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Introduction

The research on sustainable energy sources for the world’s population
is becoming increasingly important. In the last years the number of

scientists working in this field has increased accordingly, and it is likely that
in the following years this trend will continue in this direction. Different
scientific communities (chemistry, physics, engineering,. . . ) are devoting
more and more efforts and resources to this problem.

Standard thermal machines produce energy by converting heat into
work. As first recognized by Nicoals Léonard Sadi Carnot [Carnot1824],
this conversion cannot overcame a certain efficiency, the Carnot efficiency.
For instance, the efficiency of heat engines, as the ones used in cars, is
about 25%, this means that most of the heat produced by the fuel, is
wasted. There are many other ways to produce energy, that may have
higher efficiency rather than heat engines - electrical engines, nuclear
power plants, photovoltaic panels and hydroelectric centrals - are just a
few examples. Nevertheless, the very thing that these energy sources have
in common, is that they all waste some heat. Being able to re-use or to
control this heat would be a solid and sustainable contribution to the energy
problems of the world. This is the main reason why thermoelectricity has
being receiving so much attention by the scientific community. In fact,
an efficient thermoelectric power generator would be albe to re-use the
wasted heat, and to convert it into work.

The first observation of thermoelectric phenomena dates back to 1794,
when Alessandro Volta that a thermoelectromotive force arise under the
influence of a temperature gradient [Volta1794]. However, it was in 1821
that Thomas Johann Seebeck performed the first actual experiment on
thermoelectricity [Seebeck1822]. He noticed that a needle can be deflected
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10 Introduction

by a closed circuit made by two different metals joined in two places,
with a temperature difference across the junction: the metals respond
differently to the temperature gradient, thus creating a current in the
loop and a magnetic field. It is interesting to know that Seebeck called
this phenomenon thermomagnetic effect, it was H. C. Øersted who cor-
rectly understood it and coined the word thermoelectricity. Then in 1931
Lars Onsager bridged thermoelectric phenomena with the rising field of
irreversible thermodynamics [Onsager1931], but the scientific community
almost neglected it for 20 years. It was only in the 1950s with Ioffe’s book
on thermoelectricity [Ioffe1958] that this field could advance rapidly: the
important role of doped semiconductors as good thermoelectric material
was understood, and the thermoelectric material Bi2Te3 was developed for
commercialization. The thermoelectric efficiency was linked to an adimen-
sional figure of merit, called ZT , high ZT values imply high efficiency. In
the thirty years from 1960 to 1990 few progresses had been made in the
material science industry, and the best commercial material was operating
at ZT values around 1, while it is generally accepted that the target value
for efficient thermoelectric generators is around ZT = 3, to be competitive
with conventional refrigerators and generators. The situation was about
to change at the beginning of the 1990s, in fact in the last years of the
1980s the first nanostructure systems were fabricated. This opened a
completely new field in the physics of matter, and gave new life to the field
of thermoelectricity. This motivates the researchers to investigate different
approaches, starting from the fundamental microscopic mechanisms which
determine the phenomenological laws of transport of heat and particles. It
was soon recognized that low dimensional materials could have very large
thermoelectric response [Hicks1993]. The main ideas that were motivat-
ing the researchers were the fact that the arising quantum confinement
effects could enhance the extracted power, while the internal interfaces of
the nanostructure could reduce the thermal conductance more than the
electrical conductance. Later it was discovered that a sufficiently narrow
energy filter could lead to arbitrary large values of ZT [Mahan1997], which
implies an efficiency equal to the Carnot efficiency, but zero extracted
power. Nowadays the challenge for the researchers is to find efficient and
scalable nano-systems that can deliver a reasonable high power at high
efficiency. The search for optimization of nanoscale heat engines and
refrigerators and for a way to control the heat at the nanoscale has hence
stimulated a large body of activity, recently reviewed in many papers.
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Up to now many progresses have been made in systems composed by two
terminals. On the other hand, the more complex design, of multi-terminal
devices, may offer additional advantages in thermoelectric transport, and
just begun to be investigated. An interesting perspective, for instance,
is the possibility to exploit a third terminal to “decouple” the energy
and charge flows and improve thermoelectric efficiency. Furthermore,
fundamental questions concerning thermodynamic bounds on the efficiency
of these setups has being investigated, also accounting for the effects of a
magnetic field breaking the time-reversal symmetry. In most of the cases
studied so far, however, all but two terminals were considered as mere
probes; i.e. no net flow of energy and charge through them was allowed.
In other works a purely bosonic reservoir has been used, only exchanging
energy (and not charge) current with the system.

The objective of this thesis is to fill the gap in the knowledge of
thermoelectric properties of multi-terminal systems. Therefore we started
by studying the multi-terminal problem in its full complexity, with no
constraints on the leads. We soon realized that the freedom given by
three-terminal systems could be used to develop a scheme to spatially
separate the heat and charge flows, obtaining a significant increase in
both the power and the efficiency delivered by the engine. By adding the
additional complication of a magnetic field on three-terminal systems, we
were able to design a thermal magnetic switch which provides a simple
way to deal with heat management at the nanoscale.

The outline of the thesis is the following. In Chapter 1 we provide the
theoretical tools needed in this Thesis. Following the standard textbook
derivation we set the basis for the Irreversible Thermodynamics with a
special attention to the linear response regime. Then we present the
Landauer-Büttiker formalism to calculate the currents for non interacting
systems. We conclude with a brief overview of the state-of-the-art of the
research in this field.

In Chapter 2 we discuss the efficiency of a thermal engine working
in linear response regime in a three-terminal configuration. We provide
the expressions for the local and non local transport coefficients (electrical
and thermal conductances, and thermoelectric powers) and derive new
generalized figures of merit that will allow us to write analytical expressions
for the efficiency at maximum power. We investigate numerically, through
two examples, how a third terminal can enhance the performance (in
terms of the efficiency and of the power extracted) of the quantum thermal
machine.
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In Chapter 3 we study a class of three-terminal devices in which the
(electronic) heat and charge currents can flow in different reservoirs. We
introduce the main characteristics of such heat-charge current separation
regime and show how to realize it using normal and superconducting
leads. We demonstrate that this regime allows to have an independent
control on heat and charge flows and to greatly enhance thermoelectric
performances at low temperatures. We analyze in details a three-terminal
setup involving a superconducting lead, a normal lead and a voltage probe.
For a generic scattering region we show that in the regime of heat-charge
current separation both the power factor Q and the figure of merit ZT are
highly increased with respect to a standard two-terminal system. These
results are confirmed for the specific case of a system consisting of three
coupled quantum dots.

In Chapter 4 we analyze how in a multi-terminal setup, when time-
reversal symmetry is broken by a magnetic field, the heat flows can be
managed by designing a device with programmable Boolean behavior.
We show that such a device can be used to implement operations, such
as on/off switching, reversal, selected splitting and swap of the heat
currents. For each feature, the switching from one working condition to
the other is obtained by inverting the magnetic field. This offers interesting
opportunities for conceiving a programmable setup, whose operation is
controlled by an external parameter (the magnetic field) without need
to alter voltage and thermal biases applied to the system. Our results,
generic within the framework of linear response, are illustrated by means
of a three-terminal electronic interferometer model.

In Chapter 5 we investigate the consequences, on thermoelectric
performance, of Coulomb interaction in multi-levels quantum dots. In
particular we consider the sequential tunneling regime (where the levels’
broadening is negligible) for Coulomb blockaded quantum dots. We work
out analytical expressions for the currents and the Onsager coefficients
in the three-terminal case. In the two-terminal limit we recover all the
known results for the electrical conductance and the thermopower, and
moreover study the efficiency and the efficiency at maximum power. For a
three-terminal case we have shown that a third terminal can be useful to
improve the thermoelectric performance of a system with respect to the
two-terminal systems even for the strongly interacting case. Interestingly,
oscillations of the efficiency at maximum power, that reflect the oscillations
of the thermopower, arise from the interplay between the charging energy
and the quantization of the levels.



Chapter 1
Irreversible Thermodynamics

The thermostatic theory of thermodynamics provides a useful characteri-
zation of the equilibrium states. However, we are very often much more

interested in the processes rather than in the states. Examples of this fact
can be found everywhere in science, from biology to chemistry and physics:
the process that the cells, the chemical reactions and the physical systems
undergo to reach equilibrium states is much more fascinating and intriguing
to study than the equilibrium state itself. Thermostatics does provide
some approximated method to infer information about the processes, but
none of this methods confronts with the central problem of the rates of
real physical processes. The extension of thermodynamics to deal with
the rates of physical processes is called irreversible thermodynamics. This
theory is based on the postulates of equilibrium thermostatics [Callen1985],
with the additional postulate of time reversal symmetry of physical laws.

The laws of physics remains unchanged if the time t is replaced
by −t and simultaneously the magnetic field B is replaced by
−B.

The irreversible thermodynamic theory started with a very brilliant and
pioneering paper by Lars Onsager [Onsager1931] (almost ignored by the
scientific community for over 20 years), where he formulated his Onsager
reciprocity theorem.

13



14 Chapter 1 - Irreversible Thermodynamics

1.1 Fluxes and generalized forces

Before starting the discussion on the Onsager theorem, we have to define
the quantities the are necessary to describe irreversible processes. We need
essentially two parameters: one to describe what causes the process (we
will call it “generalized force” or “affinity”), and one to describe the response
in the system due to this force (we will call it “flux”). Let us consider a
one dimensional system in which energy and matter can flow, driven by
the appropriate forces. We choose our flux to be the (only) component of
the current density vector J. Therefore associated with the energy U we
will have the flux Ju (we drop the vector notation, that would be useful
only in the three dimensional generalization of this example)1.

1.1.1 Entropy production rate

Let Xk be an extensive parameter of a generic system of interest. We
characterize the response to the applied force by the rate of change of the
extensive parameter Xk. Then we define the flux Jk as

Jk ≡ dXk

dt
. (1.1)

In the same way we can define the force Fk as the derivative of the entropy
with respect to the extensive parameter Xk (the entropy is, in general, a
function of all the affinities S(X0, X1, . . . ))

Fk ≡ ∂S
∂Xk

, (1.2)

the system is in equilibrium if Fk is zero, while an irreversible process is
taking place whenever Fk is different from zero. We can notice that the
flux vanishes when the affinity vanishes, while a non zero affinity leads to
a non zero flux.

The rate of an irreversible process is characterized by the relations
between fluxes and affinities. Now in order to identify the correct forces it
is convenient to write the entropy production rate. The rate of entropy

1By definition the Ju is the amount of energy that flows in a unit area in the unit
time and the sign gives the direction of the energy flow.
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production is found by differentiating S with respect to the time

dS
dt

=
∑
k

∂S
∂Xk

dXk

dt
, (1.3)

that can equivalently be rewritten using Eqs. (1.1)-(1.2) in the more
compact form

Ṡ =
∑
k

FkJk. (1.4)

This can also be taken as the definition of the entropy current density
Js. Now in order to define the entropy in a non-equilibrium system we
have to assume that the functional dependence of S(X1, X2, . . . ) on the
local extensive parameter is the same as in the equilibrium case in any
infinitesimal region of the system. Then we have that the infinitesimal
variation of the entropy can be written as

dS =
∑
k

FkdXk, (1.5)

which implies that the entropy current density is defined as

Js =
∑
k

FkJk. (1.6)

We are now ready to define the entropy production rate, that is given by
the entropy leaving a certain region plus the rate of increase of entropy in
that region. In formulas we have

Ṡ =
∂S
∂t

+∇ · Js, (1.7)

if the energy and the particle’s number is conserved (we will always assume
that), we can write the continuity equations for those quantities

0 =
∂Xk

∂t
+∇ · Jk. (1.8)

Now we analyze in detail the two right-hand side terms in Eq. (1.7). The
first one can be obtained from Eq. (1.5)

∂S
∂t

=
∑
k

Fk ∂X
k

∂t
. (1.9)
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The second member can be calculated by taking the divergence of Eq. (1.6)

∇ · Js = ∇ ·
∑
k

FkJk =
∑
k

∇Fk · Jk +
∑
k

Fk∇ · Jk. (1.10)

With this substitutions the entropy production rate equation (1.7) becomes

Ṡ =
∑
k

Fk ∂x
k

∂t
+
∑
k

∇Fk · Jk +
∑
k

Fk∇ · Jk =
∑
k

∇Fk · Jk, (1.11)

where the first and the third terms cancel due to the continuity equa-
tion (1.8). Thus the affinity is defined as the gradient of the entropy rep-
resentation intensive parameters. If now Jk represent the energy current
density Ju, the associated affinity would be Fu = ∇(1/T ). Analogously is
Jk denotes the particle current density Jn, the associated affinity would
be Fµ = −∇(µ/T ).

1.2 Linear systems
There is a wide class of systems in which the fluxes do not depend on
the affinities at a given instant. Such systems are known (for historical
reasons) as “purely resistive” systems (in the electrical case a resistor is a
purely resistive system, while a circuit with a capacitor or an inductance
is not purely resistive). Although it may seem a strong condition, there
are many systems (other than the electrical systems) that can be ascribed
to this class. If each flux depends only on the instantaneous local affinities
we can write

Jk = Jk(F1,F2, . . . ). (1.12)

This means that the local particle current density depends on the gradient
of the inverse temperature1/T , on the gradients of µ/T and on so forth.
Notice that this does not imply that each flux depends only on its own
affinity, but rather that they depend on all the affinities. This is a crucial
point that will give rise to the most interesting phenomena. Now, keeping
in mind that the fluxes Jk have to vanish if the affinities vanish, we can
expand Jk in series of the affinities

Jk =
∑
j

LjkF j +
1

2!

∑
i

∑
j

LijkF iF j + . . . (1.13)
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The expansion coefficients are defined by

Ljk =
∂Jk

∂F j . (1.14)

The coefficients Ljk = Ljk(B) are called Onsager kinetic coefficients and
depend on an external magnetic field. With all these ingredients we can
now state the Onsager theorem:

The value of the kinetic coefficients Ljk measured in an external
magnetic field B is identical to the value of Lkj measured in
the reversed magnetic field −B.

Ljk(B) = Lkj(−B). (1.15)

This means that there is a symmetry between the linear effect of the
k−th affinity on the j−th flux when these effects are measured in reversed
magnetic field. The Onsager theorem is a very powerful tool to study linear
systems, where the affinities are so small that the second order kinetic
coefficients Lijk could be neglected

Jk =
∑
j

LjkF j . (1.16)

Although the class of linear processes is sufficiently common, it is by no
means all inclusive and we want to stress that the Onsager theorem is not
limited to it.

1.3 The Onsager matrix
We now want to specify the general framework developed in Sections 1.1
and 1.2 to the case of a two-terminal system that can exchange both
particles and energy, see Fig. 1.1. The simultaneous presence of electric
and thermal currents in a system gives rise to the thermoelectric effects,
where the thermal gradient produces an electrical current or an electric
current produces an heat current.

We start again with the differential of the local entropy density

dS =
1

T
du− µ

T
dn, (1.17)
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where u is the local energy density, µ the chemical potential of the electrons
and n the number of electrons per unit volume. The relation between the
currents is

Js =
1

T
Ju − µ

T
Jn, (1.18)

Js, Ju and Jn are the entropy, energy and particle current densities. The
entropy production rate than reads

Ṡ = ∇ 1

T
Ju −∇µ

T
Jn. (1.19)

If Jn and Ju are the fluxes then the associated affinities are ∇(1/T ) and
∇(µ/T ). Eq. (1.16) becomes

Jn = L′11∇
µ

T
+ L′12∇

1

T
(1.20)

Ju = L′21∇
µ

T
+ L′22∇

1

T
. (1.21)

Even if the energy current density is easy to compute it is often much
more useful to use the heat current density. It is possible to derive it from
second low of thermodynamics dQ = TdS:

Jh = TJs = Ju − µJn. (1.22)

By substituting Eq. (1.22) into Eq. (1.19) we obtain(
Jn

Jh

)
=

(
L11 L12

L21 L22

)(
Xµ

XT

)
, (1.23)

where we have defined the affinities Xµ = ∆µ/T and XT = ∆T/T 2. The
matrix of the kinetic coefficients Lij is called Onsager matrix and will
be indicated hereafter with L. The positivity of the entropy production
rate (1.19) can be rewritten in terms of the Onsager coefficients as

Ṡ = JnXµ + JhXT ≥ 0. (1.24)

This implies that the Onsager matrix must be positive definite, which
means that the coefficients have to fulfill the following conditions:

L11 ≥ 0 (1.25)
L22 ≥ 0 (1.26)
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1

T1 µ1

2

T2 µ2

Figure 1.1 – Schematic representation of a two terminal system. A central
scattering region is connected to a different reservoirs, each of them has a defined
temperature Ti and chemical potential µi i = (1, 2), and is able to exchange heat
and particles with the system

L11L22 ≥ 1

4
(L12 + L21)2 (1.27)

In the next paragraphs we will describe the transport properties of a
two-terminal systems as in Fig. 1.1 in terms of the Onsager coefficients,
making the link between the transport coefficients (conductances and
thermopowers) and the thermodynamic properties (power and efficiency)
with the Onsager matrix’s coefficients Lij .

1.3.1 Electrical and thermal conductance

Consider a systems composed by a generic region connected to two
fermionic reservoirs that can exchange both particles and heat as in
Fig. 1.1. Each of the reservoirs is described by a chemical potential µi
and a temperature Ti. If there are no magnetic fields the currents are give
by Eq. (1.23) with the additional constraint L21 = L12. The electrical
conductance is defined as the electric current density per unit potential
gradient in an isothermal system, if the gradient is small the current is
proportional to it

G =

(
e2Jn

∆µ

)
∆T=0

=
e2

T
L11. (1.28)

Similarly the thermal conductance is defined as the heat current density
per unit temperature gradient at zero electric current. Again if the gradient
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is small the current is proportional to it

K =

(
Jh

∆T

)
Jn=0

=
1

T 2

L11L22 − L12L21

L11
. (1.29)

Notice that the bounds on the Onsager coefficients imposed by the positivity
of the entropy production rate (1.25) is sufficient to guarantee the positivity
of the electrical the thermal conductances.

1.3.2 Seebeck effect

The Seebeck effect refers to the development of a voltage difference in
an open circuit (with zero electric current) in response to a temperature
gradient. If the temperature gradient is small, the voltage produced is
proportional to it and the proportionality constant is the Seebeck coefficient
-or thermopower- S. Then using Eq. (1.23) we can define the thermopower
as

S = − ∆µ

e∆T
=

1

eT

L12

L11
. (1.30)

The sign of the thermopower is not fixed by the positivity of the entropy
production rate (1.25), it can be showed that the sign depend on the
dominant type of carriers [Ashcroft1976].

1.3.3 Peltier effect

In 1834, J. C. A. Peltier observed an effect “equal and opposite” to the
Seebeck effect [Peltier1834]: in an isothermal junction, the flow of an
electric current causes a modification in the heat flow. In particular if the
electric current is small the heat flux at the junction is proportional to it.
The coefficient of proportionality is the Peltier coefficient Π. Then again,
using Eq. (1.23) we obtain

Π =

(
Jh

eJn

)
∆T=0

=
1

e

L21

L11
. (1.31)

The Peltier coefficient represent how much heat is carried per unit charge.
It is related to the Seebeck coefficient by the Onsager reciprocity relations:
Π(B) = TS(−B).
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1.3.4 Power and efficiency
In this context, one can define the efficiency of a thermal machine as the
ratio between the work W extracted from the engine when it absorbs heat
Q. By convention we assume positive the heat flowing into the system,
hence in the steady state the definition of the efficiency is equivalent to

η =
Ẇ

Q̇
=

∑
i J

h
i∑+

i J
h
i

=
−TXµJni

Jh
= −TXµL11X

µ + L12X
T

L21Xµ + L22XT
(1.32)

where the dot indicates a derivative with respect to time and the apex
+ in the denominator means that the sum is restricted to positive heat
currents. The time derivative of the work Ẇ is the power and must be
positive for the machine to work as a heat to work converter, otherwise
we are dealing with a refrigerator and the definition of η is no longer valid.
The maximum of Eq. (1.32) over Xµ, for fixed XT , is achieved for

Xµ =
L22

L11

(
−1

√
detL

L11L22

)
XT (1.33)

which leads to

ηmax = ηC

√
ZT + 1− 1√
ZT + 1 + 1

, (1.34)

where we introduce the following notation: ηC = ∆T/T is the Carnot
efficiency, ZT = TGS2/K is the (a-dimensional) figure of merit. The
Carnot efficiency is a bound for the efficiency in a cycle between two
reservoirs and is obtained for a quasi-static transformation which requires
infinite time and therefore the extracted power, in this limit, reduces to
zero. The figure of merit ZT is bounded by the positivity of the entropy
production to be positive. Notice that the Carnot limit is reached when
ZT →∞.

Other interesting quantities are the maximum power Ẇmax and the
efficiency at maximum power η(Ẇmax). The maximum power is obtained
for Xµ = − L12

2L11
XT yielding

Ẇmax =
ηC
4

L2
12

L11
XT and η(Ẇmax) =

ηC
2

ZT

2 + ZT
. (1.35)

Using the definitions of the transport coefficients (1.28)-(1.31) one can
write Ẇmax = 1/4GS2∆T 2 and notice that the power is controlled by the
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term Q = GS2 which is therefore called “power factor”. The bound of the ef-
ficiency at maximum power is the Curzon-Ahlborn efficiency [Curzon1975],
within the linear response this limit is equal to ηC/2.

Let us specify ηmax and η(Ẇmax) to the case when time-reversal sym-
metry does not hold which means to introduce an asymmetry parameter
x and a generalized figure of merit y

x =
L12

L21
, y =

L12L21

detL
. (1.36)

The maximum efficiency and the efficiency at maximum power now read

ηmax = ηCx

√
y + 1− 1√
y + 1 + 1

, η(Ẇmax) =
ηC
2

xy

y + 2
. (1.37)

In the next section we will see a method to calculate the Onsager kinetic
coefficients for non interacting condensed matter systems.

1.4 Non-interacting systems

An exact calculation of the Onsager coefficients is possible for non inter-
acting systems by means of the Landauer-Büttiker approach to quantum
transport. Quantum transport concerns the study of how charged particles
flow through a conductor whose size is comparable to or smaller than the
wavelength of such particles. Under such conditions and at low tempera-
tures the particles do not behave like classical “balls” but their wave-like
behavior must be taken into account, so that quantum-mechanical effects
become relevant.

In this coherent regime, if the particles do not lose energy inside
the conductor (elastic processes), quantum transport can be related to
scattering events in such conductor. In particular, Landauer and Büt-
tiker [Landauer1957, Büttiker1986] demonstrated that the electrical cur-
rents can be expressed in terms of scattering probabilities, which means
that knowing the scattering properties of a system implies understanding
its transport properties. In this Section we will derive the currents in the
Landauer-Büttiker approach for the most generic case of a multi-terminal
system with a superconducting lead. The case with no superconductors
or with just two-terminal are obtained as simple limits of the expressions
that we will derive.
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1.4.1 Landauer-Büttiker formalism

Let us consider a mesoscopic system composed of a conductor to which
n > 1 leads are attached. Each lead is in equilibrium with a fermionic
reservoir to which a Fermi distribution function is associated, so that
a lead is characterized by a temperature and a chemical potential. At
energy E the i-th lead has Ni(E) open transverse channels. We allow
the possibility to have superconductivity in the system and for simplicity
we describe it using the Bogoliubov-de Gennes formalism which doubles
the degrees of freedom by introducing “hole” states and by construction
is particle-hole symmetric, i.e. the Hamiltonian HBdG of the system is
such that {HBdG, C} = 0, where C is the charge-conjugation operator and
the curly parentheses stand for the anti-commutator. A hole state is the
charge-conjugate of an electronic state, e.g. if the operator ck,σ destroys an
electron of momentum k and spin σ, the operator Cck,σC = c†k,σ destroys a
hole of momentum k and spin σ. For completeness we mention that C is a
anti-unitary operator hence besides exchanging creation and annihilation
operators one must take the complex conjugate of the numeric coefficients2.

f−j (E) = 1− f+
j (−E), (1.38)

where f−j is the distribution function for a hole in lead j and f+
j is the

analogous for electrons. We can then write a generalized expression for
the Fermi distribution function as follows

fαj (E) =
1

1 + exp
[
βj(E − α(µj − µs))

] , (1.39)

where µj is the chemical potential of the j−th lead, µs is the chemical
potential of the superconductors3 which we take as a reference for the
energies, βj = (kBTj)

−1 is the inverse temperature of the j-th lead and α
is equal to + for electrons and - for holes. Assuming coherent transport
in the conductor, one can express the charge and energy currents flowing
through the normal leads in terms of scattering probabilities using the
Landauer-Büttiker formalism generalized to include superconductivity

2The particle-hole symmetry implies that the occupation of a hole state is the
complementary to the occupation of an electronic state with opposite energy.

3We assume every superconducting part in the system to have the same Fermi
energy.
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Jci =
n∑
j

(
− e

h

) ∑
ασβσ′

α

∫ +∞

0
dE Pασβσ

′

ij (E)fβj (E)

+
e

h

∑
ασ

α

∫ +∞

0
dE Nασ

i (E)fαi (E), (1.40)

Jui =

n∑
j

(
− 1

h

) ∑
ασβσ′

∫ +∞

0
dE (E + αµs)P

ασβσ′

ij (E)fβj (E)

+
1

h

∑
ασ

∫ +∞

0
dE (E + αµs)N

ασ
i (E)fαi (E), (1.41)

where Jci is the charge current in the i-th lead, Jui is the energy current in
the i-th lead, e is the electron charge, h is the Planck constant and Nασ

i

is the number of open channels at energy E for particles of type α and
spin σ. In Eq. (1.40) Pασβσ

′

ij (E) is the probability for a particle of type β,
spin σ′ and energy E incoming from lead j to be elastically scattered as a
particle of type α and spin σ into the i-th lead. To avoid double-counting
that would have been introduced by the BdG formalism, the integrals over
the energies run from 0 to +∞ instead of starting from −∞. Here zero
energy corresponds to the Fermi energy of the superconductors. Due to
particle-hole symmetry the scattering matrix S of the system satisfies the
following relation

Sασ,βσ
′

(i,a),(j,b)(E) = αβ
[
S−ασ,−βσ

′

(i,a),(j,b) (−E)
]∗
, (1.42)

where a and b are the transverse channels in lead i and j respectively.
Since the probability of scattering from lead i to lead j is defined as
Pασβσ

′

ij (E) =
∑

a,b |S
ασ,βσ′

(i,a),(j,b)(E)|2, Eq. (1.42) implies

Pασ,βσ
′

ij (E) = P−ασ,−βσ
′

ij (−E). (1.43)

The unitarity of the scattering matrix yields the following sum rules:

∑
j,σ′,β

Pασ,βσ
′

ij (E) = Nα,σ
i ,

∑
i,σ,α

Pασ,βσ
′

ij (E) = Nβ,σ′

j . (1.44)
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The expressions of Eq. (1.40) can be simplified by substituting Eqs. (1.38),
(1.43) and (1.44) resulting in

Jci =
e

h

∑
jσβσ′

∫ +∞

−∞
dE
[
N+σ
i (E)δijδσσ′δβ+ − P+σβσ′

ij (E)
]
fβj (E),

Jui =
1

h

∑
jσβσ′

∫ +∞

−∞
dE (E + µs)

[
N+σ
i (E)δijδσσ′δβ+ − P+σβσ′

ij (E)
]
fβj (E).

(1.45)
Once the charge and energy currents are determined in the normal leads,

the sum of the currents in the superconducting leads JcS =
∑Sc

j Jcj and
JuS =

∑S
j J

u
j can be calculated exploiting Kirchhoff’s sum rules

∑
i J

c
i = 0

and
∑

i J
u
i = 0, which are a consequence of charge and energy conservation.

From the first law of thermodynamics one can also define a heat current
Jhi in the i-th lead as

Jhi = Jui −
µi
e
Jci . (1.46)

Let us remark that in a general case there is no sum rule for the heat
currents. However, one can notice that in the superconducting leads the
heat current is Jhi = Jui − µs

e J
c
i , hence the sum of the heat currents over

the superconducting leads is
∑S

j J
h
j = JhS = JcS − µs

e J
u
S which can be

determined by Kirchhoff’s sum rules on charge and energy currents.

1.4.2 Linear response
Each lead (say lead j) is characterized by a temperature Tj and a voltage
Vj , where Vj is such that eVj = µj . Assuming a reference temperature T
and a reference voltage V , each of the previous quantity can be written as
to make explicit the difference from the reference values, e.g. Tj = T +∆Tj
and Vj = V + ∆Vj , where ∆Tj = Tj − T and ∆µj = µj − µ. Here we
assume the superconducting voltage µ = µs as reference. Assuming small
temperature- and voltage-biases, we can expand the Fermi distribution
function of Eq. (1.39) at first order in such quantities

fαj (E) ' f(E) +
∂fαj
∂∆Tj

∣∣∣∣
(E,T )

∆Tj +
∂fαj
∂∆µj

∣∣∣∣
(E,T )

∆µj , (1.47)

∂fαj
∂∆Tj

∣∣∣∣
(E,T )

= −E
T

∂f

∂E
,

∂fαj
∂∆µj

∣∣∣∣
(E,T )

= −αe ∂f
∂E

,
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where we defined f(E) = 1

1+e
E

kBT
. Since the scattering matrix is inde-

pendent of the biases, we can use Eq. (1.47) to linearize the currents of
Eqs. (1.45) and (1.46) as follows

Jci =
∑
j

Gij∆µj +
∑
j

Dij∆Tj ,

Jhi =
∑
j

Mij∆µj +
∑
j

Kij∆Tj ,
(1.48)

We divided the coefficients per types: Gij are the coefficients that relate
the electrical currents with the chemical potential gradients, Dij are the
coefficients that relate the electric to the temperature gradients,Mij are
the coefficients that relate the heat currents to the chemical potential
gradients and Kij are the coefficients that relate the heat currents with
the temperature gradients. Those quantities are defined as (we can always
put µ = 0)

Gij =
e2

h

∑
σσ′

∫ +∞

−∞
dE
[
N+σ
i (E)δijδσσ′ − P+σ+σ′

ij (E) + P+σ−σ′

ij (E)
](
− ∂f

∂E

)
Dij =

e

h

∑
σσ′

∫ +∞

−∞
dE

E

T

[
N+σ
i (E)δijδσσ′ − P+σ+σ′

ij (E)− P+σ−σ′

ij (E)
](
− ∂f

∂E

)
,

Mij =
e

h

∑
σσ′

∫ +∞

−∞
dE E

[
N+σ
i (E)δijδσσ′ − P+σ+σ′

ij (E) + P+σ−σ′

ij (E)
](
− ∂f

∂E

)
,

Kij =
1

h

∑
σσ′

∫ +∞

−∞
dE

E2

T

[
N+σ
i (E)δijδσσ′ − P+σ+σ′

ij (E)− P+σ−σ′

ij (E)
](
− ∂f

∂E

)
.

(1.49)

Let us notice that from the unitarity of the scattering matrix it follows that
the diagonal coefficients are always positive or zero. One could also redefine the
Onsager matrix by multiplying the even columns of the matrix by the reference
temperature T and dividing the temperature biases by T , i.e. by substituting
Dij with TDij , Kij with TKij and ∆Ti with ∆Ti

T . It can be demonstrated that
for a system with time-reversal symmetry such a matrix is symmetrical.

For a two terminal setup, like the one in Fig. 1.1 (with no superconducting
leads and spin degeneracy) the Onsager coefficients defined in Eq.(1.49) reduce
to

L11 = G12 =
2e2

h

∫ ∞
−∞

dE P12(E)

(
− ∂f
∂E

)
, (1.50)

L12 = TD12 =
2e

h

∫ ∞
−∞

dE (E − µ)P12(E)

(
− ∂f
∂E

)
, (1.51)
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L21 = M12 =
2e

h

∫ ∞
−∞

dE (E − µ)P12(E)

(
− ∂f
∂E

)
, (1.52)

L22 = TK12 =
2

h

∫ ∞
−∞

dE (E − µ)
2
P12(E)

(
− ∂f
∂E

)
. (1.53)

Notice that now the lead indices are fixed to i = 1 and j = 2, since we are
interested in transport from lead 1 to lead 2 and, in fact, the only thing that
matters is the transmission probability P12(E). If spin degeneracy holds then
P+σ−σ′

ij = 0 and Pσ,σ
′

ij = 2Pij .

Figure 1.2 – The time evolution of the best figure of merit ZT . It is pos-
sible to see how, after the initial positive trend from 1940 to 1960 (with the
discovery of theBi2Te3) there has been a stagnation for almost 30 years with
the advent of the low dimensional systems. In the last decades a large value
of ZT (greater than 1) has been observed in filled skutterudites [Fleurial1996,
Morelli1995, Vineis2010], Bi2Te3/Sb2Te3 superlattice and PbSeTe/PbTe quan-
tum dot superlattices [Harman2002]. Figure from Ref. [Zheng2008].
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1.5 Quantum thermal machines: state of the
art

In the last seventy years many progresses have been made in the search for the
best figure of merit ZT . Figure 1.2 shows the improvement achieved for ZT in
time. It is interesting to notice how, after an initial increase in the best figure
of merit (from 1940 to 1960) with the discovery of the excellent thermoelectric
properties of Bi2Te3, no further improvements have been made for almost 30 years
after. Only in the last 90s, with the advent of the skutterudites materials4 there
has been an increase in the best ZT [Fleurial1996, Morelli1995, Vineis2010].

However, no substantial progresses have been made until the discovery of
the large thermoelectric effects predicted in nanostructures [Hicks1993]. A very
important point in this work was the observation that low-dimensional systems
should result in materials with much better thermoelectric conversion than the
bulk ones. Those theoretical predictions have been observed experimentally on
Bi2Te3 superlattices [Venkatasubramanian2001] and on PbSeTe/PbTe quantum
dot superlattices [Harman2002], resulting in a ZT ≥ 3.

This is why in the last twenty years there has been a growing interest in the
Condensed Matter community, which devoted a great amount of effort in the
understanding of the basic mechanism of the thermoelectric effects and proposed
many implementations in solid state devices of quantum thermal machines. Many
review papers have been written trying to interconnect many different fields as
irreversible thermodynamics, nonlinear dynamical systems, statistical mechanics,
material science and condensed matter physics [Mahan1997, Majumdar2004,
Dresselhaus2007, Snyder2008, Dubi2011, Shakouri2011, Benenti2013].

It is worth noticing that most of the works in this field deal with two-
terminal systems, or at most two terminals and a probe lead, i.e. a lead in which
neither particles nor heat can flow. For those systems, interesting bounds on
the efficiency and the efficiency at maximum power have been derived, and as a
consequence, the experiments in this field moved towards the design of quantum
thermal machines whose efficiency and power saturate such bounds [Saito2011,
Benenti2011, Horvat2012, Balachandran2013, Brandner2013a, Brandner2013b,
Bosisio2014, Bosisio2015a].

Only recently the multi-terminal setup started to be investigated. The main
problem in treating these systems is that as soon as the dimension of the Onsager
matrix grows the expression for the power and the efficiency become really compli-
cated. A first step has been made by considering a third bosonic lead, i.e. a lead
that can exchange only heat with the system, thus providing the energy necessary
for the electron transport [Entin-Wohlman2010, Entin-Wohlman2012, Jiang2012,
Jiang2013, Sánchez2011b, Sánchez2011a, Sothmann2012a, Sothmann2013].

4Skutterudite is a cobalt arsenide mineral that has variable amounts of nickel and
iron substituting for cobalt with a general formula: (Co,Ni,Fe)As3.
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In the same spirit also setups with a superconducting lead have been investi-
gated, since a superconductor is a poor heat conductor and can exchange only
charge current with the system (this is true providing that the temperatures and
voltages are much smaller than the superconducting gap, which means, that there
are no quasi-particles excitations) [Claughton1996, Eom1998, Virtanen2004a,
Parsons2003, Virtanen2004b, Jiang2005, Titov2008, Marciani2014, Machon2013,
Jacquod2010, Hou2013, Ozaeta2014, Engl2011, Leijnse2014, Lopez2014].

A first attempt to study the multi-terminal problem and to exploit different
implementations of such devices in solid state systems has been made in the re-
cent years [Jacquet2009, Bedkihal2013, Jordan2013, Kosloff2014, Sothmann2014,
Entin-Wohlman2015, Jiang2014a, Jiang2014b], but still a full characterization
of the multi-terminal setup is lacking, and no one managed to achieve a full
decoupling of the heat and charge currents.





Chapter 2
Thermoelectric Efficiency of
Multi-Terminal
Quantum Thermal Machines

Thermoelectric transport has been mostly investigated in two-terminal sys-
tems. It just begun to be investigated in multi-terminal systems, since these

more complex devices may offer many additional advantages. However in those
works the third terminal was treated in a special way and could exchange only
heat [Entin-Wohlman2010, Sánchez2011b, Sánchez2011a, Entin-Wohlman2012,
Sothmann2012a, Sothmann2012b, Jiang2012, Jiang2013, Sothmann2013] or only
particles [Benenti2011, Saito2011, Horvat2012, Brandner2013a, Brandner2013b,
Balachandran2013, Bosisio2014, Bosisio2015a]. A full characterization of these
systems is still lacking and motivates us to tackle this problem. A genuine
multi-terminal device offers the possibility of having a separate control about
the heat and particle flows, and this could enhance the thermoelectric efficiency.
Here we focus on the simplest instance of three reservoirs, treated on the same
footing, which can exchange both charge and energy current with the system. A
sketch of the thermal machine is shown in Fig. 2.1, where a generic nanostruc-
ture, described as a scattering region, is connected to three terminals kept at
different temperatures and chemical potentials. Our aim is to provide a general
treatment of the linear response thermoelectric transport for this case, and for
this purpose we will discuss local and non-local transport coefficients. Note
that non-local transport coefficients naturally arise in a multi-terminal setup,
since they connect temperature or voltage biases applied between two terminals
to heat and charge transport through the remaining terminals. We will then
show that the third terminal could be exploited to improve thermoelectric per-
formance with respect to the two-terminal case. We will focus our investigations

31



32
Chapter 2 - Thermoelectric Efficiency of Multi-Terminal

Quantum Thermal Machines

ST1, µ1 T3, µ3

T2, µ22

31

Figure 2.1 – Three-terminal thermal machine. A scattering region is connected
to 3 different fermionic reservoirs, each of these is able to exchange heat and
particles with the system. Reservoir 3 is taken as the reference for measuring
temperature and energy: T3 ≡ T ; µ3 = µ. The reservoirs 1 and 2 have small
variations in temperature and chemical potential: (Ti, µi) = (T + ∆Ti, µ+ ∆µi),
i ∈ (1, 2). With S we denote a generic coherent scattering region.

on the efficiency at maximum power [Curzon1975, Broeck2005, Schmiedl2008,
Esposito2009, Esposito2010, Nakpathomkun2010, Apertet2012], i.e. a heat en-
gine operating under conditions where the output power is maximized. Such
quantity, central in the field of finite-time thermodynamics [Andresen2011], is of
great fundamental and practical relevance to understand which systems offer the
best trade-off between thermoelectric power and efficiency.

This chapter is organized as follows. In Section 2.1 we briefly review the linear
response, Onsager formalism for a generic three-terminal setup. We will discuss
the maximum output power and trace a derivation of all the local and non-local
transport coefficients. In Section 2.2 we extend the concept of Carnot bound
at the maximum efficiency to the three-terminal setup and we derive analytical
formulas of the efficiency at maximum power in various cases, depending on the
flow of the heat currents. These expressions are written in terms of generalized
dimensionless figures of merit. Note that the expressions derived in Section 2.1
and 2.2 are based on the properties of the Onsager matrix and on the positivity
of the entropy production. Therefore they hold for non-interacting as well as
interacting systems. This framework will then be applied in Section 2.3 to specific
examples of non-interacting systems in order to illustrate the salient physical
picture. Namely, we will consider a single quantum dot and two dots in series
coupled to the three-terminal. Finally Section 2.4 is devoted to the conclusions.
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2.1 Linear response for 3-terminal systems
The system depicted in Fig. 2.1 is characterized by three energy and three charge
currents (Jui=1,2,3 and Jci=1,2,3, respectively) flowing from the corresponding
reservoirs, which have to fulfill the constraints:

3∑
i=1

Jui = 0 (Energy conservation) ,

3∑
i=1

Jci = 0 (Particle conservation) , (2.1)

(positive values being associated with flows from the reservoir to the system).
In what follows we will assume the reservoir 3 as a reference and the system
to be operating in the linear response regime, i.e. set (T3, µ3) ≡ (T, µ) and
write (Tj , µj) = (T + ∆Tj , µ + ∆µj) with |∆µj |/kBT � 1 and |∆Tj |/T � 1
for j = 1, 2, and kB is the Boltzmann constant. Under these assumptions the
relation between currents and biases can then be expressed through the Onsager
matrix L of elements Lij via the identity:

Jc1
Jh1
Jc2
Jh2

 =


L11 L12 L13 L14

L21 L22 L23 L24

L31 L32 L33 L34

L41 L42 L43 L44



Xµ

1

XT
1

Xµ
2

XT
2

 , (2.2)

where Xµ
1,2 = ∆µ1,2/T and XT

1,2 = ∆T1,2/T
2 are the generalized forces, and

where Jh1,2 = Ju1,2−µ1,2J
c
1,2 are the heat currents of the system, the corresponding

currents to reservoir 3 being determined from Jc1,2 and Jh1,2 via the conservation
laws of Eq. (2.1). In our analysis we take L to be symmetric (i.e. Lij = Lji) by
enforcing time reversal symmetry in the problem. We also remind that, due to
the positivity of the entropy production rate, such matrix has to be semi-positive
definite (i.e. L ≥ 0) and that it can be used to describe a two-terminal model
connecting (say) reservoir 1 to reservoir 3 by setting Lj3 = Lj4 = L3j = L4j = 0
for all j.

2.1.1 Transport coefficients
For a two-terminal model the elements of the Onsager matrix L can be related to
four quantities which gauge the transport properties of the system under certain
constraints. Specifically these are the electrical conductance G and the Peltier
coefficient Π (evaluated under the assumption that both reservoirs have the
same temperature), and the thermal conductance K and the thermopower (or
Seebeck coefficient) S (evaluated when no net charge current is flowing through
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the leads). When generalized to the multi-terminal model these quantities yield
to the introduction of non-local coefficients, which describe how transport in a
reservoir is influenced by a bias set between two other reservoirs.

Thermopower

For a two-terminal configuration the thermopower relates the voltage ∆V that
develops between the reservoirs to their temperature difference ∆T under the
assumption that no net charge current is flowing in the system, i.e. S =
−
(

∆V
∆T

)
Jc=0

. A generalization of this quantity to the multi-terminal scenario
can be obtained by introducing the matrix of elements

Sij = −
( ∆µi
e∆Tj

)
Jc
k = 0 ∀k,

∆Tk = 0 ∀k 6= j

, (2.3)

with local (i = j) and non-local (i 6= j) coefficients, e being the electron charge.
In this definition, which does not require the control of the heat currents, we
have imposed that the particle currents in all the leads are zero (the voltages
are measured at open circuits) and that all but one temperature differences are
zero (of course this last condition is not required in a two-terminal model). It
is worth observing that Eq. (5.25) differs from other definitions proposed in
the literature. For example in Ref. [Machon2013] a generalization of the two-
terminal thermopower to a three-terminal system, was proposed by setting to zero
one voltage instead of the corresponding particle current. While operationally
well defined, this choice does not allow one to easily recover the thermopower
of the two-terminal case (in our approach instead this is rather natural, see
below). Finally in the probe approach presented in Refs. [Jacquet2009, Saito2011,
Horvat2012, Balachandran2013, Brandner2013b, Brandner2013a] it was possible
to study a multi-terminal device by using an effective two-terminal system only,
because the heat and particle currents of the probe terminals are set to vanish
by definition. Therefore, within this approach, there are no chances of having
non-local transport coefficients.

In the three-terminal scenario we can use Eq. (2.2) to rewrite the elements
of the matrix (5.25). In particular introducing the quantities

L
(2)
ij;kl = LikLlj − LilLkj , (2.4)

we get (see Appendix 2.A for details)

S11 =
1

eT

L
(2)
13;32

L
(2)
13;31

, S22 =
1

eT

L
(2)
14;31

L
(2)
13;31

, (2.5)

S12 =
1

eT

L
(2)
13;34

L
(2)
13;31

, S21 =
1

eT

L
(2)
13;21

L
(2)
13;31

, (2.6)
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which yields, correctly, S11 = 1
eT

L12

L11
as the only non-zero element, by taking the

two-terminal limits detailed at the end of the previous section.

Electrical conductance

In a two-terminal configuration the electric conductance describes how the electric
current depends upon the bias voltage between the two-terminal under isothermal
conditions, i.e. G =

(
eJc

∆V

)
∆T=0

. The generalization to many-terminal systems is
provided by the following matrix:

Gij =
( eJci

∆µj

)
∆Tk = 0 ∀k,
∆µk = 0 ∀k 6= j

. (2.7)

Using the three-terminal Onsager matrix (2.2) we find(
G11 G12

G21 G22

)
=
e2

T

(
L11 L13

L13 L33

)
, (2.8)

which, in the two-terminal limit where reservoir 2 is disconnected from the rest,
gives G11 = e

T L11 as the only non-zero element.

Thermal conductance

The thermal conductance for a two-terminal is the coefficient which describes
how the heat current depends upon the temperature imbalance ∆T under the
assumption that no net charge current is flying through the system, i.e. K =(
Jh

∆T

)
Jc=0

. In the multi-terminal scenario this generalizes to

Kij =
( Jhi

∆Tj

)
Jc
k = 0 ∀k,

∆Tk = 0 ∀k 6= j

, (2.9)

where one imposes the same constraints as those used for the thermopower
matrix (5.25), i.e. no currents and ∆Tk = 0 for all terminals but the j-th. For a
three-terminal case, using Eq. (2.4) this gives

K11 =
1

T 2

L13L
(2)
12;32 − L12L

(2)
13;32 − L11L

(2)
23;23

L
(2)
13;31

, (2.10)

K22 =
1

T 2

L14L
(2)
13;43 − L13L

(2)
14;43 − L11L

(2)
34;34

L
(2)
13;31

, (2.11)

and

K12 = K21 =
1

T 2

L24L
(2)
13;31 + L14L

(2)
13;23 + L34L

(2)
13;12

L
(2)
13;31

. (2.12)

Once more, in the two-terminal limit where the reservoir 2 is disconnected from

the rest, the only non-zero element is K11 = 1
T 2

L
(2)
12;12

L11
.
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Peltier coefficient

In a two-terminal configuration the Peltier coefficient relates the heat current
to the charge current under isothermal condition, i.e. Π =

(
Jh

eJc

)
∆T=0

. For
multi-terminal systems this generalizes to the matrix

Πij =
( Jhi
eJcj

)
∆Tk = 0 ∀k,
∆µk = 0 ∀k 6= j

, (2.13)

which can be shown to be related to the thermopower matrix (5.25), through the
Onsager reciprocity equations, i.e. Πij(B) = TSji(−B) (B being the magnetic
field on the system),[Callen1985, De Groot1962] from which, using Eqs. (2.5)
and (2.6), one can easily derive for the three-terminal case the dependence upon
the Onsager matrix L.

2.2 Efficiency for 3-terminal systems
In order to characterize the properties of a multi-terminal system as a heat
engine we shall now analyze its efficiency. In order to generalize the definition for
the efficiency of a two-terminal machine [Benenti2013, Callen1985], we have to
define the steady state heat to work conversion efficiency η, for a three-terminal
machine, as the power Ẇ generated by the machine (which equals to the sum of
all the heat currents exchanged between the system and the reservoirs), divided
by the sum of the heat currents absorbed by the system, i.e.

η =
Ẇ∑
i+
Jhi

=

∑3
i=1 J

h
i∑

i+
Jhi

=
−∑2

i=1 ∆µiJ
c
i∑

i+
Jhi

, (2.14)

where the symbol
∑
i+

in the denominator indicates that the sum is restricted to
positive heat currents only, and where in the last expression we used Eq. (2.1) to
express Jh3 in terms of the other two independent currents1.

The definition (2.14) applies only to the case in which Ẇ is positive. Since
the signs of the heat currents Jhi are not known a priori (they actually depend
on the details of the system), the expression of the efficiency depends on which
heat currents are positive. For the three-terminal system depicted in Fig. 2.1

1Note that Eq. (2.14) can be easily generalized to M terminals, after appropriate
change of the numerator. By setting for instance (TM , µM ) = (T, µ), ∆Ti = Ti − T ,
and ∆µi = µi − µ (i = 1, ...,M − 1), the output power reads as follows:

Ẇ =
M∑
i=1

Jhi = −
M−1∑
i=1

∆µiJ
c
i . (2.15)
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we set for simplicity T3 < T2 < T1 and focus on those situations where Jh3 is
negative (positive values of Jh3 being associated with regimes where the machine
effectively works as a refrigerator which extract heat from the coldest reservoir
of the system). Under these conditions the efficiency is equal to

η12 =
Ẇ

Jh1 + Jh2
, (2.16)

when both Jh1 and Jh2 are positive, or

ηi =
Ẇ

Jhi
, (2.17)

when for i = 1 or 2 only Jhi is positive.

2.2.1 Carnot efficiency
The Carnot efficiency represents an upper bound for the efficiency and is obtained
for an infinite-time (Carnot) cycle. For a two-terminal thermal machine the
Carnot efficiency is obtained by simply imposing the condition of zero entropy
production, namely Ṡ =

∑
i J

h
i /Ti = 0. If the two reservoirs are kept at

temperatures T1 and T3 (with T3 < T1), from the definition of the efficiency,
Eq. (2.14), one gets the two-terminal Carnot efficiency ηIIC = 1 − T3/T1. The
Carnot efficiency for a three-terminal thermal machine is obtained analogously
by imposing the condition of zero entropy production, when a reservoir at an
intermediate temperature T2 is added. If Jh1 only is positive as in Eq. (2.17),
one obtains

ηC,1 = 1− T3

T1
+
Jh2
Jh1

(1− ζ32) = ηIIC +
Jh2
Jh1

(1− ζ32), (2.18)

where ζij ≡ Ti/Tj . Note that Eq. (2.18) is the sum of the two-terminal Carnot
efficiency ηIIC and a term whose sign is determined by (1− ζ32). Since Jh1 > 0,
Jh2 < 0 and ζ32 < 1, it follows that ηC,1 is always reduced with respect to its
two-terminal counterpart ηIIC . Analogously if only Jh2 is positive, one obtains

ηC,2 = ηIIC −
T3

T1

[
Jh1
Jh2

(1− ζ13)− (1− ζ12)

]
, (2.19)

which again can be shown to be reduced with respect to ηIIC , since Jh1 < 0,
Jh2 > 0, ζ12 > 1, and ζ13 > 1. We notice that this is a hybrid configuration
(not a heat engine, neither a refrigerator): the hottest reservoir absorbs heat,
while the intermediate-temperature reservoir releases heat. However, the heat
to work conversion efficiency is legitimately defined since generation of power
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(Ẇ > 0) can occur in this situation. Finally, if both Jh1 and Jh2 are positive as in
Eq. (2.16) one obtains

ηC,12 = 1− T3

T1

1 +
ζ12 − 1

1 +
Jh
1

Jh
2

 = ηIIC −
T3

T1

ζ12 − 1

1 +
Jh
1

Jh
2

. (2.20)

Since T3 < T2 < T1, the term that multiplies T3/T1 is positive so that ηC,12 is
reduced with respect to the two-terminal case.

It is worth noticing that, in contrast to the two-terminal case, the Carnot
efficiency cannot be written in terms of the temperatures only, but it depends on
the details of the system. Moreover, note that the Carnot efficiency is unchanged
with respect of the two-terminal case if T2 = T3 in (2.18) or if T2 = T1 in (2.20).
Indeed, in this situation the quantities ζij are equal to one, making the extra
terms in Eqs. (2.18) or (2.20) to vanish.

The above results for the Carnot efficiency could be generalized to many-
terminal systems. In particular, we conjecture that, given a system that works
between T1 and T3 (with T3 < T1) and adding an arbitrary number of terminals
at intermediate temperatures will in general lead to Carnot bounds smaller than
ηIIC . On the other hand, adding terminals at higher (or colder) temperatures
than T1 and T3 will make ηC increase.

Notice that within linear response and via Eq. (2.2) we can express the
Carnot efficiencies (2.18)-(2.20) in terms of the generalized forces Xµ

1,2.

2.2.2 Efficiency at Maximum Power
The efficiency at maximum power is the value of the efficiency evaluated at the
values of chemical potentials that maximize the output power Ẇ of the engine.
In the two-terminal case the efficiency at maximum power can be expressed
as [Broeck2005]

ηII(Ẇmax) =
ηIIC
2

ZT

ZT + 2
, (2.21)

where ZT = GS2

K T is a dimensionless figure of merit which depends upon the
transfer coefficient of the system. The positivity of the entropy production imposes
that such quantity should be non-negative (i.e. ZT ≥ 0), therefore ηII(Ẇmax) is
bounded to reach its maximum value ηIIC /2 only in the asymptotic limit of ZT →
∞ (Curzon-Ahlborn limit [Curzon1975] within linear response [Broeck2005]).

For the three-terminal configuration the output power is a function of the
four generalized forces (Xµ

1 , X
T
1 , X

µ
2 , X

T
2 ) introduced in Eq. (2.2), i.e.

Ẇ = −T (Jc1X
µ
1 + Jc2X

µ
2 ) . (2.22)

In the linear regime this is a quadratic function which can be maximized with
respect to Xµ

1 and Xµ
2 while keeping XT

1 and XT
2 constant (the existence of a
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maximum being guaranteed by the the positivity of the entropy production).
The resulting expression is

Ẇmax =
T 4

4
(XT

1 , X
T
2 ) M

(
XT

1

XT
2

)
, (2.23)

where M =

[
c a
a b

]
is a positive semi-definite matrix, see Appendix 2.B, whose

elements depends on the Onsager coefficients via the identities

a = G12S12S21 +G12S11S22 +G22S21S22

+G11S11S12 ,

b = G11S
2
12 + 2G12S12S22 +G22S

2
22 ,

c = G11S
2
11 + 2G12S21S11 +G22S

2
21 . (2.24)

Indicating with α > β ≥ 0 the eigenvalues of M we can then further simplify
Eq. (2.23) by writing it as

Ẇmax = (α cos2 θ + β sin2 θ)X2T 4/4 , (2.25)

where X =
√

(XT
1 )2 + (XT

2 )2 is the geometric average of system temperatures,
while the angle θ identify the rotation in the XT

1 , XT
2 plane which defines the

eigenvectors of M . We call the parameter

P = α cos2 θ + β sin2 θ (2.26)

three-terminal power factor. It relates the maximum power to the temperature
difference: by construction it fulfills the inequality β ≤ P ≤ α, the maximum
being achieved for θ = 0 (i.e. by ensuring that (XT

1 , X
T
2 ) coincides with the

eigenvector of M associated with its largest eigenvalue α). Note that in the
two-terminal limit we have β → 0, α → G11S

2
11, cos2 θ → 1, so that the usual

two-terminal power factor G11S
2
11 is recovered.

Exploiting Eq. (2.25) we can now write the efficiency at maximum power for
the three cases detailed in Eqs. (2.16) and (2.17). Specifically we have

η1(Ẇmax) =
1

2T

∆T1Z
c
11T + ∆T2(δ−1Zb11T + 2Za11T )

δ−1(2ỹ + Za11T ) + Zc11T + 2
, (2.27)

η2(Ẇmax) =
1

2T

∆T2Z
b
22T + ∆T1(δZc22T + 2Za22T )

δ(2y + Za22T ) + Zb22T + 2
, (2.28)

and

η12(Ẇmax) =

=
1

2T

∆T1Z
c
12T + ∆T2(2Za12T + δ−1Zb12T )

δ−1(2(1 + y−1) + Za12T + Zb12T ) + 2(1 + ỹ−1) + Za12T + Zc12T
,

(2.29)
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where we have defined the parameters δ = XT
1 /X

T
2 = ∆T1/∆T2, y = K12/K22

and ỹ = K12/K11 and introduced the following generalized ZT coefficients:

ZaijT =
aT

Kij
, ZbijT =

bT

Kij
, ZcijT =

cT

Kij
. (2.30)

The efficiencies (2.27), (2.28) and (2.29) can also be expressed in terms of
the corresponding Carnot efficiencies given in Eqs. (2.18), (2.19) and (2.20),
obtaining the following equations which mimic Eq. (2.21) of the two-terminal
case:

η1(Ẇmax) =
ηC,1

2

Zb11T + 2δZa11T + δ2Zc11T

2ỹ/y + 4δỹ + 2δ2 + Zb11T + 2δZa11T + δ2Zc11T

=
ηC,1

2

Z11T

C1 + Z11T
,

(2.31)

η2(Ẇmax) =
ηC,2

2

Zb22T + 2δZa22T + δ2Zc22T

2δ2y/ỹ + 4δy + 2 + Zb22T + 2δZa22T + δ2Zc22T

=
ηC,2

2

Z22T

C2 + Z22T
,

(2.32)

η12(Ẇmax) =
ηC,12

2

Zb12T + 2δZa12T + δ2Zc12T + o(∆Ti)

2y−1 + 4δ + 2δ2ỹ−1 + Zb12T + 2δZa12T + δ2Zc12T + o(∆Ti)

' ηC,12

2

Z12T

C12 + Z12T
,

(2.33)

where we have introduced the constants

C1 = 2ỹ/y + 4δỹ + 2δ2, (2.34)
C2 = 2δ2y/ỹ + 4δy + 2, (2.35)
C12 = ỹ−1 + δ2y−1 + 2δ, (2.36)

and the combinations of figures of merit

ZijT = (Zbij + 2δZaij + δ2Zcij)T . (2.37)

Notice also that in writing Eq. (2.33) we retained only the leading order neglecting
contributions of order ∆Ti or higher.

The above expressions can be used to provide a generalization of the Curzon-
Ahlborn limit efficiency for a multi-terminal quantum thermal device. Indeed
using the Cholesky decompositions on the Onsager matrix, we can prove that
the constants C1, C2 defined in Eqs. (2.34), (2.35) are positive, see [Gentle1998]
for details. This fact together with the positivity of the quantities ZiiT , that we
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have checked numerically, implies that the efficiencies ηi(Ẇmax) are always upper
bounded by half of the associated Carnot efficiencies, i.e.

ηi(Ẇmax) ≤ ηC,i/2 , (2.38)

the inequality being saturated when the generalized ZT coefficients (2.30) diverge.
An analogous conclusion can be reached also for (2.33), yielding

η12(Ẇmax) ≤ ηC,12/2 . (2.39)

In this case C12 is no longer guaranteed to be positive due to the presence of
K12. Still the inequality (2.39) can be derived by observing that the quantities
C12 and Z12T entering in the rhs of Eq. (2.33) have always the same sign.

2.3 Examples
In this Section we shall apply the theoretical framework developed so far to two
specific non-interacting systems attached to three terminals. Namely, we will
discuss the case of a single dot and the case of two coupled dots, in the absence of
electron-electron interaction (which cannot be dealt within the Landauer-Büttiker
formalism). Our aim is to show that one can easily find situations where the
efficiency and output power are enhanced with respect to the two-terminal case.
Furthermore, through the example of the single dot, we find the conditions that
guarantee the non-local thermopowers to vanish.

The coherent flow of particles and heat through a non-interacting conductor
can be described by means of the Landauer-Büttiker formalism. Under the
assumption that all dissipative and phase-breaking processes take place in the
reservoirs, the electric and thermal currents are expressed in terms of the scatter-
ing properties of the system [Büttiker1988, Datta1995, Imry2008]. For instance,
in a generic multi-terminal configuration the currents flowing into the system
from the i-th reservoir are:

Jci =
e

h

∑
j 6=i

∫ ∞
−∞

dE Tij(E) [fi(E)− fj(E)], (2.40)

Jhi =
1

h

∑
j 6=i

∫ ∞
−∞

dE (E − µi) Tij(E) [fi(E)− fj(E)], (2.41)

where the sum over j is intended over all but the i-th reservoir, h is the Planck’s
constant, e is the electron charge, Tij(E) is the transmission probability for a
particle with energy E to transit from the reservoir j to reservoir i, and where
finally fi(E) = {exp[(E − µi)/kBTi] + 1}−1 is the Fermi distribution of the
particles injected from reservoir i (notice also that we are considering currents
of spinless particles). In what follows we will use the above expressions in the
linear response regime where |∆µ|/kBT � 1 and |∆T |/T � 1, and compute the
associated Onsager coefficients (2.2), see Appendix 2.C.
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Figure 2.2 – Sketch of the single dot model used in the numerical simulations:
a quantum dot with a single energy level Ed is connected to three fermionic
reservoirs 1, 2, and 3. The chemical potential and temperature of the reservoir 3
are assumed as the reference values µ and T . The constants γ and γ2 represent
the coupling between the system and the various reservoirs (see Appendix 2.C.1
for details). A zero value of γ2 corresponds to disconnecting the reservoir 2
from the system: in this regime the model describes a two-terminal device where
reservoirs 1 and 3 are connected through the single dot.

2.3.1 Single dot

In this section we study numerically a simple model consisting of a quantum dot
with a single energy level Ed, coupled to three fermionic reservoirs, labeled 1, 2,
and 3, see Fig. 2.2. For simplicity, the coupling strength to electrodes 1 and 3
are taken equal to γ, while the coupling strength to electrode 2 is denoted by
γ2. In particular we want to investigate how the efficiencies, output powers and
transport coefficients evolve when the system is driven from a two-terminal to a
three-terminal configuration, that is by varying the ratio γ2/γ. The two-terminal
configuration corresponds to γ2 = 0 and the third terminal is gradually switched
on by increasing γ2/γ. As detailed in Appendix 2.C, the transmission amplitudes
between each pair of terminals can be used to evaluate the Onsager coefficients
Lij – the resulting expression being provided in Eqs. (2.68). Once the matrix Lij
is known, all the currents flowing through the system, efficiencies, output powers
and transport coefficients can be calculated within the framework developed in
the previous Sections.
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Efficiencies and maximum power

In Fig. 2.3 we show how the Carnot efficiency ηC depends on the temperature
differences ∆T1 and ∆T2, when the chemical potentials are chosen to guarantee
maximum output power, i.e., fixing the generalized forces Xµ

1,2 in order to
maximize Ẇ . As we can see, ηC increases linearly along any “radial” direction
defined by a relation ∆T2 = k∆T1, where k is a constant. In particular, the
dashed lines corresponding to k = 0.5, k = 2, and k = −1 separate the different
regimes discussed in Sec. 2.2.1: for −1 < k < 0.5 the system absorbs heat only
from reservoir 1 (if ∆T1 > 0) or from 2 and 3 (if ∆T1 < 0); for 0.5 < k < 2.0 the
system absorbs heat from reservoirs from 1 and 2 (if ∆T1 > 0) or from 3 only
(if ∆T1 < 0); finally, for k > 2 and k < −1 the system absorbs heat only from
reservoir 2 (if ∆T2 > 0) or from 1 and 3 (if ∆T2 < 0). In the case when only one
heat flux is absorbed the Carnot efficiency is given by Eq. (2.18) or Eq. (2.19),
while it is given by Eq. (2.20) if two heat fluxes are absorbed.

In Figs. 2.4 and 2.5, we show how the efficiency Eq. (2.14), the output power
Eq. (2.22), the efficiency at maximum output power Eqs. (2.27)-(2.29) and
the maximum output power Eq. (2.23), vary when the system is driven from a
two-terminal to a three-terminal configuration, i. e. by varying the ratio γ2/γ.
We set opposite signs for ∆µ1 and ∆µ2, so that the system absorbs heat only from
the hottest reservoir 1, and ∆T2 = 0, in such a way that the Carnot efficiency
ηC coincides with that of a two-terminal configuration, namely ηC = 1− T/T1.
Interestingly, we proved that increasing the coupling γ2 to the reservoir 2 may
lead to an improvement of the performance of the system. In particular, as
shown in Fig. 2.6, the efficiency and the output power can be enhanced at the
same time at small couplings γ2, exhibiting a maximum around γ2 ∼ 0.3γ and
γ2 ∼ 0.6γ, respectively. In Fig. 2.5 we show results for the same quantities but at
the maximum output power [η(Ẇmax) and Ẇmax]. In this case, while Ẇmax still
increases with γ2, the corresponding efficiency decreases approximately linearly.

In Figs. 2.6 and 2.7 we show the same quantities as in Figs. 2.4 and 2.5,
but as a function of the coupling γ for two values of γ2 (γ2 = 0 and γ2 = 0.5γ).

From Fig. 2.6 we can see that at small γ the coupling to a third terminal
can enhance both the efficiency (for γ . 0.8kBT ) and the power (for γ . kBT ).
In Fig. 2.7 we note that, both for the two- and the three-terminal system, the
efficiency at maximum power tends to η/ηC = 0.5 in the limit γ → 0, while
the output power vanishes. For two-terminal the result is well known, since
a delta-shaped transmission function leads to the divergence of the figure of
merit ZT [Mahan1996, Humphrey2002, Humphrey2005]. Correspondingly, the
efficiency at maximum power saturates the Curzon-Ahlborn bound η/ηC = 0.5.
The same two-terminal energy-filtering argument explains the three-terminal
result. Indeed, we found numerically that for γ → 0 the chemical potentials
optimizing the output power are such that µ2 = µ3. Since also the temperatures
are chosen so that T2 = T3, we can conclude that terminals 2 and 3 can be seen
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Figure 2.3 – Carnot efficiency ηC (density plot) of the three-terminal system
depicted in Fig. 2.2, as a function of the gradients of temperature in reservoirs 1
and 2 (the chemical potentials µ1 and µ2 being chosen to guarantee maximum
output power Ẇ ). The coupling with the reservoirs have been set to have a
symmetric configuration with respect to 1 and 2 (i.e. γ2 = γ). Note that ηC
increases linearly along any radial direction defined by a relation ∆T2 = k∆T1,
where k is a constant. In particular, the dashed lines corresponding to k = 0.5,
k = 2 and k = −1 separate different regimes discussed in Sec. 2.2.1. The numbers
in each region identify the reservoirs from which the heat is absorbed. Parameter
values: γ = 0.2 kBT , Ed − µ = 2.0 kBT .

as a single terminal.

Thermopowers

In this section we show analytically that the non-local thermopowers are always
zero in this model, while the local ones are equal. We consider a general situation,
with three different coupling parameters: γ1 = γ, γ2 = c γ and γ3 = d γ, with
c 6= d. Under these assumptions, the transmissions are given at the end of
Appendix 2.C. Substituting these expressions in Eqs. (2.5) and (2.6), we find

S11 = S22 =
1

eT

L1

L0
,

S21 = S12 = 0 . (2.42)
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Figure 2.4 – Left panel: Efficiency η, normalized over the associated Carnot
limit computed as in Sec. 2.2.1, as a function of the coupling to the reservoir
2. Note that as γ2/γ is switched on, the efficiency increases until it reaches a
maximum around γ2 ∼ 0.3γ, and then it decreases. Right panel: Output power
Ẇ extracted from the system, as a function of the coupling to the reservoir 2.
Parameters: γ = 0.1 kBT , Ed − µ = 2.0 kBT , ∆µ1 = −∆µ2 = −5 × 10−4 kBT ,
∆T1 = 10−3 T , and ∆T2 = 0.
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Figure 2.5 – Left panel: Efficiency at maximum power η(Ẇmax), normalized
over the Carnot limit, as a function of the coupling to the reservoir 2. Right
panel: Maximum output power Ẇmax extracted from the system, as a function
of the coupling to the reservoir 2. Parameters: γ = 0.1 kBT , Ed − µ = 2.0 kBT ,
∆T1 = 10−3 T , and ∆T2 = 0.

This result is a direct consequence of the factorization of the energy dependence
of the transmission probabilities, which are all proportional to the same function
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Figure 2.6 – Left panel: Efficiency η, normalized over the Carnot limit, as a
function of the coupling energy γ. Right panel: Output power Ẇ extracted
from the system, as a function of the coupling energy γ. In both cases, the full
red curves correspond to a three-terminal configuration with γ2 = 0.5γ, while
the dashed blue curve refer to the two-terminal case (γ2 = 0). Parameters:
Ed − µ = 2.0 kBT , ∆µ1 = −∆µ2 = −10−4 kBT , ∆T1 = 10−3 T , and ∆T2 = 0.
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Figure 2.7 – Left panel: Efficiency at maximum power η(Ẇmax), normalized
over the Carnot limit, as a function of the coupling energy γ. Right panel:
Maximum output power Ẇmax extracted from the system, as a function of the
coupling energy γ. In both cases, the full red curves correspond to a three-
terminal configuration with γ2 = 0.5γ, while the dashed blue curves refer to the
two-terminal case (γ2 = 0). Parameters: Ed − µ = 2.0 kBT , ∆T1 = 10−3 T , and
∆T2 = 0.
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Figure 2.8 – Sketch of the double dot model used in the numerical simulations:
two quantum dots with a single energy level are connected in series to three
fermionic reservoirs 1, 2 and 3. The chemical potential and temperature of reser-
voir 3 are assumed as the reference values µ and T . A two-terminal configuration
is obtained in the case in which the coupling to reservoir 2 (equal for both the
dots) vanishes (γ2 = 0).

T , as shown in Eq. (2.67). Such factorization allows us to rewrite the Onsager’s
coefficients as in Eq. (2.68) and derive Eq. (2.42). The fact that the non-
local thermopowers, for example S12, are zero can be understood as follows.
Consider first the case in which T1 = T2 = T3 and terminal 2 behaves as a
voltage probe. If so, from the condition Jc2 = L31X

µ
1 + L33X

µ
2 = 0 we derive

∆µ2 = −(L31/L33) ∆µ1. Due to the factorization of the energy dependence in
the transmissions we obtain ∆µ2 = (γ1/(γ1 + γ3))∆µ1. Hence, ∆µ1 does not
depend on the coupling γ2. If in particular we consider γ2 = γ, because of
the symmetry of the system under exchange of the terminal 1 and 3 we have
µ1 = µ3. We can therefore conclude that, independently of the coupling γ2, the
probe voltage condition for terminal 2 implies ∆µ1 = 0. It can be shown that
such result remains valid even when ∆T1 = 0 but ∆T2 6= 0, as requested in the
calculation of the thermopower S12. As a result, S12 = 0. The same argument
can be repeated for the current Jc1 with the terminal 1 acting as a voltage probe,
leading to S21 = 0.

2.3.2 Double Dot
Let us now consider a system made of two quantum dots in series, each with a
single energy level, coupled to three fermionic reservoirs. This system is described
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by the Hamiltonian:

H =

[
EL −t
−t ER

]
. (2.43)

We call t the hopping energy between the dots, and we assume that dot L is
coupled to the left lead (1), dot R is coupled to the right lead (3) and that both
are coupled to a third lead (2) (see Fig. 2.8). The self energies describing these
couplings are:

Σ1 =

[
σ1 0
0 0

]
, Σ2 =

[
σ2 0
0 σ2

]
, Σ3 =

[
0 0
0 σ3

]
. (2.44)

In the wide-band approximation, we assume that these quantities are energy-
independent and they can be written as purely imaginary numbers σi = −i γi/2.
The self energies thus become:

Σ1 =

[
−iγ12 0

0 0

]
, Σ2 =

[
−iγ22 0

0 −iγ22

]
, Σ3 =

[
0 0
0 −iγ32

]
. (2.45)

The retarded Green’s function of the system is then:

G = [EI−H − Σ]−1 =

[
E − EL − σ1 − σ2 t

t E − ER − σ3 − σ2

]−1

=

=
1

det[G]

[
E − ER + iγ3+γ2

2 −t
−t E − EL + iγ1+γ2

2

]
,

(2.46)

with

det[G] =
(
E − EL + i

γ1 + γ2

2

)(
E − ER + i

γ3 + γ2

2

)
− t2. (2.47)

Let us now define the broadening matrices as Γi = i(Σi − Σ†i ):

Γ1 =

[
γ1 0
0 0

]
, Γ2 =

[
γ2 0
0 γ2

]
, Γ3 =

[
0 0
0 γ3

]
. (2.48)

The matrix of transmission probability Tij between each pair of reservoirs is then
given by the Fisher-Lee formula [Datta1995, Fisher1981]

Tij = Tr
[
Γi G Γj G†

]
. (2.49)

For the system under consideration we obtain

T13 =
γ1γ3

|det[G]|2 t
2, (2.50)
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Figure 2.9 – Various figures of merit Za11T (dotted line), Zb11T (dashed line)
and Zc11T (full line) as a function of the coupling to the bottom reservoir γ2 (left
panel), and as a function of the total coupling γ (right panel). Parameter values:
EL − µ = −2 kBT , ER − µ = −20 kBT , γ = 0.1 kBT (left panel) and γ2 = 0.5
kBT (right panel).

T12 =
γ1γ2

|det[G]|2

[
(E − ER)2 +

(
γ3 + γ2

2

)2

+ t2

]
, (2.51)

T32 =
γ3γ2

|det[G]|2

[
(E − EL)2 +

(
γ1 + γ2

2

)2

+ t2

]
. (2.52)

At this point, it is clear that the energy dependence of the transmission matrix
cannot be factorized as for the single dot case. This model is hence the simplest
in which we can observe finite non-local thermopowers and an increase of both
the power and the efficiency of the corresponding thermal machine. We find
that the behavior of such quantities as functions of the various parameters is
qualitatively very similar to the case of the single dot, thus confirming that a
third terminal could improve the performance of a quantum machine.

Since in this system all the transport coefficients are different from zero, it
is instructive to study the behavior of the generalized figures of merit defined
in Eq. (2.30). In Fig. 2.9 we show, in the configuration with only one positive
heat flux (Jh1 > 0), Za11T (dotted line), Zb11T (dashed line) and Zc11T (full line).
We investigate their behavior as a function of the coupling γ2 and of the total
coupling γ. Note that in the two-terminal limit (γ2 → 0) Zc11T reduces to the
standard thermoelectric figure of merit ZT , while Za11T and Zb11T tend to zero.
When we turn on the interaction with the reservoir 2 (left panel), we notice
that the figure of merit Zc11T decreases, while the figures of merit Zb11T and
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Figure 2.10 – (Left panel) Non local thermopowers as a function of the coupling
γ2 to lead 2. The full red line corresponds to S12 = −∆µ1/∆T2, while the dashed
(blue) line corresponds to S21 = −∆µ2/∆T1. (Right panel) Local thermopowers
as a function of the coupling γ2 to lead 2. The full (red) line corresponds to
S11 = −∆µ1/∆T1, while the dashed (blue) line corresponds to S22 = −∆µ2/∆T2.
Parameter values as in Fig. 2.9.

Za11T increase their absolute values. From the behavior as a function of the total
coupling γ we can see that in the limit of δ-shaped transmission function (γ → 0),
the figures of merit diverge, leading to the Carnot efficiency, while in the limit of
broad transmission window (γ →∞), all the figures of merit go to zero and we
recover the case of zero efficiency.

Thermopowers

As mentioned before, the fact that the energy-dependence of the transmission
matrix for the double dot cannot be factorized is sufficient to guarantee finite
non-local thermopowers, as shown in the left panel of Fig. 2.10. As a function
of γ2, S12 starts from zero, while S21 starts from a finite value. This different
behavior for the two non-local thermopowers is due to the different role played
by γ2 in the two cases. As far as S12 is concerned, when we set a temperature
difference ∆T2 in lead 2, a chemical potential difference ∆µ1 develops in lead 1
to annihilate the current that flows out of the lead 2. When the coupling γ2 goes
to zero, that current goes to zero and so does the chemical potential difference
∆µ1. This argument does not hold for S21, because the temperature difference
∆T1 is set in lead 1, and γ2 does not control the current anymore. Therefore
when the coupling γ2 approaches zero the current still have a finite value, and so
the chemical potential difference ∆µ2 needed to annihilate it. Furthermore, the
local thermopowers are no more equal, as shown in the right panel of Fig. 2.10.
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2.4 Summary
In this chapter we have developed a general formalism for linear-response multi-
terminal thermoelectric transport. In particular, we have worked out analytical
expressions for the efficiency at maximum power in the three-terminal case. By
means of two simple non-interacting models (single and double quantum dot),
we have shown that a third terminal can be useful to improve the thermoelectric
performance of a system with respect to the two-terminal case. Moreover, we
have discussed conditions under which non-local thermopowers could be observed.
Our analysis could be extended also to cases in which time-reversal symmetry is
broken by a magnetic field or including bosonic or superconducting terminals. It is
an interesting open problem to understand in such instances both thermoelectric
performance in realistic systems and fundamental bounds on efficiency for power
generation and cooling.
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2.A Calculation of the non-local thermopow-
ers

To compute the multi-terminal thermopowers defined in Eqs. (2.5) and (2.6) we
have to express one of the temperatures as a function of a thermal current. For
example let us start from the inversion between XT

1 and Jh1 . In the Onsager’s
formalism this can be expressed as:

0 = −


Jc1
XT

1

Jc2
Jh2

+ L


Xµ

1

Jh1
Xµ

2

XT
2

 =
(
L −I

)
AA−1

(
X
J

)
, (2.53)

where A is a permutation matrix that switches XT
1 and Jh1 , X and J are column

vectors with components (Xµ
1 , X

T
1 , X

µ
2 , X

T
2 ) and (Jc1 , J

h
1 , J

c
2 , J

h
2 ), respectively,

and I is the 4× 4 identity matrix. Then we obtain:

0 =
(
L −I

)
AA−1

(
X
J

)
=
(
L −I

)
A

(
X∗

J∗

)
=

= BX∗ + CJ∗,

(2.54)

where X∗ and J∗ are the vectors X and J after the action of A−1, that is, with
XT

1 ↔ Jh1 ; B and C are the matrices determined by the product
(
L −I

)
A. We

can now define the thermopower from the following equations:

X∗ = −B−1 CJ∗ ⇒


Xµ

1

Jh1
Xµ

2

XT
2

 = L−1


Jc1 = 0
XT

1 = 0
Jc2 = 0
Jh2

 . (2.55)

For this choice of the parameters we have inverted, two different thermopowers
can be defined, the non local S12:

S12 = − ∆µ1

e∆T2
= − 1

eT

Xµ
1

XT
2

=
1

eT

L
(2)
13;34

L
(2)
13;31

, (2.56)

and the local S22:

S22 = − ∆µ2

e∆T2
= − 1

eT

Xµ
2

XT
2

=
1

eT

L
(2)
14;31

L
(2)
13;31

. (2.57)

The two-terminal limit in which reservoirs 2 and 3 only are connected is obtained
after setting in the Onsager matrix Lij = 0 if i = 1, 2 or j = 1, 2. In this limit,
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the previous expressions reduce to:

S12 → 0,

S22 →
1

eT

L34

L33
.

(2.58)

The non-local term goes to zero, while the local one goes to the correct value of
the 2-terminal system. The two other terms of these generalized thermopowers
are obtained with the inversion of XT

2 and Jh2 . Then we can define S21 as the
non local quantity, and S11 as the local one:

S21 = − 1

eT

Xµ
2

XT
1

=
1

eT

L
(2)
13;21

L
(2)
13;31

,

S11 = − 1

eT

Xµ
1

XT
1

=
1

eT

L
(2)
13;32

L
(2)
13;31

.

(2.59)

In a similar way all the other transport coefficients can be defined, by inverting
a generalized force with a current.

2.B Cholesky decomposition for the Onsager
matrix

In linear algebra, the Cholesky decomposition [Gentle1998] is a tool which allows
to write a Hermitian, positive-definite (or semipositive-definite) matrix L as a
product of a lower triangular matrix D and its conjugate transpose D†:

L = DD†, (2.60)

(in particular, if L is real, D† is simply the transpose of D). It turns out that
the sign of some quantities defined throughout this work as combinations of
products of Onsager coefficients Lij can be easily studied by using the Cholesky
decomposition on the Onsager matrix L. As an example, by writing

D =


ρ11 0 0 0
ρ12 ρ22 0 0
ρ13 ρ23 ρ33 0
ρ14 ρ24 ρ34 ρ44

 , (2.61)

it can be shown that the coefficient b and c defined in Eq. (2.24) are equal to

b =
ρ2

14(ρ2
23 + ρ2

33) + (ρ23ρ24 + ρ33ρ34)2

T 3(ρ2
23 + ρ2

33)
,
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c =
ρ2

22ρ
2
23 + ρ2

12(ρ2
23 + ρ2

33)

T 3(ρ2
23 + ρ2

33)
, (2.62)

and therefore are non-negative. The coefficient

a =
ρ12ρ14(ρ2

23 + ρ2
33) + ρ22ρ23(ρ23ρ24 + ρ33ρ34)

T 3(ρ2
23 + ρ2

33)

instead has undefined sign. Still one can prove that it is such that the determinant
of the matrix M which appears in Eq. (2.23) is non-negative. Indeed we have

det(M) =
(−ρ14ρ22ρ23 + ρ12ρ23ρ24 + ρ12ρ33ρ34)2

T 6(ρ2
23 + ρ2

33)
, (2.63)

which, together with the positivity of b and c entails that M is semi-positive
definite.

The same procedure can be used to study the sign of the constants C1, C2

and C12 defined in Eqs. (2.34), (2.35), and (2.36), respectively. As it is shown
here below, C1 and C2 are always non-negative, while C12 has undefined sign:

C1 =
2[(δρ22ρ33 + ρ24ρ33 − ρ23ρ34)2 + (ρ2

23 + ρ2
33)ρ2

44]

ρ2
22ρ

2
33

,

C2 =
2[(δρ22ρ33 + ρ24ρ33 − ρ23ρ34)2 + (ρ2

23 + ρ2
33)ρ2

44]

(ρ24ρ33 − ρ23ρ34)2 + (ρ2
23 + ρ2

33)ρ2
44

,

C12 =
(ρ22ρ33 + δρ24ρ33 − δρ23ρ34)2 + δ2(ρ2

23 + ρ2
33)ρ2

44

ρ22ρ33(ρ24ρ33 − ρ23ρ34)
.

(2.64)

2.C Calculation of the Onsager coefficients

For a three-terminal configuration, as in the previous sections, we choose the
right reservoir 3 as the reference (µ3 = µ = 0, T3 = T ), and characterize the
problem in terms of the particle/heat currents flowing in linear response between
the system and leads 1 (held at µ1 = µ+ ∆µ1 and T1 = T + ∆T1) and 2 (held at
µ2 = µ+ ∆µ2 and T2 = T + ∆T2). The Onsager’s coefficients are obtained from
the linear expansion of the currents Jci and Jhi (i = 1, 2) given by Eqs. (2.40)
and (2.41). They can be written in terms of the transmission probabilities Tij ,
i, j ∈ {1, 2, 3} as
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L11 =
T

h

∫
dE (−∂Ef) (T12 + T13),

L12 =
T

h

∫
dE (−∂Ef) (E − µ)(T12 + T13) = L21,

L13 =
T

h

∫
dE (−∂Ef) (−T12) = L31,

L14 =
T

h

∫
dE (−∂Ef) (−(E − µ)T12) = L41,

L22 =
T

h

∫
dE (−∂Ef) (E − µ)2(T12 + T13),

L23 =
T

h

∫
dE (−∂Ef) (−(E − µ)T12) = L32,

L24 =
T

h

∫
dE (−∂Ef) (−(E − µ)2T12) = L42,

L33 =
T

h

∫
dE (−∂Ef) (T12 + T23),

L34 =
T

h

∫
dE (−∂Ef) (E − µ)(T12 + T23) = L43,

L44 =
T

h

∫
dE (−∂Ef) (E − µ)2(T12 + T23), (2.65)

where T is the temperature, f denotes the Fermi-Dirac distribution at µ, and ∂E
is the partial derivative with respect to the energy.

2.C.1 Transmission function of a single-level dot

For a scattering region consisting of a quantum dot with a single energy level,
connected to three-terminal, we can express the transmission as a function of the
energy [Büttiker1988]

Tij =
ΓiΓj

(E − Ed)2 +
(

Γ
2

)2 , (i 6= j), (2.66)

where Γi is the contribution to the broadening due to the coupling to lead i,
defined by Γi = i(Σi − Σ†i ), Σi being the self-energy of lead i. In the wide-band
limit approximation, we set Σi = −i γi/2, where γi does not depend on the
energy. Note that this choice leads to the identification Γi = γi. Furthermore, at
the denominator, Γ = Γ1 + Γ2 + Γ3 is the total broadening due to the coupling to
all leads. If we denote γ1 = γ, γ2 = cγ, and γ3 = dγ the couplings to the three
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leads, we obtain for the transmissions the values

T12 =
cγ2

(E − Ed)2 + (1+c+d)2

4 γ2
≡ cT ,

T13 =
d γ2

(E − Ed)2 + (1+c+d)2

4 γ2
≡ d T ,

T23 =
cd γ2

(E − Ed)2 + (1+c+d)2

4 γ2
≡ cd T .

(2.67)

The Onsager coefficients then read as follows:

L11 = L0 (c+ d),

L12 = L1 (c+ d),

L13 = −cL0,

L14 = −cL1,

L22 = L2 (c+ d),

L23 = −cL1,

L24 = −cL2,

L33 = cL0 (1 + d),

L34 = cL1 (1 + d),

L44 = cL2 (1 + d), (2.68)

with Ln = T
h

∫
dE (−∂Ef) (E − µ)nT .

The numerical data shown in Sec. 2.3.1 are obtained for d = 1, i.e. for
γ1 = γ3 = γ. The two-terminal configuration corresponds to c = 0 (γ2 = 0),
while the coupling to terminal 2 is switched on progressively by increasing c.



Chapter 3
Separation of Heat and Charge
Currents for
Boosted Thermoelectric
Conversion

Complex multi-terminal devices allow in principle to achieve a separate control
of the heat and charge currents. The key issue in this context is to assess to

which extent this control can be achieved and what are its possible advantages in
thermoelectric thermal machines. In this chapter we push to its extreme this type
of control and explore a situation where heat and charge currents flow in spatially
separated parts of the system. Namely, we will enforce that one of the terminals
allows only charge current and another one allows only heat current, and name
this regime as Heat-Charge Current Separation (HCCS). It is worth stressing
already at this point, that the regime of HCCS is realized notwithstanding the
fact that the same carriers are responsible for heat and charge flow. As we will
discuss in details in the chapter, HCCS can be naturally realized by employing
superconducting reservoirs. Nonetheless, this is not a strict requirement: indeed,
in principle one could spatially separate heat and charge currents in an all-normal
multi-terminal device. In this case, however, a fine tuning of the parameters
characterizing the thermoelectric transport needs to be performed thus making
the device not easy to realize experimentally.

The three-terminal device which implements HCCS, pictorially shown in
Fig. 3.1, is composed of a generic conductor connected to a superconducting
reservoir (S), a normal metal reservoir (N) and a second normal reservoir whose
chemical potential is set to inhibit the flow of electrical current, thus acting as a

57
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Figure 3.1 – The heat-charge current separation scheme. A generic scattering
region is connected to three reservoirs labeled by the letters S (superconducting
lead), P (voltage probe) and N (normal metal lead). In the main text we assume
the superconducting reservoir (S) to be the reference. In any case, as pointed by
the arrows, only charge flows inside lead S whereas only heat flows inside lead P.

voltage probe (P). This setup, to which we will refer to as SPN, naturally realizes
heat-charge current separation. Indeed, a voltage probe exchanges (on average) by
definition only heat (energy) with the system, whereas the superconductor, being
a poor heat conductor for temperatures below the gap, can exchange only charges.
This way, the heat and charge currents, flowing together out of the normal metal
reservoir (N), are split and driven either towards the voltage probe (heat), or
towards the superconducting reservoir (charge). In the linear response regime this
setup has the advantage of admitting an effective description in terms of a 2× 2
Onsager matrix, a feature which allows inter alia a natural way of comparing
its performance to that of a standard two-terminal configuration. Using the
scattering approach, we will show on general grounds that this separation allows,
in the linear response regime and at small temperatures, to greatly enhance the
performance of a thermal machine, namely increasing both the efficiency and
the output power by roughly one order of magnitude with respect to a standard
two-terminal counterpart. The root of this enhanced efficiency can be traced
back to the possibility to violate in a controlled fashion the Wiedemann-Franz
law in the heat-charge separation regime. On more general grounds it is worth to
stress that the simultaneous presence of superconducting and normal terminals,
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by selectively controlling the heat and charge flows through normal and Andreev
scattering, introduces new degrees of freedom that are worth being explored for
thermoelectric conversion.

The chapter is organized as follows: in Section 3.1 we introduce the necessary
formalism and define the regime of heat-charge current separation. We then
show how this regime can be attained by having one of the three terminals in the
superconducting state. In order to test the performance of this thermal engine
we perform an extensive analysis in Section 5.2, by varying the properties of the
scattering region connecting the three reservoirs. By properly parametrizing the
scattering matrix we sample randomly the scatterer and compare the efficiency
of the HCCS thermal machine with that of a “conventional” two-terminal setup
(Sections 3.2.1 and 3.2.2). We complete our analysis in Section 3.2.3 by discussing
the case of systems consisting of quantum dots (QDs). The reason to study these
examples in detail is to show that it is possible to achieve, in experimentally
realizable situations, those enhanced performances that we found in the first
part of Section 3.2.2. Indeed we see that our theoretical findings can be tested
with current experimental capabilities. Section 3.3 is devoted to the concluding
remarks. Some technical details related to the scattering formalism in the presence
of Andreev scattering are summarized in the Appendices.

3.1 Heat-charge current separation
Let us consider a system composed of a conductor attached to three leads. Within
the linear response regime charge and heat currents are governed by the Onsager
matrix L via the relation

JcN
JhN
JcP
JhP

 =


L11 L12 L13 L14

L21 L22 L23 L24

L31 L32 L33 L34

L41 L42 L43 L44



Xµ
N

XT
N

Xµ
P

XT
P

 , (3.1)

where Jci (Jhi ) represent the charge (heat) current entering the conductor from lead
i, with i = (N, P), see Fig. 3.1. We define the biases Xµ

i = ∆µi/T = (µ− µi)/T
and XT

i = ∆Ti/T
2 = (T − Ti)/T 2, where µi and Ti are the chemical potential

and temperature, respectively, relative to reservoir i =N,P and having chosen
the reservoir S as reference with temperature T and chemical potential µ. Heat
and charge currents flowing in lead S can be determined from the conservation of
particle and energy currents. As already mentioned, HCCS consists in spatially
separating heat and charge flows. In the example of Fig. 3.1 heat will only flow
in lead P while charge will only flow in lead S. In this section we characterize
this regime and discuss how to implement it.

On general grounds HCCS can be realized whenever two “probe” terminals are
present [Gramespacher1997], one for the voltage and one for the temperature. In
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fact, a voltage probe is a terminal whose voltage is adjusted in order for the charge
current to vanish, while a temperature probe is a terminal whose temperature is
adjusted in order for the heat current to vanish (see Appendix 3.A). Unlike a
voltage probe, which is implemented simply by opening the electric circuit, making
a thermal probe would require the ability to control and measure heat currents
which is still very challenging in practice (although important advancements in
the measurements of heat currents at the nanoscale have been recently achieved,
see Refs. [Blanc2013, Meier2014]). A natural way of realizing HCCS is to replace
the thermal probe with a superconducting lead which intrinsically suppresses the
heat flow for low enough voltages and temperatures. On the contrary a normal
metal-superconductor interface is an excellent electrical conductor due to the
Andreev process that allows to carry charge current in the sub-gap regime. In
the following we will detail the working principles of this implementation.

Let us consider Eq. (3.1) and take the superconducting reservoir as the
reference. Assuming temperatures much smaller than the superconducting gap
and using the scattering formalism one can demonstrate that the coefficients on
the fourth row (column) of the Onsager matrix Eq. (3.1) are the opposite of
the corresponding coefficients on the second row (column). This implies that
JhN = −JhP which, at first order in linear response, yields JhS = 0 by virtue of
the energy conservation. In other words, it is an intrinsic property of the hybrid
scattering matrix to have vanishing heat current in the superconducting lead.
These observations allow us to simplify the Onsager system of equations by
eliminating the redundant forth row and column, thus reducing it to a 3 by 3
problem: JcNJhN

JcP

 =

L11 L12 L13

L21 L22 L23

L31 L32 L33

Xµ
N

XT

Xµ
P

 , (3.2)

where we have introduced XT = XT
N −XT

P (or equivalently ∆T = ∆TN −∆TP ).
Now we impose the voltage probe condition JcP = 0 on reservoir P, which yields

Xµ
P = −L31X

µ
N + L32X

T

L33
. (3.3)

By substituting Eq. (3.3) into Eq. (3.2) one obtains a two-terminal-like Onsager
matrix: (

JcN
JhN

)
=

(
L′11 L′12

L′21 L′22

)(
Xµ
N

XT

)
. (3.4)

For the sake of simplicity, in the following we drop the primes for the Onsager
coefficients L′ij in Eq. (3.4). From the definitions of the local [Benenti2013] and
non-local [Mazza2014] transport coefficients, one can introduce (local) conduc-
tances and (non-local) thermopowers described by the following two-terminal-like
expressions:

G =
( eJcN

∆µN

)
∆T=0

=
L11

T
, (3.5)
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S = −
(∆µN
e∆T

)
Jc
N=0

=
1

T

L12

L11
, (3.6)

K =
( JhN

∆T

)
Jc
N=0

=
1

T 2

L11L22 − L21L12

L11
(3.7)

Importantly, we can express the efficiency for heat to work conversion with the
standard two-terminal formula [Benenti2013]

η =
−Xµ

NJ
c
N

JhN
=
−L11(Xµ

N )2 − L12X
µ
NX

T
P

−L21X
µ
N − L22XT

P

. (3.8)

One can also define the figure of merit ZT = (GS2/K)T and the power fac-
tor Q = GS2. The former gives information about the maximum efficiency
and the efficiency at maximum power [Curzon1975, Broeck2005] η(Ẇmax) =
(ηC/2)ZT/(ZT +2), ηC = 1−∆T/T being the Carnot efficiency, while the latter
about the maximum power Ẇmax = Q(∆T )2/4. With these formulas the analogy
between the SPN system and the two-terminal one is complete, allowing us to
compare their performance.

3.2 HSSC in hybrid devices
As we shall show in this section, the heat-charge separation implemented through
the SPN setup allows to control G and K separately. This will be at the origin
of the enhancement of both the figure of merit ZT and the power factor Q with
respect to the two-terminal setup. We will use the Landauer-Büttiker scattering
formalism [Büttiker1986, Landauer1957], which is summarized in Section 1.4
for multi-terminal hybrid superconducting systems. We begin our analysis by
considering low temperatures (within the Sommerfeld expansion) and studying
a well-defined class of scattering matrices. Quasiparticle transmission from the
normal leads into the superconductor is exponentially suppressed and thus can
be ignored. Thus the scattering probabilities just involve reservoirs N and P.

In the following we will express the conductances (electrical and thermal)
as well as the thermopower as functions of the parameters characterizing the
scattering matrix. The aim is to sample this parameter space in order to make a
statistical analysis of the thermoelectric performance. Assuming a single channel
per spin per lead, in the Bogoliubov-de Gennes formalism (see Section 1.4) the
total scattering matrix Stot is 8× 8. Supposing that there are no spin-mixing

terms, it can be written in a diagonal block form Stot =

(
S 0
0 S′

)
, where the

basis is (c↑,N , c↑,P , c
†
↓,N , c

†
↓,P , c

†
↑,N , c

†
↑,P , c↓,N , c↓,P ), where the operator cσ,i (c†σ,i)

destroys (creates) an electron with spin σ in lead i = (N,S, P ). The matrices S
and S′ are related by the particle-hole symmetry relations (see Section 1.4), so
that assigning the elements of S is sufficient to know the whole Stot. For sake
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of simplicity we will consider symmetric unitary matrices. A parametrization of
such class of matrices is given by

S =

(
g1S1 g2S2

g2S
T
2 g3S3

)
, (3.9)

where S1 and S3 are 2 × 2 symmetric unitary matrices, S2 is a 2 × 2 unitary

matrix, S3 = ST2 S
∗
1S2 and g1, g2, g3 are such that the matrix

(
g1 g2

g2 g3

)
is unitary.

For the sake of simplicity we assume the latter to be real, i.e. it can be written as(
g(E)

√
1− g(E)2√

1− g(E)2 −g(E)

)
, where we made explicit the dependence on the

energy E. Furthermore, we parametrize S1 and S2 as

S1 =

(
−ρ1(E) ei(θ1+2β1)

√
1− ρ1(E)2 eiβ1√

1− ρ1(E)2 eiβ1 ρ1(E) e−iθ1

)
(3.10)

and

S2 =

(
−ρ2(E) ei(θ2+β2+γ2)

√
1− ρ2(E)2 eiβ2√

1− ρ2(E)2 eiγ2 ρ2(E) e−iθ2

)
, (3.11)

assuming the phases in the matrices to be energy independent. The last
simplification that we impose is the following relation between the phases:
β2 + θ2 = β1 + θ1 + π

2 . Within this parametrization we assume θ1, β1, θ2,
β2, and γ2 to be real numbers and g(E), ρ1(E) and ρ2(E) to be real functions
of energy such that 0 ≤ g(E), ρ1(E), ρ2(E) ≤ 1 for any E. With this notation
and using the expressions for the Onsager coefficients in the Landauer-Büttiker
approach given in Section 1.4, the Sommerfeld expansion yields the following
transport coefficients [see Eqs. (3.5)-(3.7)]:

G = 8− 8g(0)2

+
8(−1 + g(0)2)2

−1− ρ2(0)2 + g(0)2(ρ1(0)2 + (3− 2ρ1(0)2)ρ2(0)2 + 2(−1 + ρ1(0)2)ρ2(0)4)

(3.12)

S = 2
π2Tg(0)ρ2(0)

[
− ρ2(0)(−1 + ρ2(0)2)

[
(−1 + ρ1(0)2)g′(0) + g(0)ρ1(0)ρ′1(0)

]
−3ρ2(0)2 + 3g(0)2(−1 + ρ1(0)2 + (3− 2ρ1(0)2)ρ2(0)2 + 2(−1 + ρ1(0)2)ρ2(0)4)

−
g(0)(−1 + ρ1(0)2)(−1 + 2ρ2(0)2)ρ′2(0)

]
−3ρ2(0)2 + 3g(0)2(−1 + ρ1(0)2 + (3− 2ρ1(0)2)ρ2(0)2 + 2(−1 + ρ1(0)2)ρ2(0)4)

,

(3.13)

K = −2π2T

3

[
− 1 + ρ2(0)2 + g(0)2(ρ2(0)2− 2ρ2(0)4 + ρ1(0)2(1− 2ρ2(0)2 + 2ρ2(0)4))],

(3.14)
where the primed quantities are derivatives with respect to energy. After the choices
we made, we are left with six parameters [namely, ρ1(0), ρ′1(0), ρ2(0), ρ′2(0), g(0), g′(0)]
to control G, S and K. We stress that we do not impose time reversal symmetry on the
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Figure 3.2 – Plot of the ratio Λ/Λ0 and thermopower S for fixed K =
10 (3kBT )/π2h as a function of ρ2(0). Here we show that using only one pa-
rameter [ρ2(0)] we cannot control separately the thermopower and the ratio
Λ = K/(GT ). The other parameters are: ρ1(0) = 0.8, g′(0) = 0.001(kBT )−1,
ρ′1(0) = 0.03(kBT )−1 and ρ′2(0) = 0.3(kBT )−1.

scattering matrix S, Eq. (3.9), although our parametrization gives rise to a symmetric
Onsager matrix1.

At this point we would like to draw the attention to the fact that the transport
coefficients G, S and K are independent in a parameter region that is defined by the
constraints imposed by the unitarity of the scattering matrix and from the Sommerfeld
expansion. The independence of the transport coefficients can be appreciated from the
way the six parameters, needed to parametrize the scattering matrix, enter Eqs. (3.12)-
(3.14). Indeed, if the value of K in Eq. (3.14) is fixed, the value of G given by
Eq. (3.12) is not automatically determined, but instead it can be controlled by exploiting
the other parameters. The same applies to S when G and K are fixed.

We shall now discuss how the performance of the SPN system depends on these
parameters. It is indeed important to verify if: i) HCCS is an advantage for thermo-
electric conversion, ii) in the regime of HCCS the enhancement of the performance is
generic or it requires additional fine tuning. In order to assess the above issues we will
first analyze to which extent heat and charge can be controlled independently and then
we will study the figure of merit as a function of the parameters characterizing the
scattering matrix. Since we have to deal with six free parameters our analysis will be
of statistical nature.

1Note that spin-dependent effects are included in this parametrization.
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3.2.1 Control of heat and charge currents
Our strategy to test our ability to control the currents in the three-terminal device
is to use, in the same spirit as in the Wiedemann-Franz law, the ratio between heat
and electrical conductances. Using Eqs. (3.12) and (3.14) we can now calculate
Λ = K/(GT ) which can be seen by inspection not to be a constant, hence violating
the Wiedemann-Franz law. Note that both G and K depend only on the coefficients
ρ1(0), ρ2(0), and g(0). In Fig. 3.2 we plot, for a fixed value of K, the dimensionless
ratio Λ/Λ0 and the thermopower S as functions of the parameter ρ2(0). More precisely,
after fixing K we extract from Eq. (3.14) the parameter g(0) which is a function of
K, ρ1(0), ρ2(0) and substitute it into Eq. (3.12). Moreover, we impose the condition
that the next order in the Sommerfeld expansion is much smaller than the one we take
into account, restricting the range of admissible values of the other parameters (e.g.
ρ2(0) can at most be 0.7). For applying this condition we have to specify the values of
the derivatives g′(0), ρ′1(0) and ρ′2(0) even though they do not appear in Eqs. (3.12)
and (3.14). We assume higher order derivatives to be zero for simplicity. The plot
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Figure 3.3 – Thermopower S from Eq. (3.13), with K = 10 (3kBT )/π2h as a
function of ρ′2(0) [in units of (kBT )−1]. Using the additional degrees of freedom
provided by the derivatives of the parameters [here we use ρ′2(0)], we gain the
control of the thermopower S without affecting the ratio Λ. The other parameters
are: ρ1(0) = 0.8, g′(0) = 0.001(kBT )−1, and ρ′1(0) = 0.1(kBT )−1.

shows that Λ is not a constant, but can be controlled by properly tuning the parameters
of the scattering matrix. Moreover, Fig. 3.2 shows that S changes by varying ρ2(0) for
fixed K. The controllability of the transport coefficients can be further increased by
fixing the values of both K and Λ using the parameters ρ1(0) and ρ2(0), and tuning the
derivatives to change the thermopower. This is shown in Fig. 3.3 where Λ and S are
plotted as a function of ρ′2(0). Notably S spans a quite large interval of values, even
changing sign. We conclude that the SPN system allows independent control of G, K
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and S. This enhanced control is at the basis of the better performance that we are
going to describe in the next Section.

3.2.2 Thermoelectric performance
In this section we compare on a statistical ground the thermoelectric performance of the
SPN system with that of a generic two-terminal normal system by randomly generating
the parameters of the scattering matrices and calculating the corresponding power factor
Q and figure of merit ZT . Within the low temperature limit (Sommerfeld expansion),

Figure 3.4 – (left) Probability histogram of the power factor Q = GS2 [in units
of k2

B/h] for the SPN system (black curve) and for the corresponding normal
two-terminal system (red curve). The maximum value of Q for the SPN setup
is about 0.5 k2

B/h, while it is about 0.2 k2
B/h for the two-terminal case. (right)

Probability histogram of the figure of merit ZT for the SPN system (black curve)
and for the corresponding normal two-terminal case (red curve). The maximum
of the SPN setup is just above 0.1, while it is about 0.05 for the two-terminal
system.

we perform a numerical simulation generating the parameters of the scattering matrix,
of both the two-terminal and the SPN systems. Such parameters are picked within
a uniform distribution in the allowed ranges given by the conditions imposed by the
unitarity of the scattering matrix2 and the Sommerfeld expansion. In Fig. 3.4 we plot

2Unitarity requires that the functions g(E), ρ1(E) and ρ2(E) are smaller than unity
for any energy E. This implies the following condition on their derivatives with respect
to energy: τ ′(E) ≤ [1− τ(E)]/c, where τ = g, ρ1, ρ2 and c is an energy scale. The same
holds for the transmission amplitude of the two-terminal setup t(E).
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the probability of occurrence of a certain value of Q (left panel) and ZT (right panel).
The plot shows that the SPN system (black histograms) has better performance than
the normal two-terminal system (red histograms) for both the power factor Q and the
figure of merit ZT . Indeed, the maximum value of Q for the SPN system is about 0.5
k2
B/h, while it is about 0.2 k2

B/h for the two-terminal one. The maximum of ZT for
the SPN system is just above 0.1, while it is about 0.05 for the two-terminal system. In
Fig. 3.5 we plot the correlations between Q and ZT for the same random data. Each
point in the plot corresponds to a particular realization of the scattering matrix of the
two-terminal or the SPN system, for which the power factor and the figure of merit are
calculated.

Figure 3.5 – Correlation between the values of Q and ZT for the same data
as for Fig. 3.4: each point corresponds to a given random realization. Red
(black) points are relative to the two-terminal (SPN) setup. The green dashed
curve represents the bound of Eq. (3.15), that holds for both the SPN and the
two-terminal system. The green solid curve, instead, represents the bound of
Eq. (3.16), that is the stronger bound given by the unitarity on the two-terminal
system.

Fig. 3.5 shows that the distribution of points presents a triangular-like shape for
the two-terminal setup. An upper bound on the power factor Q is given by the unitarity
of the scattering matrix. In fact, Q and ZT are related by the thermal conductance
as Q = (K/T )ZT and, under the Sommerfeld expansion, K is proportional to the
probability of transmission of an electron from lead N to P, which cannot exceed unity.
This yields an upper bound given by

Q ≤ 2π2k2
BZT

3h
. (3.15)

This is actually true for both the two-terminal and the SPN systems. For the two-
terminal system a stronger bound, which produces the curvature of the upper side of
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the “triangle”, is given by the constraint that must be imposed on the derivative of the
transmission amplitude with respect to energy imposed by unitarity of the scattering
matrix. This implies the following expression for the maximum of Q

Qmax =
2e2

h
Λ0ZT

(
1 +

c

eT

√
ZT

Λ2
0

)−2

, (3.16)

where c is a given energy scale of the order of kBT . Furthermore, for the two-terminal
system the power factor Q can take all the values between 0 and Qmax, thus filling
the red “triangle” of Fig. 3.5. On the other hand, in the case of the SPN system the
points are concentrated just below the line of the maximum. This is due to the fact
that the value of K/T , given by Eq. (3.14), cannot take all the values between 0 and
2π2k2

B/(3h) because of the constraints imposed on, and the relations between, the
parameters appearing in the expression.

The bound on the maximum value of ZT , instead, is given by the conditions on
the higher orders of Sommerfeld expansion, that here we impose to be at least 10 times
smaller that the leading orders for both the two-terminal and the SPN system. It
is interesting to notice that for the SPN system the points with the highest power
factor Q are also the points with the highest figure of merit ZT : the maximum power
automatically gives the maximum efficiency! In particular the points with the best
thermoelectric performance for the SPN system roughly correspond to the following
values of the scattering probabilities: normal reflection in lead N, R ' 0; normal
transmission from lead N to lead P, T ' 1

4
; Andreev reflection in lead N, RA ' 3

16
; and

Andreev transmission from lead N to lead P, TA ' 9
16
.

3.2.3 Coupled QDs in the SPN setup
We complete our analysis by assessing the thermoelectric performance of a specific
SPN system composed of three coupled single-level (non-interacting) QDs (“tridot”)
connected to a normal lead (N), a voltage probe (P) and a superconducting lead (S),
see Fig. 3.6.

The Hamiltonian describing the “tridot” reads

H =

(
He 1∆

1∆∗ Hh

)
(3.17)

where He is the Hamiltonian relative to the electrons degree of freedom, and is given by

He =

 ε1 t12 t13

t∗12 ε2 t23

t∗13 t∗23 ε3

 , (3.18)

where εi, i = (1, 2, 3), is the onsite energy of the i−th dot, while tij , {i, j} = (1, 2, 3), is
the coupling between dot i−th and dot j−th. Notice that Hh = −H∗e is the Hamiltonian
relative to the holes, while ∆ = 100 kBT is the superconducting gap. Note that the
presence of the S lead is introduced in an effective way, whereby superconductivity
is directly included in the Hamiltonian of the “tridot”. The crucial point is that
the superconductor chemical potential µ is fixed. Furthermore, for simplicity, we
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Figure 3.6 – A three coupled QDs (“tridot”) system in the SPN setup. γN and
γP label the coupling to the reservoirs N and P, respectively. The three QDs are
coupled to a superconducting lead (S), with a fixed chemical potential.

have assumed that the superconducting pairing for all the QDs is equal as though
originating from the fact that all QDs are equally coupled to the S lead. In Fig. 3.6,
γN and γP are the coupling energies to the N and P lead, respectively. In order to
make a statistical analysis we focus on random Hamiltonians, for the electron sector
He, drawn from the Gaussian Orthogonal Ensemble (GOE) and from the Gaussian
Unitary Ensemble (GUE). The former describe complex physical systems with time
reversal symmetry (TRS), while the latter describe complex systems with broken
TRS [Beenakker1997, Haake2000, Benenti2011]. The TRS breaking is encoded in
the complex part of the Hamiltonian (3.18). However this does not imply the spin
degeneracy breaking, since we can apply a small Aharanov-Bohm flux through the
plane of the “tridot” (that breaks TRS), without a Zeeman component (that would have
removed the spin degeneracy). In both cases (with and without TRS), the elements
of He are drawn from a Gaussian probability distribution N (x,∆x), where x is the
mean and ∆x is the variance. We use distributions with different mean for the diagonal
elements (QD energy levels) and for the off diagonal elements (couplings between
QDs), in order to have a band shift. The former are drawn from a Gaussian probability
distribution N (kBT, 103kBT ) (mean equal to kBT , and variance equal to 103kBT ). The
latter are drawn from a Gaussian probability distribution N (0, 103kBT ). The variance
is chosen in order to obtain a smooth energy profile for the transmission probabilities
and to be under the Sommerfeld expansion. From the Hamiltonian (3.17) the Green
function of the system is calculated for fixed values of γN and γP . The 4× 4 scattering
matrix (there is spin degeneracy) is finally calculated from the Green function using the
Fisher-Lee relation [Datta1995]. Note that the two-terminal system, to be compared
with the SPN setup, is simply described by the Hamiltonian He. For each random
realization of the Hamiltonian of Eq. (3.17) we compute the power factor Q and the
figure of merit ZT . The results are shown in Fig. 3.7, in both the panels each point
in the Q − ZT plane represents a single realization. We notice that both Q and ZT
are one order of magnitude larger in the SPN case with respect to the two-terminal
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(a)

(b)

Figure 3.7 – Correlation between the power factor Q = GS2 and the figure of
merit ZT relative to “tridot” systems for the SPN setup (black points) and the
two-terminal setup (red points). The green curve corresponds to the bound of
Eq. (3.15), given by the unitarity of the scattering matrix and set a maximum
value for Q as a function of ZT . In panel (a) we show the correlation for the
Gaussian Orthogonal Ensemble (GOE), while in panel (b) for the Gaussian
Unitary Ensemble (GUE). Both plots show that for the SPN setup both Q and
ZT are one order of magnitude larger with respect to the corresponding values
for the two-terminal system. Moreover it is possible to see that the increase
of the performance is not due to the breaking of the TRS. The plot refers to
105 Hamiltonian realizations, taking γN = γP = γ = 103 kBT .
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configuration for both the GOE Hamiltonian in Fig. 3.7(a), and the GUE Hamiltonian
in Fig. 3.7(b). This shows a significant enhancement, on a statistical ground, in the
performance of the SPN with respect to the two-terminal system. The distribution
of the points is similar to that of Fig. 3.5. Since for the “tridot” model the allowed
values of ZT (under Sommerfeld expansion) are much smaller than the values that
we obtained from the model in the previous section (see Fig. 3.5), the bound on Q of
Eq. (3.16) reduces to that of Eq. (3.15). Instead, the bound on ZT is again set by
the Sommerfeld approximation. Here we notice that for the two-terminal system we
cannot see the bound given in Eq. (3.16) because of the small values of ZT .

3.3 Summary
In this chapter we have analyzed the performance of a thermal machine which, by
involving three reservoirs, allows for the implementation of a spatial separation between
heat and charge currents in linear response. Such machine can be naturally realized by
connecting a conductor to a superconducting lead, a voltage probe and a normal lead
(SPN system). Interestingly, the linear-response transport equations, written in terms of
the Onsager matrix, turn out to be formally equal to those of a two-terminal conventional
system. Using this property we have made a comparison between the performance of
these two thermal machines in terms of the power factor Q (that controls the maximum
extracted power), and the figure of merit ZT (that controls the efficiency at maximum
power and the maximum efficiency). Within the scattering approach we have described
the SPN system with a parametrized scattering matrix. We have shown that in the low
temperature limit (where the Sommerfeld expansion holds) the SPN system violates the
Wiedemann-Franz law and allows, to some extent, an independent control of electrical
conductance, thermal conductance and thermopower (i.e. of heat and charge currents).
To assess the consequences of this on the thermoelectric performance of the SPN
system we have made a statistical analysis by taking random values, over a uniform
distribution, of the parameters contained in the scattering matrix. We have thus shown,
on statistical grounds, that the SPN system exhibits much larger values of Q and ZT
with respect to the two-terminal counterpart. Further improvements (more than one
order of magnitude) of the thermoelectric performance of the SPN setup has been
confirmed on a specific physical system composed of three coupled quantum dots. We
believe that our results can be relevant in the experimental activity on thermoelectricity
of nanoscale structures, which are typically conducted at low temperatures.
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3.A Voltage- and temperature-probe setup
By imposing the thermal probe condition JhN = 0 on reservoir N and the voltage probe
condition JcP = 0 on reservoir P, one can solve the second and third rows of Eq. (3.1)
for the two biases XT

N and Xµ
P , that will not depend directly on the currents JcN and

JhP , and find: (
XT
N

Xµ
P

)
= −

(
L22 L23

L32 L33

)−1(
L21 L24

L31 L34

)(
Xµ
N

XT
P

)
. (3.19)

From the first and forth rows of Eq. (3.1) one can define an effective two-terminal-like
Onsager matrix, with (

JcN
JhP

)
=

(
L′11 L′12

L′21 L′22

)(
Xµ
N

XT
P

)
, (3.20)

where the primed Onsager coefficients are obtained by substituting the expressions
of Eq. (3.19) into Eq. (3.1). What has been given above should be considered as a
definition of HCCS and not a way to implement it.





Chapter 4
Magnetic Thermal Switch for
Heat Management at the
Nanoscale

Heat management at the nanoscale is nowadays one of the leading research topics
since to the overheating of microprocessor components is currently [Fagas2014]

the most limiting factor in the development of information technology, which motivates
the concern in finding alternative ways to control and evacuate heat in such devices.
Controlling the heat flows in a nanostructure would be os extreme importance in
many different scientific areas, including refrigeration and thermometry [Giazotto2006],
coherent caloritronics [Martínez-Pérez2014], heat rectification [Martínez-Pérez2015],
thermoelectric energy conversion [Snyder2008, Shakouri2011, Benenti2013, Jordan2013,
Sánchez2013, Sothmann2014], and information processing by utilizing phonons [Li2012].

Theoretical works led to the possibility of controlling the heat currents and devise
heat diodes [Terraneo2002] and transistors [Li2006]. First experimental implementations
exploiting phononic [Chang2006, Kobayashi2009, Tian2012], electronic [Scheibner2008,
Martínez-Pérez2014, Saira2007], or photonic [Chen2014] thermal currents were also
reported.

It has been shown that the presence of a magnetic field breaking time reversibil-
ity could in principle enhance the thermoelectric efficiency [Benenti2011, Saito2011,
Balachandran2013, Sánchez2015a, Sánchez2015b, Brandner2013a, Brandner2013b]. In-
terestingly a magnetic field allows for the simultaneous presence of reversible and
irreversible heat currents. Indeed, in a generic multi-terminal setup, we can split the
heat current Jhk , flowing from the k-th terminal to the system, into the sum of a re-
versible and an irreversible part, Jhk = J

h(r)
k +J

h(i)
k . Although the reversible component

changes sign by reversing the magnetic field B, the irreversible component is invariant
under the inversion B→ −B. Within the linear response regime, it can be shown that
only the irreversible part of the current contributes to the entropy production. On
the other hand the reversible part vanishes for B = 0, whereas for B 6= 0 it becomes
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arbitrarily large, giving rise, among other things, to the possibility of dissipationless
transport, i.e., to a thermal machine operating at the Carnot efficiency with finite power
output [Benenti2011].

We take advantage of the presence of reversible components of the heat currents to
propose a magnetic thermal switch, a Boolean setup which allows the control of heat flow
by making use of an external magnetic field as a selector of the working configuration.
For a generic multi-terminal device operating in the linear response regime, we show
that by properly tuning the voltage biases we can access a broad spectrum of possible
operating conditions, each of these being defined in terms of the behavior of the heat
currents flowing through the system. Namely, it is possible to design a programmable
device for the management of heat flows, allowing several Boolean features, such as
selected splitting, on/off switching, reversal and swap of the heat currents. For each
feature, the magnetic field acts as a knob selecting one of the two possible working
conditions, without the need to modify the reservoirs parameters (temperatures and
electrochemical potentials): The switching from one working condition to the other is
obtained by inverting the direction of the magnetic field.

A significant advantage of our approach is the absence of temperature constraints:
As long as the system operates in linear response, our results hold. In particular,
the method we present is valid whether the heat is transported by electrons, by
phonons, or by both. Thus, remarkably, it constitutes a possible way of manipulating
phononic heat currents using a magnetic field. From a practical point of view, the
implementation of our theoretical results would require a full characterization of the
Onsager matrix, the major difficulty being the measurement of the heat currents at
the nanoscale, a challenge for which, however, important advances have been recently
reported [Blanc2013, Meier2014]. Moreover, assuming the system in contact with
regions having finite thermal capacitance rather than with ideally infinite reservoirs,
the magnetic field switching could be used to control the temperatures of such regions,
allowing for instance the initialization of qubit states or the implementation of thermal
logic gate operations [Li2012]. We finally remark that there exists, in the literature,
a variety of works on interferometer-based systems which, under broken time-reversal
symmetry, would constitute natural physical realizations of our model (see, for instance,
Refs. [Ji2003, Neder2006, Neder2007, Roulleau2007, Giovannetti2008, Deviatov2008,
Altimiras2010, Hofer2015, Sothmann2014, Sánchez2015a, Sánchez2015b]).

The chapter is structured as follows: In Section 4.1 we describe the theoretical
implementation of the magnetic thermal switch for a general multi-terminal setup. Then
in Section 4.2 we present some results of numerical simulations using an interferometer
in contact with three reservoirs as a toy model. Finally, we draw our conclusions in
Section 4.3. Details of the calculations and the derivation of the scattering matrix of
the interferometer are gathered in Appendix 4.3.

4.1 Magnetic thermal switch
In this section we discuss how a magnetic thermal switch can be implemented in a general
multi-terminal setup. Let us consider a generic system in contact with n reservoirs at
temperatures Tk = T + ∆Tk and electrochemical potentials µk = µ + ∆µk, T and µ
being some equilibrium (reference) values. Let Jk = (Jck, J

h
k ) denote the particle (Jck)
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and heat (Jhk ) currents from the k-th terminal to the system and Xk = (Xµ
k , X

T
k ) =

(∆µk/T,∆Tk/T
2) the conjugated affinities. Within linear irreversible thermodynamics,

the fluxes J = (J1, ...,Jn−1)T and the conjugated affinities X = (X1, ...,Xn−1)T are
related as follows:

J = LX, (4.1)
where L is the Onsager matrix of kinetic coefficients [Callen1985] of dimension 2(n−
1)× 2(n− 1). Note that, due to the constraints of particle and energy conservation, we
can determine Jn from the fluxes J1, ...,Jn−1. Moreover, we set the n-th reservoir as
the reference one, with temperature T and electrochemical potential µ. In the presence
of a magnetic field B, time-reversal symmetry is broken and the Onsager matrix L
in general is not symmetric [Callen1985, Benenti2011, Saito2011]. The currents can
be separated into reversible components (which change sign by reversing B → −B)
and irreversible components (which are invariant with respect to the inversion B →
−B) [Brandner2013a, Brandner2013b]:

J(r) ≡ L(B)− LT (B)

2
X, J(i) ≡ L(B) + LT (B)

2
X. (4.2)

By virtue of the Onsager-Casimir relations Lij(−B) = Lji(B), these currents have
the properties that J(r)(B) = −J(r)(−B) and J(i)(B) = J(i)(−B). In general these
properties imply that J(B) = J(r)(B) + J(i)(B) 6= J(r)(−B) + J(i)(−B) = J(−B).

The idea of the present proposal is to set proper working conditions that enforce a
given target functional dependence between the thermal currents evaluated at B and
−B. For instance we may ask the current Jhk (B) we get at the k-th contact, to be
equal to twice the current Jhk′(−B) one would get at the k′-th contact when flipping the
orientation of the magnetic field. More generally, given a subset K of the n terminals
of the system, we will write our target functional dependence in the form of a linear
constraint,

Jhk (−B) =

n−1∑
k′=1

x
(target)
kk′ Jhk′(B), ∀k ∈ K , (4.3)

where x(target)
kk′ is an assigned (n0 − 1)× (n− 1) real matrix, with n0 ≤ n− 1 being the

number of elements of K. This allows us to define different Boolean working conditions
which, while maintaining constant all the other system parameters, can be activated by
simply operating on the relative orientation of the device with respect to the external
magnetic field: Special instances of these devices are explicitly discussed in the following
subsections.

Once the Onsager matrix Lij(B) and the coefficients x(target)
kk′ are given, one can

satisfy Eq. (4.3) by properly tuning the components of the affinity vector X. As a
matter of fact, since the conditions (4.3) are at most n− 1 and the total number of
the affinity parameters is 2(n− 1), we can fulfill the former by only using half of the
latter. In what follows we exploit this freedom to fix the values of the thermal affinity
components {XT

k }’s on each of the reservoirs, whereas using the {Xµ
k }’s to enforce the

constraint1 (4.3). When n0 = n− 1, i.e., if we impose constraints on the Jhk (−B)’s of

1The only limitation being not to set all of the {XT
k }’s to be null: This configuration

in fact only admits {Xµ
k } = 0 ∀ k, hence no currents would flow through the device. In

this scenario the {Xµ
k }’s become explicit functions of the temperatures {XT

k } and of
the Onsager coefficients Lij .
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all the terminals of the system, the procedure has the limitation of making the device
operate only for certain precise values of the currents flowing from each k-th reservoir.
Indeed, imposing n− 1 relations of the form of Eq. (4.3) univocally determines all the
{Xµ

k }’s and hence, assuming fixed temperatures, also all the Jhk (±B)’s. This limitation
is naturally overcome when n0 is strictly smaller than n − 1. For instance, one may
choose to impose only one condition (i.e., n0 = 1) in order to leave all but one of the
{Xµ

k }’s unspecified. In particular, we could solve for Xµ
1 to obtain:

Xµ
1 = a2X

µ
2 + . . .+ an−1X

µ
n−1 + f(XT

1 , . . . , X
T
n−1), (4.4)

where ak are some functions of the Onsager matrix elements Lij , whereas the func-
tion f(XT

1 , . . . , X
T
n−1) depends on the temperatures and on the Lij . Setting Xµ

1 =
const, Eq. (4.4) defines a (n-2)-dimensional hyper-surface in the space spanned by
(Xµ

2 , . . . , X
µ
n−1). Assuming constant temperatures, varying the electrochemical po-

tentials along this surface allows changing the values of the heat currents, without
compromising the working operation of the device. In this way, we use the extra degrees
of freedom given by the reservoirs with free electrochemical potential to widen the
operational range of the device to many values of the heat currents

4.1.1 Heat current multiplier

In general, we may design a system in which the heat current in the k-th terminal
becomes a fraction or a multiple of the original value when the magnetic field is
reversed, which corresponds to having a diagonal matrix x(target)

kk′ = δkk′xk in Eq. (4.3):
Jhk (−B) = xkJ

h
k (B). Specifying a value for xk makes the system operate as a Boolean

heat current multiplier in which the two (Boolean) configurations correspond to an
upward or a downward magnetic field. A illustration of such an operation for a three-
terminal device is shown in Fig. 4.1(a).

On/off switch

Let us consider the specific case of a heat current multiplier in which xk = 0: The
device behaves as an on/off switch for the k-th terminal, which means Jhk (−B) =

J
h(r)
k (−B) + J

h(i)
k (−B) = 0, whereas Jhk (B) = J

h(r)
k (B) + J

h(i)
k (B) 6= 0. It is then clear

that Jh(i)
k (B) and Jh(r)

k (B) have the same magnitude and the same sign and add up
giving a finite current, whereas the two terms cancel out upon magnetic field reversal,
resulting in a vanishing heat current. This principle could be used, for instance, to
implement a n-terminal selector for the heat path in which an upward magnetic field
allows the flow of heat through l channels while blocking it into the remaining (n− l)
ones, and vice-versa by reversing B → −B. A schematic of such an operation for a
three-terminal device is shown in Fig. 4.1(b).



4.2 Three-terminal model 77

Fully reversible heat

Another interesting configuration is obtained by setting xk = −1 in which case the heat
current is fully reversible2 (Jh(i)

k = 0). As an application, one could conceive a device in
which the heat currents flowing through some (or all) the channels simultaneously flip
their sign upon reversing the magnetic field. This, among other things, would offer the
possibility of switching from a “refrigerator” mode for a specific reservoir to a “thermal
engine” one by simply using the external magnetic field, without needing to modify the
gradients in the reservoirs. A schematic of such an operation for a three-terminal device
is shown in Fig. 4.1(c). Note that, by analogous considerations, xk = 1 corresponds
to the case of fully irreversible heat currents, which is however much less interesting
because in this situation reversing the magnetic field has no effect.

4.1.2 Heat current swap

The matrix x(target)
kk′ which defines our target (4.3) does not need to be diagonal. For

instance let us consider the case where x(target)
kk′ = x

(target)
k′k = 1 and x(target)

kk = x
(target)
k′k′ =

0, which implements a heat current swap between reservoirs k and k′. This configuration
couples heat currents flowing from different terminals, whereas in the previous ones
the conditions were imposed on each single reservoir independently. Such a choice for
x

(target)
kk′ results in having Jhk (B) = Jhk′(−B) and Jhk′(B) = Jhk (−B), i.e., the two heat

currents are swapped by reversing the magnetic field, as pictorially shown in Fig. 4.1(d)
for a three-terminal case. Besides, we notice that in this situation the reversible and
irreversible components of the heat currents satisfy the conditions: Jh(i)

k = J
h(i)

k′ and
J
h(r)
k = −Jh(r)

k′ .
It is worth stressing that in a generic multi-terminal setup different working

conditions can co-exist: For instance, some channels can be configured as heat current
selectors, whereas others may operate as multipliers, make heat reversal or swap.

4.2 Three-terminal model
In order to illustrate the effects discussed in the previous section, we study a simple
noninteracting model consisting of a three-terminal interferometer sketched in Fig. 4.2.
We assume for simplicity low temperatures, so that electrons are the only heat carriers.
Under these conditions, the electronic transport through the device is coherent, which
allows us to follow a scattering approach [Datta1995]. The system consists of an
interference loop, for example, made by two clean wires and connected to three electronic
reservoirs with temperatures Tk and electrochemical potentials µk (k = 1, 2, 3). A
magnetic field B orthogonal to the interferometer plane generates a magnetic flux Φ
piercing the loop, which will be the relevant parameter in the following discussion
(from here on, we will assume Φ to be expressed in units of h/2e). A scattering
region Ss is inserted into channel 1, having the effect of breaking the particle-hole
symmetry E → −E (having set µ = 0 as the reference zero energy) in order to have

2Note, however, that in general the entropy production rate is nonzero, due to the
irreversible component of the particle current.
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Figure 4.1 – Examples of operational principles for a three-terminal magnetic
thermal switch. The different panels illustrate the heat-current (a) multiplier,
(b) selector, (c) reversal and (d) swap configurations, respectively. The working
operation is selected by choosing either +B or −B. Solid[dashed] lines correspond
to Jh(+B)[Jh(−B)], whereas black(red) lines refer to currents flowing from
terminal 1(2). Notice that in panel (a) lines of different thicknesses have been
used to emphasize the increase/decrease of the heat currents magnitude before
and after the magnetic field reversal.

finite non-diagonal Onsager coefficients. The specific choice of such scatterer is not
important for the present discussion, as it does not alter the results at a qualitative level.
Further details on the computation of the scattering matrix of this system are given in
Appendix 4.A. Following the notation of the previous section, we set the reservoir 3 as
the reference one ({µ3, T3} ≡ {µ, T}), and we express the particle and heat currents
flowing from the other two reservoirs via the following 4× 4 linear system [Mazza2014]:

Jc1
Jh1
Jc2
Jh2

 =


L11 L12 L13 L14

L21 L22 L23 L24

L31 L32 L33 L34

L41 L42 L43 L44



Xµ

1

XT
1

Xµ
2

XT
2

 . (4.5)

The coefficients Lij are functions of the magnetic flux Φ and therefore of the applied
magnetic field B. Their explicit expressions are given by Eqs. (4.16), derived in
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Figure 4.2 – Sketch of the three-terminal magnetic thermal switch studied
numerically: an electronic interferometer, pierced by a magnetic flux Φ and in
contact with three reservoirs at different temperatures Tk and electrochemical
potentials µk (k = 1, 2, 3). The scattering region Ss inside channel 1 breaks
the particle-hole symmetry. L+ and L− are the interference paths and must be
different in order to observe interference at the end of the device.

Appendix 4.B. The reversible (r) and irreversible (i) components of the heat currents
Jh1 and Jh2 are as follows3:

J
h(r)
1 =

L23 − L32

2
Xµ

2 +
L24 − L42

2
XT

2 ,

J
h(i)
1 = L21X

µ
1 + L22X

T
1 +

L23 + L32

2
Xµ

2 +
L24 + L42

2
XT

2 ,

J
h(r)
2 =

L41 − L14

2
Xµ

1 +
L42 − L24

2
XT

1 ,

J
h(i)
2 =

L41 + L14

2
Xµ

1 +
L42 + L24

2
XT

1 + L43X
µ
2 + L44X

T
2 .

(4.6)

Once the Lij coefficients for a given magnetic flux Φ0 are calculated, for fixed XT
1,2

different Boolean working conditions can be achieved by tuning the electrochemical
potentials (and hence Xµ

1,2) in order to impose Eq. (4.3) in both channels 1 and 2.
Then, the switch is realized by reversing the magnetic field B→ −B, and hence the
flux Φ0 → −Φ0. In order to illustrate the effects outlined in the previous section, we
focus here below on the same four working conditions, by properly choosing the values
of x(target)

kk′ appearing in Eq. (4.3). The numerical results are summarized in Fig. 4.3:
Notice that both the heat (symbols) and the particle (dashed lines) currents are shown,
to stress that they are not constrained to follow the same behaviors.

3We have used the fact that, due to the symmetries of the scattering matrix, the
Onsager matrix is block diagonal, and therefore L21 = L12 and L43 = L34.
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Figure 4.3 – Working operations of the three-terminal magnetic thermal switch
discussed in the text. The heat currents through channels 1 (black squares)
and 2 (red circles) are shown as a function of the magnetic flux Φ enclosed
in the interferometer. For completeness, the particle currents (black and red
dashed lines) are also shown, to emphasize that they do not follow the same
behaviors as the heat currents. (a) Heat current multiplier : By reversing Φ from
Φ0 = −π/2 to −Φ0 = +π/2, Jh1 is halved whereas Jh2 is doubled. (b) Heat path
selector : For Φ0 = −π/2, Jh1 is finite whereas Jh2 is blocked. The situation is
opposite by reversing Φ to −Φ0. (c) Heat current reversal : By reversing Φ from
−π/2 to +π/2, the signs of both Jh1 and Jh2 flip. (d) Heat current swap: By
reversing Φ from −3π/4 to +3π/4, the values of Jh1 and Jh2 are interchanged.
The parameters are kBT = 1, µ = 0, XT

1 = 0.025, XT
2 = 0.01 [except in (c),

where XT
1 = −0.005 and XT

2 = 0.005] and the difference between the interference
paths in the upper/lower interferometer arms is ∆(kL) ≡ k(L+ − L−) = π/2.
Dotted blue lines are guides to the eye at Jh = 0, whereas gray lines highlight
the magnetic flux values Φ = ±Φ0 selecting the two Boolean configurations.

• Heat current multiplier, (x1, x2) = (1/2, 2). In this case the heat currents satisfy:

Jh1 (−B) =
1

2
Jh1 (+B),

Jh2 (−B) = 2 Jh2 (+B), (4.7)

that is, by reversing the magnetic field Jh1 is halved whereas Jh2 is doubled. Under
these conditions, by using Eqs. (4.3) and (4.6), it is straightforward to see that
the reversible and irreversible components of the heat currents are related via:
J
h(i)
1 (B) = 3J

h(r)
1 (B) and J

h(i)
2 (B) = −3J

h(r)
2 (B). The behavior of the heat

currents flowing through the interferometer as a function of the magnetic flux in
this configuration is shown in Fig. 4.3(a) for the interferometer described above.

• Heat path selector, (x1, 1/x2) = (0, 0). In this case the heat currents satisfy
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Jh1 (B) 6= 0, Jh2 (B) = 0 and Jh1 (−B) = 0, Jh2 (−B) 6= 0, i.e., for an upward
magnetic field, heat transfer is allowed between the system and reservoir 1, while
being blocked between the system and reservoir 2. This situation is reversed
by changing B → −B (Φ0 → −Φ0). Furthermore, according to Eqs. (4.3)
and (4.6), the reversible and irreversible components of the heat currents are
related via: Jh(i)

1 (B) = J
h(r)
1 (B) and Jh(i)

2 (B) = −Jh(r)
2 (B). The behavior of

Jh1 and Jh2 is shown in Fig. 4.3(b).

• Heat current reversal, (x1, x2) = (−1,−1). In this case the heat currents are
purely reversible, that is, Jh(i)

1 = J
h(i)
2 = 0. Reversing the magnetic flux

through the interferometer makes them simultaneously change their sign. The
behavior of Jh1 and Jh2 is shown in Fig. 4.3(c). Note that at Φ0 = −π/2 both
Jh1 (black squares) and Jc1 (black dashed line) are positive. This, together with
the fact that Xµ

1 > 0 in this case, means that the system is acting as a local
refrigerator [Entin-Wohlman2015] for the reservoir 1, exploiting a positive ∆µ1

to extract heat from a cold bath (XT
1 < 0). Conversely, at Φ = −Φ0 = π/2, both

Jh1 and Jc1 have changed their sign: the system is now performing work driving
particles against ∆µ1, thus operating as a thermal engine. Notice that the same
reasoning does not hold for reservoir 2 in which, upon reversing the magnetic
flux, the sign of Jh2 flips whereas that of Jc2 does not.

• Heat current swap, (x12, x21) = (1, 1). The heat currents satisfy Jh1 (B) =
Jh2 (−B) and Jh2 (B) = Jh1 (−B), that is, the two heat currents are swapped by
reversing the magnetic field. Furthermore, according to Eqs. (4.3) and (4.6),
the reversible and irreversible components of the heat currents are related via:
J
h(i)
1 (B) = J

h(i)
2 (B) and Jh(r)

1 (B) = −Jh(r)
2 (B). The behavior of Jh1 and Jh2 is

shown in Fig. 4.3(d).

4.3 Summary
We have shown that a magnetic thermal switch can be implemented within the framework
of linear response, taking advantage of the generic existence of reversible and irreversible
heat currents when time reversal symmetry is broken. Such a device could allow the
implementation of several Boolean features, such as on/off switching, reversal, selected
splitting, and swap of the heat currents. For each feature, the switching from one
working condition to the other is obtained by inverting the direction of an applied
magnetic field. Quite interestingly, it is possible to change the operating mode of the
device (from a power generator to a refrigerator) with respect to one of the reservoirs by
inverting the external driving parameter, i.e., the magnetic field, at fixed electrochemical
potentials and temperatures of the reservoirs.

A further advantage of our magnetic switch would arise in the perspective of
conceiving a more complex programmable system, made of (for instance) an array of
N simpler subsystems. These may be set up to operate in a variety of independent
configurations, but always defined in terms of conditions of the form Eq. (4.3). We
could imagine designing an array of N elements that are all initialized in the same state
(say, for upward magnetic field B), but that upon reversing B→ −B go to (possibly
all different) final states. We stress once more that acting on a single parameter - the
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magnetic field - would be enough to achieve this operation and to reinitialize them in a
subsequent moment, if needed.

Note that, although we have illustrated the magnetic thermal switch for a low-
temperature interferometer model, with the heat carried by the electrons, the mechanism
discussed in this chapter is generic for any system with the time-reversal symmetry
broken by a magnetic field. A magnetic thermal switch could be in principle implemented
also when both fermionic and bosonic reservoirs are present. Indeed, as shown in
Ref. [Entin-Wohlman2012] due to the electron-phonon coupling the Onsager kinetic
coefficients connecting the phononic heat currents from the bosonic reservoirs to the
affinities for the fermionic terminals, in general are not even functions of the magnetic
field. As a consequence, the phononic heat current generally exhibits a reversible
component, and our theory can be applied.
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4.A Modeling the interferometer
In this section we outline the procedure followed to compute the scattering matrix
of our interferometric system. We start by considering an interferometer realized by
connecting two four-arms beam-splitters via two clean wires (see Fig. 4.4). For simplicity,
we assume the beam splitters to be identical and symmetric, that means, each one is
described by a scattering matrix of the form:

Sbs =


r11 t12 t13 t14

t21 r22 t23 t24

t31 t32 r33 t34

t41 t42 t43 r44

 =

=


0 1/

√
2 1/

√
2 0

1/
√

2 0 0 1/
√

2

1/
√

2 0 0 −1/
√

2

0 1/
√

2 −1/
√

2 0

 . (4.8)

The matrix Sbs describes a 50:50 beam splitter of electron waves, for which all the
reflection terms are zero, and such that particles entering through one arm can be
transmitted into two of the other three, with equal probability one half. According
to the notation of Fig. 4.4, we have to compose the scattering matrices of the two
individual beam splitters with the free propagation phase terms associated with the two
interference paths. These terms are products of both the geometric (Aharonov-Bohm)
phase and the dynamical phase exponentials:

f25 = f+
g × f+

d , f38 = (f−g )∗ × f−d ,

f52 = (f+
g )∗ × f+

d , f83 = f−g × f−d , (4.9)

where f+
g f
−
g = exp{iΦ}, f±d = exp{ikL±}, the ± signs denote the upper (+) and lower

(-) interference arms of lengths L±, the complex conjugation accounts for the electron
traveling direction, Φ denotes the magnetic flux enclosed in the interferometer and
k is the Fermi wavevector. For simplicity we neglect the energy dependence of the
free-propagations. The resulting scattering matrix describes the propagation among
channels 1,4,6 and 7, and reads

S
(1)
i =


0 0 t16 t17

0 0 t46 t47

t61 t64 0 0
t71 t74 0 0

 , (4.10)

where the various coefficients tpq account for the different possible paths along which
particles can travel from p to q,

t16 = t12f25t56 + t13f38t86, t17 = t12f25t57 + t13f38t87,

t46 = t42f25t56 + t43f38t86, t47 = t42f25t57 + t43f38t87,

t61 = t65f52t21 + t68f83t31, t71 = t75f52t21 + t78f83t31,

t64 = t65f52t24 + t68f83t34, t74 = t75f52t24 + t78f83t34. (4.11)
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Now, since we are interested in a three-terminal configuration, we impose that one of
the channels (say, channel 4) behaves as a purely reflective mirror characterized by a
reflection amplitude r = −1. The interferometer scattering matrix thus reduces to a
3× 3 matrix,

S
(2)
i =

r′11 t′16 t′17

t′61 r′66 t′67

t′71 t′76 r′77

 =

 0 t16 t17

t61 t64 r t46 t64 r t47

t71 t74 r t46 t74 r t47

 . (4.12)

Finally, in order to break the particle-hole symmetry, we insert in channel 1 an energy-
dependent scattering region, described by a scattering matrix

Ss =

(
ρ iτ
iτ ρ

)
, (4.13)

where ρ, τ ≥ 0 and such that

τ =

{
1, if E > 0

0, elsewhere,
(4.14)

with ρ2 = 1 − τ2. This energy step would naturally be implemented using a well
tuned electronic constriction, such as a quantum point contact [Houten1992]. The final
expression for the scattering matrix of the whole system is as follows:

S =

r′′11 t′′16 t′′17

t′′61 r′′66 t′′67

t′′71 t′′76 r′′77

 =

=

 ρ iτ t′16 iτ t′17

iτ t′61 r′66 + t′61 ρ t
′
16 t′67 + t61 ρ t

′
17

iτt′71 t′76 + t′71 ρ t
′
16 r′77 + t71 ρ t

′
17

 . (4.15)

It is worth observing that, having initialized all the rpq and tpq in Eq. (4.8), the
remaining (relevant) free parameters in the scattering matrix above are the difference
between the paths in the upper/lower interference arms, ∆L = L+ − L−, and the
magnetic flux enclosed in the interferometer loop, Φ [see Eq. (4.9)].

4.B Calculation of the Onsager coefficients
We set, for simplicity, channel 7 (see Fig. 4.4) as the lead connected to the reference reser-
voir. Moreover, we set the relative dynamical phase k∆L = π/2 in order to maximize
the effect of the sign flip of B. Using the Landauer-Büttiker formalism[Landauer1957,
Büttiker1986] and the scattering coefficients from Appendix 4.A, we compute the
Onsager coefficients,

L11 =
T

h

∫
dE (−∂Ef) τ2,

L12 =
T

h

∫
dE E (−∂Ef) τ2 = L21,
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Figure 4.4 – Sketch of the system used to model the interferometer discussed
in Sec. 4.2. Two identical four-arm beam splitters are connected via two clean
electronic waveguides of lengths L+ and L−, forming an interference loop which
is pierced by a magnetic flux Φ. A scatterer Ss is inserted into arm 1 in order to
break the particle-hole symmetry. The numbers from 1 to 8 refer to the arms of
the beam splitters and label the transmission and reflection amplitudes tij and
rij (in particular, channel 4 is assumed to be totally reflective). The system is
connected to three electronic reservoirs R1, R2, and R3.

L22 =
T

h

∫
dE E2 (−∂Ef) τ2,

L33 =
T

h

∫
dE (−∂Ef)

[
1− 1

4
cos2 Φ (1 + ρ)2

]
,

L34 =
T

h

∫
dE E (−∂Ef)

[
1− 1

4
cos2 Φ (1 + ρ)2

]
= L43,

L44 =
T

h

∫
dE E2 (−∂Ef)

[
1− 1

4
cos2 Φ (1 + ρ)2

]
,

L13 =
T

h

∫
dE (−∂Ef)

[
−1

2
τ2 (1 + sin Φ)

]
,

L14 =
T

h

∫
dE E (−∂Ef)

[
−1

2
τ2 (1 + sin Φ)

]
= L23,

L24 =
T

h

∫
dE E2 (−∂Ef)

[
−1

2
τ2 (1 + sin Φ)

]
,
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L31 =
T

h

∫
dE (−∂Ef)

[
−1

2
τ2 (1− sin Φ)

]
,

L41 =
T

h

∫
dE E (−∂Ef)

[
−1

2
τ2 (1− sin Φ)

]
= L32,

L42 =
T

h

∫
dE E2 (−∂Ef)

[
−1

2
τ2 (1− sin Φ)

]
, (4.16)

where f = [exp{E/kBT}+ 1]−1 is the equilibrium Fermi distribution at temperature
T and µ = 0.



Chapter 5
Thermoelectric efficiency for
multi-level interacting
quantum dots

The recent growing number of experiments on thermoelectric systems at the nano-
scale pushed the theoretical research towards the study of more and more complex
designs. When the nanostructure is very small the effect of the electron-electron
Coulomb interaction on thermal machines becomes important. This issue has received
a growing attention recently [Liu2010, T Kuo2012, Muralidharan2012, Karwacki2013,
Torfason2013, Koch2014, Lim2014, Chen2015].

A very large literature exists on thermoelectricity with non-interacting quantum
dots, that has already been review in this Thesis in Section 1.5. However, very few papers
deal with the thermoelectricity of interacting quantum dots [Boese2001, Trocha2012,
Torfason2013, Koch2014, Monteros2014, Buddhiraju2015], and the majority of them
study the problem of a single level (or two levels) interacting quantum dot [Liu2010,
Muralidharan2012]. In this Chapter we extend the existing knowledge of the two-
terminal one (or two) levels quantum dot to multi-level and multi-terminal formalism.

The aim of this work is to study the role that the electron-electron interaction plays
in quantum dot based thermal machines. In particular we want to study the behavior of
a three-terminal system when such an interaction enters the game. The system that we
analyze is a multi-level quantum dot in the limit of sequential tunneling (very narrow
level broadening), attached to two or three terminals. We first derive the expression
for the heat and particle currents for a two-terminal system, by following the work
done in Refs. [Beenakker1991, Beenakker1992]. Then we generalize those equations to
three-terminal systems using the expressions derived for the three-terminal Onsager
problem in Chapter 2 for the maximum power and the efficiency at maximum power.
We will established how the Coulomb interaction affects the thermodynamics relevant
quantity (power and efficiency).
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This chapter is organized as follows. In Section 5.1 we will derive the analytical
formulas for the heat and charge currents within linear response for the multi-level quan-
tum dot. In Section 5.2 we will recover the well known results of Ref. [Beenakker1992]
for the thermopower and the electrical conductance of a two-terminal systems and we
will complete it with the study with the efficiency and the efficiency at maximum power.
Then three-terminal systems follow: we will show how a third terminal could be useful
to enhance both the efficiency and the power of a quantum thermal machine also when
the Coulomb interaction plays a significant role. Finally Section 5.3 is devoted to the
conclusions.

5.1 Three-terminal model

5.1.1 General framework
In this section, generalizing the paper of Beenakker [Beenakker1992], we will derive the
linear response expressions for the heat and charge currents of a three-terminal system
attached to an interacting quantum dot. The quantum dot is a confined region, with
discrete levels that can host zero or one electron, which is weakly coupled (via tunnel
barriers) to three electron metallic reservoirs, described by the Fermi distribution

fi(E − µi) =

[
1 + exp

(
E − µi
kBTi

)]−1

(5.1)

where µi is the chemical potential and kBTi is the temperature in the i-th lead,
i = {1, 2, 3}. We assume that between the reservoirs there is a small temperature
difference with respect to a reference value (although the reservoir itself is in thermal
equilibrium) ∆Ti = Ti − T as well as a small voltage difference ∆µi = −(µi − µ). The
values of temperature and chemical potential of the third reservoir have been taken
as the reference values: µ = µ3 and T = T3. The quantum dot has single-electron
energy level at energies Ep (p = 1, 2, . . . ). The levels are labeled in ascending order and
measured relative to the bottom of the potential well that defines the quantum dot
(EBW ). Because the number of electrons in the QD, that we label with N , can only
take integer values, an electrostatic potential difference φ(Q) is developed between the
QD and the reservoirs even if µi = 0 (Q = −eN is the charge on the QD). We assume
that the QD has a capacitance C independent on the number of electrons N in the QD.
Then φ is expressed in terms of this capacitance: φ(Q) = Q/C + φext, including also a
contribution φext from external charges. The electrostatic energy then takes the form

U(N) =
(Ne)2

2C
−Neφext. (5.2)

We denote with γi the tunnel rates from reservoir i, and assume that each level Ep is
coupled to the reservoirs in the same way (no dependence on p in the γ’s). This will
have important consequences on the local and non local thermopowers, that we will
discuss later. At this point we have to make an assumption to simplify the calculations:
we consider the thermal energy kBT and the level spacing ∆Ep = Ep+1 − Ep much
grater than the level width h(γ1 + γ2 + γ3), so that virtual tunnel processes can be
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disregarded. With these assumptions we can describe the transport through the QD by
rate equations [Ziman1972].

Energy conservation upon tunneling from an initial state p in the QD (containing
N electrons) to a final state in the j−th reservoir at energy Ef,j (in excess of the local
conduction band bottom), requires that:

Ef,j(N) = Ep + U(N)− U(N − 1)−∆µj . (5.3)

The energy conservation condition for tunneling from an initial state Ei,j in the j−th
reservoir to a final state p in the QD (containing N electrons) is given by

Ei,j(N) = Ep + U(N + 1)− U(N)−∆µj , (5.4)

The stationary current through the j− lead is given by

Jcj = −e
∞∑
p=1

∑
{ni}

γjP ({ni})
[
δnp,0fj(E

i,j − µj)− δnp,1[1− fj(Ef,j(N)− µj)]
]
. (5.5)

The first summation is over all the energy levels in the QD, while the second is over
all the possible configuration that the N electrons (in the QD) can realize, each with
stationary probability P ({ni}). In equilibrium this probability is given by the Gibbs
distribution in the grand canonical ensemble

Peq({ni}) = Z−1 exp

[
− 1

kBT

( ∞∑
i=1

Eini + U(N)−Nµ
)]

, (5.6)

where
∑
i ni = N and Z is the partition function that normalize the probability. The

non-equilibrium probability distribution P ({ni}) is a stationary solution of the kinetic
equation [Beenakker1992]

∂

∂t
P ({ni}) = 0 (5.7)

This kinetic equation is equivalent to the set of detailed balance equations (one for each
level p = 1, 2, . . . )

P ({ni})δnp,1

[
γ1(1− f1(Ef,1(N + 1)− µ)) + γ2(1− f2(Ef,2(N + 1)− µ))+

+ γ3(1− f3(Ef,3(N + 1)− µ))

]
=

= P ({ni})δnp,0

[
γ1f1(Ei,1(N + 1)− µ) + γ2f2(Ei,2(N + 1)− µ)+

+ γ3f3(Ei,3(N + 1)− µ)

]
(5.8)

5.1.2 Linear response
In order to make the linear response approximation we need to make an expansion
in both the Fermi function and the stationary probability. Since the latter is more
usual (and simple) we start from the probability expansion. We substitute P ({ni}) =
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Peq({ni})
[
1 + Ψ({ni})

]
into the detailed balance equations (5.8). Then we can expand

to the first order in ∆Tj and ∆µj . We define

T3 ≡ T, T1 ≡ T + ∆T1, T2 ≡ T + ∆T2, f(ε) = [1 + exp (ε/kBT )]−1,

so that now we can write:

f1(ε−∆µ1) = f(ε)− ε∆T1/Tf
′(ε) + ∆µ1f

′(ε), (5.9)
f2(ε−∆µ2) = f(ε)− ε∆T2/Tf

′(ε) + ∆µ1f
′(ε), (5.10)

f3(ε) = f(ε), (5.11)

where we have abbreviated εp = Ep+U(N+1)−U(N)−µ. By substituting in Eq. (5.8)
we obtain:

Peq({ni}) [1 + Ψ({ni})] δnp,1

{
γ1 (1− f1(εp + ∆µ1)) + γ2 (1− f2(εp + ∆µ2)) +

+ γ3 (1− f(εp))
}

=

= Peq({ni}) [1 + Ψ({ni})] δnp,0

{
γ1f1(εp + ∆µ1) + γ2f2(εp + ∆µ2) + γ3f(εp)

}
.

(5.12)

Now we analyze each of the two sides of this Equation, starting from the right hand
side,

RHS = Peq({ni}) [1 + Ψ({ni})] δnp,1

{
γ1

(
1− f(εp) +

εp∆T1

T
f ′(εp)−∆µ1f

′(εp)

)
+

+ γ2

(
1− f(εp) +

εp∆T2

T
f ′(εp)−∆µ2f

′(εp)

)
+ γ3(1− f(εp))

}
=

= Peq({ni})δnp,1

[
γtot (1− f(εp)) + Ψ({ni})δnp,1γtot (1− f(εp)) +

+ γ1f
′(εp)

(
εp∆T1

T
−∆µ1

)
+ γ2f

′(εp)

(
εp∆T2

T
−∆µ2

)]
.

(5.13)

Analogously the left hand side reads

LHS = Peq({ni}) [1 + Ψ({ni})] δnp,0

{
γ1

(
f(εp)−

εp∆T1

T
f ′(εp) + ∆µ1f

′(εp)

)
+

+ γ2

(
f(εp)−

εp∆T2

T
f ′(εp) + ∆µ2f

′(εp)

)
+ γ3f(εp)

}
=

= Peq({ni})δnp,0

[
γtotf(εp) + Ψ({ni})δnp,0γtotf(εp)+

+ γ1f
′(εp)

(
− εp∆T1

T
+ ∆µ1

)
+ γ2f

′(εp)

(
− εp∆T2

T
+ ∆µ2

)]
.

(5.14)

Now using the properties of the Fermi functions and of the Gibbs distribution

1− f(εp) = f(εp) eεp/kBT (5.15)
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kBTf
′(εp) = −f(εp)

[
1 + e−εp/kBT

]−1

(5.16)

Peq({ni})δnp,1 = Peq({ni})δnp,0 e−εp/kBT , (5.17)

a lot of terms cancel with each other and it is possible to obtain an equation for the Ψ’s

Ψ({ni})δnp,1 = Ψ({ni})δnp,0+
1

kBTγtot

[
γ1

(
εp

∆T1

T
−∆µ1

)
+ γ2

(
εp

∆T2

T
−∆µ2

)]
.

(5.18)
This equation has to be used in the linearization of the current in Eq. (5.5), the result
is the expression of the particle and heat currents

Jc1 =
e

kBT

∞∑
p=1

∑
{ni}

γ1

γtot
Peq({ni})δnp,0f(εp)

[
∆µ1 (γ2 + γ3) +

+
εp∆T1

T
(−γ2 − γ3) + ∆µ2(−γ2) +

εp∆T2

T
γ2

]
(5.19)

Jh1 = − 1

kBT

∞∑
p=1

∑
{ni}

γ1

γtot
Peq({ni})δnp,0f(εp)εp

[
∆µ1 (γ2 + γ3) +

+
εp∆T1

T
(−γ2 − γ3) + ∆µ2(−γ2) +

εp∆T2

T
γ2

]
(5.20)

Jc2 =
e

kBT

∞∑
p=1

∑
{ni}

γ2

γtot
Peq({ni})δnp,0f(εp)

[
∆µ1(−γ1) +

εp∆T1

T
γ1 +

+ ∆µ2 (γ1 + γ3) +
εp∆T2

T
(−γ1 − γ3)

]
(5.21)

Jh2 = − 1

kBT

∞∑
p=1

∑
{ni}

γ2

γtot
Peq({ni})δnp,0f(εp)εp

[
∆µ1(−γ1) +

εp∆T1

T
+

+ ∆µ2 (γ1 + γ3) +
εp∆T2

T
(−γ1 − γ3)

]
. (5.22)

We can write these expressions in a more compact form using the Onsager matrix
Jc1
Jh1
Jc2
Jh2

 =


L11 L12 L13 L14

L21 L22 L23 L24

L31 L32 L33 L34

L41 L42 L43 L44



Xµ

1

XT
1

Xµ
2

XT
2

 (5.23)

From these equations we can easily identify the Onsager coefficients, see Appendix 5.A,
(in the presence of time reversal symmetry the matrix is symmetric), and define the
transport coefficients to obtain the expression for the electrical conductance Gij , the
thermopower Sij and the thermal conductivity Kij for the three-terminal case (see also
Chapter 2)

Gij =
( eJci

∆µj

)
∆Tk = 0 ∀k,
∆µk = 0 ∀k 6= j

, (5.24)

Sij = −
( ∆µi
e∆Tj

)
Jc
k = 0 ∀k,

∆Tk = 0 ∀k 6= j

, (5.25)
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Kij =
( Jhi

∆Tj

)
Jc
k = 0 ∀k,

∆Tk = 0 ∀k 6= j

. (5.26)

If we set γ1 = 0, i.e. we disconnect one of the terminals, we recover the two-
terminal expressions for the currents and the transport coefficients that were derived in
Ref. [Beenakker1992]. Notice that we could have set γ2 = 0 as well, but not γ3, since
terminal 3 is our reference for the temperatures and the chemical potentials.

5.2 Results

In this Section we will discuss the results that we obtained for the effect of the Coulomb
interaction in a quantum dot on the thermoelectric efficiency. We will analyze in detail
the three-terminal system. We will show the results for the local and non-local transport
coefficients as well as the efficiency at maximum power and the power. We will complete
this Section with the study of the effect of the third terminal on the performance of the
quantum dot. In Appendix 5.B we discuss the results for the two-terminal systems. In
the whole discussion we will set kBT = 1 as the unit of the energy scale.

1

T1 µ1

2

T2 µ2�1 �2

T3
µ3

3

�3

Figure 5.1 – Schematic representation of the three-terminal system. The three
leads are kept at different temperatures and chemical potentials and are connected
through a multi level quantum dot. γi is the coupling to the i-th lead, i = (1, 2, 3).
In the non-interacting case the separation between the levels is given by δE.
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5.2.1 Three-terminal systems
Now we will describe the thermoelectric transport in a system composed by a multi-
level quantum dot attached to three fermionic reservoirs each described by a chemical
potential and a termperature, as in Fig. 5.1.

Dependence on the chemical potential
For a pure three-terminal fermionic system we have to deal with four independent
currents (two charge currents and two heat currents), but the model of the interacting
quantum dot remains the same. In a three-terminal setup (with time reversal symmetry)
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Figure 5.2 – In this figure we plot the electrical conductance Gij . In the left
panel we have the two local conductance G11 and G22, while in the right panel
we have the non-local conductance G12. Although the position of the resonances
is the same for all the quantities, in the left panel it is possible to see how G11

and G22 have peaks of very different height. This difference is mainly due to the
different couplings γi. The parameters used are: e2/2C = 50 kBT , δE = 10 kBT ,
γ1 = 0.01 kBT , γ2 = 0.02 kBT , γ3 = 0.015 kBT

we have nine independent coefficients: three electrical conductance G11, G22 and G12,
three thermopower S11, S22 and S12 and three thermal conductance K11, K22 and
K12. We start by analyzing the electrical conductance and the thermopower, as in
the two-terminal case. In Fig. 5.2 we can see that the two local electrical conductance
are quite different. This is due to the different couplings to the reservoirs 1 and 2 (γ1

and γ2). The non local conductance is negative, but we stress that here are no sign
requirements on the non local coefficients. The peaks remain in the same positions
as in the two-terminal case (see Fig. 5.9), because the third terminal cannot change
the intrinsic properties of the QD. In Fig. 5.3 we can appreciate how the two local
thermopower are equal, while the non local thermopowers S12 = S21 are zero. This
is always true if the couplings to the leads do not depend on energy. An analytical
proof of that could be found in Chapter 2. The local thermopowers exhibit the same
oscillations described in Fig. 5.9.

In order to study the efficiency we choose the thermal gradients in order to have
heat adsorbed only from terminal 2 and in order to have the same Carnot efficiency as
in the two-terminal case, therefore ∆T1 = 0 and ∆T2 = 0.005 kBT . From Fig. 5.4 we
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Figure 5.3 – In this figure we plot the electrical conductance Sij . In the left
panel we have the two local conductance S11 and S22, while in the right panel we
have the non-local conductance S12. The two local thermopowers S11 and S22

are equal, while the non-local thermopower S12 is zero. This is a consequence
of the energy independent couplings that we used. The parameters used are:
e2/2C = 50 kBT , δE = 10 kBT , γ1 = 0.01 kBT , γ2 = 0.02 kBT , γ3 = 0.015 kBT .

can see that there are always regions where the extracted power W is negative, and
therefore it is impossible to define the heat to work conversion efficiency. However we
can also see that we can reach pretty high efficiency and efficiency at maximum power.
In particular the latter is fixed to the Curzon-Ahlborn efficiency (ηCA = ηC/2) for low
values of the chemical potential. This is due to the fact that in that region there is a
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Figure 5.4 – In this figure we plot the efficiency η (left panel) and the efficiency
at maximum power η(Ẇmax) (right panel) normalized to the Carnot efficiency.
There are some regions, shadowed in the two panels, where the extracted power
Ẇ is negative, therefore the efficiency of heat to work conversion cannot be
defined. We chose the parameters in order to adsorb heat only from reservoir 2.
Moreover since ∆T1 = 0 the Carnot efficiency has the two-terminal expression
ηC = 1 − T3/T1. The parameters used are: e2/2C = 50 kBT , δE = 10 kBT ,
γ1 = 0.01 kBT , γ2 = 0.02 kBT , γ3 = 0.015 kBT , ∆T1 = 0, ∆T2 = 0.005 kBT ,
∆µ1 = 0.001 kBT and ∆µ2 = 0.002 kBT .
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single energy level with very very small width (the systems is essentially a single level
non-interacting quantum dot, off resonance). It is also interesting to notice that in
the three-terminal case the oscillation of the efficiency at maximum power now reflect
the behavior of the negative branch of the thermopower, thus they increase at each
charging energy step.

Dependence on the third terminal

In this last paragraph we want to explore the effect of the presence of the third terminal
on the efficiency and the power of the quantum dot.
In order to study the effect of the third terminal on the system we will set the couplings
to leads 2 a 3 equal between each other γ2 = γ3 = γ = 0.02 kBT and show the plots of
the efficiency and the power as a function of the coupling of lead 1 γ1, that spans from
0 to γ, thus going from a pure two-terminal system (γ1 = 0 to a pure three-terminal
one γ1 = γ), for different values of the charging energy EC . We want to stress that
we set ∆T1 = 0, in this way the Carnot efficiency is equal to the two-terminal Carnot
efficiency ηC = ∆T2/T and does not change as the coupling to lead 1 is turned on, thus
allowing for a comparison of the efficiency in these two cases.

The results are shown in Fig. 5.5. A systematic increase of the efficiency as the
coupling γ1 is turned on has been found for many different values of the thermal
and chemical potential gradients. This means that a third terminal could be useful
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Figure 5.5 – Efficiency η/ηC as a function of the coupling γ1 for different
values of the charging energy EC = (2, 20, 50, 90)kBT , with a fixed level spacing
δE = 20 kBT . We are spanning from the non-interacting to the interacting
regime, and we find a systematic increase of the efficiency as the coupling
to lead 1 is turned on. This increase is not monotonic in EC , but there is
no reason why it should be. The other parameters used are µ = 100 kBT ,
γ2 = γ3 = γ = 0.02 kBT = γ3, ∆T1 = 0, ∆T2 = 0.005 kBT , ∆µ1 = 0.0001 kBT
and ∆µ2 = −0.0001 kBT .
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Figure 5.6 – Efficiency (left) for the interacting quantum dot as a function of the
charging energy EC = e2/2C. In this plot a behavior similar to the one observed
in Fig. 5.4 arise. The peaks of the efficiency are observed at the resonances’
energies εp = Ep + U(N + 1) − U(N) − µ. In the shadowed zones in the left
panel, the QD is not acting as a thermal machine, and it is not possible to define
an heat to work conversion efficiency. The parameters used are µ = 100 kBT ,
γ1 = 0.01 kBT , γ2 = 0.02 kBT , γ3 = 0.015 kBT , ∆T1 = 0, ∆T2 = 0.005 kBT ,
∆µ1 = 0.0001 kBT and ∆µ2 = −0.0001 kBT .

to enhance the efficiency also for an interacting system. The strongly interacting or
non-interacting regimes EC = 2 kBT or EC = 90 kBT are the ones that manifest the
most evident increase. In the intermediate regimes EC = (20, 50)kBT this is less visible
but still present, although we want to stress that in all the cases the increase is about
the 50%. The non-monotonic behavior as a function of the charging energy can be
understood from Fig. 5.6, where we plot the efficiency as a function of the charging
energy EC . It is possible to see a peak structure similar to the one in Fig. 5.4, and
indeed increasing the charging energy has the same effect as moving the chemical
potential in the leads. However, it is interesting to notice that a machine that is not
performing work in the non-interacting case, can start to behave as a thermal machine
by increasing the charging energy. We want to make the same analysis also for the
power extracted from the machine, because the strong feature in the non-interacting
case as shown in Chapter 2 was that the third terminal could enhance both the power
and the efficiency at the same time. As it is possible to see in Fig. 5.7 also an increase
in the power Ẇ has been found. We decided to plot the four different curves in four
panels, because the values are very different one from another. This is due to the fact
that as the charging energy is changed the chemical potential of the leads could be
in resonance with a level or not, thus allowing for a very wide range of values of Ẇ .
However the important thing is the positive slope that the power always shows. This
means that also in the interacting case turning on the coupling to a third terminal
could be very useful for enhancing the performance of the quantum dot. In our model
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Figure 5.7 – Power Ẇ as a function of the coupling γ1 for different values of the
charging energy EC = (2, 20, 50, 90)kBT , with a fixed level spacing δE = 20 kBT .
We are spanning from the non-interacting to the interacting regime, and we find
a systematic increase of the power as the coupling to lead 1 is turned on. The
values of the power Ẇ could vary significantly as the charging energy varies,
going from high values (when resonant with a level) to very low values (from a
level). The other parameters used are the same as in Fig. 5.5.

the efficiency at maximum power η(Ẇmax) doesn’t depend on the couplings γj . It is
possible to see in the structure of the transport coefficients G, S and K that in the
ratio of the Onsager coefficients the coupling terms simplify with each other. This is a
limitation of our model and not a physical feature, this is why we do not show them.

5.3 Summary
In this chapter we have extended the general formalism for linear-response of interacting
two-terminal systems to multi-terminal ones. In particular, we have worked out analyti-
cal expressions for the currents and the Onsager coefficients in the three-terminal case.
We have recovered the known results in the literature for the conductance and the ther-
mopower of an interacting quantum dot, completing the knowledge of the two-terminal
systems studying the efficiency, the power and the efficiency at maximum power. For a
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three-terminal case we have shown that a third terminal can be useful to improve the
thermoelectric performance of a system with respect to the two-terminal case. This
remains true also for the strongly interacting case, where moreover oscillations of the
efficiency at maximum power, due to the oscillations of the thermopower, have been
observed. Our analysis could be extended also to cases in which time-reversal symmetry
is broken by a magnetic field or including bosonic or superconducting terminals. It is
an interesting open problem to understand in such instances both thermoelectric perfor-
mance in realistic systems and fundamental bounds on efficiency for power generation
and cooling.
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5.A Onsager coefficients for the interacting
QD

The Onsager coefficients for a three-terminal interacting quantum dot with many levels
take the following form

L11 =
e

kBT

γ1

γtot

∞∑
p=1

∑
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Peq({ni})δnp,0f(εp)(γ2 + γ3),
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∑
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Here kBT is the temperature, γi, with i = {1, 2, 3} is the total coupling to the
ith lead and γtot =

∑
i γi. It is interesting to notice that the off-diagonal blocks(

L13 L14

L23 L24

)
and its symmetric counterpart, do not depend on γ3 since they connect

lead 1 and 2. The diagonal blocks instead, do depend on all the couplings.

5.B Two-terminal system
In this Appendix, we recover the two-terminal results for the electrical conductance G
and the thermopower S of Ref. [Beenakker1992]. Then we will discuss also the efficiency,
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1

T1 µ1

2

T2 µ2�1 �2

Figure 5.8 – Schematic representation of the two-terminal multi level quantum
dot. The two leads are kept at different temperatures and chemical potentials
and are connected through a multi level quantum dot. γ1 and γ2 are the coupling
to the leads. In the non-interacting case the separation between the levels is
given by δE.

the efficiency at maximum power and the power.

5.B.1 Behavior as a function of the chemical potential
We started by recovering of the results obtained in Ref. [Beenakker1992], for a two
terminal system. i.e. the behavior of the electrical conductance G and of the ther-
mopower S as we vary the chemical potential in the leads. The regime that we analyze
is the quantum regime: kBT � δE, we also assume δE � e2/2C. The temperature
is small enough to resolve all the energy levels of the QD, that are moreover split by
the charging energy, that is the dominant energy scale. In Fig. 5.9 we can notice
that our results coincide with the approximated ones. In the electrical conductance G
that the position of the resonances is given by εp = Ep + U(N + 1)− U(N)− µ, where
Ep = p δE, p = 0, 1, 2, . . . are the QD’s level without interaction. The thermopowers’
structure however, deserves a little more explanation. We can observe two different kind
of oscillations. The long period oscillation, due to changes of the number of electrons in
the quantum dot, and whose period is given by ∆µ = δE + e2/C (the same periodicity
shown by the conductance resonances); and the short period oscillations, due to energy
differences between the ground state and the excited states in the QD at constant
number of electrons, and whose period is given by ∆µ = δE. The approximated
formulas of Ref. [Beenakker1992] are the following

GB =
e2

4kBT

γ1γ2

γtot
cosh−1

(
∆min

2kBT

)[
Int
(
|∆min|
δE

)
+ 1

]
, (5.28)

SB = − 1

eT

[
−δE

2
Int
(

∆min

δE

)
+ ∆min

]
. (5.29)

Where Int(x) is the integer part of x for x > 0 and minus the integer part of |x| for
x < 0, ∆min = ENmin + (Nmin − 1/2) e

2

C
− eφext − µ and Nmin is the term that gives the
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Figure 5.9 – In this figure we compare the electrical conductance G (left) and the
thermopower S (right) obtained from a full calculation of the QD’s energy level
(full red line), and obtained in Ref. [Beenakker1992] with approximated formulas
(blue dashed line). In these graphics the parameters used are e2/2C = 50 kBT ,
δE = 10 kBT , γ1 = 0.01 kBT and γ2 = 0.02 kBT .
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Figure 5.10 – Efficiency (left) and efficiency at max power (right) for the
interacting quantum dot as a function of the chemical potential in the leads. In
the shadowed zones in the left panel, the QD is not acting as a thermal machine,
and it is not possible to define an heat to work conversion efficiency. This is no
longer true for the efficiency at maximum power (right panel) that only depends
on the figure of merit ZT . In the right panel we can observe an interesting
fine structure in the efficiency at maximum power, with a series of oscillations
that reflect the thermopower’s oscillations. In these graphics the parameters
used are e2/2C = 50 kBT , δE = 10 kBT , γ1 = 0.01 kBT , γ2 = 0.02 kBT , Xµ =
−1× 10−5 kBT and XT = 0.05 kBT .

dominant contribution to the sums over N in Eqs. (5.19)-(5.22). We can see that in
Eqs. (5.28) and (5.29) there are no longer sums over the levels or over the electrons
of the QD, thus they work for a dot with an infinite number of levels (there are no
upper nor lower bounds in the spectrum).

We start our analysis by calculating the relevant thermodynamic quantities such
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as the efficiency, the power and the efficiency at maximum power of the interacting
quantum dot. We start by analyzing the case of a QD with fixed charging energy. The
variation of the efficiency η and of the efficiency at max power η(Ẇmax) as a function
of the chemical potential in the leads is shown in Fig. 5.10 There are some regions,
shadowed in the left panel of Fig. 5.10, in which the extracted power Ẇ is negative,
therefore we cannot define an heat to work conversion efficiency and it is not a thermal
machine. It is interesting to notice that the efficiency at maximum power (Fig. 5.10,
right panel) is very sensitive to the thermopower’s fine structure, that manifest in a
series of oscillations with period δE, that precisely correspond to the thermopower’s
oscillation.



Conclusions

In this thesis we have presented our work about the properties of multi-terminal
thermoelectric machines. In the first place we have developed the general framework for
a three-terminal system, the Onsager matrix and his (local and non-local) properties.
We then have used this framework to develop and design new applications for the
improvement of the thermoelectric performance and the heat management at the
nanoscale.

In the first Chapter we developed the general theory to tackle the problem, providing
the definitions for local and non-local transport coefficients, as well as the expressions
for the generalized figures of merit that characterize the efficiency at maximum power
in three-terminal systems. Studying the problem we derived the new expression for the
Carnot efficiency that must be used. By means of two solid state models (based on
quantum dots), we showed how a third terminal could enhance both the efficiency and the
power extracted by a three-terminal system used as a quantum thermal machine. This
work provided a solid basis for all the researchers who want to study the thermoelectric
transport in three-terminal devices.

Once the general theory was developed we explored different possible applications
that could be implemented in a multi-terminal system. In the first place we focalized
on the thermoelectric efficiency at the nanoscale. In such systems, with a proper energy
filtering mechanism, the ZT figure of merit could be enhanced arbitrarily, but the price
of very low power has to be paid. We managed to develop a scheme to achieve an
enhancement of both the figure of merit ZT and the power factor Q. This could be
obtained by spatially separating the heat and charge currents into different parts of
the systems (we want to stress that this is impossible in a two-terminal system). The
analytical results showed how, at low temperatures, it was possible to have a great
improvement of thermoelectric performance with respect to the two-terminal system.
The main reason of that was the possibility of violating the Wiedemann-Franz low
in a controlled fashion, thus having a complete control on the ratio G/K. Driven by
those results we tested our heat-charge separation scheme on a wide class of devices, in
a system whose three terminals were a normal lead, a superconductor and a voltage
probe, founding a systematic increasing in both the ZT and the Q.

By adding a magnetic field to the multi-terminal system, in order to break the time-
reversal symmetry, we realized that it could be possible to design a device for controlling
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the heat flows. In fact, thanks to the Onsager reciprocity relations, the currents could be
separated in their reversible and irreversible parts, according to their behavior when the
sign of the magnetic field is inverted. This difference allowed for the implementation of
several Boolean working conditions, such as (but not limited to) on/off switch, reversal,
selected splitting and swap of the heat currents in the device. For each feature the
Boolean behavior was obtained by reversing the direction of the applied magnetic field.
A further significant advantage manifests in the possibility of designing an array of
those devices, in order to have many different working conditions implemented at once.
The great potentiality of this mechanism is based on the fact that the whole systems
is controlled simply by reversing a magnetic field. We also showed the possibility to
implement such a device in a low temperature three-terminal interferometer model,
where the heat is carried by the electrons. However, our theoretical model is valid for
any system with broken time-reversal symmetry. This means that also a phononic heat
current could be controlled by a magnetic field in this device.

Finally we have investigated the consequences, on thermoelectric performance, of
Coulomb interaction in multi-levels quantum dots. In particular we have considered the
sequential tunneling regime (where the levels’ broadening is negligible) for Coulomb
blockaded quantum dots. We have worked out analytical expressions for the currents
and the Onsager coefficients in the three-terminal case. First we have recovered the
known results, for the two-terminal case, for the conductance and the thermopowers
and then we have studied the efficiency, the power and the efficiency at maximum
power. For a three-terminal case we have shown that a third terminal can be useful to
improve the thermoelectric performance of a system with respect to the two-terminal
systems even for the strongly interacting case. Interestingly, oscillations of the efficiency
at maximum power, that reflect the oscillations of the thermopower, arise from the
interplay between the charging energy and the quantization of the levels. A promising
further development could be the extension to the case in which time-reversal symmetry
is broken by a magnetic field or including bosonic or superconducting terminals. It
is an interesting open problem to understand in such instances both thermoelectric
performance and fundamental bounds on efficiency for power generation and cooling.

– — ————————— — –
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