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A maximal restriction theorem
and Lebesgue points of functions in F(Lp)

Detlef Müller, Fulvio Ricci and James Wright

Abstract. Fourier restriction theorems, whose study had been initi-
ated by E.M. Stein, usually describe a family of a priori estimates of
the Lq-norm of the restriction of the Fourier transform of a function f
in Lp(Rn) to a given subvariety S, endowed with a suitable measure. Such
estimates allow to define the restriction Rf of the Fourier transform of an
Lp-function to S in an operator theoretic sense. In this article, we begin
to investigate the question what is the “intrinsic” pointwise relation be-
tween Rf and the Fourier transform of f , by looking at curves in the plane,
for instance with non-vanishing curvature. To this end, we bound suitable
maximal operators, including the Hardy–Littlewood maximal function of
the Fourier transform of f restricted to S.

1. Introduction

The restriction problem for the Fourier transform in Rn was introduced by Elias
M. Stein, who proved the first result in any dimension [2], p. 28, later improved
by the sharper Stein–Tomas method [5]. Since then more and more sophisticated
techniques have been introduced to attack the still open problems in this area,
concerning the maximal range of exponents for which the restriction inequality
holds.

In two-dimensions, the restriction estimate for the circle had been proved al-
ready, in an almost optimal range of exponents, by Fefferman and Stein [2], p. 33.
Shortly later, sharp estimates were obtained by Zygmund [8] for the circle and
by Carleson and Sjölin [1] and Sjölin [3] for a class of curves including strictly
convex C2 curves.

The present paper does not mean to proceed along these lines, but rather to pro-
pose a reflection on the measure-theoretic meaning of the restriction phenomenon
and possibly suggest some related problems.

Mathematics Subject Classification (2010): 42B10, 42B25.
Keywords: Fourier restriction, maximal functions.



694 D. Müller, F. Ricci and J. Wright

A restriction theorem is usually meant as a family of apriori inequalities

(1.1)
∥∥f̂|S∥∥Lq(S,μ)

≤ C
∥∥f‖Lp(Rn) ,

where f ∈ S(Rn), S is a surface with appropriate curvature properties, and μ a
suitably weighted finite surface measure on S. The validity of such an inequality
implies the existence of a bounded restriction operator R : Lp(Rn) −→ Lq(S, μ)

such that Rf = f̂|S when f is a Schwartz function.

In general terms our question is: assuming that (1.1) holds, what is the “in-

trinsic” pointwise relation between Rf and f̂ for a general Lp-function f?
A partial answer follows directly from the restriction inequality. Assume that

(1.1) holds for given p, q. This forces the condition p < 2, so that f̂ ∈ Lp′
. Fix

an approximate identity χε(x) = ε−nχ(x/ε) with χ ∈ S(Rn),
∫
χ = 1. Then, with

ψ = F−1χ,

f̂ ∗ χε = f̂ψ(ε·)
is well defined on S and coincides with R(

fψ(ε·)). Moreover, fψ(ε·) → f in

Lp(Rn), so that (f̂ ∗ χε)|S → Rf in Lq(S, μ). Hence, for a subsequence εk → 0,

the χεk -averages of f̂ converge pointwise to Rf μ-a.e.
It is natural to ask if the limit over all ε exists μ-a.e. We give positive answers

in two dimensions to this and related questions.
We recall that, for a curve S in the plane, necessary conditions on p, q for

having (1.1) are p < 4/3 and p′ ≥ 3q and that they are also sufficient when S is C2

with nonvanishing curvature and μ is the arclength measure, or, more generally,
when S is just C2 and convex, and μ is the affine arclength measure [3]. Notice that
the two measures differ by a factor comparable to the 1/3 power of the curvature,
so that the affine arclength is concentrated on the set of points with nonvanishing
curvature and ordinary arclength is damped near these points.

Theorem 1.1. Let S be a C2 regular curve in R2 and f ∈ Lp(R2).

(i) Assume that 1 ≤ p < 4/3 and let χ ∈ S(R2) with
∫
χ = 1. Then, with respect

to arclength measure, for almost every x ∈ S at which the curvature does not
vanish, limε→0 f̂ ∗ χε(x) = Rf(x).

(ii) Assume that 1 ≤ p < 8/7. Then, with respect to arclength measure, almost

every x ∈ S at which the curvature does not vanish is a Lebesgue point for f̂
and the regularized value of f̂ at x coincides with Rf(x).

To be more explicit, the latter statement says that at μ-almost every x ∈ S,

lim
r→0

1

|Br(x)|
∫
Br(x)

|f̂(y)−Rf(x)| dy = 0,

where Br(x) denotes the Euclidean ball in R2 of radius r > 0 centered at x.
Several questions remain open, regarding extensions to less regular curves, to

other values of p in the range 8/7 ≤ p < 4/3, or to higher dimensions. We just
mention here that, in dimension d ≥ 3, our method gives results for a class of
curves including Γ(t) = (t, t2, . . . , td).
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Theorem 1.1 is a direct consequence of certain “maximal restriction theorems”
concerning restrictions to S of truncated maximal functions of the Fourier trans-
form. Since maximal restriction inequalities may also have an intrinsic interest, we
go beyond what is strictly needed to deduce Theorem 1.1 and consider (truncated)
two-parameter maximal functions, such as the strong maximal function, relative
to any coordinate system in R2.

In Theorem 2.1 below we prove that, for a convex C2 curve, the two-parameter
maximal operator defined in (2.1), is Lp-Lq bounded for p, q in the full range of
validity of the restriction theorem, with the Lq-norm on S relative to affine arc-
length measure.

In Corollary 2.3 we deduce the same Lp-Lq estimates, but in the smaller range
p < 8/7, for the truncated strong maximal function, which does not only control

averages of f̂ , but also those of |f̂ |.
Notice that the convexity condition imposed in Theorem 2.1 can be removed in

passing to the more qualitative Theorem 1.1 since, for a general C2 regular curve,
the subset of points of nonvanishing curvature is a countable union of disjoint
convex sub-arcs.

The proof of Theorem 2.1 is based on the Kolmogorov–Seliverstov–Plessner
linearization method [7], Ch. XIII. This leads to proving uniform estimates for a
family of linear operators to which a modification of the basic approach of [1], [8]
for curves in R2 can be applied. For this reason our method is limited to the
two-dimensional context. Unfortunately, the usual TT ∗ method of Stein–Tomas
does not seem to be applicable, even for the Hardy–Littlewood maximal function.

We would like to point the reader to a recent paper of M. Vitturi [6], where
a maximal restriction theorem is proved for the sphere in dimension n ≥ 3, with
p ≤ 4/3 (resp. p ≤ 8/7).

2. The strong maximal function of f̂ along a curve

Let S = {Γ(t) : t ∈ I}, where Γ is a C2 curve in R2 with nonnegative signed
curvature, i.e., with κ(t) = det(Γ′,Γ′′)(t) ≥ 0. Denote by dμ(t) = κ1/3(t) dt the
pull-back to I of the affine arclength measure on S.

We assume for simplicity that S is parametrized by the x-coordinate as Γ(x) =(
x, ϕ(x)

)
, i.e., that S is the graph of a convex C2 function ϕ on a bounded inter-

val I. Notice that the measure μ is concentrated on the set where κ = ϕ′′ > 0.

We consider the two-parameter maximal function1

(2.1) Mf(x) = sup
0<ε′,ε′′<1

∣∣∣ ∫ f̂
(
x+ s, ϕ(x) + t

)
χε′(s)χε′′ (t) ds dt

∣∣∣ ,
where χε(·) = ε−1χ(·/ε), with χ ∈ S(R), even, with ∫

χ = 1.

1Theorem 2.1 also holds if χ ⊗ χ is replaced by a general χ ∈ S(R2), because this can be
expanded into a rapidly decreasing series

∑
j χ

′
j ⊗ χ′′

j .
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Theorem 2.1. The inequality

(2.2) ‖Mf‖Lq(I,μ) ≤ Cp ‖f‖Lp(R2) ,

holds for 1 ≤ p < 4/3 and p′ ≥ 3q.

Proof. We may and shall assume f ∈ S(R2) and, since μ is finite, p′ = 3q by
Hölder’s inequality. We linearize M by defining, for fixed measurable functions
ε′(x), ε′′(x) on I with values in (0, 1),

(2.3)

Rε′,ε′′f(x) =

∫
f̂
(
x+ s, ϕ(x) + t

)
χε′(s)χε′′ (t) ds dt

=

∫
f(ξ, η)

∫
e−i(ξ(x+s)+η(ϕ(x)+t)) χε′(s)χε′′ (t) ds dt dξ dη

=

∫
χ̂
(
ε′(x)ξ

)
χ̂
(
ε′′(x)η

)
e−i(ξx+ηϕ(x)) f(ξ, η) dξ dη .

The formal adjoint of Rε′,ε′′ is

(2.4)

Eε′,ε′′g(ξ, η) = R∗
ε′,ε′′g(ξ, η)

=

∫
I

χ̂
(
ε′(x)ξ

)
χ̂
(
ε′′(x)η

)
ei(ξx+ηϕ(x)) g(x)κ1/3(x) dx .

It suffices to prove the inequality

(2.5) ‖Eε′,ε′′g‖Lp′(R2) ≤ Cp ‖g‖Lq′(I,μ) , g ∈ C∞
c (I) ,

uniformly in the functions ε′(x), ε′′(x). We introduce a truncation in ξ and η, in
order to gain decay at infinity for Eε′,ε′′g. Fixing another function χ0 smooth on R,
supported in [−2, 2] and equal to 1 on [−1, 1], we define, for λ� 1,

(2.6) Eλ
ε′,ε′′g(ξ, η)=χ0

( ξ
λ

)
χ0

( η
λ

)∫
I

χ̂
(
ε′(x)ξ

)
χ̂
(
ε′′(x)η

)
ei(ξx+ηϕ(x))g(x)κ1/3(x) dx.

It will then suffice to prove (2.5) with Eε′,ε′′ replaced by Eλ
ε′,ε′′ , uniformly in

ε′(x), ε′′(x) and λ.
We start from the identity

(2.7) ‖Eλ
ε′,ε′′g‖p′ =

∥∥(Eλ
ε′,ε′′g)

2‖1/2p′/2 .

If U is the open subset of I where κ(x) > 0, the measure μ is concentrated
on U , so we have

(Eλ
ε′,ε′′g)

2(ξ, η) = χ2
0

( ξ
λ

)
χ2
0

(η
λ

) ∫
U2

χ̂
(
ε′(x)ξ

)
χ̂
(
ε′′(x)η

)
χ̂
(
ε′(y)ξ

)
χ̂
(
ε′′(y)η

)
× ei(ξ(x+y)+η(ϕ(x)+ϕ(y))g(x)κ1/3(x) g(y)κ1/3(y) dx dy

= χ2
0

( ξ
λ

)
χ2
0

(η
λ

)∫
U2

χ̂
(
ε′(x)ξ

)
χ̂
(
ε′′(x)η

)
χ̂
(
ε′(y)ξ

)
χ̂
(
ε′′(y)η

)
× ei(ξ(x+y)+η(ϕ(x)+ϕ(y))G0(x, y) dx dy ,

with G0 = (gκ1/3)⊗ (gκ1/3).
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We want to make the change of variables z1 = x + y, z2 = ϕ(x) + ϕ(y). It
follows from the convexity of ϕ that the map Φ(x, y) =

(
x + y, ϕ(x) + ϕ(y)

)
is

injective on each of the subsets U2
± = {(x, y) ∈ U2 : x ≶ y} and that detΦ′(x, y) =

ϕ′(y)− ϕ′(x) 
= 0 on U2.
With A = Φ(U+) = Φ(U−), we set, for z = (z1, z2) ∈ A,

(2.8)

(
x±(z), y±(z)

)
= (Φ|

U2±
)−1(z)

ε′1
±
(z) = ε′

(
x±(z)

)
, ε′2

±
(z) = ε′

(
y±(z)

)
ε′′1

±
(z) = ε′′

(
x±(z)

)
, ε′′2

±
(z) = ε′′

(
y±(z)

)
G±(z) =

G0

(
x±(z), y±(z)

)∣∣ϕ′(x±(z))− ϕ′(y±(z))∣∣ .
Then

Eλ
ε′,ε′′g(ξ, η)

2 = χ2
0

( ξ
λ

)
χ2
0

( η
λ

)∑
±

∫
A

χ̂
(
ε′1

±
(z)ξ

)
× χ̂

(
ε′′1

±
(z)η

)
χ̂
(
ε′2

±
(z)ξ

)
χ̂
(
ε′′2

±
(z)η

)
ei(ξz1+ηz2)G±(z) dz .(2.9)

We are so led to consider the operator

T λ
ε G(ξ, η)

= χ2
0

( ξ
λ

)
χ2
0

(η
λ

)∫
A

χ̂
(
ε′1(z)ξ

)
χ̂
(
ε′′1(z)η

)
χ̂
(
ε′2(z)ξ

)
χ̂
(
ε′′2(z)η

)
ei(ξz1+ηz2)G(z) dz ,

for arbitrary measurable functions ε = (ε′1, ε′′1 , ε′2, ε′′2) on A with values in (0, 1)4

and arbitrary continuous functions G on A.

Lemma 2.2. For 1 ≤ p ≤ 2, T λ
ε is bounded from Lp(A) to Lp′

(R2), uniformly
in ε and λ.

Proof. The statement is trivial for p = 1.
For p = 2 we prove the equivalent statement that (T λ

ε )
∗T λ

ε : L2(A) −→ L2(A).
We have

(T λ
ε )

∗T λ
ε G(z) =

∫
A

Kλ
ε (z, w)G(w) dw ,

where, for (z, w) ∈ A2,

Kλ
ε (z, w) =

∫
R2

e−i(ξ,η)·(z−w)

× χ4
0

( ξ
λ

)
χ4
0

( η
λ

)
χ̂
(
ε′1(z)ξ

)
χ̂
(
ε′2(z)ξ

)
χ̂
(
ε′′1(z)η

)
χ̂
(
ε′′2(z)η

)
× χ̂

(
ε′1(w)ξ

)
χ̂
(
ε′2(w)ξ

)
χ̂
(
ε′′1(w)η

)
χ̂
(
ε′′2 (w)η

)
dξ dη .(2.10)

Let

(2.11)
ε′(z, w, λ) = max

{
ε′1(z), ε

′
2(z), ε

′
1(w), ε

′
2(w), λ

−1
}
,

ε′′(z, w, λ) = max
{
ε′′1(z), ε

′′
2(z), ε

′′
1(w), ε

′′
2 (w), λ

−1
}
.
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Using iteratively the property that, given two Schwartz functions f, g on R,
the product f(at)g(bt) can be expressed as h

(
(a ∨ b)t) with each Schwartz norm

‖h‖(N) = max|α|≤N supx(1+|x|)N |∂αh(x)| controlled by the same norm of f and g,
we can write

χ4
0

( ξ
λ

)
χ̂
(
ε′1(z)ξ

)
χ̂
(
ε′2(z)ξ

)
χ̂
(
ε′1(w)ξ

)
χ̂
(
ε′2(w)ξ

)
= ψ′

z,w,λ

(
ε′(z, w, λ)ξ

)
χ4
0

( η
λ

)
χ̂
(
ε′′1 (z)η

)
χ̂
(
ε′′2 (z)η

)
χ̂
(
ε′′1(w)η

)
χ̂
(
ε′′2(w)η

)
= ψ′′

z,w,λ

(
ε′′(z, w, λ)η

)
,

with ψ′
z,w,λ, ψ

′′
z,w,λ ∈ S(R) uniformly bounded in each Schwartz norm.

Then

(2.12) Kλ
ε (z, w) =

1

ε′(z, w, λ)ε′′(z, w, λ)
ψ̂′

z,w,λ

( z1 − w1

ε′(z, w, λ)

)
ψ̂′′

z,w,λ

( z2 − w2

ε′′(z, w, λ)

)
,

so that, for every N , we have the uniform bound∣∣Kλ
ε (z, w)

∣∣ ≤ CN
1

ε′(z, w, λ)ε′′(z, w, λ)

(
1 +

|z1 − w1|
ε′(z, w, λ)

)−N(
1 +

|z2 − w2|
ε′′(z, w, λ)

)−N

.

We now make a double partition of A2, depending on which of the three pa-
rameters z, w, λ determines the value of ε′ and ε′′ respectively:

A2 = E′
1 ∪ E′

2 , A2 = E′′
1 ∪E′′

2 ,

such that

ε′(z, w, λ) =

{
ε′1(z) or ε

′
2(z) or λ

−1 on E′
1 ,

ε′1(w) or ε
′
2(w) on E′

2 ,

ε′′(z, w, λ) =

{
ε′′1(z) or ε′′2(z) or λ−1 on E′′

1 ,

ε′′1(w) or ε
′′
2(w) on E′′

2 .

On any intersection E′
j ∩ E′′

k = Ejk, each of ε′ and ε′′ depends on only one of
the variables z, w. We decompose

∣∣(T λ
ε )

∗T λ
ε G(z)

∣∣ ≤ 2∑
j,k=1

∫
A

1Ejk
(z, w)

∣∣Kλ
ε (z, w)

∣∣G(w)∣∣ dw =
2∑

j,k=1

Ujk|G|(z) ,

In the case j = k = 1 we have

U11|G|(z) ≤ C

∫
A

1

ε̃′(z)ε̃′′(z)

(
1 +

|z1 − w1|
ε̃′(z)

)−2(
1 +

|z2 − w2|
ε̃′′(z)

)−2∣∣G(w)∣∣ dw
≤ CMsG(z) ,

whereMs denotes the strong maximal function in R2. Hence U11 is bounded on L2.
In the case j = k = 2, it is sufficient to observe that U∗

22 has the same form
as U11 to obtain the same conclusion.
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Suppose now that j 
= k, say j = 1, k = 2, i.e., with ε′ depending on z and ε′′

on w. Then, extending G to be 0 on R2 \A,

U12|G|(z) ≤ C

∫
A

1

ε̃′(z)ε̃′′(w)

(
1 +

|z1 − w1|
ε̃′(z)

)−2(
1 +

|z2 − w2|
ε̃′′(w)

)−2∣∣G(w)∣∣ dw
= C

∫
R

1

ε̃′(z)

(
1 +

|z1 − w1|
ε̃′(z)

)−2

×
( ∫

R

1

ε̃′′(w)

(
1 +

|z2 − w2|
ε̃′′(w)

)−2∣∣G(w1, w2)
∣∣ dw2

)
dw1

= C

∫
R

1

ε̃′(z)

(
1 +

|z1 − w1|
ε̃′(z)

)−2

(T |G|)(w1, z2) dw1

≤ CM1(T |G|)(z1, z2) ,
where M1f(z1, z2) denotes the one-dimensional Hardy–Littlewood maximal func-
tion of f(·, z2) evaluated at z1 and

Tf(w1, z2) =

∫
R

1

ε̃′′(w)

(
1 +

|z2 − w2|
ε̃′′(w)

)−2

f(w1, w2) dw2 .

In analogy with the previous case, the operator T ∗,

T ∗h(w1, w2) =

∫
R

1

ε̃′′(w)

(
1 +

|z2 − w2|
ε̃′′(w)

)−2

h(w1, z2) dz2 ,

is dominated by

sup
0<ε<1

∫
R

1

ε

(
1 +

|z2 − w2|
ε

)−2∣∣h(w1, z2)
∣∣ dz2 =M2h(w1, w2) ,

M2 being now the Hardy–Littlewood maximal operator in the second variable. It
follows that T , and hence U12, is bounded on L2 and this proves the statement
for p = 2.

The conclusion for 1 < p < 2 follows by Riesz–Thorin interpolation. �

We go back to the proof of Theorem 2.1, recalling that we are assuming p′ = 3q.
Observing that p′/2 > 2 and combining together (2.7), (2.9) and Lemma 2.2, we
have

‖Eλ
ε′,ε′′g‖Lp′(R2) ≤ C

(‖G+‖Lr(A) + ‖G−‖Lr(A))
1/2 ,

with G± as in (2.8) and r = (p′/2)′ = p
2−p . To express the right-hand side in terms

of the original function g, we find that

‖G+‖rLr(A) =

∫
A

∣∣∣ G0

(
x+(z), y+(z)

)
ϕ′(x+(z))− ϕ′(y+(z))

∣∣∣r dz
=

∫
U+

|G0(x, y)|r
|ϕ′(x) − ϕ′(y)|r−1

dx dy

=

∫
U+

|g(x)|r |g(y)|r
|ϕ′(x) − ϕ′(y)|r−1

κ(x)r/3 κ(y)r/3 dx dy .
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Making the change of variables

u = ϕ′(x) , v = ϕ′(y) ,

and setting x(u) = (ϕ′)−1(u), y(v) = (ϕ′)−1(v), we obtain that

‖G+‖rLr(A) =

∫
ϕ′(U+)

|g(x(u))|r|g(y(v))|r
|u− v|r−1

κ
(
x(u)

)r/3−1
κ
(
y(v)

)r/3−1
du dv .

Notice that 1 ≤ r < 2, so that we can interpret, up to a constant factor, the
integral as the pairing 〈I2−rf, f〉, where Iα denotes fractional integration of order
α and

f(u) = |g(x(u))|r κ(x(u))r/3−1
.

By the Hardy–Littlewood–Sobolev inequality,

‖G+‖rLr(A) ≤ Cr ‖f‖2Ls(ϕ′(U+)) ,

with s = 2/(3− r). The same estimate holds for G−, so that, for this value of s,

‖Eλ
ε′,ε′′g‖Lp′(R2) ≤ Cp‖f‖1/rLs(ϕ′(U)) = Cp

( ∫
ϕ′(U)

|g(x(u))| 2r
3−r κ

(
x(u)

)−2/3
du

) 3−r
2r

= Cp

( ∫
U

|g(x)| 2r
3−r κ(x)1/3 du

) 3−r
2r

= ‖g‖
L

2r
3−r (I,μ)

.

But 2r/(3− r) = (p′/3)′ = q′, with q as in the statement of the theorem. �

Consider now the truncated strong maximal function of f̂ ,

(2.13) M+f(x) = sup
0<ε′,ε′′<1/4

1

4ε′ε′′

∫
|s|<ε′,|t|<ε′′

∣∣f̂(x+ s, ϕ(x) + t
)∣∣ ds dt , x ∈ I.

From Theorem 2.1 we obtain the following inequality for M+ for a more re-
stricted range of p.

Corollary 2.3. The inequality

(2.14) ‖M+f‖Lq(I,μ) ≤ Cp‖f‖Lp(R2) , f ∈ S(R2),

holds for 1 ≤ p < 8/7 and p′ ≥ 3q.

Proof. As before, we assume p′ = 3q. Let h = f ∗ f∗, where

f∗(x, y) = f(−x,−y).
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Then ĥ = |f̂ |2, so that ‖h‖r ≤ ‖f‖2p, with r = p/(2− p) < 4/3. Then, for s such
that r′ = 3s, ‖Mh‖s ≤ Cr‖f‖2p. But, for ε′, ε′′ < 1/4 and χ as in (2.1),

1

4ε′ε′′

∫
|s|<ε′,|t|<ε′′

∣∣f̂(x+ s, ϕ(x) + t
)∣∣ ds dt

≤
( 1

4ε′ε′′

∫
|s|<ε′,|t|<ε′′

∣∣f̂(x+ s, ϕ(x) + t
)∣∣2 ds dt)1/2

=
( 1

4ε′ε′′

∫
|s|<ε′,|t|<ε′′

ĥ
(
x+ s, ϕ(x) + t

)
ds dt

)1/2

≤
( ∫

ĥ
(
x+s, ϕ(x) + t

)
χ4ε′(s)χ4ε′′(t) ds dt

)1/2

≤ (Mh(x)
)1/2

.

Hence ‖M+f‖Lq(I,μ) ≤ ‖Mh‖1/2q/2 and it can be easily checked that q/2 = s. �

3. Lebesgue points of f̂ along a curve

Adapting standard arguments, cf. [4], we obtain the following reformulation of
Theorem 1.1 (ii), where Bε denotes the disk of radius ε centered at 0.

Corollary 3.1. Let 1 ≤ p < 8/7 and let S be a C2 curve in the plane. Given
f ∈ Lp(R2), for almost every x ∈ I relative to affine arclength,

lim
ε→0

1

|Bε|
∫
Bε

∣∣f̂(x+ x′, ϕ(x) + y′
)−Rf(x, ϕ(x))∣∣ dx′ dy′ = 0 .

Proof. We may restrict ourselves to a subset of S which is the graph of a C2

function ϕ on an interval I with ϕ′′ 
= 0. Let μ be as in Section 2.

Given τ > 0, let g ∈ S(R2) such that ‖f − g‖p < τ . Since Rg = ĝ|S ,

F (x) = lim sup
ε→0

1

|Bε|
∫
Bε

∣∣f̂(x+ x′, ϕ(x) + y′
)−Rf(x, ϕ(x))∣∣ dx′ dy′

≤ lim sup
ε→0

1

|Bε|
∫
Bε

∣∣ ̂(f − g)
(
x+ x′, ϕ(x) + y′

)∣∣ dx′ dy′ + ∣∣R(f − g)
(
x, ϕ(x)

)∣∣
≤ M+(f − g)(x) +

∣∣R(f − g)
(
x, ϕ(x)

)∣∣ .
Hence, if q = p′/3, ‖F‖Lq(I,μ) ≤ Cτ for every τ > 0, i.e., F = 0 μ-a.e. �
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