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Preface

During my Ph.D. course, under the supervision of Riccardo Barbieri, I started
working on Theoretical High Energy Physics. In particular I focused on the prob-
lem of Electroweak Symmetry Breaking and in this context I investigated the
benefits of introducing a compact extra dimension.

In a series of papers, together with Riccardo Barbieri, Guido Marandella,
Lawrence Hall, Yasunori Nomura, Takemichi Okui and Steven Oliver I built su-
persymmetric models in 5D and studied their phenomenology in detail [1, 2, 3, 4].
In this models Supersymmetry is broken by boundary conditions in the fifth di-
mension and the ElectroWeak Symmetry Breaking is triggered by Supersymmetry
breaking via the top/stop radiative corrections. The phenomenology of these mod-
els is significantly different than the one of the Minimal Supersymmetric Standard
Model scenarios extensively studied in the literature.

These papers constitute the subject of this Thesis and their results will be
presented in the following Chapters.

Besides these papers, during my Ph.D. course I also studied other issues in
Particle Physics Beyond the Standard Model.

In [5], in collaboration with Thomas Hambye, Alessio Notari, Lin Yin, and
Alessandro Strumia, I studied neutrino masses in models of thermal leptogenesis.
Specifically, we addressed the question of what is the maximal lepton asymmetry
that can be generated, given a particular spectrum for the right-handed Majorana
neutrinos. We studied both the case of hierarchical and of quasi-degenerate spec-
tra, correcting some statements present in the literature. We analyzed the mass
bounds for left-handed neutrinos that comes out by the requirement that thermal
leptogenesis accounts for the matter-antimatter asymmetry of the universe, and
we compared these bounds to the one inferred from the precise measurements of
the CMBR spectrum.

In [6] I studied the connections between unitarity bounds on W+W− gauge
bosons scattering amplitudes and Naive Dimensional Analysis (NDA) estimates of
the ultraviolet cutoff in Higgsless extra-dimensional models. In these models the
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Electroweak Symmetry is broken directly by boundary conditions, providing an
extra-dimensional realization of Technicolor. In particular, the energy growth of
the gauge bosons scattering amplitude is changed from quadratic to logarithmic
by the presence of the Kaluza-Klein “resonances” and unitarity is thus restored. In
the paper I showed how the presence of many final states, that can be produced
in W+W− scattering at high energy, transforms back this logarithmic energy
growth into a linear one, compatible with 5D Naive Dimensional Analysis of the
gauge interactions. Moreover, the determination of the slope of this energy growth
provided a better estimation of the UV cutoff for these models.

Finally in [7], in collaboration with Roberto Foffa, Riccardo Sturani and Alice
Gasparini, I studied the sensitivity of small atomic interferometers to the detec-
tion of gravitational waves. In particular, we showed that a small ”table-size”
atomic interferometer can be as sensitive as conventional optical interferometers
like LIGO. At the same time we showed how these instruments can provide com-
plementary information, reaching maximum sensitivity in a different frequency
range than LIGO.

These latter papers will not be covered in the present Thesis.
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Chapter 1

Introduction: Hierarchies,

fine-tunings and all that

1.1 The present status: the Standard Model

The Standard Model (SM) is presently the major achievement in theoretical Par-
ticle Physics. It unifies weak and electromagnetic forces under the spell of gauge
invariance and the idea of symmetry breaking. It reproduces all the phenomenol-
ogy observed in experiments, up to the highest energies explored so far. It has been
tested to very high precision in the 90s, up to energies of the order of 200 GeV, and
it is currently being probed at much higher energies at the Fermilab TeVatron.

With respect to the Physics described, the SM can be divided into three dif-
ferent sectors, i.e. the gauge, the Yukawa and the Higgs sectors, as indicated
schematically by the following Lagrangian:

LSM = LG + LY + LH

= −1
4
FµνF

µν +
(
iψ̄D�ψ + λψψϕ

)
+
(
|Dϕ|2 + V (ϕ)

)
. (1.1)

As a first approximation one can say that the gauge sector describes the Physics in-
volving the photon, the W and Z bosons and their interactions, the Yukawa sector
is related to the masses of the quarks and the leptons and to the Flavor-Changing
and CP-Violating processes, while the Higgs sector contains the description of the
ElectroWeak Symmetry Breaking (EWSB).

Being directly involved in different physical processes, the experiments needed
to test the various sectors of the SM are different too. In particular its gauge
sector has been extensively tested both at e+e− colliders such as the CERN LEP
and the SLAC Linear Collider (SLC), and at a hadronic pp̄ collider, the Fermilab
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Figure 1.1: The “famous” pull table of the Electroweak Precision Tests summa-
rizing the discrepancies between the Standard Model predictions and the experi-
ments.

TeVatron. These series of tests, especially the ones performed at the “cleaner”
leptonic machines, constitute the bulk of the so-called ElectroWeak Precision Tests
(EWPT), summarized in Fig. 1.1.

They have probed the structure of SU(2)L × U(1)Y gauge interactions at the
per-mille level, that is they have been able to probe the SM gauge sector together
with its radiative corrections. The agreement of the theory with the data is rather
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astonishing and no convincing signals of a departure from the Standard Model
predictions has been found [8, 9]. Yet, there is some tension at the level of a
few standard deviations in the hadronic measurements of the weak mixing angle,
sin θW , and in the forward-backward asymmetry ofn the Z boson decay to two
b-quarks, AbFB. In the first case the theoretical uncertainties are probably been
underestimated [10], while the significance of the second is still debated [11, 12].
Moreover, by considering purely leptonic data, in principle less prone to theoretical
uncertainties, the fit favor a Higgs boson mass which is much lighter than the limit
set by direct searches at LEP2, as shown in Fig. 1.2.

The difficulty to clearly identify a discrepancy as a signal of New Physics, due
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Figure 1.2: Measured values of sin2 θW from leptonic and hadronic observables vs.
the Higgs mass mH in the Standard Model (taken from [13, 14]).
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to theoretical uncertainties, is also present in another (low-energy) “precision”
observable, that is the muon anomalous magnetic moment gµ − 2. In this case
some additional input to control the hadronic contributions has to be used. De-
pending on the source of the data, i.e. the cross section of e+e− → hadrons or
the τ hadronic decays, the theoretical prediction presently differ from the exper-
imental measurement by either 3.3σ or just 1σ [15], hinting again to theoretical
uncertainties as the source of the discrepancy.

Whether we already probed a departure from the SM predictions in the gauge
sector remains an open question that hopefully will be answered a posteriori in
the next decade.

The experimental tests of the other two sectors do not share the same degree
of precision. The Yukawa sector has recently entered in the Era of “precision”
measurements, especially with the contributions of the B-factory experiments,
BaBar and Belle, and with the collider experiments CDF and D∅, CLEO and
CLEO-c. In particular, the SM description of the Flavor and CP-Violation, that
is the Cabibbo-Kobayashi-Maskawa (CKM) mechanism, has only recently found
its definitive confirmation into the experimental data as the main source of Flavor
and CP-Violating phenomena. The current research in this sector is now focused
in seeking for departures from the SM predictions. This is achieved by probing the
Yukawa sector at the loop level accuracy [16, 17]. Various observables which are
directly probing radiative corrections have been measured and, even though few
“anomalies” are present, no significant deviation has been found so far, as shown
in Fig. 1.3.

Indeed one could argue that the only experimental evidence for Physics Beyond
the Standard Model does not come from phenomena at the electroweak scale. Two
of them comes from much lower, sub-eV, scales: neutrinos are massive particles
and there is evidence for the presence of an unknown Dark Energy in the Uni-
verse1. The third one, the presence of unknown Dark Matter (DM) in the Universe,
strictly speaking does not point to any specific energy scale unless some assump-
tions on its nature are made. For example, only if one assumes that the Dark
Matter is composed by new particles thermally produced during the expansion of
the Universe, then an upper bound on their mass can be cast around 30 TeV. In
addition, if these particles are interacting only through forces with strength com-

1Note that both scales are related to operators that are not probed by collider experiments:

the first is an irrelevant dimension-5 operator breaking an accidental global symmetry of the

SM. The other is the identity operator, that becomes physical only by considering gravitational

interactions.
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Figure 1.3: Measured values of CP violation parameters in various decay modes
of neutral B mesons. Taken from [18].

parable to the weak force (Weakly Interactive Massive Particles or WIMPs), then
one obtain an energy scale of the order of a TeV. This scale is not far from the
Electroweak scale and renders the WIMP hypothesis quite appealing. However,
both for the case of the Dark Matter and for the neutrino masses, the SM can
be easily modified to account for them and these two modifications does not shed
any light on the nature of the third sector of the SM, the Higgs sector.

In fact, while the gauge sector has already passed its tests and the Yukawa
sector is still being analyzed, the Higgs sector has been the most elusive of the
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three and no direct experimental evidence is available for it yet.
The SM certainly captures the essential features of how the

SU(2)L × U(1)Y gauge symmetry is broken down to the U(1)em of the
electromagnetism and how the masses for the W and Z bosons and for matter
fields are generated. Despite its simplicity, the SM Higgs mechanism, accomplished
with only a single scalar SU(2)L doublet, is effective in explaining the relations
between the masses of the W and Z vector bosons, between their couplings, or in
giving a rationale for the smallness of neutrino masses.

The problem is, in some sense, that the SM Higgs mechanism is “too simple”: it
is just a parameterization of EWSB but it does not explain it. All the ElectroWeak
Symmetry Breaking is described by the potential

V (ϕ) = −µ2|ϕ|2 + λ|ϕ|4, (1.2)

with ϕ being the Higgs doublet. It depends only on two free parameters, the mass
term µ and the quartic coupling λ of the Higgs field. Unfortunately, these are in a
one-to-one correspondence with two observables, the vacuum expectation value, v
(or the Fermi constant, GF ), and the physical Higgs boson mass, mH . The first is
already measured since a long time, the second is not. Within the SM there is no
indication for a “preferred” range for the value of mH , except an upper bound of
∼ 1 TeV, coming from the fact that the Higgs boson is required to unitarize the
scattering amplitude for the longitudinal modes of the weak gauge bosons at high
energy [19, 20]. This lack of predictivity makes LH difficult to constrain and to
test experimentally, until the Higgs boson will be found or the lower bound on its
mass will be pushed up to ∼ 1 TeV.

However, any specific model of EWSB leaves an indirect imprint in the EWPT
through the radiative corrections. Even if this is not enough to pin down a specific
model, it can constrain its parameter space.

How the SM Higgs mechanism confronts with the EWPT? The EW Precision
Observables are logarithmically sensitive to mH through loop effects and one can
look at the significance of the SM global fit as a function of the Higgs mass. This
is shown in Fig. 1.4, the famous “blue band” plot.

If the SM is the complete description up to energies of ∼ 5÷10 TeV [21, 22, 23],
the fit prefers a light Higgs boson, not too far from the Z, and lighter than the
present experimental lower bound, set by LEP at 114.4 GeV. It suggests that the
Higgs boson is not far from being discovered. However, as it will be explained in
the following, there are various reasons to expect the presence of some New Physics
(NP) in the same energy range and the above conclusion may also change.
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Figure 1.4: χ2 distribution of SM fit as a function of the Higgs mass. The shaded
region corresponds to the LEP limit on mH .

1.2 Many reasons to go “beyond”

If the Standard Model fits the data quite well and the same data suggest that
the Higgs boson is just behind the corner, why every theorist is uncomfortable
with that and in the last 30 years there has been a lot of activity in formulating
“Beyond the Standard Model” (BSM) theories? Indeed there are more profound
reasons than just the need for the favorite candidate to have valid competitors
in a challenge. These reasons directly involve the fact that the Higgs boson in
the SM is an elementary scalar field, and elementary scalars are usually “bad”.
One can see the problem, without leaving the SM, by looking at the radiative
corrections to the Higgs mass parameter, µ, in Eq. (1.2). By computing, e.g. the
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1-loop corrections due to the top quark one finds:

δµ2(top) =
3√
2π2

GF m
2
t Λ2 = (0.9 TeV)2

(
Λ

3 TeV

)2

. (1.3)

It is quadratically divergent. From an effective field theory point of view, in which
the SM is regarded as a theory valid below a cutoff energy Λ, it means that the
Physics playing a major role in the determination of µ is the unknown one, near Λ,
where the SM ceases to be valid. This reflects the fact that µ is a free parameter
and that in the SM there is no rationale on what should be its “natural” size.
Moreover if one looks at the value of µ at energies � Λ one finds that

δµ2 ' µ0 + δµ2(top) + δµ2(gauge) + δµ2(Higgs). (1.4)

It means that the value of µ is one loop factor below Λ, unless cancelations hap-
pen in the above formula [24], which are unexplained (unnatural) since the various
terms come from different sectors of the theory (gauge, Yukawa and Higgs), un-
related by any symmetry with each other. Hence, values of µ � Λ/4π cry for
an explanation and there is a naturalness problem. To understand how bad this
problem is, one has to determine what is the size of Λ.

Before continuing, it is worth mentioning the possibility that this may not be
the right question to ask. In fact there could be no “explanation” coming from
the structure of the theory. Some have argued [25] that the naturalness problem
could have an environmental solution, by postulating that the fundamental theory
possesses many vacua and that µ assumes different values in different vacua. The
probability of measuring a particular value for µ is then linked to the probability
for an observer to live in a particular vacuum. In a continuously expanding Uni-
verse, bubble nucleation could create many different regions in which µ assumes
many different values. The Physics (and the cosmological evolution) of bubbles
with considerably different values of µ will be profoundly different from the one
we observe. The naturalness problem could disappear (or it could be greatly ame-
liorated) once one convolves the (unknown) “a priori” distribution of vacua with
the conditional probability of observing the particular realizations accessible to
us. However, the fact that one has a single data point represented by our ob-
served universe and that there is little theoretical understanding of the properties
of this landscape of vacua, presently makes this argument difficult to translate
into testable explanations, capable of making some predictions. Some progress
in this direction has been recently made by seeking correlations among different
observables in [26, 27, 28, 29].
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For the rest of this work we will assume that the size of µ can be explained
by the microscopic structure of the theory. The question is then what ΛSM is and
what we know about it.

There are various hints from known Physics that suggest the existence of phys-
ically relevant energy scales (much) above G−1/2

F .
One reason is that the gauge structure of the SM and the hypercharge assign-

ments for the various matter fields seem a little bit “artificial”2. Another one is
that the Yukawa sector has many free parameters (fermion masses and mixing
angles) whose values are not explained by the SM.

Indeed a new mass scale appears upon noticing that the strengths of the differ-
ent SM gauge interactions flow towards a common value at high energy. Pursuing
this idea of strong-electroweak (Grand) Unification one finds an energy scale as-
sociated to the restoration of this enlarged symmetry, MGUT ∼ 1016 GeV [30, 31].
This idea is also supported by the fact that, in some GUT theories, relations arise
among certain entries of the Yukawa matrices and are in fair agreement with the
data [32, 33].

Another argument leading to high energy scales is the recent measurements
of the flavor oscillations among neutrinos, indicating that neutrinos are massive.
The SM, with its minimal matter content and gauge structure, does not provide a
mass term for the neutrinos at the renormalizable level. It has to be complemented
either by adding a new interaction of non-renormalizable type, (LH)2/Λ, or by
extending the field content with additional gauge singlet fermions. In particular,
in the first case3 Λ ∼ 1014 GeV, another mass scale not far from MGUT .

If one considers the SM valid up to ΛSM = MGUT then the naturalness problem
of Eq. (1.4) assumes an embarrassing size, requiring a cancelation of 1 part in 1030.
Some kind of New Physics entering at an intermediate scale is required to take
care of it. This constitutes the “old” Gauge (Big) Hierarchy Problem [34] and it
alone already motivates the BSM research program (see Sect. 1.3).

Many of the proposed models predict the existence of NP at a much lower
scale. The purpose of this NP is to shield the Higgs sector from the radiative
corrections coming from much higher energy scales.

2Actually the U(1)Y quantum numbers can be justified by the requirements of consistency

(i.e. absence of gauge anomalies) and parity invariance of the unbroken gauge sector (QCD and

QED).
3In the second case one can write a Majorana mass MN term for the right-handed neutrinos

and there is no symmetry argument forcing this mass term to be small. In particular if MN � v

then one can integrate out these states and at low energy, at leading order, one is left just with

the (LH)2/MN operator.
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The paradigm that emerges by trying to solve the Big Hierarchy Problem is the
presence of New Physics at a low scale, probably around a TeV, as suggested by
Eq. (1.3). This unknown Physics is directly related to the mechanism generating
the Fermi scale and it is likely to be responsible of triggering the EWSB. Discov-
ering the presence (or absence) of NP at the TeV will be paramount in shedding
some light on what really constitutes the “Higgs sector”, LH in Eq. (1.1), of the
SM.

As already stated, in the last ten years other NP energy scales entered into
this picture. The recent cosmological observations require the presence of unknown
Dark Matter. If the DM is composed by stable particles, then the mass of these
particles constitutes another interesting physical scale.

However, since we only observe the present abundance, the inferred mass de-
pends on the DM interaction properties. The case in which the DM particles
interact/annihilate into SM particles with weak strength is particularly interest-
ing4. In this case one finds that MDM ∼ TeV, not far from the NP energy scale
introduced in most of the models addressing the gauge hierarchy problem.

As we have seen from Eq. (1.4), experimental and theoretical hints point to-
wards NP at energies of the order of a TeV (4π, a loop factor, above G−1/2

F ) and
the next collider experiment, the LHC, will be devoted to carefully explore this
energy range and help sorting out all these issues related to the EWSB.

1.3 Solving to the Big Hierarchy Problem

In principle there are two aspects of the Big Hierarchy Problem, the first and more
important being the stabilization of the hierarchy against radiative corrections.
Achieving this goal, renders the theory technically natural, since once a small
parameter has been introduced to generate v/MGUT , it remains radiatively stable.
The second aspect of the Big Hierarchy Problem is to explain why v �MGUT . A
theory can be defined truly natural only if it also provides an explanation of the
smallness of the EW scale.

Indeed the only known mechanism to generate naturally large hierarchies is
based on non-perturbative effects in gauge theories where the gauge, interactions

4Having the DM particles charged under strong interactions usually creates problems in As-

trophysics, e.g. by altering stellar evolution. The other possibility is to have these new particles

interacting with a new kind of force (like axions, etc.): in this case the allowed mass range can

be very different and it is only partially constrained from astrophysical processes like Supernova

cooling, etc.
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become strong at low energy. In this case the hierarchy exponentially depends on
the size of the gauge coupling at the UV cutoff of the theory and large ratios may
be easily generated.

On the other hand, the Standard Model can be rendered technically natural
in various ways, even though it is not a completely easy task.

To show the generic issues involved when one is facing the problem pertur-
batively, let us consider a “toy” scalar λφ4 theory. Working in the effective field
theory language let us assume that it is valid below a cutoff energy scale Λ. In
the theory, all the physical scales are controlled by the size of the mass parameter
µ. One can ask what is the natural hierarchy achievable between 〈φ〉 ∼ µ and Λ.
By computing the loop corrections one finds that δµ2 ∼ λΛ2/16π2, which means
that 〈φ〉 /Λ ∼ 1/4π and that the “natural” hierarchy achieved is of one order of
magnitude5.

The way to overcome this result is to modify the theory and introduce a
mechanism to effectively cancel those loop contributions to the mass parameter
that are quadratically divergent. By canceling up to the k-th loop order, one can
safely allow a smaller µ without prejudicing the naturalness. All the values of µ2

larger than λkΛ2/(16π2)k are now “natural” and the hierarchy can increase up
to ∼ 1/4π(

√
λ/4π)k−1, and ultimately it is limited only by the scale at which

the quartic coupling hits its Landau pole, which is controlled by the logarithmic
running of the couplings and can be exponentially large. However ensuring this
kind of cancelations is not easy, and it is usually achieved by relying on some sort
of symmetry. The only known symmetry allowing this cancelation to all orders in
perturbation theory (necessary to create the GUT/Fermi hierarchy) is the “chiral
symmetry” for scalar fields, i.e. Supersymmetry.

1.3.1 Supersymmetry

Supersymmetry (SUSY) [35, 36, 37] is a spacetime symmetry that relates particles
of different spin. An irreducible representation of SUSY includes both bosons and
fermions, whose masses and coupling constants are constrained by it. In particular
the masses have to be the same and only a certain set of their interactions are
allowed. This enhanced symmetry reduces the UV freedom of the theory, rendering
it better behaved. For example a famous result states that in a supersymmetric
theory the matter (scalar/Yukawa) potential is not renormalized to all orders in
perturbation theory [38, 39]. In practice this less divergent behavior is due to a

5In the case of multiple scalar fields like in an O(N) theory it is even smaller:
√
N/4π.
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cancelation between bosonic and fermionic loops containing particles belonging
to the same SUSY multiplet. This clearly is a step forward to ameliorate/solve
the hierarchy problem, since the quadratic divergence in the Higgs mass term
can be completely canceled in a SUSY theory. The problems arise when one tries
to use SUSY to build realistic models. This “doubling” of the spectrum is not
observed in Nature and SUSY should be broken at some energy scale. The size
of the mass splitting between the SM particles and their superpartners, mSUSY ,
will be proportional to the size of the breaking. The UV divergences of the non-
supersymmetric theory will be cutoff by this scale. This means that mSUSY can not
be very far from the electroweak scale if Supersymmetry has to cure the Hierarchy
Problem. Moreover the breaking cannot be spontaneous if SM particles are directly
involved: in fact spontaneous SUSY breaking leaves SUSY still imprinted in the
spectrum as a set of relations among the masses of the particles belonging to
the same multiplet [40, 41]. A spontaneous SUSY breaking scenario in the SM is
ruled out experimentally by combining the SM spectrum with the lower bounds
on supersymmetric particles coming from direct searches at colliders. The general
framework is then to assume SUSY breaking (either spontaneous or dynamical)
happening in an hidden sector, which is then mediated by some mechanism to the
visible sector consisting in the SUSY version of the SM.

Such supersymmetrization of the SM, on top of the doubling of the spectrum
prescribed by SUSY, requires the addition of another Higgs doublet (and its SUSY
partner) with opposite hypercharge. This is needed for two reasons: the first is the
cancelation of the Higgsino contribution to the U(1)Y -anomaly and the second is
the requirement to write the masses for both the up and down quarks in a SUSY-
invariant way. This fact extends the SM Higgs sector to the one of a Two Higgs
Doublet Model (2HDM) and one expects to find additional scalar states after
EWSB: two other neutral ones (one CP-even and one CP-odd), and a charged
one.

A phenomenological approach to encode SUSY breaking in the supersymmetric
SM is to add all possible non-supersymmetric terms coming from the mediation
of SUSY breaking. A specific model of SUSY breaking generates relations among
these different terms, but keeping them free allows to cover all the possibilities.
These additional terms includes masses for scalar superpartners of SM fermions
(sfermions), for the fermionic superpartners of the gauge bosons (gauginos), for the
Higgs bosons and some trilinear Higgs-sfermion-sfermion interactions (A-terms).
They are all “soft” breaking-terms, meaning that are dimensionful parameters
whose effects in radiative corrections vanish in the limit in which they vanish. This
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implies that no quadratic divergences are reintroduced and that it is technically
natural for them to be small, of the order of mSUSY . The addition of these soft
terms to the supersymmetric version of the SM constitutes what is called the
Minimal Supersymmetric Standard Model (MSSM) [31].

The virtue of this approach is that in principle it is possible the study of
phenomenology without having to specify the details of SUSY breaking. One then
finds that generically the EWSB is triggered by the top-stop loop, driving the Higgs
mass term towards negative values at energies below the scale of superparticle
masses, that a stable particle exists6, in most of the cases neutral and weakly-
interacting, providing a candidate particle for the Dark Matter, that the gauge
couplings unify at a high scale, that the Higgs quartic coupling is of the order of
the weak coupling constant at tree level and it is raised mostly by the top/stop
loop contributions, generically implying a light Higgs boson.

In practice the number of additional parameters in the phenomenological
MSSM is enormous and to work out a quantitative analysis one has to assume
some relations among the soft parameters, motivated by the known mediation
mechanisms. Two of the most popular mediation mechanisms are Gravity Medi-
ation [42], i.e. by higher dimensional operators suppressed by the Planck scale,
and Gauge Mediation [43, 44], i.e. through gauge radiative corrections. In general
each mechanism has its virtues and drawbacks (for example the Flavor Problem in
Gravity Mediation or the µ/Bµ Problem in Gauge Mediation) and a lot of model
building activity of the last two decades was devoted to devising possible solutions
to these problems.

Even if one has achieved very interesting results by supersymmetrizing the SM
(gauge coupling unification, DM candidate, stabilization of radiative corrections,
explanation of the EWSB as triggered by the top radiative corrections, etc.) still
problems remain. They are all related to the unknown SUSY breaking mechanism.
In fact, to fully understand the Gauge Hierarchy Problem, one has to find a mech-
anism to generate a mass scale of O( TeV) (which is now a technically natural
scale), needs a mechanism that naturally gives the suppression to the Flavor and
CP-Violating contributions coming from superparticle loops [45, 46, 47] and has
to be consistent with the EWPT and with direct searches of SUSY particles.

6If R-parity is intact, which is required by proton stability in Grand Unified Theories.
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1.3.2 Strong Dynamics

The other known methods to create large hierarchies does not rely on (explicitly)
enforcing a symmetry to cancel radiative corrections in perturbation theory, but on
something else. One way is to directly exploit the rich dynamics in strongly coupled
gauge theories. It is well known from the example of QCD, that asymptotically
free gauge theories become strong in the IR at an energy scale ΛIR, exponentially
suppressed with respect to the theory cutoff ΛUV , since ΛIR/ΛUV is essentially
determined by the (logarithmic) running of the coupling constant. It is also known
that in these theories the dynamics at (and below) ΛIR can be very interesting:
the low energy degrees of freedom are bound states of the fundamental ones and
composite operators can get non-zero expectation values, dynamically breaking
the symmetries of the theory7.

For this mechanism to be usable for the EWSB, one has to assume that un-
calculable effects in the strong dynamics select a vacuum in which some operators
have non-zero vevs. This breaks some of the global symmetries of the theory,
containing or coinciding with the EW SU(2)L × U(1)Y group. In particular, the
effective theory below ΛIR may contain scalar degrees of freedom without intro-
ducing a naturalness problem: at the scale ΛIR their composite nature becomes
manifest and quantum loops are naturally cut off at this scale. In practice the
main difficulty of these theories is their (un-)calculability, due to the intrinsic ne-
cessity of having a strong coupling regime, where standard perturbation theory is
not applicable.

Nevertheless, during the years, various techniques have been developed to cope
with this issue and an exploration of these ideas in certain limits has been feasible.
Some of the results found have been tested by lattice simulations, especially with
the recent improvements of computational techniques [48, 49, 50].

Besides the naive energy rescaling of the (known) dynamics of QCD (that has
almost immediately found phenomenological difficulties [51]), the most commonly
used method is based on the expansion in the large number of colors Nc [52]. Many
results in the 80s and early 90s have been derived in this limit.

Moreover at the end of the 90s, a weak/strong duality, the AdS/CFT, has
been found between a (SUSY) conformal gauge theory and a string theory in a
curved background [53]. This duality is such that the large-Nc, strong ’t-Hooft
coupling limit of the conformal gauge theory is dual to the low energy, weak

7This is the case of chiral symmetry breaking in QCD or of SUSY breaking in SQCD with a

suitable matter content.
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gravity limit of a string theory on a AdS5×S5 space. While this duality involves a
specific SUSY theory, it has motivated the study of five dimensional field theories
on warped Anti-de-Sitter (AdS) space as “templates” for strongly coupled 4D
theories, i.e. the Randall-Sundrum models [54, 55, 56]. “Dictionaries” between the
4D and 5D languages has been derived [57, 58, 59]. For example global symmetries
in the 4D picture correspond to gauge symmetries in the bulk of the AdS space;
fields whose 5D wave-functions are localized close to the AdS boundary correspond
to 4D elementary degrees of freedom; fields whose support is localized deeply in
the AdS bulk describe 4D composite objects.

The geometrical structure and the improved calculability of the AdS theo-
ries boosted a lot of investigation of large-Nc strongly coupled theories in the
past years. However, while providing a very natural solution of the Big Hierarchy
Problem, these theories generically face serious problems when confronted with
Precision Tests, as it will be explained in the following Section. While it is clear
that many of these problems are actually connected with the necessity of taking
the large Nc limit, it remains an open question whether a consistent small-Nc

theory of EWSB may exist [60, 61].

1.3.3 Large Extra Dimensions

Recently a third, conceptually different, way to create a large hierarchy between
the Planck scale and the Fermi scale has been introduced. It relies on the exis-
tence of additional spatial dimensions [62, 63]. The key mechanism is “volume
suppression”: if there are additional dimensions and some interactions (gravity)
can propagate in all of them, while others (SM forces) are confined to propagate
only in the standard 3+1 ones, then the former will appear “diluted”, hence weak,
to the eyes of a 4-dimensional observer. Thus the fundamental Planck scale M∗ can
easily be at a few TeV while the gravitational interactions can still appear much
weaker, by a factor of (M∗R)n, with R the typical size of the extra dimensions and
n their number. The Fermi scale is now natural because the fundamental cutoff
of the theory (where a more fundamental theory like string theory will show up)
can be at the TeV scale. This power law dependence of the volume suppression
factor with the number of extra dimensions is the key to create a large hierarchy
between the strengths of the various forces. Given the fact that the 1/r2 behavior
of gravity has been probed down to 10−2 mm, one can allow “large”, µm-sized,
extra dimensions and easily achieve the required suppression. Large extra dimen-
sions provide another technical solution of the Big Hierarchy Problem, while for a
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Dimensions six mh = 115 GeV
operators ci = −1 ci = +1

OWB = (H†τaH)W a
µνBµν 9.7 10

OH = |H†DµH|2 4.6 5.6
OLL = 1

2(L̄γµτaL)2 7.9 6.1
O′HL = i(H†Dµτ

aH)(L̄γµτaL) 8.4 8.8
O′HQ = i(H†Dµτ

aH)(Q̄γµτaQ) 6.6 6.8
OHL = i(H†DµH)(L̄γµL) 7.3 9.2
OHQ = i(H†DµH)(Q̄γµQ) 5.8 3.4
OHE = i(H†DµH)(ĒγµE) 8.2 7.7
OHU = i(H†DµH)(ŪγµU) 2.4 3.3
OHD = i(H†DµH)(D̄γµD) 2.1 2.5

Table 1.1: 95% lower bounds on Λ/TeV for the individual operators and different
values of mh. χ2

min is the one in the SM for mh > 114.4 GeV. Taken from [64].

truly natural solution one further needs to describe the stabilization of the radii
of these µm-sized new dimensions.

1.4 The Little Hierarchy Problem

In the previous Section we argued that there are many indications pointing out
to the presence of unknown NP at energies around a TeV.

However TeV-scale New Physics is sufficiently low in energy to possibly leave its
imprints on the EWPT. One can search for such signatures. A way to summarize
the results of such searches is to use the language of Effective Field Theories. It
is possible to parameterize the possible contributions of New Physics that can
affect electroweak observables by adding to the SM Lagrangian a set of operators
of dimension greater than 4, organized as a power series in Λ−1, the cutoff scale
of the SM. Assuming O(1) coefficients, one can put lower bounds on Λ from the
data collected at LEP and SLC [21].

The results of this analysis are summarized in Table 1.4 with the most stringent
ones suggesting ΛSM > 5 ÷ 10 TeV (mostly coming from the S-parameter). By
looking at the SM only, one finds that the requirement of ΛSM = 10 TeV implies
a cancelation in Eq. (1.4) of 1 part in (600,100,60) for the top, gauge and Higgs
sectors respectively: not as dramatic as in the Gauge Hierarchy Problem, but still



1.4 The Little Hierarchy Problem 17

somewhat troublesome. A more quantitative estimate is usually given in terms of
the so-called finetuning parameters [65]: if a is a fundamental parameter of the
theory and it plays a role in EWSB, then

Da =
∂ log v2

∂ log a
(1.5)

measures the sensitivity of the Fermi scale to small variations of a.
The data collected in the EWPT render the EWSB Hierarchy problem a com-

pletely low energy problem. This has been called Little Hierarchy Problem stressing
its low energy aspects, or LEP Paradox stressing its origin in the EWPT data [64].

One can think of this tension as a hint towards the correct description of EWSB
from the presently available experimental data. It is therefore interesting to pursue
the study of models that solve the Little Hierarchy Problem, that achieve EWSB
naturally (i.e. without too much finetuning) and are consistent with the EWPT.

From an experimental point of view, it strengthens the expectation that the
answers to questions like “which is the correct theory of EWSB?” or “is the theory
of EWSB natural?” may lie just behind the corner of the current energy frontier.
This expectation motivates the present activity of the Fermilab TeVatron and the
construction of the forthcoming CERN LHC, an hadronic (pp) machine able to
explore energies up to a few TeV.

Given that the Little Hierarchy Problem, defined as above, is such in the sole
SM, where there are no new states between the Fermi scale and the multi-TeV
UV cutoff, one can ask himself which is the status of the other models presently
available that have addressed the question of explaining EWSB and solving the
Big Hierarchy Problem, after the information contained in the EWPT is used.
Does any of these models already solve the LEP Paradox or do they have Little
Naturalness issues as well?

1.4.1 SUSY and the LEP Paradox

In the case of the MSSM, EWSB is triggered radiatively by the top-stop loop. In
this way the Fermi scale is naturally related to the SUSY breaking scale.

Within the MSSM, the top corrections to the Higgs mass include the contribu-
tion from the supersymmetric partner of the top quark, which is of the opposite
sign. Eq. (1.3) becomes

δm2
H(top − stop) =

3√
2π2

GF m
2
t m

2
t̃

log
Λ2

m2
t̃

= 0.1m2
t̃

log
Λ2

m2
t̃

. (1.6)
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Now the finetuning in the determination of the Fermi scale is controlled by mt̃ and
by the logarithm of Λ/mt̃, with Λ the scale at which SUSY breaking is mediated
to the MSSM. A natural theory would have mt̃ ∼ µ ∼ v and a small argument of
the logarithm. However in many SUSY breaking scenarios, in order not to spoil
unification or create other phenomenological problems, SUSY breaking is mediated
at a quite high scale, thus leading to a large logarithm8. The problem is even worse
since in the MSSM the Higgs boson mass at tree level is bounded from above by
the Z mass, and the loop corrections from the top sector are given by9

δm2
h =

6√
2π2

GFm
4
t log

(
m2
t̃

m2
t

)
. (1.7)

In order to evade the LEP bound on the Higgs mass on has to have mt̃ � mt.
At the end one finds that the MSSM still requires a cancellation at a few %
level to have a successful EWSB and a Higgs boson mass larger than the current
experimental bound. This partly recreates the LEP paradox.

In view of a solution of the “Little Hierarchy Problem” which does not involve
sizable amount of unnatural finetunings, the current MSSM is not enough. This
motivates further research and analysis on EWSB.

Given that part of the problem is due to the absence of a large tree level
quartic for the Higgs, one can still remain in the framework of SUSY but extend
the MSSM. The simplest extension, i.e. the NMSSM, obtained by adding a singlet
superfield to the MSSM, already seems to be beneficial. It allows in fact a heavier
Higgs [68], and/or opens up some decay channel for the Higgs boson that can
circumvent the LEP direct searches, allowing a lighter, less tuned, supersymmetric
Higgs boson [69].

1.4.2 Models with strong dynamics

Technicolor/Higgsless models in which strong dynamics breaks directly the Elec-
troweak symmetry, usually have problems with EWPT. In particular the contri-
bution to the S-parameter, which is not protected by any symmetry10, generically
turns out to be fairly large [73, 74] unless some finetuning is introduced [75]. These
estimates are based on a large Nc limit or on some “dual” 5D warped model. In

8Ways to reduce the size of the log have been pointed out e.g. in [66, 67].
9In absence of A-terms. In principle an additional positive contribution proportional to

GFm
4
tX

2
t with Xt = At/mt̃ is possible.

10On the other hand, large corrections to the T-parameter and to the Zbb̄ coupling can be

successfully eliminated by the usage of a custodial symmetry [70, 71, 72].
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general the models can be made consistent with the EWPT at the price of fine-
tuning two independent contributions to the S-parameter, one arising from the
excited resonances of the electroweak gauge bosons, the other coming from the
matter sector [76]. Stronger constraints come from the Flavor and CP-Violating
observables (especially K− K̄ mixing), once the problem of generating masses for
the quarks is addressed [77]. While there is no proof that a non-finetuned low-Nc

higgsless model does not exist, in order to solve the Little Hierarchy Problem one
is led to explore models in which the strong dynamics breaks a larger symmetry
group and there a Higgs boson appears as a composite state (like a pion) at lower
energies. Given the fact that the separation of scales required to solve the LHP is a
factor of O(100), a two-loop factor, it means that the requirements imposed by the
EWPT constrain up to the leading radiative corrections. Thus it is worth study-
ing the perturbative low-energy “chiral” effective Lagrangian of these composite
Higgs models, in order to explore different avenues in solving the LEP Paradox.

One interesting way to proceed is to make the Higgs a Pseudo-Goldstone boson
(PGB) [78]. Suppose that the Higgs sector enjoys an extended global symmetry
with group G, broken spontaneously to a smaller symmetry group H. Then one
expects the presence of a certain set of massless Goldstone bosons, associated to
the quotient G/H. However, if this symmetry is a property of the Higgs sector
alone and the SM electroweak and Yukawa interactions do not respect it, there
will be a small source of explicit breaking. Radiative corrections then generate a
potential for the Goldstone modes, lifting their masses.

However, declaring the Higgs to be a PGB can not be the end of the story:
in this way one has just forbidden the tree level mass term, but the size of the
radiative corrections needs to be controlled to create the required mass hierarchy.
In fact the generic potential generated for the PGB is

V (ϕ) = f4 cos
(
ϕ

f

)
, (1.8)

where f is the G→ H symmetry breaking scale (naively 4π/
√
N below the cutoff

Λ, where N is a generic multiplicity factor). This shows that without doing any-
thing else v ∼ f and nothing is gained. There are two ways out of this problem,
as suggested from the minimization of the formula Eq. (1.2), v = µ/

√
λ: either by

suppressing the quadratic term or by enhancing the quartic. The second possibil-
ity is in general more attractive since it easily allows for a heavier physical Higgs
boson, above the direct search bound. However it is also more difficult because
one has to avoid that the new large quartic coupling reintroduces large radiative
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corrections in the quadratic term, lifting it and keeping the ratio µ/
√
λ practically

constant. There has been a few directions pursued here, like using the idea of
collective breaking [79] in the “Little Higgs” models, or by using discrete symme-
tries [80] like in the “Twin Higgs” or by parametrically enhance the separation
between f and v by large symmetry group factors [56].

For example in the case of Little Higgs theories, the idea behind collective
breaking is to render the Higgs mass term an explicit breaking term of (at least)
two different global symmetry groups. In this case a mass term can only be gener-
ated by the interplay of at least two different sectors with their own interactions.
The radiative corrections to the Higgs mass term are thus pushed to two-loops,
gaining an additional

√
λ/4π in the v/f formula.

In practice the enhanced symmetry is enforced by the presence of partners
of the SM fields (with the same spin, differently from SUSY) that cancel the 1-
loop quadratic divergence to the Higgs mass. These partners need to be at the
intermediate scale f in order to solve the Little Hierarchy Problem. However,
being just a loop factor above the weak scale, they too contribute to the EWPT
and if their contribution comes at the tree level the effect is disastrous. In fact
the simplest versions of the Little Higgs have problems with EWPT coming from
these states at the TeV. In general additional model building is required11, besides
the collective breaking idea, that considerably complicates the models.

1.5 Compact Extra Dimensions as a tool for Model

Building

The existence of Extra Dimensions is a fundamental ingredient of more complete
theories like string theory. In general these new spatial dimensions should be com-
pact and their size should be determined by some dynamical mechanism. Once the
radii of the extra dimensions are fixed, they constitute new mass scales in the the-
ory. It is therefore interesting to explore the possibilities that one (or more) extra
dimension(s) have size of the order of the electroweak scale ∼ TeV−1. Moreover,
they also provide new possibilities to address the issues of symmetry breaking and
the creation of hierarchies while improving calculability.

The crucial fact is that a compact extra dimension can have “preferred points”.

11For example adding an additional discrete symmetry, T-parity, that prevents these states to

contribute dangerously to the precision observables, but still guarantees the cancelation of the

divergences in the Higgs potential [81].
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These are determined either by the presence of extended objects called branes,
similar to topological defects (like domain-walls or kinks), or by the nontrivial
topology of the extra dimensional space itself as in the case of an orbifold (a
singular space where couples of points are identified under the action of a parity
symmetry, like y ↔ −y).

These special points provide special places where some of the fields can be
localized or where symmetries of the extra-dimensional (bulk) theories can be
broken. While the consistency requirements are different for the case of an orbifold,
of a segment or of a non-singular space containing branes, from the low energy
point of view they all can be regarded as points in which one can specify a different
field content and different symmetries with respect to the bulk theory.

This opens up a number of possibilities to translate common model building
issues to geometrical problems, easier to visualize and address. For example by
localizing different fields in different locations in the extra-dimensional space one
can explain small numbers in their couplings by the smallness of the superposi-
tion integral of the corresponding wave-functions. By assigning different boundary
conditions to different fields belonging to the same multiplet, one can break sym-
metries, etc.

In the last fifteen years it has been suggested that the existence of compact ex-
tra dimensions possibly can play a role in the EWSB [82, 83, 84, 85]. In particular,
in extra dimensional models, one has additional ways to break symmetries, essen-
tially non-local in the extra dimension. The idea behind it is to break symmetries
by boundary conditions along the compact extra dimensions. The non-local na-
ture ensures a less UV-sensitive symmetry breaking pattern, reducing the number
of parameters and/or mildening the impact of the unknown UV contributions on
low energy observables, by suppressing them with the volume of the extra dimen-
sion. This mechanism, first explored by Scherk and Schwarz [86, 87] in the late
seventies as a way to break Supersymmetry, recently came into specific models of
EWSB. The most promising ones make use of both the ideas of Supersymmetry
and extra dimensions [84, 85, 88, 2]. They use Supersymmetry to reduce the sensi-
tivity of EWSB to the unknown UV Physics and the extra dimension(s) to break
Supersymmetry with a reduced number of parameters.

In the following we analyze two specific models of EWSB in extra dimen-
sions [88, 1, 2, 3, 4]. They are five dimensional supersymmetric theories in which
the fifth dimension is compact and Supersymmetry is broken by boundary con-
ditions (à la Scherk Schwarz). The size of the Fermi scale and the Higgs boson
mass are related to the size of the extra dimension through a small number of
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parameters12 rendering a highly constrained and predictive picture, testable at
the Tevatron and the LHC. Furthermore the size of the extra dimension, being
the scale of SUSY breaking, determines the spectrum of superparticles. These
theories, even though effective low energy theories, remain perturbative up to the
multi-TeV region, providing a possible solution of the “LEP Paradox”. Finally
the residual symmetries present in the models improve the calculability rendering
finite the radiative contributions to non-supersymmetric observables and reducing
the sensitivity to the UV Physics.

12Zero in the first model, one in the second, plus other few additional parameters that contribute

only giving some small corrections.



Chapter 2

Introducing the Constrained

Standard Model

In the Introduction we have shown how experimental data favor a perturbative
extension of the Standard Model. We have also presented Supersymmetry as one
of the most attractive ways to solve the Hierarchy Problem while ensuring per-
turbativity of the Physics Beyond the Standard Model. We also pointed out why
the minimal implementation of this idea, the Minimal Supersymmetric Standard
Model, is not completely satisfactory. Naturalness issues arise when the model is
confronted with precision electroweak data and direct searches of the Higgs bo-
son and of supersymmetric particles. The model fails to generate the Electroweak
Symmetry Breaking scale in a natural way and the reasons reside in the way the
Higgs sector and the supersymmetry breaking are described.

One can pursue the idea of using Supersymmetry to ensure perturbativity at
least to energies of the order of 5 ÷ 10 TeV, those probed by the Electroweak
Precision Tests, while adopting another description of supersymmetry breaking.

The use of a compact extra dimension to break supersymmetry has been used
in many different models (e.g. [89, 90, 85]). Here we will review one of these models,
the Constrained Standard Model, introduced in [88]. It constitutes the basis of all
the work presented in the subsequent Chapters.

We will take a bottom-up approach in presenting the model, as followed in [1],
stressing the choices that are relevant in its definition.

For all the issues concerning supersymmetric field theories with compact extra
dimensions and Scherk-Schwarz symmetry breaking, the reader is directed to the
literature, in particular to [91, 92, 93, 94].
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2.1 The Constrained Standard Model ab initio

In the previous Chapter it has been shown that the reason of the hierarchy problem
are the large radiative corrections to the Higgs mass and that the largest ones come
from the top sector. Since one wants to use supersymmetry to mild divergences
and an extra dimension to break it, one can minimally start by introducing only
the top quark as a field living in 5 dimensions and by requiring that the theory
will be supersymmetric.

Then the SU(2) doublet Q3 = (t, b)L, containing the left handed top, and the
right handed top tR will depend on 5D coordinates (xµ, y) and they will fall into
two 5D hypermultiplets, Q̂3 and Û3 respectively.

At this point 5D Poincaré and N = 1 5D supersymmetry fix the field content
and the quantum numbers of the top sector.

For every matter Weyl spinor f this amounts to introducing a hypermultiplet
of (xµ, y)-dependent fields: for each fermionic state there are another fermionic
and 2 complex scalar partners. This is graphically presented in Fig. 2.1, where
f c denotes a spinor with the same chirality of f but opposite quantum numbers.
This theory (after dimensional reduction) has 4D N = 2 supersymmetry and it
is vector-like with respect to SU(2)L × U(1)Y . In order to get at low energy the
chiral non-supersymmetric top sector of the SM, one must break N = 2 SUSY
completely and the 5D Lorentz group down to 4D Lorentz.

1

f
SUSY

f̃

f c SUSY
f̃ c

5D 5D

Figure 1: Component diagram of a hypermultiplet in 5D.
Figure 2.1: Component diagram of a hypermultiplet in 5D.

Since we have decided to use Scherk-Schwarz mechanism [86, 87] to achieve
symmetry breaking, we have to say something on the nature of the extra dimen-
sion. We take it to be compact, a segment [0, L] or, equivalently, an S1/Z2 × Z ′2
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orbifold, with a circle of radius R, such that1 L ≡ πR/2. All the fields are periodic
over the circle of radius R. In this way our extra dimension has two inequivalent
endpoints, y = 0, L, and we have the freedom to specify two independent sets of
boundary conditions, one for each of them. We can specify them on the generators
of the 5D SuperPoincaré group. We choose2

• at y = 0

Pµ(+)P 5(−) (2.1)

Q1
α(+)Q2

α̇(−) (2.2)

• at y = L

Pµ(+)P 5(−) (2.3)

Q1
α(−)Q2

α̇(+) (2.4)

where the upper index of the Q’s is the SU(2)R index of the 4D N = 2 language.
As explained in Sect. 2.3. The net effect of this choice is to completely break global
supersymmetry while maintaining a residual local supersymmetry unbroken. This
residual local supersymmetry will have a fundamental role in determining the UV
properties of the theory.

At this point the boundary conditions for all the component fields of a generic
5D supersymmetric multiplet are specified. The resulting spectrum is shown in
Fig. 2.2, where the (±,±) notation refers to the parities (i.e. Dirichelet or Neu-
mann boundary conditions) at y = 0 and y = L respectively.

In the case of the hypermultiplet however there is still a discrete residual choice,
i.e. the choice of the (+,+) mode to be a spinor or a scalar. Since this is the only
boundary condition that allows for a massless mode and we want to retrieve the
SM spectrum at the massless level, we are forced to choose a (+,+) spinor for the
Q3 and U3 hypermultiplets.

Consistently with supersymmetry, the top Yukawa coupling can be introduced
only as a superpotential term localized at one of the boundaries. The reason is due
to theN = 2 nature of the theory: the hypermultiplets transform as doublets under
the SU(2)R symmetry group and one cannot build a singlet out of 3 doublets.
Hence Yukawa couplings can exist only where N = 2 SUSY is broken down to

1Throughout this thesis we will use both L and R, depending on conveniency.
2For a more general analysis see for example [91].
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Figure 2: Tree-level KK mass spectrum of a 5D multiplet with the indicated
boundary conditions.
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Figure 3: One-loop diagrams contributing to the mass squared of the Higgs
boson.

Figure 2.2: Tree-level KK mass spectrum of a 5D multiplet with the indicated
boundary conditions.

N = 1, i.e. at the two fixed points. For concreteness we will introduce the top
Yukawa coupling at y = 0:

LY =
∫

dy δ(y)
∫

d2θ λt ĥ Q̂ Û + h. c., (2.5)

where ĥ, Q̂, Û are N = 1 chiral multiplets. In particular Q̂ and Û each contain the
fields f and f̃ of Fig. 2.1 with the corresponding quantum numbers. It is irrelevant
at this stage whether ĥ does or does not have a y-dependence. We assume that
the scalar ĥ contains a y-independent component h0(x) which plays the role of the
standard Higgs field.

At this point one can repeat in this new setup the computation of the 1-loop
top contribution to the Higgs mass performed in Chapter 1 for the SM and the
MSSM.

This is most readily done by means of the propagators in mixed momentum-
coordinate space Gi(p; y, y′) for the different components of the superfield, i =
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f, f̃ , F [95]. By computing the diagrams of Fig. 2.3 one obtains:

δm2
H = 3

λ2
t

4L

∫
d4p

(2π)4
[−Tr(Gt(p)Gu(p)) +GFu(p)Gt̃(p) +GFt(p)Gũ(p)] , (2.6)

where Gi(p) = Gi(p; 0, 0). Using Eq. (B.9) of Appendix B one has [88]

δm2
H = − 3ŷ2

t

4π2 L2

∫ ∞

0
dxx3

[
coth2 (x)− tanh2 (x)

]

= −63 ζ(3)
32π2

ŷ2
t

L2
, (2.7)

where ζ(3) = 1.20 and ŷt = λt/(4L)3/2 is the top Yukawa coupling in 4D (an-
ticipating a Higgs field living in the bulk of the extra dimension as well). The
finiteness of Eq. (2.7) is a consequence of local supersymmetry conservation in
5D, as discussed in Sect. 2.3.
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Figure 2: Tree-level KK mass spectrum of a 5D multiplet with the indicated
boundary conditions.
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Figure 3: One-loop diagrams contributing to the mass squared of the Higgs
boson.
Figure 2.3: One-loop diagrams contributing to the mass squared of the Higgs
boson.

2.1.1 The relation between the compactification scale and the cut-

off

The finiteness of Eq. (2.7) and the spectrum in Fig. 2.2, with all extra particles
in the top hypermultiplet living at or above the compactification scale 1/R, look
as a right step in the direction of solving the LEP paradox. The price to be paid,
however, is the non-renormalizability of the coupling, Eq. (2.5), in 5D. Any model
that incorporates the physics of Section 1.4 must be thought of as an effective
field theory valid up to some cut-off scale Λ. This is not necessarily a problem,
however, as long as Λ is sufficiently larger than the compactification scale 1/L so
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that Eq. (2.7), or similar ones, remain quantitatively meaningful in the usual sense
of effective field theories.

Ideally for a solution of the Little Hierarchy Problem one wants at least Λ >

5 TeV, in order not to assume anything about the effects of the UV completion on
the EWPT.

The relation between 1/L and Λ can be fixed by requiring that the top Yukawa
coupling in Eq. (2.5) becomes non perturbative at Λ, taking into account the
increasing number of states whose thresholds are crossed at every unit of 1/R.
With this assumption, the value of ŷt at Λ can either be estimated by means of
usual dimensional arguments, properly adapted to 5D [96],

ŷt(Λ) ' 1
16π2

(
24π3

4 ΛL

)3/2

' 16.1 (ΛL)−3/2, (2.8)

or by noticing that the expansion parameter in a 4D calculation involving the top
Yukawa coupling is3

2ŷ2
t

16π2
(NKK)3,

where NKK ' ΛR = 2ΛL/π is the number of modes below Λ, hence

ŷt(Λ) ' π5/2

(
1

ΛL

)3/2

' 17.5 (ΛL)−3/2. (2.9)

Matching this value with the measured top Yukawa coupling at the weak scale
gives ΛL ' 8 [88]. Note that ŷt at Λ has not increased from 1 by more than 20%
or so. The one-loop evolved ŷt starts growing rapidly at Λ ' 10/L. From the 4D
viewpoint, it is the multiplicity of states, rather than the increase of ŷt itself, that
causes the loss of perturbativity.

Is ΛL ' 8 enough to defend the predictivity of an equation like Eq. (2.7)?
We claim that it is, as it can be checked by writing the most general Lagrangian,
involving the top and the Higgs fields, consistent with the various symmetries
and containing operators of arbitrarily high dimensions, all assumed to saturate
perturbation theory at Λ. The corrections that these extra couplings induce are not
large. The value of Λ itself, or of 1/L, will be set in the following. We also anticipate
that the gauge couplings, growing more slowly than ŷt, remain perturbative below
or at Λ.

3A factor of 2 is included to account for the coupling of the non-zero KK modes,
√

2 times

stronger than for the zero mode.
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2.2 The complete model and the relevant parameter

space

The most straightforward way to include the gauge and Higgs multiplets is to take
every field in 5D. In fact the other option of taking the Higgs localized at y = 0
requires the introduction of an additional Higgs doublet to write down the down
quarks and lepton Yukawa couplings as in the usual MSSM (see below). Moreover
with matter and gauge fields in 5D, (discrete) momentum conservation holds in
the 5th direction. Higher KK modes need to appear in pairs, thus weakening the
lower bounds on 1/L.

The parity assignments of the fields in the gauge multiplet, a 4D vector Aµ, a
4D complex scalar ϕ = 1√

2
(Σ+iA5) and two Weyl spinors λ̃, λ̃c for every generator

of the gauge group SU(3)C×SU(2)L×U(1)Y , are fixed to be (+,+), (−,−), (+,−)
and (−,+) respectively by Lorentz, gauge and supersymmetry invariance in 5D.
Hence, as shown in Fig. 2.2, the only massless particles are the vector zero modes.

The parity assignments of all the matter fields follow the ones of Q̂3, Û3 in
order to reproduce the SM matter spectrum at low energy. As for the Higgs hy-
permultiplet two choices are in principle possible for the parity assignments: the
(+,+) given to a fermionic component (as for the matter hypermultiplets) or to
a scalar component, with the parities of all other fields fixed automatically. Only
the second choice leads to a non anomalous theory and leaves the zero mode of
the Higgs field massless. In this case the two Higgsinos, (+,−) and (−,+), are all
paired into Dirac fermions with masses (2n+ 1)/R, n = 0, 1, ... (see Fig. 2.2).

2.3 Residual symmetries after the orbifold projection

The 5D supersymmetric gauge Lagrangian is completely fixed at this stage. The
symmetries that survive the orbifold projection other than gauge and flavor sym-
metries are:

1. 5D supersymmetry with an y-dependent transformation parameter Ξ =
(ξ1, ξ2). N = 1 supersymmetric theories posses a SU(2)R symmetry that
rotates two 4D Weyl-spinors transformation parameters, ξ1 and ξ2, the gen-
erators of the 2 supersymmetries in the N = 2 theory in 4D language. In
general this R-symmetry can be broken by boundary conditions. This can
be accomplished à la Scherk-Schwarz imposing a twisted periodicity on the
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supersymmetry generators:
(
ξ1

ξ2

)
(y + 4L) = ei/2πασ2y/L

(
ξ1

ξ2

)
(y). (2.10)

In the supergravity picture this SU(2)R is gauged by an auxiliary vector field
V in the supergravity multiplet [97]. Scherk-Schwarz breaking corresponds
to turn on a Wilson line of V along the compact direction [98, 99].

In the case of the CSM described here, global SU(2)R is broken completely by
the parity assignments on the gaugino fields4 and correspond to the choice
of α = 1/2 in Eq. (2.10). This signals that also global supersymmetry is
completely broken by boundary conditions, as can be easily seen from the
mass spectrum of Fig. 2.2. Nevertheless it is still present a residual local
supersymmetry whose transformations are generated by ξ1 and ξ2 subject
to the boundary conditions (+,−) and (−,+) respectively [91]. This resid-
ual SUSY leaves a local N = 1 SUSY unbroken. In particular at the fixed
points there are 2 residual 4D global N = 1 theories, generated by ξ1 and
ξ2 respectively, that constrain the structure of the boundary-localized terms
in the Lagrangian. This implicitly assumes the promotion of supersymmetry
to a local symmetry, hence to supergravity. However, we note here that the
scale of the supergravity couplings need not to be connected with the cut-off
Λ of Section 1.4.

2. A U(1)R-like global symmetry with R-charges given in Table 2.1, intact even
after EWSB. This is specific of the S1/(Z2 × Z ′2) compactification. In some
sense, this particular compactification represents a point of enhanced sym-
metry among all the 5D compactifications that break global supersymmetry
completely5. The absence of any A-terms or Majorana gaugino masses can
be traced back to this U(1)R symmetry.

3. A local y–parity P5 under which any field transforms as

ϕ(y)→ η ϕ(L− y), (2.11)

where η is the parity assignment at any one of the two boundaries. Note that
this cannot be extended to a global 5D parity symmetry which includes the

4Gauginos form an SU(2)R doublet.
5This is due to the “geometric” orthogonality between the two orbifold projections in S1/(Z2×

Z′2). obtained for α = 1/2 in the language of Scherk-Schwarz SU(2)R twisting.
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R gauge V Higgs H matter M
+2 hc

+1 λ̃ h̃c m̃, m̃c

0 Aµ, Ac h m,mc

−1 λ̃c h̃

Table 2.1: Continuous R charges for gauge, Higgs and matter components. Here,
m represents q, u, d, l, e.

two boundaries since Z2 × Z ′2 is the most general discrete symmetry group
on S1 [91]. However this symmetry is enough to forbid any Chern-Simons
term or local mass terms for the hypermultiplets.

These symmetries strongly constrain the form of the 5D tree-level (bulk) La-
grangian, L5, but leave open the possibility of suitable Lagrangian terms at the
two boundaries, so that, for the total Lagrangian

L = L5 + δ (y)L4 + δ (y − L)L′4. (2.12)

Some of the terms in L4 and L′4 will in fact be anyhow generated, subject only
to the usual non-renormalization properties of supersymmetry. As stated above,
one important fact about L4 and L′4 is that they respect different N = 1 super-
symmetries, associated to the parameters ξ1 and ξ2, which vanish respectively at
y = L and y = 0. In practice, to write down the most general L4 and L′4 one
employs the usual rules of 4D N = 1 supersymmetry after identification of the
proper supermultiplets [94, 100]. In particular the 5D N = 1 vector multiplet,
constituted by a gauge field AM , a real scalar B, two gauginos λa that transform
as a doublet under SU(2)R and a triplet Xb of auxiliary fields, decomposes into a
vector+chiral multiplet in 4D. The hypermultiplet, with a Dirac fermion, 2 com-
plex scalars and 2 auxiliary fields transforming as a SU(2)R doublets decompose
in two chiral multiplets.

If one looks at the Higgs hypermultiplet it is immediate to see, anyhow, that
the supermultiplets whose components have the same orbifold parities and do not
vanish at the boundaries are (h(+,+), h̃(+,−)) and (h†(+,+), h̃c(−,+)) respec-
tively at y = 0 and y = L. This is what makes possible to write down Yukawa
couplings both for up and for down quarks or for the leptons to a single Higgs
field h(+,+) and still be consistent with (local) supersymmetry. The Yukawa cou-
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plings for the up quarks are located at y = 0, while the Yukawa couplings for the
down quarks and the leptons at y = L [88].

Finally we note that L4 and L′4 can contain a Fayet-Iliopoulos term associated
with the hypercharge U(1). We shall come back to this possible term in Section 2.5.

2.4 Gauge anomalies and hypermultiplet mass terms

The boundary conditions, or the orbifolding, turn the vector-like 5D Lagrangian
into a chiral theory. This is obviously the case in the pure gauge–matter sector
since the orbifold projections select chiral fermionic zero modes. It is also true
however in the gauge–Higgs sector in spite of parity conservation and of the Dirac
nature of all Higgsino masses. Some of the Kaluza Klein vector bosons couple to
vector currents and some others to axial currents. Similarly some of the KK states
of the gauge multiplet ϕ are scalars and some pseudoscalars. One wonders then if
gauge anomalies may appear localized on the boundaries [101, 102].

The naive answer to this question turns out to be correct. To ensure gauge
invariance and the conservation of the corresponding 5D gauge current, it is enough
that the fermionic zero modes, after the orbifold projection, satisfy the usual 4D
anomaly cancellation condition [101]. In this case one can implicitly cancel any
anomaly by the addition of a 5D Chern-Simons term with a y-dependent piecewise
constant coefficient η(y), such that the term η(y)F∧F∧A respects the two parities
at y = 0 and y = L. Since the matter fermions are anomaly free and there are no
massless Higgsinos, the orbifold construction described above is anomaly free. A
qualification of this statement is necessary however. Because of the Higgs sector,
gauge invariance can be maintained at the quantum level, but not, at the same
time, the local parity symmetry defined in Sect. 2.3. In particular there is no
regularization that preserves both symmetries [103, 104].

The breaking of the local y–parity makes it possible that there be mass terms
for the hypermultiplets. For the hypermultiplet of components (ψ,ψc, ϕ, ϕc), the
5D mass term consistent with the residual supersymmetry after the orbifold pro-
jection is [104]

Lm = + (ψm(y)ψc + h. c.)−M2
(
|ϕ|2 + |ϕc|2

)

+2M (δ(y) + δ(y − L))
(
|ϕ|2 − |ϕc|2

)
, (2.13)

irrespective of the specific boundary conditions for the different components. Note
the appearance of the boundary term. In the formulation of the theory on a circle
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S1, the mass term m(y) has to satisfy (−,−) boundary conditions to be also Z2×
Z ′2 invariant. Furthermore, bulk supersymmetry implies that m(y) be piecewise
constant in the four different patches of the circle, hence

m(y) = Mη(y) , η(y) =

{
+1, y ∈ (0, L) ∪ (2L, 3L)
−1, y ∈ (L, 2L) ∪ (3L, 4L)

(2.14)

The effect of a mass term like Eq. (2.13) on the spectrum is discussed in Section 2.6.
We point out, however, that if these mass terms are vanishing at tree level, the
non-renormalization theorems guarantee that they can only be renormalized by
finite, negligibly small, non-local corrections associated to the orbifold breaking of
global supersymmetry.

2.5 The Fayet-Iliopoulos term

It was pointed out in [105, 106] that a Fayet-Iliopoulos (FI) term on the boundaries
is induced in the model under examination by one loop corrections involving the
gauge coupling to the hypercharge Y . At first this is not surprising since a FI
term in 4D is both gauge invariant and globally supersymmetric. It is however also
somewhat worrisome, still in view of the 4D properties of a FI term. In 4D the FI
term breaks supersymmetry and/or the gauge symmetry in the vacuum, something
we would not like to happen in view of the previous discussion. Furthermore, it is
not gauge invariant in supergravity if the U(1)–charge of the gravitino vanishes [41,
107], which is the case for Y . Finally the one loop FI term arises only in presence
of mixed U(1)–gravitational anomalies.

None of these unpleasant features necessarily survive in 5D [104]. In particular
they are not shared by the FI term in the model under consideration, which takes
the form

Lξ = ξ (δ (y) (X3 − ∂yΣ) + δ (y − L) (X3 + ∂yΣ)) , (2.15)

where Σ is the real scalar in the vector hypermultiplet and Xa is the SU(2)R
triplet of auxiliary fields of the 5D vector multiplet [108]. X3 and Σ intervene in
the quadratic Lagrangian without a mixed term

L(2) =
1
2
X2

3 +
1
2

(∂MΣ)
(
∂MΣ

)
. (2.16)

For the purposes of this paper, it is important to observe that, in the vacuum,
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from Eqs. (2.15,2.16)

X3 = −ξ (δ (y) + δ (y − L)) , (2.17a)

∂yΣ = −ξ (δ (y)− δ (y − L)) , (2.17b)

showing explicitly that the D–flatness conditions at both boundaries D = X3 −
∂yΣ = 0, D′ = X3 + ∂yΣ = 0 are satisfied. Note that, on the S1 circle, the
vacuum form of Σ is 〈Σ〉 = − ξ

2η (y) with η (y) as in Eq. (2.14). This amounts to a
spontaneous breaking of the local y–parity. In turn, after replacement of Eq. (2.17)
in the interaction terms of the X3 and Σ fields with a generic hypermultiplet of
hypercharge Y ,

Lint = gY Y (X3 − ∂yΣ)
(
|ϕ|2 − |ϕc|2

)

− |(∂y − gY Y Σ)ϕ|2 − |(∂y + gY Y Σ)ϕc|2

+ ψc (∂y − gY Y Σ)ψ + h.c., (2.18)

one obtains a supersymmetric mass term as in Eq. (2.13), with M = gY Y ξ/2,
where gY is 5D hypercharge coupling.

Once more we are led to consider a mass term for the hypermultiplets. With
a momentum cut-off Λ, the radiatively generated FI term is

ξ =
gY

16π2

Λ2

2
, (2.19)

which, in turn, translates itself into a mass term for a hypermultiplet of hyper-
charge Y

Mξ (Y ) = Y
g2
Y

16π2

Λ2

4
= Y

g′2L

16π2
Λ2, (2.20)

where g′ is the usual U(1) coupling in 4D.

For ΛL ' 8 this is a small mass, compared for example with the one loop mass
induced for the Higgs by the top loop Eq. (2.7). One can nevertheless consider
an arbitrary value of ξ, as done in Sect. 3.1.3. Finally it should be pointed out
that this induced FI term has a geometric interpretation in 5D supergravity, sug-
gesting that its renormalization vanishes beyond one loop and that, with a proper
regularization, the case ξ = 0 is not unconceivable as coming from a suitable more
fundamental theory [104].
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Figure 2.4: Spectrum of a matter hypermultiplet, in units of 1/L, as function of
ML.

2.6 Hypermultiplet spectrum in presence of a mass

term

It is useful to summarize how the hypermultiplet spectrum of Fig. 2.2 is modified
in presence of a mass term M as in Eq. (2.13). This spectrum is worked out in
Appendix A both in the case of matter-like and Higgs–like boundary conditions.
The spectra in the two cases are shown in Figs. 2.4,2.5 respectively. We also show
the wave-functions for the lowest-lying modes in the matter hypermultiplet in
Fig. 2.6 for three different values of the mass term. A few things are useful to
note. In the large |ML| limit a supersymmetric spectrum is restored, with bound
states localized at the boundaries.

In particular in the case of the matter multiplet, the states tend to organize
themselves in one N = 1 massless chiral multiplet and in N = 2 massive hyper-
multiplets whose masses go like m2 = M2 + 4n2/R2 with n integer, decoupling
from the spectrum in the large |ML| limit. Furthermore the lightest states are
bound states whose wave-functions are progressively localized toward one of the
two boundaries of the 5th dimension.

In the case of the Higgs hypermultiplet, the states are always grouped in N = 2
hypermultiplets in the large |ML| limit. The masslessness of the lightest multiplet
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Figure 2.5: As in Fig. 2.4 for the Higgs hypermultiplet.
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when |ML| → ∞ depends on the sign of M and there is no localization for
the wave-functions of the lightest states. Furthermore as one can see in Fig. 2.5,
the lightest state which passes through zero at vanishing ML is the Higgs, with
the cusp at ML = 0 reflecting the change of sign of the squared mass, being
(mhL)2 ' −2ML at |ML| � 1.





Chapter 3

The Constrained SM in

presence of bulk masses.

3.1 Electroweak symmetry breaking in detail

The purpose of this Chapter is to study in detail the possible effects of hyper-
multiplet masses on EWSB. In this Chapter we consider the cases where these
masses do not exceed 1/L, leaving the exploration of the alternative possibility
to the following Chapter. As seen in Sect. 2.2, moderate values of ML are con-
sistent with radiative corrections. Other than the modification of the spectrum,
hypermultiplet masses have 3 types of effects on the EWSB:

1. a mass term for the top Q or U hypermultiplets changes the relation between
the top mass and the top-Higgs coupling, crucial in EWSB;

2. a mass term for the top Q or U hypermultiplets influences the one loop Higgs
mass or the complete one loop effective potential;

3. a mass term for the Higgs hypermultiplet gives a tree level mass to the zero
mode Higgs field (see Fig. 2.5), which feeds directly in the effective potential.

3.1.1 The top mass and the top Yukawa coupling

The relation between the top mass and the top–Higgs coupling yt is obtained
by solving the equation of motion for the lowest mode of the fermions in the
top hypermultiplets Q and U , coupled by Eq. (2.5) at the y = 0 boundary. The
interaction Eq. (2.5) is itself a localized mass term when the Higgs scalar is replaced
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by the vacuum expectation value v. This is done in Appendix A. The result can
be expressed as

yt = ŷtη
U
0 η

Q
0 η

h
0 , (3.1)

where

ŷt =
λt

(4L)3/2
=
mt

v

1√
ωU+ω

Q
+

, (3.2)

ωi± = kiL coth (kiL)±MiL, i = U,Q (3.3)

ki =
(
M2
i −m2

t

)1/2 (3.4)

and ηU,Q,h0 are the wave functions for the lightest U,Q, h modes at y = 0, normal-
ized to

∫ 4L
0 dy

∣∣ηi(y)
∣∣2 = 4L and given in Appendix A. At MU = MQ = Mh = 0,

Eq. (3.1) reduces to

yt =
mt

v

2 sin (2mtL)
2mtL+ sin (2mtL)

. (3.5)

Note that in the limit Mh = 0, |MU,Q| � 1/L � mt, yt reduces to the standard
value, mt/v, no matter what the sign of M is. For negative M , when the top wave
function and the Yukawa coupling are localized at opposite boundaries, this is
due to a compensating increase of ŷt, which is directly related to the fundamental
coupling in the Lagrangian. When yt and ŷt differ significantly, it is ŷt that enters
into Eqs. (2.8–2.9) to determine the point of saturation of perturbation theory.

3.1.2 One loop Higgs effective potential for arbitrary MU , MQ

The one loop Higgs mass Eq. (2.7) from the diagrams of Fig. 2.3 gets corrected by
the presence of MU and MQ. This is in fact also true for the entire one loop effective
potential which has to be computed anyhow because of the large correction to the
quartic coupling and because of the higher order terms in (vL)2 which may be
important insofar as L is not determined.

The calculation described in Sect. 2.1 immediately generalizes to the massive
case in terms of the propagators in presence of masses. Considering, as in Eq. (2.6),
the mixed propagators at y = y′ = 0 the effective potential due to top–stop
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exchanges is

Vt (h;MU ,MQ) = Nc

∞∑

N=1

∫
d4p

(2π)4

(−1)N+1

N

(
λt h η

h
0√

4L

)2N

×
{[
GUϕ (p, 0)GQF (p, 0)

]N
+
[
GQϕ (p, 0)GUF (p, 0)

]N − 2
[
GUψ (p, 0)GQψ (p, 0)

]N}
,

(3.6)

where GU,Qi (p, y) = Gi (p, y;MU,Q) with i = φ, F, ψ. The propagators Gi (p, y;M)
are given in Appendix B, while the wave function of the Higgs zero mode ηh0 is
given in Appendix A. The integral is performed over the Euclidean 4-momentum.

3.1.3 Electroweak symmetry breaking in presence of a FI term

As shown in Sect. 2.5, a FI term is equivalent for any hypermultiplet of hypercharge
Y to a mass term, which we parameterize in terms of a dimensionless variable a
as

M (Y ) =
a

L
Y, (3.7)

to be inserted in Eqs. (2.13,2.14).
In presence of these masses the potential we consider to determine the VEV

of the Higgs field is

V (h;L, a) = m2 (M (1/2))h2 +
21ξ (3)
64π2

g2

L2
h2

+
g2 + g′2

8
h4 + Vt (h;M (−2/3) ,M (1/6)) . (3.8)

Other than the standard tree-level quartic coupling and the one loop contribu-
tion from the top-stop exchanges, Eq. (3.6), the potential includes the tree level
mass m(M) computed in Sect. 2.6 and Appendix A (first term on the r.h.s. of
Eq. (3.8)) and a one loop mass term from the KK tower of the SU(2)L gauge mul-
tiplets (second term on the r.h.s. of Eq. (3.8)) [89]. The latter is easily computed
by the y, y′ propagators presented in Appendix B.

Imposing the occurrence of the minimum at h = v = 174.1 GeV, determines
the Higgs mass mh and 1/R, together with the entire spectrum, as functions of a.
The Higgs mass is shown in Fig. 3.1. The lightest stops, which are non degenerate
when a 6= 0 because MU 6= MQ, occurs in two chiralities. Their mass difference
depends on the parameter a and is about 70 GeV at a = −0.15. The stop masses
together with 1/L are shown in Fig. 3.2. These figures refine those of [106].
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Figure 3.1: Higgs mass as function of the dimensionless parameter a, Eq. (3.7).

The sharp increase of 1/R with −a is due to an increasingly precise accidental
cancellation (at about 10% level for a = −0.15) between the positive tree level
squared mass in Eq. (3.8) and the negative contribution from the top-stop loop.
Note that the estimate of the radiatively induced FI term in Eq. (2.20) corresponds
to a small a ∼ 0.05 [106].

Through L, MU and MQ, also the Higgs–top coupling acquires a dependence
on a, determined in Eq. ( 3.1) and shown in Fig. 3.3. Note that the top Yukawa
coupling yt is reduced from the Standard Model value by about 10% due to the
localization of the interaction at the boundary.

3.1.4 Electroweak symmetry breaking with sizable MU = MQ

As we have seen, the mass terms from the FI term have to be small. Their effect
can however be significant due to a possible cancellation occurring in the Higgs
potential between the tree level Higgs squared mass and the radiatively induced
effect. Here we consider the possible effects of direct masses for the U,Q hyper-
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Figure 3.2: Compactification scale and lightest stop masses as functions of a,
Eq. (3.7).
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Figure 3.3: Top–Higgs coupling (yt) and ŷt = λt/(4L)3/2 as functions of a,
Eq. (3.7).
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multiplets, taking MU = MQ = M for simplicity, and limiting ourselves to the
case of |ML| . 1. At the same time, again for simplicity, we set the FI term, or
the a parameter, to zero.

Proceeding as in the previous section, the Higgs potential we consider is

V (h;L,M) =
21ξ (3)
64π2

g2

L2
h2 +

g2 + g′2

8
h4 + Vt (h;M,M) (3.9)

whose minimization determines mh and L as functions of M. The Higgs mass is
shown in Fig. 3.4 for 0 ≤ ML ≤ 0.6. The reason for not considering negative
values of ML due to the lightness of the stops1, that falls below the experimental
lower bound of about 270 GeV [109] around ML ∼ 0.2, as can be seen in Fig. 3.5.
For ML above 0.6, instead, it is the Higgs boson which becomes too light. This
result, however, may not persist for ML > 1, where higher-loop gauge corrections
become important [110]. This case will be analyzed in Chapter 4. In the interval
0 ≤ ML ≤ 0.6, both 1/L and mt̃ have a non negligible dependence an M , as
shown in Fig. 3.5. The degeneracy between the two lightest stop masses would be
resolved by taking MU 6= MQ. The Top-Higgs couplings yt and ŷt in this case are
shown in Fig. 3.6.

3.2 Spectrum and phenomenological implications

In absence of hypermultiplet mass terms, the value of the compactification scale
and the spectrum of the lightest particles is given in Table 3.1 with an error
that estimates the uncertainties due to the presence of the extra couplings and
the operators mentioned in Sect. 2.1.1 [88]. By letting the mass terms vary in a
moderate range, well consistent with radiative corrections, the main deviation from
the massless case is due to a possible mass term for the Higgs hypermultiplet which
can partially counteract the top-stop radiative corrections that trigger EWSB.
This can in turn drive up the compactification scale and, consequently, the entire
spectrum.

In Sect. 3.1.3 we have explicitly discussed the effects of a FI term, which is a
particular example of this case. The entire spectrum becomes therefore effectively
determined by 1/R in the range of Fig. 3.2, 420 GeV . R−1 . 1 TeV. The depen-
dence of mh on 1/R is shown in Fig. 3.7 obtained from Figs. 3.1–3.2, whereas the
masses of the other particles is again given in Table 3.1. Note that the lightest
stop t̃1 is the Lightest Supersymmetric Particle (LSP), except possibly for large

1The lightest stops now come in two degenerate chiralities.
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Figure 3.4: Higgs mass as function of ML.
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Figure 3.5: Stop mass and 1/R as functions of ML.
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Figure 3.6: Top-Higgs coupling yt and ŷt = λt/(4L)3/2 as functions of ML.

values of 1/R where the corrections due to kinetic terms localized on the bound-
aries, giving rise to the main uncertainty indicated in Table 3.1, could reverse the
order with any of the other superpartners at 1/R. Unless an explicit violation
of the U(1)R–symmetry were introduced at the boundaries, the LSP would be
stable. A moderate effect could also arise from an explicit mass term for the top
hypermultiplets, as shown in Fig. 3.5.

3.2.1 Phenomenological implications

Except for the large, somewhat fine tuned values of 1/R, the Higgs boson is below
the WW threshold, with a preferred mass in the 120 GeV range. It has SM-like
couplings to bb and ττ and WWh, ZZh gauge couplings, but has suppressed cou-
pling to two photons [111]. It could therefore be looked at in associated production
of Zh, followed by bb and ττ decays [112, 113, 114]. We have already mentioned
the deviation of the top Yukawa coupling from the SM value (see Figs. 3.3, 3.6
and the discussion in Chapter 5). More important for the possible discovery in a
hadron collider like the LHC is the suppression of the Higgs–gluon–gluon squared
coupling, ranging from 10% to 60% relative to the SM value as 1/R increases from
190 to about 450 GeV, where the WW threshold is crossed [111].

A main feature of the model is that the two degenerate light stops are the LSP
and are stable if U(1)R is exact. Their mass is approximately (π/(2L)−mt) with
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A B

1/R 360± 70 420÷ 1000
h 133± 10 Fig. 3.7

t̃1, ũ1 210± 20 1/R(1± 8%)−mt

χ±, χ0,

g̃, q̃, l̃ 360± 70 1/R(1± 20%)
t̃2, ũ2 540± 30 1/R(1± 8%) +mt

A1, q1, l1, h1 720± 140 2/R(1± 20%)

Table 3.1: The particle spectrum and 1/R in absence of any mass term (Column
A, presently excluded) and in presence of a FI term (Column B). All entries are
in GeV.

a lowest preferred value in the 200 GeV range. As it will explained in Sect. 5.6
these stable stops will hadronize in superhadrons by picking up one or two light
quarks. In the case of charged superhadrons they will give rise to muon-like tracks,
distinguishable from a muon via dE/dx and time-of-flight. Their mass is presently
constrained by TeVatron searches, as shown in the plots.

Finally one should discuss the present constraints from EWPT and Flavor
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Figure 3.7: Higgs mass versus 1/R in presence of a Fayet-Iliopoulos term. The blue
(red) shaded areas correspond to the LEP Higgs (CDF stop) exclusion limits.
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Physics. This will be done in Chapter 5, together with the model presented in the
next Chapter.

The heavier supersymmetric particles in Table 2 could be looked at through
their chain decay into the LSP. Similarly the discovery of the first states at 2/R of
the KK tower of SM particles (heavy quarks, leptons with their mirror partners,
heavy gauge and Higgs bosons) would be strong evidence for the picture of EWSB
described in this Chapter. Note that (discrete) momentum conservation in the 5th
dimension forbids unsuppressed gauge couplings of the heavy gauge bosons to the
standard fermions.

3.3 Extending the CSM

In Chapter 2 we have seen that the parameter space of the minimal version of
the CSM has been enlarged because of the presence of bulk masses for the hyper-
multiplets as a consequence of the breaking of the P5 parity. From the analysis
performed in this Chapter, it comes out that points near the CSM in this enlarged
parameter space represents slightly distorted versions of the original theory but
without any novel feature. One then can asks himself whether there are other 5D
models in flat space that describe EWSB successfully and that differ from the
CSM. In this search one can move to different directions: either modifying the
theory to keep both P5 and U(1)R intact or to keep one of the two only. In partic-
ular if one keeps U(1)R only, as in the CSM, it is interesting to inspect different
regions of the parameter space, far from it.

3.3.1 Models with U(1)R and P5 symmetries

A predictive theory of EWSB should have only a few parameters, and therefore
as much symmetry as possible. One can try at first to modify the theory and keep
both P5 and U(1)R in addition to local 5D Supersymmetry and all the symmetries
of the SM.

Hence, we must cancel the FI term introducing a second Higgs hypermultiplet
with boundary conditions that give rise to a second massless scalar with opposite
hypercharge to the first. Let’s call them for simplicity Hu and Hd with hyper-
charges 1/2 and −1/2 respectively2.

2Here Hu and Hd do not necessarily correspond to the fields giving up-type and down-type

quark masses, respectively: for instance, down-type quark masses can arise from the VEV of Hu,

as seen in Eq. (3.10).
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Is it possible to construct a completely realistic theory with these symmetries?
Other than gauge interactions, the symmetries allow brane-localized Yukawa in-
teractions. For the case of bulk matter these are:

LYukawa = δ(y)[λuQUHu + λdQDHd]θ2

+δ(y − L)[λ′uQ
′U ′H ′cd + λ′dQ

′D′H ′cu ]θ′2 , (3.10)

where Q,U,D and Hu,d are chiral multiplets containing quark and Higgs-boson
zero modes of theN = 1 Supersymmetry acting at y = 0, whileQ′, U ′, D′ andH ′cu,d,
which also contain quark and Higgs-boson zero modes, are the chiral multiplets
of the N = 1 Supersymmetry acting at y = L. Even though one-loop radiative
corrections lead to contributions to the soft mass terms m2

uH
†
uHu + m2

dH
†
dHd +

m2
3(HuHd + h.c.) in the Higgs potential, successful EWSB does not occur. The

Yukawa contributions dominatem2
u,d and are large and negative, so thatm2

u+m2
d <

0, giving an unbounded potential along the D-flat direction. It is interesting that
the addition of an extra Higgs doublet hypermultiplet to the CSM destroys the
theory. If the quark fields reside on a boundary, only one pair of the Yukawa
couplings survive [115]. In this case the squark masses arise only at one loop, and
we find (see Chapter 4) that the corresponding two-loop top Yukawa contribution
to m2

u is not sufficiently negative to overcome the positive contribution from the
one-loop gauge radiative correction: m2

u,d are both positive, and m2
3 = 0, so that

there is no EWSB.
We conclude that we must give up either the bulk parity P5 or the continuous

U(1)R symmetry to construct realistic theories. Theories with P5 but no U(1)R
were constructed in [95]. They are theories with two Higgs doublet VEVs result-
ing from a scalar potential having terms induced by U(1)R breaking boundary
operators.

3.3.2 Models with U(1)R symmetry and broken P5 symmetry

In the following we will focus on the possibility of a U(1)R-symmetric theory with
P5 broken. This is exactly the possibility, mentioned above, of analyzing the exis-
tence of other regions of successful EWSB in the CSM enlarged parameter space.
Furthermore, being now free to move to arbitrary values of the hypermultiplet
masses, one can stick on the theory with two Higgses: it is easy to realize that
the theory with only one Higgs can be viewed as a theory with two Higgses in
which only one of them gets a VEV while the other has a big negative bulk mass
and decouples. This can be directly seen from the spectrum of Fig. 2.4. Another
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evidence supporting this viewpoint comes from the structure of the FI term:

ξdiv(y) =
g2
Y

16π2

∑

i

{(
YiΛ2 − 2MiYiΛ

)
[δ(y) + δ(y − L)] + higher deriv.

}
(3.11)

When MHd becomes big and negative, of the order of Λ, its contribution in the
linear divergent part recreates the quadratic divergence of the one-Higgs theory.

While the one Higgs theories have a quadratically divergent FI term, the two
Higgs theories are less sensitive to unknown physics at the cutoff. The quadratic
divergence of the FI term is canceled by the presence of the second Higgs hyper-
multiplet — indeed this may be a motivation for considering two Higgs theories.
In the presence of hypermultiplet masses, however, a further condition arises if
one requires ultraviolet insensitivity of the FI term, since there is a residual linear
divergence proportional to Tr[YM ], where Y and M are hypercharge and bulk-
mass matrices for the hypermultiplets as shown in Eq. (3.11). This may motivate
interesting relations among the hypermultiplet masses, e.g. the case in which they
are all equal, or MQ = MU = MD, MHu = MHd or MQ = MU = −MHd and all
other masses equal to zero. These relations make the radiative FI term identically
vanishing. In fact, MHu = 0 then becomes a perfectly stable condition.

Ensuring one of these condition is necessary if we want to examine the case of a
quasi-localized top quark, MQ,U

>∼ 1/L: in this limit the top 1-loop contribution is
substantially reduced in size and, if the FI term is non vanishing, the induced value
for MHu gives a mass squared to the lightest mode of Hu of comparable size to the
other radiative contributions, rendering the theory too sensitive to UV physics.
Further conditions on the hypermultiplets masses can arise from phenomenology
as it will be discussed in Chapter 5. In particular the condition MUi = MQi ,
MDi = MLi = MEi = 0, MHd = MHu may keep at a minimum level unwanted
effects in low energy physics, like FCNC or violation of universality, as discussed
in detail in Chapter 5.

Let’s now turn to EWSB: the bulk mass terms of most importance are those of
the third generation and the Higgs multiplets. For most of the following Chapters
we assume that the bulk mass for the Hu hypermultiplet vanishes MHu = 0, and
we concentrate on the bulk masses for the third generation quarks: MQ,U,D. Hav-
ing already analyzed the case in which the masses are � 1/L, we consider values
of MQ,U comparable to or larger than 1/L, so that the corresponding zero-mode
wave-functions are peaked at the boundaries of the fifth dimension. In particular
we choose MQ positive so that the left-handed top and bottom quarks are located
near y = 0 where the top Yukawa coupling to hu reside. The equality of the hyper-
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multiplet masses for U , Q, D automatically avoid large wave-function suppression
factors in the top quark mass. Furthermore, if the b quark must get its mass from
a Yukawa coupling at y = L, the mb/mt mass ratio receives an exponential sup-
pression of exp(−2MQL) due to the small value of the q and d wave-functions at
y = L [110]. It is significant that localization necessarily destroys the symmetry
between up and down sectors, leading to a small value for mb/mt without the need
for a hierarchy of 5D Yukawa couplings.

However having to two Higgs hypermultiplets at disposal this picture can be
altered by the possibility of four Yukawa couplings, as shown in Eq. (3.10), and
two Higgs VEVs. Nevertheless, one can try to analyze if the minimal possibility in
which only the Hu acquires a vev leads to successful EWSB3. This can be ensured
for example introducing a global symmetry U(1)Hd which rotates the phase of only
Hd. This symmetry therefore sets the Yukawa couplings λ′u = λd = 0 as well as
m2

3 = 0. Only Hu acquires a VEV, so that the physics of both EWSB and quark
mass generation is identical to the case of the one Higgs theory.

The analysis performed above defines a new model: a two Higgs theory with
definite relation between hypermultiplet masses, equal large masses for the third
generation quarks multiplets, and with EWSB performed by only one Higgs, the
other being inert. In the following Chapter we will refer to this model as the Quasi
Localized Top (QLT) model.

Before starting the study whether the QLT leads to successful EWSB, it is in-
teresting to better identify which is the relevant parameter space. The Higgs poten-
tial, and therefore EWSB, depends only on the unknown parameters 1/L,MQ,MU

and MH ≡MHu . The absence of any dependence on other bulk mass parameters,
in particular MD, is discussed in Appendix D. The top Yukawa coupling λu3 ≡ λt
enters, but it is determined by the top mass, mt. In the next Chapter we will first
study the region of parameter space with MQ = MU and MH = 0. In this case
we find a restrictive and therefore predictive region in which EWSB is successful.
In particular having assumed MU = MQ and MH = 0 one can establish a rela-
tion between 1/L and the Higgs boson mass. In Section 4.4.1 we will perform a
detailed calculation to determine this relation at a few percent level of accuracy.
In Section 4.5 we will then relax the condition MU = MQ to check the stability
of the EWSB region4, and we study the dependence of the solution on MU/MQ.

3In the MSSM this is impossible because Hu does not couple to the down quarks and to the

leptons and a vev also for Hd is required to generate their masses.
4The motivation of this analysis is due to the fact that in principle higher order brane-localized

kinetic operators for the top U and Q multiplets can renormalize differently MU and MQ, thus
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Finally in Section 4.6 we will let MH assume values different from 0 while keeping
MU = MQ. This allows us to lower the values of MU,Q and make contact between
the Quasi-Localized Top (QLT) model and the CSM.

altering their equality.



Chapter 4

Electroweak Symmetry

Breaking with a

(quasi-)localized top.

We are now ready to analyze the details of the EWSB in the QLT model. As
we have seen in the previous Chapter, as the localization becomes more effective,
the top quark and squark tree level masses become degenerate and the radiative
corrections are the main source of their splitting. Moreover, the compactification
length L is not fixed anymore as it was in the original CSM, but it is now allowed
to vary together with the Higgs boson mass. Since L determines also (part) of the
spectrum of the theory, it is of primary importance, for determining the predictions
of the model, to control the relation mH(L) at a few percent of accuracy. This is
the goal of the analysis performed here. We will identify the contributions to the
Higgs potential which are relevant for EWSB and for a precise determination of the
relation between the Higgs mass and the compactification scale 1/L. The aimed
precision will require us to consider 2-loop contributions to the Higgs potential.
To simplify the discussion and the computation, we will first perform the analysis
in the case in which the top multiplet is exactly localized on the boundary at
y = 0. This is, for some contributions, a good approximation for the case of quasi-
localization. Later we will deal with the general case, showing how to modify the
results obtained for an exact localization.
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4.1 The case of exact localization

We can express the reference Lagrangian as

L = LN=1
5D (gauge⊕Higgs) + LN=1

4D (Q⊕ U) δ(y), (4.1)

where the 4D, N = 1 supersymmetric Lagrangian for the Q,U chiral supermulti-
plets includes the top Yukawa coupling

LN=1
4D (Q⊕ U) =

∫
d4θQ†eVQ+

∫
d4θU †eV U +

[∫
d2θλtHQU + h.c.

]
. (4.2)

We have not included here any additional kinetic terms for the gauge and
Higgs multiplets localized at the boundaries. They are compatible with all the
symmetries and indeed, if not present, are generated by radiative corrections. The
effects of such terms on EWSB will be discussed in Sect. 5.2. See also Appendix C.

With the boundary conditions in Figure 2.2, after the integration over y, the
tree level potential for the real part of the zero mode of the Higgs field is

V tree(h2) =
g2 + g′2

32
h4. (4.3)

We are interested in the effective potential V (h2) which, expanded around
h = v, gives

V (h2) ' 2v V ′(v2) h+
[
V ′(v2) + 2v2 V ′′(v2)

]
h2. (4.4)

Hence
V ′(v2) = 0 (4.5)

is the equation which determines v, or the Fermi scale G−1/2
F , and

m2
h = 4v2 V ′′(v2) (4.6)

is the physical Higgs boson squared mass. We aim to an accuracy of a few percent
in the determination of V ′ and V ′′.

The 1 loop electroweak contribution to V ′ has been computed first in [89]

δV ′ew(v2) ' δV ′ew(0) =
7ζ(3)(3g2 + g′2)

128π2L2
= 0.93

10−2

L2
, (4.7)

up to corrections of relative order (gvL)2.
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The one loop (g2 + g′2)αt correction to V ′′, in localized approximation for the
top, coincides, at logarithmic level, with the same correction in the MSSM for
appropriate values of the stop masses m2

Q, m2
U (see below). Its contribution to the

Higgs squared mass is [116]

δm2
h

(
(g2 + g′2)αt

)
=

−3
4
√

2π2
GF mt

2 MZ
2 log

m2
Q m

2
U

m4
t

. (4.8)

Our task is to compute to the relevant order of approximation the (αt, αs)-
dependent contributions to Eqs. (4.5,4.6).

4.2 (αt, αs)-corrections. General expressions

The corrections of interest contain log’s of the fine structure constants, αs and
αt, which arise from the infrared behavior of the integrals. This is due to the
masslessness of the squarks Q̃ and Ũ at tree level, which become massive only at
one loop. To deal properly with this situation we introduce, as infrared regulators,
the squark masses m2

0,Q and m2
0,U for the two multiplets, also localized at y = 01.

These masses will be sent to zero at the end of the calculation. With these masses
the potential of interest, δVtop(v2), has a one loop contribution

δV 1 loop
top = 3

∫
d4p

(2π)4
[ log

(
p2 +m2

0,Q +m2
0,t

)
+ log

(
p2 +m2

0,U +m2
0,t

)

− 2 log
(
p2 +m2

0,t

)
] , (4.9)

where m0,t = ytv/
√

2 is the unrenormalized top quark mass, and a two loop
contribution δV 2 loop

top which arises from the diagrams in Fig. 4.1, in superfield
notation, and is explicitly given in Appendix E.

The propagators for all the components of the Q,U supermultiplets are in
the background of the field h. Since Q and U propagate in ordinary Minkowsky
space, at y = 0, the only components of the Higgs and gauge supermultiplets,
H and V , that contribute in Fig. 4.1 are those with (+) boundary conditions at
y = 0. Up to trivial kinematic factors, after the Wick rotation, their propagators
are proportional to

S+,+(k) ∝ coth
√
k2L,

S+,−(k) ∝ tanh
√
k2L. (4.10)

1This also helps in keeping right track of the order in the loop expansion.
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Figure 4.1: The diagrams that contribute to the Higgs potential at order αsαt and
α2
t in superfield notation.

From

δVtop = δV 1 loop
top + δV 2 loop

top , (4.11)

the contributions to v2δV ′(v2) and v4δV ′′(v2) are finite after replacement in
Eq. (4.9) of m0,t,m

2
0,Q,m

2
0,U with the physical masses2

m2
t = m2

0,t

(
1 +BU

ψ +BQ
ψ + 2Zyt

)
, (4.12a)

m2
Q = m2

0,Q(1 +BQ
ϕ ) +m2

0,t(1 +BQ
ϕ +BU

F ) + δm2
Q, (4.12b)

m2
U = m2

0,U (1 +BU
ϕ ) +m2

0,t(1 +BU
ϕ +BQ

F ) + δm2
U (4.12c)

and after making an expansion in the one loop quantities: δm2
U,Q, the one loop

corrections to the squared masses, Zyt , the Higgs-top-top vertex correction, and the
various B-factors, the corrections to the wave functions of the various fields. To the
precision of interest all these quantities are computed at zero external momenta,
except for those involved in Eq. (4.12a) where we use for mt the running mass at
p2 = −m2

t . The explicit expressions for all these factors are given in Appendix F.
Finally, as anticipated, the fictious bare masses m2

0,Q, m2
0,U are set to zero.

Note that they only appear in m2
Q, m2

U in Eqs. (4.12a,4.12b,4.12c). To leading
order in αt and αs one has [82]

m2
U = m2

t +
7ζ(3)
24π

8αs + 6αt
L2

+O(α2
t , αtαs), (4.13a)

m2
Q = m2

t +
7ζ(3)
24π

8αs + 3αt
L2

+O(α2
t , αtαs). (4.13b)

2mQ is the mass of the stop-left. For the mass of the sbottom-left, which only enters in the

two loop diagrams, we use m2
B = m2

Q −m2
t .
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4.3 (αt, αs)-corrections. Results

To calculate explicitly the corrections of interest we make a systematic expansion
of v2δV ′top(v2) and v4δV ′′top(v2) in αt, αs and m2

Q, m2
U , m2

t , all formally treated as
quantities of the same order. In so doing, care must be taken in avoiding spurious
infrared divergences. In v2δV ′top(v2) we keep terms quadratic in these quantities,
whereas in v4δV ′′top, which starts quadratic in m2

t , we keep those cubic terms which
also include at least a factor of logm2

QL
2, logm2

UL
2 or logm2

tL
2. In v2δV ′top(v2)

the 5D propagators in Eqs. (4.10) are crucial in giving a finite result, whereas in
v4δV ′′top(v2), which is more convergent in the ultraviolet (but less convergent in
the infrared), the 5D propagators can be approximated with their low momentum
expansion. We find

v2δV ′top(v2;mQ,mU ) =
3m2

t

16π2
{ mQ

2 [2 log (mQL)− c] + mU
2 [2 log (mUL)− c]

−2mt
2 [2 log (mtL)− c] } , (4.14)

v4δV ′′top(v2;mQ,mU ) =
3m4

t

8π2
log
(
mQmU

m2
t

)
+

3m4
t

16π3

{
m2
tGF

π
√

2

[
2 log2

(
mQ

mt

)
+ log (mtL) log

(
mQ

mU

)
+ log2

(
mUmQL

2
)

+ log2

(
mU

mt

)]

− 8αs
3

[
log2

(
mQ

mt

)
− 4 log2 (mtL)− 4 log (mtL) log

(
mQmU

mt
2

)
+ log2

(
mU

mt

)]

+
m2
tGF

4π
√

2
[10 log (mQL) + 6 log (mtL) + 12 log (mUL)]

− 16αs
3

[
(1− 6 log 2) log

(
mQmU

m2
t

)
− 3 log (mtL)

]}
, (4.15)

where c = 4− 2 γ − (12 log 2)/7 + 2ζ ′(3)/ζ(3) ' 1.33.
Numerically in view of Eqs. (4.13), the result for v2δV ′top(v2), for mpole

t =
173.1± 1.25 GeV, is

δV ′top(v2) = −(0.71± 0.01)
10−2

L2
, (4.16)

with the coefficient computed at 1/L = 3 TeV, with a negligible residual depen-
dence on 1/L in the range 1/L = 2 ÷ 4 TeV due to (mtL)2 terms. Note the near
cancellation in δV ′(v2), at the 20% relative level, between the electroweak term,
Eq. (4.7), and the two loop (αt, αs)-contribution, Eq. (4.16), with a predominance
of the first positive term. To the extent that this calculation is reliable (see below),
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the Higgs potential has a positive curvature at h = 0, so that EWSB does not
take place with exactly localized Q,U multiplets.

In the case of δV ′(v2) no simple connection can be established between this
theory and a suitably defined MSSM, because of the difference in the way Hig-
gsinos get a mass: by a µ-term in the MSSM, by pairing with conjugate states
here. Since δV ′(v2) is ultraviolet sensitive in the MSSM, this makes an essential
difference. On the contrary, the stronger ultraviolet convergence of the momen-
tum integrals in δV ′′(v2), relative to δV ′(v2), renders this quantity closer to its
analogue in a suitably defined MSSM. Indeed the leading m4

t -term coincides. The
same is also true for the next order terms m4

tGFm
2
t and m4

tαs, in the leading log2

approximation, if one compares Eq. (4.15) at 1/L = mQ = mU ≡ MS with the
MSSM result for tanβ =∞, At = 0 and all superpartners at MS [117].

4.4 The Case of a quasi-localized top

4.4.1 The Higgs potential

As anticipated in Section 2.2, with the Q, U hypermultiplets not exactly localized,
all their components acquire a KK tower of states with M-dependent masses. Most
importantly, for finite ML, this tree level spectrum is not supersymmetric. As a
consequence, already at one loop, the Higgs potential receives a non vanishing
contribution from Q, U exchanges, δV 1loop

top (v2;ML), calculated in [1]. For ML ≤
2.5 the slope of this potential, of negative sign, dominates over the electroweak
contribution in Eq. (4.7) and triggers EWSB. For ML ≥ 1.5, however, δV 1loop

top is
not a sufficiently accurate description of the top-stop contribution to the Higgs
potential, as we shall see explicitly: in localized approximation, ML =∞, δV 1loop

top

vanishes, whereas the top-stop contribution at two loop does not, as seen in the
previous Section.

The most important effect of a finite ML, compared to ML =∞, is on the tree
level mass of the lightest squarks in the corresponding KK tower. Although this
mass converges exponentially to mt for the stops, or to zero for the sbottom left, its
effect is still significant at ML ' 2÷ 3. In Fig. 4.2 we compare mQ(ML) with the
corresponding quantity, mQ(∞) = mQ, Eq. (4.13b), in localized approximation.
The radiative one loop contribution is only weakly sensitive to ML and dominates
over the tree level mass. Nevertheless the deviation of mQ(ML) from mQ in the
region of interest is sizable. A similar situation holds for mU (ML). To account for
this effect in the potential, we consider the first and second derivatives of δVtop in
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Eqs. (4.14,4.15) with mQ and mU replaced by mQ(ML) and mU (ML) respectively,
so that

δVtop(v2,ML) ≡ δVtop(v2;mQ(ML),mU (ML)). (4.17)

A better approximation of δVtop (of its derivatives) is in fact the following

δVtop(v2,ML) ≡ δV 1loop
top (v2,ML) + δV 2loop

top (v2,ML), (4.18)

where

δV 2loop
top (v2,ML) = δVtop(v2;mQ(ML),mU (ML))−δVtop(v2;mtree

Q (ML),mtree
U (ML)),

(4.19)
properly subtracted to avoid double counting with the one loop term. For ML ≥ 2,
however, the difference between Eqs. (4.17) and (4.18) is negligible.
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Figure 4.2: The mass of the left handed stop as a function of the localization
parameter ML, compared with the same mass in the ML −→∞ limit.

4.4.2 Determination of the Fermi scale

With the inclusion of the tree level contribution from Eq. (4.3), the minimum
equation (4.5) reads

M2
Z

4
= −δV ′(v2), (4.20)
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which must be viewed as a relation between the compactification scale 1/L and
the localization parameter ML. Fig. 4.3 shows

−L2δV ′(v2) = −L2δV ′ew(v2)− L2δV ′top(v2;ML), (4.21)

with the electroweak contribution given in Eq. (4.7) and the top contribution from
Eq. (4.17) or (4.18). After rescaling by 1/L2, δV ′(v2) has no significant residual
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ML
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0.000
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-L2 ∆V full
¢ HMLL

-L2 ∆V1 loop
¢ HMLL

Figure 4.3: Slope of the full radiative Higgs potential, as discussed in the text, ver-
sus the top localization parameter ML, compared to the one loop approximation,
for mpole

t = 173.1± 1.25 GeV.

dependence on 1/L in the region of interest, 1/L ≥ 2 TeV. For these values of
1/L, it is (MZL)2 ' 10−3, so that the one loop approximation to δV ′top is clearly
inadequate. The flattening of δV ′(v2) at ML ' 3, due to the partial cancellation
between δV ′top and δV ′ew, is important in reducing the tuning between ML and
1/L. Also in view of the uncertainties to be discussed below, this same flattening
of δV ′(v2) makes the precise relation between ML and 1/L uncertain. This has
little influence, however, on the relation between the Higgs mass and 1/L, as we
discuss shortly.
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Figure 4.4: Higgs mass as function of 1/L for mpole
t = 173.1± 1.25 GeV.

4.4.3 The Higgs mass as a function of 1/L

With the inclusion of the correction in Eq. (4.8) and of the top contribution from
Eq. (4.17), Eq. (4.6) reads

m2
h = M2

Z

[
1− 3

4
√

2π2
GF mt

2 log

(
m2
Q(ML)m2

U (ML)

m4
t

)]

+ 4
√

2GF v4δV ′′top(v2;ML). (4.22)

By means of the relation between ML and 1/L as determined from the minimum
equation, mh is plotted in Fig. 4.4 as function of 1/L only, for three different values
of the pole top mass, mpole

t = 173.1± 1.25 GeV. In Figure 4.5 we show the band
of values that would be obtained if ML were not related to 1/L by the minimum
equation (4.20), but kept fixed at values between 2 and 4. This shows that the
precise relation between ML and 1/L is almost irrelevant in order to determine
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Figure 4.5: Higgs mass for mpole
t = 173.1 GeV at different fixed values of the top

localization parameter. The result with the full Higgs potential is compared with
the one only including the standard top correction at one loop.

the connection between mh and the compactification scale. In the same Fig. 4.5
we also compare the Higgs mass, calculated on the basis of Eq. (4.22), with the
one that would be obtained from a minimally improved lowest order formula

m2
h(naive) = M2

Z +
3
√

2
4π

GFm
4
t log

(
m2
Q(ML)m2

U (ML)

m4
t

)
(4.23)

andML = 2÷4. This comparison makes clear that the improved two loop potential
is essential for a better determination of mh.

4.5 Stability of the region: EWSB with MUL 6= MQL.

We now consider the full parameter space of our model, namely (MQ,MU ,MH).
Let us begin by removing the previous restriction MQ = MU . This modifies the
Higgs effective potential in a straightforward way. The squark masses in δVtop now
contain different tree level bulk masses for U and Q:

δVtop(v2,MQL,MUL) ≡ δVtop(v2;mQ(MQL),mU (MUL)). (4.24)

Analogous replacements also apply to the better approximation of Eq. (4.18),
where in δV 1loop

top one must use the mixed momentum-position propagators with
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different bulk masses for fields in the Q and U hypermultiplets. The rest of the
calculation is straightforward and brings to the results illustrated in Fig. 4.6.

Despite the uncertainties in the determination of the specific values of theML’s
as anticipated in Sect. 4.4.1, this plot shows that the region of successful EWSB
is sufficiently wide to allow significant departures from the phenomenologically
preferred condition MU = MQ. Moreover the figure shows that there is no upper
bound on MQL, MUL. Of course this is not the case. In fact consistency of the
effective field theory requires that their values are bounded from the cutoff ΛL
that will be computed in Sect. 5.1.

Analyzing the isocurves of constant 1/L and mH one could note that both
quantities increase as one of the two Ms become bigger. Then one can asks what
happens to the relation between 1/L and mH . As explained before in the case
MU = MQ, this relation depends little from the specific value of ML. This turns
out to be true also in the case MU 6= MQ. Fig. 4.7 shows the relation for different
values of the ratio MU/MQ indicating that changing the ratio between the masses
by a sizable factor accounts only in a shift in mH comparable to the spread due
to the experimental error on mtop.

The analysis with MU 6= MQ allows us to make a comment also on [110].
Localization of the top quark by hypermultiplet masses has also been discussed
there. They considered the limit of exact localization of U , MUL→∞, and took a
very high degree of localization of Q, MQL = 4, so that the mt/mb ratio is entirely
understood by the profile of Q. In this case they argue that EWSB is triggered by
the two-loop top contribution, since the one-loop top term is negligible. However,
our explicit two-loop calculation shows that their estimate of the two-loop contri-
bution significantly exaggerates its effect, and that EWSB does not occur in this
region.

4.6 Lower values of the compactification scale

An interesting question is what happens for 1/L lower than 2 TeV. Below this value
the Higgs mass gets nominally lower than the experimental bound. Had we drawn
the same figure as Fig. 4.4 for lower 1/L, mh would have reached values as low as
105 GeV at 1/L ' 600 GeV to grow again up to ' 130 GeV at 1/L ' 300 GeV.
At the same time, ML progressively decreases from about 2 at 1/L ' 2 TeV,
to zero at the lowest value of 1/L ' 300 GeV, where one makes contact with
the “Constrained Standard Model” of [88]. We do not show this plot because
in the intermediate region of 1/L ≈ 1 TeV or ML ' 1, our calculation is not
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Figure 4.6: Region of allowed Electroweak Symmetry Breaking in the MQ-MU

plane. The dashed lines represent the 1/L isocurves for 1/L = 1, 2, 3, 4, 5 TeV.
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Figure 4.7: The relation between the compactification scale and the Higgs mass
for different values of the ratio MU/MQ.

fully reliable: δV 1loop
top does not clearly dominate over the 2 loop contribution we

computed, which is only to be trusted for sufficiently large ML because of the
approximations made.

To make sense of the model at these lower values of 1/L, one has also to
make sure that the potential with two Higgs doublets, h and hc, does not get
destabilized, given the absence of a bilinear term hhc. This is possible, without
introducing a FI term, by adding a small common mass, |MHL| . 0.1 for the
Higgs hypermultiplets.

A non zero MH does not affect the physical Higgs mass, through V ′′, but only
the determination of the Fermi scale, via V ′. With an extra term MHL, present
in the right hand side of Eq. (4.21), 1/L is not tied anymore to ML, which can
in turn vary in a range consistent with a moderate amount of fine tuning. The
result of this is shown in Fig. 4.8. Different values of ML are used, but always in
such a way that no fine tuning occurs stronger than 10% in the determination of
G
−1/2
F . The rise in mh is due to the stronger influence, for low ML, of δV 1loop

top , a
fact which has no correspondence in the MSSM [1, 88].

Taking into account the uncertainties mentioned above, a value of mh

marginally consistent with the experimental lower bound of 114.4 GeV cannot be
excluded in the entire region of 1/L. The existence of independent lower bounds
on 1/L becomes then of relevance. This in turn crucially depends on the masses
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Figure 4.8: Expected range of Higgs masses with the inclusion of a hypermultiplet
Higgs mass and a maximum fine tuning in the slope of the potential at 10% level.
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MQi , MLi for the quark and lepton hypermultiplets of the different generations,
i = 1, 2, 3 [2]. In the next Chapter we will analyze in detail the bounds on 1/L
coming from these various effects.



Chapter 5

Phenomenology in the QLT

model.

This Chapter will be devoted to the various phenomenological aspects of the QLT
model. In Sect. 5.2 the uncertainties on the analysis presented in the previous
Chapter will be further discussed. In Sect. 5.3 the spectrum of the model is de-
scribed. Sect. 5.4 and 5.5 are devoted to the constraints coming from EWPT and
flavor physics respectively, while Sect. 5.6 contains a discussion of the possible col-
lider signals of this model. In that section also the present experimental constraints
on the CSM and on the models with intermediate-size bulk masses introduced in
Chapter 3 will be discussed. Finally Sect. 5.7 will briefly discuss the issues of Dark
Matter and of neutrino masses for the QLT model.

5.1 The UV cutoff

Both the CSM and the QLT are formulated in 5D and are non-renormalizable.
Indeed they have to be regarded as effective field theories, valid up to an energy
scale Λ where they will be completed by some kind of a more fundamental theory.

Since perturbative calculations in an effective field theory are organized as an
expansion series in (E/Λ), the range of their validity is controlled by the size of
the cutoff Λ. It is then necessary to estimate its value.

A lower bound on the cutoff can be given by estimating the lowest scale at
which one of the interactions of the model ceases to be perturbative. Then the
theory (or at least one of its sectors) should be completed by unknown physics at
energies of the order of Λ. If the UV completion enters at an energy scale ΛUV ' Λ,
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it will be strongly coupled at energies E & Λ. For a perturbative UV completion
ΛUV should be less than Λ.

As already shown in [88, 2] and in Sect. 2.1.1 the first interactions that become
strong are the Yukawa couplings of the third generation.

This is due to the fact that Yukawa couplings are localized at the boundaries
and break discrete 5th-momentum conservation. The number of open channels
in a process mediated by a Yukawa interaction grows more than linearly with
the energy, leading the 5D Yukawa couplings to become strong before any gauge
coupling of the same 4D strength.

Here, we recall the estimation of Λ from top and bottom Yukawa interactions.
We consider also bottom Yukawa interactions because in presence of hypermulti-
plet masses the hierarchy mb/mt can be generated from localization effects alone
and the size of λt and λb in 5D can be comparable.

Let us focus first on the CSM case. Here only λt matters since all the hyper-
multiplets masses are zero. λt(Λ) can be estimated either by Naive Dimensional
Analysis (NDA) [118] properly adapted to 5D [96] or by 4D NDA, taking into
account the number NKK of KK modes below the cutoff. In the first case we get

λ̂t(Λ) ' 1
16π2

(
24π3

4 ΛL

)3/2

' 16 (ΛL)−3/2, (5.1)

while in the second

λ̂t(Λ) ' 4π
( π

2ΛL

)3/2
' 25 (ΛL)−3/2, (5.2)

where λ̂t = λt/(4L)3/2 ' mt/v, so that ΛL ∼ 8. This means that NKK ' 5.
In the QLT model since the third generation is localized towards y = 0, the

Yukawa coupling of both the top and the bottom are relevant for perturbativity
and are indeed equal at ML ' 2. The relation between λ̂t,b and Λ now depends
on the localization parameter ML. This dependence comes from two sources: the
most important one is the relation between the 5D and the 4D couplings, the other
one is the fact that the KK towers are shifted in presence of non-zero masses. Both
sources are important for large masses and the second one is particularly relevant
for low cutoffs. The impact of these two effects on the perturbativity range can
be easily estimated by means of 4D NDA, remembering that the masses of the
excited states go like m2 = (2n/R)2 + M2 for large ML and that the relation
between the 5D and 4D couplings reads

λ̂t,b(Λt,b) '
mt,b

v

1
ML(coth(ML)± 1)

, (5.3)
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Figure 5.1: Cutoff estimation from top and bottom Yukawa coupling perturbativity
as a function of ML. The thick point represents the case of the CSM.

with the sign + for the top and − for the bottom.
The estimated cutoff is shown in Fig. 5.1. For values of ML . 2 the cutoff is

determined by the top Yukawa coupling and increases with ML, while for larger
values ΛL is controlled by the bottom Yukawa and decreases exponentially with
the localization parameter. In particular for the QLT one has successful EWSB
for ML . 3.6; at that maximum value of ML one has ΛL ' 5 for MD = MQ and
ΛL ' 25 for MD = 0.

If the model is not UV completed before Λ, a strong interacting sector appears
at one of the boundaries. For ΛL� 1 we can think of the theory in this regime as
composed by a bulk sector with perturbative gauge couplings coupled to a strong
interacting sector localized at one of the boundary, involving the Higgs and either
the top or the bottom multiplets. This motivates the possibility, when considering
the effects of higher order SUSY operators on EWPT, to focus on those localized
at the boundaries.

5.2 Localized kinetic terms

In this section we will analyze how the results of the previous Chapter are affected
by the presence of localized dimension-6 operators. In Sect. 4.4.1 we have found a
relation between L−1 and mh and we have claimed that it is determined at a few
percent of accuracy. This has a phenomenological impact since L−1 determines
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the scale of the KK particles, which distinguish the model from other 4D SUSY
theories. The deviation from the localized approximation is properly accounted
for by Eqs. (4.17)-(4.18). Furthermore we have seen in Sect. 4.5 that altering
the condition MU = MQ does not sensibly affect the result of Fig. 4.4. The real
question, then, is the validity of Eqs. (4.14)-(4.15) with an exactly localized top.
The presence of operators other than those in Eq. (4.2) can modify these equations.
Among those operators, the potentially most important ones are the kinetic terms
of the Higgs and the gauge multiplets localized on the boundaries. In the notation
of Eq. (4.1), the constants zH , za in

δL = δ(y)

[
zH

∫
d4θH†eVH +

∑

a

(
za

∫
d2θW (a)

α W (a)
α + h.c.

)]
, (5.4)

with a = SU(3)C , SU(2)L, U(1)Y and similar terms localized at y = L, have
to be treated as additional parameters. For them we need an estimate or a nat-
ural assumption for their size. Since H and W

(a)
α are 5D fields, their z-factors

in Eq. (5.4) have dimension of an inverse mass. Pure dimensional analysis leads
to an estimate z ∼ 1/Λ, where Λ could either be the scale Λnp at which some
of the couplings become non perturbative or a cutoff scale Λcutoff . Λnp below
which our 5D theory represents the low energy effective description of some more
fundamental theory. It is then necessary to estimate the value of ΛnpL.

Assuming a strongly coupled UV completion (at least in the 3rd generation
Yukawa sector) one can use the estimates of Sect 5.1. With those we are now in
the position to estimate the size of the the dimensionless Z-factors, defined as the
coefficients after the zero mode rescaling i.e. Z = z/(4L), assuming the natural
hypothesis that they saturate perturbation theory at energies not lower than Λ:

z .
24π3

16π2Λnp
→ Z .

3π
8ΛnpL

' 0.15 for Λnp ' 8/L. (5.5)

On the other hand the introduction of these z-factors affects the radiative Higgs
potential or the radiative squark masses m2

Q, m2
U only at quadratic order in the

dimensionless Z’s (This is shown explicitly in Appendix C). On this basis we expect
that the calculations of the Higgs and squark masses are correct within a few %.
A more critical quantity is δV ′, since the electroweak and the top contributions
cancel quite accurately against each other and are renormalized by different factors
(1 +O(Z2)). As already mentioned in Sect. 4.4.2, although making uncertain the
relation between ML and 1/L, this has little influence, however, on the relation
between mh and 1/L.
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5.3 Spectrum

The value of 1/L determines in a simple way the spectrum of the towers of gaug-
inos, Higgsinos and gauge bosons: up to small effects due to EWSB the lightest
gauginos and Higgsinos are at 1/R, whereas the first KK states of the vector tow-
ers are at 2/R. The heaviness of gauginos–higgsinos is a peculiar feature of these
models, in the QLT being stronger than in the CSM. The lightest superpartner
is therefore a squark or a slepton, most likely charged, which can be stable or
practically stable if a small U(1)R-breaking coupling is present1 or if right-handed
neutrino superfields are introduced as in Sect. 5.7. This difference with respect to
many MSSM-like theories is of great relevance for experimental searches. The first
KK states corresponding to the SM particles are instead at 2/R with suppressed
couplings to SM matter.

The masses of the sfermions of charge Q and hypercharge Y are given by

m2 = m2
tree +m2

rad + Y m2
Z −Qm2

W , (5.6)

where mtree is the tree level mass, including the Yukawa contribution, and mrad is
the one loop contribution, as in Eq. (4.13). As seen in Sect. 4.4.1, both mtree and
mrad depend upon the corresponding localization parameter ML. For ML = 0,
mtree = π/(2L) dominates and the sfermion becomes degenerate with the gauginos
and the higgsinos. For ML & 1, mrad dominates and rapidly approaches the
localized limit where

mrad(Q̃) = (370 GeV)
1

LTeV
, (5.7a)

mrad(Ũ) = (382 GeV)
1

LTeV
, (5.7b)

mrad(D̃) = (310 GeV)
1

LTeV
, (5.7c)

mrad(L̃) = (137 GeV)
1

LTeV
, (5.7d)

mrad(Ẽ) = (79 GeV)
1

LTeV
. (5.7e)

Up to the D-term effects in Eq. (5.6), these are lower values for the sfermion
masses.

The masses which are unequivocally determined are those belonging to the Q
and U hypermultiplets that play a crucial role in EWSB, t̃L, t̃R, b̃L, being correlated

1Differences between stability and quasi-stability are of little importance for collider physics

but may be crucial for cosmological issues.
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Figure 5.2: Physical masses for the squarks and sleptons from hypermultiplets with
MQ = MU = MD = ML = ME = M , and for the scalars of Hd with MHd = 0. As
1/L increases so does M , so that the squark and slepton masses become dominated
by the radiative contributions of Eqs. (5.7a – 5.7e).

to the compactification scale. For 1/L & 2 TeV, eq. (5.7a) gives the mass of the left

handed stop and sbottom, split by mtree(t̃) = mt, whereas
(
mrad(Ũ)2 +m2

t

)1/2

is the mass of the right-handed stop.
For lower values of 1/L, if a tree level mass of the Higgs hypermultiplets is

present (see Sect. 4.6), the third generation squarks can be progressively delocal-
ized. In this case Eqs. (5.7) give a lower bound, with the overall masses that can
go up to 800 GeV even for 1/L below 1 TeV.

Eqs. (5.6,5.7d) apply also to the masses of the scalars in the second Higgs
hypermultiplet Hd, without a VEV and with gauge couplings identical to those
of a left-handed slepton multiplet. Not to undo EWSB, the Higgs hypermultiplets
are always almost fully delocalized, |MHL| ≤ 0.1. Eq. (5.7d) is strictly valid for
1/L & 2 TeV and mrad(H̃) & 270 GeV. For smaller values of 1/L a tree level Higgs
mass can play a role and can raise the total mass of the charged and neutral scalars
in Hd, relative to Eq. (5.7d), by about 100 GeV at 1/L ' 1 TeV. Note that, in this
case, the mass of the neutral Hd is below 100 GeV for 1/L <∼ 1.4 TeV, but, since
Hd has no VEV this is not presently excluded.

Finally Fig. 5.2 shows masses for the other squarks and sleptons of the third
generation in the case where all the matter hypermultiplet masses are taken equal
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to each other and MHd = 0. If ML = ME = 0 sleptons are much heavier and the
spectrum differs from the one in Fig. 5.2 only by their presence.

5.4 Constraints from precision observables

The effects on EWPT arise from various sources. First of all there are calculable
loop effects generated by non supersymmetric operators. In fact, as we have shown
in Sect. 2.2, Supersymmetry is globally broken: the mass splitting between particles
belonging to the same supersymmetric multiplet is 1/L. However the residual
SUSY of the theory restricts the form of the possible counterterms. Observables
corresponding to operators which have no counterterm allowed by the residual
SUSY are thus necessarily finite.

Beyond these calculable effects one should also consider the effect of super-
symmetric operators, mainly those localized at the boundaries. Indeed one has to
look for operators respecting the N = 1 supersymmetries present at the bound-
aries and which affect EWPT. The fact that they are allowed by Supersymmetry
makes 1-loop calculations divergent. These operators, whose coefficients have neg-
ative dimension in mass, are generated by radiative corrections at the scale where
perturbation theory breaks down and are weighted by powers of 1/ΛL. In order to
build a fully reliable and predictive theory that solves the Little Hierarchy Prob-
lem, one has to consider the impact of such operators on EWPT. We analyze the
localized operators assuming that their coefficients saturate perturbation theory
at the scale Λ, estimating them by 5D NDA [96].

5.4.1 Universal effects

We make an analysis in terms of the form factors Ŝ, T̂ ,W, Y introduced in [22].
Such an analysis is valid for a wide class of “universal theories” in which the only
gauge interaction (except QCD) of all the light fermions of the SM are described
by

Lint = Ψ̄γµ
(
T aW̄ a

µ + Y B̄µ
)

Ψ, (5.8)

where W̄ , B̄ are not necessary the physical W,B. In our case, if no localization
parameter is present, it follows from momentum conservation in the 5th dimension
that, at tree level, the “interpolating” fields W̄ , B̄ are exactly the zero modes of
the 5D gauge bosons. We shall come back to the localization effects later on.

Upon use of the equations of motion and neglecting terms vanishing with
the fermion masses, a complete set of dimension-6 operators which contribute to
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Ŝ, T̂ ,W, Y are [119]:

OWB =
1
gg′

(H†τaH)W a
µνBµν , (5.9a)

OH =
∣∣∣H†DµH

∣∣∣
2
, (5.9b)

OBB =
1

2g′2
(∂ρBµν)2 , (5.9c)

OWW =
1

2g2

(
DρW

a
µν

)2
. (5.9d)

If they appear in a 4D lagrangian as

δL =
1
v2

(cWBOWB + cHOH + cWWOWW + cBBOBB) , (5.10)

where v = 〈H〉 = 174 GeV is the Higgs vev, they give the following contributions
to the EW form factors2

Ŝ = 2
cW
sW

cWB, T̂ = −cH , W = −g2cWW , Y = −g2cBB. (5.11)

Since at the boundaries there are N = 1 supersymmetries left unbroken, we
have to find the supersymmetric completion of the operators Eq. (5.9).

This can be easily accomplished using supersymmetric gauge covariant deriva-
tives (see for example [120]). A simple power counting shows that all the SUSY
and gauge invariant operators up to dimension-6 only, involving Higgs and vector
superfields are

∫
d4θ(Ĥ†egV Ĥ)2, (5.12a)

∫
d2θ Tr

(
∇µŴα∇µŴα

)
+ h.c., (5.12b)

∫
d2θ Tr

(
Cα̇β̇∇αα̇Ŵα∇ββ̇Ŵβ

)
+ h.c., (5.12c)

∫
d4θĤ†egV Ŵαe−gV∇αegV Ĥ + h.c., (5.12d)

∫
d4θĤ†egV∇µ∇µĤ, (5.12e)

∫
d4θĤ†egV Ĥ, (5.12f)

∫
d2θ Tr

(
ŴαŴα

)
+ h.c., (5.12g)

2The normalization of the vector fields is such that Lkin = − 1
4g2

W a
µνW

a
µν − 1

4g′2BµνBµν
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where Ĥ is the Higgs chiral superfield while V is a general vector superfield and
Ŵα its chiral supersymmetric field strength . They refers both to the W and to the
B vector fields. The symbol C is the usual antisymmetric matrix used in raising
and lowering spinorial indices. In our notation Cα̇β̇ = σ2.

Using (anti)commutation rules, the other unlisted operators can be shown to
be equivalent to suitable combinations of the previous ones. Expanding them in
component fields, one can see that all the operators in (5.9) are originated, up
to terms that vanish by the equations of motion and/or in the limit of massless
fermions. Therefore the basis selected in [22] can be supersymmetrized to N = 1
in 4D. In particular the first operator originates OH , the second and the third
originate OWW and OBB while the fourth contributes to OWB. On the contrary
the localized kinetic terms (5.12f-g) only contribute through the mixing of the
zero modes with the Kaluza-Klein states. The related effects, also of “universal”
nature, are however subdominant in the parameter region of interest, with respect
to the direct contributions from dimension-6 operators and we shall neglect them
in the following.

To estimate the coefficients of the operators Eq. (5.9) we use 5D NDA. Notice
that the existence of the supersymmetric operators Eq. (5.12) makes the 1-loop
corrections to these coefficients divergent. For example, the Yukawa contributions
to cH , or T̂ , has a quadratic sensitivity to the UV, while the dependence of Ŝ
is logarithmic. This can be easily found by dimensional analysis. In fact the co-
efficient cH of the operator OH localized at one of the boundaries and written
in terms of the 5D fields has dimension of (mass)−4. 1-loop Yukawa corrections
will be proportional to the fourth power of the 5D Yukawa coupling. Then the
quadratic dependence on Λ comes out immediately, by remembering that the di-
mension of a 5D Yukawa coupling is (mass)−3/2. In the same way cWB for a
localized contribution has dimension of (mass)−3 and the Yukawa corrections to
OWB are proportional to the square of the Yukawa coupling giving a logarithmic
dependence on Λ.

Let us now suppose that the operators Eq. (5.12) contribute to a localized
term δL4 in Eq. (2.12), where the fields H,W a

µ and Bµ are 5D fields localized
at a boundary. The dominant contribution to the EWPT from the operators of
dimensions 6 in Eq. (5.12a-e) comes from the zero modes of the various fields,
i.e. the standard gauge and Higgs bosons. The localized operators we are interested
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in are then the following

δL4 = CH

∣∣∣H̄†DµH̄
∣∣∣
2

+
CWB

gg′

(
H̄†τaH̄

)
W a
µνBµν +

CBB
2g′2

(∂ρBµν)2 +
CWW

2g2

(
DρW

a
µν

)2
,

(5.13)

where H̄ is the zero mode of the Higgs boson with canonical 5D normalization,
whereas the vector bosons are already normalized to 4D (and g, g′ are the standard
4D gauge couplings). Using naive dimensional analysis one finds

CH =
(24π3)2

16π2

1
Λ4
, CWB = gg′

24π3

16π2

1
Λ3
, CBB = CWW =

1
16π2

1
Λ2
.

(5.14)

To connect the 5-dimensional coefficients of Eq. (5.14) to the 4-dimensional coef-
ficients of Eq. (5.10) one has to rescale the 5D Higgs field in terms of the 4D zero
mode: H̄ = H/

√
4L. Using Eqs. (5.10,5.11) one gets

Ŝ(OWB) ∼ 3π
4
g2 (vL)2

(ΛL)3
' 0.6 · 10−4 (L · TeV)2

(ΛL/8)3
, (5.15a)

T̂ (OH) ∼ 9π4

4
(vL)2

(ΛL)4
' 1.6 · 10−3 (L · TeV)2

(ΛL/8)4
, (5.15b)

W (OWW ) ∼ Y (OBB) ∼ g2

16π2

(vL)2

(ΛL)2
' 1.3 · 10−6 (L · TeV)2

(ΛL/8)2
. (5.15c)

One can notice that the dominant contributions come from CH .
CWW , CBB, CWB become comparable to CH only for values of the cut-off ΛL '
100 which can never be attained (see Fig. 5.1). Comparing the contributions
Eq. (5.15) to the experimental values [22]

Ŝ = (−0.7± 1.3) · 10−3, T̂ = (−0.5± 0.9) · 10−3,

W = (0.2± 0.6) · 10−3, Y = (0.0± 0.6) · 10−3,
(5.16)

we can obtain the bound shown in Fig. 5.3. The shaded region is excluded at
99 % of C.L. The sign of CH is irrelevant. The black point represents the CSM
described in Sec. 2, the red continuous line represents the QLT model described
in Sec. 4 for MU = MQ = MD and MH = 0, while the region inside the green
lines corresponds to the QLT model varying MH as described in Sec. 4. The red
continuous line is stopped at 1/L ' 2 TeV because the Higgs mass drops below
the experimental limit (see Fig. 4.4) and at about 4.5 TeV when a fine-tuning of
about 10 % in the potential occurs. The shape of the region delimited by the green
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Figure 5.3: Bounds on the CSM and the QLT models from EWPT. The shaded
region is excluded at 99 % of C.L.

lines depends on the fact that the cutoff is determined by both the top and the
bottom Yukawa couplings (see Fig. 5.1). One has to remember that the connection
between ML and 1/L is not as precise as the one between the Higgs mass and 1/L.
Thus the red continuous line can move horizontally of about ∆(ΛL) ' 4.5 due to
this uncertainty. From these universal effects it seems problematic to reconcile the
CSM with the EWPT. One should not forget, on the other hand, that Eqs. (5.15)
are a naive estimate, dependent on a high power of ΛL. Furthermore, an unknown
contribution coming from the UV completion of the theory could provide a fine-
tuned cancellation in order to make the size of the contribution to T̂ in Eq. (5.15b)
sufficiently small. Conversely, in the QLT model both for MH = 0 and for MH 6= 0,
the typical values of 1/L are large enough not to create conflicts with EWPT.
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5.4.2 Non universal flavor-diagonal effects

If the hypermultiplet masses do not vanish, then the interpolating fields of Eq. (5.8)
do not correspond to the zero modes anymore, but to a linear combination with
all the KK states. This fact can induce effects that may be visible once EW
observables corresponding to different energy scales are compared, e.g. low en-
ergy observables vs. LEP vs. LEP2. Moreover if the hypermultiplet masses differ
among leptons and quarks and among different generations of leptons, there will
be violations of lepton universality and of quark-lepton universality of the weak
interactions (i.e. non-unitarity of the CKM matrix), besides possible Flavor and
CP-Violation which will be analyzed in Sect. 5.5.

All these quantities are constrained at the order of 10−3. On the other hand the
typical size of the expected effect is (vL)2∆ML where ∆M is the mass difference
between two generations or between leptons and quarks in the case of quark-
lepton universality. Since (vL)2 is already O(10−3), these bounds are not able to
significantly constrain the bulk masses beyond O(1) factors. Finally ML 6= 0 for
the first generation has an impact on the determination of the Fermi constant.
This is effectively equivalent to a shift in the T (and U) parameter(s). However
it is easy to realize, by using the fermionic wave-functions of App. A that this
constrains ML . 2 only if 1/L ∼ 2 TeV (this bound loosens quickly once the
compactification scale is increased). Hence non universal flavor-diagonal effects do
not provide effective constraints on the hypermultiplet masses of the leptons and
the first two generation quarks.

We now turn to the non-universal effects involving the bottom quark.
In the CSM a localized operator

∫
d4θ Ĥ†Ĥ Q†3e

gVQ3 (5.17)

is generated, with a similar coefficient to CH in Eq. (5.14). It is a correction to
the Zbb̄ vertex and thus one obtains a similar bound to the one discussed in the
previous Subsection.

In the QLTM and for MH = 0 it is the bottom Yukawa coupling which becomes
non perturbative first, hence one expects that the most important contribution
comes from the operator (5.17) localized at the y = L boundary. But since the left-
handed bottom gets quasi-localized mostly at the y = 0 boundary, a wave function
suppression is present, making this effect negligible. A similar argument can be
made for the right-handed bottom quark. Now, however, MD3 is not constrained
to be similar to MQ3 by EWSB. The contribution from such localized operator
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would at most be of the order of

|εb| ∼ g′
Yb
2

(24π3)2

16π2

(vL)2

(ΛL)4

x

cosh(2x) + sinh(2x)− 1

∼ 2 · 10−3 (L · TeV)2

(ΛL/8)4

x

cosh(2x) + sinh(2x)− 1

with x = MD3L and Yb = 1/3. Since εb is constrained at O(10−2) level, it does
not pose a significant constraint on MD3 .

If we turn MH on, then successful EWSB occurs for lower values of ML where
it is the top Yukawa coupling that determines the cut-off. Then one should con-
sider the operator at y = 0. However one obtains a bound that does not differ
significantly from the one obtained above from T̂ , which is weaker then the one
coming from flavor violation effects, analyzed in the following.

In addition to this kind of effect, if we turn on a mass term for the third
generation of quarks, the interpolating field defined by Eq. (5.8) is no longer the
same for all the light fermions since, for the bottom, it is a superposition of all the
KK modes. Then for the third generation an additional interaction to Eq. (5.8) is
present at the tree level which gives non universal effects mainly concerning the
bottom quark. These effects produce 4-fermion interactions involving the bottom
quark and modify the Zbb̄ vertex only in presence of localized kinetic terms for
the gauge or Higgs multiplets. The size of this effect is comparable to the one
produced by the operator of Eq. (5.17).

5.5 Flavor and CP violation

The quasi-localization of some matter hypermultiplets gives rise to new interac-
tions which limit 1/L from below in a definitely stronger way than in the case of
matter homogeneously spread throughout the bulk, as in [88].

Depending on the size of the masses, different effects can possibly arise from
tree level processes. Indeed non-flat profiles can couple matter zero modes to non-
zero modes of gauge bosons and their tree level exchange can generate modifi-
cations to the Fermi constant already discussed in Sect 5.4.2 or lead to Flavor
Changing Neutral Currents (FCNC) [121].

We now consider the bounds coming from those processes that violate Flavor
and CP. For concreteness we will illustrate it in the quark sector, the case of the
lepton sector being analogous. The presence of hypermultiplet masses that are not
proportional to the identity in family space renders physical those mixing matrices
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which are otherwise unphysical in the SM. In particular if one starts in the basis
where the bulk mass matrices are diagonal, the subsequent diagonalization of the
quark Yukawa couplings, produces other nontrivial structures in flavor space be-
side the Cabibbo-Kobayashi-Maskawa matrix, VCKM . Structures like D†LM

n
QDL,

D†RM
n
DDR, U †LM

n
QUL, where UL,R, DL,R are those unitary matrices that diago-

nalize the quark Yukawa couplings, are now physical. Indeed, since in presence
of a bulk mass the quark zero modes are not anymore orthogonal to the KK
gauge bosons, these terms generically introduce new FCNCs and new sources of
CP-Violation already at tree level via KK gauge boson exchange.

An analogous situation happens with the leptons. In particular the exchange
of the KK photon and Z bosons would induce processes like µ→ 3e and τ → 3e,
whose very strong experimental bounds impose MLi ≡ML and MEi ≡ME .

On the other hand in the quark sector the strongest constraints will come from
neutral meson mixings (of K, D, Bd, Bs) thru a tree level exchange of KK gluons
because gs is the strongest coupling. As in the leptonic case, possible differences
between first and second generation masses are strongly constrained from K0 −
K̄0 and D0 − D̄0 mixing. In fact parametrically the contribution to the mixing
amplitude reads (for ML . 1)

M sd
12 ∼ BKF 2

KmK(D†12M1D11 +D12M2D
†
22)2g2

s/90,

M cu
12 ∼ BDF 2

DmD(U †12M1U11 + U12M2U
†
22)2g2

s/90,

where M is the hypermultiplet mass matrix and D, U are the down quark mixing
matrices that diagonalize the Yukawa couplings. Moreover in the formulas above
we did not distinguish between left-handed and right-handed fields. Note that for
the case of the left-handed doublet D12 and U12 cannot be simultaneously zero
since their difference determines the Cabibbo angle in the CKM matrix and these
bounds cannot be evaded purely by alignment [122, 123]. If one assumes D11,22 ∼
O(1) and D12 = −D21 ∼ O(λc) ∼ 0.1 as in the CKM matrix (and analogously
for Uij) one finds that |M2L−M1L| . 10−3 ÷ 10−4 for L−1 ∼ TeV. Barring any
unexplained cancelation, in the following we will therefore assume that3 MQ1 =
MQ2 ≡ MQ, MU1 = MU2 ≡ MU , MD1 = MD2 ≡ MD. This amounts to impose a
flavor U(2) symmetry in the bulk, broken only by the Yukawa couplings localized
on the branes. In this case the flavor transitions mediated by KK states proceed
via mixing with the third generation. In other words, under these assumptions,

3This prevents any geometrical explanation of the structure of the Yukawa couplings in setups

with flat backgrounds and compactification scales at the TeV.
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the flavor structure of the QLT model is well described by the so-called Next-to-
Minimal Flavor Violation (NMFV) [17]. In this case the above expressions now
reads

M sd
12 ∼ BKF 2

KmK(D†32D31)2g2
s/3 · L2f4F (MQ3L),

M cu
12 ∼ BDF 2

DmD(U †32U31)2g2
s/3 · L2f4F (MQ3L),

with

f4F (x) =

{
x2

30 − 4 x4

945 x . 1.5
2
x2 − 3

x + 4
3 x & 1.5

In the case of the third generation, the quark bulk masses are linked to 1/L by the
requirement of a successful EWSB. Assuming that DL,R have the same structure
of VCKM , i.e. D13 ∼ λ3

C , D23 ∼ λ2
C where λC is the sine of the Cabibbo angle,

one can re-express the constraint as a bound on 1/L

L−1 & 5.6f1/2
4F (MQ3L) TeV.

Here the strongest bound comes from the ε-parameter in K physics: one needs
1/L & 2 TeV [121]. This bound applies to the QLTM model. In the region where
1/L . 2 TeV (and MH 6= 0) there is a weaker bound due to the weaker localization,
as shown in Fig. 5.3 together with the bounds obtained from the EWPT. This
bound corresponds to the case of a purely left-handed 4-fermion operator (LLLL),
where the mixing is mediated by DL. It is tightly connected to EWSB since the
hypermultiplet mass of the left-handed top and bottom are determined by it.

In principle one can have a LLRR vector operator involving quarks of different
chiralities if KK gluons can connect SU(2)L-doublet quarks with singlet ones.
Upon a Fierz rotation, this operator correspond to a scalar LR-mixing operator.
Including QCD running effects and the fact that scalar LR 4-fermions operators
have matrix elements among physical meson states that are chirally enhanced, one
finds that the bound gets about one order of magnitude stronger than the one for
a LLLL operator [124]. However this contribution depend on MD3 −MD1,2 and
can be easily made negligible if MD3 ∼ MD1,2 or if MDiL � 1. Even though it
cannot constitute a lower bound on 1/L it has a clear impact on the superparticle
spectrum: if the right-handed sbottom b̃R is light as the other third generation
squarks, then also the right-handed strange and down squarks s̃R, d̃R are light
and quasi-degenerate with it. On the contrary, since the bounds on MU3 −MU1,2

are very weak, potentially large FCNCs in top decays are still allowed and possibly
detectable at the LHC [125].
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Finally, a few comments are in order on other contributions to Flavor and
CP-Violating processes. The contributions coming from loops of SUSY particles
are very small, given the heaviness and the Dirac nature of the gauginos. Other
effects can come from possible brane localized terms, in particular kinetic terms
for the quarks and leptons.

However, it is conceivable that these terms are generated by non perturbative
effects triggered by the 3rd generation Yukawa couplings becoming strong. More-
over the scale Λ in the above formula is controlled by the 3rd generation bulk
masses. It is then natural to assume that the structure in flavor space of these
kinetic terms will look like λ†U diag(0, 0, 1)λU in the basis where the bulk masses
are diagonal. Under this assumption their effect is of the same order (or smaller)
than the ones already considered.

Finally, in the case of the CSM the bulk masses vanish at tree level and the ones
induced radiatively by the Fayet-Iliopoulos term will be naturally flavor universal.
In this case all the information about flavor is only contained in the Yukawa
matrices. This implies that the flavor structure of the CSM is the one of Minimal
Flavor Violation (MFV) [126].

5.6 Phenomenology of Sparticle Production

5.6.1 General Features

The precise phenomenology of sparticle production will depend upon the choice of
the hypermultiplet masses. There are, however, a few features of this phenomenol-
ogy that have an universal character. Because the lightest superpartner (LSP) is
a squark or a slepton, this scalar is pair produced in a hadron collider, either di-
rectly or by cascade decay, most of the times via a strong interaction cross section
determined by 1/L (and ML).

If the LSP is colored, then it will hadronize picking up one or two quarks,
and creating either a heavy meson or a baryon. While the meson is the lightest
state, the energies involved make it easy to produce baryons as well. Even though
the precise spectroscopy of the states containing a spin-0 colored triplet is un-
known, the typical splittings will be . 1 GeV. This newly formed bound state4

(R-hadron) will then traverse the detector, interacting with the detector material

4In the following we will call the meson M+,0
u and the baryon B++,+,0

u (together with their

antiparticles), where the upper indices determine the electric charge and the lower one stand for

an up-type (down-type) squark.
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and loosing energy. The amount of energy lost in an interaction is small, of the
order of the GeV, much less than the total energy of the meson, since all the scat-
tering processes proceed through the light quarks, the heavy squark being just
a spectator. Besides the standard elastic and inelastic (meson production) pro-
cesses, R-hadrons can also undergo charge exchange processes like M+n → M0p

or baryon number changing processes like Mp → Bπ. Note that the latter are
possible for mesons, while the inverse is only possible for antibaryons, because
of the environment having positive baryon number. The detection strategies for
these particles depend on these effects. The neutral particles can be searched as
missing transverse energy. When both particles, produced back-to-back, hadronize
into neutral states the missing energy will tend to cancel, hence one needs to look
for associated production of visible particles. The simplest case is given by QCD
Initial State Radiation (ISR), looking for recoil against a jet. In this case the sig-
nal may be looked in mono-jet searches, pp, pp̄→ R0R̄0 + jet. On the other hand,
a long lived charged massive particle is looked for as a muon-like track and it is
discriminated from muons mainly by time-of-flight measurements and energy loss
patterns. Moreover the charge exchange length is

λch.ex. ∼ 10m
(

mb

σch.ex.

)(
10g
ρ

)

which renders this effect negligible. Even though charge exchange does not dras-
tically alter the detection strategies outlined above, baryonization can. In fact
a sizable fraction of meson are converted into baryons after relatively short dis-
tances. Since baryonization can also change the charge of the particle, then it
could convert neutral R-hadrons into charged ones [127, 128].

Besides the common features described above, the collider phenomenology is
strongly dependent on the details of the superparticle spectrum. In the case of
the CSM with small or intermediate-size masses, the spectrum has been described
in Sect. 3.2, while for the QLTM in Sect. 5.3. In the QLT model, we found that
the superparticle spectrum is completely determined by ML, ME , MQ, MU , MQ3 ,
MU3 and MD (and of course 1/L), once the bounds coming from Flavor and CP
violating observables described in the previous Section are taken into account.
Moreover MQ3 and MU3 are constrained by EWSB and the consistency condition
derived from Eq. (3.11), Tr(MiYi) = 0, has to hold. Finally, since all the super-
particles are pair produced, only those states that are lighter than 1 ÷ 2 TeV are
relevant for the LHC (and TeVatron) phenomenology.

Before continuing with the description of possible scenarios and their searches
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at the LHC, we will review the present bounds coming from TeVatron direct
searches.

5.6.2 Bounds from TeVatron searches

CDF performed a search [109] for stable Charged Massive Particles (CHAMPs) by
looking for muon-like tracks with low velocity. Their limit on the production cross
section is σ . 50 fb for a strongly interacting particle and σ . 10 fb for a weakly
interacting one, in both cases after requiring pT > 40 GeV and 0.4 ≤ β ≤ 0.9. In
the case of squark production (with 2 quasi-degenerate squarks) it correspond to
a lower bound of about 270 GeV on the squark mass, as it is illustrated in Fig. 3.2
for the CSM with small masses. Note that for low compactification radii, also the
production of gluinos and heavier squarks (g̃g̃, g̃q̃, q̃q̃) contributes significantly.
This is mostly relevant for the case of intermediate size stop mass. In this case the
total production cross section for stop, both direct and through a cascade decay, is
higher by a factor of ∼ 5. The bound is then mt̃ & 330 GeV, as shown in Fig. 3.5.
While the cascade is made out of off-shell multi-body decays (e.g. q̃ → qWbt̃) due
to the squeezing of the spectrum, still the velocity of the final particle is generically
of the same order of the one of the parent, which is always peaked for β & 0.3÷0.4.
The same searches do not pose any constraints on the QLT due to the heaviness
of the spectrum.

Finally a few words on Higgs searches are worth mentioning. TeVatron re-
cently excluded at 95% C.L. the mass window of 160 ÷ 170 GeV for a SM-like
Higgs. However in all these models, when the compactification scale is low, the
coupling of the Higgs boson to top quarks is suppressed due to the mixing with
KK modes, as explained in Sect. 3.1. This fact suppresses the Higgs coupling to
two gluons [111] and reduces the production cross section at hadronic machines.
The net suppression is of the order of 20÷40% in the 160÷170 GeV window with
respect to the SM values, beyond but not far from the current TeVatron reach.

5.6.3 LHC searches scenarios in the QLT model

In the QLT model one can then single out a few qualitatively different superpar-
ticle spectra and briefly describe the corresponding LHC phenomenology. Since
the high scale in the model is quite determined by the EWSB, the main crite-
rion distinguishing these different scenarios is therefore the nature of the Lightest
Supersymmetric Particle (LSP) at the bottom of the spectrum.

One can then consider the following cases:
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• The lightest sparticles are t̃L, t̃R and b̃L, as is the case where MQ3 = MU3 =
−MHd and all the other hypermultiplet masses are vanishingly small. In
this case the bottom of the spectrum is given by hadrons made out of stop
or sbottoms, with masses in the 1 ÷ 2 TeV range, as can be read off from
Fig. 5.2, as functions of 1/L. (The other superparticles shown in the figure,
such as b̃R and the sleptons, are much heavier, at ' π/(2L) in the present
case.) The search is therefore for 2 heavy CHAMPS, 1 CHAMP and large
missing transverse energy, E�T , or for a mono-jet and E�T , depending on
the number of LSP hadronizing in charged states. Moreover, given the small
mass splittings, the decay of the heavier stop/sbottom states will proceed via
collinear di-jet, di-lepton (both charged and neutral) emission from off-shell
W’s and Z’s5.

• The lightest sparticle is a down-type squark, most likely a b̃R, as is the
case for MQ3 = MU3 = MD = 2MHd with other hypermultiplet masses
vanishingly small. The masses for the squarks in this case can be read off from
Fig. 5.2. (The sleptons are much heavier, with masses ' π/(2L)). Also in this
case the bottom of the spectrum is composed by almost degenerate super-
hadrons, containing b̃R or light generation right-handed squarks. Differently
from the previous cases now there is also a sufficient mass gap between the
stops and LSPs to allow more complex cascade decays containing, e.g. real
W -bosons and b-jets.

• The lightest sparticle is a charged slepton as in the case when all hypermul-
tiplet masses are equal (see Fig. 5.2). Given the heaviness of the charged
sleptons, ml̃ & 600 GeV, the Drell-Yan direct production channel has a very
low production cross section, requiring a lot of integrated luminosity at the
LHC. On the other hand sleptons will be also copiously produced via cas-
cade decays of the heavier colored states, always in association with at least
a (charged) lepton and, in most cases, with a t- or a b-quark.

• Finally the lightest sparticle could be a neutral slepton as in the case
MQ = MU = −ML and ME = 0. A sneutrino would give rise to a miss-
ing energy signal, similar to the standard MSSM scenarios. However since
the gauginos are much heavier than the sfermions, all the cascade steps will

5In case of hadronic decays of the W’s and Z’s this fact could reduce the sensitivity of the

missing energy searches, since missing energy aligned with jets could be interpreted as a jet energy

mismeasurement.
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be 3-body decays. Then the kinematic features in the invariant masses of
the cascades will correspond to endpoints, rendering slightly more difficult
a precise determination of the superparticle spectrum.

5.7 Neutrino Masses and Dark Matter

As it has been shown in the previous Chapters, the models described here are
effective theories with a UV cutoff of a few TeV. It is therefore very difficult in
this theories to address those issues which are usually connected to much higher
energy scales.

In particular one looses the prediction that the gauge couplings will unify
at some scale M∗. The fact that the gauge couplings seem to converge towards
a common value, one of the main motivations for the introduction of low scale
SUSY, is now totally dependent on the unknown UV completion of the model.

The same is true for the origin of the neutrino masses, if thought as origi-
nating in the traditional see-saw mechanism: assuming that the neutrino Yukawa
couplings are O(1), the see-saw scale is 1014 GeV � TeV. However, as it is well
known, it is possible that the neutrino masses will be generated from physics in-
side the effective theory, as long as the Yukawa couplings are sufficiently small
(which is still a technically natural choice). In this way one partly looses the ra-
tionale for the smallness of mν , but may obtain effects in an energy range which
is experimentally accessible.

Moreover, in the 5D case, part of the smallness of the neutrino masses may
be easily accounted for geometrically, by localizing the 5D bulk fields associated
to the (RH) ν’s far from the brane where the neutrino Yukawa couplings reside.
In this case one can allow 5D Yukawas not as small as in the traditional 4D case,
up to a point of extreme localization in which they are of the same order of the
electron Yukawa coupling. In particular, after introducing three hypermultiplets
associated to right-handed neutrinos Ni, singlets under the SM gauge group, one
can add a Yukawa coupling between Ni and Li localized at y = 0 and a Majorana
mass term Mν at y = L. The latter may be introduced or not. Moreover one can
assume that Mν ∼ 1/L ∼ mSUSY or Mν ∼ Λ ∼ 5mSUSY .

The presence of the hypermultiplets associated to the RH neutrinos may also
be beneficial for other issues. In particular it implies the presence of additional su-
persymmetric particles, the RH sneutrinos. The possibility of strong localization of
the Ni, suggested by the smallness of mν , and the fact that they are singlets under
the SM gauge group, render ν̃R the lightest supersymmetric particle (LSP). Since
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ν̃R is neutral, stable and weakly interacting, it is a possible candidate for Dark
Matter and may resolve the cosmological problems associated to charged/colored
LSPs (stop, sbottom or charged sleptons) without requiring the introduction of
any sources of R-parity breaking6.

It is therefore interesting to explore the possibility that ν̃R is a viable DM
candidate. The case of a RH sneutrino LSP has been extensively considered in
the literature [129, 130, 131, 132]. In particular the smallness of the Yukawa cou-
plings renders the next-to-lightest SUSY particle (NLSP) a long lived particle.
The abundance of ν̃R is then essentially set by the abundance of the NLSP and
by the ratio of their masses

Ων̃h
2 =

mν̃

mNLSP
ΩNLSPh

2.

Moreover, if the NLSP lifetime is very long, such that it decays around Big Bang
Nucleosynthesis (BBN), there may be constraints from the observed primordial nu-
clei abundances [133]. Energy injection from late decays may also affect the CMB
spectrum [134]. An analysis of these constraints is e.g. given in [135], while more
detailed analyses that consider also constraints coming from sneutrino annihila-
tions in stellar cores are given in [131]. If ν̃R is light enough, the decay Z → ν̃Rν̃R
could be kinematically accessible. However the smallness of the Yukawa couplings
renders irrelevant the LEP constraints.

Differently from the case of the MSSM, in which the NLSP is either a neu-
tralino or a charged slepton, in the QLT the NLSP is a either a charged slepton or
top or bottom squark. However in the case of a stop or sbottom quark their abun-
dance at freeze-out is already smaller than the present DM abundance because the
strong interactions keep them longer in equilibrium. Their abundance is further
suppressed by subsequent annihilation after the QCD phase transition [136, 137].
Hence the stop relic abundance cannot provide the correct ν̃ abundance for it to
be a viable DM candidate.

On the contrary, the scenario of a slepton (in particular a stau) NLSP and
a sneutrino LSP has been extensively analyzed in the literature [135, 131] and
found to provide the correct DM abundance while being consistent with the var-
ious constraints7 over a wide range of parameter space of the standard MSSM.

6Indeed the gravitino and the fermionic superpartner associated to the radion field are ex-

pected to have masses O(1/L) and therefore cannot be used as DM candidates. However there

might be other light states once issues like the stabilization of the radius of the extra dimension

are properly addressed.
7The relevant constraints are those from late energy injection from NLSP decays during or
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The quantities entering in the calculations are the stau and the ν̃ masses deter-
mining the kinematics and the ν̃L-ν̃R mixing angle which fixes the NLSP lifetime.
While the QLT model is quite different from the MSUGRA scenario studied in the
literature, in the QLT all these quantities can be changed independently because
they are controlled by 4 different parameters: ML, MN , YN and Mν . These are
basically unconstrained, except for the requirement of getting the right size for the
neutrino masses. Even though the size of the neutrino masses is (only partially)
correlated with the size of the sneutrino mixing angle, the same is also true in the
MSSM scenarios studied in the literature. Hence, while we will not embark here in
a detailed computation of the DM abundance and of the BBN constraints for the
QLT model, it should be straightforward to arrange the values of the parameters
listed above to render viable this slepton NLSP/sneutrino LSP DM scenario.

after Big Bang Nucleosynthesis and from high energy neutrinos coming from DM annihilations

in the Sun.



Chapter 6

Conclusions

In this work we have presented a detailed study of EWSB on a compact extra
dimension. The models studied here are based on SUSY, broken by boundary
conditions, à la Scherk-Schwarz, along the flat extra dimension. As in the MSSM,
SUSY breaking triggers Electroweak Symmetry Breaking via radiative corrections
from the top Yukawa interactions. However, differently than in the MSSM, the
SUSY breaking pattern is determined by the low-energy geometrical structure of
the extra-dimension and it does not require the presence of any messenger sector.

The boundary conditions break the SU(2)R group of N = 2 SUSY (in 4D
language) down to a local U(1)R, the direction of the breaking being dependent
on the position along the fifth dimension. This twisting of the SU(2)R → U(1)R
breaking reduces N = 2 SUSY locally to N = 1 and globally to N = 0. Be-
ing essentially non-local, this extra dimensional SUSY breaking is softer than in
standard 4D scenarios1.

There are also other few key features arising in these models that are not found
in the conventional MSSM. One of these is the possibility to maintain an intact
R-symmetry at low energy, that forbids Majorana masses for the gauginos (being
now Dirac particles), the A-terms and the Bµ-term: all welcome ingredients in
solving/alleviating common problems of the MSSM [139]. In this work we have
shown that a successful EWSB still takes place, and that the soft SUSY breaking
terms depend only on few parameters, namely the length of the extra dimension
and the bulk mass parameters for the matter (and Higgs) multiplets.

As it was explained in Chapter 2, the presence of bulk masses distorts the wave

1Indeed extra dimensional SUSY breaking has motivated the study of so-called supersoft SUSY

breaking scenarios in 4D [138].
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Figure 6.1: Spectrum of a matter hypermultiplet, presented in Chapter 2.

functions of the various fields. The effects are strongest for the lowest modes, which
gets localized towards one of the boundaries. Moreover the mass spectrum is also
affected, with all the KK modes getting progressively decoupled as shown e.g. in
Fig. 6.1.

Thus the phenomenology strongly depends on the size of the bulk masses.
Focusing on the EWSB one can identify different models by looking at the size of
the 5D masses for the top and Higgs hypermultiplets. The scale of comparison is
the compactification scale L−1 ≡ (2πR)−1.

In Chapter 3 we have studied both the case of negligible bulk masses, ML� 1,
and the one with small but sizable masses, ML . 1, while the study of large bulk
masses, ML & 1, has been carried out in Chapters 3 and 4. Here we will summarize
again our main findings.

6.1 Models with negligibly small bulk masses

The limit of zero bulk masses is constituted by the Constrained Standard Model,
introduced in [88]. The bulk masses are zero at tree level and all the fields are
able to freely propagate in the bulk of the extra dimension. However these masses,
even if not present, may be generated by 5D anomalies associated to the breaking
of spatial parity along the extra dimension [104], and will be proportional to the
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A B

1/R 360± 70 420÷ 1000
h 133± 10 Fig. 3.7

t̃1, ũ1 210± 20 1/R(1± 8%)−mt

χ±, χ0,

g̃, q̃, l̃ 360± 70 1/R(1± 20%)
t̃2, ũ2 540± 30 1/R(1± 8%) +mt

A1, q1, l1, h1 720± 140 2/R(1± 20%)

Table 6.1: The particle spectrum and 1/R in absence of any mass term and in
presence of a FI term, presented in Chapter 3.

hypercharge of the different fields.

The masses relevant for EWSB are the ones of the Higgs and of the top quark
multiplets. Since the induced values for these masses are small, their addition
constitutes only a small deformation of the original CSM. The main difference is
that now the compactification radius is not fixed, but it is allowed to vary in a
range and with it all the superparticle masses, the KK spectra and the Higgs boson
mass. The results presented in Chapter 3 are briefly reported here in Table 6.1
and Fig. 6.2.
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Figure 6.2: Higgs mass versus 1/R in presence of a Fayet-Iliopoulos term, as shown
in Chapter 3.
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Given the quite low value of the compactification scale, in the few hundreds
GeV range, the model exposes problems concerning the EWPTs, in particular the
ρ parameter [88, 4]. Hence it does not solve the LEP Paradox. Moreover, because of
the peculiar character of the collider signatures (a light, squeezed supersymmetric
spectrum with a long-lived colored massive particle as the LSP), the model has
already been easily searched for in the TeVatron data, which excluded part of
its parameter space. The exclusion regions are summarized in Fig. 6.2. Presently
there is still an open window characterized by a fairly large Higgs boson mass,
mH = 140÷ 180 GeV, that will be explored in the near future by both Higgs and
CHAMPs searches at the TeVatron (and the LHC).

6.2 Models with sizable bulk masses for the top mul-

tiplets

We then studied the case where some of the bulk masses are sizable, but in the
range |ML| . 1. We focused on the top quark multiplet ones, being the most
relevant for the EWSB2. The bulk mass affects the relation between the top mass
and the Yukawa coupling and changes the values of the physical stop masses.
Successful EWSB happens with larger values for the compactification scale and
smaller values for the Higgs boson mass, as described in Chapter 3 and shown
again in Figs. 6.3-6.4.

Even in this case, the presence of a colored LSP puts stringent bounds from
TeVatron data, excluding most of the parameter space of this model. A window
characterized by a very light Higgs mh . 120 GeV is still open. The search for
the Higgs boson in this window is rather difficult, given the suppressed Higgs
production cross section at hadron colliders and its suppressed coupling to γγ.
However, the superparticles are still light, below 1 TeV, allowing the experimental
search in the near future.

Since this model is also characterized by the presence of large and uncalculable
contributions to the EWPT, in the second part of this work we explored a different
class of models, with large bulk masses and higher values of the compactification
scale.

2A non-zero bulk mass distorts the wave-function for the zero modes, allowing a coupling to

a single KK excitation. Given the lightness of the spectrum, flavor and EWPT bounds forbid

sizable masses for the first two generations in this model.
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Figure 6.3: Higgs mass as function of ML. From Chapter 3.
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Figure 6.4: Stop mass and 1/R as functions of ML. From Chapter 3.
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6.3 Models with large bulk masses

An interesting phenomenology arises when the bulk masses of the top hypermul-
tiplets are large. In this case the top/stop lightest states get quasi-localized close
to a boundary, chosen to be the one where the Yukawa coupling resides. In this
Quasi-Localized Top (QLT) model, presented in Chapter 4, the lightest stop be-
comes much lighter than the compactification scale. The stop mass is dominated
by the leading radiative corrections, implying a stronger cancelation between the
top–stop loops. This is an interesting step towards the resolution of the LEP Para-
dox: it parametrically increases the separation between the compactification scale
and the electroweak scale without too large finetuning. Indeed, given this cancela-
tion, there is no EWSB at 1-loop and also at 2-loop order in the exact localization
limit. However, at the same time the light stop is not able to raise much the Higgs
mass above the experimental limit, yielding to a model with a quite light Higgs.
If the hypermultiplet mass for the Higgs boson is not turned on, the EWSB is
totally determined by 1/L and the third generation quark bulk masses. Fixing
one of these parameters by the measured value of the Fermi constant GF one can
establish relation between the compactification scale and the Higgs mass, that was
computed in Chapter 4 at a few-% accuracy by including the leading logarithmic
two-loop contributions and it is shown again in Fig. 6.5.
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Figure 6.5: Higgs mass as function of 1/L in the QLT model.
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Taken from Chapter 5.

While in the CSM the spectrum of the superparticles and of the KK excitations
of the SM particles is essentially determined by the compactification scale L alone,
in the QLT the phenomenology is more dependent on the specific values of the
bulk mass parameters.

A possible spectrum of the light superparticles is shown here in Fig. 6.6, while
a detailed analysis has been presented in Chapter 5.

Thus one has the required picture of somewhat split scales, necessary to solve
the Little Hierarchy Problem: 1/R & 3 TeV together with the gauginos and part
of the sfermions, the KK excitations in the 5−20 TeV range, a light SM-like Higgs,
and only the stop and sbottoms bounded to be below 1 ÷ 2 TeV (with possibly
other scalar superpartners).

Moreover the cutoff of the effective theory is higher than ∼ 10 TeV, automat-
ically rendering the model safe from higher dimensional operators contributing
to EWPT and flavor processes. In Chapter 5 we have also shown how the model
is safe from the bounds coming from Flavor and CP-Violation and from those
imposed by the EWPT.

While the KK states are out of reach of the present and near future colliders,
the supersymmetric spectrum may in principle be studied at the LHC. It is quite
different from the standard MSSM scenarios. The gauginos are much heavier than
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the sfermions, a condition difficult to realize in the MSSM due to the renormaliza-
tion group running effects. Moreover, the existence of a charged long lived particle
at the bottom of the spectrum is a quite generic feature in this model. Its precise
nature and whether it is colored or not are however model dependent. The possible
collider searches for the QLT model have been described in Chapter 5.

Since a colored/charged stable particle constitutes a cosmological problem (of-
ten considered as one of the major drawbacks of this type of models), we also
have briefly explored the possibility of having a good Dark Matter candidate. It
is straightforward to extend the QLT model to get both a DM candidate and
neutrino masses within the effective theory, by adding right-handed neutrino hy-
permultiplets. In this case the true LSP is a sneutrino, but since the couplings
are suppressed by the neutrino masses, the NLSP is stable on collider timescales,
leaving the LHC phenomenology intact.

Finally we have also analyzed the case where a sizable Higgs bulk mass is
added to the QLT model. Its effect is to progressively lower the compactification
scale and increase the Higgs boson mass, as explained in Chapter 4 and shown
here in Fig. 6.7, smoothly interpolating between the QLT model and the model
summarized in Sect. 6.1.
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Taken from Chapter 4.
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6.4 Other directions

To conclude, a few comments on issues not addressed in this Thesis are in order.
Given the bottom-up approach undertaken and the focus on the Little Hierarchy
Problem, a few model-building aspects have not been directly explored here. In
particular a viable mechanism for the stabilization of the radius of the extra di-
mensions has been assumed throughout this work. A few possibilities for radius
stabilization are known [140, 141, 142, 143] and may require the introduction of
new fields. However the new degrees of freedom may easily be heavier than a TeV
or, if much lighter, may have very suppressed couplings with the SM particles (as
it is the case e.g. for the radion itself). Hence the approach of studying the phe-
nomenology of these models without including the radius stabilization mechanism
is still justified.





Appendix A

The spectrum

In this Appendix we calculate the KK spectrum of Higgs and matter hypermulti-
plets in presence of a mass term M as in Eq. (2.13).

Let (ϕ,ψ, F ) ,(ϕc, ψc, F c) be either a Higgs or a matter hypermultiplet. In
presence of a mass term as in Eq. (2.13) and upon eliminating the F-terms the
Lagrangian is:

L = |∂Mϕ|2 + |∂Mϕc|2 + iψσµ∂µψ + iψcσµ∂µψ
c + ψc∂yψ + ψ

c
∂yψ

−M2
(
|ϕ|2 + |ϕc|2

)
+ 2M (δ (y) + δ (y − L))

(
|ϕ|2 − |ϕc|2

)

+Mη (y)
(
ψψc + ψ ψ

c
)
, (A.1)

where M = 0, 1, 2, 3, 5 while µ = 0, 1, 2, 3.

Thus the equations of motion are

[
∂M∂

M +M2 − 2M (δ (y) + δ (y − L))
]
ϕ = 0, (A.2a)

[
∂M∂

M +M2 + 2M (δ (y) + δ (y − L))
]
ϕc = 0, (A.2b)

[
∂M∂

M +M2 − 2M (δ (y)− δ (y − L))
]
ψ = 0, (A.2c)

[
∂M∂

M +M2 + 2M (δ (y)− δ (y − L))
]
ψc = 0. (A.2d)

Eqs. (A.2) must be solved imposing the proper boundary conditions to the
fields ϕ, ϕc, ψ, ψc. Note that the delta functions in the left-hand side of Eqs. (A.2)
are both present only if the field under consideration has (+,+) parity under
Z2 × Z ′2 symmetry. In all other cases the wave function vanishes at y = 0 and/or
y = L and the delta functions in the corresponding points are irrelevant.
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A.1 Matter hypermultiplets

If we consider a matter hypermultiplet, then Eq. (A.2) become

[
∂M∂

M +M2 − 2M (δ (y)− δ (y − L))
]
ψ = 0, (A.3a)

[
∂M∂

M +M2
]
ψc = 0, (A.3b)

[
∂M∂

M +M2 − 2Mδ (y)
]
ϕ = 0, (A.3c)

[
∂M∂

M +M2 + 2Mδ (y − L)
]
ϕc = 0. (A.3d)

Taking for the wave functions the following form

ψ (x, y) =

{
ψ̃ (x) [Aψ sin k (y − L) +Bψ cos k (y − L)]
ψ̃ (x) [−Aψ sin k (y − L) +Bψ cos k (y − L)]

y ∈ (0, L)
y ∈ (L, 2L)

(A.4a)

ψc (x, y) = ψ̃c (x)Aψc sin ky y ∈ (0, 2L)
(A.4b)

ϕ (x, y) = ϕ̃ (x)Aϕ sin k (y − L) y ∈ (0, 2L) (A.4c)

ϕc (x, y) = ϕ̃c (x)

{
Aϕc sin ky
Bϕc sin k (2L− y)

y ∈ (0, L)
y ∈ (L, 2L)

(A.4d)

the mass of every field is given by m2 = M2 + k2 where k is constrained by
Eqs. (A.3). Imposing the proper conditions on the wave functions and their first
derivatives on the boundary we get the following equations for k:

ψ (+,+) =⇒
(
k2 +M2

)
sin (kL) = 0, (A.5a)

ψc (−,−) =⇒ sin (kL) = 0, (A.5b)

ϕ (+,−) =⇒ tan (kL) =
k

M
, (A.5c)

ϕc (−,+) =⇒ tan (kL) = − k

M
. (A.5d)

A few things are worth noticing:

1. One can get the equations for the bound states by analytical continuation,
setting k = iρ in Eq. (A.5)

2. The bound state ψ (+,+) is massless for every value of M , while the excited
states have masses

(
m2
ψ

)
n

= M2 +
(
πn
L

)2
, n = 1, 2, . . .
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3. The equation for ψc (−,−) is unaffected by the presence of M because of
the vanishing of the wave function at y = 0, L

Finally it is convenient to give the approximate expressions for the mass eigen-
values of the scalar states, in the limit of small ML:

m2
nL

2 ∼ π2

4
(2n+ 1)2 ∓ 2ML+ (ML)2

(
1− 4

(2n+ 1)2π2

)
, (A.6)

where the ∓ corresponds to the (+,−) and (−,+) cases respectively.

A.2 Higgs hypermultiplet

If we consider a Higgs hypermultiplet, then Eq. (A.2) become

[
∂M∂

M +M2 − 2M (δ (y) + δ (y − L))
]
h = 0, (A.7a)

[
∂M∂

M +M2
]
hc = 0, (A.7b)

[
∂M∂

M +M2 − 2Mδ (y)
]
λ = 0, (A.7c)

[
∂M∂

M +M2 + 2Mδ (y − L)
]
λc = 0. (A.7d)

With the same procedure of the matter case one gets the equations

h (+,+) =⇒ tan (kL) = − 2kM
k2 −M2

, (A.8a)

hc (−,−) =⇒ sin (kL) = 0, (A.8b)

λ (+,−) =⇒ tan (kL) =
k

M
, (A.8c)

λc (−,+) =⇒ tan (kL) =
k

M
. (A.8d)

Note that Eq. (A.8a) for the bound state of the h field leads to a negative squared
mass if M > 0.

Solving Eq. (A.7a) for the zero mode of the Higgs scalar we find for the wave
function, normalized to

∫ 4L
0 dy

∣∣h(0) (y)
∣∣2 = 1,

h(0) (y) =
−k cos k (y − L)−M sin k (y − L)√

−2M + 2 (k2 +M2)L+ 2M cos 2kL+
(
k − M2

k

)
sin 2kL

, (A.9)

with k the solution of Eq. (A.8a). Expression (A.9) is valid for y ∈ [0, L). Note
that if M → 0, then h(0) (y)→ (4L)−1/2 .
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A.3 Spectrum in presence of a VEV for the Higgs field

If we have a top quark hypermultiplet, then the top Yukawa coupling1

LY =
λt
2

[δ (y) + δ (y − 2L)]
∫

d2θĥ Q̂ Û + h.c. (A.10)

leads to a mass term when we replace the Higgs zero mode h(0) with its VEV v.

To calculate the spectrum in presence of such a term it is convenient to rewrite
the Lagrangian Eq. (A.1) without eliminating the F auxiliary fields and use the
following vectors

X =

(
ϕ

F c†

)
, Y =

(
ϕc

F †

)
, Z =

(
ψ

ψ̄c

)
. (A.11)

Then Eq. (A.1) becomes

L =
(
X†U,Q Y †Q,U

)
MB

(
XU,Q

YQ,U

)

+
(
ZU,Q ZtQ,U

)
MF

(
ZU,Q

Z
t
Q,U

)
, (A.12)

where

MB =




−�+ 4MU,QδL ∂y − η (y)MU,Q 0 λtα
∗

−∂y − η (y)MU,Q 1 0 0
0 0 −�− 4MQ,UδL −∂y − η (y)MQ,U

λtα 0 ∂y − η (y)MQ,U 1


 ,

(A.13a)

MF =




∂y + η (y)MU,Q iσµ∂µ 0 0
iσµ∂µ −∂y + η (y)MU,Q 0 λtα

∗

λtα 0 −∂y + η (y)MQ,U iσµ∂µ

0 0 iσµ∂µ ∂y + η (y)MQ,U


 ,

(A.13b)

α = 1
2 [δ (y) + δ (y − 2L)] v h(0) (y = 0) , δL = δ (y − L) ,

with h(0) (y = 0) the Higgs zero mode wave function, Eq. (A.9) at y = 0.

1Here we are working on the interval (0, 4L).
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Taking for the wave functions the form of Eq. (A.4) (in this case one must
consider also the wave functions of FU,Q, F cQ,U ) and imposing the proper boundary
conditions, one can get the equations for the masses of the fields ϕU,Q, ψU,Q,ϕcU,Q,
ψcU,Q.

For the top quark ψU,Q and the top squark ϕU,Q (the lowest modes) one gets

m2
t =

λ2
t v

2
∣∣h(0) (0)

∣∣2

16
(
ktU coth

(
ktUL

)
+MU

) (
ktQ coth

(
ktQL

)
+MQ

)
, (A.14)

(
kt̃U coth

(
kt̃UL

)
−MU

)(
kt̃Q coth

(
kt̃QL

)
+MQ

)
=
λ2
t v

2
∣∣h(0) (0)

∣∣2

16(
m2
t̃
− 2MQ

(
kt̃Q coth

(
kt̃QL

)
+MQ

))
,

(A.15)

where kt,t̃U,Q =
√
M2
U,Q −m2

t,t̃
. The wave function of the top quark zero mode,

normalized to
∫ 4L

0 dy
∣∣∣ψU,Q0 (y)

∣∣∣
2

= 1, is obtained by solving Eq. (A.3a). For y ∈
[0, L) we have

ψU,Q0 (y) =
kU,Q cosh kU,Q (L− y) +MU,Q sinh kU,Q (L− y)√

−2m2
tL+ 2MU,Q (cosh 2kU,QL− 1) +

(
kU,Q + M2

kU,Q

)
sinh 2kU,QL

.

(A.16)
The usual 4D top Yukawa coupling, defined as the coupling among the zero

modes of the fields h, ψU , ψQ, is given by

yt = ŷtη
h
0η

U
0 η

Q
0 , (A.17)

where ŷt = λt (4L)−3/2 and ηi0 (i = h, U,Q) are the wave functions, Eqs. (A.9–
A.16) at y = 0 normalized in such a way that

∫ 4L

0
dy
∣∣ηi0 (y)

∣∣2 = 4L. (A.18)

Inserting Eq. (A.17) into Eq. (A.14) we obtain the relation between the top quark
mass mt and the 4D Yukawa coupling yt.





Appendix B

5D Propagators

In order to obtain the mixed momentum–coordinate space propagators for the
components ϕ, ψ, F of a hypermultiplet, we start from the 5D Lagrangian without
eliminating the auxiliary fields. If M 6= 0 the relevant part of this Lagrangian is:

L = |∂µϕ|2 + |∂µϕc|2 + |F |2 + |F c|2 + iψ̄σ̄µ∂µψ + iψcσµ∂µψ̄
c+

+ [F∂yϕc − F c∂yϕ+ h. c.]−Mη(y) [Fϕc + F cϕ+ h. c.]

+ [ψc∂yψ + h. c.] +Mη(y) [ψcψ + h. c.]

+ 4Mδ(y − L)
[
|h|2 − |hc|2

]
, (B.1)

for the generic hypermultiplet of components ϕ, ψ, F and their conjugates. The
boundary term at L in the last line is necessary to maintain 5D SUSY invariance
under ξ−+ transformations1. Let us focus first on the propagators for the top–stop
sector, assuming from now on that the parities are those of the matter multiplets.
Using the vectors defined in Eq. (A.11), L can be recast in a more compact form
as in Appendix A:

L = X†AX + Y †BY + Z̄CZ (B.2)

where

A =

(
−�+ 4Mδ(y − L) ∂y −Mη(y)
−∂y −Mη(y) 1

)

1Using the formulation in terms of 4D N=1 superfields [93] one privileges only one of the

two local supersymmetries, here ξ+−. This explains the apparent asymmetry between y = 0 and

y = L.



106 5D Propagators

B =

(
−�− 4Mδ(y − L) −∂y −Mη(y)

∂y −Mη(y) 1

)

C =

(
∂y +Mη(y) iσµ∂µ

iσ̄µ∂µ −∂y +Mη(y)

)
(B.3)

Note that the components of X (or Y , Z) have the same quantum numbers but
different boundary conditions.

Let us focus, for example, on the propagator

G
[
(x− x′)µ; y, y′

]
= 〈ϕ(x′µ, y

′)ϕ†(xµ, y)〉, (B.4)

the others being analogous. In general all the correlation functions will depend on
both2 y and y′ because of the non conservation of the 5th component of momentum
in the segment [0, L]. However, being interested in calculating only loops formed
using Yukawa interactions which are localized at y = 0, we can impose without
any problem y′ = 0 from the very beginning of the calculation, reducing the
dependence of the Eq. (B.4) only to (x− x′)µ and y.

One can arrange propagators in matrices using the vectors previously defined.
In particular, defining

G(x− x′; y) = 〈X(x, y)X†(x′, 0)〉

=

(
〈ϕ(x, y)ϕ†(x′, 0)〉 〈ϕ(x, y)F c(x′, 0)〉
〈F c†(x, y)ϕ†(x′, 0)〉 〈F c†(x, y)F c(x′, 0)〉

)
, (B.5)

the equations of motion for the scalar Green functions are:

AG(x− x′; y) = iσ3δ
(4)(x− x′)1

2
(δ(y) + δ(y − 2L)) , (B.6)

where σ3 is the usual Pauli matrix. Multiplying the 1st row of A by the 1st column
of G we get a system of 2 differential equations, which after passing to Euclidean
4-momentum, assumes the form:

{
−k2

4g(y) + 4Mδ(y − L)g(y) + (∂y −Mη(y)) f(y) = iδ(y)/2
(−∂y −Mη(y))g(y) + f(y) = 0

where g(y) = 〈ϕ(y)ϕ†(0)〉 and f(y) = 〈F c†(y)ϕ†(0)〉. These coupled equations
must be solved imposing the (+,−) and the (−,+) boundary conditions in y on

2Or on ȳ = (y + y′)/2 and ∆y = (y − y′).
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g and f respectively, using the same techniques of Appendix A. One finally gets
the 〈ϕϕ†〉 propagator Gϕ (k4, y;M):

Gϕ (k4, y;M) = 〈ϕϕ†〉(y) =
−i sinh [k (L− y)]

4 [k cosh (kL)−M sinh (kL)]
, (B.7)

where k =
√
k2

4 +M2. Analogously the 〈FF †〉 (+,−) and 〈ψψ†〉 (+,+) propaga-
tors are:

GF (k4, y;M) =
i k2

4

4
sinh [k (L− y)]

[k cosh (kL) +M sinh (kL)]

(
1 +

2M
k2

4

(k coth (kL) +M)
)
,

Gψ (k4, y;M) =
−i k�4

4k2
4

k cosh [k (L− y)] +M sinh [k (L− y)]
sinh (kL)

, (B.8)

where k�4 = σ · k4.
In the limit M → 0 these propagators become:

Gϕ(k4, y;M = 0) =
−i
4k4

sinh [k4 (L− y)]
cosh (k4L)

,

GF (k4, y;M = 0) =
i k4

4
sinh [k4 (L− y)]

cosh (k4L)
,

Gψ(k4, y;M = 0) =
−i k�4

4k4

cosh [k4 (L− y)]
sinh (k4L)

. (B.9)

For the sake of completeness we give also the propagator of those fields in the
gauge multiplet and in the Higgs multiplet (at MH = 0) that can propagate from
y1 = 0 to y2 = y. These propagators are given in Feynman gauge.

GAµ(k4, y) =
igµν
4k4

cosh [k4 (L− y)]
sinh (k4L)

,

Gλ(k4, y) =
−i k�4

4k4

sinh [k4 (L− y)]
cosh (k4L)

,

GD(k4, y) =
i

4
δ (y) , (B.10)

Gh(k4, y) =
−i
4k4

cosh [k4 (L− y)]
sinh (k4L)

,

Gh̃(k4, y) =
−i k�4

4k4

sinh [k4 (L− y)]
cosh (k4L)

,

GFh(k4, y) =
ik4

4
cosh [k4 (L− y)]

sinh (k4L)
. (B.11)
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The propagators from y1 = L to y2 = y can be recovered from the previous
ones through using elementary symmetry principles on boundary conditions and
on the sign of ML.

Finally, for the calculation of loops involving gauge interactions, bulk-bulk
propagators may be needed. These depend on two 5D coordinates, y and y′. They
can be easily derived with the formalism described above, the only differences
being in the fact that the right hand side of Eq. (B.6) now depends on [δ(y−y′) +
δ(y − y′ − 2L)]. Here we just quote the results for the matter hypermultiplet:

Gψψ̄ =
−i k�4

2k2
4

k

sinh (kL)
[
ω−0 (y)ω+

L (y′)θ(y′ − y) + ω−0 (y′)ω+
L (y)θ(y − y′)

]
,

Gψ̄cψc =
i k�4

2k sinh (kL)
[
sh0(y)shL(y′)θ(y′ − y) + sh0(y′)shL(y)θ(y − y′)

]
,

Gψψc =
i

2 sinh (kL)
[
ω−0 (y)shL(y′)θ(y′ − y)− sh0(y′)ω+

L (y)θ(y − y′)
]
,

Gψ̄cψ̄ =
−i

2 sinh (kL)
[
ω+
L (y′)sh0(y)θ(y′ − y)− shL(y)ω−0 (y′)θ(y − y′)

]
,

Gφφ† =
i

2kω−0 (L)

[
shL(y′)ω−0 (y)θ(y′ − y)− shL(y)ω−0 (y′)θ(y − y′)

]
,

GφF c =
−i

2ω−0 (L)

[
ω−0 (y)ω−L (y′)θ(y′ − y) +

k2
4

k2
sh0(y′)shL(y)θ(y − y′)

]
,

GF c†φ† =
ik2

4

2k2ω−0 (L)

[
sh0(y)shL(y′)θ(y′ − y) +

k2

k2
4

ω−0 (y′)ω−L (y)θ(y − y′)
]
,

GF c†F c =
ik2

4

2kω−0 (L)

[
sh0(y)ω−L (y′)θ(y′ − y)− sh0(y′)ω−L (y)θ(y − y′)

]
,

Gφcφc† =
i

2kω−0 (L)

[
ω−L (y′)sh0(y)θ(y′ − y)− ω−L (y)sh0(y′)θ(y − y′)

]
,

GφcF =
ik2

4

2k2ω−0 (L)

[
sh−0 (y)sh−L (y′)θ(y′ − y) +

k2

k2
4

ω−0 (y′)ω−L (y)θ(y − y′)
]
,

GF †φc† =
i

2ω−0 (L)

[
ω−0 (y)ω−L (y′)θ(y′ − y) +

k2
4

k2
sh0(y′)shL(y)θ(y − y′)

]
,

GF †F =
−ik2

4

2kω−0 (L)

[
ω−0 (y)ω̃+

L (y′)θ(y′ − y)− ω−0 (y′)ω̃+
L (y)θ(y − y′)

]
, (B.12)

where

ω±0 (x) = cosh(kx)± M

k
η(x) sinh(kx),
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ω±L (x) = cosh[k(L− x)]± M

k
η(x) sinh[k(L− x)],

ω̃±L (x) =
k2 +M2

k2
4

sinh[k(L− x)]± 2Mk

k2
4

η(x) cosh[k(L− x)]

and sh0(x) = sinh(kx), shL(x) = sinh[k(L− x)].





Appendix C

Effects of localized terms

In this Appendix, we discuss the possible effects of the presence of N = 1 super-
symmetric terms localized at the boundaries. Among these terms there are the
kinetic terms for Vector multiplets, Higgs and matter hypermultiplets, and su-
persymmetric higher order operators. As an example we present and quantify the
effects that can arise from these operators for the Higgs hypermultiplet. This case
is of relevance for the discussion of Chapter 5 and easily shows what happens in
the case of zero bulk masses.

C.1 Boundary kinetic terms

The presence of kinetic terms localized at the boundaries are in a sense worrisome
because their effect is to mix the low lying modes with the higher KK ones and,
by gauge invariance, to couple SM particles to heavy gauge vector bosons. The
physical states become admixtures of zero modes and excited KK states, and in
the case of matter, flavor transitions via the exchange of a heavy gauge boson
become possible. In principle these effects can manifest themselves by altering
some electroweak or flavor physics observable.

C.1.1 Higgs hypermultiplets

Let us keep MH = 0. Then the effect of a term like

δL = δ(y)z0
H

∫
d4θH†eVH + δ(y − L)zLH

∫
d4θH ′†eV

′
H ′ (C.1)

does not affect the masslessness of the Higgs zero mode. In fact, after rescal-
ing all the fields in the Higgs hypermultiplets by the constant quantity
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1/
√

1 + (z0
H + zLH)/(4L) The equation for the scalar (+,+) spectrum becomes

∂2
5h = −

(
1 + δ(y)z0

H − δ(y − L)zLH
)
m2h, (C.2)

that can be rewritten as

tanmnL = 2mn

(
zLH − z0

H

)

4 +m2
nz

L
Hz

0
H

, (C.3)

where mn is the mass of the nth eigenmode. This equation has mn = 0 as a
solution, showing the presence of a massless zero mode. Furthermore, the wave-
function of the zero mode is not altered, remaining just a constant1. So there is
no mixing with higher modes when MH = 0. There is, however, in the covariant
derivative the term that couples the Higgs zero mode with the KK excitations of
the vector bosons. When h0 acquires a VEV, this term generates a mass mixing
term for the gauge bosons, that upon integrating in the 5th coordinate is

−
√

2m2
V V

(0)
µ

∑

n>0

[
Z0
H + (−1)nZLH
1 + Z0

H + ZLH
V µ,(n)

]
, (C.4)

where we have set z/(4L) = Z to render the kinetic terms adimensional. The
zero mode vector boson mass is thus shifted by the exchange of heavy vector
bosons by the amount:

δm2
V =

m4
V L

2

3
[
(Z0

H)2 + (ZLH)2 − Z0
HZ

L
H

]
, (C.5)

where we used the fact that the mass of the gauge boson is ' πn/L and that the
Z’s are small. This shows that the Higgs potential and the spectrum are affected
only at the order Z2. Being more precise, this is not true for the Yukawa couplings

where a factor 1/
√

1 + Z0
H + ZLH has appeared. However this rescaling is universal

and affects only the relation between the 5D Yukawa couplings and the quark and
lepton masses. In particular it renders less precise the determination of the cutoff
Λ, by the same factor. If MH is different from zero, then the same effects can be
generated also from the mass MH because the Higgs now has a nontrivial profile
along the 5th dimension and can couple with all the vector bosons. This effect can
be calculated and included straightforwardly using the Higgs wave-function given
in Appendix A. However, for small bulk masses, this effect is negligible.

1Remember that we have already done the rescaling



Appendix D

Independence of EWSB from

MD3
L

In this Appendix, we discuss how many bulk mass parameters the theory possesses
and how many of them enter the EWSB calculation. Without loss of generality
the bulk mass matrix for each charge sector can be taken diagonal, so that there is
a separate mass parameter for each matter and Higgs hypermultiplet. The masses
for the scalar and fermion components take the form

Lm = · · ·+ ψc∂yψ +Mη(y) (ψcψ + h.c.)−M2
(
|φ|2 + |φc|2

)

−2M (δ(y) + δ(y − L))
(
|φ|2 − |φc|2

)
, (D.1)

where η(y) = +1 (−1) for y > 0 (< 0), and the ∂y piece is included because
what matters is a relative sign between ∂y and M . These mass terms have a
brane contribution to maintain the form of the unbroken local Supersymmetry [1].
Despite the presence of so many parameters, the physics of EWSB is sensitive to
only three of them: MQ3 , MU3 and MHu . It is perhaps obvious that the masses for
the lighter generation quarks are irrelevant — they have small Yukawa couplings
which give only small radiative contributions to the scalar potential — but it is not
obvious that MD3 is irrelevant. A large value for MQ3 localizes bL largely on the
brane distant from the bottom Yukawa coupling, so that the 5D bottom Yukawa
coupling must be large to overcome the wave-function suppression. Nevertheless,
we find that the radiative contribution to the Higgs potential through the bottom
Yukawa coupling is always suppressed by (mb/mt)2.

We consider here only the case of a single Higgs hypermultiplet. Everything
that follows may be directly generalized to the two Higgs case analyzed in the text.
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The relevant part of the Lagrangian for studying the contribution of the radiative
correction from the bottom quark Yukawa coupling to the scalar potential is:

L = λtδ(y)(q̃FUh+ FQt̃h− qth)− λbδ(y − L)(q̃c∗F ′Dh
∗ + F ′Qb̃

c∗h∗ − qbh∗). (D.2)

Here, the chiral supermultiplets under the N = 1 Supersymmetry acting at y = 0
are given by

H = (h, h̃, FH), (D.3)

Q3 = (q̃, q, FQ), (D.4)

U3 = (t̃, t, FU ). (D.5)

and the chiral supermultiplets under the N = 1 Supersymmetry acting at y = L

are given by

H ′c = (−h∗, h̃c, F ′H), (D.6)

Q′3 = (q̃c∗, q, F ′Q), (D.7)

D′3 = (̃bc∗, b, F ′D). (D.8)

The Lagrangian in Eq. (D.2) can be derived from the superpotential term W =
λtδ(y)(Q3U3H) + λbδ(y − L)(Q′3D

′
3H
′c).

In terms of mixed momentum-position propagators, the ratio of bot-
tom to top Yukawa contributions in the Higgs mass squared clearly de-
pends on the ratios Gq(k4; 0, 0)/Gq(k4;L,L), Geq(k4; 0, 0)/Geqc∗(k4;L,L) and
GFQ(k4; 0, 0)/GF ′Q(k4;L,L). These ratios of propagators are all equal in the in-
frared, which dominates the loop integral, and given by exp(−2MQL). This exactly
cancels the enhancement of the 5D bottom Yukawa coupling due to the small wave-
function overlap. Therefore, the contribution to the Higgs mass squared due to the
bottom Yukawa interaction is down by a factor of (mb/mt)2 and can be safely ne-
glected. We can similarly neglect all the other Yukawa contributions relative to
the top one. The most general such theory of EWSB is therefore parameterized
by a three dimensional space spanned by (MQ3 ,MU3 ,MHu).



Appendix E

The 2 loop contribution to the

Higgs potential

In this Appendix we give some details of the 2 loop contribution to the Higgs
potential δV 2 loop

top .

At the 2-loop level there are two contributions. The first one comes from the
expansion, in Eq. (4.9), of the one loop corrections in Eqs. (4.12) after expressing
m0,t, m0,Q and m0,U in terms of the renormalized masses mt, mQ and mU respec-
tively. The second contribution is a pure 2-loop correction and corresponds to the
diagrams of Fig. 4.1 in terms of the top superfields U,Q, the Higgs superfield H

and the SU(3) vector superfield V . In localized approximation for U and Q, only
V and H are 5-dimensional superfields.

Defining

C(x) = x coth(x), T (x) = x tanh(x), (E.1)

the pure 2-loop gauge correction (arising from the diagrams Fig. 4.1-b) is given
by the following expression

V2loop,gauge = 4 gs2

∫
d4p

(2π)4

d4q

(2π)4

T (qL)
q2
×

×


 −2 q2

(
(p− q)2 +mQ

2
)

(p2 +mt
2)
− 2 p2

(
(p− q)2 +mQ

2
)

(p2 +mt
2)
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+
2 (p− q)2

(
(p− q)2 +mQ

2
)

(p2 +mt
2)
− 2 q2

(p2 +mt
2)
(

(p− q)2 +mU
2
)

− 2 p2

(p2 +mt
2)
(

(p− q)2 +mU
2
) +

2 (p− q)2

(p2 +mt
2)
(

(p− q)2 +mU
2
)




+4 gs2

∫
d4p

(2π)4

d4q

(2π)4

C(qL)
q2
×

×


 4(

(p− q)2 +mQ
2
) +

q2

(p2 +mQ
2)
(

(p− q)2 +mQ
2
)

− p2

(p2 +mQ
2)
(

(p− q)2 +mQ
2
) − (p− q)2

(p2 +mQ
2)
(

(p− q)2 +mQ
2
)

+
2 q2

(p2 +mt
2)
(

(p− q)2 +mt
2
) − 2 p2

(p2 +mt
2)
(

(p− q)2 +mt
2
)

− 2 (p− q)2

(p2 +mt
2)
(

(p− q)2 +mt
2
) − 8mt

2

(p2 +mt
2)
(

(p− q)2 +mt
2
)

+
4

(p2 +mU
2)

+
q2

(p2 +mU
2)
(

(p− q)2 +mU
2
)

− p2

(p2 +mU
2)
(

(p− q)2 +mU
2
) − (p− q)2

(p2 +mU
2)
(

(p− q)2 +mU
2
)


 .

Analogously the pure 2-loop Yukawa correction (arising from the diagrams
Fig. 4.1-a) is given by the following expression

V2loop,Yuk. = 3 yt2
∫

d4p

(2π)4

d4q

(2π)4

T (qL)
q2
×

×


 (p− q)2

(
(p− q)2 +mQ

2
)

(p2 +mt
2)
− p2

(
(p− q)2 +mQ

2
)

(p2 +mt
2)

− q2

(
(p− q)2 +mQ

2
)

(p2 +mt
2)
− p2

(
(p− q)2 +mQ

2 −mt
2
)

(p2 +mt
2)
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+
(p− q)2

(
(p− q)2 +mQ

2 −mt
2
)

(p2 +mt
2)
− q2

(
(p− q)2 +mQ

2 −mt
2
)

(p2 +mt
2)

− 1
p2 +mU

2
+

p2

(p− q)2 (p2 +mU
2)
− q2

(p− q)2 (p2 +mU
2)

+
p2

(
(p− q)2 +mt

2
)

(p2 +mU
2)
− (p− q)2

(
(p− q)2 +mt

2
)

(p2 +mU
2)

− q2

(
(p− q)2 +mt

2
)

(p2 +mU
2)




+3 yt2
∫

d4p

(2π)4

d4q

(2π)4

C(qL)
q2
×

×


 p2

(p2 +mQ
2)
(

(p− q)2 +mQ
2
) +

mQ
2 −mt

2

(p2 +mQ
2)
(

(p− q)2 +mQ
2
)

+
p2

(p2 +mQ
2)
(

(p− q)2 +mQ
2 −mt

2
) +

mQ
2 −mt

2

(p2 +mQ
2)
(

(p− q)2 +mQ
2 −mt

2
)

− 1
p2 +mt

2
− p2

(p− q)2 (p2 +mt
2)

+
q2

(p− q)2 (p2 +mt
2)

− p2

(p2 +mt
2)
(

(p− q)2 +mt
2
) − (p− q)2

(p2 +mt
2)
(

(p− q)2 +mt
2
)

+
q2

(p2 +mt
2)
(

(p− q)2 +mt
2
) +

1
p2 +mU

2

+
q2

(
(p− q)2 +mQ

2
)

(p2 +mU
2)

+
q2

(
(p− q)2 +mQ

2 −mt
2
)

(p2 +mU
2)

+
(p− q)2

(p2 +mU
2)
(

(p− q)2 +mU
2
) +

−mt
2 +mU

2

(p2 +mU
2)
(

(p− q)2 +mU
2
)


 .

In the 2-loop potential, we have used the physical (renormalized) quantities
m2
t , m

2
U , m

2
Q because the corrections are of higher order. When one takes the

derivatives of the potential one has to remember that

v2 d
dv2

= m2
t

(
∂

∂m2
t

+
∂

∂m2
U

+
∂

∂m2
Q

)
, (E.2)
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because all the 3 masses depend on the VEV v.
The integrals in p can be performed analytically. Then, to get the leading

logarithmic contributions as L → 0, one can use the asymptotic behavior of the
q-integrand functions. In this way one gets the results given in Eqs. (4.14)-(4.15).



Appendix F

1-loop Renormalization

functions at order αt, αs

In order to compute the physical masses in Eqs. (4.12a)-(4.12c), the one loop
corrections O(αt, αs) to the propagators of the U ,Q-multiplets and to the Yukawa
vertex are needed.

At order αt the propagators of the top, stop and auxiliary field get corrected
from the exchange of the Higgs supermultiplet H and a U (or Q) quark multiplet.

These corrections can be parameterized as usual

Q, U

ϕU,Q ϕU,Q

H

Q, U

ψU,Q ψU,Q

Q, U

FU,Q FU,Q

H

H

= i
(
p2BU,Q

ϕ (p2)− δm2
U,Q

)

= ip!BU,Q
ψ (p2)

= −iBU,Q
F (p2)

Q, U

ϕU,Q ϕU,Q

H

Q, U

ψU,Q ψU,Q

Q, U

FU,Q FU,Q

H

H

= i
(
p2BU,Q

ϕ (p2)− δm2
U,Q

)

= ip!BU,Q
ψ (p2)

= −iBU,Q
F (p2)
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Q, U

ϕU,Q ϕU,Q

H

Q, U

ψU,Q ψU,Q

Q, U

FU,Q FU,Q

H

H

= i
(
p2BU,Q

ϕ (p2)− δm2
U,Q

)

= ip!BU,Q
ψ (p2)

= −iBU,Q
F (p2)

where we have used a superfield notation in the loop and an Euclidean external
momentum p. The Yukawa vertex receives no direct correction at order αt because
of the non-renormalization properties of the superpotential.

All the quantities defined above, to the order y2
t , are given by

BU
F (0) = −y2

t

∫
d4q

(2π)4
C (qL)

[
1

q2 +m2
Q +m2

t

+
1

q2 +m2
Q

]
, (F.1a)

BQ
F (0) = −y2

t

∫
d4q

(2π)4
C (qL)

[
1

q2 +m2
Q +m2

t

]
, (F.1b)

BQ
ϕ (0) = y2

t

∫
d4q

(2π)4

1
q2

{
C (qL)

[
q2(m2

t +m2
U )

(q2 +m2
t +m2

U )3
−

m2
t (m

2
t +m2

Q)

(q2 +m2
t +m2

Q)3

]

−T (qL)
[
q4 + 3m2

t q
2

(q2 +m2
t )3

]}
, (F.1c)

BU
ϕ (0) = y2

t

∫
d4q

(2π)4

1
q2

{
C (qL)

[
q2(m2

t +m2
Q)

(q2 +m2
t +m2

Q)3
− m2

t (m
2
t +m2

U )
(q2 +m2

t +m2
U )3

+
q2m2

Q

(q2 +m2
Q)3

]

−T (qL)
[
q4 + 3m2

t q
2

(q2 +m2
t )3

+
1
q2

]}
, (F.1d)

BQ
ψ (0) = −y

2
t

2

∫
d4q

(2π)4

1
q2

{
C (qL)

q2 + 2m2
t

(q2 +m2
t )2

+ T (qL)
q2

(q2 +m2
U +m2

t )2

}
,

(F.1e)

BU
ψ (0) = −y

2
t

2

∫
d4q

(2π)4

1
q2

{
C (qL)

[
q2 + 2m2

t

(q2 +m2
t )2

+
1
q2

]

−T (qL)

[
q2

(q2 +m2
Q +m2

t )2
+

q2

(q2 +m2
Q)2

]}
, (F.1f)

δm2
Q = y2

t

∫
d4q

(2π)4

1
q2

{
C (qL)

[
q2 +m2

Q

q2 +m2
Q +m2

t

+
q2

q2 +m2
0,u +m2

t

]
− T (qL)

2q2

q2 +m2
t

}
,

(F.1g)
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δm2
U = y2

t

∫
d4q

(2π)4

1
q2

{
C (qL)

[
q2 +m2

U

q2 +m2
U +m2

t

+ 1 +
q2

q2 +m2
q +m2

t

+
q2

q2 +m2
Q

]

−T (qL)
[

2q2

q2 +m2
t

+ 2
]}

, (F.1h)

where the functions C (x) and T (x) are given in Eq. (E.1). The integration over
the momentum q has to be performed on Euclidean space.

At order αs only the propagators of the top and the stops, but not of their
auxiliary fields, get corrected from the exchange of the SU(3) gauge supermultiplet
V and of a quark multiplet. Performing the calculation in the Wess-Zumino gauge
there is also a direct correction to the Yukawa interaction, so that

V

V

ϕU,Q

U, Q

ψU,Q

U, Q

ψU

ψQ

h

ψU,Q

ϕU,Q

U, Q

Q, U

V = −iytZyt(p
2)

= i
(
p2BU,Q

ϕ (p2)− δm2
U,Q

)

= ip!BU,Q
ψ (p2)

Parameterizing these g2
s -corrections as in the y2

t case, one has

Bi
ϕ(0) =

8
3
g2
s

∫
d4q

(2π)4

1
q2

{
C (qL)

q2 + 2(m2
i +m2

t )
(q2 +m2

i +m2
t )2
− T (qL)

q4 + 3q2m2
t

(q2 +m2
t )3

}
,

(F.2a)
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Bi
ψ(0) = −4

3
g2
s

∫
d4q

(2π)4

1
q2

{
C (qL)

q2 + 2m2
t

(q2 +m2
t )2

+ T (qL)
q2

(q2 +m2
i +m2

t )2

}
,

(F.2b)

δm2
i =

16
3
g2
s

∫
d4q

(2π)4

1
q2

{
C (qL)− T (qL)

q2

q2 +m2
t

}
, (F.2c)

Zyt(0) =
16
3
g2
s

∫
d4q

(2π)4

1
q2
C (qL)

q2

(q2 +m2
t )2

, (F.2d)

where i = U,Q.
All the quantities defined above are regular in the IR except BU

ψ . Because we
are interested only in the logarithmic contributions to δV ′′(v2), we can evaluate
the Bϕ and BF functions at vanishing external momentum. Instead, the functions
Bψ and Zyt , involved in Eq. (4.12a), have to be evaluated at p2 = m2

t . Given their
expressions at p2 = 0 one has to add

BQ
ψ

(
m2
t

)
−BQ

ψ (0) =
αs
6π

+
αt

16π
, (F.3)

BU
ψ

(
m2
t

)
−BU

ψ (0) =
αs
6π

+
αt

16π
+ 4παt

∫
d4q

(2π)4
[

1
2 q4

+
4 log( 2 q

mt+
√

4 q2+mt2
)

mt (4 q2 +mt
2)

3
2

− 1
q2 (4 q2 +mt

2)
] , (F.4)

Zyt
(
m2
t

)
− Zyt (0) =

4αs
3π

(2− 3 log 2) . (F.5)

Note that the IR divergence in Eq. (F.4) cancels the one in BU
ψ (0).
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