalues of ρSA(t), we have that

λ
(∆t)
1 (t), λ

(∆t)
3 (t) → Nf (ω0)

2
, (3.104)

λ
(∆t)
2 (t), λ

(∆t)
4 (t) → 1−Nf (ω0)

2
, for t→∞ . (3.105)

Being the quantities on the right-hand sides of the equations above all non-negative, we
infer that problems concerning the loss of complete positivity do not arise in the long
time limit, i.e. Φ

(∆t)
∞ is completely positive for any ∆t.

3.2.2.2 Transient evolution

According to the analysis of Sec. 3.1.2 we can ensure that the master Eq. (3.89) will
describe a completely positive map provided that the matrix

γ(∆t) ≡
(
γ−− γ

(∆t)
−+

γ
(∆t)
+− γ++

)
(3.106)

is positive semidefinite, i.e. whenever its two eigenvalues

γ
(∆t)
∓ :=

1

2

(
γ++ + γ−− ∓

√
(γ++ − γ−−)2 + 4|γ(∆t)

−+ |2
)
, (3.107)

are both non-negative (cfr. Eq. (3.20)) or, equivalently, when

det
[
γ(∆t)

]
:= γ++γ−− − |γ(∆t)

+− |2≥ 0 , (3.108)

where we used the fact that by construction γ(∆t)
+ ≥ 0 always. In the secular approxi-

mation limit, where sinc2(ω0∆t) approaches zero, γ(∆t)
∓ reduce to γ−− and γ++ and the

complete positivity is guaranteed (the off-diagonal terms of the matrix γ(∆t) nullify).
More generally, Eq. (3.108) leads to the following necessary and sufficient condition
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for the coarse graining time ∆t to define a completely positive channel:

|sinc(ω0∆t)| ≤
√√√√ 4κ(ω0)2Nb(ω0)(1 +Nb(ω0))

κ(ω0)2[2Nb(ω0) + 1]2 + 4[ω0

π
−
∫∞

0
dε κ(ε)1+2Nb(ε)

ε2−ω2
0

]2
:= |sinc(ω0∆tc)| .

(3.109)
To see this in the dynamics, in Fig. 3.1 we plot the four eigenvalues of ρSA(t) as func-
tion of time, for different values of ∆t, and choosing as decay rate function (3.82) the
expression

κ(ε) = κ0ε exp(−ε/ωc) , (3.110)

which behaves Ohmically for small energies, κ(ε) ∝ ε for ε � ωc, and decays expo-
nentially for ε � ωc, where ωc ≥ ω0 is a cutoff energy 5. Non-CP manifests at short
timescales as soon as the threshold value of Eq. (3.109) is overcome. This can be un-
derstood by looking at the analytic expression of the eigenvalue λ(∆t)

3 (t) corresponding
to the black full lines in Fig. 3.1:

λ
(∆t)
3 (t) =

1

4

[
1− e−st −

√
2

sω̄∆t

e−st/2
√
d2ω̄2

∆t (cosh(st)− 1)− |γ(∆t)
−+ |2s2 (cos(2ω̄∆tt)− 1)

]
,

(3.111)
where, for space reasons, we defined the quantities

s := γ++ + γ−− = κ(ω0)(2Nb(ω0) + 1) , d := γ++ − γ−− = κ(ω0) ,

ω̄∆t :=

√
ω̄2 − |γ(∆t)

−+ |2 . (3.112)

Being

λ
(∆t)
3 (0) = 0 , (3.113)

λ̇
(∆t)
3 (0) =

1

4

(
s−

√
d2 + 4|γ(∆t)

−+ |
2
)
, (3.114)

we obtain that the first derivative λ̇(∆t)
3 (0) ≷ 0 when |γ(∆t)

−+ |2 ≶ γ−−γ++ and hence, at
short timescales,

λ
(∆t)
3 (δt) ≥ 0 ⇔ ∆t ≥ ∆tc . (3.115)

It is worth noticing that the result (3.115) is independent of the S − E interaction
strength.

However, not only complete positivity, but also the less stringent positivity condition
can be lost when not accomplishing the constraint (3.109). From the state (3.95) it

5 We notice however that the particular choice made in (3.110) is not stringent.
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is possible to calculate the evolution of any system density matrix ρS(0) (Choi 1972,
Jamiołkowski 1972, Holevo 2012) through the identity

ρS(t) = 2TrA

[
({12}S ⊗ {ρT (0)}A)ρSA(t)

]
. (3.116)

An equivalent strategy is to solve the equations

d

dt
ρS00(t) = γ++ [1− ρS00(t)]− γ−−ρS00(t), (3.117)

d

dt
ρS10(t) = −iω̄ρS10(t)− 1

2
(γ++ + γ−−) ρS10(t) + γ

(∆t)
+− ρS10(t)∗

under the same initial condition ρS(0). Both the two methods allow to show an ex-
ample of non-positive semi-definite evolution: by considering as initial state the pure
vector |ψ(0)〉S := (|0〉+ |1〉)/

√
2, we obtain the following analytic expressions for the

components of the density matrix ρS(t):

Re[ρS10](t) = Re[ρS01](t) =
1

2
e−

1
2
st

(
Re

[
γ

(∆t)
−+

]
sin(ω̄∆t t)

ω̄∆t
+ cos (ω̄∆t t)

)
,(3.118)

Im[ρS10](t) = −Im[ρS01](t) = −1
2
e−

1
2
st

(
Im
[
γ

(∆t)
−+

]
+ ω̄

)
sin (ω̄∆t t)

ω̄∆t

, (3.119)

ρS00(t) = 1− ρS11(t) =
−de−st + 2γ++

2s
, (3.120)

with s, d and ω̄∆t as in (3.112). We plot the results in Fig. 3.2 for different values of ∆t

corresponding to the secular approximation (i.e. sinc(ω0∆t) = 0); to the CP-Redfield
ME (sinc(ω0∆t) = sinc(ω0∆tc)); and to the Redfield regime (i.e. sinc(ω0∆t) = 1).
Panels (a), (b) and (c) of the figure show that Redfield-like approaches, when compared
to the secular approximation strategy, imply corrections on the off-diagonal terms of
ρS(t) only, while leaving unchanged the diagonal ones and the steady state of the sys-
tem (3.102). As evident from the plots, CP-Redfield somehow interpolates between the
secular and the (uncorrected) Redfield behaviours. In Panel (d) of Fig. 3.2 it is instead
plotted the determinant of ρS(t). For short timescales, Redfield implies non-positive
evolution being Det[ρS(t)] < 0, whilst positivity is maintained under secular and CP-
Redfield approximations. However, with a sufficiently weak system-environment cou-
pling strength κ0, the positive semi-definiteness of the state ρS(t) predicted by the Red-
field equation can be recovered, but not complete positivity, which, as we previously
proved, is lost as soon as the critical condition of Eq. (3.109) is violated.

We finally observe that the positivity threshold |sinc(ω0∆tc)| in the right-hand side
of (3.109) depends on temperature. In Fig. 3.3 we compare such critical value with the
value provided by the estimation (3.44), a sufficient positivity condition we derived in
Sections 3.1.2 and 3.1.3 under general assumption on the system dynamics and which,
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Fig. 3.1 Qubit interacting with a bosonic bath via dipole-like interaction. We plot the
four eigenvalues λ(∆t)

1 (t) (red dot-dashed lines), λ(∆t)
2 (t) (blue dashed lines), λ(∆t)

3 (t)

(black full lines), λ(∆t)
4 (t) (green dotted lines) of ρSA(t) defined in Eq. (3.95), as func-

tion of time (in units 1/ω0). The Panels differ for the selected values of sinc(ω0∆t).
(a) sinc(ω0∆t) = 0, secular approximation (∆t → ∞); (b) sinc(ω0∆t) = 0.628, CP-
Redfield (∆t = ∆tc); (c) sinc(ω0∆t) = 1, Redfield (∆t = 0). We also report the results
across the critical value to appreciate the crossover between CP and non-CP evolution:
(d) sinc(ω0∆t) = 0.621, i.e. slightly below the critical value; (e) sinc(ω0∆t) = 0.628,
i.e. at the critical value; (f) sinc(ω0∆t) = 0.634, i.e. slightly above the critical value.
Notice the different axes scales in (d)-(f) with respect to (a)-(c). In all Panels, we
choose the following values of the master equation parameters: 1/β = 0.5ω0, κ0 = 2,
ωc = 5ω0.

52



0 2 4 6 8 10
ω0t

0

0.25

0.5

ρ
S

1
1
(t

)

(a)

0 2 4 6 8 10
ω0t

−0.25

0

0.25

0.5

R
e[
ρ

S
1
0
(t

)]

(b)

0 2 4 6 8 10
ω0t

−0.15

−0.1

−0.05

0

0.05

Im
[ρ

S
1
0
(t

)]

(c)

0 2 4 6 8 10
ω0t

−0.1

−0.05

0

0.05

0.1

0.15

D
et

[ρ
S
(t

)]

(d)

Fig. 3.2 Qubit interacting with a bosonic bath via dipole-like interaction. We plot
ρS11(t) (a), Re[ρS10(t)] (b), Im[ρS10(t)] (c) and Det[ρS(t)] (d), as function of time (in
units 1/ω0) considering as initial state the pure vector |ψ(0)〉S := (|0〉 + |1〉)/

√
2. We

choose the following values of the master equation parameters: 1/β = 0.5ω0, κ0 = 2,
ωc = 5ω0, see Eq. (3.110). In all the Panels the black full lines correspond to the results
obtained using CP-Redfield (sinc(ω0∆t) = sinc(ω0∆tc) ≈ 0.628), the dash-dotted red
lines using Redfield (sinc(ω0∆t) = 1) and the blue dashed line using the secular ap-
proximation (sinc(ω0∆t) = 0).
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Fig. 3.3 Comparison between |sinc(ω0∆tc)| (blue dashed line), given by the right-hand
side term of Eq. (3.109), and the right-hand side term of Eq. (3.121) (red full line) as
function of temperature. (a) and (b) differ for the temperature range. The cutoff energy
has been fixed at ωc = 10ω0 for all the curves.

for the example we study here, assumes the form

|sinc(ω0∆t)| ≤ κ(ω0)Nb(ω0)√
[κ(ω0)Nb(ω0)/2]2+η2

−−+
√

[κ(ω0)(1+Nb(ω0))/2]2+η2
++

,

(3.121)

From Fig. 3.3 we infer that the right-hand side of Eq. (3.121) underestimates the critical
value |sinc(ω0∆tc)| at low temperatures and gives better results at high temperatures.
More importantly, we deduce that at low temperature the full secular approximation
(∆t→∞) is necessary for ensuring positivity, a general behaviour that does not depend
upon the special form of the decay rate we choose for the plot. Indeed for β → ∞ the
right-hand side of Eq. (3.109) always nullifies forcing us to take ∆t → ∞ in order to
satisfy the inequality. For non-zero temperature instead, finite values of ∆t are admitted
such that the associated master equation is well behaved.
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Fig. 3.4 Schematic of the model: the composite system S is formed of two harmonic
oscillators A and B of equal frequency ω0 which interact via an exchange Hamiltonian
coupling characterized by the constant g. The subsystem A is also coupled with the
modes k ∈ {1, 2, . . .M} of a thermal environment E at temperature 1/β (again the
interaction is mediated by an exchange Hamiltonian with constants γk).

3.3 Multipartite systems: going beyond local and global approaches

As a further application, the corrected Redfield equation turns out to be useful when the
system is made of multiple components. Identifying which master equation is prefer-
able for the description of a multipartite open quantum system is not trivial and has led
in the recent years to the local vs global debate in the context of Markovian dissipation.
In this Section, we treat a paradigmatic scenario in which the system is composed of two
interacting harmonic oscillators A and B, with only A interacting with a thermal bath -
collection of other harmonic oscillators - and we study the equilibration process of the
system initially in the ground state with the bath finite temperature. We show that the
completely positive version of the Redfield equation obtained using coarse-grain and an
appropriate time-dependent convex mixture of the local and global solutions give rise
to the most accurate approximations of the whole exact system dynamics, i.e. both at
short and at long timescales, outperforming the local and global approaches.
The results are presented as follows. In Sec. 3.3.1 we introduce the model. The dif-
ferent approximations are described in Sec. 3.3.2. In Sec. 3.3.3 we integrate the dy-
namical evolution under the various approximations and present a comparison between
the various results. In Sec. 3.4 we draw the conclusions and we discuss possible future
developments. Details on the approximation methods and on the evaluation of the exact
dynamics are finally reported in Sec. 3.3.4.

3.3.1 The model

The model we consider is schematically described in Fig. 3.4. It consists into a bipar-
tite system S composed of two resonant bosonic modes A and B of frequency ω0 and
described by the ladder operators a, a† and b, b†, that interact through an excitation pre-
serving coupling characterized by an intensity parameter g ≥ 0. Accordingly, setting
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~ = 1, the free Hamiltonian of S reads

HS := HS,0 +HS,g , (3.122)

HS,0 := ωAa
†a+ ωBb

†b , with ωA = ωB := ω0 ,

HS,g := g(a†b+ h.c.) ,

which can also be conveniently expressed as

HS = ω+γ
†
+γ+ + ω−γ

†
−γ− , (3.123)

with

ω± := ω0 ± g , γ± :=
1√
2

(a± b) , (3.124)

being, respectively, the associated eigenmode frequencies and operators (Emary and
Brandes 2003), the last obeying the commutation rules

[
γ−, γ+

]
−

=
[
γ−, γ

†
+

]
−

= 0 ,
[
γ±, γ

†
±

]
−

= 1 . (3.125)

Through the exclusive mediation of subsystem A, we then assume S to be connected
with an external environment E formed of a collection of a large number M of inde-
pendent bosonic modes, no direct coupling being instead allowed between B and E .
Indicating with ck, c

†
k the ladder operators of the k-th mode of E , we hence express the

full Hamiltonian of the joint system S + E as

H := HS +HE +H1 , (3.126)

with

HE :=
M∑

k=1

ωkc
†
kck , H1 :=

M∑

k=1

γk(a
†ck + h.c.) , (3.127)

being respectively the free Hamiltonian of the environment and the exchange coupling
between A and E . More in details, in our analysis we shall assume the frequencies ωk
of the environmental modes to be equally spaced with a cut-off value ωc > ω0, i.e.

ωk :=
k

M
ωc , k ∈ {1, ...,M} , (3.128)

and take the system-environment coupling constants γk to have the form

γk :=

√
κ(ω0)

(
ωk
ω0

)α
ωc

2πM
, (3.129)
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Fig. 3.5 Schematic representation of the continuous transitions from the Redfield ME
to the global ME (3.146) passing through the coarse-grained Redfield MEs (3.134), and
from the local ME (3.150) to the global ME using the time-dependent convex mix-
ture (3.153). The dot indicates the completely positive map defined by the CP-Redfield
ME obtained by saturating the bound in Eq. (3.144).

with κ(ω0) controlling the effective strength of the interaction between A and E . The pa-
rameter α ≥ 0 appearing in Eq. (3.129) gauges the bath’s dispersion relation by impos-
ing the following form for the (rescaled) spectral density of the reservoir modes (Hofer
et al. 2017)

κ(ω) := 2π
M∑

k=1

γ2
kδ(ω − ωk) = κ(ω0)

(
ω

ω0

)α
Θ(ωc − ω) , (3.130)

with Θ(x) being the Heaviside step function (α = 1, α > 1 and α < 1 being associ-
ated to the Ohmic, super-Ohmic, and sub-Ohmic scenarios respectively (Leggett et al.
1987)). Finally we shall assume the joint S+E system to be initialized into a factorized
state

ρSE(0) = ρS(0)⊗ ρE(0) , (3.131)

where the bath is in a thermal state of temperature 1/β > 0:

ρE(0) :=
e−βHE

tr[e−βHE ]
= ρ1(β)⊗ · · · ⊗ ρM(β) , (3.132)

ρk(β) :=
e−βωkc

†
kck

tr[e−βωkc
†
kck ]

. (3.133)

3.3.2 Approximated equations for S

In this section we review the different ME approaches one can use to effectively de-
scribe the evolution of the system S by integrating away the degrees of freedom of the
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environment E . We shall start our presentation by introducing the coarse-grained regu-
larized version of the Redfield equation [Sec. 3.1 (Farina and Giovannetti 2019)], which
includes the global ME as a special case. We then introduce the local ME approach and
finally discuss the phenomenological approach which employs convex combinations of
local and global ME solutions. Since most of the derivations of the above expressions
are discussed in details elsewhere (see e.g. Breuer et al. (2002)) here we just give an
overview of the methods involved and refer the interested reader to the Sec. 3.3.4.1 for
further details.

3.3.2.1 From CP-Redfield ME to global ME

The starting point of this section is the Redfield equation which one obtains by ex-
pressing the dynamical evolution of the joint system in the interaction picture, and en-
forcing the Born and, then, the Markov approximations (see Sec. 2.1.2). As described
in Sec. 2.1.2.1, the Born approximation assumes that the S − E coupling is weak in
such a way that the state of E is negligibly influenced by the presence of S, while
the Markov approximations assume invariance of the interaction-picture system state
over time-scales of order τE, the last being the time over which E loses the information
coming from S and can be estimated from the width of the bath correlation functions
(see Sec. 3.3.4.4). As emphasized in Sec. 3.2, the Redfield equation does not ensure
completely positive evolutions and in certain cases neither positive evolution, hence
preventing one from framing the obtained results with the probabilistic interpretation
of quantum mechanics. To cure this issue we refer to the version of the partial sec-
ular approximation described in Sec. 3.1 (Farina and Giovannetti 2019). Performing
a coarse-grain averaging on the Redfield equation in interaction picture over a time
interval ∆t that is much larger than the typical time scale of the system state in inter-
action picture, is a way to appropriately smooth the non-secular terms responsible of
the non-positive character, even in a tight way. As schematically pictured in Fig. 3.5,
by moving the parameter ∆t along the interval [0,∞[ the reported technique is also
capable to formally connect the original Redfield equation (∆t = 0) and the full secular
approximation (∆t = ∞) in a continuous way. Expressed in Schrödinger picture, the
coarse-grained Redfield equation for the evolution of ρS for fixed coarse-graining time
∆t, reads

ρ̇S(t) = −i
[
HS +H

(∆t)
LS , ρS(t)

]
−

(3.134)

+
∑

σ,σ′=±
S

(∆t)
σσ′

{
γ

(1)
σσ′

(
γ†σρS(t)γσ′ −

1

2

[
γσ′γ

†
σ, ρS(t)

]
+

)

+γ
(2)
σ′σ

(
γσ′ρS(t)γ†σ −

1

2

[
γ†σγσ′ , ρS(t)

]
+

)}
,

58



where hereafter we shall use the symbols
[
· · · , · · ·

]
∓

to represent commutator and
anti-commutator relations, γ± are the eigenmode operators ofHS introduced in Eq. (3.124)
and

H
(∆t)
LS :=

∑

σ,σ′=±
S

(∆t)
σσ′ (η

(1)
σσ′ + η

(2)
σ′σ)γ†σγσ′ , (3.135)

is the so called Lamb-shift Hamiltonian correction term. As indicated by the notation,
the dependence of Eq. (3.134) upon the coarse-graining time interval ∆t is carried out
by the tensor S(∆t)

σσ′ of components

S
(∆t)
σσ′ := sinc

(
(σ−σ′)g∆t

2

)
(3.136)

= δσσ′ + (1− δσσ′) sinc(g∆t) ,

with sinc(x) := sin(x)/x being the cardinal sinus. The functional dependence of the
right-hand-side of (3.134) upon the bath temperature is instead carried on by the tensors
γ

(i)
σσ′ and η(i)

σσ′ . Specifically, for σ, σ′ ∈ {+,−} and i ∈ {1, 2}, these elements fulfill the
constraints

γ
(i)
σσ′ :=

γ
(i)
σσ + γ

(i)
σ′σ′

2
+ i(η(i)

σσ − η(i)
σ′σ′) , (3.137)

η
(i)
σσ′ := −iγ

(i)
σσ − γ(i)

σ′σ′

4
+
η

(i)
σσ + η

(i)
σ′σ′

2
, (3.138)

which allow one to express all of them in terms of their diagonal (σ = σ′) components

γ(1)
σσ :=

1

2
κ(ωσ) Nb(ωσ) , (3.139)

γ(2)
σσ :=

1

2
κ(ωσ) [1 +Nb(ωσ)] , (3.140)

η(1)
σσ :=

1

2
−
∫ ∞

0

dε
1

2π

κ(ε)Nb(ε)
ε− ωσ

, (3.141)

η(2)
σσ := −1

2
−
∫ ∞

0

dε
1

2π

κ(ε)[1 +Nb(ε)]
ε− ωσ

, (3.142)

with κ(ω) the spectral density of the reservoir defined in Eq. (3.130), the symbol −
∫

meaning the principal value of the integral and with

Nb(ωk) := Tr[c†kckρk(β)] =
1

eβωk − 1
(3.143)

being the Bose-Einstein factor of the mode k of the thermal bath.
For g∆t → 0, S(∆t)

σσ′ assumes constant value 1 for all σ and σ′: this corresponds
to the pathological case of the (uncorrected) Redfield equation in which both the diag-
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Fig. 3.6 Plot of the quantities in the right hand side of the inequality (3.144) for i = 1
(black full line) and i = 2 (red dashed line) as function of the bath temperature 1/β
which we parametrize through Nb(ω0) = 1/(eβω0 − 1). The blue region represents
the values of |S(∆t)

+− | which satisfy the inequality (3.144) ensuring completely positive
dynamics of the coarse-grained Redfield equation (3.134). We chose the parameters g =
0.3ω0, ωc = 3ω0, and α = 1 (Ohmic spectral density regime). Notice the logarithmic
scale on the abscissa.

onal (secular) and the off-diagonal (non-secular) σ, σ′ terms of the right-hand-side of
Eq. (3.134) contribute at the same level to the dynamical evolution of ρS(t) paving the
way to unwanted non-positive effects. As g∆t increases the off-diagonal component
S

(∆t)
+− = sinc(g∆t) acts as the smoothing factor for the non-secular (σ 6= σ′) part of the

ME, which gets progressively depressed as the coarse-grain time interval ∆t gets com-
parable or even larger than the inverse of the energy scale g of the system. Following
Sec. 3.1 (Farina and Giovannetti 2019), one can then show that the model admits a (fi-
nite) threshold value for ∆t above which Eq. (3.134) acquires the explicit GKSL form
that is necessary and sufficient to ensure complete positivity of the resulting evolution.
Specifically, as discussed in details in Sec. 3.3.4.2, such threshold is triggered by the
inequality

|S(∆t)
+− | ≤ min

i∈{1,2}

√
γ

(i)
++γ

(i)
−−

|γ(i)
+−|2

. (3.144)

In the following, the equation (3.134) at positivity threshold, i.e. with the choice of
S

(∆t)
+− tightly saturating the bound of Eq. (3.144), will be called CP-Redfield.

A numerical study of the condition (3.144) for some selected values of the system
parameters is presented in Fig. 3.6. This plot makes it clear that the low temperature
regime (Nb(ω0) � 1) constraints one to take very small values of |S(∆t)

+− | to guarantee
the completely positive character of the evolution (Farina and Giovannetti 2019), while
just a tiny correction is needed at high temperatures (similarly to Fig. 3.3). These facts
are in full agreement with the observation (Suárez et al. 1992, Cheng and Silbey 2005,
Ishizaki and Fleming 2009) that the non-positivity character of the Redfield equation
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is enhanced at low temperature as a signature of the deviations from the Born-Markov
assumptions underlying it (Hartmann and Strunz 2020). We stress that, in this context,
non-positivity is originated by the multipartite nature of S: indeed, as g → 0, the
right-hand side of Eq. (3.144) tends to 1 and consequently the non-positivity of the
Redfield ME disappears in this limit. Notice finally that irrespectively from the value
of g, Eq. (3.144) is trivially fulfilled in the asymptotic g∆t → ∞ limit where |S(∆t)

+− |
approaches the value zero leading to

S
(∞)
σσ′ = δσσ′ . (3.145)

This condition identifies the full secular approximation of Eq. (3.134) that transforms
such equation into the global ME of the model which, for the sake of completeness, we
report here in its explicit form

ρ̇S(t) = −i
[
HS +H

(glob)
LS , ρS(t)

]
−

(3.146)

+
∑

σ=±

{1

2
κ(ωσ)Nb(ωσ)

(
γ†σρS(t)γσ −

1

2

[
γσγ

†
σ, ρS(t)

]
+

)

+
1

2
κ(ωσ)[1 +Nb(ωσ)]

(
γσρS(t)γ†σ −

1

2

[
γ†σγσ, ρS(t)

]
+

)}
,

with

H
(glob)
LS := H

(∞)
LS =

∑

σ=±
δωσγ

†
σγσ , (3.147)

δωσ := η(1)
σσ + η(2)

σσ =
1

4π
−
∫ ∞

0

dε
κ(ε)

ωσ − ε
, (3.148)

being the secular component of the Lamb-shift term (Hofer et al. 2017).
We remark that, while generally for the coarse-grained Redfield ME (3.134) the Lamb
shift and the Hamiltonian components do not commute, i.e.

[
HS, H

(∆t)
LS

]
− = 2g(η

(1)
+− + η

(2)
−+)S

(∆t)
+− γ−γ

†
+ − h.c. , (3.149)

in the global (secular) limit one reaches
[
HS, H

(∞)
LS

]
− = 0, hence offering an example

for the observation we made in Eqs. (3.52) and (3.53).
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3.3.2.2 Local ME

The local ME for S is a GKSL equation characterized by Lindblad operators which act
locally on the mode A. Explicitly it is given by

ρ̇S(t) = −i
[
HS +H

(loc)
LS , ρS(t)

]
−

(3.150)

+κ(ω0)Nb(ω0)
(
a†ρS(t)a− 1

2

[
aa†, ρS(t)

]
+

)

+κ(ω0)(1 +Nb(ω0))
(
aρS(t)a† − 1

2

[
a†a, ρS(t)

]
+

)
,

with κ(ω0) andNb(ω0) defined as in the previous section and where now the Lamb-shift
term is expressed as a modification of the local Hamiltonian of the A mode only, i.e.

H
(loc)
LS := δωA a

†a , (3.151)

δωA :=
1

2π
−
∫ ∞

0

dω
κ(ω)

ω0 − ω
. (3.152)

Effectively Eq. (3.150) can be obtained starting from a Hamiltonian model for the full
compound S + E where one initially completely neglects the presence of the B mode,
generally enforces the same approximations that lead one to (3.146) (i.e. the Born,
Markov, and full secular approximation), and finally introduces B and its coupling with
A as an additive Hamiltonian contribution in the resulting expression. More formally as
shown e.g. in Ref. Hofer et al. (2017), Eq. (3.150) can be derived in the weak internal
coupling limit gτE � 1 (τE being the bath memory time scale, see Sec. 3.3.4.4 for
details) which allows one to treat the interaction between A and B as a perturbative
correction with respect to the direct A-E coupling – see Sec. 3.3.4.1 for more on this.

3.3.2.3 Convex mixing of local and global solutions

As we shall explicitly see in the next section (see Eq. (3.161)), the main advantage of-
fered by the global ME (3.146) is that it provides an accurate description of the steady
state of S at least in the infinitesimally small S+E coupling regime where on pure ther-
modynamic considerations one expects independent thermalization of the eigenmodes
γ± of the system. On the contrary the steady state predicted by the local ME (3.150) is
wrong (even if increasingly accurate as g/ω0 → 0) because it implies the thermaliza-
tion of the subsystems A and B regardless of the presence of the internal coupling HS,g.
Conversely, the local ME has the quality to predict Rabi oscillations between A and B
at shorter time scales, that are completely neglected when adopting the global ME.

In view of these observations (see, however, Schaller and Brandes (2008) for an-
other strategy for melting different behaviors as function of time), a reasonable way
of keeping local effects during the transient still maintaining an accurate steady state
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solution is to adopt an appropriate phenomenological ansatz describing the evolution of
S in terms of quantum trajectories that interpolate between the solutions ρ(glob)

S (t) and
ρ

(loc)
S (t) of the global and local ME, see Fig. 3.5. The simplest of these construction is

provided by the following time-dependent mixture:

ρ
(mix)
S (t) := e−Gtρ(loc)

S (t) +
(
1− e−Gt

)
ρ

(glob)
S (t) . (3.153)

In this expression G > 0 is an effective rate, whose inverse fixes the time scale of the
problem that determines when global thermalization effects start dominating the system
dynamics. Accordingly, Eq. (3.153) allows us to keep local effects for short time scales
t . G−1 and the correct thermalization of the eigenmodes of the system at longer time
scales t � G−1. The above formula can be interpreted as follows: the environment
needs a finite amount of time to become aware of the presence of the part B because
of its short time correlations (Markovian hypothesis). The specific value of G is a free
variable in this model and works as a fitting parameter: its value can be even estimated
quite roughly because of the relatively large time interval at intermediate time scales
where the global and local approximations look alike (more on this later). It is finally
worth observing that from the complete positivity properties of both the solutions of
the global and local ME, it follows that (3.153) also fulfills such requirement (indeed
convex combinations of completely positive transformations are also completely pos-
itive). On the contrary, at variance with the original expressions (3.146) and (3.150),
as well as the CP-Redfield expression of (3.134), Eq. (3.153) will typically exhibit a
non Markovian character and will not be possible to present it in the form of a GKSL
differential equation. This property is a direct consequence of the fact that the set of
Markovian evolutions is not closed under convex combinations (Wolf et al. 2008).

3.3.3 Dynamics

In the study of the approximated equations introduced in the previous section, as well
as for their comparison with the exact solution of the S + E dynamics, an important
simplification arises from the choice we made in fixing the initial condition of E . Indeed
thanks to Eqs. (3.132), (3.133) the resulting CP-Redfield, global, and local MEs, happen
to be Gaussian processes (Serafini 2017) which admit complete characterization only
in terms of the first and second moments of the field operators γ± (notice that while the
mixture (3.153) does not fit into the set of Gaussian processes – formally speaking it
belongs to the convex-hull of such set – we can still resort to the above simplification by
exploiting the fact that ρ(mix)

S (t) is explicitly given by the sum of the global and local ME
solutions). Accordingly in studying the dynamics of our approximated schemes we can
just focus on the functions 〈γσ〉(t) := Tr[γσρS(t)], 〈γσγσ′〉(t) := Tr[γσγσ′ρS(t)], and
〈γ†σγσ′〉(t) := Tr[γ†σγσ′ρS(t)] whose temporal dependence can be determined by solving
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a restricted set of coupled linear differential equations. We also observe that since the
full Hamiltonian (3.126) conserves the total number of excitations in the S + E model,
coupling between excitations conserving and non-conserving moments are prevented
(Cattaneo et al. 2020) yielding further simplification in the analysis.

Having clarified these points, in what follows we shall focus on the special case
where the input state of S is fixed assuming that both A and B are initialized in the
ground states of their local Hamiltonians, i.e.

ρS(0) = |0〉A 〈0| ⊗ |0〉B 〈0| , (3.154)

with |0〉 representing the zero Fock state of the corresponding mode. Under these condi-
tions the input state is Gaussian (Serafini 2017) and, evolved under CP-Redfield, global,
local and the exact dynamics, will remain Gaussian at all times. Furthermore all the first
order moments and all the non-excitation-conserving second order terms exactly nullify,
i.e.

〈γσ〉(t) = 0 , 〈γσγσ′〉(t) = 0 , (3.155)

leaving only a restricted set of equations to be explicitly integrated. For the case of the
coarse-grained Redfield equation (3.134) we get

d

dt
〈γ†+γ+〉(t) = −1

2
κ(ω+)[〈γ†+γ+〉(t)−Nb(ω+)] (3.156)

+ S
(∆t)
+− ×

{
2 Im

(
(η

(1)
+− + η

(2)
−+)〈γ−γ†+〉(t)

)
+

Re
[
(γ

(1)
+− − γ(2)

−+)〈γ−γ†+〉(t)
]}

,

d

dt
〈γ†−γ−〉(t) = −1

2
κ(ω−)[〈γ†−γ−〉(t)−Nb(ω−)]

+ S
(∆t)
+− ×

{
− 2 Im

(
(η

(1)
+− + η

(2)
−+)〈γ−γ†+〉(t)

)
+

Re
[
(γ

(1)
+− − γ(2)

−+)〈γ−γ†+〉(t)
]}

,

d

dt
〈γ−γ†+〉(t) = {i(ω+ + δω+ − ω− − δω−)− 1

4
[κ(ω+) + κ(ω−)]}〈γ−γ†+〉(t)

+ S
(∆t)
+− ×

{
i(η

(1)
−+ + η

(2)
+−)

[
〈γ†−γ−〉(t)− 〈γ†+γ+〉(t)

]
+ γ

(1)
−+ +

1

2
(γ

(1)
−+ − γ(2)

+−)
[
〈γ†−γ−〉(t) + 〈γ†+γ+〉(t)

]}
,

with initial values

〈γ†+γ+〉(0) = 〈γ†−γ−〉(0) = 〈γ−γ†+〉(0) = 0 (3.157)
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imposed by (3.154). In particular in the case of full secular approximation (S(∆t)
+− = 0)

the above set of equations become

d

dt
〈γ†+γ+〉(t) = −1

2
κ(ω+)[〈γ†+γ+〉(t)−Nb(ω+)] , (3.158)

d

dt
〈γ†−γ−〉(t) = −1

2
κ(ω−)[〈γ†−γ−〉(t)−Nb(ω−)] ,

d

dt
〈γ−γ†+〉(t) = {i(ω+ + δω+ − ω− − δω−)− 1

4
[κ(ω+) + κ(ω−)]}〈γ−γ†+〉(t) ,

which yield the evolution of the moments for the global ME (3.146). Similar consid-
erations hold true for the local ME (3.150). In this case following Refs. Hofer et al.
(2017), Farina, Andolina, Mari, Polini and Giovannetti (2019) we get

(3.159)
d

dt
〈γ†+γ+〉(t) = −1

2
κ(ω0)[〈γ†+γ+〉(t)−Nb(ω0) + Re〈γ−γ†+〉(t)] + δωA Im〈γ−γ†+〉(t) ,

d

dt
〈γ†−γ−〉(t) = −1

2
κ(ω0)[〈γ†−γ−〉(t)−Nb(ω0) + Re〈γ−γ†+〉(t)]− δωA Im〈γ−γ†+〉(t) ,

d

dt
〈γ−γ†+〉(t) = [i2g − 1

2
κ(ω0)]〈γ−γ†+〉(t) +

κ(ω0)

2
{Nb(ω0)

−1

2
[〈γ†+γ+〉(t) + 〈γ†−γ−〉(t)]}+ i

δωA

2
[〈γ†−γ−〉(t)− 〈γ†+γ+〉(t)] ,

which, for a direct comparison with Eq. (3.158), we express here in terms of the eigen-
modes γ±.

3.3.3.1 Evolution of the second moments

A closer look at Eq. (3.158) reveals that in this case one has that for large enough t we
get

〈γ†±γ±〉
∣∣∣
(glob)

(∞) = N (ω±) , 〈γ−γ†+〉
∣∣∣
(glob)

(∞) = 0 . (3.160)

This enlightens the fact that, as anticipated at the beginning of Sec. 3.3.2.3, the global
ME (3.146) imposes S to asymptotically converge toward the Gibbs thermal state

ρ
(glob)
S (∞) :=

e−βHS

tr[e−βHS ]
, (3.161)

in agreement with what one would expect from purely thermodynamics considerations
under weak-coupling conditions for the system-environment interactions. On the con-
trary the steady state predicted by the local ME is wrong (even if increasingly accurate
as g/ω0 → 0) because it implies the thermalization of the subsystems A and B regard-
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Fig. 3.7 Second order moments evaluated using the global ME (a), the local ME (b), the
convex mixture of Eq. (3.153) with G = 0.4κ(ω0) (c), compared with the ones predicted
by the exact dynamics. As indicated by the legend continuous lines in the plots represent
the quantities computed by solving the exact S + E Hamiltonian model (3.126); dotted
and dashed lines instead refer to the approximated solutions associated with global, lo-
cal and mixed approaches. Each panel contains two plots corresponding each to shorter
(left) and longer (right) time scales. As clear from the right plot of panel (a), the global
ME approach provides a pretty good agreement with the exact solutions at large time
scales, while fails in the short time domain. Exactly the opposite occurs for the local
ME approach presented in panel (b): here a good agreement with the exact solutions
is found in the short time domain (left plot), while differences arise in the large time
domain (right plot). The convex mixture approach (3.166) finally appears to be able to
maintain a good agreement with the exact results at all times. In all the plots we used
Nb(ω0) = 10 (corresponding to 1/β ≈ 10.5ω0), g = 0.3ω0, κ(ω0) = 0.04ω0, ωc = 3ω0,
α = 1.
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less of the presence of the internal coupling HS,g. Indeed from Eq. (3.159) we get

〈γ†±γ±〉
∣∣∣
(loc)

(∞) = Nb(ω0) , 〈γ−γ†+〉
∣∣∣
(loc)

(∞) = 0 (3.162)

or equivalently

〈a†a〉
∣∣∣
(loc)

(∞) = 〈b†b〉
∣∣∣
(loc)

(∞) = Nb(ω0) , (3.163)

〈ab†〉
∣∣∣
(loc)

(∞) = 0 , (3.164)

which identifies

ρ
(loc)
S (∞) :=

e−βHS,0

tr[e−βHS,0 ]
, (3.165)

as the new fixed point for the dynamical evolution (see Walls (1970), Cresser (1992) for
pioneering discussions on the topic and Sec. 3.3.4.5 for further details). The discrep-
ancy between the above expressions and Eqs. (3.160), (3.161) is even accentuated in the
low temperature regime βω0 � 1, where in particular the ratio Nb(ω−)/Nb(ω0) ' eβg

can explode exponentially.
The situation gets reversed at shorter time scales. Here the local ME correctly

presents coherent energy exchanges between A and B which instead the global ap-
proach completely neglects. Indeed from Eq. (3.158) it follows that the global ME
predicts Im[〈ab†〉(t)] = 0, the term being responsible of the Rabi oscillations between
A and B (see Hofer et al. (2017), Farina, Andolina, Mari, Polini and Giovannetti (2019)
and Sec. 3.3.4.5 for details). The local ME on the contrary – when the Lamb-shift cor-
rection can be neglected – gives Re[〈ab†〉(t)] = 0, the latter being proportional to the
average internal interaction energy 〈HS,g〉.

The above observations are confirmed by the numerical study we present in the
remaining of the section (see however also the material presented in Sec. 3.3.4.5). In
particular, in panels (a) and (b) of Fig. 3.7 the temporal evolution of the second order
moments obtained by solving Eq. (3.158) and (3.159) are compared with the exact
values of the corresponding quantities obtained by numerical integration of the exact
S + E Hamiltonian model along the lines detailed in Sec. 3.3.4.4. In panel (c) of such
figure we also present the results obtained by using the effective model of Sec. 3.3.2.3,
where according to Eq. (3.153) the expectation values of the relevant quantities are
computed as

〈γ†σγσ′〉
∣∣∣
(mix)

(t) = e−Gt〈γ†σγσ′〉
∣∣∣
(loc)

(t) (3.166)

+
(
1− e−Gt

)
〈γ†σγσ′〉

∣∣∣
(glob)

(t) ,
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with 〈γ†σγσ′〉
∣∣∣
(loc)

(t) and 〈γ†σγσ′〉
∣∣∣
(glob)

(t) representing the solutions of Eq. (3.159) and

Eq. (3.158) respectively. In our analysis the system parameters have been set in order to
enforce S − E weak-coupling conditions (ω0, ω± � κ(ω0)) to make sure that the long
term prediction (3.161) of the global ME provides a proper description of the system
dynamics. By the same token, the temperature of the bath has been fixed to be relatively
high, i.e. 1/β ≈ 10.5ω0, to avoid to enhance correlation effects between the bath and the
system which are not included in the Born and Markov approximations needed to derive
both the global and the local ME (Hovhannisyan et al. 2020) (a study of the impact of
low temperature effects on the S − E correlations is presented in Sec. 3.3.4.4). Finally,
regarding the value of the phenomenological parameter G entering in (3.166), we set it
equal to 0.4κ(ω0) finding a relatively good agreement with the exact data at all times.

The convex combination (3.153) is not the only way of keeping the best from both
the local and the global approximations. Indeed, by making a step back, one can con-
sider the coarse-grained Redfield equations (3.156) once that the pathology related to
their non-positivity has been cured. A detailed study of the performances of this ap-
proach is presented in Fig. 3.8. Here, for the same values of the parameters used
in Fig. 3.7, in panel (a) we exhibit the plots associated with the CP-Redfield equa-
tion obtained by fixing S

(∆t)
+− in such a way to saturate the positivity bound (3.144),

i.e. S
(∆t)
+− = 0.989. As in the case of panel (c) of Fig. 3.7, we notice that CP-

Redfield is in a good agreement with the exact data both at long and short time scales.
As a check in panel (b) of Fig. 3.8 we also present the (uncorrected) Redfield equa-
tion obtained by setting in Eq. (3.156) ∆t = 0, corresponding to have S(∆t)

+− = 1

which for the system parameters we choose gives a clear violation of the positivity
bound (3.144). Interestingly enough, despite the fact that the resulting equation does
not guarantee complete positivity of the associated evolution, we notice that also in this
case one has an apparent good agreement with the exact results for all times (see also
Purkayastha et al. (2016) where the effectiveness of the uncorrected Redfield equation
is pointed out in other setups). In particular, both CP-Redfield and Redfield equations
appear to be able to capture a non-weak coupling correction to the asymptotic value
of 2Re〈γ−γ†+〉(t) = 〈a†a〉(t) − 〈b†b〉(t) , an effect that is present in the exact model
due to the fact that the subsystem A remains slightly correlated with the bath degrees
of freedom, but which is not present when adopting neither global, local, or mixed ap-
proximations (see Fig. 3.9). An evidence of this can be obtained by observing that from
Eq. (3.156) we have

2Re〈γ−γ†+〉(∞) =
S

(∆t)
+−

ω+−ω− (3.167)

×−
∫ ∞

0

dε
κ(ε)

2π

(
Nb(ε)−Nb(ω+)

ε−ω+
− Nb(ε)−Nb(ω−)

ε−ω−

)
+O[κ(ω0)2]
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Fig. 3.8 Comparison between second order moments evaluated using the CP-Redfield
(a) and Redfield (b) with the ones predicted by the exact dynamics. As in the case of
Fig. 3.7 continuous lines represent the quantities computed by solving the exact S + E
Hamiltonian model (3.126) while dotted and dashed lines instead refer to the approxi-
mated solutions. Also each panel contains two plots corresponding each to shorter (left)
and longer (right) time scales. In all the plots we used Nb(ω0) = 10 (corresponding to
1/β ≈ 10.5ω0), g = 0.3ω0, κ(ω0) = 0.04ω0, ωc = 3ω0, α = 1 – same as those used in
Fig. 3.7. The value of ∆t used to define CP-Redfield is such that S(∆t)

+− = 0.989 , which
ensures the saturation of the inequality (3.144).
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Fig. 3.9 Plot of the local excitation gap 〈a†a〉(t) − 〈b†b〉(t) for the different approxi-
mation methods and for the exact dynamics. Global ME (blue dashed line), local ME
(red dotted line), and convex mixture approach (cyan dot-dashed-dashed line) predict
an asymptotically zero value for this gap. On the contrary, Redfield (green dot-dashed
line) and CP-Redfield (black dot-dot-dashed line) give an asymptotic non-zero value
for such quantity in agreement with the exact dynamics (magenta full and thicker line).
In all the plots we used Nb(ω0) = 10 (corresponding to 1/β ≈ 10.5ω0), g = 0.3ω0,
κ(ω0) = 0.04ω0, ωc = 3ω0, α = 1 – same as those used in Figs. 3.7, 3.8. The value of
∆t used to define CP-Redfield is such that S(∆t)

+− = 0.989 , which ensures the saturation
of the inequality (3.144).

which is exactly null for the global ME (S(∆t)
+− = 0), but which is different from zero

(and in good agreement with the exact result) both for the uncorrected Redfield equation
(S(∆t)

+− = 1) and CP-Redfield (S(∆t)
+− = 0.989).

Despite the apparent success of the uncorrected Redfield equation reported above, a
clear signature of its non-positivity can still be spotted by looking at a special functional
of the second order moments of the model, i.e. the quantity

λc(t) :=
1

2
min{ eigenvalues[ΓS(t) + iΞS] } . (3.168)

In the above definition ΓS(t) and ΞS are respectively the covariance matrix and the
symplectic form of the two-mode system S. Expressed in terms of the eigenoperators
γ± their elements are given by

[ΓS(t)]ij :=

〈[
ΓΓΓi − 〈ΓΓΓi〉(t),ΓΓΓ†j − 〈ΓΓΓ†j〉(t)

]
+

〉
(t), (3.169)
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Fig. 3.10 Plots of the quantity λc(t) of Eq. (3.168) for different approximation methods
and using the exact result, at shorter (a) and longer (b) time scales. In all the plots we
used Nb(ω0) = 10 (corresponding to 1/β ≈ 10.5ω0), g = 0.3ω0, κ(ω0) = 0.04ω0,
ωc = 3ω0, α = 1 – same as those used in Figs. 3.7-3.9. The value of ∆t used to define
CP-Redfield is such that S(∆t)

+− = 0.989 , which saturates the inequality (3.144).

and

[ΞS]ij := −i
〈[

ΓΓΓi,ΓΓΓ
†
j

]
−

〉
(t) = −i




1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1



, (3.170)

with ΓΓΓi being the i-th component of the operator vector ΓΓΓ := (γ+, γ
†
+, γ−, γ

†
−)T . In

particular due to the choice of the input state we made in Eq. (3.154), we get

(3.171)

ΓS(t) =




2〈γ†+γ+〉(t) + 1 0 2〈γ−γ†+〉(t)∗ 0

0 2〈γ†+γ+〉(t) + 1 0 2〈γ−γ†+〉(t)
2〈γ−γ†+〉(t) 0 2〈γ†−γ−〉(t) + 1 0

0 2〈γ−γ†+〉(t)∗ 0 2〈γ†−γ−〉(t) + 1




,

and hence

(3.172)

ΓS(t) + iΞS

2
=




〈γ†+γ+〉(t) + 1 0 〈γ−γ†+〉(t)∗ 0

0 〈γ†+γ+〉(t) 0 〈γ−γ†+〉(t)
〈γ−γ†+〉(t) 0 〈γ†−γ−〉(t) + 1 0

0 〈γ−γ†+〉(t)∗ 0 〈γ†−γ−〉(t)




,
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Fig. 3.11 Fidelity between the solutions ρ(loc)
S (t) and ρ(glob)

S (t) of the local and global
MEs associated with the initial condition (3.154) at shorter (left) and longer (right) time
scales. In the plots we usedNb(ω0) = 10 (corresponding to 1/β ≈ 10.5ω0), g = 0.3ω0,
κ(ω0) = 0.04ω0, ωc = 3ω0, α = 1 – same as those of Figs. 3.7-3.10.

(3.173)

λc(t) =
1

2
{〈γ†+γ+〉(t) + 〈γ†−γ−〉(t)−

√
[〈γ†+γ+〉(t)− 〈γ†−γ−〉(t)]2 + 4|〈γ−γ†+〉(t)|2} .

When evaluated on a proper state of the system, the Robertson-Schrödinger uncertainty
relation (Serafini 2017) forces the spectrum of the matrix (3.172) to be non-negative –
see Sec. 3.3.4.3 for details. Accordingly when ρS(t) is positive semi-definite (i.e. it is
a physical state) one must have λc(t) ≥ 0. The temporal evolution of λc(t) is reported
in Fig. 3.10 for the various approximation methods and for the exact dynamics: one
notice that while global, local, and CP-Redfield always complies with the positivity
requirement, the uncorrected Redfield equation exhibit negative values of λc(t) at short
time scales. Analytically, this can be seen from the short time scale trend of λc(t) ,
which from Eq. (3.156) can be determined as

λc(δt) '
(
γ

(1)
−−+γ

(1)
++

2

)[
1−

√
1 + 4

(
S

(∆t)
+−

2 − γ
(1)
++γ

(1)
−−

|γ(1)
+−|2

) |γ(1)
+−|2

(γ
(1)
−−+γ

(1)
++)2

]
δt , (3.174)

which tightly gives λc(δt) ≥ 0 if and only if the complete positivity constraint (3.144)
is fulfilled. Notice also that while none of the approximated methods are able to follow
the whole exact behaviour of λc(t), CP-Redfield and global provide good agreement in
the long time limit, while CP-Redfield and local correctly predict λ̇c(0) = 0.

3.3.3.2 Fidelity Comparison

In this section we further discuss the difference between the various approximation
methods, as well as their relation with the exact solution, evaluating the temporal evolu-
tion of the Uhlmann fidelity (Nielsen and Chuang 2010) between the associated density
matrices of S. We remind that given ρ(1)

S and ρ(2)
S two quantum states of the system their
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fidelity is defined as the positive functional

F(ρ
(1)
S , ρ

(2)
S ) :=

∥∥∥∥
√
ρ

(1)
S

√
ρ

(2)
S

∥∥∥∥
1

, (3.175)

with ‖Θ‖1 := Tr[
√

Θ†Θ] being the trace norm of the operator Θ. This quantity provides
a bona-fide estimation of how close the two density matrices are, getting its maximum
value 1 when ρ(1)

S = ρ
(2)
S , and achieving zero value instead when the support of ρ(1)

S

and ρ
(2)
S are orthogonal, i.e. when they are perfectly distinguishable. In the case of

two-mode Gaussian states (Serafini 2017) with null first order moments, a relatively
simple closed expression for F(ρ

(1)
S , ρ

(2)
S ) is known in terms of the covariance matrices

of the two density matrices (Marian and Marian 2012, González et al. 2017, Hofer et al.
2017). Specifically, in the eigenmode representation, one has

F2(ρ
(1)
S , ρ

(2)
S ) =

1
√

b +
√

c−
√

(
√

b +
√

c)2 − a
, (3.176)

with

a := 2−4 det[Γ
(1)
S + Γ

(2)
S ] , (3.177)

b := 2−4 det[ΞS Γ
(1)
S ΞS Γ

(2)
S − 14] ,

c := 2−4 det[Γ
(1)
S + iΞS] det[Γ

(2)
S + iΞS] ,

where Γ
(1)
S , Γ

(2)
S are the covariance matrices of ρ(1)

S and ρ(2)
S defined in (3.169), and with

ΞS the symplectic form given in Eq. (3.170) – see final part of Sec. 3.3.4.3 for details.
In what follows we shall make extensive use of the identity (3.176) thanks to the fact
that for the input state (3.154) we are considering in our analysis, the density matrix
of S remains Gaussian at all times when evolved under global, local, CP-Redfield ME,
as well as under the exact integration of the full S + E Hamiltonian model. The same
property unfortunately does not hold for the convex mixture (3.153) which is explic-
itly non-Gaussian (indeed it is a convex combination of Gaussian states). In this case
hence the result of Marian and Marian (2012) can not be directly applied to compute
F
(
ρ

(mix)
S (t), ρ

(exact)
S (t)

)
. Still the concavity property (Nielsen and Chuang 2010) of F

can be invoked to compute the following lower bound

F
(
ρ

(mix)
S (t), ρ

(exact)
S (t)

)
≥ e−GtF

(
ρ

(loc)
S (t), ρ

(exact)
S (t)

)

+(1− e−Gt)F
(
ρ

(glob)
S (t), ρ

(exact)
S (t)

)
, (3.178)

with the right-hand-side being provided by Gaussian terms. Finally the non-positivity of
the (uncorrected) Redfield equation also gives rise to problems in the evaluation of the
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associated fidelity (as a matter of fact, in this case the quantity F
(
ρ

(red)
S (t), ρ

(exact)
S (t)

)

is simply ill defined). Aware of this fundamental limitation, but also of the fact that the
departure from the positivity condition of the solution ρ(red)

S (t) of the Redfield equation
is small, in our analysis we decided to present the real part of F2

(
ρ

(red)
S (t), ρ

(exact)
S (t)

)
.

To begin, in Fig. 3.11 we present the value of F2(ρ
(loc)
S (t), ρ

(glob)
S (t)): as clear from

the plot, this quantity is sensibly different from 1 at short and at long time scales (con-
firming the observation of the previous section) while it is ∼ 1 at intermediate time
scales. In Fig. 3.12 instead we proceed with the comparison of the approximate solu-
tions with the exact one. The reported plots confirm that the convex combination of
the local and global solutions (3.153) is an effective ansatz to approximate the system
evolution, giving a (lower) bound for the fidelity computed as in Eq. (3.178) that is
close to 1 both at short and at long time scales. On the same footing we find the CP-
Redfield equation which, still remaining positive, brings all the main qualities of the
(full) Redfield ME. For completeness, in Fig. 3.13 we report two situations in which the
global ME and the local ME work extremely bad respectively. In Panel (a) we consider
weaker internal coupling g such that the local ME gives a satisfying result for the whole
dynamics while the inadequacy of the global ME during the transient is accentuated; In
Panel (b) we decrease instead the temperature accentuating the inadequacy of the local
ME in the steady prediction. In both the Panels we report the curve corresponding to
the CP-Redfield approximation. The last follows either the local or the global curve
depending on which one performs better in the two instances.

3.3.4 Technical details

3.3.4.1 Derivation of the coarse-grained Redfield and local ME

In this section we provide details about the derivations of the coarse-grained Redfield
(3.134) and local (3.150) MEs. For (3.134) we make use of Refs. Hofer et al. (2017),
Breuer et al. (2002) and of the method to correct the non-positivity of the Redfield
equation given in Sec. 3.1 [Ref. Farina and Giovannetti (2019)], while for (3.150) we
follow the approach of Ref. Hofer et al. (2017).

Expressed in interaction picture the evolution of the joint state of S + E induced by
the Hamiltonian (3.126) is given by the Liouville-von Neumann equation

˙̃ρSE(t) = −i
[
H̃1(t), ρ̃SE(t)

]
−
, (3.179)

where given U0(t) := ei(HS+HE)t we have

H̃1(t) := U0(t)H1U
†
0(t) = a†(t)C(t) + h.c. (3.180)
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Fig. 3.12 Fidelity between approximated system states and the exact system state.
Different curves refer to the kind of approximation (see the legend): Redfield, green
dot-dashed line (using Re(F2)); CP-Redfield, black dot-dot-dashed line; local, red dot-
ted line; global, blue dashed line; convex mixture of Eq. (3.153) with G = 0.4κ(ω0),
magenta full line (using the lower bound given in the right-hand-side of Eq. (3.178)).
The four panels differ just for the axes scales. In the plots we used Nb(ω0) = 10 (cor-
responding to 1/β ≈ 10.5ω0), g = 0.3ω0, κ(ω0) = 0.04ω0, ωc = 3ω0, α = 1 – same as
those of Figs. 3.7-3.11.
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Fig. 3.13 Fidelity between approximated system states and the exact system state for
(a) Nb(ω0) = 10, g = 0.04ω0 (weaker internal coupling) and (b) Nb(ω0) = 0.01 (low
temperature regime), g = 0.3ω0. As explained in the legend the black dot-dot-dashed
lines refer to the CP-Redfield solutions (S(∆t)

+− = 0.9998 in (a) and S(∆t)
+− = 0.4813 in

(b)); the red dotted lines to the local ME solutions, and finally the blue dashed lines to
the global ME solutions. In all the plots we assumed α = 1 (Ohmic spectral density
regime) and kept κ(ω0) = 0.04ω0, ωc = 3ω0. Notice finally that in (b) the Fidelity
is generally higher (see the different ordinate scales in (a) and (b)). This is due to the
choice of the ground-state (3.154) as initial state, which implies that at low temperature
such initial condition is just weakly modified.

with a†(t) := eiHS,gta†e−iHS,gt and C(t) :=
∑

k γkcke
−i(ωk−ω0)t. Tracing out the envi-

ronment degrees of freedom, Eq. (3.179) can be written as

˙̃ρS(t) = −iTrE

[
H̃1(t), ρ̃SE(0)

]
−
−
∫ t

0

TrE

[
H̃1(t),

[
H̃1(t′), ρ̃SE(t′)

]
−

]
−
dt′ .(3.181)

We assume now weak system-environment coupling such that the environment stays in
its own Gibbs state (3.132) (invariant in interaction picture) for all the system dynamics
and the SE state can be approximated by the tensor product

ρ̃SE(t) ' ρ̃S(t)⊗ ρE(0). (3.182)

Equation (3.182) means that the environment, being a macroscopic object, can be
considered insensitive to the interaction with the system (Born approximation, see
Sec. 2.1.2.1 and Breuer et al. (2002)). On the contrary the system state is affected by
the coupling with the environment. Being the first moments null over a thermal state,
the first commutator in (3.181) is zero and, by inserting the tensor product (3.182), such
equation becomes

˙̃ρS(t) '
∫ t

0

dt′c(1)(t− t′)
(
a†(t′)ρ̃S(t′)a(t)− a(t)a†(t′)ρ̃S(t′)

)
+ (3.183)

c(2)(t− t′)
(
a(t′)ρ̃S(t′)a†(t)− a†(t)a(t′)ρ̃S(t′)

)
+ h.c. ,
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where c(1)(τ) and c(2)(τ) are bath correlation functions defined as

c(1)(τ) :=
〈
C†(τ)C

〉
=
∑

k

γ2
kNb(ωk)ei(ωk−ω0)τ , (3.184)

c(2)(τ) :=
〈
C(τ)C†

〉
=
∑

k

γ2
k[1 +Nb(ωk)]e−i(ωk−ω0)τ .

Next step is the Markovian assumption (see Sec. 2.1.2.1) τE � δt, where δt is the
typical time scale of the state in interaction picture and τE is the bath memory time
scale, i.e. the characteristic width of the bath correlation functions (3.184). Such time
scale separation allows to replace in Eq. (3.183) the upper integration bound with +∞
and to neglect the τ := t−t′ dependence of the state ρ̃S, leading to the Redfield equation
(interaction picture):

˙̃ρS(t) '
∫ ∞

0

dτ
[
c(1)(τ)

(
a†(t− τ)ρ̃S(t)a(t)− a(t)a†(t− τ)ρ̃S(t)

)
(3.185)

+c(2)(τ)
(
a(t− τ)ρ̃S(t)a†(t)− a†(t)a(t− τ)ρ̃S(t)

) ]
+ h.c. .

As described in Ref. Hofer et al. (2017), if the bath correlation functions are narrow
enough with respect to the internal coupling time scale, i.e. gτE � 1, in Eq. (3.185)
one can approximate a(t − τ) ≈ a(t) obtaining the interaction picture version of the
local ME (3.150), which is in Lindblad form without the need of any secular approx-
imation. Alternatively, passing to the eigenmode basis of Eq. (3.124), Eq. (3.185) can
be equivalently written as

˙̃ρS(t) =
1

2

∑

σ,σ′

[
Ω(1)
σ ei(σ−σ

′)gt
(
γ†σρ̃S(t)γσ′ − γσ′γ†σρ̃S(t)

)

+Ω
(2)
σ′ e

i(σ−σ′)gt (γσ′ ρ̃S(t)γ†σ − γ†σγσ′ ρ̃S(t)
) ]

+ h.c.

(3.186)

where

Ω(1)
σ :=

∫ ∞

0

dτc(1)(τ)e−iσgτ , (3.187)

Ω
(2)
σ′ :=

∫ ∞

0

dτc(2)(τ)eiσ
′gτ . (3.188)

Last step is to perform a coarse-grain average on Eq. (3.186) over a time interval ∆t�
δt, which amounts in applying the following substitution

ei(σ−σ
′)gt −→ 1

∆t

∫ t+∆t/2

t−∆t/2

ds ei(σ−σ
′)gs = ei(σ−σ

′)gtsinc

(
(σ − σ′)g∆t

2

)
, (3.189)
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without affecting the system state in interaction picture. Equation (3.134) is eventually
obtained by passing to the Schrödinger picture. Indeed the Lamb-shift and the dissipator
coefficients of Eqs. (3.137) and (3.138) are related to the quantities Ω

(i)
σ as

γ
(i)
σσ′ =

1

2
(Ω(i)

σ + Ω
(i)
σ′
∗
) , (3.190)

η
(i)
σσ′ =

1

4i
(Ω(i)

σ − Ω
(i)
σ′
∗
) . (3.191)

3.3.4.2 Completely positive map requirement for the coarse-grained Redfield equation

To discuss the complete positivity condition for the coarse-grained Redfield equation
let us observe that its dissipator is given by the last two lines in the right-hand-side of
Eq. (3.134). Following Sec. 3.1 [Ref. Farina and Giovannetti (2019)] we write them as

∑

i,σ,i′,σ′

γi′σ′,iσ

(
A†i′,σ′ρS(t)Ai,σ −

1

2

[
Ai,σA†i′,σ′ , ρS(t)

]
+

)
,

withA1,σ = γσ,A2,σ = γ†σ, and γi′σ′,iσ being the elements of the 4×4 hermitian matrix

γI,J =




γ
(1)
++ γ

(1)
+−S

(∆t)
+− 0 0

γ
(1)
−+S

(∆t)
+− γ

(1)
−− 0 0

0 0 γ
(2)
++ γ

(2)
+−S

(∆t)
+−

0 0 γ
(2)
−+S

(∆t)
+− γ

(2)
−−



. (3.192)

Complete positivity of the evolution described by Eq. (3.134) can now be guaranteed
by imposing the positiveness of the spectrum of (3.192), a condition which by explicit
diagonalization leads to Eq. (3.144).

3.3.4.3 Covariance matrices

Expressed in terms of the system canonical coordinates

xA := (a+ a†)/
√

2 , pA := (a− a†)/(
√

2i) ,

xB := (b+ b†)/
√

2 , pB := (b− b†)/(
√

2i) , (3.193)

the covariance matrix ΣS associated with the quantum state ρS of the two-mode system
S is defined as the 4× 4 real hermitian matrix

[ΣS]αβ :=

〈[
rrrS,α − 〈rrrS,α〉, rrrS,β − 〈rrrS,β〉

]
+

〉
, (3.194)
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where as usual we adopt the shorthand notation 〈· · · 〉 := Tr[· · · ρS], and where rrrS,α is
the α-th component of the operator vector rrrS := (xA, pA, xB, pB)T . In this notation the
symplectic form of the system is defined by the matrix ΩS of elements

ΩS :=




0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0




, (3.195)

which embodies the canonical commutation rules of the model via the identity 〈[rrrS,α, rrrS,β]−〉 =

i[ΩS]αβ . From the Robertson-Schrödinger uncertainty relation (Serafini 2017), it hence
follows that for all choices of ρS we must have that the matrix ΣS + iΩS is non-negative
or equivalently that the following inequality must hold

min{ eigenvalues[ΣS + iΩS] } ≥ 0 . (3.196)

Equation (3.196) is at the origin of the study we presented in Fig. 3.10. We notice
indeed that introducing the unitary matrix

V :=
1

2




1 1 1 1

−i i −i i

1 1 −1 −1

−i i i −i




, (3.197)

from Eq. (3.124) the following identity holds,

rrrS = VΓΓΓS , (3.198)

with ΓΓΓS the operator vector introduced in Eq. (3.169), which in turn implies

ΣS = VΓSV† , ΩS = VΞSV† , (3.199)

with ΞS as in Eq. (3.170). Accordingly, we get

ΣS + iΩS = V (ΓS + iΞS)V† , (3.200)

which finally allows us to translate Eq. (3.196) into the positivity condition for the
quantity λc(t) introduced in Eq (3.168).

Notice finally that the unitary relations (3.199) are also at the origin of Eqs. (3.176)
and (3.177) which we derived from Marian and Marian (2012), González et al. (2017),
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Hofer et al. (2017) via the identities

det[Γ
(1)
S + Γ

(2)
S ] = det[Σ

(1)
S + Σ

(2)
S ] ,

det[ΞS Γ
(1)
S ΞS Γ

(2)
S − 14] = det[ΩS Σ

(1)
S ΩS Σ

(2)
S − 14] ,

det[Γ
(j)
S + iΞS] = det[Σ

(j)
S + iΩS] , (3.201)

where, for j = 1, 2, Γ
(j)
S and Σ

(j)
S represent the covariance matrices (3.169) and (3.194)

of the matrices ρ(j)
S .

3.3.4.4 The exact model

In this section, following a procedure similar to Rivas et al. (2010), we discuss how to
explicitly solve the exact dynamics of the Hamiltonian model for the joint system S+E .

Passing to the canonical variables of the full model, i.e. introducing the operators
xA = (a+ a†)/

√
2, pA = (a− a†)/(

√
2i), xB = (b+ b†)/

√
2, pB = (b− b†)/(

√
2i) as

in Eq. (3.193) and xk = (ck + c†k)/
√

2, pk = (ck − c†k)/(
√

2i), the Hamiltonian (3.126)
of S + E can be written as

H =
1

2
rrrTHrrr + const . (3.202)

The vector operator rrr is the generalization of rrrS introduced in Sec. 3.3.4.3 that now
contains the canonical coordinates of all the S + E modes, i.e.

rrr = (xA, pA, xB, pB, x1, p1, ..., xM , pM)T , (3.203)

andH is a real symmetric (2M + 4)× (2M + 4) matrix, having non null elements only
on the diagonal and on the first two rows and on the first two columns. This is because
only the sub-system A is microscopically attached to the thermal bath:

H =




ωA 0 g 0 γ1 0 . . . γM 0

0 ωA 0 g 0 γ1 . . . 0 γM

g 0 ωB 0 0 0 . . . 0 0

0 g 0 ωB 0 0 . . . 0 0

γ1 0 0 0 ω1 0 . . . 0 0

0 γ1 0 0 0 ω1 . . . 0 0
...

...
...

...
...

... . . . ...
...

γM 0 0 0 0 0 . . . ωM 0

0 γM 0 0 0 0 . . . 0 ωM




. (3.204)

Exploiting the above construction the expectation value of rrr can now be shown to evolve
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in time as (Serafini 2017)

〈rrr(t)〉 := Tr[rrrρSE(t)] = eΩHt〈rrr(0)〉 , (3.205)

where Ω is the symplectic form of the entire model, i.e. the (2M + 4) × (2M + 4)

matrix

Ω :=
M+2⊕

i=1

(
0 1

−1 0

)
, (3.206)

whose elements embody the canonical commutation rules of the entire S + E system
via the identity 〈[rrrα, rrrβ]−〉 = iΩαβ . Similarly the covariance matrix of elements

Σαβ(t) := Tr
[[
rrrα − 〈rrrα(t)〉, rrrβ − 〈rrrβ(t)〉

]
+
ρSE(t)

]

=

〈[
rrrα(t)− 〈rrrα(t)〉, rrrβ(t)− 〈rrrβ(t)〉

]
+

〉
, (3.207)

can be shown to evolve as
Σ(t) = eΩHtΣ(0)eHΩT t . (3.208)

For future reference it is worth stressing that the 4 × 4 principal minor of the matrix
Σ(t) (i.e. the sub-matrix obtained from the latter by taking the upper left 4 × 4 part)
corresponds to the covariance matrix ΣS(t) of the S system alone, whose elements can
be formally expressed as in Eq. (3.194).

In the evaluation of Eqs. (3.205), (3.208) one can resort to the exact diagonalization
of the Hermitian matrixM defined as

M := iΩH . (3.209)

Calling (g1, . . . , g2M+4) the eigenvalues ofM and

Vαβ := [ggg(β)]α (3.210)

the unitary matrix whose columns are the normalized eigenvectors ggg(α) corresponding
to the eigenvalues gα, the diagonal form of the matrixM is obtained as:

diag(g1, . . . , g2M+4) = V †MV . (3.211)

Accordingly, we can now rewrite Eqs. (3.205), (3.208) in the form

〈rrr(t)〉 = V E−(t)V †〈rrr(0)〉
Σ(t) = V E−(t)V †Σ(0)V E+(t)V † , (3.212)
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Fig. 3.14 Plot of the modulus of the bath correlation functions c(1)(τ) and c(2)(τ) (units
ω2

0) defined in Eq. (3.184) that provide estimations of the recurrence time (a) and of the
memory time (b). In Panel (a) we take M = 50 oscillators in the thermal bath. We
chose the parameters Nb(ω0) = 10, κ(ω0) = 0.04ω0, ωc = 3ω0 and α = 1 .

with

E∓(t) = diag
(
e∓ig1t, . . . , e∓ig2M+4t

)
. (3.213)

In summary, the exact dynamics is obtained thanks to the numerical diagonalization of
the matrixM of Eq. (3.209) and by performing the matrix multiplications in Eq. (3.212).
Regarding the initial conditions, we observe that in the case of the input state we have
selected in Eqs. (3.131), (3.132) and (3.154), the initial covariance matrix reads as

Σ(0) =




12 000 000 . . . 000

000 12 000 . . . 000

000 000 [2Nb(ω1) + 1]12 . . . 000
...

...
... . . . ...

000 000 000 . . . [2Nb(ωM) + 1]12




(3.214)

with 12 being the 2×2 identity matrix andNb(ωk) being the Bose-Einstein mean occu-
pation numbers introduced in Eq. (3.143). Regarding the first order moments instead,
since 〈rrr(0)〉 = 0 the evolution law of Eq. (3.205) leads to 〈rrr(t)〉 = 0 for all t ≥ 0.

Memory and recurrence time scales When resorting to numerical methods in solv-
ing the exact Hamiltonian model one should be aware of the fact that since it involves
a finite number of parties (i.e. the system modes A and B and the M environmental
modes), it will be characterized by a recurrence time scale Trec that, due to the various
approximations involved in their derivation, leave no trace in the corresponding ME ex-
pressions. An estimation of such quantity can be retrieved directly from the periodicity
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Fig. 3.15 Time evolution of the average components of the Hamiltonian (3.126) ob-
tained by numerically solving the exact dynamics of the full S + E model in the high
temperature regimeNb(ω0) = 10 (a), and in the low temperature regimeNb(ω0) = 0.01
(b). As indicated by the legend the red dashed line corresponds to the local energy of
mode A; the blue dot-dashed line to the local energy term of mode B; the green dotted
line to the Hamiltonian A-B coupling term; and finally the black full line to the Hamil-
tonian S − E coupling term. Notice that as the temperature decreases the incidence
of the system-environment coupling gets relatively more consistent: this is explicitly
shown in panel (c) where we report the ratio 〈H1〉/〈HS〉 for the two regimes. In all the
plots we assumed g = 0.3ω0, κ(ω0) = 0.04ω0, ωc = 3ω0, and α = 1.
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of the correlation functions of Eq. (3.184) which leads us to (see Panel (a) of Fig. 3.14):

Trec = 2πM/ωc . (3.215)

The choice of the parameters ωc = 3ω0 and M ≈ 400 (Hofer et al. 2017) ensures that
the discretization does not play any role in the time window we have considered for all
the plots.

The width of the correlation functions (3.184) also plays an important role in the
model: it yields the time τE which takes for the information that emerges from the sys-
tem to get lost into the environment and never coming back (Breuer et al. 2002). Such
time scale can’t be resolved by any approximation we have discussed so far, because of
the Markovian assumption which is present in all of them. The estimation of this time
scale is given by the half width at half maximum (see Panel (b) of Fig. 3.14) of |c(1)(τ)|
and |c(2)(τ)|. For Nb(ω0) = 10 we get

τE ≈ 3.8/ωc . (3.216)

Low temperature effects It is well known that in the low temperature regime correla-
tion effects between the bath and the system tent to arise, challenging the Born approx-
imation used in the derivation of the Markovian MEs (Hovhannisyan et al. 2020). An
evidence of this fact is presented in Fig. 3.15 where the time evolution of the average
components of the Hamiltonian (3.126) are presented for two different choices of the
parameter 1/β.

3.3.4.5 On the thermalization of the system eigenmodes

We show here the dual counterparts of the moments reported in Figs. 3.7 and 3.8 in
the basis of the eigenmodes (3.124), making clearer when these eigenmodes reach the
correct thermalization or not depending on the implemented approximation. The second
order moments in the a, b basis and the ones in the γ+, γ− basis are related each other
as

1

2
(〈a†a〉 − 〈b†b〉) = Re〈γ−γ†+〉 , (3.217)

Im〈ab†〉 = Im〈γ−γ†+〉 , (3.218)

Re〈ab†〉 =
1

2
(〈γ†+γ+〉 − 〈γ†−γ−〉) , (3.219)

〈a†a〉+ 〈b†b〉 = 〈γ†+γ+〉+ 〈γ†−γ−〉 . (3.220)

The steady state (3.161) is what one expects from thermodynamics. It implies 〈γ†±γ±〉(∞) =

N (ω±) , 〈γ−γ†+〉(∞) = 0 . This result is captured by applying the global approximation
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(see Eqs. (3.158)), which under the initial conditions (3.157) gives

〈γ−γ†+〉
∣∣∣
(glob)

(t) = 0, (3.221)

〈γ†±γ±〉
∣∣∣
(glob)

(t) = Nb(ω±)
(

1− e− 1
2
κ(ω±)t

)
. (3.222)

On the other hand, the local approximation fails just about the steady state properties.
As discussed in Farina, Andolina, Mari, Polini and Giovannetti (2019), under the same
initial conditions and when the Lamb-shift correction δωA can be neglected, the local
ME (see Eqs. (3.159)) leads to

Re〈γ−γ†+〉
∣∣∣
(loc)

(t) = Nb(ω0)
e−κ(ω0)t/2

ε
κ(ω0) sin(εt/2) ,

Im〈γ−γ†+〉
∣∣∣
(loc)

(t) = 4Nb(ω0)κ(ω0)g
e−κ(ω0)t/2

ε2
[1− cos(εt/2)] ,

〈γ†±γ±〉
∣∣∣
(loc)

(t) = Nb(ω0){1− e−κ(ω0)t/2

ε2
[
16g2 − κ(ω0)2 cos(εt/2)

]
} ,

with
ε :=

√
(4g)2 − κ(ω0)2. (3.223)

Using the relations (3.217)-(3.220), the above equations imply in the a, b basis:

〈a†a〉
∣∣∣
(loc)

(t) = Nb(ω0){1− e
−κ(ω0)t/2

ε2
[
16g2 − κ(ω0)ε sin(εt/2)− κ(ω0)2 cos(εt/2)

]
} ,

(3.224)

〈b†b〉
∣∣∣
(loc)

(t) = Nb(ω0){1− e
−κ(ω0)t/2

ε2
[
16g2 + κ(ω0)ε sin(εt/2)− κ(ω0)2 cos(εt/2)

]
} ,

(3.225)

Im〈ab†〉
∣∣∣
(loc)

(t) = 4Nb(ω0)κ(ω0)g
e−κ(ω0)t/2

ε2
[1− cos(εt/2)] ,

Re〈ab†〉
∣∣∣
(loc)

(t) = 0 ,

i.e.

〈HS,g〉
∣∣∣
(loc)

(t) = 0 . (3.226)
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Furthermore, Eqs. (3.159) can be written in the a, b basis as

d

dt
〈a†a〉(t) = −2gIm〈ab†〉(t) + κ(ω0)[Nb(ω0)− 〈a†a〉(t)] ,
d

dt
〈b†b〉(t) = 2gIm〈ab†〉(t) ,

d

dt
〈ab†〉(t) = ig[〈a†a〉(t)− 〈b†b〉(t)]− 1

2
κ(ω0)〈ab†〉(t)− i δωA 〈ab†〉(t) .

The last equations are known results (Hofer et al. 2017, Farina, Andolina, Mari, Polini
and Giovannetti 2019) that explicitly show how in the local approach having non-
null Im〈ab†〉(t) (and hence Im〈γ−γ†+〉(t) for (3.218)) is required for the description of
the dynamical coherent energy exchanges between A and B. Moreover, Eq. (3.217)
shows that the real part of 〈γ−γ†+〉(t) controls the difference between 〈a†a〉(t) and
〈b†b〉(t). Both the terms Im〈γ−γ†+〉(t) and Re〈γ−γ†+〉(t) are well approximated by
the local ME and completely neglected by the global ME, see Panels (a) and (b) of
Fig. 3.16. The fact that the global ME predicts 〈γ−γ†+〉(t) = 0 is a consequence
of the cancellation of the oscillating terms in Eq. (3.186) via indiscriminate coarse-
grain averaging. This decouples equations (3.156), generating (3.158). In Fig. 3.16
we plot the moments in the eigenmodes basis, comparing the results obtained by the
global, local, convex mixture, Redfield, CP-Redfield approximations with the ones
predicted by the exact dynamics, by including this time also the Lamb-shift contri-
butions. In the local case for instance the Lambshift implies a tiny splitting between
〈γ†+γ+〉

∣∣∣
(loc)

(t) and 〈γ†−γ−〉
∣∣∣
(loc)

(t) at short time scales (connected to a small but non-

vanishing Re〈ab†〉
∣∣∣
(loc)

(t), see Eq. (3.219)). Again, the convex mixture of the local and

global approximations of Eq. (3.153) and the CP-Redfield equation yield a very good
approximation either of the transient than of the steady state properties.
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Fig. 3.16 Comparison of second order moments in the eigenmodes basis evaluated us-
ing the global (a), local (b), convex mixture (c), Redfield (d), CP-Redfield (e) approx-
imations with the ones predicted by the exact dynamics. As indicated by the legend
continuous lines in the plots represent the quantities computed by solving the exact
S + E Hamiltonian model (3.126); dotted and dashed lines instead refer to the approx-
imated solutions. Each panel contains two plots corresponding each to shorter (left)
and longer (right) time scales. We chose the parameters Nb(ω0) = 10, g = 0.3ω0,
κ(ω0) = 0.04ω0, ωc = 3ω0 and α = 1 .
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3.4 Conclusions

Starting from the Redfield equation the secular approximation is a standard procedure
to ensure completely positive dynamics and is equivalent to an infinitely large choice
of the coarse grain time scale. On the contrary the partial implementation of the sec-
ular approximation keeps such time scale finite. Using a general formalism we found
sufficient conditions to guarantee the complete positivity of the Redfield equation, in-
cluding a tight bound on the coarse-grain time interval. Furthermore we explicitly show
that non-secular terms can determine non-commutation between the Hamiltonian and
the dissipative parts of the generator. We thus provided an example by specifying the
analysis to a qubit interacting with a bosonic thermal environment via dipole-like inter-
action.
The corrected Redfield equation was also tested in the context of multipartite Markovian
open quantum systems, where it is discussed in literature 6 whether the local dissipator
or the global one (i.e. the one obtained via the secular approximation) is more suitable
to effectively reproduce the system dynamics. In Sec. 3.3 we have treated a case where
the system is composed of two interacting harmonic oscillators A and B, with only A
interacting with a thermal bath - collection of other harmonic oscillators - and we have
analyzed the equilibration process of the system initially in the ground state with the fi-
nite bath temperature. We have shown that the “completely positive Redfield” equation
- i.e. the cured version of the Redfield equation by means of coarse-grain averaging as
illustrated in Sec. 3.1 - and an appropriate time-dependent convex mixture of the local
and global solutions - see Eq. (3.153) - give rise to the most accurate approximations of
the exact system dynamics, both during the time transient and for the steady state prop-
erties, going beyond the pure local and global approximations. The convex mixture of
the local and global channels has been introduced phenomenologically for allowing at
the same time coherent local energy exchange at short time scales between A and B
and the steady state expected from the thermodynamics at long time scales, i.e. the
global Gibbsian state. Future developments on this route may concern the search of a
microscopic derivation of this (non-Markovian) quantum channel.

6See, e.g. , Hofer et al. (2017), Rivas et al. (2010), González et al. (2017), Cattaneo et al. (2019).
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CHAPTER 4

Quantum batteries: an open system approach

The local master equation approach described in the previous Chapter will be used to
schematize the energy charging of an open quantum battery.
Building up from the observations of Sec. 2.2, we introduce a further generalization of
the quantum battery/quantum charger model by explicitly embedding the whole system
into an external environment whose action is effectively described in terms of a master
equation. Accordingly, and at variance with previous proposals Ferraro et al. (2018),
Andolina et al. (2018, 2019) which deal with models which are intrinsically closed, in
our approach the energy meant to be transferred to the quantum battery is not assumed
to sit initially on the charger A. Instead, it is dynamically injected into the system thanks
to the presence of an external source E, either via thermalization or via coherent driving
induced by external control, the ancilla A merely playing the role of an effective trans-
ducer capable to convert such inherently classical inputs into “quantum signals” for B.
In this context, for different implementations of the A and B systems, we explicitly
compute the total energy transferred to the battery and the fraction of it that turns out
to be useful in terms of extractable work (a topic treated in Sec. 2.2.1). Specifically,
we are interested in studying the different ways in which the thermal and coherent driv-
ing mechanisms contribute to the process, enlightening possible cross-talking effects
between the two. Interestingly enough, while typically the presence of thermal pump-
ing tends to reduce the fraction of stored energy which can be extracted as work, in
some implementations which exhibit effective nonlinearities in the coupling between A
and B, we find evidences of a positive interplay which, for an assigned intensity of the
coherent driving force, tends to increase the performances of the quantum battery, an
effect which is reminding us of the noise assisted energy transfer observed in quantum
biology (Mohseni et al. 2008, Plenio and Huelga 2008).
This Chapter is organized as follows. In Sec. 4.1 we introduce the general model and
the figures of merit we are going to analyze. Sec. 4.2 reports the results we obtained
when both the charger A and the battery B are harmonic oscillators, while Sec. 4.3
deals instead with the two-qubit scenario. Finally, results for the hybrid case where A
is a harmonic oscillator and B is a qubit are reported in Sec. 4.4. A brief summary and
our main conclusions are reported in Sec. 4.5.
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Fig. 4.1 Pictorial representation of the model analyzed in this work. Here, energy from
the external world E flows into the ancillary system A, which acts as a classical-to-
quantum transducer for B (the quantum battery). The subsystems A and B interact via a
time-dependent coupling, which is switched on during the charging interval [0, τ ] only.
In our model, the E-A coupling may either occur via the interaction with a thermal
source (represented by the yellow lamp), or coherently via the modulation of the local
Hamiltonian of A (represented by the green laser), or both.

We stress that all the models we discuss here are experimentally realizable and of
current interest. Coupling two qubits is now-day routine in circuit quantum electrody-
namics experiments, where superconducting qubits can be put in interaction via lumped
circuit elements. In particular the coupling is capacitive in case of charge and phase
qubits, and inductive for flux qubits allowing nearest-neighbour interaction between
qubits and the intesity of the coupling can be modified via detuning techniques (Ma-
jer et al. 2007). The case of two quantum harmonic oscillators can be realized either
by coupling an optical cavity with a mechanical resonator via radiation pressure (Ver-
hagen et al. 2012, Mari et al. 2015) or using cavity array schemes implemented via
transmission line resonators (Liao et al. 2010, Peropadre et al. 2013, Tomadin and
Fazio 2010). Finally the case of a qubit coupled with a quantum harmonic oscillator is
an open version of the well known Jaynes-Cummings model (Jaynes and Cummings
1963) which has a plethora of experimental realizations (Haroche 2013, Schoelkopf
and Girvin 2008, Chakraborty 1999).
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4.1 General Theory

The model we are interested in studying consists in three separate elements: a quantum
battery B, an external energy supply E, and an ancillary quantum system A that acts as
mediator between the other two elements, see Fig. 4.1. Alternatively, one can interpret
A as that part of a structured global bath AE, which is directly interacting with B, E
representing instead the nonlocal degrees of freedom of the environment.

4.1.1 Charging protocol

In our treatment we shall represent A and B as actual quantum systems, whose dynam-
ics is determined by a Markovian master equation which effectively accounts for the
presence of E. We thus describe the temporal evolution of the density matrix ρAB(t) of
the AB system as:

ρ̇AB(t) = −i [HA +HB, ρAB(t)]− + λ(t)LAB(t)[ρAB(t)] , (4.1)

where
[
· · · , · · ·

]
− denotes the usual commutator. In the right-hand side of Eq. (4.1),

the first term contains the free Hamiltonian of the system composed by the local (time-
independent) contributions of A and B which, for sake of convenience, we shall assume
to have zero ground-state energy. The second term, instead, is explicitly time dependent
and refers to the AB interactions and to the charging terms of the model induced by the
coupling between the external energy supply E and A. Here λ(t) is a dimensionless
function equal to 1 for t ∈ [0, τ [ and 0 elsewhere, which we use for turning “on/off”
such contributions, τ representing the charging time of the protocol. LAB(t) is instead
a GKSL super-operator that contains both coherent and dissipative contributions. Ex-
plicitly, we write it as

LAB(t)[· · · ] ≡ −i
[
∆HA(t) +H

(1)
AB, · · ·

]
−

+DA[· · · ] , (4.2)

where H(1)
AB is the interaction Hamiltonian between the charger and the battery, ∆HA(t)

is a local modulation of the energy of A which is externally driven by classical fields
that may inject energy into the system, and, finally,DA[· · · ] implies a purely dissipative
contribution that acts locally on A, accounting for the local thermalization of A induced
by a bosonic bath at temperature 1/β (no direct dissipation being assumed for B). In
this scenario we assume that for t < 0, when A and B do not interact and are isolated
from the rest, they are prepared in the ground state of the local terms HA and HB,
respectively, i.e.

ρAB(t ≤ 0) = |0〉 〈0|A ⊗ |0〉 〈0|B , (4.3)
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a configuration representing the discharged battery. At time t = 0, A is attached to
the external supply E by switching on the dissipator DA and (possibly) the modulation
∆HA(t), while A and B begin to interact with each other. In the time window [0, τ [ part
of the energy coming from the outside, and going only to A at short timescales, flows
to B thanks to the non-zero internal coupling term H

(1)
AB, which we assume to commute

with the free Hamiltonian HA +HB,

[
H

(1)
AB, HA +HB

]
−

= 0 . (4.4)

At the end of the charging process, namely at time τ when λ(t) returns to zero, we
isolate again the system and turn the interaction between A and B off. The battery is
now in a charged state and ready for the energy extraction.

4.1.2 Figures of merit

In what follows, we shall analyze the quantities we defined in Eqs. (2.39) and (2.40) of
Sec. 2.2, i.e. the stored energy EB(τ) and the ergotropy EB(τ) of the quantum battery,
as well as their ratio

RB(τ) ≡ EB(τ)/EB(τ) . (4.5)

Furthermore, we will be interested to their associated mean charging powers

PB(τ) ≡ EB(τ)/τ , (4.6)

PB(τ) ≡ EB(τ)/τ , (4.7)

for different choices of A and B systems and for different energy-injection mechanisms.
For all these models we shall enforce resonant conditions of the local energies of A and
B, as well as for the driving term ∆HA(t). This will allow us to simplify the analysis by
solving the ME in the time interval [0, τ ] in the interaction picture representation where
instead of ρAB(t) one focuses on its rotated version

ρ̃AB(t) ≡ ei(HA+HB)tρAB(t)e−i(HA+HB)t , (4.8)

for which Eq. (4.1) for t ∈ [0, τ [ reduces to

˙̃ρAB(t) = LAB[ρ̃AB(t)] . (4.9)

Here, LAB is as in (4.2) but with ∆HA(t) replaced by the constant term ∆HA ≡
∆HA(t = 0).
Most importantly, under the above conditions, both the mean energy (2.39) and the
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ergotropy (2.40) of B will be then directly computed on the reduced density matrix
ρ̃B(τ) = trA[ρ̃AB(τ)] of ρ̃AB(τ). Indeed, the latter differs from ρB(τ) by a unitary rota-
tion induced byHB, i.e. ρ̃B(τ) = eiHBτρB(τ)e−iHBτ . Accordingly, we have tr[HBρ̃B(τ)] =

tr[HBρB(τ)] = EB(τ) while, including eiHBτ into the minimization over UB, we have

min
UB

tr
[
HBUBρ̃B(τ)U †B

]
= min

UB

tr
[
HBUBρB(τ)U †B

]
,

which, via Eq. (2.40) [or, equivalently, using the result (2.49)], ensures that ρ̃B(τ) and
ρB(τ) possess the same ergotropy value.

4.1.3 Implementations

In the following we study the cases where A is allowed to be either a qubit or a harmonic
oscillator, the same holding for B. Hence, having in mind to study different combina-
tions of qubit and harmonic oscillators for the charger-battery compound, we write in a
unified form the several contribution in Eq. (4.1) and (4.2) as

HA = ω0ζ
†
AζA , HB = ω0ζ

†
BζB , (4.10)

∆HA(t) = F
(
e−iω0tζ†A + eiω0tζA

)
,

H
(1)
AB = g

(
ζAζ

†
B + ζ†AζB

)
.

Here, ζA and ζB (ζ†A and ζ†A) are generalized annihilation (creation) operators of the A
and B systems, respectively. Accordingly, depending on the implementation, ζA = σ−A
(qubit annihilation operator, cfr. Eq. (2.54)) when A is a qubit and ζA = a (bosonic
annihilation operator) when A is a QHO and, analogously, ζB = σ−B when B is a qubit
and ζB = b when B is a QHO (a and b same as in Sec. 3.3).
Furthermore, A and B are assumed to be resonant (again, as in Sec. 3.3), with ω0 being
the fundamental frequency of the local terms. The quantities g and F are coupling
constants, gauging, respectively, the AB coupling and the driving field acting on A.
Regarding the dissipator we take [cfr. Eq. (3.150)]

DA[· · · ] := κ (1 +Nb)D[ζA][· · · ] + κ NbD[ζ†A][· · · ] , (4.11)

with D[ζA][· · · ] := ζA · · · ζ†A −
1

2

[
ζ†AζA, · · ·

]
+
,

where the rate κ fixes the timescale of the dissipation process,
[
· · · , · · ·

]
+

is the anti-
commutator symbol, and Nb := 1/[exp (βω0)− 1] is the mean number of bath quanta
at frequency ω0 and temperature 1/β. With this choice, the first term on the right-hand
side of Eq. (4.11) describes energy flow from the system into the environment with
spontaneous and stimulated emission terms, whereas the second one describes energy
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flow from the environment into the system.
Finally, under the above conditions and in the interaction picture defined in Eq. (4.8),
Eq. (4.1) becomes

˙̃ρAB(t) = −i
[
g
(
ζAζ

†
B + ζ†AζB

)
+ F (ζ†A + ζA) , ρ̃AB(t)

]
−

+

κ(1 +Nb)D[ζA] [ρ̃AB(t)] + κNbD[ζ†A] [ρ̃AB(t)] . (4.12)
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4.2 Two-harmonic-oscillator model

We begin by considering the case in which both the charger A and the quantum battery
B are described by resonant harmonic oscillators. In agreement with the formalism
introduced in Sec. 4.1.3, we hence set in Eqs. (4.10)-(4.12), ζA = a and ζB = b, which
identify the annihilation operators of the bosonic modes A and B, respectively. The
associated interaction-picture-representation ME (4.12) admits explicit integration. In
particular, since the generator on the right-hand side of Eq. (4.12) is quadratic in the field
modes, the dynamics preserves the Gaussian character (Serafini 2017) of the ground
state (4.3), which in this case is the zero Fock state of the A and B modes. Accordingly,
a complete characterization of ρ̃AB(t) can be obtained by simply determining the first
and second moments of the field operators. Specifically, using 〈x〉 ≡ tr[xρ̃AB(t)] to
indicate the average value of a generic operator x on ρ̃AB(t), for the first moments we
have

˙〈a〉 = −i(g〈b〉+ F )− κ

2
〈a〉 , (4.13)

˙〈b〉 = −ig〈a〉 ,

while, for the second moments,

˙〈ab†〉 = i
[
g(〈a†a〉 − 〈b†b〉)− F 〈b〉∗

]
− κ

2
〈ab†〉 , (4.14)

˙〈b†b〉 = 2g Im〈ab†〉 ,
˙〈a†a〉 = −2 Im[g〈ab†〉+ F 〈a〉]− κ〈a†a〉+ κNb ,

and

˙〈a2〉 = −2i(g 〈ab〉+ F 〈a〉)− κ
〈
a2
〉
, (4.15)

˙〈ab〉 = −i[g(
〈
a2
〉

+
〈
b2
〉
) + F 〈b〉]− κ

2
〈ab〉 ,

˙〈b2〉 = −2ig 〈ab〉 .

The above differential equations, together with the initial conditions associated with
(4.3),

〈a†a〉
∣∣
t=0

= 〈b†b〉
∣∣
t=0

= 〈a2〉
∣∣
t=0

= 〈b2〉
∣∣
t=0

= 0 , (4.16)

〈a〉
∣∣
t=0

= 〈b〉
∣∣∣
t=0

= 〈ab†〉
∣∣
t=0

= 〈ab〉
∣∣
t=0

= 0 ,

are what we need to solve for the determination of the figures of merit introduced in
Sec. 4.1.2.
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In particular, EB(τ) simply corresponds to ω0〈b†b〉|t=τ , while for the ergotropy we
can use the fact that ρ̃B(τ) is Gaussian so that we can apply the results of Sec. 2.2.3 to
express it as

EB(τ) = ω0

(
〈
b†b
〉
−
√
D − 1

2

)∣∣∣∣∣
t=τ

, (4.17)

D :=
(
1 + 2

〈
b†b
〉
− 2 |〈b〉|2

)2 − 4
∣∣〈b2

〉
− 〈b〉2

∣∣2 .

4.2.1 Analysis

The model exhibits an effective decoupling between thermal and coherent pumping,
which is reflected by the fact that, for assigned values ofNb and F , each of the functions
〈x〉 entering in Eqs. (4.13)–(4.15) can be expressed as the sum of two contributions,

〈x〉|F,Nb = 〈x〉|F=0,Nb + 〈x〉|F,Nb=0 , (4.18)

with 〈x〉|F=0,Nb describing the solution of the differential equations in the absence of
the coherent driving terms (i.e. with F = 0), and with 〈x〉|F,Nb=0 describing instead the
solution of the same equations with a thermal bath at zero temperature (i.e. Nb = 0).
As a consequence of (4.18), for generic values of Nb and F we have

EB(τ)|F,Nb = EB(τ)|F=0,Nb + EB(τ)|F,Nb=0 . (4.19)

An analogous simplification can also be observed for the ergotropy EB(τ). Indeed,
notwithstanding the fact that such quantity has a nonlinear dependence on the first and
second moments of the field operators [see Eq. (4.17)], only the contribution associated
with the coherent driving at zero temperature matters, i.e.

EB(τ)|F,Nb = EB(τ)|F,Nb=0 = EB(τ)|F,Nb=0 , (4.20)

the ergotropy of the purely thermal charging case being always null, i.e.

EB(τ)|F=0,Nb = 0 , ∀ Nb ≥ 0 . (4.21)

To prove the last two equations starting from the expression (4.17), we observe that,
for Nb = 0, Eqs. (4.13)-(4.15) admit solutions for the second-order moments 〈XY 〉,
appearing in Eqs. (4.14)-(4.15), that can be written as products of those obtained for the
first-order moments, evaluated from (4.13), i.e.

〈XY 〉|F,Nb=0 = 〈X〉F,Nb=0〈Y 〉F,Nb=0 , (4.22)
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which, in combination with the decomposition (4.18), leads to (4.20).
Equations (4.19)–(4.21) represent hence an important simplification, which allows us
to address the functional dependence upon Nb and F of EB(τ) and EB(τ) by study-
ing “separately” their effects on the battery model. This is a peculiarity of the two-
harmonic-oscillator model, which is not found in different implementations where in-
stead one witnesses a non-trivial interplay between the coherent and thermal driving
contributions—see next sections. In the present case, the above identities imply that
while non-zero values of Nb and F both add to EB(τ), only the F matters in the
transferring of energy that is useful for future extractions of work. (A non-zero bath
temperature can only decrease the ratio (4.5) but cannot deteriorate the net value of
the ergotropy associated with a given choice of F .) Anticipating the analytic solutions
we present in the coming subsections, examples of these behaviours can be found in
Figs. 4.2 and 4.3—the first displaying the functional dependence of EB(τ) and EB(τ)

upon τ for various combinations of Nb and F , while the second presenting instead the
ratio RB(τ) for two different bath temperatures—and in the asymptotic values attained
by EB(τ), EB(τ) in the τ →∞ limit, i.e.

EB(∞) = ω0Nb + ω0(F/g)2 ,

EB(∞) = ω0(F/g)2 , (4.23)

whose associated ratio (4.5)

RB(∞) =
F 2

g2Nb + F 2
, (4.24)

clearly exhibits a monotonic decreasing behaviour with respect to Nb.

4.2.1.1 Thermal energy supply regime (F = 0, Nb generic)

Let us consider first the case where no coherent driving is present (i.e. F = 0) while
A is in contact with a non-zero temperature bath (i.e. Nb > 0). As anticipated in
Eq. (4.21), this regime represents a poor implementation of the charging of a quantum
battery as it results in a zero value for the ergotropy EB(τ).
For what concerns the mean energies of B and A, their expressions correspond to
Eqs. (3.225) and (3.224), respectively, multiplied by ω0. In the limit of large τ , they
show convergency of EA(τ) and EB(τ) toward the same value ω0Nb, in agreement with
the (local) thermalization of the two subsystems. The transient, however, exhibits two
distinct regimes: an oscillating underdamped regime occurring for κ < 4g, and an
overdamped regime for κ ≥ 4g, where, for large enough κ, the stored energy can be
conveniently approximated as EB(τ) ≈ ω0Nb(1 − e−4g2τ/κ), see panels (a) and (b) of
Fig. 4.4. This feature has a profound impact on the timing of the process: a numerical
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Fig. 4.2 Local energyEB(τ) and ergotropy EB(τ) of the battery B (both in units of ω0) as
functions of gτ , for the two-harmonic oscillator model. (a) The black dash-dotted, red
dashed, and magenta dotted curves representEB(τ) forNb = 1 and F = 0.1ω0,Nb = 1
and F = 0 (no coherent driving), and Nb = 0 and F = 0.1ω0 (zero temperature),
respectively. The blue solid curve represents the ergotropy EB(τ) for Nb = 1 and
F = 0.1ω0. Note that this curve is superimposed to the magenta dotted curve: this
is because, as emphasized in Eq. (4.20), EB(τ)|F,Nb = EB(τ)|F,Nb=0. All numerical
results in (a) have been obtained by setting g = 0.2ω0 and κ = 0.05ω0 (underdamped
regime). (b) Same as in (a) but for κ = ω0 (overdamped regime).
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Fig. 4.3 The ratio (4.5), which measures the fraction of energy stored in the battery
which can be extracted as work, as a function of gτ and for the two-harmonic oscillator
model. (a) Different curves correspond to different values of the loss parameter κ.
κ = 0.05ω0 (underdamped regime): blue solid line; κ = ω0 (overdamped regime): red
dashed line. The other parameters are F = 0.2ω0, g = 0.2ω0, Nb = 0.2. (b) Same as in
(a) but for Nb = 1. In both panels, all curves approach the asymptotic value (4.24) for
τ � 1/g.
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Fig. 4.4 (a) Local energy EA(τ) of the ancilla A (in units of Nbω0) as a function of gτ
for the two-harmonic oscillator model. Different curves correspond to different values
of the ratio κ/g. Red dashed line: κ/g = 1/2; green solid line: κ/g = 4; blue dash-
dotted line: κ/g = 25. (b) Same as in (a) but for the energy EB(τ) stored in the battery
B. (c) Maximum average storing power P̃B (in units of gω0Nb), defined in Eq. (4.25),
as a function of κ/g. All results in (a)-(c) have been obtained for the purely thermal
energy supply regime (i.e. F = 0, Nb > 0).

analysis reveals that the charging time of the battery (defined, e.g., as the first time at
which B reaches a given fraction of its asymptotic value ω0Nb), exhibits a non trivial
dependence upon the parameters κ and g with optimal performances attained when they
are close to the critical point κ = 4g. A clear evidence of this phenomenon can be found
by looking at the maximum of the average storing power (4.6),

P̃B ≡ max
τ

PB(τ) , (4.25)

which, as shown in panel (c) of Fig. 4.4, acquires its largest value just below threshold.
We anticipate that the same effect will be observed in all the other implementations we
discuss in the remaining of this Chapter, at least when the coherent driving is not present
(i.e. F = 0). A possible explanation of the arising of such fine tuning condition between
κ and g in the optimization of the charging process can be found by noticing that while
the battery needs a finite loss coefficient to be thermally excited, a too large value of the
loss coefficient will tend to freeze the state of A via an environment-mediated quantum
Zeno effect (Breuer et al. 2002), preventing the latter to efficiently transfer energy to B.

4.2.1.2 Coherent energy supply regime (Nb = 0, F generic)

Consider next the scenario where F 6= 0 and the bath temperature is zero, i.e. Nb = 0.
From Eqs. (4.19) and (4.20), it follows that this is the optimal setting in terms of our
ability of maximizing the fraction of energy stored in B, which is available for work
extraction at later times. Indeed, in this case we have

EB(τ)|F,Nb=0 = EB(τ)|F,Nb=0 , (4.26)
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corresponding to the optimal value 1 for the ratio (4.5)—the same identity applying
also for the energy that resides on A, i.e. EA(τ)|F,Nb=0 = EA(τ)|F,Nb=0. This result
is a consequence of the fact that in the Nb = 0 regime the AB system remains in a
factorized, pure coherent state at all times. Specifically, we have

ρ̃AB(τ) = |α(τ)〉A 〈α(τ)| ⊗ |β(τ)〉B 〈β(τ)| , (4.27)

where, given ε as in Eq. (3.223), α(τ) and β(τ) are the following coherent amplitudes

α(τ) = −i4F
ε
e−

κτ
4 sin(ετ/4) , (4.28)

β(τ) = −F
g

{
1− e−κτ4

[
cos(ετ/4) +

κ

ε
sin(ετ/4)

]}
.

Using the factorization rule (4.22), the associated local mean energies are hence given
by

EA(τ)|F,Nb=0 = ω0|α(τ)|2 =
16 ω0F

2

ε2
e−

κτ
2 sin2(ετ/4) (4.29)

and

EB(τ)|F,Nb=0 = ω0|β(τ)|2 =
ω0F

2

g2

{
1− e−κτ4

[
cos(ετ/4) +

κ

ε
sin(ετ/4)

]}2

,

(4.30)
which coincide, respectively, with the ergotropies EA(τ) and EB(τ) of the two systems.
One may observe that, for all non-zero values of the damping parameter κ, in the limit
τ → ∞ the energy of A nullifies testifying that the ancilla asymptotically approaches
its local ground-state, while the coherent amplitude of B reaches a finite value β(∞) =

−F/g. As this result is non-perturbative in g, the energy stored in B in this regime can
become very large resulting in

EB(∞)
∣∣∣
F,Nb=0

= ω0(F/g)2 , (4.31)

with the charger A going back to the initial vacuum state after a transient. The way
this asymptotic configuration is attained is not influenced by the specific value of F ,
which in Eqs. (4.28)-(4.30) appears as a multiplicative factor and does not affect the
timescales, see Fig. 4.5. As discussed by Andolina et al. (2018), this peculiarity stems
from the nature of the spectrum at hand, which is not upper bounded. What instead
plays an important role in the transient is once more the ratio between κ and g which,
as in the purely thermal energy supply scenario we analyzed before, can again be used
to identify underdamped (κ < 4g) and overdamped (κ ≥ 4g) regimes. Furthermore, as
evident from panel (a) of Fig. 4.5, it is clear that losses tend to reduce the value of the
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Fig. 4.5 (a) EB(τ) (in units of ω0F
2/g2) [Eq. (4.30)] as a function of gτ for the two-

harmonic oscillator model and referring to the case of the purely coherent energy supply
regime (i.e. Nb = 0), an instance where EB(τ) and EB(τ) coincide. The results of this
figure have been obtained by setting g = 0.2ω0. Different curves correspond to different
values of the loss parameter κ. Black dotted line: κ = 0; red dashed line: κ = 0.1ω0;
blue dash-dotted line: κ = 0.4ω0; black solid line: κ = 0.8ω0. (b) Setting F = F0

√
κ

we plot (in units F 2
0ω0) the average charging power PB(τ) [Eq. (4.6), coinciding with

PB(τ) of Eq. (4.7)] as function of gτ . Different curves correspond again to different
values of the loss parameter κ. Red dashed line: κ = 0.1ω0; black solid line: κ = 0.8ω0;
green dash-dotted line: κ = 2ω0; magenta dotted line: κ = 5ω0. We notice that in this
case κ needs to be tuned with g in order to get high power in a short time.

maximum energy. The best configuration is approached for κ → 0 where the energy
dynamics of B becomes periodic in τ , i.e. EB(τ) = 4ω0F

2 sin4(gτ/2)/g2, allowing the
battery to reach an energy (and ergotropy) level which can be up to four times larger
than the asymptotic value EB(∞), the smallest driving time τ ensuring this result be-
ing π/g. Under the same condition, a numerical evaluation shows that the associated
storing power (4.6) exhibits a maximum value P̃B equal to 0.33 × (4ω0 F

2/g) for an
optimal charging time ∼ 2.78/g. This is rather different from what we witnessed in the
purely thermal setting where, instead, the largest possible value of P̃B was attained for
values of κ close to the threshold point, see panel (c) of Fig. 4.4. A possible reconcil-
iation of this discrepancy can be found by noting that in realistic models the quantities
F and κ cannot be treated as independent parameters. For instance considering a stan-
dard cavity-QED implementation of the model, from the microscopic derivation of the
Lindblad equation (Breuer et al. 2002), it is more correct to assume F ' F0

√
κ, indi-

cating that the more the laser is able to pump energy in the system the more the system
would be subject to losses, being it more strongly coupled with the external world. In
such case, the analogy with the purely thermal setting is restored as it turns out that one
must tune κwith g to obtain the highest charging power PB(τ) in the shortest time—see
panel (b) of Fig. 4.5.
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4.3 Two-qubit model

In this section we consider the case in which both the charger A and the quantum battery
B are (resonant) two-level systems. Accordingly, the operators ζ†X in Eqs. (4.10)-(4.12)
must be identified with the two-level raising operator σ+

X = [σ−X ]† = (σxX + iσyX)/2,
where, for X = A,B, σx,y,zX represent the Pauli matrices acting on the system X (cfr.
Eqs. (2.54) and (2.52)).
Using again 〈x〉 := tr[xρ̃AB(t)] to indicate the expectation value of a generic operator x
on ρ̃AB(t), we have

d

dt
〈σzA〉 = 2ig

(
〈σ−Aσ+

B 〉 − 〈σ−Aσ+
B 〉∗
)

+ 2iF
(
〈σ−A〉 − 〈σ−A〉∗

)
− κ
(
2Nb + 1

)
〈σzA〉 − κ ,

d

dt
〈σzB〉 = 2ig

(
〈σ−Aσ+

B 〉∗ − 〈σ−Aσ+
B 〉
)
,

d

dt
〈σ−A〉 = ig〈σzAσ+

B 〉∗ + iF 〈σzA〉 −
1

2
κ
(
2Nb + 1

)
〈σ−A〉 ,

d

dt
〈σ−B 〉 = ig〈σ+

Aσ
z
B〉∗ ,

d

dt
〈σ−Aσ+

B 〉 =
1

2
ig
(
〈σzA〉 − 〈σzB〉

)
+ iF 〈σzAσ+

B 〉 −
1

2
κ
(
2Nb + 1

)
〈σ−Aσ+

B 〉 ,
d

dt
〈σzAσ+

B 〉 = −ig〈σ−A〉∗ + 2iF
(
〈σ−Aσ+

B 〉 − 〈σ−Aσ−B 〉∗
)
− κ
(
2Nb + 1

)
〈σzAσ+

B 〉 − κ〈σ−B 〉∗ ,
d

dt
〈σ−Aσ−B 〉 = iF 〈σzAσ+

B 〉∗ −
1

2
κ
(
2Nb + 1

)
〈σ−Aσ−B 〉 ,

d

dt
〈σ+

Aσ
z
B〉 = −ig〈σ−B 〉∗ − iF 〈σzAσzB〉 −

1

2
κ
(
2Nb + 1

)
〈σ+

Aσ
z
B〉 ,

d

dt
〈σzAσzB〉 = 2iF

(
〈σ+

Aσ
z
B〉∗ − 〈σ+

Aσ
z
B〉
)
− κ
(
2Nb + 1

)
〈σzAσzB〉 − κ〈σzB〉 , (4.32)

which we solve under the initial condition (4.3), that, for the functions appearing above,
is expressed by

〈σzA〉(0) = 〈σzB〉(0) = −1 ,

〈σ−A〉(0) = 〈σ−B 〉(0) = 〈σ−Aσ+
B 〉(0) = 〈σzAσ+

B 〉(0) = 〈σ−Aσ−B 〉(0) = 〈σ+
Aσ

z
B〉(0) = 0 ,

〈σzAσzB〉(0) = 1 , (4.33)

giving direct access to the stored energy

EB =
ω0

2
(〈σzB〉+ 1) (4.34)

and ergotropy

EB =
ω0

2

(√
〈σzB〉2 + 4

〈
σ+

B

〉 〈
σ−B
〉

+ 〈σzB〉
)

(4.35)
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of the battery B (cfr. Eq. (2.55) and its derivation for more details and Appendix A for
an alternative approach).

4.3.1 Analysis

Since at low energy the two-harmonic oscillator model discussed in the previous Sec-
tion has similar spectral properties to those of the two-qubit setting, we expect the two
schemes to exhibit analogous performances in the low supply limit, i.e. for coherent
driving constant F � g, κ and temperature 1/β � ω0. On the contrary, for not negligi-
ble values of F or 1/β, the effective nonlinearities introduced by the finite dimensional-
ity of the two-qubit model we are considering here, result in a more complex interplay
between the coherent and incoherent pumping mechanisms than the one we discussed
in Sec. 4.2. Specifically, as will shall see, while still one cannot achieve non-zero values
of EB(τ) in the absence of the external coherent driving (i.e. F = 0), decoupling rules
similar to the ones reported in Eqs. (4.19)-(4.20) hold no longer for arbitrary values of
the system parameters. In particular, it turns out that, at variance with the two-harmonic
oscillator model, the presence of a non-zero temperature can strongly interfere with the
ergotropy production. Interestingly enough, while typically such interference tends to
reduce EB(τ), there are special settings of the system parameters for which one ob-
serves that a non-zero temperature can indeed result in a larger value of the attainable
ergotropy.

4.3.1.1 Steady state

Evidences of such behaviours can be obtained by looking at the values that EB(τ) and
EB(τ) attain in the asymptotic τ →∞ limit, which can be extrapolated from Eq. (4.32)
by enforcing the stationary condition ˙̃ρAB(t) = 0. The resulting expressions for arbi-
trary values of 1/β and F in this case are given by

EB(∞)

ω0
=

1

2
− g2κκb(2g

2 + κ2
b)

32F 4(2g2 + κ2) + 4F 2κ2 [24Nb(Nb + 1)g2 + (2g2 + κ2
b)] + 2g2κ2

b(2g2 + κ2
b)
,

(4.36)
EB(∞)

ω0
=

gκ(2g2 + κ2
b)(
√

4κ2F 2 + g2κ2
b − gκb)

32F 4(2g2 + κ2) + 4F 2κ2 [24Nb(Nb + 1)g2 + (2g2 + κ2
b)] + 2g2κ2

b(2g2 + κ2
b)
, (4.37)

where κb is the renomalization of the loss coefficient κ by the Bose occupation number
Nb of the bath, i.e.

κb := κ(2Nb + 1) . (4.38)

In Fig. 4.6 we display the functional dependence of the functions (4.36) and (4.37) and
of their ratio RB(∞) = EB(∞)/EB(∞) in terms of Nb and F . As evident from panels
(a) and (b) of the figure, when F is sufficiently large, EB(∞) may indeed take advantage
from an increase of the bath temperature. As anticipated, no ergotropy can be generated

103



0 1 2 3
Nb(T )

0.25

0.5

F
/ω

0

0.00

0.03

0.06

0.09

0.12

0.15

0.18

0.21

(a)

Nb

EB(∞)

0 1 2 3
Nb(T )

0.1

0.2

E B
(∞

)/
ω

0

(b)

Nb

0 1 2 3
Nb(T )

0.25

0.5

F
/ω

0

0.00

0.08

0.16

0.24

0.32

0.40

0.48

(c)

Nb

EB(∞)

0 1 2 3
Nb(T )

0.25

0.5
F
/ω

0

0.00

0.16

0.32

0.48

0.64

0.80

0.96

(d)

Nb

RB(∞)

Fig. 4.6 (a) Two-dimensional color plot of EB(∞) (in units of ω0)—Eq. (4.37)—as a
function of F (in units of ω0) and Nb for the two-qubit model. Notice that EB(∞)
approximately reaches its maximum value (4.45) for Nb = 0 (zero temperature) and
F ' 1.09g. For large enough F we notice that EB(∞) is not monotonically decreasing
in Nb. (b) EB(∞) (in units of ω0) as a function of Nb. Different curves correspond
to different values of F . Magenta solid line: F = 0 (which yields EB(∞) = 0);
green dash-dotted line: F = 0.05ω0; blue dashed line: F = 0.1ω0; red dotted line:
F = 0.5ω0. The non-monotonic behaviour as a function of Nb is clearly evident for
F = 0.5ω0. (c) Same as in (a) but for the asymptotic value EB(∞) of the energy stored
in B—Eq. (4.36). (d) Same as in (a) and (c) but for the ratio RB(∞)—Eq. (4.5) in the
τ → ∞ limit. RB(∞) reaches its maximum value for Nb = 0 and in the F → 0 limit.
All results in this figure have been obtained by setting g = 0.1ω0 and κ = ω0.

104



by only having access to a purely thermal source. Indeed, for F = 0, Eqs. (4.36) and
(4.37) give

EB(∞)
∣∣∣
F=0, Nb

= ω0Nf , (4.39)

EB(∞)
∣∣∣
F=0, Nb

= 0 , (4.40)

where now

Nf :=
1

exp (βω0) + 1
, (4.41)

is the fermionic occupation number. In the opposite regime, i.e. when the charging is
purely coherent and the bath is at zero temperature (Nb = 0), Eqs. (4.36) and (4.37)
yield

EB(∞)
∣∣∣
F, Nb=0

= ω0
(κ2 + 8F 2)F 2

16F 4 + κ2(2F 2 + g2)
, (4.42)

EB(∞)
∣∣∣
F, Nb=0

=
ω0

2

gκ2(
√

4F 2 + g2 − g)

16F 4 + κ2(2F 2 + g2)
, (4.43)

which we plot in Fig. 4.7 together with their ratio (4.5),

RB(∞)
∣∣∣
F, Nb=0

=
gκ2(

√
4F 2 + g2 − g)

2(κ2 + 8F 2)F 2
. (4.44)

Eq. (4.43) reveals that in the large loss limit κ� F and when F and g are tuned so that

F =
√

(
√

2 + 1)/2g ' 1.09g, the asymptotic ergotropy reaches its maximum value

EB(∞)
∣∣∣
F, Nb=0

=

√
2− 1

2
ω0 ∼ 0.207ω0 , (4.45)

which, incidentally, corresponds also to the absolute maximum of (4.37) for arbitrary
temperature, as evident from panel (a) of Fig. 4.6. On the contrary, a close inspec-
tion of Eq. (4.44) reveals that the ratio achieves its absolute maximum value 1 in the
small driving constant/low energy supply limit (i.e. for F � g, κ) for which one gets
EB(∞)|F, Nb=0 ' EB(∞)|F, Nb=0 ' ω0(F/g)2. As anticipated at the beginning of this
Section, this exactly reproduces the behaviour (4.26) observed for the two-harmonic
oscillator model at zero temperature.

4.3.1.2 Transients

We now analyze the perfomances of the model for finite values of τ . Let us first consider
the case where no driving is at play (F = 0) while the temperature of the bath is
finite (Nb > 0), which is the only case for which we can present explicit analytical
expressions. As for the case of the two-harmonic oscillator model, it turns out that the
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Fig. 4.7 (a) EB(∞)/ω0 (red dashed line) [Eq. (4.42)] and EB(∞)/ω0 (blue solid line)
[Eq. (4.43)] as functions of 2F/g, for the two-qubit model. Results in this panel have
been obtained by setting κ� F, g. (b) The ratio RB(∞) [Eq. (4.5) in the τ →∞ limit]
is plotted as a function of 2F/g. Different curves correspond to different values of κ.
Blue solid line: κ � F, g; red dash-dotted line: κ/g = 5; magenta dashed: κ/g = 1.
Both panels refer to the purely coherent energy supply regime, i.e. Nb = 0.

ergotropy of the battery is always null at all times, i.e. EB(τ) = 0, testifying that in the
absence of the external driving the density matrix ρ̃B(τ) is passive. Regarding the mean
energy of B, by direct integration of the equation of motion we find

EB(τ) = ω0Nf
{

1− e−
1
2
κbτ

ε2b

[
16g2 + κbεb sin(εbτ/2)− κb2 cos(εbτ/2)

] }
, (4.46)

with κb and Nf as in Eqs. (4.38) and (4.41), respectively, and where

εb ≡
√

(4g)2 − κb2 . (4.47)

For comparison, we also report the value of the local mean energy of A, which in the
present case is given by

EA(τ) = ω0Nf
{

1− e−
1
2
κbτ

ε2b

[
16g2 − κbεb sin(εbτ/2)− κb2 cos(εbτ/2)

] }
. (4.48)

One may notice that these expressions for EB(τ) and EA(τ) can be formally obtained
from Eqs. (3.225) and (3.224), respectively, which apply for the two-harmonic oscillator
model in the purely thermal setting (i.e. F = 0), by replacing Nb → Nf and κ → κb

and multiplying by ω0. Accordingly, in this regime the energy charging of the two-
qubit model will closely resemble the one observed in Fig. 4.4, with an overdamped
and underdamped regime, attained respectively for κb ≥ 4g and κb < 4g, the main
difference being that now, because of Eq. (4.38), the critical threshold depends explicitly
upon the bath temperature 1/β.
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Fig. 4.8 (a)EB(τ) (in units of ω0) as a function of gτ , for the two-qubit model. Different
curves refer to different values of F (in units of ω0). Blue dashed line: F = 0.05ω0;
red solid line: F = 0.2ω0; black dash-dotted: F = ω0. (b) Same as in (a) but for
EB(τ). Numerical results in (a) and (b) have been obtained by setting g = 0.2ω0 and
κ = 0.05ω0. (c),(d) Same as in (a) and (b) but for κ = ω0. All results in this figure refer
to the purely coherent energy supply regime, i.e., Nb = 0.
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Fig. 4.9 EB (in units of ω0) as a function of gτ , for the two-qubit model. Different curves
refer to different values of Nb. Red solid line: Nb = 0; blue dashed line: Nb = 0.1;
magenta dotted line: Nb = 0.5; cyan dash-dotted line: Nb = 1. Numerical results in
this plot have been obtained by setting g = F = ω0/5 and κ = ω0. Notice that, in a
finite range of values of gτ , the result for Nb = 0.1 (blue dashed line) lies above the
result for Nb = 0 (red solid line).

To study the finite-time behaviour of EB(τ) and EB(τ) in the case where F is non-zero,
we resort to numerical calculations. In particular, in Fig. 4.8 we present plots of these
quantities for Nb = 0 (no thermal supply) obtained for different values of F , g, and κ.
In Fig. 4.9, instead, a study of EB(τ) is presented for fixed F and various values of Nb.
Again, oscillatory behaviours can be observed which may lead to an increase of EB(τ)

as a function of temperature.
We conclude this section by commenting about optimal charging times which, for future
reference, we study in the limit of strong coherent driving (F � g) and for weak
dissipation κ ' 0. In this limit, simple analytical solutions can be found, which for
the mean energy results in EB(τ) = ω0 sin2(gτ/2), indicating an optimal charging time
π/g that is independent of F . This optimal charging time turns out to maximize the
ergotropy EB(τ) as well.
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4.4 Hybrid model

The last model we consider assumes A to be a harmonic oscillator and B a qubit whose
energy gap matches the frequency ω0 of A. Accordingly, the operators ζ†X in Eqs. (4.10)-
(4.12) are now ζ†B = σ+

B (as in the previous section) and ζ†A = a† (as in Sec. 4.2).
Being the system hybrid and infinite-dimensional, the integration methods adopted in
the previous two cases cannot be applied as they will produce an infinite set of coupled
differential equations. Instead, we resort to the characteristic function approach (Walls
and Milburn 2007, Lougovski et al. 2007, Bina et al. 2008, Serafini 2017), which allows
one to cast Eq. (4.12) into a finite set of linear partial differential equations that can be
solved numerically. By choosing this approach, we pass from infinite square matri-
ces (density matrix formalism) to four complex functions for describing the system’s
state. For this purpose, we decompose ρ̃AB(t) into the basis of the energy eigenstates
{|1〉B, |0〉B} of HB, i.e.

ρ̃AB(t) =
∑

ij

ρ̃
(ij)
A (t)⊗ |i〉B〈j| . (4.49)

Here, ρ̃(ij)
A (t) ≡ B〈i| ρ̃AB(t) |j〉B are operators of A which we express as a convolution

integral

ρ̃
(ij)
A (t) =

∫
d2β

π
χij(β, t)D(−β) (4.50)

over a complex variable β of the displacement operator D(β) ≡ exp
(
βa† − β∗a

)
and

χij(β, t) ≡ trA

[
D(β)ρ̃

(ij)
A (t)

]
, (4.51)

where the latter quantity is the associated characteristic χ-function (Serafini 2017).
They inherit from ρ̃AB(t) the following constraints

χ00(0, t) + χ11(0, t) = 1 , (4.52)

χij(β, t) = χ∗ji(−β, t) , (4.53)

the first deriving from the normalization of ρ̃AB(t), the second from its self-adjointness.
Furthermore, considering that B is a qubit, Eqs. (4.34) and (4.35) can be still exploited,
allowing one to express the quantities of interest as

EB(τ) = ω0χ11(0, τ) , (4.54)

EB(τ) =
ω0

2

[√
(χ11 − χ00)2 + 4|χ10|2 + χ11 − χ00

] ∣∣∣
β=0

.
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Exploiting the algebra of the harmonic oscillator, we can now recast the ME (4.12) into
a set of partial differential equations for χij(β, t), i.e.

χ̇ij = −igIij [~χ] + 2iFxχij (4.55)

−κ
[(
Nb +

1

2

)(
x2 + y2

)
+

1

2
(x∂x + y∂y)

]
χij ,

where x and y are the real and imaginary components of β = x + iy and Iij [~χ] are
differential terms describing the energy exchange between the harmonic oscillator and
the qubit:





I11 [~χ] = −1
2

[(∂x − i∂y)χ10 + (∂x + i∂y)χ01 + (x− iy)χ10 + (x+ iy)χ01]

I10 [~χ] = −1
2

[(∂x + i∂y) (χ00 − χ11) + (x+ iy) (χ11 + χ00)]

I01 [~χ] = 1
2

[(∂x − i∂y) (χ11 − χ00)− (x− iy) (χ11 + χ00)]

I00 [~χ] = 1
2

[(∂x − i∂y)χ10 + (∂x + i∂y)χ01 − ((x− iy)χ10 + (x+ iy)χ01)] .

1 Equations (4.55) have been solved numerically under the usual initial conditions (4.3),
which, arranged into the χ-function language, read as

χ00(β, 0) = e−
|β|
2

2

,

χ11(β, 0) = χ10(β, 0) = χ01(β, 0) = 0 . (4.56)

For the case where F = 0 (no coherent driving) our findings are in agreement with
the two previous cases. Specifically, no ergotropy on B is generated, while, regarding
EB(τ), for small values of κ/g an oscillating behaviour is observed which is then lost
for large κ/g, the thermalization value being EB(∞) = ω0Nf (data not shown). As
we turn on F , non-zero values of EB(τ) are observed with an oscillatory behaviour that
reminds us of the results of the previous section, see Fig. 4.10. By numerical analysis
we also study the optimal charging times (see Fig. 4.11) noticing that for the hybrid
model they appear to have a 1/Fα scaling, with α ∼ 0.5 − 1. This is deeply different
with respect to the two-qubit case for which a finite charging time emerges in the same
regime, and also with respect to the case of two harmonic oscillators, where the driving
amplitude F does not enter in the timescales of the charging process. This peculiarity
is a consequence of the structure of the Hilbert space of the hybrid system studied in
this Section. Indeed, the quantum harmonic oscillator A can host an arbitrarily large
number of excitations coming from the interaction with the coherent source, while the
qubit (i.e. the battery B) has an upper bounded spectrum: hence, the more energy is in
the mediator the lesser the charging time of the qubit is.

1It is worth noticing that the set (4.55) embodies both the constraints of Eqs. (4.52) and (4.53).
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Fig. 4.10 (a) EB(τ) (in units of ω0) as a function of gτ , for the hybrid model. Different
curves refer to different values of F (in units of ω0). Green solid line: F = 0.1ω0; red
dashed line: F = 0.5ω0; blue dash-dotted line: F = 1.5ω0. (b) Same as in (a) but
for EB(τ). Numerical results in (a) and (b) have been obtained by setting g = 0.1ω0,
κ = ω0, and Nb = 0. (c), (d) Same as in (a) and (b) but for Nb = 1.
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Fig. 4.11 The time scale τ̄ (in units of 1/g) at which EB(τ) reaches its maximum value
(blue circles) is plotted as a function of F/g. Red squares denote the same quantity
but for the case of EB(τ). Both results refer to the hybrid model. Numerical results in
this figure have been obtained by setting g = 0.2ω0, κ = ω0, and refer to the purely
coherent energy supply regime, i.e. Nb = 0. The blue dotted line denotes a fit of the
points (gτ̄ , F/g) for the stored energy, indicating a clear decreasing behavior of τ̄ for
increasing values of the driving constant F .
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4.5 Conclusions

In this Chapter, we have studied charger-mediated energy transfer for quantum batteries
via an open system approach. Specifically, we dealt with three models. One in which
both the charger A and the quantum battery B are described by harmonic oscillators
(Sec. 4.2), one in which both A and B are qubits (Sec. 4.3), and, finally, one in which
A is a harmonic oscillator and B is a qubit (Sec. 4.4). In all cases, the charger A
interacts with an external energy supply E, and acts as mediator between E and B. At
the beginning of the charging protocol, both A and B are in the ground state with zero
energy. Then, energy is dynamically injected into the system thanks to the presence of
E, thermally and/or via a resonant driving field of amplitude F . Particular attention has
been devoted to the maximum extractable work from B, i.e. the so-called ergotropy of
the battery (Allahverdyan et al. 2004).
Our main findings can be summarized as follows.

(i) The case of two harmonic oscillators is profoundly different from the other two cases.
Because of the linearity of the system, there is no interplay between the coherent and
incoherent energy supplies. In particular, in the coherent protocol (F > 0, zero
temperature), ergotropy and energy coincide. This happens because A and B remain
uncorrelated during the system’s evolution.

(ii) In the case of the thermal protocol (F = 0, non-zero temperature), the ergotropy is
always zero. This holds true for all models.

(iii) In the case of two qubits in the mixed regime (F > 0, non-zero temperature) (while
typically non-zero temperature tends to reduce the ergotropy) there are special set-
tings for which finite temperature is beneficial for the ergotropy. This is a conse-
quence of the nonlinear character of this model, which leads to a non-trivial interplay
among coherent and incoherent channels.

(iv) In the hybrid model, the times at which energy and ergotropy are maximal decrease
monotonically with increasing driving field F . This peculiarity stems from the struc-
ture of the Hilbert space of the hybrid model and can be compared with the energy
dynamics derived in Ref. Andolina et al. (2018), in a closed (i.e. Hamiltonian) set-
ting.
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CHAPTER 5

Quantum bath statistics tagging

Going beyond the instance of bosonic bath discussed in the previous Chapters, we treat
here the problem of identifying the statistics of a thermal bath - fermionic or bosonic -
exploiting the sensitivity of a quantum probe to its surrounding environment. We start
by introducing the interest towards statistical tagging in Sec. 5.1. Then we derive in a
quite general formalism the master equations of interest in Sec. 5.2, in order to specify
the analysis to qubit and harmonic oscillator probes, respectively, in Sections 5.3 and
5.4. The main conclusions will be finally reported in Sec. 5.5.

5.1 Statistical tagging

In equilibrium statistical mechanics, the intrinsic indistinguishability between identi-
cal particles gives rise to the Bose-Einstein and Fermi-Dirac equilibrium distributions.
These statistics found their earliest evidences in matter physics, describing black body
radiation (Bose 1924) and the behavior of electrons in solids (Sommerfeld 1927) while
their link with the intrinsic angular momentum of elementary particles stems as a cru-
cial result of quantum field theory (Pauli 1940, Schwabl 2008). A standard tool to
discern the statistics of a quantum system is represented by two-body correlations, ex-
perimentally accessible through equilibrium response properties to weak external fields
(Mahan 2013). For example, typical and exclusive signatures are the Pauli hole in case
of fermions (Giuliani and Vignale 2005) and bunching and anti-bunching phenomena
in case of bosons (Paul 1982). More in general, statistics tagging turns out to be worth
in all modern physics. For instance, in astrophysics, methods to recognize the statistical
distributions of particles which are thermally radiated by black holes have been de-
veloped (Sannan 1988) or, going beyond conventional fermions and bosons, in the con-
text of the fractional quantum hall effect (Laughlin 1983) interferometric measurements
(Goldman et al. 2005) confirmed the existence of quasi-particles obeying fractional ex-
clusion statistics (Wilczek 1982, Haldane 1991, Wu 1994). Finally, from a technologi-
cal point of view, a detailed characterization of the environment surrounding a quantum
system is nowadays crucial to implement quantum information protocols and, more
generally, for quantum nanotechnology (Palma et al. 1996, Nielsen and Chuang 2010).
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Indeed, the interaction with the environment leads to decoherence and dissipation on the
system (see previous Chapters), strongly degrading purely quantum resources (Nielsen
and Chuang 2010) or even, in other cases, promoting collective quantum phenomena
(Scarlatella and Schiró 2016). As described in Sec. 2.3, the characterization of mea-
surement processes and statistical inference methods applied to quantum systems is the
core of quantum metrology (Paris 2009, Giovannetti et al. 2006, 2011). The estimation
and the discrimination of environmental properties can be achieved both via direct mea-
surements or indirectly, by extracting information from auxiliary systems. For instance,
via putting a probe in contact with a thermal environment and performing a measure on
such a probe, it is possible to extract information about the temperature (Correa et al.
2015, De Pasquale et al. 2016, Kiilerich et al. 2018, Cavina et al. 2018) and the spec-
tral properties (Benedetti et al. 2018, Salari Sehdaran et al. 2019) of the environment
itself. Following this line of reasoning, we present a protocol aimed to discriminate
between fermionic and bosonic thermal baths via indirect quantum state discrimination
on an auxiliary quantum probe A. More precisely in our construction the tagging of
the bath statistics is performed by monitoring the state of A at a convenient finite time
evolution t̄ during the thermalization process it experiences once put in weak-coupling
thermal contact (Breuer et al. 2002) with the environment. The scheme ultimately relies
on the fact that, while the final configuration of A is not necessarily influenced by the
statistical nature of the bath, the latter leaves residual imprintings on the transient of the
thermalization process which can be picked up by proper measurements on the probe.
A full characterization of the ultimate discrimination efficiency we can achieve using
this technique will be presented by studying a couple of paradigmatic examples where
A is assumed to be either a two level system (TLS, or qubit) or a quantum harmonic os-
cillator (QHO). It is worth stressing that the resulting four scenarios describe situations
which are routinely encountered in experiments (Farina and Giovannetti 2019) paving
the way for a proof of principle implementations of our findings (at least): indeed a two
level system coupled to a bosonic bath (TLS − bosons) is paradigmatic in quantum
optics (Walls and Milburn 2007) and quantum computation (Palma et al. 1996); a har-
monic oscillator interacting with a bath of other harmonic oscillators (QHO− bosons)
can describe an open opto-mechanical resonator (Gröblacher et al. 2015); finally, spin-
baths are more rare but also feasible (Pekola et al. 2016) if we deal with a vibrational
degree of freedom interacting with two-level defects (QHO− fermions) in quantum-
electromechanical systems (Blencowe 2004, Schlosshauer et al. 2008) or with the hy-
perfine interaction of an electron spin in a quantum dot with the surrounding nuclear
spins (TLS − fermions) (Prokof’ev and Stamp 2000, Urbaszek et al. 2013, Fischer
et al. 2018, Bortz and Stolze 2007).
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5.2 Statistics-dependent master equations

In what follows we shall adopt a compact notation that allows us to treat uniformly the
four possible scenarios, TLS-bosons, TLS-fermions, QHO-bosons, and QHO-fermions.
For this purpose, resuming in part the formalism of Sec. 4.1.3, we introduce a system
annihilation operator ζp where the subscript p ∈ {TLS, QHO} refers to the two possible
species of probes, assuming that ζQHO = a and ζTLS = σ− . With this choice we
can now describe the coupling between the system and its environment, by assigning
the microscopic Hamiltonian H = HS + HE + H1 characterized by the following
components:

HS = ω0ζ
†
pζp , (5.1)

HE =
∑

k

ωkc
(q)
k

†
c

(q)
k , (5.2)

H1 =
∑

k

γk[c
(q)
k

†
+ c

(q)
k ](ζp + ζ†p) , (5.3)

where, at variance with (3.69) and (3.70), the environmental modes c(q)
k and c(q)

k

†
(q) can

be either of bosonic nature (q = b) or of fermionic nature (q = f):

c
(q)
k c

(q)
k′
† − sqc(q)

k′
†
c

(q)
k = δk,k′ , (5.4)

c
(q)
k c

(q)
k′ − sqc

(q)
k′ c

(q)
k = 0 ,

with sq=b(q=f) := +(−)1 .

Similarly to what we did earlier in Sec. (3.2) for a qubit coupled to a bosonic bath,
following the Born-Markov-Secular microscopic derivation (cfr. Sections 2.1.2.1 and
2.1.2.2) for a thermal environment of inverse temperature βq one arrives to a Lindblad
equation that for the four cases of interest can be written in a unified form as (see also
Esposito et al. (2010), Purkayastha et al. (2016), Farina, Cavina and Giovannetti (2019),
Farina and Giovannetti (2019))

ρ̇q(t) = −i[HS, ρq] + κNq(βq)
(
ζ†pρq(t)ζp − 1

2
{ζpζ†p, ρq(t)}

)

+κ[1 + sqNq(βq)]
(
ζpρq(t)ζ

†
p − 1

2
{ζ†pζp, ρq(t)}

)
, (5.5)

with κ being the bare dissipation rate and with

Nq(βq) :=
1

eβqω − sq
, (5.6)

being the Bose-Einstein (Fermi-Dirac) distribution for q = b (f), with ω > 0 being an
effective energy parameter (Esposito et al. 2010), that contains a contribution from the
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system
environment

fermionic bosonic

Two-Level System κ nthκ
Quantum Harmonic Oscillator κ/nth κ

Table 5.1 Transition rates governing the dynamics of the system-bath models for the
four scenarios: in this expressions κ is a constant that only depends upon the interac-
tion strength of the model, while nth depends on βq as in Eq. (5.10). Notice that for
homogeneous settings (TLS-fermions or QHO-bosons) the values of the rates are inde-
pendent of the bath temperature. Furthermore, since nth ≥ 1, we observe that for the
TLS probe the transition rate associated with the bosonic bath is always larger than the
corresponding fermionic value, while exactly the opposite occurs for the QHO probe
scenario. We also recognize that in both the TLS and QHO probe configurations, the
difference between the transition rates induced by the bosonic and fermionic statistics
increases with the temperature. Such gap nullifies instead in the zero-temperature limit
(βq →∞) where nth = 1: accordingly, under this conditions the dynamics of the model
is expected not to detect any difference in the bath statistics.

bare energy of the system and from the chemical potential of the bath 1.
Notice that the differences between the master equations (5.5) for the two cases q = b

and q = f concern the kind of average occupation number that is present and the sign
sq in the second line. Both the features are originated from Eqs. (5.4), i.e. from the
different exchange rules of bosons and fermions. Furthermore, Eq. (5.5) implies the
following balance equation for the average excitation number of the system:

d

dt
〈ζ†pζp(t)〉 = −κ [Nq(βq)/Np(βq)] 〈ζ†pζp(t)〉+ κNq(βq) , (5.7)

where it is understood that

〈ζ†pζp(∞)〉 = Np(βq) , (5.8)

with

Np=TLS(βq) = Nf (βq) and Np=QHO(βq) = Nb(βq) . (5.9)

In Eq. (5.7) we can recognize the characteristic rate κp−q = κNq(βq)/Np(βq) from
which the result of Table 5.1 follows automatically defining the quantity

nth := Nb(βq)/Nf (βq) = coth(βqω/2) . (5.10)

1We suppose ω to be the same for b and f . When the chemical potential is different between the
fermionic and bosonic cases we can opportunely redefine βf and βb to preserve the Eq. (5.6).

116



To comment Table 5.1, let us consider a thermal charging, i.e. a system initially in
its ground state gets excited by a finite temperature thermal bath of statistics q, finally
reaching the bath temperature 1/βq (a process analyzed in the previous Chapters under
different perspectives). A TLS interacting with a bosonic environment, realizes a situ-
ation in which the great amount of excitation contained in each QHO cannot be hosted
by the TLS. This unbalance results in an increase of the charging rate. The opposite
is expected to occur when a QHO interacts with a fermionic bath: increasing temper-
ature is expected to decrease the charging rate. Finally, such effect must disappear at
low temperature where the difference between the energy spectra is irrelevant, because
Nb(β) ∼ Nf (β) ∼ e−βω for β →∞.

Other considerations about speed effects arising from coupling a system with a
bounded spectrum and a system with an unbounded spectrum can be found in Schlosshauer
et al. (2008), Farina, Andolina, Mari, Polini and Giovannetti (2019), Andolina et al.
(2018).
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5.3 Qubit probe

We treat here the most generic problem that consists in discriminating between two
baths with disparate constituents at unequal temperatures. We restrict the analysis to a
qubit quantum probe, suitable to the experimental linear-optical simulations by Ilaria
Gianani, Marco Barbieri and Valeria Cimini (Gianani et al. 2020). Notably, as a cen-
tral result of the analysis, there exist temperature regimes in which the presence of
coherence in the initial state preparation is beneficial for the discrimination capabil-
ity. Furthermore, depending on the probe input state of the probe, we found that non-
equilibrium measurement conditions turn out to be often (but not always) optimal and
detail the cases where it becomes advantageous to wait for complete thermalization of
the probe.

5.3.1 The model

The model we studied in Gianani et al. (2020) is the following. At time t = 0 a qubit
quantum probe A is prepared in some fiduciary initial density operator ρ(0) and let to
interact for some time t with a partially unknown environment E that can be of two
types: bosonic at temperature 1/βb, or fermionic at temperature 1/βf , the values 1/βb

and 1/βf being assigned a priori. We shall attempt to discriminate among the two al-
ternatives by only performing measurements on the reduced final state ρ(t) of A, which
hence encodes all the information about the nature of E one can access to. This allows
us to describe the whole scheme as a standard hypotheses testing problem (Helstrom
1976), where one has to determine whether ρ(t) corresponds to the density matrix ρb(t)
ofAwhich one would have obtained by evolving ρ(0) under the influence of the bosonic
bath of temperature 1/βb, or to ρf (t), which instead one would have obtained by evolv-
ing the same ρ(0) under the influence of the fermionic bath of temperature 1/βf . To
quantify our ability in discriminating between these scenarios we can then use the Hel-
strom error probability (HEP) functional

H(ρb(t), ρf (t)) :=
1

2
− 1

4
‖ρb(t)− ρf (t)‖1 , (5.11)

with ‖ · · · ‖1 being the trace norm symbol (see Sec. 2.3.1).
In order to get an analytical expression for (5.11) we assign ρb(t) and ρf (t) in terms
two independent Lindblad master equations for A obtained under standard system-bath
weak coupling assumptions (Lindblad 1976, Gorini et al. 1976). Moving into the in-
teraction picture and choosing p = TLS such that ζTLS = σ− = |0〉 〈1|, Eq. (5.5)
becomes

ρ̇q(t) = κ[1 + sqNq(βq)]Dσ− [ρq(t)] + κNq(βq)Dσ+ [ρq(t)] , (5.12)
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the index q = f, b referring again to the two hypothetical initial configurations of the
bath and

Dσ± [· · · ] := σ±[· · · ]σ†± −
σ†±σ±[· · · ] + [· · · ]σ†±σ±

2
(5.13)

representing the Lindblad dissipators. Introducing the Pauli vector operator ~σ := (σx, σy, σz),
and writing the density matrix of the system in the Bloch vector formalism ρq(t) =
1+~σ·~a(q)(t)

2
, Eq. (5.12) can then be conveniently cast in the form

ȧ(q)
z (t) = −κqa(q)

z (t)− ξq, (5.14)

ȧ(q)
x,y(t) = −κq

2
a(q)
x,y(t),

where now

κb := κ coth(βbω/2), κf := κ ,

ξb := κ, ξf := κ tanh(βfω/2) ,
(5.15)

showing that in the case of equal temperatures, the evolution occurs at faster scales for
the bosonic bath scenario (see the first row of Table 5.1). Explicit integration of (5.14)
leads finally to the solution

a(q)
z (t) = e−κqt(az(0)− a(q)

z (∞)) + a(q)
z (∞) , (5.16)

a(q)
x,y(t) = e−κqt/2ax,y(0),

with ax,y,z(0) being the cartesian components of the Bloch vector associated with the
input state ρ(0) of A and

a(q)
z (∞) = − tanh(βqω/2) (5.17)

defining the equilibrium (thermal) configuration of the system (of course a(q)
x,y(∞) = 0).

5.3.2 Discrimination perfomances

Using the fact that the trace norm of the difference between ρb(t) and ρf (t) is given by
the Cartesian distance |~ab(t)−~af (t)| of the associated three dimensional Bloch vectors,
from (5.16) it follows that Eq. (5.11) can be expressed as

H(ρb(t), ρf (t)) =
1

2
− 1

4

{[
(e−κf t − e−κbt)az(0) + a(f)

z (∞)(1− e−κf t)

−a(b)
z (∞)(1− e−κbt)

]2

+ (e−κf t/2 − e−κbt/2)2
(
|~a(0)|2 − a2

z(0)
)}1/2

. (5.18)
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A close inspection reveals that all pure input states ρ(0) with the same initial value of
az(0) achieve the same performance (this simply follows from the symmetry of Eq.
(5.14) around the z-axis). Furthermore, and most importantly, for all assigned values
of t and az(0), one may notice that the associated HEP can be reduced by setting the
length of ~a(0) at its maximum 1, i.e. imposing the initial state of the probe to be pure.
In other words, mixedness in the input state is always detrimental, implying that, in
order to find the best input configuration, it is sufficient to restrict the search to the set
of pure states. This leads to

H(ρb(t), ρf (t))
∣∣∣

pure
=

1

2
− 1

4

{[
(e−κf t − e−κbt)az(0) + a(f)

z (∞)(1− e−κf t)

−a(b)
z (∞)(1− e−κbt)

]2

+ (e−κf t/2 − e−κbt/2)2
(
1− a2

z(0)
)}1/2

:= H(t; az(0)) ,

(5.19)

which only depends on time and on the z-component az(0) ∈ [−1, 1] of the unit vector
~a(0). It is worth recalling that fixing az(0) = 1 (az(0) = −1) corresponds to initialize
A into the excited state |1〉 (ground state |0〉) of its local Hamiltonian. On the con-
trary, in the more general pure state scenario we are facing in Eq. (5.19), the condition
|az(0)| < 1 identifies input states of the probe which are proper superpositions of the
energy eigenstates of the model. Our next goal is to minimize H(t; az(0)) with respect
to all possible choices of az(0) and evolution time t, for given values of the temperatures
1/βf and 1/βb. Before doing so, however, we find useful to consider first what happens
when az(0) = 1, a choice that is known to provide the best discriminating strength for
statistical tagging under equal bath temperature assumption, i.e. βf = βb (Farina, Cav-
ina and Giovannetti 2019) [as we will see in Fig. 5.3(b)], and for thermometry (Jevtic
et al. 2015).

5.3.3 Input excited state

Setting az(0) = 1, i.e. assuming A to be initialized in the excited state |1〉 of the model,
Eq. (5.19) reduces to

H(t; 1) =
1

2
− 1

4

∣∣∣e−κf t − e−κbt + a(f)
z (∞)(1− e−κf t)− a(b)

z (∞)(1− e−κbt)
∣∣∣ .(5.20)

For βb = βf ≡ β, we getH(t; 1) = 1
2
− 1

4
nth+1
nth

(e−κt−e−κntht), whose time dependence
is reported in Fig. 5.1 for different choices of 1/β. In the limit of large time t the
error asymptotically approaches 1/2 indicating the failure of the tagging procedure.
Minimum values for the error are instead obtained for an optimal choice of t given by

t̄ = ln(nth)/[2κNb(β)] = ln(nth)/[κ(nth − 1)] , (5.21)
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Fig. 5.1 Plots of the Helstrom error probability (5.20) for the TLS probe case, initialized
in the excited state and setting βb = βf ≡ β, as a function of the measurement time
t. The three curves represent three different bath temperatures: 1/(βω) = 1.5 (black
dotted line), 1/(βω) = 5.5 (red dot-dashed line) and 1/(βω) = 20.5 (blue dashed line).
The inset shows κt̄ of Eq. (5.21) as function of 1/(βω), with t̄ being the time which
minimizes the Helstrom error probability.

whose functional dependence upon temperature is reported in the inset of the figure.
As anticipated in the caption of Table 5.1 the model exhibit no discrimination strength
at zero temperature where H(t; 1)(t) = 1/2, while better discriminating strength is
achieved at high temperatures since in this case nth diverges, and so does the gap be-
tween the bosonic and fermionic thermalization rates.
To include the case βf 6= βb, we then minimize numerically H(t; 1) in (5.20) with
respect to t, as a function of βf and βb. The optimal times t̄ we obtain and the corre-
sponding values of H(t̄; 1) are reported in Fig. 5.2(a) (left and right plots respectively).
For βb ≥ βf (fermionic bath hotter than bosonic bath) the best discrimination is still at-
tained at finite time (t̄ <∞) where A has not achieved full thermalization and is hence
in a non-equilibrium configuration; on the contrary, for βb < βf (fermionic bath cooler
than bosonic bath) it can become more advantageous to discriminate the two channels
by exploiting the steady state properties of the probe, i.e. t̄ = ∞. This happens above
the critical curve that defines the discontinuity in the left contour plot of Fig. 5.2(a). An
analytical treatment of this transition is given in Gianani et al. (2020). We remark that
the core of the above observation remains unchanged when we evaluate the discrimina-
tion efficiency of the process adopting different figures of merit. For instance we can
focus on the quantum Chernoff quantity [see Eq. (2.99)]2

Q(ρb(t), ρf (t)) := minr∈[0,1] Tr[ρrb(t)ρ
1−r
f (t)] . (5.22)

2Whose application to the particular case of qubit states can be found in Calsamiglia et al. (2008).
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κ
t̄
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Fig. 5.2 Panel (a). Left: Study of the optimal measurement time t̄ minimizing the Hel-
strom error probability H(t; 1) of Eq. (5.20) associated to the excited input state of the
probe A (i.e. az(0) = 1), as a function of the bosonic and fermionic bath inverse tem-
peratures βb and βf , using the convenient parametrizations indicated in the plot labels.
The discontinuity in the contour plot is the boundary above which the discrimination is
optimal only if performed on the steady state of the probe (t̄ = ∞ , i.e. e−κt̄ = 0), the
same holding for the pathological case βb = ∞ (tanh(βbω/2) = 1). For all the other
values of the parameters βb and βf the optimal time is finite (t̄ < ∞ , i.e. e−κt̄ > 0).
Right: Corresponding Helstrom probability of error H(t; 1) evaluated at t = t̄. Panel
(b): same calculation as in (a) but using the Chernoff quantity (5.22) instead of the
Helstrom error probability.

The optimal values of t̄ obtained by numerically minimizing (5.22) when initializing A
in the excited state |1〉, are presented in Fig 5.2(b). Consistently, it exhibits a critical
trade-off analogous to the one observed in Fig 5.2(a). We mention that again the same
result is obtained via a Bayesian approach to the problem, suitable for immediate exper-
imental checking (Gianani et al. 2020). This general behavior leads to the conclusion
that, if we restrict the analysis to the case where A is initially set into the excited state,
there are temperature regimes where the optimal discrimination efficiency is attained
only letting the system to reach its equilibrium configuration.
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Fig. 5.3 (a)-(c) Optimization of the HEP H(t; az(0)) of Eq. (5.19) both over time and
over the input state of the probe, the latter being a generic pure state with a certain value
az(0) of the z-component of the Bloch vector. We report the following contour plots
with respect to the bath inverse temperatures βf and βb . The minimum H̄(āz(0)) of the
HEP is achieved at a certain time t̄ (a) and for an optimal value āz(0) of az(0) (b). The
advantage coming from allowing coherent superpositions is presented in (c), where we
show the gap between the (generally overestimated) quantity obtained by restricting the
analysis only to az(0) ∈ {1,−1} and the optimal value H̄(āz(0)) .Notice that for βf , βb
and t̄ we used the convenient parametrizations indicated in the plot labels. (d) Dynam-
ical evolution of H(t; az(0)) for a case (tanh(βfω/2) ≈ 0.68 , tanh(βbω/2) ≈ 0.41)
in which coherent superpositions (āz(0) ≈ −0.42) give better performances than the
energy eigenstates (az(0) ∈ {1,−1}) as input of the probe. Notice that at t ≈ 1.8κ−1

the HEP associated with excited state reaches the worst case value 1/2, indicating zero
susceptibility of the probe.
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5.3.4 Optimal input states of the probe

Next step is to exploit the full domain of possibilities offered by the model, minimizing
the HEP value (5.19) not just with respect to t, but also with respect to the input pure
state of the probe. It hence includes the possibility of using input states which are co-
herent superpositions among the excited and ground states, a situation that is verified
taking pure states with |az(0)| < 1. An indication that such special states could be
of some help in improving the performance of the scheme follows by observing that
for |az(0)| < 1 it is not possible to find times t > 0 such that H(t; az(0)) reaches the
worst case value of 1/2 , corresponding to an absolute impossibility of distinguishing
among the two bath scenarios, a fact that is not generally granted by setting az(0) = ±1

which allows for crossing points between the trajectories ρb(t) and ρf (t). Values of
|az(0)| < 1 can however do much more than this: in some regimes they also give the
absolute best performance we can aim to. In Fig. 5.3 we illustrate the optimization of
the HEP H(t; az(0)) over time and input state of the probe, as a function of the bath
inverse temperatures βf and βb. The first thing to be noticed is that now, at variance
with the input excited state case discussed in Sec. 5.3.3, the optimal times t̄ are always
finite, apart from the asymptotic regimes where the bosonic temperature converges to
zero (i.e. βb → ∞) – compare Fig. 5.3 (a) with the left plot of Fig. 5.2 (a). This
shows that optimality of non-equilibrium probing times is fully restored once we do
not restrict the probe input state to specific conditions. Secondly, denoting by āz(0) the
optimal value of az(0), Fig. 5.3 (b) reveals that, while using energy eigenstates (either
excited or ground states) of the probe as input is often optimal, there is a non trivial
regime of temperatures in which a coherent (|az(0)| < 1) initial preparation is funda-
mental to reach the best performance. More specifically, there is numerical evidence
that whenever the fermionic bath is hotter than the bosonic one (βb ≥ βf ), choosing
the excited state of A as input is still the right choice to provide optimal discrimina-
tion performances (red region in Fig. 5.3 (b)). The situation changes however if the
fermionic bath is cooler than the bosonic one (βb < βf ): here the optimal input choice
depends on the specific values of the temperatures and, in particular, for sufficiently
large βf coherent energy states can dominate (notice also that, for small values of βb,
the optimal input can be the ground state of A - blue region in Fig. 5.3 (b)). The co-
herent advantage is enlightened in Fig. 5.3 (c) in which we show the gap between the
minimum of H(t; az(0)) obtained by restricting the optimization only to az(0) = 1 and
az(0) = −1 and the optimal value H̄(āz(0)) obtained by allowing also energy coherent
preparations. In panel (d) of Fig. 5.3 we finally present as an example the temporal
evolution of the HEP for a specific choice of the temperatures that admits as optimal
the value āz(0) ≈ −0.42 that identifies a coherent superposition of energy eigenstates.
In such a plot we show H(t; āz(0)) aside with the HEP values H(t;−1) and H(t; 1)
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associated with the ground and the excited input state of A. Notice that while for small
t, H(t;−1) and H(t; 1) perform better than H(t; āz(0)), in the long run the latter gives
the lowest HEP values and leads to the identification of the optimal time as t̄ ≈ 1.6κ−1

[see Eq. (5.37) for more on this]. Notice also that at t ≈ 1.8κ−1, we haveH(t; 1) = 1/2

indicating that at this special time the probe intialized into the excited state looses all
its ability in discriminating between the two alternative hypothesis: on the contrary, as
anticipated in the introductory paragraphs of the section, H(t; āz(0)) remains strictly
below the 1/2 value for all positive t.

5.3.5 Analytical treatments

We present now an attempt of analytically minimizing the HEP (5.19) both over time
and input state of A. We first explicitly show that by considering coherence in the initial
preparation allows to avoid crossing points among the trajectories ρb(t) and ρf (t), then
we illustrate how to optimize the search of the minimum.

5.3.5.1 Loss of susceptibility under non-coherent inputs

The worst discrimination scenario is attained when HEP reaches its maximum value
1/2 and we cannot recover information on the nature of the bath from the state of A.
From Eq. (5.11) this happens when ‖ρb(t)− ρf (t)‖1 = 0, i.e. when the two trajectories
intercept. From Eq. (5.19) we observe that this can only occur when





(e−κf t/2 − e−κbt/2)2(1− a2
z(0)) = 0 ,

(e−κf t − e−κbt)az(0) + a
(f)
z (∞)(1− e−κf t)− a(b)

z (∞)(1− e−κbt) = 0 .

(5.23)

However, setting |az(0)| < 1, i.e. allowing the input state of A to be a non trivial
superposition of the energy eigenstates, this corresponds to





e−κf t/2 = e−κbt/2 ,

(a
(f)
z (∞)− a(b)

z (∞))(1− e−κbt) = 0 ,

(5.24)

which can only be fulfilled for t =∞ and βf = βb. On the contrary, setting az(0) = ±1

(i.e forcing the probe to be in one of the two energy eigenstates of the system), the
system (5.23) reduces to a single equation

±(e−κf t − e−κbt) + a(f)
z (∞)(1− e−κf t)− a(b)

z (∞)(1− e−κbt) = 0 , (5.25)

which, depending on the specific values of βb and βf may allow for non trivial t > 0

solutions, indicating complete loss of susceptibility of the probe.
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5.3.5.2 Full optimization

We are interested in determining the minimum value of Eq. (5.19) with respect to all
possible inputs (i.e. all possible choices of az(0) ∈ [−1, 1]) and all possible times
t ≥ 0. According to (5.11) this is formally equivalent to determining the maximum of
‖ρb(t)− ρf (t)‖1 which in this case is given by the function

D(t; az(0)) := ‖ρb(t)− ρf (t)‖1 ={
[(e−κf t − e−κbt)az(0) + a

(f)
z (∞)(1− e−κf t)− a(b)

z (∞)(1− e−κbt)]2

+(e−κf t/2 − e−κbt/2)2(1− a2
z(0))

}1/2

. (5.26)

The best way to approach the problem seems to first optimize with respect to az(0) for
fixed t and then maximize with respect to t. Again, we call (t̄, āz(0)) the point where
the absolute maximum value of D2(t; az(0)) is attained. Hence, let us fix t and rewrite
D2(t; az(0)) as a parabola in az(0) :

D2(t; az(0)) = f 2
−(f 2

+ − 1)a2
z(0) + 2Af−f+az(0) + f 2

− + A2 , (5.27)

with

f± := e−
κt
2 ± e− κt2y , A := −x(1− e−κt) + y(1− e−κty ) , (5.28)

where we used the coordinates

x := −a(f)
z (∞) = tanh(βfω/2) , y := −a(b)

z (∞) = tanh(βbω/2) , (5.29)

to express the dependence upon βb and βf . Since az(0) ∈ [−1, 1] , āz(0) is either one
of the extrema −1 and 1 or the abscissa of the vertex V = Af+/[f−(1 − f 2

+)] of the
parabola (5.27). The condition for the vertex to be the maximum is that the parabola is
concave down and that the abscissa of the vertex strictly falls inside the interval ]−1, 1[ :

f−
f+

(1− f 2
+) > |A| ⇔ āz(0) = V ∈]− 1, 1[ . (5.30)

On the other hand, its violation imposes that the maximum is one of the extrema de-
pending on the sign of A:

f−
f+

(1− f 2
+) ≤ |A| ⇔ āz(0) = sign[A] . (5.31)

The equation above holds for A 6= 0, when A = 0 the points az(0) = 1 and az(0) =

−1 are two equivalent maxima (still provided that the function is concave up). In the
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end, the choice of the maximum is among D2(t1;Vt1), D2(t2; 1), D2(t2;−1) for all t1
satisfying the inequality in (5.30) and t2 satisfying the inequality in (5.31). The explicit
values of the three quantities above can be computed from Eq. (5.27) and read:

D2(t1;Vt1) =
f 2
−(t1)(f 2

+(t1)− 1)− A2(t1)

f 2
+(t1)− 1

, (5.32)

D2(t2; 1) = (f+(t2)f−(t2) + A(t2))2 , (5.33)

D2(t2;−1) = (f+(t2)f−(t2)− A(t2))2 . (5.34)

Such maximization procedure yields the point (t̄, āz(0)) we were searching for fixed x
and y. However, notice that in general (for both the cases in which the concavity is up
and down) the sign of A determines the sign of āz(0),

sign[āz(0)] = sign[A] , (5.35)

implying for instance that when the bosonic bath is not hotter than the fermionic bath,
i.e. in the region

y ≥ x⇒ āz(0) > 0 , (5.36)

in agreement with Fig. 5.3 (b). Moreover, condition (5.30) cannot be satisfied for t
sufficiently close to 0 such that

κt/2

ln
(

1
1−exp(−κt/2)

) ≤ y ⇒ āz(0) = sign[A] . (5.37)

This short time condition leads to the conclusion that the coherent advantage can occur
only in a “long run”, but still out-of-equilibrium, as previously illustrated in Fig. 5.3(d).
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5.4 Quantum harmonic oscillator probe

Assume next the probeA to be a quantum harmonic oscillator, formally setting ζp=QHO =

a in Eq. (5.5), with a and a† being the ladder operators of the bosonic mode, see
Eq. (2.57). For this kind of probe, in the absence of the input energy limitation, the
error probability can be brought to reach arbitrarily small values because of the possi-
bility of injecting arbitrarily large initial energy into the system. Clearly an analogous
effect cannot be found when probing the bath with a TLS due to the limited Hilbert
space of the latter. To simplify the analysis, we restrict here our attention to the case

βf = βb := β . (5.38)

Under these settings, an explicit integration of Eq. (5.5) can be easily obtained in the
case of Gaussian input states (Weedbrook et al. 2012, Serafini 2017, Ferraro et al.
2005) discussed in Sec. 2.2.3.1, having vehemently pursued experimental realizations
(see e.g. Laurat et al. (2005), Adesso et al. (2014)). As described in Sec. 2.2.3.1, they
can be expressed as displaced, squeezed thermal states of the form

ρ(0) = D†(ξξξ0)S†(χ0)
e−β̄0ωa†a

Z(β̄0)
S(χ0)D(ξξξ0) , (5.39)

Z(β̄0) := Tr[e−β̄0ωa†a] being a normalization factor [see Eq. (2.56)]. The dynamics of
these inputs is completely determined by the first and second moments of the system
annihilation and creation operators which, by direct integration, yield the following
expressions

〈a(t)〉 = 〈a(0)〉e−κ2 /n(q)
th te−iω0t , (5.40)

〈a2(t)〉 = 〈a2(0)〉e−κ/n(q)
th te−2iω0t , (5.41)

〈a†a(t)〉 = 〈a†a(0)〉e−κ/n(q)
th t +Nb(β)(1− e−κ/n(q)

th t) , (5.42)

with 〈a†a(t)〉 exhibiting a transition rate renormalization factor 1/n
(q)
th , holding 1 for

q = b and 1/nth for q = f , that is the inverse of the one observed for TLS model as
anticipated in Table 5.1 [nth = coth(βω/2), see Eq. (5.10)], and with the initial values
in Eqs. (5.40)-(5.42) being determined in terms of the parameters of the state (5.39) as
previously detailed in Eqs. (2.81)-(2.85).
We immediately notice that, once more, at zero temperature (nth = 1) the probe dynam-
ics is insensitive to the bath statistics. The same occurs for generic β in the asymptotic
limit t→∞where, independently of the initial state and of the statistics of the bath, the
system obtains an average number of photons 〈a†a(∞)〉 = Nb(β) and the coherences
disappear: 〈a(∞)〉 = 〈a2(∞)〉 = 0.
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As a measure of distinguishability of the associated ρb(t) and ρf (t) counterparts of the
input (5.39) we utilize the quantum Chernoff quantity (2.99) for which a convenient
formula for Gaussian states is known (Calsamiglia et al. 2008, Weedbrook et al. 2012,
Pirandola and Lloyd 2008), as reported in Eq. (2.100) of Sec. 2.3.2.1. When the initial
state has zero squeezing (χ0 = 0), Eq. (2.100) assumes the simplified form

Qr(t) =
2 Nβ̄b,r Nβ̄f ,1−r
νβ̄br + νβ̄f (1−r)

e
− |δδδ|2
νβ̄br

+νβ̄f (1−r) , (5.43)

with

|δδδ|2 = |ξξξ0|2
(
e−

κ
2
t − e−κ2 t/nth

)2
, (5.44)

νβ̄qr = 2
1[

1/Nb(β̄q) + 1
]r − 1

+ 1 ,

Nβ̄q ,r =
1[

1 +Nb(β̄q)
]r −

[
Nb(β̄q)

]r ,

Nb(β̄q) = Nb(β̄0)e−κ/n
(q)
th t +Nb(β)

(
1− e−κ/n(q)

th t
)
.

Notice that if we take initial state of the probe to be the ground state, i.e. ξξξ0 = 0 and
β̄0 →∞, the first moments vanish, i.e. δδδ(t) = 0, andNb(β̄q) = Nb(β)

(
1− e−κ/n(q)

th t
)
.

For β̄0 = β and ξξξ0 6= 0, instead, the resulting expression for Qr(t) (5.43) is particularly
compact: Qr(t) = exp

{
− |δδδ(t)|2

2
[1 + 2Nb(β)−Nb(β)fr]

}
, with fr :=

(
1 + 1

Nb(β)

)r
+

(
1 + 1

Nb(β)

)1−r
and δδδ(t) := ξξξ0

(
e−

κ
2
t − e−κ2 t/nth

)
. In this case the minimum of Qr(t)

can be easily shown to be attained for r = 1/2. Hence we get

Q(t) = exp

{
−1

2

[√
Nb(β) + 1−

√
Nb(β)

]2

|δδδ(t)|2
}
, (5.45)

which can now be optimized with respect to t leading to the analytical expression

t̄ = ln(nth)/(κNf (β)) = 2nth ln(nth)/(κ(nth − 1)) , (5.46)

that mimics the one observed in Eq. (5.21) for the TLS analysis. Feeding this into
Eq. (5.45) the resulting expression can now be optimized with respect to the bath tem-
perature 1/β, giving Nb(βbest) ≈ 1.96 corresponding to values t̄βbest

≈ 4/κ and

Q(t̄βbest
) = exp(−Γ |ξξξ0|2) , (5.47)

with Γ ≈ 0.0145.

129



5.5 Conclusions

Statistical tagging (Farina, Cavina and Giovannetti 2019) and, more generally, bath dis-
crimination, is a simple yet insightful instance of the possibility of indirectly probing
an environment. In this setting, information about the bath structure are retrieved via
measurements on a quantum probe which has interacted with the bath up to a selected
measurement time t̄ . This approach reveals how different properties of the bath affect
the nature of the optimal discrimination procedures. This is clear in the tagging con-
text we presented in this Chapter (Farina, Cavina and Giovannetti 2019, Gianani et al.
2020): a thermal bath has an unknown statistics - fermionic or bosonic - that we want
to guess, with the additional information of knowing the respective temperatures - 1/βf

and 1/βb - associated to the two bath instances (Gianani et al. 2020). Here the quantum
nature of the problem is manifested both in the statistical properties of the bath and in
the coherence of a single-qubit probe. For input energy eigenstates, i.e. when no ini-
tial coherence is present, our inspection has revealed a transition between temperature
regimes in which either equilibrium - t̄→∞ - or non-equilibrium states - t̄ <∞ - are
optimal. States with quantum coherence, instead, do not display such transition - i.e.
non-equilibrium conditions are generally optimal - and only their inclusion allows to
reach the best discrimination capability.
The analysis has been then extended to the case of a quantum harmonic oscillator probe
in the symplified framework βb = βf (Farina, Cavina and Giovannetti 2019). For this
kind of probe, in the absence of the input energy limitation and, hence, at variance with
the qubit probe, the error probability can be brought to reach arbitrarily small values
because of the possibility of injecting arbitrarily large initial energy into the system,
possibly in a coherent way (cfr. Eq. (5.45) and related results).
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CHAPTER 6

General conclusions

Motivated by the growing interest in the field of open quantum systems, we analyzed the
way a generic quantum object is microscopically influenced by the presence of a ther-
mal environment, studying specific implementations and proposing protocols aimed to
exploit this kind of sensitivity for quantum technology. After the Literature Review
Chapter 2, the thesis was divided into three macro-areas - Chapters 3, 4 and 5 - each
containing a summary of the corresponding main conclusions - specifically, Sections
3.4, 4.5 and 5.5. In Chapter 3, we started from the non-positivity issue related to the
Redfield equation, curing it of the strict amount that is necessary via coarse-grain aver-
aging (Farina and Giovannetti 2019). We then applied this methodology in the context
of dissipative multipartite systems where the local vs global debate is of interest in the
recent and current literature (see, e.g., Rivas et al. (2010), Hofer et al. (2017), González
et al. (2017), Cattaneo et al. (2019)). Beyond finding useful the application of the “CP-
Redfield” equation, we also successfully tested a sensible convex-mixture of the local
and global solutions based on the timescale separation of the two strategies (Farina et al.
2020). The local approach has been then applied in the context of quantum batteries
(Andolina et al. 2018) - Chapter 4 - providing one of the first attempts of schematizing
the energy and ergotropy charging in an open setting and paying particular attention
to the interplay between coherent and incoherent energy supply mechanisms (Farina,
Andolina, Mari, Polini and Giovannetti 2019). The sensitivity of a quantum system to
its surroundings has been finally exploited in the context of statistical tagging (Farina,
Cavina and Giovannetti 2019, Gianani et al. 2020) - Chapter 5 - where one aims to
guess the quantum statistics (fermionic or bosonic) of a thermal bath of interest. Enter-
ing hence in the framework of quantum metrology and quantum state discrimination,
we treated the cases of qubit and harmonic oscillator probes, observing that, generally,
coherences in the input state of the probe are beneficial for the discrimination capability
and noticing a bosonic advantage in reducing to zero the error probability.
Future developments may concern the study of the performances of the different master
equations in predicting the fluctuations of some quantities of interest, focusing on the
thermodynamic uncertainty relations in the quantum regime (Timpanaro et al. 2019),
and, regarding quantum metrology, novel efforts may be addressed to build up proper
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distances between quantum trajectories, hence not restricting to single-shot measure-
ments.
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Gröblacher, S., Trubarov, A., Prigge, N., Cole, G., Aspelmeyer, M. and Eisert, J. (2015),
‘Observation of non-Markovian micromechanical brownian motion’, Nature Commu-

nications 6, 7606.
URL: https://doi.org/10.1038/ncomms8606

Haldane, F. D. M. (1991), ‘“Fractional statistics” in arbitrary dimensions: A general-
ization of the Pauli principle’, Phys. Rev. Lett. 67, 937–940.
URL: https://link.aps.org/doi/10.1103/PhysRevLett.67.937

Haroche, S. (2013), ‘Nobel lecture: Controlling photons in a box and exploring the
quantum to classical boundary’, Rev. Mod. Phys. 85, 1083–1102.
URL: https://link.aps.org/doi/10.1103/RevModPhys.85.1083

139

https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1038/nphoton.2007.22
https://link.aps.org/doi/10.1103/PhysRevB.71.153303
https://doi.org/10.1142/S1230161217400108
https://doi.org/10.1088%2F1751-8113%2F49%2F14%2F143001
https://doi.org/10.1088%2F1751-8113%2F49%2F14%2F143001
https://aip.scitation.org/doi/abs/10.1063/1.522979
https://doi.org/10.1038/ncomms8606
https://link.aps.org/doi/10.1103/PhysRevLett.67.937
https://link.aps.org/doi/10.1103/RevModPhys.85.1083


Hartmann, M., Brandão, F. and Plenio, M. (2008), ‘Quantum many-body phenomena
in coupled cavity arrays’, Laser and Photonics Reviews 2(6), 527–556.
URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/lpor.

200810046

Hartmann, R. and Strunz, W. T. (2020), ‘Accuracy assessment of perturbative master
equations: Embracing nonpositivity’, Phys. Rev. A 101, 012103.
URL: https://link.aps.org/doi/10.1103/PhysRevA.101.012103

Helstrom, C. W. (1976), Quantum Detection and Estimation Theory, Vol. 123, Aca-
demic Press, New York.

Hofer, P. P., Perarnau-Llobet, M., Miranda, L. D. M., Haack, G., Silva, R., Brask, J. B.
and Brunner, N. (2017), ‘Markovian master equations for quantum thermal machines:
local versus global approach’, New Journal of Physics 19(12), 123037.
URL: https://doi.org/10.1088%2F1367-2630%2Faa964f

Holevo, A. S. (2012), Quantum Systems, Channels, Information, De Gruyter, Berlin,
Boston.
URL: https://www.degruyter.com/view/title/122902

Horodecki, M. and Oppenheim, J. (2013), ‘Fundamental limitations for quantum and
nanoscale thermodynamics’, Nature Communications 4(1), 1–6.
URL: https://doi.org/10.1038/ncomms3059

Hovhannisyan, K. V., Barra, F. and Imparato, A. (2020), ‘Charging assisted by
thermalization’, Phys. Rev. Research 2, 033413.
URL: https://link.aps.org/doi/10.1103/PhysRevResearch.2.

033413

Hovhannisyan, K. V., Perarnau-Llobet, M., Huber, M. and Acı́n, A. (2013), ‘Entan-
glement generation is not necessary for optimal work extraction’, Phys. Rev. Lett.

111, 240401.
URL: https://link.aps.org/doi/10.1103/PhysRevLett.111.

240401

Ishizaki, A. and Fleming, G. R. (2009), ‘On the adequacy of the Redfield equation and
related approaches to the study of quantum dynamics in electronic energy transfer’, The

Journal of Chemical Physics 130(23), 234110.
URL: https://doi.org/10.1063/1.3155214

Jamiołkowski, A. (1972), ‘Linear transformations which preserve trace and positive
semidefiniteness of operators’, Reports on Mathematical Physics 3(4), 275 – 278.

140

https://onlinelibrary.wiley.com/doi/abs/10.1002/lpor.200810046
https://onlinelibrary.wiley.com/doi/abs/10.1002/lpor.200810046
https://link.aps.org/doi/10.1103/PhysRevA.101.012103
https://doi.org/10.1088%2F1367-2630%2Faa964f
https://www.degruyter.com/view/title/122902
https://doi.org/10.1038/ncomms3059
https://link.aps.org/doi/10.1103/PhysRevResearch.2.033413
https://link.aps.org/doi/10.1103/PhysRevResearch.2.033413
https://link.aps.org/doi/10.1103/PhysRevLett.111.240401
https://link.aps.org/doi/10.1103/PhysRevLett.111.240401
https://doi.org/10.1063/1.3155214


URL: http://www.sciencedirect.com/science/article/pii/

0034487772900110

Jaynes, E. T. and Cummings, F. W. (1963), ‘Comparison of quantum and semiclassi-
cal radiation theories with application to the beam maser’, Proceedings of the IEEE

51(1), 89–109.
URL: http://doi.org/10.1109/PROC.1963.1664

Jeske, J. and Cole, J. H. (2013), ‘Derivation of markovian master equations for spatially
correlated decoherence’, Phys. Rev. A 87, 052138.
URL: https://link.aps.org/doi/10.1103/PhysRevA.87.052138

Jeske, J., Ing, D. J., Plenio, M. B., Huelga, S. F. and Cole, J. H. (2015), ‘Bloch-Redfield
equations for modeling light-harvesting complexes’, The Journal of Chemical Physics

142(6), 064104.
URL: https://doi.org/10.1063/1.4907370

Jevtic, S., Newman, D., Rudolph, T. and Stace, T. M. (2015), ‘Single-qubit thermome-
try’, Phys. Rev. A 91, 012331.
URL: https://link.aps.org/doi/10.1103/PhysRevA.91.012331

Khandelwal, S., Palazzo, N., Brunner, N. and Haack, G. (2020), ‘Critical heat current
for operating an entanglement engine’, New Journal of Physics .
URL: http://iopscience.iop.org/10.1088/1367-2630/ab9983

Kiilerich, A. H., De Pasquale, A. and Giovannetti, V. (2018), ‘Dynamical approach to
ancilla-assisted quantum thermometry’, Phys. Rev. A 98, 042124.
URL: https://link.aps.org/doi/10.1103/PhysRevA.98.042124

Laughlin, R. B. (1983), ‘Anomalous quantum hall effect: An incompressible quantum
fluid with fractionally charged excitations’, Phys. Rev. Lett. 50, 1395–1398.
URL: https://link.aps.org/doi/10.1103/PhysRevLett.50.1395

Laurat, J., Keller, G., Oliveira-Huguenin, J. A., Fabre, C., Coudreau, T., Serafini, A.,
Adesso, G. and Illuminati, F. (2005), ‘Entanglement of two-mode Gaussian states:
characterization and experimental production and manipulation’, Journal of Optics B:

Quantum and Semiclassical Optics 7(12), S577–S587.
URL: https://doi.org/10.1088/1464-4266/7/12/021

Le, T. P., Levinsen, J., Modi, K., Parish, M. M. and Pollock, F. A. (2018), ‘Spin-chain
model of a many-body quantum battery’, Phys. Rev. A 97, 022106.
URL: https://link.aps.org/doi/10.1103/PhysRevA.97.022106

141

http://www.sciencedirect.com/science/article/pii/0034487772900110
http://www.sciencedirect.com/science/article/pii/0034487772900110
http://doi.org/10.1109/PROC.1963.1664
https://link.aps.org/doi/10.1103/PhysRevA.87.052138
https://doi.org/10.1063/1.4907370
https://link.aps.org/doi/10.1103/PhysRevA.91.012331
http://iopscience.iop.org/10.1088/1367-2630/ab9983
https://link.aps.org/doi/10.1103/PhysRevA.98.042124
https://link.aps.org/doi/10.1103/PhysRevLett.50.1395
https://doi.org/10.1088/1464-4266/7/12/021
https://link.aps.org/doi/10.1103/PhysRevA.97.022106


Leggett, A. J., Chakravarty, S., Dorsey, A. T., Fisher, M. P. A., Garg, A. and Zwerger,
W. (1987), ‘Dynamics of the dissipative two-state system’, Rev. Mod. Phys. 59, 1–85.
URL: https://link.aps.org/doi/10.1103/RevModPhys.59.1

Levy, A. and Kosloff, R. (2014), ‘The local approach to quantum transport may violate
the second law of thermodynamics’, EPL (Europhysics Letters) 107(2), 20004.
URL: https://doi.org/10.1209%2F0295-5075%2F107%2F20004

Liao, J.-Q., Gong, Z. R., Zhou, L., Liu, Y.-x., Sun, C. P. and Nori, F. (2010), ‘Control-
ling the transport of single photons by tuning the frequency of either one or two cavities
in an array of coupled cavities’, Phys. Rev. A 81, 042304.
URL: https://link.aps.org/doi/10.1103/PhysRevA.81.042304

Lim, J., Ing, D. J., Rosskopf, J., Jeske, J., Cole, J. H., Huelga, S. F. and Ple-
nio, M. B. (2017), ‘Signatures of spatially correlated noise and non-secular ef-
fects in two-dimensional electronic spectroscopy’, The Journal of Chemical Physics

146(2), 024109.
URL: https://doi.org/10.1063/1.4973975

Lindblad, G. (1976), ‘On the generators of quantum dynamical semigroups’, Commu-

nications in Mathematical Physics 48(2), 119–130.
URL: https://doi.org/10.1007/BF01608499

Lougovski, P., Casagrande, F., Lulli, A. and Solano, E. (2007), ‘Strongly driven one-
atom laser and decoherence monitoring’, Phys. Rev. A 76, 033802.
URL: https://link.aps.org/doi/10.1103/PhysRevA.76.033802

Lörch, N., Bruder, C., Brunner, N. and Hofer, P. P. (2018), ‘Optimal work extraction
from quantum states by photo-assisted Cooper pair tunneling’, Quantum Science and

Technology 3(3), 035014.
URL: https://doi.org/10.1088/2058-9565/aacbf3

Mahan, G. D. (2013), Many-particle physics, Springer Science and Business Media.

Majer, J., Chow, J., Gambetta, J., Koch, J., Johnson, B., Schreier, J., Frunzio, L., Schus-
ter, D., Houck, A. A., Wallraff, A. et al. (2007), ‘Coupling superconducting qubits via
a cavity bus’, Nature 449(7161), 443–447.
URL: https://doi.org/10.1038/nature06184

Mari, A., Farace, A. and Giovannetti, V. (2015), ‘Quantum optomechanical piston
engines powered by heat’, Journal of Physics B: Atomic, Molecular and Optical

Physics 48(17), 175501.
URL: https://doi.org/10.1088%2F0953-4075%2F48%2F17%

2F175501

142

https://link.aps.org/doi/10.1103/RevModPhys.59.1
https://doi.org/10.1209%2F0295-5075%2F107%2F20004
https://link.aps.org/doi/10.1103/PhysRevA.81.042304
https://doi.org/10.1063/1.4973975
https://doi.org/10.1007/BF01608499
https://link.aps.org/doi/10.1103/PhysRevA.76.033802
https://doi.org/10.1088/2058-9565/aacbf3
https://doi.org/10.1038/nature06184
https://doi.org/10.1088%2F0953-4075%2F48%2F17%2F175501
https://doi.org/10.1088%2F0953-4075%2F48%2F17%2F175501


Marian, P. and Marian, T. A. (2012), ‘Uhlmann fidelity between two-mode Gaussian
states’, Phys. Rev. A 86, 022340.
URL: https://link.aps.org/doi/10.1103/PhysRevA.86.022340

Mohseni, M., Rebentrost, P., Lloyd, S. and Aspuru-Guzik, A. (2008), ‘Environment-
assisted quantum walks in photosynthetic energy transfer’, The Journal of Chemical

Physics 129(17), 174106.
URL: https://doi.org/10.1063/1.3002335

Nielsen, M. A. and Chuang, I. L. (2010), Quantum Computation and Quantum Infor-

mation: 10th Anniversary Edition, Cambridge University Press.

Nussbaum, M. and Szkoła, A. (2009), ‘The Chernoff lower bound for symmetric quan-
tum hypothesis testing’, Ann. Statist. 37(2), 1040–1057.
URL: https://doi.org/10.1214/08-AOS593

Ogawa, T. and Hayashi, M. (2004), ‘On error exponents in quantum hypothesis testing’,
IEEE Transactions on Information Theory 50(6), 1368–1372.
URL: https://doi.org/10.1109/TIT.2004.828155

Olivares, S. (2012), ‘Quantum optics in the phase space’, The European Physical Jour-

nal Special Topics 203(1), 3–24.
URL: https://doi.org/10.1140/epjst/e2012-01532-4

Palma, G. M., Suominen, K.-a. and Ekert, A. (1996), ‘Quantum computers and
dissipation’, Proceedings of the Royal Society of London. Series A: Mathematical,

Physical and Engineering Sciences 452(1946), 567–584.
URL: https://royalsocietypublishing.org/doi/abs/10.1098/

rspa.1996.0029

Paris, M. G. A. (2009), ‘Quantum estimation for quantum technology’, International

Journal of Quantum Information 07(supp01), 125–137.
URL: https://doi.org/10.1142/S0219749909004839

Paul, H. (1982), ‘Photon antibunching’, Rev. Mod. Phys. 54, 1061–1102.
URL: https://link.aps.org/doi/10.1103/RevModPhys.54.1061

Pauli, W. (1940), ‘The connection between spin and statistics’, Phys. Rev. 58, 716–722.
URL: https://link.aps.org/doi/10.1103/PhysRev.58.716

Pekola, J. P., Suomela, S. and Galperin, Y. M. (2016), ‘Finite-size bath in qubit thermo-
dynamics’, Journal of Low Temperature Physics 184(5-6), 1015–1029.
URL: https://doi.org/10.1007/s10909-016-1618-5

143

https://link.aps.org/doi/10.1103/PhysRevA.86.022340
https://doi.org/10.1063/1.3002335
https://doi.org/10.1214/08-AOS593
https://doi.org/10.1109/TIT.2004.828155
https://doi.org/10.1140/epjst/e2012-01532-4
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1996.0029
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1996.0029
https://doi.org/10.1142/S0219749909004839
https://link.aps.org/doi/10.1103/RevModPhys.54.1061
https://link.aps.org/doi/10.1103/PhysRev.58.716
https://doi.org/10.1007/s10909-016-1618-5


Peropadre, B., Zueco, D., Wulschner, F., Deppe, F., Marx, A., Gross, R. and Garcı́a-
Ripoll, J. J. (2013), ‘Tunable coupling engineering between superconducting res-
onators: From sidebands to effective gauge fields’, Phys. Rev. B 87, 134504.
URL: https://link.aps.org/doi/10.1103/PhysRevB.87.134504

Pirandola, S. and Lloyd, S. (2008), ‘Computable bounds for the discrimination of Gaus-
sian states’, Phys. Rev. A 78, 012331.
URL: https://link.aps.org/doi/10.1103/PhysRevA.78.012331

Plenio, M. B. and Huelga, S. F. (2008), ‘Dephasing-assisted transport: quantum
networks and biomolecules’, New Journal of Physics 10(11), 113019.
URL: https://doi.org/10.1088%2F1367-2630%2F10%2F11%

2F113019

Prokof’ev, N. V. and Stamp, P. C. E. (2000), ‘Theory of the spin bath’, Reports on

Progress in Physics 63(4), 669–726.
URL: https://doi.org/10.1088%2F0034-4885%2F63%2F4%2F204

Purkayastha, A., Dhar, A. and Kulkarni, M. (2016), ‘Out-of-equilibrium open quantum
systems: A comparison of approximate quantum master equation approaches with exact
results’, Phys. Rev. A 93, 062114.
URL: https://link.aps.org/doi/10.1103/PhysRevA.93.062114

Pusz, W. and Woronowicz, S. L. (1978), ‘Passive states and KMS states for general
quantum systems’, Communications in Mathematical Physics 58(3), 273–290.
URL: https://doi.org/10.1007/BF01614224

Redfield, A. G. (1957), ‘On the theory of relaxation processes’, IBM Journal of Re-

search and Development 1(1), 19–31.
URL: https://ieeexplore.ieee.org/abstract/document/5392713

Riedel, M. F., Binosi, D., Thew, R. and Calarco, T. (2017), ‘The european quantum
technologies flagship programme’, Quantum Science and Technology 2(3), 030501.
URL: https://doi.org/10.1088%2F2058-9565%2Faa6aca

Rivas, A. (2017), ‘Refined weak-coupling limit: Coherence, entanglement, and non-
markovianity’, Phys. Rev. A 95, 042104.
URL: https://link.aps.org/doi/10.1103/PhysRevA.95.042104
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Appendix A

Solving the master equation for the two-qubit model

With reference to Sec. 4.3, the interaction picture ME for the two-qubit model reads as

˙̃ρAB(t) = −i
[
g
(
σ−Aσ

+
B + σ+

Aσ
−
B

)
+ F (σ+

A + σ−A) , ρ̃AB(t)
]
−

+

κ(1 +Nb)D[σ−A ] [ρ̃AB(t)] + κNbD[σ+
A ] [ρ̃AB(t)] . (A.1)

with D[x] as in (4.11). In order to solve the above equation we expand all the operators
appearing in it by utilizing a global basis set for the two-qubit system {||i〉〉}i∈{1,...,4}.
We choose

||1〉〉 = |1〉A |1〉B , ||2〉〉 = |1〉A |0〉B , (A.2)

||3〉〉 = |0〉A |1〉B , ||4〉〉 = |0〉A |0〉B ,

where |1〉A(B) and |0〉A(B) are the eigenvectors of the σzA(B) operators with eigenvalues
+1 and−1, respectively. Accordingly, we write ρ̃AB(t) =

∑4
i,j=1 rij(t) ||i〉〉 〈〈j||, or, in

matrix form,

ρ̃AB(t) ≡




r11(t) r12(t) r13(t) r14(t)

r21(t) r22(t) r23(t) r24(t)

r31(t) r32(t) r33(t) r34(t)

r41(t) r42(t) r43(t) r44(t)




, (A.3)

rij(t) being expansion coefficients. In this representation, the ladder operators σ−A , σ
+
A

of the subsystem A can instead be written as

σ−A ≡
(

0 0

12 0

)
(A.4)

σ+
A ≡

(
0 12

0 0

)
(A.5)
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where 0 is the 2 × 2 matrix with all zero entries. Finally, the system Hamiltonian is
represented by

g
(
σ−Aσ

+
B + σ+

Aσ
−
B

)
+ F (σ+

A + σ−A) ≡




0 0 F 0

0 0 g F

F g 0 0

0 F 0 0




. (A.6)

With these choices, Eq. (A.1) translates into a first-order system of ordinary differen-
tial equations in the 16 unknown (generally complex) functions rij(t), which has to be
solved under the initial conditions (4.3) corresponding to rij(0) = 1 for i = j = 4 and
zero otherwise.

Explicit expressions for the local energies of A and B can be obtained once the
operators σ(A)

z and σ(B)
z are represented in the basis (A.2). It turns out that they take the

following forms

EA(τ) =
ω0

2
[r11(τ) + r22(τ)− r33(τ)− r44(τ) + 1] (A.7)

and
EB(τ) =

ω0

2
[r11(τ)− r22(τ) + r33(τ)− r44(τ) + 1] . (A.8)

Finally, the ergotropy of B reads as following

EB(τ) =
ω0

2
{
√

4|r12 + r34|2 + [2(r11 + r33)− 1]2 + 2(r11 + r33)− 1} . (A.9)

Finally, we stress that the approach reported here is equivalent to the one presented in
Sec. 4.3, cfr. Eqs. (4.32)-(4.35). Indeed, due to the fact that the state ρ̃AB(t) is hermitian
and that its trace is 1, in equation (A.1) one has, effectively, 15 unknown real functions,
same as in (4.32) (considering real and imaginary components of the 9 unknown average
values appearing in it and the fact that 3 of them are purely real).
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