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ABSTRACT

During the last two decades micro- and nano-fabrication techniques originally de-
veloped for electronic engineering have directed their attention towards life sciences.
The increase of analytical power of diagnostic devices and the creation of more
biomimetic scaffolds have been strongly desired by these fields, in order to have
a better insight into the complexity of physiological systems, while improving the
ability to model them in vitro. Technological innovations worked to fill such a gap,
but the integration of these fields of science is not progressing fast enough to satisfy
the expectations. In this thesis I present novel devices which exploit the unique fea-
tures of the micro- and nanoscale and, at the same time, match the requirements for
successful application in biomedical research. Such biochips were used for optical
detection of water-dispersed nanoparticles in microchannels, for highly controlled
cell-patterning in closed microreactors, and for topography-mediated regulation of
cell morphology and migration. Moreover, pilot experiments on the pre-clinical
translation of micropatterned scaffolds in a rat model of peripheral nerve transac-
tion were initiated and are ongoing. Given these results, the devices presented here
have the potential to achieve clinical translation in a short/medium time, contribut-
ing to the improvement of biomedical technologies.
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INTRODUCTION

Medicine and life sciences are nowadays deeply linked to technology. Indeed, both the abilities
of analysing and interacting with biological systems relies on the capability to observe, de-
scribe and manipulate them. In the last two decades microscopy has extended our perception
so much that now not only single cell, but also single molecule imaging is possible. Moreover,
the realization of devices able to work synergically with living organisms looks closer to our
reach day after day, owing to the translation of micro- and nanofabrication techniques to life
sciences. With this chapter I introduce the role of two technologies that have had an important
role in biological research during the last ten years and that show the potential to be comple-
mentary approaches to move towards a new generation of artificial devices: microfluidics
and surface nanostructuring.

Living organisms have complex and dynamic structures. The tissues that form their
bodies are composed of a three-dimensional (3D) matrix in which cells are able to
migrate, guided by chemical and mechanical cues!'l. Liquids flow in intricate net-
works of vessels regulating nutrient supply, waste product wash-out, and endocrine
signalling, allowing for the homeostasis of the whole system. Investigating this com-
plex entity without impairing its integrity is not trivial, and finding the anomalies
that cause pathologies can be like looking for a needle in a haystack.

A way to overcome this issue is to develop models, where specific aspects of
complex systems are recreated to be studied. This approach relies on the trade-off
between reducing the original complexity and not altering the features that must be
observed. For this reason, a great interest arises from technological advances, which
are asked to improve our ability to detect small variations in the tissues, reproduce
traits of the physiological microstructures in vitro, and translate them to devices that
can be implanted in living organisms.
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1.1 MICROFLUIDIC DEVICES

Microfluidics, a field of science born in the 1980s by the converging needs of differ-
ent disciplines, is a good candidate for recreating in vitro the chemical and physical
complexity of in vivo environments?]. The miniaturization of the fluidic elements,
initially made by using capillaries and later micron-sized channels, seemed to meet
all the mentioned requirements. Indeed, analytical chemistry exploited the physical
confinement of analytes to yield a better definition of the investigation area com-
pared with traditional, bulky systems, obtaining improvement not only in sensitiv-
ity, but also in the control over chemical reactions3l. The possibility to increase the
density of fluidic elements, performing several analyses in parallel on the same de-
vice, was greatly appreciated also in molecular biology, where new applications like
high-throughput analysis were beginning to emerge[3l. Lastly, scaling down labora-
tory equipment and integrating it on a single portable device was of great interest
for healthcare—biodefence first and point-of-care testing (PoCT) later.

The widespread use of microfluidics in research laboratories arrived at the end of
the 1990s owing largely to the use of poly (dimethylsiloxane) (PDMS)!4l, an optically
transparent, soft elastomer that made the design and fabrication of microdevices
much easier than the previous standards—i. e. glass or poly (methyl methacrylate)
(PMMA). PDMS could be used in combination with fabrication techniques widely
used in microelectronic engineering and it could be easily sealed to glass making it
compatible with standard microscopy techniques. Moreover the elastomeric nature
of PDMS was exploited to integrate monolithic soft valves[5! in the devices, allowing
the routing of liquids in intricate, reconfigurable networks of channels!®l. Microflu-
idic devices are highly qualified for the dynamic control of chemical gradients!?!
owing to the predictable fluid dynamics characteristic of the microscale—i. e. lami-
nar flow. Moreover, the use of fluidic elements with sizes comparable with those of
cells allows for applications such as single-cell isolation, proliferation!”], gene ampli-
fication and analysis[®l.

Despite its proven qualities, microfluidics has not yet satisfied the initial expecta-
tions, and its widespread use in medicine is still yet to come. In a recent review %]
Sackmann et al. analyzed this phenomenon, suggesting that one of the reasons may
be found in the lack of integration between the designers (physicists and engineers)
and the final users (biologists and clinicians). A clear example can be found in the
evolution of the devices for visual chemotaxis assays—the study of cell migration in
chemical gradients. Owing to the precise control over chemical concentration offered
by the laminar flow['°l, chemotaxis assays seemed to be the killer application for
bio-oriented microfluidics. However, the new technology is usually constrained to
close proximity of ancillary equipment specific to physics laboratories, i. e. pumping
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systems and control units, which are difficult to integrate with the consolidated ex-
perience of biological protocols. This characteristic made it difficult for microfluidic
devices to impose over the traditional assays represented by the Boyden chamber
(developed in 1962) and its evolutions—i. e. the Zigmond, Dunn and Insall cham-
bers!"']. These devices rely on the gradient formed by pure diffusion in a porous
membrane or narrow channels dividing reservoirs loaded with media at different
chemoattractant concentration. The ease of use and the compatibility with the stan-
dard equipment found in a biological laboratory is such that traditional chemotaxis
assays are still preferred over their commercial microfluidic counterparts.

These topics will be examined in cHAPTER 2. I will introduce the governing equa-
tions of microfluidics and then report my results in the designing and testing mi-
crofluidic chips. First I will present devices for optofluidics—i. e. the use of microenvi-
ronments to perform optical measurements on a few picoliters of liquids—investigating
the detection limits of water-dispersed nanoparticles designed for biological uses.
Then, I will introduce a device designed to exploit the peculiarities of flow dynamics
at the microscale—i. e. continuous perfusion, stable chemical gradient formation—
without the need for external pumping systems or fixed tubings.

1.2 MECHANOTRANSDUCTION AND NANOTOPOGRAPHY

While microfluidics can create chemical gradients and flow-generated shear stress
similar to those found in biological environments, alternative techniques are needed
to mimic the mechanical stimuli provided by physiological matrices. It is known
that cells can read mechanical information in the environment by using specific
molecular complexes present on their membranes!">"3]. These complexes—FAs—
are composed of several subunits growing in a highly dynamic way, gathering the
adhesion proteins, linking them to the contractile elements of the cytoskeleton, and
providing feedback on the traction experienced by the adhesion plaque. Through
this signalling, FAs are able to influence the regulation of essentially every aspect
of the cytoskeleton—e. g. the GTPases Rho and Rac—and have a large impact on
cell morphology and motility. This signal transduction mechanism, which involves
mechanical sensing, cell contractility and structural organization is known as mechan-
otransduction.

Even though the above described mechanism is widely accepted, the complete list
of molecular actors involved in it is still not completely known. Ingber developed an
elegant model of cellular tensegrity'4'5 suggesting that the final target in this trac-
tion chain may not be the cytoskeleton but the nucleus itself. For example, a network
of intermediate filaments[*®] closely associated with interphase chromosomes place



4

| INTRODUCTION

it in a central position of this wide structure, like a spider at the center of its web['7].
This direct line connecting the extracellular matrix to the chromosomes might be the
key to explaining a kind of signal transduction parallel to the traditional one, which
links the intracellular mechanical equilibrium to the one of the environment.

Predicting the behaviour of cells growing on substrates with different mechanical
properties is extremely important for a plethora of applications in tissue engineer-
ing. Indeed, when designing a scaffold it is useful to know how strong cell-adhesion
will be, if migration will be random or directional, and even if differentiation will
direct to a specific lineage. This information could allow guided and enhanced re-
generation after an injury. Some approaches to achieve these results using micro-
and nanostructured substrates will be introduced in the first part of CHAPTER 3, then
I will focus on the results I obtained using a directional topography named nano-
grating (NG). Structures of this kind, composed by parallel lines with width varying
from 500 nm to 2 um, were realized on biocompatible thermoplastic materials—i. e.
cyclic olefin copolymer (COC) and poly (ethylene terephthalate) (PET)—and used to
induce cell-body elongation, cytoskeleton polarization and directional migration for
different cell-types.

Once the efficacy of this devices is proven, I will discuss a novel method to mod-
ulate the directional signal by adding nanotopographical noise to the NGs. This geo-
metrical alteration mimics the progressive deposition of matrix and biological de-
bris on it, masking the nanostructure. This phenomenon will also be more severe
if the scaffolds are biodegradable. This study, describing the cellular capability to
read partially-hidden topographies, is a step towards a better understanding of the
performances of nanostructured scaffolds after in vivo implantation. In CHAPTER 4
I will describe these new structures, propose a Fourier transform-based algorithm
to quantitatively define the directional stimulus and discuss the effect of substrate-
directionality reduction first on FA-organization and migration patterns in human
mesenchimal stromal cells (hMSCs) and second on neurite pathfinding using the
PC12 cell-line. In this last case, the ability of neurites—projections extending from
the soma of neuronal cells—to read hidden directional stimula and align to it was
investigated in the presence of drugs that affect cell-contractility.

Finally, in cHAPTER 5 I will show my efforts in translating the above described
devices in vivo, for the improvement of healing after peripheral nerve injury. The
gold standard for this procedure consists in the autologous transplantation, i.e. a
nerve is removed from the patient and used to stitch the stumps of the severed
nerve. This approach has obvious drawbacks, since a healthy part of the body is
sacrificed. Artificial alternatives are also known!'®! and usually concentrate on re-
placing the autologous material with biocompatible polymers. This procedure only
relies on the physical confinement of the regrowing ends of a severed nerve. Here, I
propose an approach that exploits the proven abilities of micro- and nanogratings to
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polarize cell-migration and axon guidance to guide the regeneration in the direction
of the nerve. Migration of primary Schwann cells (SCs) on PDMS membranes was
studied in vitro and preliminary studies of in vivo translation for sciatic nerve regen-
eration were conduced. Finally, I will show preliminary data on the nanopatterning
of poly (caprolactone)/poly (lactic acid) (PCL/PLA), a biocompatible and biodrgrad-
able polymer blend used for tissue-engineering applications.

CHAPTER 6 contains my conclusions. Here, I will summarize the results obtained
in this thesis and discuss possible future developments.

5






Z MICROFLUIDIC DEVICES FOR
BIOLOGICAL APPLICATIONS

Microfluidics is a technology specialized in handling small amounts of liquids in extremely
controlled environments. The increasing request of large scale integration made by industry
and the interest of biomedical research in developing devices that can handle biology in ar-
tificial environment, gave a strong burst to this field. In this chapter I will introduce the
governing equations of fluid dynamics in the microfluidic regime, review the evolution of
microfluidics for life sciences and present my results in this field. First, I will concentrate
on optofluidics, introducing three devices designed to allow physical measurements—i.e.
optical detection of contrast agents—in microstructured environments. Then I will present
a biochip for culturing cells in a closed microchamber, yielding automatic cell loading, long
term perfusion and dynamic control over chemical gradients while maintaining full com-
patibility with the standard equipment and skills that are found in standard tissue culture
facilities.

2.1 INTRODUCTION

2.1.1 Governing equations in microfluidics

As previously stated, one of the advantages of microfluidics compared with macro-
scaled systems, is the exquisite control over fluid dynamics. This can be explained
by analyzing the equation that rules hydrodynamics—known as the Navier-Stokes
equation—and considering the simplifications that can be done by taking into ac-
count the size of the fluidic elements and the liquid speeds typically found in micro-
fluidics.

The general form of the Navier-Stokes equation is derived from the continuity
equations of mass and momentum°l. The velocity distribution v (7, t)—in the fol-
lowing presented as v—can be calculated under the hypothesis of incompressible
Newtonian fluid, acceptable for the water-like fluids and low velocity fields used
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in microfluidics. This means that the density p and the dynamic viscosity 1 can be
considered as constants, leading to the expression

p[dtv + (v-V)v] = —Vp +nV3w. (2.1)

The left-hand side of equation contains the inertial terms while the right-hand side
contains the forces acting on the fluid, i.e. the pressure p and the viscous friction.
The number of solutions allowed by EQUATION (2.1) is incredibly great owing to the
mathematical richness generated by the non-linear term p (v - V) v. Unfortunately
this also makes the analytical treatment so difficult and complex that the solutions
of the equation have never been fully characterized. A convenient way to proceed is
by changing to dimensionless coordinates. This can be done expressing the physical
variables in units of the characteristic scales (e.g. r = Lo# and v = V) for length
and velocity, respectively, and defining a dimensionless number called the Reynolds
number

_ pPVolo
n

Re (2.2)
The pivotal role of Re is evident after the substitution. Indeed, EQUATION (2.1) be-
comes

Re[3;9+ (9-V)®] = —Vp + V2o (2.3)

showing that the Reynolds number represents the weight of the inertial term in
determining the velocity field. When the Reynolds number is lower than a critical
value (Reer =~ 2 - 103["9]) fluid flows in parallel layers—or streamlines. Perturbations
in the regular flow can only be transient and do not alter the global regularity of
the flow. This fluidic regime is called laminar flow and can be exploited to achieve
a reliable control over the dynamics of small particles dispersed in the liquid (e.g.
suspended cells or fluorescent markers) and carried by the viscous drag.

When Re < 1 the inertial term can be neglected and EQUATION (2.3) can be sim-
plified to the linear equation

0=—Vp+V2o. (2.4)

This approximation is highly relevant in microfluidic systems, where the small chan-
nel sizes and the moderate liquid speeds makes the viscous forces dominant. This
regime is called Stokes flow, or creeping flow, and allows for analytic solutions to
a number of flow problems usually found when dealing with pressure-driven flows
in microfluidic devices.
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Figure 2.1: Velocity distribution in Poiseuille flow. The scheme refers to a xz section of a channel
extending indefinitely in the y direction.

2.1.2 Poiseuille flow and hydraulic resistance

An important case in which the Stokes equation allows for an analytic solution is
represented by the Poiseuille flow. If we consider a liquid at the steady state, flowing
inside a channel extending indefinitely in the x direction, symmetry imposes that
the only non-zero component of the velocity vector is x and it does not depend
on x, so v(r) = vx(y,z)ex. Since the vy , = 0, it follows that 9y .p = 0, and
consequently that the pressure field only depends on x, so p(r) = p(x). Now,
substituting in EQUATION (2.4) we have

n {aﬁ + aﬂvx — xp, (2.5)

since the two sides of the equation are functions of different variables, the only
possible solution is that both sides are equal to the same constant, so pressure must
vary linearly in x.
A
2 2 __2pP

[ay + 6Z]vx =0 (2.6)
An analytic solution can be found for infinitely wide channels, where the velocity
field can be considered as constant in the y direction, so v« (y, z) = vx(z). In this
case, EQUATION (2.6) becomes

Ap

2
0zvx = —n—L, (2.7)

9
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where Ap is the pressure difference between points placed at L distance in x. As
a boundary condition we assume that no relative motion can happen between the
liquid and the walls (no slip condition) and the solution of EQUATION (2.7) result in
a parabolic profile

Ap

L (h—2z)z. (2.8)

Vx =

The symmetry of the velocity field also allows for a simple calculation of the

shear stress exerted on the walls of the channel. Indeed, the stress tensor ¢ for
incompressible fluids is

0y =1 (ajvi + aivj), (2.9)

and, for the laminar regime expressed by EQUATION (2.8), can be simplified to obtain

Ap /h
Oxz =N0Vx = n—f (E —z). (2.10)

Hydraulic resistance

The fabrication processes used to produce microfluidic devices (i.e. UV lithography
and soft lithography) usually produce rectangular cross-section channels. Unfortu-
nately, no analytical solution exists for such a geometry. As a first approximation,
EQUATION (2.8) can be used to model a rectangular microchannel with a small as-
pect ratio. The approximated flow rate Q can be found by integration over channel
cross-section

h3w

w h Ap
Q :Jo dy Jo dzﬁ(h z)z = L Ap, (2.11)

but the error committed is quite high[*°l (7% for an aspect ratio of one tenth, h =
w/10). A better approximation of Q can be obtained from EQUATION (2.6) by expand-
ing the velocity field as a Fourier series along the short vertical z direction,

4h2 4h2Ap cosh(nm) | | z
Z 3 [ 7&8}1(“7{%) sin (m'rﬁ), (2.12)
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resulting in

h3wAp

12nL . (2.13)

Q=

> 1192h
— Z ﬁﬁ%tanh<nﬂ;ﬁh)

n,odd

EQUATION (2.13) can be conveniently approximated in case of very wide channels,
since when h/w — 0, % tanh(nrmyy) — % tanh(co) = %, and Q becomes

h3w h
~ ——|1—-0.630—|Ap. .
Q 12nL[ 0630»\)} P (214)
This approximation is surprisingly good. For the worst case of a squared channel
(h = w), the error is just 13% and for an aspect ratio of a half (h = w/2) the error
is already down to 0.2%[*°l. Finally, using EQUATION (2.14) it is easy to calculate the

hydraulic resistance Rpyq for the Poiseuille flow in rectangular microchannels,

_Ap 12nL 1
Rhyd = 5" = T20.63(h/w) dw' (215)

2.1.3 Diffusion at the microscale

Diffusion is the process that leads to the flow of a substance in a solvent, caused by a
spatial difference in concentration. Diffusion is a well-known method used in many
physical and chemical applications, e. g. the enhancement of steel hardness by diffus-
ing carbon in it or the separation of solutes with different diffusion times. Moreover,
diffusion is responsible for a plethora of key processes in biology, since chemical gra-
dients are one of the main mechanisms used by cells to communicate[>°l. Through
the combination of the highly predictable fluid dynamics of laminar flow to diffu-
sion, microfluidics represents a powerful tool to control chemical gradients.

The interplay between diffusion and convection of an incompressible fluid can be
described by the mass conservation equation. The concentration c(r,t) of a given
specie will be

0tc+V-J=0, (2.16)

and J is the current density of a given solute. J must be written in terms of a
convection current density J", due to the global velocity field v of the solution,
and a diffusion current density J9, due to the random motion of the solute rel-
ative to the solution. The first can be written as J"W = cwv, while the second is
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defined by the first Fick’s law J4ff = —D Vc. Substituting the total current density
in EQUATION (2.16) we have the so called convection-diffusion equation

dic+v-Ve =DV (2.17)

Notice that the left-hand side of this equation holds the convective term and the
right-hand side describes the diffusive one. The second Fick’s law of diffusion can
be derived from EQUATION (2.17) if no velocity field is present and the system is
governed by free diffusion

dtc =D VZc. (2.18)

The diffusion coefficient D is the parameter that links the spatial and temporal com-
ponents of the diffusion. Simple dimensional analysis of this equation can already
reveal some important physics. If Ty and Ly are the characteristic time and length
scale over which the concentration c(r,t) varies, then we have

LZ
L():\/DTO or T():EO

The diffusion coefficient D thus determines how fast a concentration diffuses over
a certain distance. In the more general case of EQUATION (2.17), the concentration
profiles will depend by the relative weight of the convective and diffusive terms. As
previously stated, the low Reynolds numbers found in microfluidics lead to laminar
flow and the geometry of microchannels determine Poiseuille velocity profiles. As-
suming that Ly, a and b are the characteristic lengths of a rectangular microchannel
(i.e. length, width and height, respectively) there are 6 time scales involved, one
for each axis for both convection and diffusion. If we consider that in microfluidics
channel-networks usually have a planar architecture, mixing between converging
channels is almost always in the lateral direction y, so we can consider the char-
acteristic time equal to the lateral convection time Tp = 1" = a/Vj. Changing
to dimensionless coordinates as we did for EQUATION (2.1), the convection-diffusion
equation becomes

Vo 6{c + VO
a

Lo

D D D
vy g = [Q odc+—0kc+ 5 a%} . (2.19)

Introducing the mass diffusion Péclet number P¢é, defined as

diffusion time a?/D _aVp

convection time a/Vy D

Pé

, (2.20)
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the convection-diffusion equation can be written as

P6[0; + — vy dx]c = [iza%+a%+a—za% c (2.21)
R T 2% p2 '
For high Péclet numbers convection happens much faster than diffusion, so the
solutes tend to move in blocks without distributing in the fluid. Conversely, for low
Péclet numbers we observe a dynamics close to the free diffusion. EQuUATION (2.21)
also points out that diffusive time scales on the three axes are different and weighted
by the coefficients a?/L3 and a?/b%. In particular, since in microfluidics channel-
height is usually much smaller than channel-width (a?/b? > 1), diffusion in the z
direction reaches equilibrium faster than the axial and lateral directions, making it
possible to treat microfluidic channels as bidimensional networks.

2.2 LAB-ON-A-CHIP & CHIP-IN-A-LAB

The small dimensions of the fluidic elements used in microfluidics allow great in-
tegration of components, making it possible to perform on-chip protocols that tra-
ditionally required bench-top laboratory equipment!®l. This category of devices is
known as lab-on-a-chips (LoCs) and involves an important area of research and an
increasing number of industries>].

However, even though miniaturization has reduced chip sizes, making them small
enough to be theoretically portable, their portability is still hindered by the need for
complex and large ancillary apparatuses (e. g. pumping systems and pressure lines
for liquid and valve actuation, microscopes for experiment readout or incubators to
control temperature and humidity etc.). This issue had the consequence of splitting
the evolution of LoCs: one branch focused on the development of low-cost, portable
devices for point-of-care testing!>?l and the other focused on exploiting the chips
as the high-precision part of a bigger laboratory machine. As a consequence, these
devices are also addressed as chip-in-a-lab[>3].

In the remaining part of this section I will briefly review some recent studies and
discuss the impact of microfluidic devices in biomedical research.

2.2.1  High-throughput biochemical analysis

The most straightforward way to exploit miniaturized fluidic elements is by inte-
grating a great number of them into a single device, in order to achieve parallel
analysis and high throughput. A remarkable example is represented by the stud-
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ies of Quake et al., who integrated an extremely large number of femtoliter-sized
microchambers with almost 1 million pneumatic soft-valves per cm?[>324l. This
extremely high density of fluidic elements is currently addressed as microfluidic
very large scale integration (mVLSI). Valve-based-microfluidics has the exclusive
feature of creating reconfigurable networks, particularly useful when several steps
must be performed in parallel and in a precise order—e. g. for parallel single-cell
genome amplification!®l. Femtoliter microreactors were also used to scale-down
biochemical analyses. An example is represented by digital polymerase chain reac-
tion (dPCR), which consists of dividing a single reaction into thousands of smaller
replicas run in parallel, with benefits of increased sensitivity—smaller volumes can
be better controlled—and accuracy!?5. A microfluidic dPCR was implemented by
Men et al.[*], who developed a chip containing 82000 micro-wells (on a total area
of 2 x 2mm?) carved on a PDMS membrane. The chambers are loaded in parallel
with 4 uL of sample solution, sealed by pneumatically pressing the membrane on the
PDMS floor of the chip, and processed at once. In both the above presented cases
and in the great majority of devices of this category!?3], the readout is collected by
optical microscopes, proving the compatibility between widespread instrumentation
and new microfluidic technologies.

2.2.2 Synthesis of nanomaterials for tissue engineering

Microfluidic technologies have recently shown significant potential as novel tools for
chemical synthesis. Down-scaling of reaction volumes, achieved using microchan-
nels as reactors, yields for much more controlled chemical environments and there-
fore more efficient and reproducible synthesis[?7]. Throughput can be also scaled-up
thanks to the compatibility of microfluidics with parallel and continuous-flow syn-
theses 2],

The typical size of the microfluidic channels is suitable for the direct produc-
tion of nano-fibrous polymeric materials [29'301, with promising applications in the
field of tissue engineering. Indeed, artificial fibrous scaffolds have attracted atten-
tion for their ability to mimic physio-chemical features of biological extracellular
matrix (ECM) B3], Such scaffolds—usually fabricated by electrospinning32l—can be
realized with different biocompatible polymers, and can gradually release drugs!33/,
yielding for optimal culture conditions also for delicate cell-types[34].

Microfluidic spinning is a valid alternative to the classical and traditional tech-
niques for the fabrication of fibrous scaffolds. Indeed, exploiting phase separation
in microchannels, extremely high control over polymerization can be achieved, ob-
taining micro- and nanofibers with different shape (e. g. solid, tubular, grooved, etc.),
size or porosity[3°]. The whole fabrication process can be performed in an aqueous
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environment, with minimal stress for the fibers. Microfluidic spinning is also com-
patible with cell-encapsulation within the fibers[353°. This is extremely interesting
for regenerative medicine, since a careful choice of the cell-type immobilized inside
the fiber has the potential for the creation of a plethora of different applications,
from scaffolds able to secrete trophic factors helping regeneration 32! to prototypes
of artificial organs, like the artificial pancreas developed by Jun et al.[37].

2.2.3 Microfluidics and cell-biology

Standard in vitro environments to culture cells are represented by Petri dishes and
multi-well plates. Even though these devices are cheap, easy to use and suitable
for many standard applications, they lack the complete richness found in living
organisms and do not allow for precise handling of few- or single-cells. Microfluidic
devices can improve the quality of in vifro protocols by the production of tools based
on the unique properties of fluid dynamics at the microscale.

An important parameter that can be finely controlled by microfluidic devices is
the shear-stress. This mechanical stimulation affects almost all cells, with an inten-
sity depending on their physiological role. In living organisms, a whole spectrum
of conditions can be found, passing from the high-stresses experienced by endothe-
lial cells in arteries3®] to almost-no-stress required by neurons in the brain[39]. Ow-
ing to the velocity profiles characteristic of laminar flow (see SECTION 2.1.2), micro-
fluidics provides efficient tools for the administration of well-defined mechanical
stimulations!4°]. Moreover, increasing experimental throughput of microfluidic flow-
chambers is straightforward, since several flow conditions can be tested on a single
device by realizing arrays of channels with different width4+].

Laminar shear-stress and sub-cell-sized filters allowed for the development of
label-free methods to sort cells depending on their mechanical properties[42l. Singh
et al.[3] developed a very simple flow chamber for highly-efficient collection of hu-
man induced pluripotent stem cells (iPSCs), named pSHEAR. The device exploits
shear-stress to distinguish between cells with different adhesive strength, yielding
for user- and lable-free cell sorting. This difference is related to the change in cell-
phenotype consequent to the induction of pluripotence: from the spread morphol-
ogy distinctive of fibroblasts (the cell-type commonly used for this process!43l) to
cells which form tight colonies of round-shaped cells. This morphological change
is reflected in a loss of adhesiveness, constituting a sort of adhesive signature of the
two cell types involved. pfSHEAR exposes reprogramming cells to a threshold shear-
stress, detaching the poorly adherent ones without influencing the rest of the cul-
ture!43]. Detached cells can be easily collected off-chip and expanded to form iPSC
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cultures with an extremely high level of purity (up to 97%), higher than the levels
achieved by visual identification and isolation in standard culture systems.

Finally, the low Reynolds and Péclet numbers characterizing microfluidics allow
for the achievement of an accurate control over chemical gradients in channels and
chambers. Chemical gradients are indeed the main actors in mid- and long-distance
cell-communication and play a fundamental role in the correct development of tis-
sues!#] and in the response to external stimulil43]. Chemical gradients cannot be
controlled by standard culture devices which only allow for changes in the total vol-
ume of the culture medium. On the contrary, the long mixing times characteristic of
low Re (see SECTION 2.1.3) are suitable for creating both stable and transient chemical
gradients!>4°], making microfluidics a powerful tool to study dynamic behaviors of
cells. Given the importance of this topic, many microfluidic gradient generators have
been developed in the last decade. It is important to mention the most relevant ones,
starting with the Premixer!47) and Universal!48] gradient generators. These devices can
create arbitrary-shaped gradients exploiting diffusive mixing in dedicated channels
placed before the actual perfusion chamber. A different approach was implemented
with the Microjets device [49], This device uses two sets of 1.5 x 1.5 um? channels (uJets)
to pump small amounts of fluids inside a 200 pm-wide open chamber, pinning the
concentration at the exit of the pJets to the concentration of the injected solution
and creating a diffusive gradient in the open chamber. Importantly, since the in-
jected volume is neglectable with respect to the volume of the culture chamber, the
gradient is formed in the absence of convection and the mechanical stress on the
cells adhering in the chamber is minimal. For this reason pJets can be used in com-
bination with particularly delicate cell-types such as neurons>°l. The evolution of
gradient generators led to more sophisticated devices able of controlling the shape
of the chemical gradients in 2D and found countermeasures to prevent shear-stress-
induced cell-damage [51]; however, as discussed in CHAPTER 1, what is still missing
is a technology capable of merging the capabilities of microfluidics with the ease-
of-use of traditional assays!>9], overcoming the limits that has thus far hindered its
widespread use.

2.3 OPTOFLUIDIC DEVICES

The microscope is one of the most powerful research tool in biology and it is a
fundamental companion of microfluidic devices in the laboratory setting, acting
as the principal chip-to-world mediator. Microfluidic platforms possess a handful
of attributes that enhance the compatibility of microscopes as well, since the ar-
rayed chambers integrated into microfluidic chips make automated image collection
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Figure 2.2: Microfluidic-plasmonic probe. (a) Sketch of the on-chip plasmonic antenna coupled with the
microfluidic channel. THz radiation is focused on the back of the device and is coupled down to a small
volume below the corresponding free-space wavelength. (b) Picture of the assembled PDMS chip. The
microchannel is highlined in red.

a straightforward task and machine-vision-based control allows for an efficient flu-
idic routing in complex channel-networks (23],

In this section I will present the results obtained with three devices developed
for optical analysis. The devices described in SECTION 2.3.1 and 2.3.2 focus on the
terahertz detection of subwavelength objects and waver-dispersible nano-resonators,
while the device discussed in SECTION 2.3.3 provides an application of microfluidic
devices as phantoms for photoacoustic imaging.

2.3.1  Terahertz probe of individual subwavelength objects in a water environment

The development of on-chip technologies for terahertz (THz) spectroscopy has at-
tracted considerable attention in the last few years, mainly for its potential impact
on biological and biomedical fields. THz radiation can indeed be effectively used to
monitor molecular processes and DNA hybridization, or even to influence certain
aspects of cellular activity[52].

In order to be of biological or physiological significance, all these measurements
require techniques that can be applied to samples in aqueous environments. Water
is notoriously highly absorptive in the THz region, however, and this limits the
interaction length to few tens of micrometers at most. The fabrication of a practical
THz microfluidic system is indeed a major technological and scientific challenge.
Indeed, merging THz and microfluidics in a LoC device requires solving three main
issues:
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1. use of fully biocompatible materials that are transparent in the THz range
(and possibly in the visible range, to simplify alignment and monitoring of the
chip operation) ready to be integrated with all standard microfluidic on-chip
technologies;

2. implement a compact, potentially low-cost, stable, high-power THz source that
ensures high signal-to-noise ratios, fast response times, and continuous opera-
tion over a long period of time;

3. ensure high sensitivity within highly THz-absorbing material like water over
volumes down to the picoliter or the typical living-cell characteristic size of a
few micrometers, despite a radiation wavelength that in air is at least on the
order of 100 um.

Here, I present a new portable microfluidic platform for on-chip THz transmission
analyses that effectively meets all the above requirements. The system was realized
by using conventional microfluidic materials and exploiting a compact THz quan-
tum cascade laser (QCL) as a sourcel53]. Deep-subwavelength resolution was ob-
tained by integrating a metallic plasmonic antenna on-chip, according to the concept
sketched in FIGURE 2.2a.

The antenna consists of a metallic pattern with the form of an elongated X-shaped
aperture!5455]. Tts geometry was chosen in order to concentrate the electric field of
the impinging radiation into a specific region of space, at least for a given wavelength
and polarization of the incident light!5%57]. In our case this region is orthogonal to
the central slot of the X. The slot was aligned and in close contact with a microfluidic
channel whose width varies from 15 um to 40 um, ensuring that most of the trans-
mitted THz light was tunneled through the channel. This microfluidic platform was
then used to demonstrate the fast detection and characterization of subwavelength
(< A/10) objects flowing in a water suspension, and to show the ability to perform a
chemical analysis over volumes of the order of a picoliter.

Design

The two functional parts of the chip (i. e. the antenna and the microfluidic platforms)
were realized with different materials, according to the requirements of mechanical
stability and transparency in the THz region.

The fluidic layer consists of two PDMS parts assembled by oxygen-plasma bond-
ing [5] (see APPENDIX A for additional details). A single microchannel (FIGURE 2.3) was
localized in the 500 um-thick bottom stratum, surmounted by a 4 mm-thick piece of
PDMS. This second layer provided the mechanical stability for the connections with
the external tubing and has a 10 mm radius hole in the central region, necessary to
reduce radiation absorption in correspondence to the optical path.
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Figure 2.3: Architecture of the microfluidic chip. (a) Cross-section of the device showing the antenna-
layer (bottom) and the two PDMS layers (edges were underlined for a more clear visualization). (b)
Microscope image of a microfluidic channel aligned over the plasmonic antenna. (c) Design of the fluidic
layer of the chip.

For the antenna we used a 300 pm thick cyclic olefin copolymer (COC) substrate,
located in close contact with the microchannel, providing a seal for the microfluidic
layer. COC meets transparency demands with acceptable THz loss'®! (a < 1em™
at 3THz) and is strong enough to withstand sufficient liquid pressure even when
thin layers are used. The antenna was patterned on the evaporated metal surface by
standard ultraviolet (UV) lithography followed by dry etching using an inductively
coupled plasma reactive ion etching machine (ICP-RIE), as detailed in reference!57).

Subwavelength object detection

The main objective of this device was to demonstrate on-chip dynamic THz detec-
tion and assay of individual subwavelength objects flowing in the water channel. In
order to prove this capability, we used poly (styrene) (PS) microparticles; these are
commercially available in water suspension (FLUKA Sigma-Aldrich), offer a highly
monodisperse diameter distribution (standard deviation in diameter < 0.3 pm), and
possess very low THz absorption with respect to water[59]. These particles are of-
ten used to mimic cells for fluid-dynamics experiments in microfluidic chips!®!. In
particular, we used particles of two different diameters, 10 um and 20 pm, corre-
sponding roughly to A/11 and A/6, respectively, for the 2.6 THz radiation used here.

To establish a suitable flow rate we first observed and recorded particle transits
by means of a CCD camera. The purpose was to verify that, on average, no more
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Figure 2.4: Detection of subwavelength particles. Signal detected when (a) 20 um and (b) 10 um diam-
eter PS beads were transiting over the antenna. The respective chip configuration is schematized in the
gray boxes.
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than one particle was present at the same time in the portion of the chip probed
by the THz beam, and also that the flow speed was compatible with the lock-in
acquisition time. The typical rate employed was of the order of 1 particle per second.
We then moved the sample from the CCD inspection area to the THz beam line
using an automated-motorized XYZ system. The THz set-up is described in detail
in APPENDIX B.1.

FIGURE 2.4 and 2.5 display the transmitted THz signal recorded in such experi-
ments for 3 different microfluidic chips. FIGURE 2.4 reports individual measurements
of particles passing through chips having different channel widths, depicted by the
insets. The measurements reported in FIGURE 2.4a were performed using a chip with
a 40 um wide channel and particles of 20 um diameter, while those of FIGURE 2.4b
exploited a 15 um wide channel and particles of 10 um diameter. This latter chip
was specifically designed with the microfluidic channel placed parallel to the slot
of the metallic antenna: this configuration is very useful for small particles because
it increases particle fly time in the sensing area, with consequent increase of the
signal-to-noise ratio. In both cases THz transmission peaks were clearly detected as
a function of time, in coincidence with each passing particle, since the absorption in
the beam path is reduced by the presence of the almost transparent object replacing
a corresponding volume of absorbing water. By dividing the distance traveled over
the aperture by the particle fly time deduced from the graphics, we obtained its veloc-
ity. The velocity calculated for the peaks of FIGURE 2.4 varied between 7 and 20 um/s
for the 20 um diameter particles and between 90 and 190 um/s for the smaller ones.
These values are consistent with those observed with the CCD camera. We could
not directly and precisely correlate the peak amplitudes observed in FIGURE 2.4a
with those of FIGURE 2.4b in terms of particle diameter. The reason is the different
chip geometry and focalization efficiency of the plasmonic structures. Nevertheless,
the peak height in the detector signal was of the order of 1mV for the 10 um diam-
eter particles and of the order of 10mV for the bigger ones, reasonably in line with
what was expected from the particle volume.

FIGURE 2.5 reports data for the 1:1 mixture of 20 um and 10 um diameter particles
passing in the same 40 pm microfluidic channel. Two families of peaks with different
intensities clearly appeared, each relative to one of the particle species (FIGURE 2.5b).
The graphs also shows a third family of high-frequency sharp peaks uncorrelated
with passing particles. These peaks are indeed noise arising from pressure oscilla-
tions in the channel created by the pressurization lines. The analysis of the peak
events is reported in FIGURE 2.5b as a function of their amplitude; they are clearly
grouped into two different families of transiting objects. The ratio between the av-
erage peak amplitude of each group is 4 + 1, to be compared to the value of 7 £ 1
expected from the difference in particle volume calculated taking into account the
nominal uncertainty of 2-3% in diameter size provided by the producer. The ex-
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Figure 2.5: Simultaneous detection of particles with different diameter. (a) Transmitted signal in time
showing the transit on a 1:1 mixture of 10 pm and 20 um-diameter particles. The images on the right
represent typical particle-crossing events. (b) Analysis of peak-height. The plot shows the intensity asso-
ciated to each particle-crossing event. Red bars represent the average peak-height calculated for the two

populations reported in the graph.
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pected ratio is not 8, as that of the sphere volumes, because the 20 um particles are
larger than the slot in the metal, and thereby are not fully illuminated by the THz
radiation. Possible reasons for this discrepancy can be ascribed to:

e Microfabrication uncertainties: the actual aperture size of the antenna in the
experiment can be up to 20% smaller, which would impact only the 20 um
particles signal producing a theoretical ratio of 7 + 2 that would be compatible
with the results;

o The energy distribution of the THz field inside the open area is not homoge-
neous but more intense in the center, thereby producing larger signals for the
small particles;

o The presence of the surfactant in the solution and surface hydration of the
polystyrene spheres can produce an additional absorption change proportional
to the sphere surface (not to its volume). A detailed investigation of this effect
was not possible in our set-up and it is beyond the scope of the present thesis.
We can argue, however, that such a hydration shell involves just a few wa-
ter molecular layers surrounding the sphere surfacel®’l. Considering that the
expected relative absorption change with respect to bulk water is limited to a
few percent, it should be a negligible contribution to the observed THz particle
signal.

Conclusions

The peaks appearing in the THz-transmission time traces are the microparticles THz
fingerprints. Since in our proof-of-concept experiment particle constituents were
identical and weakly absorbing in the THz, the capability of distinguishing 2 species
was actually just based on their respective size, leading to a weaker or stronger
transmission. Clearly, potential bio-applications would rather target in the future
quantitative differences in the spectroscopic THz response, for instance arising from
differences in composition, molecular resonances, etc. From an experimental stand-
point, the measurement is anyway equivalent, since it is exclusively based on the
analysis of the THz-signal peak intensity. Of course, in the case of sharp resonances,
more detailed information could be obtained resorting to a tunable source and inves-
tigating the spectral dependence of the signal. Note that the developed technology
already employs broadband optical elements and is therefore directly suitable for
spectroscopic applications. Our results unequivocally showed that a LoC for deeply
subwavelength THz analyses in a microfluidic environment is a reality. Our system
was based on a QCL source and successfully merged plasmonic-focusing structures
with standard microfluidic technologies adapted to ensure compatibility with THz
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spectroscopy. Furthermore, these experiments showed the crucial capability to oper-
ate in water, in real-time speed, and on single objects as small as 10 um (< A/10),
the typical size of a biological cell. Finally, our data proved the applicability of our
approach to recognition and sensing even in the dynamic fast-transit configuration
that is required for instance by sorting and/or large statistics applications. We be-
lieve this technology can contribute to the development of THz-based spectroscopy
of biomolecules at the cell level, with exciting perspectives for label-free applica-
tions.

2.3.2 Water-dispersible three-dimensional LC-nanoresonators

In secTION 2.3.1 I introduced a microfluidic device exploiting a plasmonic antenna
to focalize the electromagnetic field in a subwavelength region. In this section I
report the use of plasmonic nanoparticles as sensors compatible with aqueous envi-
ronments.

Nanoparticles can be produced by different approaches. Chemical synthesis is
an established methods to obtain metal nanoparticles, whose surfaces can be func-
tionalized to obtain stable dispersions in liquids, and to selectively detect molecular
interactions. This bottom-up approach, however, presents some limitations. First, the
optical properties of these nanoparticles are determined by the intrinsic characteris-
tics of the material they are made of, and can be tuned within a very limited range
of resonance frequencies. Moreover, the repertoire of structures that can be synthe-
sized is limited, thus limiting the possibility to tailor and fine-tune their properties
by playing with shape and size.

Alternatively, a top-down nanofabrication approach can be used to realize arrays
of nanoantennas and nanoresonators with controlled optical properties and sensing
capabilities. These metamaterials can be designed to have an optical resonant re-
sponse in widely different regions of the optical spectrum, from the visible[®2l and
near infrared (IR)[%3%4] down to the THz!95%¢], Moreover, modern nanolithography
techniques allow as to obtain composite nanodevices with complex shapes and ac-
curately controllable properties. The main drawback of these fabrication protocols is
that the produced devices are anchored on a support substrate, so a strategy for the
detachment is needed if the devices are meant to be used in liquids.

LC nanoresonators

In this study I tested LC nanoresonators developed by Clerico et al.[7]. These res-
onators have a rectangular geometry (230 nm x 115 nm lateral sizes) and a 3D, wafer
structure, consisting of one layers of aluminium (50 nm, bottom layer), one of alu-
minium oxide (40 nm, middle layer) and one of gold (50 nm, top layer). This device
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Figure 2.6: Design of the LC-nanoresonators. (a) Schematics of a single resonator and equivalent electri-
cal circuit. (b) SEM image of an array of resonators.

can be described as a nanoscopic circuit (FIGURE 2.6), when a harmonic magnetic
field with a component normal to the plane (x,z) excites it. In this case two an-
tiparallel currents in the metals are generated and this loop current determines an
inductive regime, while the accumulation of opposite charges in the extremities of
the upper and lower metal slabs creates a capacitive coupling in those areas. The
resulting LC resonance, beyond the dependence on sizes and shape, is strongly in-
fluenced by the dielectric constant and magnetic permittivity of the external envi-
ronment, and can be used as a way to probe the local environment, and chemical
binding at the surface of the nanodevice.

Resonance measures in liquid

In order to demonstrate the use of these devices as biosensors, transmission spectra
were acquired while immersing the nanoresonators in different liquids. To this end,
I realized a PDMS microfluidic device (see APPENDIX A.2.1 for details) with two
1.88 nl chambers—one for the sample and the other to measure the background
signal. The chip was covalently bonded to a glass coverslip aligning the 250 um x
250 pm big signal-chamber to a 250 nm x 125 nm array of nanoresonators fabricated
on the glass. Reference gold markers were also created on the coverslip to control
the spot size and to align the beam focus on the array of nanoresonators (FIGURE 2.7).
Transmission spectra were acquired with a commercial Fourier trasform infrared
(FTIR) Nexus spectrometer equipped with a white light lamp and a PbSe detector.
Water, ethanol, isopropanol were flushed into the chip at 0.4 ul/min, using an
external syringe pump (Harvard apparatus). Before and after each measurement,
the microchamber was cleaned with deionized water (DI-H,O) water and dried for
15 min by exposure to an external lamp. In FIGURE 2.8a the shift of the resonance is re-
ported as a function of the refractive index of the different liquids that were injected
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Figure 2.7: Microfluidic device for detection of LC-nanoresonators. (a) Sketch of the microfluidic cham-
bers used for the detection of LC-nanoresonators in acqueous environment and (b) microscope image of
the actual microchannel network used.

into the microfluidic chip[®®7°l. The 4 data-sets were acquired at room temperature
in 4 separate experimental sessions in 2 different days to test the repeatability of the
measurement. The time of each measurement was 30 min.

In order to quantify the ability of the nanoresonators to discriminate between
different environments, the change in the position of the resonance peak in for the
three above mentioned liquids was measured as the bulk sensitivity S, that is defined
as the spectral shift AA originated by a certain refractive index change An of the
external environment,

AA
S_

=4 (2.22)

Bulk sensitivity was calculated from the slope of the linear fit, resulting in 280 nm
per refractive index unit. The performance of the device was determined by its fig-
ure of merit, i. e. the sensitivity S divided by the full width half maximum (FWHM)
of the resonance. In our experiments we found a figure of merit of almost 6. The
sensitivity of the resonance peak position and line-shape to the chemical-physical
features of the local environment makes these devices promising for sensing appli-
cations.

Detection of solutes

The resonance of these nanodevices was influenced by the chemical binding of
molecules to one of the metal facets as well as by the dielectric properties of the
external environment, enabling the detection of specific molecular interactions or
the kinetic study of chemical binding. We measured the transmission spectra of the
nanoresonators at different time-points while a solution 1:1000 of cysteamine and
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Figure 2.8: On-chip optical detection of LC-nanoresonators. (a) Shift of the resonance for 3 liquids
with different refractive indexes injected into the chamber. The linear fit is represented by the red line. (b)
Transmission spectra resolved in time during cysteamine-binding. The graph shows a blue shift associated
to the cysteamine-binding.

water was flowing through the microfluidic chip. Cysteamine is known to bind to
the gold layer with its thiol groups!7]; in a circuit model, it acts as an external
impedance that causes a damping of the resonance!7?l. This behavior is reported in
FIGURE 2.8b, witnessed by a blue shift of the transmission spectra.

Conclusions

The nanoresonators proposed here showed several interesting properties, making
them a candidate for several application requiring detection of particles in water
environments. In particular, I want to stress that:

e the top-down approach allows for the design of their optical response;

o the dependence of the resonance frequency from the environmental composi-
tion enable the use of the nanoresonators as sensors of the physical-chemical
environment;

o the nanoresonators can be fabricated on transparent supports compatible with
LoC applications as well as on sacrificial materials (e.g. Gallium Arsenide[©7])
allowing for their detachment and use in vivo as colloidal suspension.
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Figure 2.9: Gold nanorods in photoacoustic imaging. (a) Scheme of the cellulose microcapillaries used
to test the photoacoustic system. The capillary on the left is filled with water, the other with the GNRs.
(b) Ultrasound imaging of the two capillaries. No difference between the capillaries can be seen. (c)
Photoacoustic imaging. Signal is collected only from the capillary filled with the GNRs.

2.3.3 Microstructured phantoms for photoacuostic imaging

Photoacoustic imaging (PAI) and therapies are emerging techniques that combine
the high-contrast and spectroscopic specificity of optical methods with the spatial
resolution of ultrasonic imaging[73741. In PAI, ultrasounds are generated by optical
excitation, usually provided by a laser. The light is absorbed by endogenous chro-
mophores (e.g. haemoglobin, melanin, water or lipids[75l) or exogenous contrast
agents (CAs) 7l which produce a localized increase in temperature. The consequent
thermoelastic expansion generates broadband acoustic waves that can be detected
using ultrasound receivers. Since ultrasounds travel through tissues with minimal
scattering and attenuation, PAI is capable of locating optically absorbing objects
deep within tissue, providing advantages over other optical methods.

In order to enhance the sensitivity and spectroscopic specificity of photoacustic
signals, CAs are used. CAs are substances selected for their physical properties (i. e.
high optical absorption and acoustic emission wavelengths) and interaction with
living tissues (i.e. minimal interplay with healthy tissues and efficient targeting of
diseased ones). The fitness of a CA for a certain application can be defined only
in combination with the detection apparatus, testing on models capable of mim-
icking soft-tissue properties. These models are known as phantoms. In this section
I am reporting my results testing the performance of GNR as contrast agents for
photoacoustic imaging.
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Material Impedance Z (KRayl) Velocity (m/s) Density (g/cm3)
Air[81] 0.04 330 0.0013 (at STP)
Blood ] 161 1570 1.04

Soft tissues (avg)[®] 163 1540 1.01-1.06
Bone[®3] 780 4080 1.5-2.0
Water[81] 148 1480 1.0
PDMS 841 150 1300 1.5

Table 2.1: Mechanical properties of soft tissues. Table reported from reference (%3]

Gold nanorods

The physical and optical properties of GNRs make them good candidates as con-
trast agents for PAIl737677] since they exhibit minimal toxicity and are suitable for
conjugation with ligands to gain molecular specificity. Their absorption spectrum
displays a longitudinal plasmonic mode with a peak whose position can be con-
trolled by changing the aspect ratio of the rods and placed within the near-infrared
window—the range of wavelengths where light exhibits deepest penetration into
biological tissue[7l—i. e. in the interval 650-900 nm.

The GNRs used here were produced by Dr. Ratto, from CNR, Istituto di fisica
applicata of Firenze (Italy) according to the protocols previously reported 7951 (see
APPENDIX A.3 for additional details). The length of the rods was 53nm with a lat-
eral diameter of 11nm, resulting in an excitation peak at 840nm with a FWHM
of 160 nm. The acousto-optical behavior of these rods is shown using a simple phan-
tom composed of two semi-synthetic cellulose capillaries immersed in water, with
diameters of 100 um (FIGURE 2.9a). One of the capillaries was filled with a suspension
of GNRs, the other one with water. Since the two capillaries have identical dimension
and acoustic impedance, no appreciable difference can be detected using ultrasound
imaging (FIGURE 2.9b). Using optical excitation instead, is possible to distinguish the
capillary filled with GNR from the one filled with water (FIGURE 2.9¢).

Microfluidic phantom

The device presented here is a microfluidic chip designed to mimic the mechanical
and topographical properties of vascularized soft-tissues. The chip was created by
means of standard PDMS soft lithography using an SU8 mold (see APPENDIX A.2.2
for additional details). The fluidic layer is composed by 6 parallel channels whose
lateral size varies from 50 to 500 um, comparably with those of the tiniest fluidic
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Figure 2.10: PDMS microfluidic phantom. (a) Picture of the microfluidic phantom. (b) Plot of the inten-
sity photoacoustic signal and linear fit of the distribution (red line). The ultrasonic image (grayscale) is
superimposed to the PAI (red bands). The geometry of the microchannel network is represented in blue,
the width and the spacing of the channels is in scale with the PAL

elements found in human bodies—i. e. the blood vessels composing the microcircu-
lation[®]. In particular, the microchannels have lateral size of 50, 100, 200, 300, 400
and 500 pm (FIGURE 2.10a), and a thickness of 50 um.

The optical and acoustic properties of PDMS make it a suitable material for PAI,
because its optical transparency leads to low attenuation during optical excitation
and its acoustic impedance (parameter derived from the mass density of the material
and the velocity of the acoustic wave in it) is comparable with those of soft tissues (%3,
Typical values of acoustic impedance for several biological tissues are reported in
TABLE 2.1 on the preceding page.

Photoacoustic measurements were performed in collaboration with the group of
Dr. Menichetti, from CNR, Istituto di fisiologia clinica of Pisa (Italy). The microchan-
nels were loaded with a 87nM solution of GNRs in water. FIGURE 2.10b shows the
quantification of the photoacoustic signal (S) collected as a function of channel width
(wi, with i=1:6). As expected, the signal increased linearly with the width of the
channel. Indeed, the intensity of the generated ultrasound is proportional to the
number of GNRs in the integration volume, n; = C;V;. Since all the channels were
loaded with the same concentration of nanoparticles (C; = Cy), the amount of GNRs
excited by the laser was determined by the lateral width of the excitation beam (d)
and the cross-section of the microchannel. In this particular chip, since all the chan-
nels have the same height (h; = h):

Si=aCoVi = Pwy,
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with B = aCph d. FIGURE 2.10b also shows that the signal from the 50 pm-channel
could not be detected, suggesting that the detection limit was reached.

Conclusions

The chip proposed here has shown the optical and acoustic properties desirable for
photoacoustic applications. Moreover, the reduced size of the chip and the precise
control over channel-network geometry allows for a great versatility in modeling
the structure of vascularised tissues. Overall, these results proved that microfluidic
devices posses promising features that make them suitable for the construction of
phantoms for PAL

2.4 TAILORING CO-CULTURES IN CLOSED CHAMBER

In the previous section I discussed LoC devices meant to be a key component of
wider analysis systems; in this section I will concentrate on a stand-alone microfluidic
system designed for cell-culturing in a highly controlled environment.

Microfluidics has brought great improvements to tissue culture devices, allowing
fine control over the local chemistry 4] and physics!4°! of extracellular environment
in vitro, owing to the highly predictable fluid dynamics characterizing fluid flow at
the microscale (see SECTION 2.1.1). A number of bio-devices were proposed to study
relevant cell biology aspects, such as cell migration[®”], axon guidance!®! and stem
cell differentiation[®9l. Although devices such as these have shown great potential,
several drawbacks have limited their widespread use in cell biology. Indeed they
typically require complex fabrication processes, bulky external pressurization sys-
tems for valve and liquid actuation that are normally connected to the microchip
by fixed tubing. Additionally, dedicated skilled operators are necessary to run such
experiments. Recently, a few alternative ways to actuate and control flows in micro-
environments were proposed, using cells themselves to drive liquid routing[° and
open chambers to facilitate cell loading and medium exchange[9'.

Here, I introduce an original microfluidic gradient generator for culturing cells
in closed microchambers that is compatible with standard biological procedures
and does not require external control units and tubing. Its architecture allows easy
handling of the liquids and simple and efficient cell loading protocols to position
selected cell types in different areas of the microchamber. Co-cultures with an initial
topographical organization were set up, and migration and chamber colonization
processes were studied by time-lapse microscopy. Finally, the chip was applied to
the study of the anti-cancer properties of catechin—dextran conjugate.
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Figure 2.11: Microfluidic chip architecture. (a) Photography of the PDMS chip and SEM image of the
microchamber (MC) and filter channels (FCs). Scalebar 100 um. (b) Schematics of the whole microfluidic
network. (c) Simplified equivalent circuit of the fluidic impedances.

2.4.1  Chip Architecture

A schematic view of the chip design is shown in FIGURE 2.11. The fluidic network is
composed of a central 7.5nL chamber (500 x 500 x 30 um3), from which three chan-
nels depart in a T-shaped geometry. These channels connect the microchamber (MC)
to open liquid reservoirs (LRs), which can be filled by standard pipetting, provid-
ing a hydrostatic pressure of 150 Pa. Two sets of 2.5 x 10 um?* parallel microchannels
are located between the MC and the two lateral channels (see FIGURE 2.11) acting
as filters for suspended microparticles and, during cell loading, as barriers for sus-
pended cells. For this reason, in the following they will be called filter channels (FCs).
Their hydraulic resistance is much greater than the other microchannels (TABLE 2.2)
so that more than the 90% of the total pressure drop is located at their ends. As a
consequence, morphological imperfections of the fluidic accesses or along the large-
section microchannels marginally affect the pressure values at the 3 open sides of
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Lxw(um?) h(um) A (um?) R(mBars/nL)

Perfusion channels 3000 x 150 30 45-.103 10.19-1072
Waste/loading channel 2000 x 200 30 6.0-103 492-10"2
Filter channels 100 x 10 25 2.5 91.34

Table 2.2: Channel geometrical characteristics and hydraulic resistance. L, w and h are channel length,
width and height, respectively, A is channel cross-section and R is the hydraulic resistance calculated by
equation (2.15)

the MC and its fluid dynamics. Details on the fabrication of the chip are reported in
APPENDIX A.2.3.

The chip hydraulic resistance was dimensioned in order to have a fast liquid
turnover in the MC while minimizing the flow rate and, consequently, the shear-
stress applied to the cells. This point is crucial, since high flow rates lead to rapid
equilibration of the liquid levels in the reservoirs and to the end of the perfusion.
Owing to the FC high resistance, however, the maximum flow rate achievable using
the hydrostatic pressure provided by the reservoirs is limited to 2.5nL/s. Given the
large volume of the reservoirs, the pressure drop is reduced only by the 2%/h of
chip operation—for 450 mL reservoirs. Nevertheless, this flow rate corresponds to a
turnover time of the liquid in the MC of 3 s, assuring a fast delivery of fresh nutrients
to the cells and washout of metabolic wastes.

2.4.2 Fluid dynamics

The fluidic behavior in the MC is determined by the balance of the flows through
the lateral channels, called perfusion channels (PCs), and the central channel, called
the waste/loading channel (WLC). Given the symmetry of the devices, 2 pressure
differences APs and APy, were defined to describe the MC fluid-dynamics:

APs =P, —P,

(2.23)

APy = P — PatPs
where P,, Py and P are the pressures at inlets A, B and C, respectively. The hydraulic
resistance of the microchannel network—see EQUATION (2.15) on page 11—was cho-
sen so that fluids could be actuated using the hydrostatic pressure provided by the
reservoir liquids. The resulting equivalent circuit is represented in FIGURE 2.11¢ and
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Standard operating mode APp (Pa) APg (Pa)
Symmetric loading 150 0
perfusion —150 0
Asymmetric right-side loading 75 150
left-side loading 75 —150

Table 2.3: Standard operating modes. The table reports the input pressures associated to each standard
operating modes defined in this section.

the value of each element of the circuit is reported in TABLE 2.2. AP and AP, were
used to calculate the flow rates along the branches A, B and C (q45,c):

1 1

qa = ﬁAPS — mAPD, (2.243)
1 1
a8 = R AP T R R T (2:245)
2
=—— AP .
dc =3 TR (2.24¢)

where Ry c is the hydraulic resistance of the WLC and R is the equivalent seen from
the MC to LR, 5 (R = Ryrc + Rec/25).

EQUATION (2.24c) show that the sign of AP, determines the flow direction in the
central channel .. For positive values the liquid flows from LRc to the MC, passes
through the FCs and reaches LR, and/or LR;; in the following we will refer to this
case as loading mode. For negative values (AP, < 0) the flow direction is inverted,
and the liquid enters into the MC from one or both the PCs, and reaches LRc. This
operating mode will be called perfusion mode. The balance between flows in the PCs is
regulated by APg: the flow is symmetric if this variable is equal to zero and spatially
biased otherwise. The difference between the flow rates qa — qg = APs/R can be
used to insert a lateral flow drift in the MC. This bias reaches a critical point for:

2R
APg| = ————|AP .
APy = oS APy (225)
corresponding to the virtual exclusion of one of the two PCs from the fluidic network
(91 = 0,95 = qc, withi,j = A, B and i # ).
In order to assess device performance in creating and controlling different fluidic
configurations, several combinations of AP, and APs were simulated by finite ele-
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Figure 2.12: Chip fluid-dynamics characterization. (a) Comparison between calculated and experimental
velocity fields in the MC. (b) Unbalanced flow in the MC: the position of the interface between fluid flows
from the PCs is calculated (solid line) and measured (coloured bars) for different values of APs. The
average speed of each pressure configuration is plotted in (c).

ment method analysis and experimentally characterized by spatio-temporal image
correlation spectroscopy (STICS)[9%], as detailed in APPENDIX B.2. Data reported in
FIGURE 2.12 demonstrate that the hydrostatic pressure alone could finely control the
microfluidic device, and that all measurements agreed remarkably well with data
obtained in silico. As expected, laminar flow dominated the fluid dynamics in the
MC (Re =8-107% <« 1, Pé = 10 > 1) and as a consequence, opposite parts of the
MC could be chemically decoupled by operating in perfusion mode. This is achieved
if the diffusion of the solute molecules is slow compared to the fluid velocity in the
MC. For example, in the case of a small molecule in water (e.g. glucose, diffusion
coefficient Dg = 600 um?/s), the time required for complete diffusion within the MC
is of the order of 104s, a value much greater than the typical fluid turnover time
(7.5 for a slow rate of 1nL/s). The velocity field in the MC (FIGURE 2.12) could be
used to calculate the shear-stress experienced by cells. According to EQUATION (2.10),
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Figure 2.13: Speed measurement in active-pressurization-mode. Measure of speed (SD reported as blue
bars) in the MC during active pressurization. A linear fit of the first three points (pure resistive regime)
of the curve (red line) is reported.

the maximum spatially-averaged value, obtained for standard symmetric perfusion,
is 8.3 £ 0.4mPa. Yet, 20% of the MC area experience shear-stress values lower than
15mPa (see APPENDIX B.3 for details).

Hydrostatic- and active-pressurization

An increasing number of studies are proposing hydrostatic-pressure-driven microflu-
idic devices for implementing cell cultures at the microscale[®>9394], but this pump-
ing methods has few disadvantages that must be taken into account. In particular,
the maximum flow rates that can be achieved are limited by the reservoir capacities
and a dynamic control of the flows requires to add or remove liquids from the reser-
voirs. For our geometrical design, a strategy to overcome these issues was to directly
connect the liquid reservoirs with pressurized-air lines. Since no liquids were in-
jected into the chip, the thermal equilibrium of the reservoirs with the chip was not
compromised and dead volumes were not increased. Moreover, air-to-liquid inter-
faces were easily connected/disconnected without the risk of trapping air bubbles
in the fluidic network. The graph in FIGURE 2.13 shows the average velocity mea-
sured in the MC as a function of the external pressure applied to LRc. The first part
of the curve (AP, = 1.6 - 103 Pa) shows a linear trend compatible with a pure resistive
behaviour. At steady state the pressure-driven flow is regulated by q = AP/R, where
q is the flow rate and AP is the pressure drop. Since q is proportional to the average



2.4 TAILORING CO-CULTURES IN CLOSED MICROCHAMBER \

velocity (v) in the channel: v/AP = o, where « is the slope of the speed-pressure
curve. The slope of the linear fit calculated for 1 < AP < 1.6-103Pa (red line
in FIGURE 2.13) is 5.35-1072 £ 0.74-107 2 um/sPa, in agreement with simulations
(5.28-1072 pm/sPa). For higher pressure values the average measured speed satu-
rates. This behavior suggests the presence of pressure leaks that probably stemmed
from a non-optimal sealing between the external tubing and the LRs.

2.4.3 Automated cell-loading

During typical operation, the whole chip (reservoirs included) was maintained within
an incubator (T = 37 °C, 5% CO,) in thermal equilibrium with the external environ-
ment. In this condition, on-chip liquid reservoirs led to a reduction of dead volumes,
efficient gaseous and thermal equilibration between the chip and the environment.
This minimized the presence of temperature and gas-liquid solubility gradients
along the liquid paths, resulting in negligible air bubble nucleation and microchan-
nel clogging. Gas bubble formation is a very limiting factor in microfluidic devices
and the published approaches to address this issue focused on removing bubbles
already present in the chip by using dedicated elements such as hydrophobic paths
to create gas-liquid interfaces on-chip!95], bypass channels to collect and drive air
bubbles off-chip 9 or vacuum lines for gas removall979%]. However, the integration
of bubble trappers increases device-manufacturing and operation complexity. Here,
the prevention of gas bubbles nucleation in the microchannels was obtained using
open liquid reservoirs, i. e. localizing the liquid-to-air interface on chip.

Cell loading was obtained by exploiting the difference in cross-sections between
the FCs and the rest of the channels (TABLE 2.2). Since suspended cells typically have
a circular cross-section with an average diameter greater than 10 pm, they cannot
pass through the thin FCs (2.5 um-10'um) which act as barriers, leading to cell
accumulation at their ends. The loading procedure can therefore be divided into
three phases:

1. LR, s were emptied and LR was filled with the cell suspension, as schema-
tized in FIGURE 2.14a;

2. flow was activated by gravity from LRc down to the MC (FIGURE 2.14b), cells
moved into the MC by viscous drag and progressively accumulated at FCs
entrances (FIGURE 2.14C);

3. when all FCs were occluded by cells, the flow automatically stopped, thus
preventing an excessive cell density to build up (FIGURE 2.14d).

Cells adhered and spread on the MC bottom layer in approximately 30 min, reopen-
ing FCs and therefore restoring liquid flow (FIGURE 2.14e). After cell spreading LR,
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Figure 2.14: Automated cell-loading in closed microchamber. (a) Sketch of the chip during cell-loading.
Cell suspension is added in LRc while LR, are emptied. Cells, moved by viscous drag, start flowing
inside the MC and are collected on the FCs (b), progressively occluding them until flow stops (c). Upon
cell adhesion and spreading (i.e. in ~ 30 min), FCs are freed and flow is restored. LR¢ can be emptied
and LR, 5 can be filled with culture medium to achieve perfusion of the MC (d), monitoring cell-migration
and MC-colonization (e). (f) Bright field imaging of MC-colonization by HeLa cells.

and LRy were filled with standard cell culture medium in order to obtain flow in-
version, i. e. fluids moved from LR, 3y down to the MC and reached LRc. The use of
FCs allowed a reduction of cell-suspension density with respect to those typically
required by standard loading methods!99~°!]. Moreover, cells localized only in the
active part of the device (i. e. the MC) thus avoiding possible chemical interactions
with cell colonies developing in other parts of the microfluidic chip. This effect is
known as cellular valving and was also implemented by other groups for single-cell
positioning in microchannels!9*°°l. Our chip yielded for the first time cellular valv-
ing as an automated process for cell loading and for controlling cell density in the
culture area, operations that typically require pneumatic soft valves and complex
chip geometries(®891921931 " After cell-loading, liquid reservoirs were accessible to
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Figure 2.15: HeLa cells growth-curve during standard perfusion. Cells were loaded inside the MC and
cultured under standard perfusion until confluence. Bright field images were acquired every 12h to
count cell number on every time-point. The measure was replicated 3 times and data are reported as
mean=+SD.

deliver substances (e. g. drugs, growth factors, etc.) into the MC via the FC. Details
of the cell-loading procedure are reported in APPENDIX B.5.

F1GURE 2.14f shows a time-lapse describing the standard symmetric loading of HeLa,
and the colonization of the MC under standard perfusion (see TABLE 2.3 on page 34).
These images show that the colonization of the MC was characterized by a first phase

where suspended cells adhered and spread, occupying the area close to the FCs and
2

then started replicating, reaching confluence with a density of about 6 - 1074 cells/cm?.

This behavior was quantified and reported in FIGURE 2.15, where the number of cells
is plotted vs. time during standard symmetric perfusion. An initial lag of 24 h pre-
ceded a regular growth curve, in agreement with what observed in similar con-
ditions by other groups!941°4151. The cultures showed a growth rate of 0.023 +
0.002h™* and a viability, calculated as the percentage of Calcein AM-positive cells,
at 72h of 88 + 3% (see APPENDIX B.7 for details).

These values are in line with those measured in standard culture conditions by
us (0.028 £ 0.007h™") and by other groups (i.e. 0.025h™" on average in multiwell
plates[*°l). They also are very similar to those measured in other published mi-
crofluidic devices under similar flow conditions[947°4], The time required to reach
confluence depends on the initial cell density and can be reduced using more concen-
trated cell-suspensions during the loading phase. In order to measure the doubling
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Figure 2.16: Asymmetric cell loading and co-culture. (a) Schematic loading protocol for co-culture ex-
periments. (b-e) 72 h-time-lapse sequence of a REFs (green) and HeLa cells (yellow) co-culture. Scale-
bars 50 um.

time, the initial cell density was chosen to reach confluence in long terms (> 72h),
allowing a more accurate calculation of the growth rate. Cells did duplicate and
showed a healthy morphology, demonstrating that the nutrients provided by the
perfusion and the washout of the waste was sufficient for reaching and maintaining
confluence. Finally, we also stress that shear-stress did not reduce cell viability and
growth.

2.4.4 Tailoring co-cultures by serial asymmetric loading

The chip presented here can also easily obtain cell patterning or co-cultures in-
side the MC. To this end, an asymmetric cell loading protocol was described and
demonstrated. The procedure is similar to the above described one except that the
input pressures are set below the critical point calculated by EQUATION (2.25) (see
APPENDIX B.5). This condition is satisfied by filling one of the opposite LRs and emp-
tying the other. The resulting pressure configurations (AP, = 75 Pa, APs = 150 Pa)
were called standard asymmetric loadings, as reported in TABLE 2.3 on page 34. Since
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Pc = Py (with i = A, B), the liquid flowed towards LR; (P; = 0, with j # i) and
the suspended cells collected on the corresponding FCs. The sign of APs determines
the side of the MC at which the cells collected. The absolute value of APy, is less
than those used for symmetric loading (TABLE 2.3), resulting in a 50% reduction of
the WLC flow rate and slower cell loading. Importantly, loading efficiency was not
affected by this flow reduction. After cell adhesion and spreading fluid flow was
restored, a second asymmetric loading could be performed towards the opposite
side of the MC. This was obtained by simply inverting the sign of APs and could be
applied to introduce a second, different cell population for co-culture experiments.

In order to demonstrate this operation mode, REF and HeLa cells were loaded
into the MC and cell migration was followed by time-lapse fluorescence microscopy
for 72h. A schematics of the loading protocol is reported in FIGURE 2.16a. First, REFs,
a cell line stably expressing paxillin-EGFP, were loaded into the left side of the MC
and left to adhere for 1h; second, HeLa cells stained with vybrant (Invitrogen), a
vital fluorescent membrane dye, were sent to the other side of the MC (see TABLE 2.3
on page 34 for details about the pressure configurations in each working modal-
ity). After 1h, standard perfusion mode was set and time-lapse acquisition started.
FIGURE 2.16b—e show the two cell populations (REF in green and HeLa in yellow) mi-
grating from the adhesion sites towards the central part of the MC. Migration was
qualitatively different for the two cell kinds: while REFs colonized the free space
from the adhesion side as single scattered cells, HeLa migration was mostly collec-
tive. Finally, after 72h of culture, the spatial cell distribution developed in a mixed
monolayer, in which small REF clusters were embedded into the HeLa sheet F1G-
URE 2.16d,e. At the end of the experiment both REF and HeLa did not show any
visible evidence of necrosis or apoptosis.

2.4.5 Continuous perfusion in chemically-anisotropic environment

Owing to the characteristics of laminar flow, the gravity-driven operating mode
could be successfully exploited to chemically decouple opposite sides of the MC,
and to form chemical gradients whose spatial profiles are determined by APs and
APp. We applied the present chip to the study of the anti-cancer properties of
catechin-dextran conjugate. Catechin (CT) is a widely studied natural active ingredi-
ent found in many natural matrices, including green tea, and is widely recognized
as co-adjuvant in cancer therapy!'*71%8l. CT conjugation with dextran (Dex) leads
to improved CT stability while maintaining anti-cancer activity in vitrol'*9l. Cancer
cells (HeLa) were loaded into the biochip and cultured to confluence under standard
symmetric perfusion (TABLE 2.3 on page 34). CT-Dex was then delivered from one of
the PCs. Symmetric perfusion was maintained for the whole experiment, leading

41



42

| MICROFLUIDIC DEVICES FOR BIOLOGICAL APPLICATIONS

to the formation of a stable and symmetrical CT-Dex gradient within the MC. This
gradient formation technique is similar to the one of the microfluidic jet device (nFJ)
reported inl49], but this last device is based on open chambers so is not suitable for
perfusion studies.

In order to better characterize the spatial distribution of drug concentration, a
preliminary experiment was carried out with a fluorescently-labeled variant of the
drug, obtained by substituting the CT with fluorescein with the same stoichiometric
ratio. This substitution does not alter the diffusion properties of the compound, since
fluorescein is very similar in weight and charge to CT (332.31 and 290.27 Da, respec-
tively) and both of them are much smaller than the Dex (5 kDa). The dye (150 ug/mL
in DMEM) was administrated from the left PC and DMEM from the right one. F1G-
URE 2.17a shows an epifluorescence image of the MC area where the bright and dark
regions are associated with high and low concentration levels of labeled-DeXx, respec-
tively. Remarkably, APg = 0 Pa led to the transition region being placed at the center
of the MC and APp = 150 Pa led to a very steep concentration gradient. Specifically,
the spatial extent of the concentration gradient was limited to 75 pm, in very good
agreement with the simulations (FIGURE 2.17b), demonstrating that the two sides of
the MC were chemically decoupled.

Other devices, like the ones presented by Taylor et al.[%] and Peyrin et al.[*°]
were based on subcellular-sized channels for creating compartmentalised cultures
that could be chemically isolated by hydrostatic pressure. However, this architecture
is based on the physical separation of two culture chambers and allows neither for
perfusion of the cell cultures, nor for chemical gradient generation. Instead, contin-
uous perfusion devices such as the T-sensor!''! could exploit the slow diffusion
typical of laminar flow to create chemical gradients at the meeting point of converg-
ing microchannels. Kunze et al.['] proposed a device where the cells were cultured
in two chambers separated by a connecting channel. A linear gradient was gener-
ated in this channel by loading two different solutions in the culture chambers, but
the equilibration time of the reservoirs was limited to 75 min. Our chip combines the
advantages provided by these two technologies in a versatile and easy-to-use tool
for continuous perfusion bioreactors.

As previously mentioned, HeLa cells were loaded into the device and left to grow
until confluence. Calcein AM was then administrated from both PCs to stain viable
cells; then, CT-Dex (150 ug/mL in DMEM) was introduced from the left PC. The
fluorescence signal was monitored by time-lapse microscopy for 5h (FIGURE 2.17c).
Cells were not affected by CT-Dex during the first 2h of treatment. Then intense
blebbing affected the cells close to the CT-Dex administration area and fluorescence
started to decrease, indicating progressive cell death. The wave of cell death prop-
agated toward the center of the chamber, reducing the integrated Calcein AM flu-
orescence signal in the treated area down to below 10% after 260 min of treatment
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Figure 2.17: CT-Dex-induced cell-death. (a) Visualization of a stable fluorescein-Dex gradient in the MC
(standard perfusion). Dashed lines identify two regions of the MC (treated and untreated) where the drug
concentration is considered constant (high and low, respectively). (b) Comparison between theoretical and
experimental gradient profiles. (c) Calcein AM fluorescence at different times during CT-Dex treatment.
(d) Quantification of the Calcein AM signal during CT-Dex local administration measured by time-lapse
fluorescence microscopy. Green and red curves are the normalized integral of the fluorescence signal
in treated and untreated regions, respectively. The signal was normalized to take photobleaching into
account. The measure was replicated 3 times and data are reported as mean=+SD.
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(FIGURE 2.17d). Conversely, non-treated cells (right side of the MC, FIGURE 2.17a)
showed a stable Calcein AM signal throughout the experiment (FIGURE 2.17c¢), indi-
cating that laminar flow was not significantly affected by the presence of the cells.
Moreover, this demonstrates the efficacy of the drug anti-cancer activity, and that
cell viability was not reduced by possible cross talk with the neighbor dying cells.
To the best of our knowledge, this is the first example of a bio-chip where the dy-
namics of drug-induced death in cancer cells was studied. Previous reports present
chips mainly based on cyclic voltammetry and commercial drugs such as etoposide,
placlitaxel, hydroxyurea, cyclophosphamide, etc.['*>-"15] were used. In these papers,
a good anticancer activity (reduction of the cell viability by 50%) was recorded only
after 12h (for etoposide and placlitaxel) or 24h (for hydroxyurea and cyclophos-
phamide) incubation times. Our data report a reduction of cell viability to about 10%
after only 260 min, indicating that CT-Dex can rapidly interact with and kill HeLa
cancer cells.

2.4.6 Conclusions

Here, I presented a tubeless microfluidic device that is able to achieve long-term
cell culturing and chemical-gradient shaping with no need of external pressure sys-
tems. This device exploits the careful dimensioning of the hydraulic resistances to
achieve precise control over fluid dynamics in a closed MC and uses the pressure
of liquid columns in open LRs as driving force. This approach requires no ancillary
equipment for operation and therefore can be readily used in standard tissue culture
laboratories. The open LRs also allow for a fast and efficient thermal and gaseous
equilibration of the liquids with the chip, providing an efficient way to prevent gas
bubble nucleation inside microchannels.

A self-limiting automated cell loading protocol exploiting sub-cell cross-section
channels was successfully developed, leading to the fast and reproducible filling of
the MC with cell suspensions. This protocol is based on the concept of cell valving
and exploits a feedback-controlled loading that allows a correct handling of the de-
vice even by unskilled operators. Moreover, co-cultures with initial topographical
organization were obtained by means of serial asymmetrical loadings, and the mi-
gration of two different cell types (i.e. HeLa and REFs) was monitored for 72h by
high-resolution fluorescence imaging.

Finally, I performed an assay to study the kinetics of an anti-cancer molecule,
the CT-Dex conjugate, on HeLa cells. A rather fast action compared to data obtained
with other commercial drugs (i. e. etoposide, placlitaxel, hydroxyurea and cyclophos-
phamide) was demonstrated. The fluidic concept described and demonstrated here
is not limited to the present realization, but can be rather straightforwardly applied
to other chip geometries and adapted to other biological studies.



3 BREAKING TOPOGRAPHICAL
ISOTROPY

The translation of micro- and nanofabrication techniques to the field of tissue engineering
generated great interest owing to the potential to recreate in vitro some of the structural
features of physiological systems. In this chapter I will first introduce the basis of cellular
environmental sensing by describing the formation and maturation of the molecular complex
named focal adhesion. Then, I will briefly review some of the micro- and nano-structured
scaffolds currently used in tissue engineering and focus on a specific, directional geometry
named nanograting. I will therefore present my results in exploiting hot embossing to pattern
two polymers widely used in cell biology (i.e. PET and COC) with gratings of different peri-
odicity. Finally, I will present the results obtained in culturing human mesenchimal stromal
cells (hMSCs) and human umbilical-vein endothelial cells (WUVECs) on the nanostructured
foils, detailing the effects of the gratings on cell-morphology and focal adhesion turnover.

3.1 INTRODUCTION

3.1.1  Biological actors in mechanotransduction

In sectioN 1.2 I briefly introduced the molecular machinery responsible for the
mechanical sensing of the extracellular environment. Since this topic has a key-role
in understanding the cell-substrate interplay, it is worth reviewing it in more detail.

As previously stated, the interplay between the cell and the extracellular matrix
(ECM) is mediated by molecular complexes named focal adhesions (FAs). These
complexes have a double role, being involved both in anchoring the ECM and in
regulating cytoskeletal organization. This is possible thanks to the intrinsically mod-
ular structure of FAs and their connection with the actin cytoskeleton by means of
stress-fibers[*2! as shown schematically in FIGURE 3.1.

The receptor module is formed by trans-membrane proteins which are able to an-
chor the cell to the ECM by binding specific ligands. Integrins are the most important
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Figure 3.1: Structure and functional scheme of a focal adhesion. Forces that are generated by actin
polymerization and myosin II-dependent contractility (step 1) affect specific mechanosensitive proteins in
the actin-linking module, the receptor module (represented by integrins) and co-receptors, the associated
actin-polymerizing module and the signalling module. Acting in concert, these interacting modules, with
their particular mechanosensitive components, form a mechanoresponsive network. The effect on the
actin cytoskeleton (step 2) depends on the integrated response of the entire system to interactions with
the matrix and to applied mechanical forces. Stimulation of the signalling module eventually leads to the
activation of guanine nucleotide-exchange factors and GTPase-activating proteins, leading to activation or
inactivation of small G proteins, such as Rho and Rac (step 3). These G proteins affect actin polymerization
and actomyosin contractility through cytoskeleton-regulating proteins (step 4), thus modulating the force-
generating machinery (step 5). Image reproduced by 2], Rightslink licence number 3478100067553

and represented receptors of this family. Consequently to the binding with ECM, in-
tegrins undergo a conformational change, triggering the clustering of the proteins
forming the intracellular complex. Detailing a complete list of the proteins involved
in the formation of FAs is very complex!'? and falls beyond the purpose of this sec-
tion. In the following, I will only concentrate on the main molecular actors required
for the topographical sensing of the ECM.

The first proteins recruited on the adhesion site are talin and vinculin. Together,
these proteins work as a mechanosensitive element, gathering integrins and provid-
ing a binding site for actin (actin-linking module)[">l. This step has a fundamental
importance, since the survival of the early adhesion complex depends on the ability
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to link the contractile elements of the cytoskeleton, i.e. the stress fibers (arrow 1
in FIGURE 3.1). The mechanical stimulation provided by stress fibers induces FAs to
mature, elongating in the direction of the experienced force["*®l. This process is auto-
catalytic, since the link to actin fibers is accompanied by enrichment in proteins pro-
moting local actin polymerization (e. g. zyxin), resulting in a stronger coupling with
stress fibers (actin polymerizing module, arrow 2 in FIGURE 3.1). The strengthening of
the connection with the actin cytoskeleton is not the only feedback provided by FAs.
Indeed, the inclusion of proteins such as paxillin and FAK allows for the triggering
of a signalling cascade which involves the regulation of the whole cytoskeleton[2]
by the regulation of guanine-nucleotide exchange factors (GEFs), which impacts on
the Rho family GTPases!"7! and, finally, to the contraction force exerted by the cell
(signalling module, arrows 3—5 in FIGURE 3.1).

The presence of such a sophisticated sensing and regulatory mechanism suggests
that the physiological environment contains signals and stimuli meant to instruct
cells. This statement will be discussed in the following section.

3.1.2  Structural anisotropy in bio-matrices

The microscopic structure of living tissues is functional for their correct develop-
ment and physiology!"*®%9]. Examples are widespread in the body, underlying the
important link between role and shape. Particularly representative cases that should
be mentioned are

e the organization of contractile and flow-resisting tissues, i.e. miocardium and
endothelium;

e the migration of interneurons in the developing brain.

The first case regards tissues whose function requires a linear polarization. Indeed,
all the cardiomyocytes in a single unit need to be aligned in order to yield for an
efficient contraction, while endothelial cells (ECs), which organize in a tight sheet—
extending in the axial direction of the blood vessel—polarize to better withstand-
ing the shear-stress imposed by the blood flow. Both these tissues develop on fi-
brous ECMs composed of an ordered, directional mesh of sub-micron-sized collagen
fibers[2°121] which directs the formation of polarized cellular layers.

The second example regards the formation of a much more complex and hetero-
geneous structure, i. e. the brain. Interneurons are a class of inhibitory neurons with
a critical role in modulating synaptic activity['??l, and an impairment in their func-
tionality may result in neurodevelopmental disorders!'?3]. Tt is therefore important
to notice that during embryonic development, interneurons arise from the ganglionic
eminence and migrate into the developing cerebral wall in order to reach their final
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location. As observed by Yokota et al., this process is guided by the presence of
the ordered scaffold composed by the radial glial">4l, which drives the interneurons
by changing their migration pattern from tangential to radial, yielding for a correct
development of the brain.

These examples underline that tissue engineering has to cooperate with micro-
and nanofabrication technologies, since the quality of the tissues cultured in vitro re-
lies on our ability to embed features of the physiologic environment inside artificial
ECMs.

3.1.3 Artificial ECMs: a state-of-art

The technique able to produce scaffolds that most closely mimic the fibrous struc-
ture of ECMs is, without doubt, electrospinning. Exploiting the electrostatic force,
electrospinning allows for the deposition of nanometric-sized fibers on a target
collector 321, This technology is compatible with a wide variety of bio-degradable
polymers (e. g. collagen, PCL, etc.[3>3425]) that can be loaded with soluble drugs—
yielding for a passive and diffusive delivery—and arranged both in random or ori-
ented meshes!"2°l. Even though these features allow for a good control of the bulk
properties of the fibrous matrix, a fine positioning of the fibers at the micrometer-
scale7] is not within the capabilities of electrospinning. Moreover, the polymers
used are usually not transparent!32], resulting in a poor compatibility with high
resolution microscopy.

Important information about the cell-substrate interaction can be obtained by ex-
ploiting planar topographies realized on the surface of optically transparent ma-
terials (e.g. glass). 2D patterns are indeed very important for the optimization of
biomedical devices such as stents or prostheses, since their performance is deeply
influenced by the ability to prevent (for stents) or promote (for orthopedic prosthe-
ses) the integration with healthy tissues'28129],

Remarkable results for surface modification were achieved by micro-contact print-
ing['3°], demonstrating that micrometer-sized adhesive islands can not only guide
cell-shaping, but also interfere with the cell-survival mechanism!'>'3']. These stud-
ies allowed for an analysis of the correlation between cell-morphology and the in-
ternal stress distribution!'3?], revealing the complex organization of the stress fibers
and FA distribution in cells growing on adhesive fibronectin patterns. McBeath et al.
demonstrated also that cell fate in human mesenchimal stromal cell (hMSC) can be
directed by the induction a proper cell morphology, switching between adipogenic
and osteogenic differentiation 331,

The control over cell-morphology can also be achieved without the chemical pat-
terning of adhesion molecules, by exploiting micro-grooves and carved structures,
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Figure 3.2: Topography dimensionality. (a) 2D topographies have no height and can be realized by
printing motifs on the surface of the scaffold. (b) 2.5D topographies can have a height (or depth), but can
still be considered as textures, since their height can be described using a 2D space (i. e. the height of the
structure, h(x,y)). (c) 3D structures can present suspended elements and hollow structures that can be
only described using three spatial coordinates.

e.g. gratings['34], pillars['35, pits[*3°], etc. These scaffolds are considered in-between
2D and 3D structures because even though they have a height/depth, they can be
defined as a function of a bidimensional coordinate system, i.e. the surface of the
scaffold (see FIGURE 3.2). For this reason, such topographies can be considered as
surface-structures and addressed as 2.5D-architectures. Such structures can also be
read by the cells, and therefore be used to deliver instructions to them. An attempt
to understand the topographical vocabulary used by cells was done by Unadkata et
al.'37], which implemented an algorithm-based approach to create a wide number
(> 2.1-103) of random topographies, and analyzed their impact on hMSC differen-
tiation by means of high-throughput screening. Interestingly, the results obtained
by Undakata confirmed that cell-fate is correlated with cell-area, and in particular
more efficient osteogenic differentiation is obtained for cells with smaller area and
increased major axis!*37].

Even though the high-throughput screening of randomly-generated topographies
may result in a detailed analysis of cell-substrate interaction, it is very onerous and
only aims at the selection of a particular cell-phenotype, with only a marginal atten-
tion to the molecular processes linking the causes to the consequences.

Micro- & nano-gratings

Micro- and nanogratings (NGs) represent a class of rationally-designed, directional
topographies. These structures are composed of an array of alternating ridges and
grooves of varying width, periodicity and depth (w, A and d respectively, as sketched
in FIGURE 3.3). Despite its simple design, this 2.5D topography has great potential for
tissue culturing and regenerative medicine since its regular and anisotropic structure
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Figure 3.3: Structure of a nanograting. The schematics represents a grating, i. e. a structure composed by
parallel ridges and grooves with depth d and width w.

recalls the features of ECMs found in linearly oriented tissues (see SECTION 3.1.2). In-
deed, by exploiting the aspect ratio (AR) of the grating, defined as the ratio between
depth and width of the ridges

AR = d/Wr, (31)

and the stiffness of cell-membranes it is possible to prevent cells from reaching the
narrow grooves carved on the surface of the scaffolds!'3®l. This means that adhesion
will only be formed on top of the NG, and as a consequence FAs are constrained on
the top of the ridges. The NG can therefore be used to select the orientation of FAs:
since their shape is elliptical and oriented in the direction of the experienced traction
force (see SECTION 3.1.1), a NG whose ridge-width is smaller than FA-major axis re-
sults in the collapse of the adhesion not aligned with the grating!'34l. Finally, since
the cytoskeletal traction is centripetal'39], this selection promotes a cell-phenotype
characterized by an elongated morphology aligned with the NG and with FAs lo-
cated at the opposite borders of cell body 20401,

This last feature strongly influence cell-motility, since motion is determined by the
anchoring and releasing of FAs, which pull the cell in the direction of the stronger
adhesion[*?l. If FAs are homogeneously distributed on cell-perimeter, any direction
is available and migration results in a random walk. On the contrary, the polarization
of cytoskeleton and FAs also biases the direction of endogenous contraction, making
it directionall4°l and faster[*4'].

In conclusion, the effects of scaffolds patterned with NGs on cells growing on
them can be summarized as

e shaping of FAs by the collapse of misaligned ones;

e promotion of a bipolar morphology with stretched cytoskeleton;
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Name Periodicity (A) Depth (d) Aspect ratio (AR)

Al 1 um 350nm 0.70
A2 2um 350nm 0.35
VoY 4 um 350nm 0.18

Table 3.1: Nanogratings with constant depth. The table reports the features of the gratings with geometry
An.

o selection of a linear migration pattern aligned with the NG.

In the rest of this thesis I will focus on my results in realizing biocompatible micro-
and nanostructured scaffolds to control cell morphology and migration patterns of
different cell-types.

3.2 NANOGRATINGS: DESIGN & FABRICATION
Design

The NGs realized during my Ph. D. were designed according to the scheme in F1G-
URE 3.3 on the preceding page. All the gratings have a duty-cycle of 0.5, meaning
that ridges and grooves have the same width. For this reason, in the following I will
simply refer to NG-linewidth (w = w; = wyg). Each topography will be identified by
its periodicity (A = wy + wg = 2w) and its AR and inserted in one of the following
groups:

An NGs characterized by a nominal depth of 350 nm and a periodicity n (TABLE 3.1);

An,., NGs characterized by a nominal AR of 1 and a periodicity n (i.e. w; = d,
TABLE 3.2).

Fabrication

As previously stated, micro- and nanofrabrication techniques represent a powerful
tool for the fabrication of artificial ECMs. The fabrication protocols, introduced and
extensively used for electronic engineering applications 3, found several issues hin-
dering their direct application for life science applications:
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Name Periodicity (A) Depth (d) Aspect ratio (AR)

AN PP 1T um 500 nm 1
A2 2 um 1T um 1
A4 4 um 2 um 1

Table 3.2: Nanogratings with constant aspect-ratio. The table reports the features of the gratings with
geometry An,;.

MATERIALS Standard lithographic techniques rely on thin UV- or electron-sensitive
polymers (called resists) that can be impressed and developed, leaving a pat-
tern that is transferred on the underlying substrate (in general silicon) by chem-
ical or physical etching!'42l. Unfortunately, the compatibility of such materials
with cells and living tissues in general is not assured.

TiME High-precision techniques for creating sub-micron patterns usually are based
on a serial workflow. An example is provided by electron beam lithography
(EBL), which is able of realizing features of the order of tens of nanometers or
less['43], by moving an electron-beam over a suitable resist, realizing a pattern
at a time. On the other hand, the request made by biological applications of a
great number of substrates with wide patterned areas conflicts with the rapid
increase of exposure time requested by serial fabrication.

Thermal nanoimprinting

A way to overcome these issues is provided by hot embossing. This technique yields
for the transfer of a pattern—down to the nanoscale—from a master to a thermo-
plastic replica. FIGURE 3.4a shows the scheme of the hot embossing process. First, a
thermoplastic material is brought in contact with the mold and the temperature is
raised above the glass transition temperature (Tg) of the thermoplastics, making it
a viscous fluid. Then, pressure is applied to ease the polymer flow inside the fea-
tures of the mold. Finally, the sample is cooled and pressure is removed, leaving the
thermoplastics in a shape complementary to the one patterned in the mold.

This process is fast—an imprint cycle only requires few minutes—and parallel 44,
because all the features on the mold are transferred simultaneously. As a conse-
quence, the long fabrication times required for the creation of the nanopattern are
only needed for the mold fabrication and have therefore a negligible impact on the
overall process.
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Figure 3.4: Thermal nanoimprinting. (a) Sketch of the hot embossing process. (b) SEM image of a nanos-
tructured silicon mold. (c) SEM image of the COC replica of the nanopattern shown in (b). The patterns
are complementary depth (reflected by the inverse grayscale map) and mirrored on the x axis. Scale-
bars 1 um.

Materials & Replicas

Hot embossing is a very attractive technology also because many of the substrates
customarily used in tissue culture are made by thermoplastic materials, e.g. poly-
(styrene) (PS), poly (ethylene terephthalate) (PET), cyclic olefin copolymer (COC) [145],
During my Ph. D. I concentrated on two of these polymers:

PET is a material with a low glass transition temperature (Tg= 75 °C) and good bio-
compatibility. Indeed, it is approved by the United States food and drug admin-
istration (FDA), and it has been already successfully adopted for biomedical
devices (4. PET films are highly transparent, flexible and with high mechani-
cal strength.

COC was already introduced in CHAPTER 2 as an optical support for high-resolution
microscopy and cell culturing. This polymer is widely used for its high trans-
parency, chemical stability and compatibility with injection molding[47] (Tg=
134°C). COC is flexible, resistant and gas permeable, therefore suitable to be
the sealing layer of closed culture environments, where gas exchange has to be
preserved (e. g. bioreactors or leak-proof culture dishes).
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Figure 3.5: Mold fabrication protocols. The schematics represent the fabrication protocols used for the
realization of An and An,; molds. (a) An molds were realized by using the pattern exposed on PMMA
as etch mask during the RIE step (SFs+Ar). This approach only requires two steps (i.e. EBL and RIE,
but the etch of the polymeric mask limits the maximum depth that can be obtained. (b) An,; molds
were realized by using a metal (Al) mask for the RIE step (SFs+O,). The Al mask was patterned by a
combination of EBL and ICP-RIE (Cl,+BCl;+Ar).

The replicas were fabricated using an Obducat Nanoimprint 24 system (Obducat,
Sweden), according with the protocols reported in ArPENDIX A.5. The fidelity of the
pattern transfer was verified by comparing the scanning electron microscope (SEM)
images of master and replica, as shown in FIGURE 3.4b,c. Here, the mold is realized in
silicon (gray areas in FIGURE 3.4b) where 500 nm-wide lines are carved (black areas).
The lines are randomly interrupted, creating rectangular elements whose minimum
size is 500 x 500 nm? (this particular geometry will be discussed in detail in cHAP-
TER 4). The same patter, mirrored in the x direction, is found on the COC replica
(FIGURE 3.4¢). No appreciable differences can be found between the two geometries,
demonstrating that the hot embossing process does not introduce shape-alterations
in features of this size. Stylus profilometry (Bruker, Germany) also showed that
nanostructure-depth is not significantly altered by the hot embossing process, since
the average difference in depth between mold and replica was only of 3% for COC
structures and 2% for PET ones.

Mold fabrication

Silicon molds were fabricated using standard nano-lithography: the NG was first
impressed on a resist by means of electron beam lithography (EBL) and then trans-
ferred to the silicon by reactive ion etching (RIE).

Different fabrication protocols were used to produce the two designs described
in SECTION 3.2, as sketched in FIGURE 3.5. The NGs with constant depth (An, see
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Figure 3.6: SEM imaging of silicon molds. (a) Tilted view of a A1;; mold. (b) Cross-section of a mold
with the same topography. Residual Al mask is visible above the silicon grating. Scalebars 1 pum.

TABLE 3.1 on page 51) were fabricated using the PMMA pattern created by EBL as
etching mask (SF¢+Ar plasma). This configuration minimizes the number of fabrica-
tion steps needed to create the mold, but could not be used to create high-aspect ratio
structures, since the plasma used to etch the silicon also resulted in a fast etching of
the polymeric mask. For this reason, the NGs with constant AR (An,.;, see TABLE 3.2
on page 52) were created by exploiting a metallic mask. To this aim, a 100 nm-thick
aluminum (Al) layer was first evaporated on silicon and used as resist-underlayer
during the EBL. Then, it was patterned by ICP-RIE (Cl,+BCl;+Ar plasma), using the
resist as mask. Given the resistance of the Al mask, an SF¢+O, plasma could be used
in the silicon etch step, resulting in gratings with well defined, vertical edges (see
FIGURE 3.6). Details of the fabrication protocols are reported in APPENDIX A.4.

In order to increase the total patterned area I used ma-N 2403, a negative optical
and e-beam resist with a low exposure dose if compared to PMMA—16.5 uC/cm?* at
10kV v.s. 320 uC/cm? at 30kV for a A1 NG. Thanks to this combination of parame-
ters, it was possible to pattern a circular area with a diameter of 9mm (i.e. 0.63 cm?)
in a single overnight EBL (= 15h), achieving an almost-complete covering of the
culture area available in a standard 12 mm WillCo dish (WillCo Wells, Netherlands).

3.3 CELL SHAPING AND POLARIZATION

3.3.1  Nanostructured materials in orthopedics

In the field of orthopedics, many biomaterials are currently under investigation to de-
velop surgically implantable devices for promoting enhanced osteogenesis. Promis-
ing results were achieved using composite scaffolds, in which mineral components
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(e. g hydroxyapatite['#®] or tricalcium phosphates['49l) were embedded to promote
bone regeneration in polymer matrices (e.g. PCLI'5°]). A recent study proposed to
graft residues of bone morphogenetic proteins and adhesion peptides to PET sur-
faces to promote osteogenic differentiation and mineralization['5']; Saito et al. in-
stead covered PET foils with TiO, to take advantage of the mechanical properties of
the supporting PET and from the bone-bonding capability of TiO,[*52].

To the best of our knowledge, physical modifications of PET, such as specific
topographical features, were never introduced with the aim of enhancing osteoin-
tegration. Nevertheless, the morphology of mesenchymal stromal cells (MSCs) can
determine their ability to proliferate and differentiate[3373753] and the local sub-
strate micro- and nanotopography can drive cell shaping by mechanical stimula-
tion[132154155]_ For this reason, I fabricated PET-NGs with different geometries, and
studied their interaction with human mesenchimal stromal cells (hMSCs), investi-
gating their effect on cell-morphology, cytoskeleton architecture and also nuclear
position.

3.3.2 Mesenchimal stromal cell interaction with PET gratings

In this study I used NGs with geometry Al and A2 (see TABLE 3.1 on page 51)
and a control surface, named FLAT . In order to represent a reliable control, FLAT
samples were processed by the same hot embossing treatment used for the patterned
substrates (see APPENDIX A.5.1 for additional details), using a polished silicon wafer
as the mold.

Scaffold cytocompatibility

Cell adhesion was assessed by acquiring bright-field microscopy images of living
cells after 30 min from seeding on each substrate and counting single attached cells
per field. The number of cells on the NGs was normalized to the corresponding
value measured for the FLAT. No differences were found, indicating that the pres-
ence of NGs does not modify hMSC adhesion. Cell viability was evaluated by triple
labeling with Calcein AM, propidium iodide (PI) and Hoechst. Calcein AM and PI
positive cells were considered as viable and necrotic cells, respectively; Hoechst al-
lowed detecting pyknotic nuclei as marker for apoptotic cells (see APPENDIX B.7 for
details). Experiments were performed after 24 and 72h from seeding. Both A1 and
A2 revealed no reduction in the percentage of viable cells with respect to the FLAT
control; consistently, negligible necrosis and apoptosis were measured for all the
tested substrates.
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Figure 3.7: PET-NGs and hMSC morphological parameters. (a) SEM NGs with A1 (top) and A2 (bot-
tom) geometry. Scalebars 2 um. (b) Actin staining of an hMSC on A1 grating (left) and schematics of
the morphometric analysis performed (right). Feret and min feret were calculated on the cell profile. Cell
alignment was calculated as the angle between grating and feret directions. Nuclear morphology was
calculated with a similar procedure, using nuclear profile. Scalebar 30 pm.

3.3.3 Cell morphology analysis

The effect of NGs on polarization and alignment of hMSCs was evaluated by mea-
suring the following set of cell morphological parameters: feret, min-feret, area and
alignment (FIGURE 3.7b, see also APPENDIX B.10 for additional details). Cell-feret
showed a small increase only for A2, while for A1 the values remained unaltered
with respect to FLAT (F1GURE 3.8a). Conversely, an evident reshaping resulted in
a significant min-feret reduction that decreased, after 24h from seeding, down to
about the 50% for both A1 and A2 with respect to FLAT (FIGURE 3.8b). Cell area
reduction was instead observed only for Al (FIGURE 3.8c). These data indicate that
NGs act on cell shaping by inhibiting the lateral expansion (reduction of min-feret
and unmodified feret), and by selecting a polarized hMSC morphotype aligned to
the NG.

57



58

| BREAKING TOPOGRAPHICAL ISOTROPY

a) <) "
600 8 4 _
— ”g 6 |
§ 400
= §e)
2 =4
i 200 &
< 2
(o] - - - (o] T T T [¢] T T T
FLAT Al A2 FLAT Al A2 FLAT Al A2

Figure 3.8: hMSC morphology on NGs. (a) Feret, (b) min feret and (c) cell area, measured for A1, A2
and FLAT substrates. Data were reported as single observations (dot) and mean=+5SD (black bars) and ana-
lyzed by non-parametric ANOVA Kruskal-Wallis and Dunn’s Test (n = 3 independent experiments, 294
cells; *P < 0.05, *P < 0.01, **P < 0.001).

Cytoskeletal organization and alignment to NGs

The topography-induced effects on intracellular organization were evaluated by
staining for actin, tubulin and nuclei on cells fixed at 24 h from seeding on A1, A2
and FLAT.

Cytoskeletal directionality was calculated by means of bidimensional Fourier trans-
form (FT) using the directionality function of Image]J. This algorithm produces a his-
togram in which each bin represents the intensity of the spatial spectrum in a certain
direction of the image. Two morphometric parameters can be extracted from this
distribution: the first is the direction in which the cytoskeleton is oriented, which is
identified by the maximum of the histogram. The alignment of the actin and tubulin
fibers to the NG is therefore defined as the difference between this direction and
the direction of the grating. The second parameter, hereafter named dispersion, rep-
resents the anisotropy of the cytoskeleton—which is maximum when all the fibers
extend in the same direction and minimum when they are randomly distributed—
reflected in the width of the distribution (see APPENDIX B.10 for additional details).

The graph in FIGURE 3.9a shows that the NG was able to align both the analyzed
cytoskeletal components, i. e. actin microfliaments (red dots in FIGURE 3.9a) and tubu-
lin (green dots), and that this alignment was coherent with the one of the whole cell
body measured by the cell-feret (gray dots). A significant decrease was also mea-
sured in dispersion for both NGs with respect to FLAT (FIGURE 3.9b) indicating
a tighter fiber arrangement. A similar trend was observed for the tubulin signal
(FIGURE 3.9¢), but no significance emerged.
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Figure 3.9: Chytoskeletal organization of hMSC on NGs. (a) Alignment of cell-bodies (gray dots), actin
microfilaments (red dots) and microtubules (green dots). (b) Dispersion of actin and (c) microtubules.
Data are represented as single observation (dot) and mean £ SD (black bars) and analyzed by non-
parametric ANOVA Kruskal-Wallis and Dunn’s Test (n = 3 independent experiments, 164 cells; *P <
0.05, *P < 0.01, **P < 0.001).

Nuclear morphology

Finally, the effect of NGs on nuclei was evaluated by measuring the nuclear mor-
phology and displacement with respect to the cell centroid (see the schematics in F1G-
URE 3.7 on page 57b). The nuclei could effectively align to the NG pattern, probably
as a result of the interaction with the polarized cytoskeleton!'5¢-"58] (r1GURE 3.10a).
Concerning nuclear displacements, Ax and Ay were not significantly affected by the
NGs (FIGURE 3.10b and c, respectively): only Ay significantly decreased for cells on
A1 with respect to those on FLAT.

Altogether, these data showed a limited effect of NGs on nuclear reshaping. Never-
theless, they revealed a good nuclear alignment to NGs that qualitatively correlated
with the behavior of microtubules.

59



60 | BREAKING TOPOGRAPHICAL ISOTROPY

a) s b) c)
t { *
1001 ek . .
80 4 204 ~20 4
— * g g
< 6o . 315' - 315 1
g | - — ! PN
s 407 | é 101 : i | <:1Dlo 4 1
i - — ! PV ey ! L
201 i THE g 57 el : : 51974 T
- I } b " H Y7 v ]
o T T et ) o r — o d—fordtenl _comdem 2 S
FLAT Al A2 FLAT Al A2 FLAT Al A2

Figure 3.10: Nuclear morphology on NGs. (a) Nuclear alignment. (b) x and (c) y nuclear displacements
from cell-centroid. Data are reported as single observations (dot) and mean + SD (black bars) and ana-
lyzed by non-parametric ANOVA Kruskal-Wallis and Dunn’s Test (n = 3 independent experiments, 164
cells; *P < 0.05, *P < 0.01, **P < 0.001)

3.3.4 Conclusions

This study introduces PET-NGs as scaffolds for the stimulation of MSC mechan-
otransduction mechanisms. PET substrates were fabricated by hot embossing and
did not require surface functionalization with adhesive molecules for cell adhesion
and spreading, making these structures promising for rapid biomedical translation
without the need of further chemical modification.

Cell and nuclear morphology, as well as cytoskeletal components were shown to
be similarly affected by NGs, and that NG ridge sizes of 500nm and 1 um. Both
geometries were effective in stimulating cell polarization, without compromising
cell viability. In particular, polarization resulted from the inhibition of lateral cell
expansion (reduction of min-feret and unmodified feret), and selection of a cell
morphotype aligned to the NG lines. Alignment was similar for A1 and A2, in
line with other studies exploiting other nanostructured materials!'59'%°l. Given that
shaping into elongated morphologies was demonstrated to induce osteogenic dif-
ferentiation 37701 our results suggest that PET-NGs could be used in orthopedic
applications to promote osteogenic induction.

3.4 SURFACE TOPOGRAPHY & FA-MOLECULAR TURNOVER

3-4.1 Endothelium and cell polarization

The endothelium lies at the blood-tissue interface of mammalian vessels. It regulates
body homeostasis by controlling transport phenomena between the bloodstream
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Figure 3.11: hUVEC morphology on patterned surfaces. The graph reports cell spreading (x-axis) and
alignment (y-axis) to the different gratings tested. The bottom-right region of the graph corresponds
to a high alignment to the grating and well spread morphology. Bars represent the of 3 independent
experiments (mean+SEM).

and surrounding tissues, the exchange of gas and nutrients, and the movement
of effector cells. A differentiated endothelium is composed of a confluent, growth-
arrested monolayer of endothelial cell (EC) that polarizes in response to mechanical
and chemical stimuli, and interacts with a topographically-structured ECM named
basal matrix. The interaction between ECs and the basal matrix is critical to endothe-
lium functions in physiological and pathological processes. By exploiting micro- and
nano-engineered substrates it is possible to investigate the complex interaction be-
tween the basal matrix and the endothelium. While several specific applications of
surface texturing were reported, a general understanding of the link between ge-
ometry of surface topography, FA maturation dynamics, cell-generated contractility
and the resulting EC behavior is still missing. In this section, I will focus on how the
lateral feature size of different gratings controls FA maturation dynamics.

3.4.2 Contact guidance on single endothelial cells

The biocompatibility of cyclic olefin copolymer (COC) substrates interacting with
hUVEC is well established 4381, In order to evaluate the effect of the lateral feature
size of anisotropic patterns, we used a set of gratings with periodicity varying in the
interval T —4 um and geometry An (see TABLE 3.1 on page 51). The groove depth
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of 350nm matches the average values reported in previous studies!413%162163] o
induce effective contact guidance on ECs.

Endothelial cell morphology

The scatter plot reported in FIGURE 3.11 shows the response of individual ECs to the
underlying structure in terms of variation of cell-area (i. e. spreading) and cell-body
orientation (i.e. alignment). The morphological analysis was conducted according
to the criteria introduced in SECTION 3.3 and schematized in FIGURE 3.7 on page 57b
(see APPENDIX B.10 for additional details).

Fully-spread ECs on FLAT substrates displayed random alignment, leading to
an average orientation angle (45.7 £ 1.4 °). Interaction with anisotropic patterns nar-
rowed the orientation distribution, resulting in an average alignment angle of 18.6 +
3.8° on Al gratings. Despite that result, spreading was significantly decreased for
that geometry, reaching 44.6 &+ 5.0% of the basal area of cells in the case of control
(FLAT) substrates. A great increase of the lateral periodicity (A4) led to a partial re-
covery of cell spreading, reaching a value of 78.7 4+ 8.6% of the FLAT control, but also
decreased the efficiency in terms of alignment to the grating (24.6 & 2.5°). Interest-
ingly, gratings with A2 geometry proved ideal for both ECs spreading (112.7 +13.8%
of the FLAT control) and alignment (13.3 +£0.3°).

3.4.3 Polarization of endothelial cell monolayers

After characterizing the effects of the gratings on single cells, we examined how
anisotropic patterns affect ECs in growth-arrested endothelial monolayers. Here, cell
polarity was revealed by the orientation of actin microfilaments and microtubules
using the FT-analysis introduced in SECTION 3.3.3 (see APPENDIX B.10). In control
endothelia grown on FLAT substrates, cells showed a uniform angular distribution
of actin and tubulin filaments. Gratings were efficient in significantly reducing the
alignment of filamentous actin to the grating, as shown in FIGURE 3.12a. The align-
ment of microtubules showed a similar behavior for all tested substrates, although
the distributions were characterized higher variance (FIGURE 3.12b).

In summary, the cytoskeleton of ECs aligned along the underlying pattern, with
actin microfilaments being better oriented than microtubules. Additionally, pattern
A2 outperformed the other tested geometries in inducing the re-modeling and re-
orientation of cytoskeletal components.
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Figure 3.12: Cytoskeletal organization of hUVEC monolayers. FFT analysis of (a) actin and (b) tubulin
cytoskeleton on hUVEC monolayers. Each point represents the cytoskeletal alignment on a single area
of the hUVEC monolayer. Up to 15 areas were analyzed on a single sample (3 independent experiments
were conducted). Boxes represent standard error of the mean and whiskers 5-95 percentile. Means were
tested using homogeneity of variance and analyzed using Levene’s test. *P < 0.1, **P < 0.001

3-4.4 Focal adhesion stability in migrating cells

FAs act as sensors of substrate topography, and topographical features are known
to interfere with the maturation and stability of FAs['4%4]. The resulting dynamics
of FA assembly and disassembly is linked to several processes such as cell adhesion
and migration[1%57%]. A high FA turnover is prevalent in migrating cells whereas
stable adhesion are generally detected in fully spread, non-migrating cells[*7]. In or-
der to test the hypothesis that gratings interfere with endothelial migration through
a modulation of FA turnover, ECs were transfected with paxillin-GFP and moni-
tored by time-lapse microscopy using a total internal reflection fluorescence (TIRF)
microscope (see APPENDIX B.9g). As previously established '4°] fluorescently-labelled
paxillin (see SECTION 3.1.1) correctly localizes to FAs and does not influence the mi-
gratory behavior.

The change of pixel-intensity during the time-lapse was used to monitor the
paxillin-GFP at the cell-to-substrate interface (FIGURE 3.13a). The molecular activ-
ity was therefore estimated calculating the normalized standard deviation (SD) of
each pixel during time (see APPENDIX B.11.1 for additional details)

_ SDt(x,y)
olxy) = meang(x,y)’
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Figure 3.13: Focal adhesion dynamics on migrating hUVECs. (a) TIRF images of a hUVEC migrating
on a A1 grating (white arrow stands for grating’s direction). FAs are visible as bright spots thanks to
the fluorescent labeling of paxillin. (b) Map is used of pixel normalized standard deviation o is used to
calculate and lifetime LT (b) and appearance time AT (c). (d) Scatter-plot of the pixels in a TIRF time-lapse
of a hUVEC cell migrating on a FLAT substrate. The pixels are grouped depending on their LT and o
values.

FIGURE 3.13b provides an example of a o-map for an EC migrating on grating Al.
Data were filtered with a threshold in the o-domain to remove the background sig-
nal and the pixels were grouped according to the amount of time and temporal
point their signal was above the threshold. These two parameters were named pixel-
lifetime (LT) and pixel-appearance time (AT), respectively. Color-maps of LT and AT
relative to the cell in FIGURE 3.13b are reported in FIGURE 3.13c and d, respectively.
The molecular activity in FAs was evaluated by composing scatter-plot with the
data of pixel-LT and o. FIGURE 3.13e shows such a plot for a cell migrating on a
FLAT substrate. Low-LT pixels were excluded to avoid possible noise originating
from fluorescence fluctuations, and the resulting scatter-plots was subdivided into
three categories corresponding to high, middle and low o (gray area in FIGURE 3.13e).
FIGURE 3.14 shows the relative difference in the amount of pixels in each o-category
comparing Al and A2 gratings with respect to the FLAT controls. Importantly, the
fraction of high- and middle-SD pixels was strongly reduced in cells migrating on
grating A1 as compared to FLAT (reduction of 86.7 & 6.1% and 68.7 & 4.7%, respec-
tively), while no significant differences could be found for A2 gratings. These data
indicate that FAs formed by migrating ECs on A1 gratings were characterized by
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Figure 3.14: Focal adhesion life time. Quantification of graph FIGURE 3.13e. Relative difference in the
amount of pixels in each o-category. Deviations of A1 and A2 from FLAT are shown as mean+SEM of
15-21 time-series per condition. Mann-Whitney test was used to assess significance. *P < 0.0001

a slower turnover and an overall increased stability compared to ECs migrating on
FLAT substrates or A2 gratings.

3.4.5 Conclusion

In this section I showed how the surface topography of a COC foil can be used to
guide the formation of an ordered and polarized EC-monolayer. Three different ge-
ometries (namely A1, A2 and A4) were screened depending on the morphological
alteration induced on individual cells and on confluent layers. Remarkably, A2 ge-
ometry was shown to be capable of aligning cells to the grating without impairing
their spreading, providing an interesting tool for endothelial organization. A direc-
tionality analysis was performed evaluating the spectral properties of two major
cytoskeletal elements (i.e. actin microfilaments and tubulin) for the different grat-
ings used. Finally, TIRF microscopy was used to monitor the molecular turnover of
paxillin in FAs, comparing the dynamics on Al and A2 gratings with the one ob-
served on standard FLAT substrates. I believe that these results can be valuable for
regenerative medicine applications, since they could have the potential to improve
the efficiency of rationally-designed, active surfaces at the interface with the blood
stream.
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4 DIRECTIONALITY MODULATION BY
TOPOGRAPHICAL NOISE

Anisotropic geometries such as micro- and nanogratings represent an important tool to obtain
cell contact guidance, however the regqularity of their geometry can lead to several drawbacks.
First, physiological systems are characterized by the coexistence of overall-ordered structures
and local-disorder caused by stochastic alterations in tissue composition. These antithetical
features reduce the biomimicry of artificial, regular geometries. Second, the design of im-
plantable scaffolds must take into account the progressive loss of directionality due to the
topographical deterioration—i. e. accumulation of bio-debris or the bio-degradation of the
scaffold. In this chapter I will introduce a novel approach to modulate the intensity of the
topographical, directional stimulus by the use of randomly-distributed nano-modifications.
A Fourier transform algorithm for the quantitative calculation of directionality will be pre-
sented and a continuous spectrum of noisy topographies—spacing from nanogratings to a flat
surfaces—uwill be tested on two biological models: neurite pathfinding of NGF-differentiated
PC12 cells and directional migration of Wharton’s jelly human mesenchymal stem cells.

4.1 INTRODUCTION

In cHAPTER 3 I showed how highly anisotropic micro- an nanotopographies can be
used to deliver a directional stimulus to cells. In all the reported experiments, the
intensity of the directional signal was fixed and triggered only by the presence of the
topography, thus leading to simple on/off topographical activation. This limitation
hinders the possibility to investigate the cell response to partial anisotropy, a con-
dition typically found in organs and tissues, where directional signals are usually
covered by biotopographical noise, e. g. rests of apoptotic cells, sclerotic plaques[*®®],
alterations of ECM-proteins or of their proteolysis!*®/, differences in collagen fiber
banding['7°], formation of gaps and/or neuroma after nerve injury['7*], and degra-
dation of implantable prostheses!'72].
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Few studies investigated cellular response to nano-topographical disorder, focus-
ing on non-directional geometries. In particular, Huang et al. obtained important
information on integrin clustering using ordered and disordered adhesion-molecule
motifs, demonstrating that disorder can improve cell-adhesion for low ligand-den-
sities!'73]. Dalby et al. also showed that the introduction of topographical disorder
in a lattice of nano-holes stimulates hMSCs to produce bone mineral also in the
absence of osteogenic supplements—low or negligible mineralization occurred on
ordered patterns['74175] However, cellular response to partially distorted directional
topographies remained uninvestigated.

In this chapter I will define a novel category of anisotropic nanotopographies
characterized by the possibility to modulate the intensity of directional stimulus by
the addiction of topographical noise. First, I will describe the design and fabrication,
proposing a general FT-based method for the quantification of substrate anisotropy.
Then I will describe the effects of such devices on neurite pathfinding, using NGF-
differentiated PC12, and on polarization of migration patterns, using Wharton's jelly
human mesenchymal stem cells (WJ-hMSC).

4.2 NOISY NANOGRATINGS: DESIGN AND FABRICATION

4.2.1  Design

A general strategy for the creation of partially-ordered topographies is described by
this simple work-flow:

1. selection of a master geometry with the highest directionality and definition
of topographical sub-units;

2. definition of reqular and modified sub-units;

3. alteration of the master geometry by the insertion of modified topographical
sub-units.

1. Master geometry and sub-units

As a master geometry I chose the Al grating (1 um-period, 350 nm-depth, see TA-
BLE 3.1 on page 51). This choice is based on our previous studies, showing that
this geometry can induce cell-elongation and polarization of cell migration patterns
along the grating lines[4%164170] The grating was divided in two kinds of sub-units:
ridge-units (marked with the number 1 in FIGURE 4.1a) defined as 500 x 500 x 350 nm3
blocks, and groove-units (marked with a o) defined as empty spaces with the same
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Figure 4.1: Nanomodifications on nanogratings. (a) Sketch of a grating and identification of the two
topographical sub-units, groove (blue) and ridge (red). On the left side, the matrix-visualization of the
grating used by the pattern-generation software. Ridges identified by a 1 and grooves by a 0. NMs result
in a change of the distinguishing number associated to the sub-unit. Positive (b) and negative (c) NMs
are sketched (left column) and shown by means of SEM imaging (right column).

size (see FIGURE 4.1). Given this definition, an ideal grating can be mapped on a 2D
matrix where even and odd columns are 1 and o, respectively.

2. Nano-modifications

Nano-modifications (NMs) were inserted in the master geometry by changing a
ridge-unit into a groove-unit or vice-versa. Two types of modification were defined
in this studies. The first, named positive nano-modification (NM ™), is characterized
by the presence of a groove-unit along the ridges, resulting in a reduction of the total
area available for cell-adhesion (FIGURE 4.1b) while a negative nano-modification
(NM7) is the result of a ridge-unit bridging adjacent ridges (FIGURE 4.1c).
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As previously demonstrated ['34'38], NGs interfere with the formation and matu-
ration of FAs, confining them on top of the ridges and forcing their maturation along
the grating. The presence of nano-modifications interferes with FA-maturation, in-
troducing gaps that can block the growth of aligned adhesions (NM™) or bridges
allowing misaligned ones (NM™).

3. Noisy topographies

The density of randomly distributed nano-modifications in a master geometry was
used to modulate its directionality. A DXF file (AutoCAD, Autodesk, USA) contain-
ing the final design of the noisy topography was produced by a custom-made Matlab
script (MathWorks, USA) and used to fabricate silicon molds for hot embossing as
reported in SECTION 3.2 and APPENDIX A .4.1.

Each pattern was described by two parameters: the type of nano-modification
used (i.e. positive or negative) and the probability p of a modification-event (i. e.
the insertion of a nano-modification). FIGURE 4.1b and ¢ show a sketch of the two
noise-types and an SEM image of COC gratings with p = 40% (i.e. 40%NM™ and
40%NM~, respectively).

This process is very versatile, since the Matlab script works in a parametric way,
allowing for an easy variation of the final geometry in terms of grating-periodicity A,
relative size of the ridge- and groove-units or total patterned area. Moreover, adding
the nano-modifications during the design of the topography leads to the creation of
map scaffolds, allowing for easy evaluation of the spectral properties of the structure
and making it possible to replicate the same geometry indefinitely, yielding for high
reproducibility during the cell-topography interaction experiments.

4.2.2 Substrate directionality quantification

The nano-modification-probability p is a good indicator of the overall topographical
disorder, but it is not suitable for a quantitative measure of directional stimulus as-
sociated to a certain region of the pattern. To this aim, a specific parameter named
directionality (8) was defined to provide better insight into the intensity of the direc-
tional signal delivered to the cells. In the following, a general definition of & will be
given by introducing a general method for its quantitative calculation.

The directionality of a noisy NG can be seen as the combination of the directional
and periodic stimulus provided by the NG and the randomly distributed nano-mod-
ifications. The relative weight of these two components can be easily visualized and
quantitatively evaluated by means of the FT of a given nanopattern. 6 was defined
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Figure 4.2: Directionality quantification. Model of a 10 um X 10 um area of a nanotopography (top
row) and representation in the spatial frequency domain (bottom row) for increasing density NM ™. The
amplitude spectra are characterized by a main peak corresponding to the spatial frequency of the A1
grating (A = 1 um ") and by low-frequency noise (A < 1 pm™"). Signal band (Bs) and noise band (By)
are represented on the (b) spectrum.

as the averaged ratio between the signal of to the periodic component and the low-
frequency noise:

1
— |FTp A (fx, fy)|dfxdfy
5(p, A) = < Bs HBS >,

1
B HBN |FTp, A (fx, fy)|dfxdfy

(4.1)

where FT(fy, fy) is the bidimentional FT of the pattern, By and Bg are the noise and
signal bands, respectively (see FIGURE 4.2), and A is the nanopatterned area used
for the FT calculation. Ten patterns were averaged for each 5(p, A). The central fre-
quency and width of these bands depend on the periodicity of the master geometry
and the type of nano-modification used (see APPENDIX B.4 for additional details).
The effect of NM™ on the power spectrum of a 10 x 10 um? NG is shown in
FIGURE 4.2. For p = 0% (FIGURE 4.2a), the spectrum is dominated by the two peaks
at fy = Oum™', fx = £1Tum™", reflecting the periodicity of the A1 grating used as
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Figure 4.3: Quantification of substrate directionality. (a) 3D plot of substrate directionality & (p, A) as
a function of grating area (A) and nano-modification probability (p). (b) Substrate directionality as a
function of the grating area &(A ), for several values of p. (c) Substrate directionality as a function of
nano-modification probability &(p), for several values of A. Curves calculated for NM ™.

master geometry. As p increases (FIGURE 4.2b and c), nano-modifications increasingly
impact the overall NG organization and reduce the intensity of the peaks in the FT
domain. The spectra in FIGURE 4.2 show how randomly distributed local distortions
result in the appearance of low frequency components in the FT domain.

The images were generated by introducing a random variation in the value of
each pixel, mimicking the impact of surface roughness on the topography. Rough-
ness was modeled as noise with a flat probability density and a 6nm amplitude.
Including surface roughness in the computation of o allowed for the calculation of
a directionality value for p = 100% (i.e. FLAT substrates), which would otherwise
have a null spectrum, introducing a singularity in EQUATION (4.1).

Directionality dependence on pattern area and noise density

FIGURE 4.3 shows the calculation of 6 for 0% < p < 100% and 6 x 6 um? < A < 160 x
160 pm?. As expected & has monotonic behavior, increasing with A (FIGURE 4.3b)
and decreasing with p (FIGURE 4.3c). A strong decrease of 5 (A) is visible for A <
20 x 20 um? for all the values of p. This effect can be explained by considering that
a reduction of A results in a smaller number of periods available for the spectral
reconstruction of the master geometry, with a reduction of the intensity in the signal
band.

A systematic characterization of the dependence of 6 from p and A is very im-
portant to determine the actual signal delivered to cells, since topographical sensing
is limited to cell-adhesion area. Typically values of cell-area span in the interval
100-3 000 um?2 1381761771 For this reason, a single substrate may result in different
directionality depending on cell type.
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Figure 4.4: Set of noisy nanogratings. SEM images of COC nanotopographies are reported. The struc-
tures are sorted for increasing directionality. The lower bar reports & values calculated for A =
10 x 10 um?. Scalebars 2 pm.

4.2.3 Fabrication

Two sets of 6 molds with p varying from 0 to 100% (NM" and NM ™) were fabri-
cated according the protocol described in the SECTION 3.2 and APPENDIX A.4.1. The
patterns were replicated on COC, and the effect of noise on substrate wettability was
assayed by static contact angle measurements!'7®l. Indeed, surface energy—and, in
particular, water wettability—are known to affect the cell-substrate interaction and
modulate cell adhesion, spreading and proliferation!'79%]. The average contact an-
gle on the whole set of topographies was 87 + 7 °, with no evident dependence on
p. No statistically significant difference (P > 0.05, One-Way ANOVA, Tukey multi-
ple comparison test) could be found between the whole set of imprinted substrates.
However, all samples showed a reduced hydrophilicity when compared to unim-
printed COC foils (79 £ 7°). The imprinting process therefore modified the COC
surface wettability, but this effect did not depend on the imprinted nanotopography.
Thus, the introduction of noise did not lead to artifacts in the cell response owing to
the altered surface wettability.

4.2.4 Conclusions

In this section I described the design of original noisy topographies with controlled
directionality. The patterns were realized from Al gratings, and substrate direction-
ality was modulated by the addition of a controlled density of point-like nano-mod-
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ifications. Two types of topographical noise, called positive and negative noise, were
realized by the insertion of gaps along the ridges of the grating, or bridges between
adjacent ones, respectively. A general quantitative definition of directionality was
proposed, discussed and applied to our nanostructures. Finally, the topographies
were transferred onto transparent COC foils by hot embossing.

4.3 NEURONAL PATHFINDING ON NOISY NANOSTRUC-
TURES

The mammalian nervous system is an example of highly polarized tissues[*®l. Neu-
rons are cells specialized in connecting biological units (e. g. neuron-neuron, neuron-
myocytes, sensory neuron-neuron) allowing for directional propagation of informa-
tion within the body. Examples can be found in the complex neuronal networks
in the central nervous system or in the long-extending neurons of the peripheral
nervous system. This connectivity relies on the formation of cell-protrusions named
neurites, which act as cables, allowing the propagation of electrical signals. In or-
der to find their target, neurites are able to detect and follow molecular gradients,
e.g. paracrine secretions, and mechanical stimuli, e. g. the physical structure of the
ECMU. Correct wiring has crucial importance for the functionality of neuronal net-
works, and deficiencies in this process can lead to severe neurological disorders !¢l
such as schizophrenia [**9].

PC12 cells are a cell line often used as an in vitro model for neuronal differentia-
tion 827831, They respond to several growth factors, neurotrophins, and hormones
and can be used to assess distinct responses during differentiation'84l. When stim-
ulated, PC12 cells recapitulate several steps of neuronal differentiation as they block
proliferation and extend multiple neurites. Nerve growth factor (NGF) is the classical
inducer of neuronal differentiation['®2]. We previously showed that the interaction
of differentiating PC12 cells with NGs with A1 gratings results in neurite selective
consolidation, leading to a highly specific neuronal cell morphotype, characterized
by bipolarity and neurite alignment to the NG lines. In the following I am going to
report the use of PC12 cells to investigate neurite contact guidance on noisy topogra-
phies.

4.31  Cell viability

Cell adhesion and viability studies were carried out to assess the biocompatibility
of noisy NGs. Cells were seeded on the substrates and allowed to adhere and grow
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up to 24h under standard cell-culture conditions (see APPENDIX B.6.5). No signifi-
cant difference in adherent viable cells (Calcein AM*) was found between the noisy
substrates and FLAT substrates!’7®] (P > 0.05, One-WayANOVA, Dunnett multiple
comparison test). A single difference (P < 0.001, One-WayA NOVA, Dunnett multi-
ple comparison tests) was found within the nanostructured substrates, between the
Al grating and the 80%NM™. This condition corresponds to substrates with scat-
tered post-like nanostructures, whereas the majority of the area is flat (FIGURE 4.4).
Cells contacting the surface must then locally adapt and stretch their membrane for
effective spreading, a condition that can slow-down or prevent cell adhesion [*550],
Overall, PC12 adhesion and growth were shown to be comparable with standard,
unpatterned substrates.

Cell viability was then correlated with cell death level, which can be estimated as
the percentage of necrotic cells (PI* cells) over the total cell number. The cell death
level was similar for all the tested substrates (P > 0.05, One-Way ANOVA), and it
is comparable to that of the flat control'7%l. Specifically, after 24 h, the measured
percentage of dead cells was lower than 2% for all nanotopographical noise sets, in
agreement with the value found in standard culture conditions.

4.3.2  Neurite alignment

PC12 neuronal differentiation was induced by NGF administration (100 ng/ml). Neu-
rite length was then measured and interpreted as a marker of cell-differentiation
efficiency. No significant difference in neurite extension between the different noisy
topographies and the flat surface was found (P > 0.05, One-Way ANOVA, Tukey
multiple comparison test)['7%l. No specific trends could be correlated with 8, sug-
gesting that neither NGs nor nano-modifications affect or inhibit neurite cell growth.
In particular, the average neurite length { (see APPENDIX B.10.1) was found to be
28+ 2um, 37 £ 2um and 35 + 2 um (mean +SEM) at 24, 48 and 72h, respectively,
in agreement with what is reported in the literature for standard culturing condi-
tions[140,164,187]

Neurite alignment o, was defined as the average angle between neurites and NG
direction (FIGURE 4.5a and APPENDIX B.10.1). As expected, neurites interacting with
control NGs (6 = 15.8 dB) aligned to the grating («n =4.3£1.1° at 72h, mean £ SD).
The progressive addition of nano-modifications—i.e. the decrease of 6—was re-
flected by a loss of neurite alignment, down to the value measured on isotropic,
FLAT substrates (6 = 0.8 dB, &, = 43.6 =4.1° at 72h). The resulting curves showed
a sigmoidal trend, as reported in FIGURE 4.5b for NM ™ (green) and NM ™ (red) at 72 h.
It was therefore possible to define a threshold value as the 6 at which &y is 50% of
the maximum misalignment. This value will be named 65¢ (see FIGURE 4.5b).
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Figure 4.5: PC12 neurite alignment. (a) SEM image of a differentiated PC12 cell on NM™ and sketch
depicting how neurite alignment «;, is defined. (b) Neurite alignment at 72h for NM* and NM~. Sig-
moidal fit is graphed for each dataset. 559 for both curves are indicated. (c) 650 on positive and negative
noise for the three time points measured. *P < 0.01

According with the results reported in FIGURE 4.5¢, topographical-reading thresh-
olds were located at 6 = 7.8dB and 6 = 7.2dB for negative and positive noise,
respectively. These values correspond to p ~ 40% and p ~ 50%, respectively, mean-
ing that PC12 cells could follow the NG even if about 50% of its ridges or grooves
were randomly modified. The comparison between the two types of noise showed
that neurites growing on gratings with NMs™ had a higher 65¢ than those growing
on NMs™ (P < 0.01, Student’s t-test), indicating that PC12 cells are more tolerant to
positive than negative noise. This effect could be explained with the different con-
straint imposed by the two types of nano-modifications on FA-maturation: NMs™
interrupt the ridges, reducing the space available for cell-adhesion and hindering the
elongation of FAs. On the contrary, NMs™ create bridges between adjacent ridges,
allowing the maturation of misaligned FAs.

4.3.3 Focal adhesions and nano-modifications

In order to have better insight into the role of FAs in topographical sensing of par-
tially masked geometries, a detailed analysis of FA organization during the early
stages of cell adhesion and neurite outgrowth was implemented and is reported in
the following. PC12 cells were transiently transfected with EGFP-paxillin (see Ar-
PENDIX B.8), seeded on noisy NGs, and differentiated by NGF administration as
described in the previous section. Paxillin spatial distribution was then acquired by
TIRF microscopy (see APPENDIX B.11.2 for additional details), allowing the visualiza-
tion of FAs at the cell basal-membrane, minimizing the background signal originat-
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Figure 4.6: Focal adhesion alignment on noisy nanogratings. (a) Bright field imaging of a PC12 on a
20%NM™ grating. TIRF imaging of EGFP-paxillin is over-imposed, showing FAs as bright spots. The
alignment angle formed by two representative FAs is sketched and colored in light or dark blue if the
adhesion was aligned (@z < 15°) or misaligned (@z > 15°), respectively. Scalebar 3 um. (b) FA
alignment as a function of substrate directionality &, on positive (green line) and negative (red line) noise,
reported as the % of aligned FAs. Data are reported as mean + SEM (1530 FAs quantified). Gratings
with & > 12.2 dB are significantly different than gratings with & < 7.9 dB and FLAT (P < 0.05-0.001)
for both NM* and NM—; 5 = 15.8dB vs. § = 10.8 dB NM~ (P < 0.01, One-Way ANOVA, Tukey’s
test)

ing from the cytoplasm. FA spatial distribution, density (number of adhesion per
cell), and maturation (adhesion area) was measured in all the studied substrates.

Focal adhesion distribution

The decrease of 6 induced an increase in the number of FAs per cell, both for negative
and positive noise, with respect to an unmodified NGI'®8, reaching significance
for 5 < 7.0dB (P < 0.05, One-Way ANOVA, Dunnett’s test). FA distribution was
analyzed by grouping the adhesions depending on the angle g, they formed with
the grating, using cell-center as vertex (see the schematics in FIGURE 4.6a). If @z, <

15°, the adhesion was considered aligned, if @g, > 15° it was considered misaligned.

The graph in FIGURE 4.6b shows FA alignment loss, with an 650 of 11.3 £0.1 dB and
10.0+0.3 dB for NMs™— and NMs™, respectively. Negative noise had a greater impact
on contact guidance compared to positive noise (P < 0.05, 850 NM ™~ vs. NM ™), in
line with what observed for neurite alignment.
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Small Intermediate Large

Apa < Tum?  Tum? < Apy <2um? Ay > 2 um?

Table 4.1: Focal adhesion size. FAs are divided in 3 groups depending on their size.

Focal adhesion maturation

FA maturation is accompanied by an increase in the size of individual adhesions
and can be evaluated by TIRF microscopy 341401781, Therefore, for each substrate
FAs were divided in three categories depending on their area (Ag,), as reported
in TABLE 4.1. The graphs in FIGURE 4.7a and c on page 79 show that aligned FA
maturation was correlated to & for both NM* and NM—, and resulted in the increase
of the small FA fraction as substrate directionality decreases (from approximately
45% for 6 = 15.8 dB up to values higher than 90% for 6 = 5.5 dB). No similar behavior
was observed for misaligned FAs (FIGURE 4.7b and d on page 79).

Since FAs are important actors in the cytoskeletal organization and in the regu-
lation of cell-contractility (see SECTION 3.1.1), we can argue that the fragmentation
of FAs induced by high levels of topographical noise resulted in an overall reduc-
tion of contractility. This reduction would contribute to the loss of contact guidance
since, as demonstrated in previous studies!'4>'%4, PC12 alignment to NGs requires
myosin-II contractility, and activation of Rho-associated protein kinase (ROCK).

4.3.4 Pharmacological tuning of contact guidance

In the following I will describe how the tolerance to topographical noise can be tuned
by pharmacologically interfering with PC12 cell-contractility. Since the experiments
presented in the previous paragraphs did not show qualitative differences between
NM* and NM™, the following analysis will be limited to the positive noise.

Blebbistatin, a myosin-II contractility inhibiting drug, was first tested. In line with
our previous results[**4, this treatment impaired mechanotransduction. Indeed, con-
tact guidance in the presence of blebbistatin (25 uM) was less effective and neurite
alignment was reduced for NGs tested. As shown in FIGURE 4.8a, this drug has a
disruptive effect on cell-to-grating alignment, resulting in greater alignment angles
&, on each topography.

The effect of nocodazole was then assayed. This drug is a potent microtubule de-
polymerizing agent that was shown to activate the Rho-A-ROCK-MLC pathway,
leading to an increase of cell contractility'®9]. PC12 neurite alignment vs. substrate
directionality in presence of nocodazole (10nM) was measured after 24, 48 and 72h
of NGF-induced differentiation.
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Figure 4.7: Focal adhesion maturation on noisy nanogratings. The bar plots show the relative dis-
tribution (% of the total) of small (Azpa < 1 pum?), intermediate (1 pm> < Ag < 2 um?) and large
(Agsa > 2 um?) FAs for each substrate. Green and red bars are relative to gratings with positive (a,b) and
negative (c,d) noise, respectively. Gray bars represent non-noisy topographies (i.e. A1 grating and FLAT
substrates). Data are reported as mean+SEM (1 530 FAs quantified).
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Figure 4.8: Pharmacological modulation of noise tolerance. a) Neurite alignment as a function of sub-
strate directionality at t = 48 h in presence of nocodazole 10nM (gray lines), blebbistatin 25 puM (blue
lines) and for the control condition (green lines). Blebbistatin inhibits cell contractility and negatively
affects neurite alignment on noisy NGs, P = 0.053 85¢ blebbistatin vs. untreated (Student’s t-test). Data
are reported as mean + SEM (2 200 neurites quantified). c) Neurite alignment for 6 = 7 dB (60% noise)
at t = 24, 48 and 72 h in presence of nocodazole (grey bars), blebbistatin (blue bars) and for the control
condition (green bars): * P < 0.05 untreated vs. nocodazole and vs. blebbistatin (Student’s t-test).

FIGURE 4.8 demonstrates that, contrary to what was obtained with blebbistatin, the
tolerance of contact guidance to noise was significantly improved with respect to the
untreated condition (P < 0.01, nocodazole 10 nM vs. untreated, Student’s t-test). The
resulting 650 lowered to 6.6 £0.1dB, 6.24+0.3dB and 6.5+ 0.2dB at 24, 48 and 72h
respectively, corresponding to a smaller neurite alignment angle o, (i.e. a better
guidance) on NGs with low directionality (6 < 7 dB, i.e. P = 60% and 80%). Unlike
blebbistatin, the effects of nocodazole at low levels of noise were barely-detectable
(FIGURE 4.8a). A better insight over the opposite effects induced by blebbistatin and
nocodazole is provided by the graph in FIGURE 4.8b, which compares neurite align-
ment «n for samples close to the directionality threshold (5 = 7.0 dB). The graph
shows a significative reduction of o, for the nocodazole-treated cells with respect of
the untreated condition and, at the same time, a significative increase of the same
parameter for blebbistatin-treated cells.

Finally, the effect of nocodazole on FA development was investigated. I focused
this analysis in the region of high topographical noise (6 = 7.0dB), where the
nocodazole-induced-increase of cell-contractility obtained the maximum effect in
neurite alignment-recovery (see SECTION 4.3.4).

PC12 were transiently transfected with fluorescent EGFP-Paxillin, differentiated
by NGF and treated with nocodazole after 6 h from NGF administration. FA spatial
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Figure 4.9: Focal adhesion development in presence of nocodazole. (a) Number of FAs per cell (mean
+ SD, 44 measured cells; n > 2) for & = 7 in presence of nocodazole 10nM (grey bar) and for
the untreated condition (green bar). The black bar refers to NGs with no-noise (*P < 0.05 Student’s
t-test). (b) Area of aligned and misaligned FAs measured on NGs with 5 = 7 dB, in the presence of
nocodazole 10nM (grey bars) and for the untreated condition (green bars). Nocodazole leads to larger
FAs (*P < 0.05 Mann Whitney test; mean + SD, 242 FAs quantified; n > 2). (c) FA size distribution.
Data are reported as mean+SD (242 FAs quantified; n > 2).

distribution was not affected by nocodazole (P > 0.05 nocodazole vs. untreated),
while the number of FAs per cell had a significative reduction, reaching values com-
parable with the ones of an unmodified NG (FIGURE 4.9a).

FA maturation was favored by nocodazole: FIGURE 4.9b shows that FAs grew more
in treated cells than in untreated ones (P < 0.05 nocodazole vs. untreated, Mann
Whitney test), for both alignments. No significant difference was measured between
aligned and misaligned FAs. Instead, the size distribution of aligned adhesions was
affected (FIGURE 4.9c): the percentage of small FAs decreased while more adhesions
with intermediate and large dimension were established.

These results indicate that the cell-contractility machinery has a crucial role in
tuning cell sensitivity to directional stimuli, being able to increase or reduce the
tolerance of neurite and FA alignment towards nanotopographical noise.

4.3.5 Conclusions

High-resolution live-cell imaging was performed on the noisy nanotopographies
using both bright field and TIRF microscopy. Biocompatibility was demonstrated
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by culturing PC12 cells and evaluating cell viability and NGF-induced neuronal-
differentiation efficiency. No significant differences could be found with respect to
unmodified NGs.

The effect of topographical noise on neurite alighment was analyzed, showing a
sigmoidal loss from the values measured on Al gratings down to the random neu-
rite distribution found on FLAT substrates. The modulation of directionality also
influenced FA orientation and maturation, with a trend similar to the one observed
for neurite alignment. This demonstrates that neurite pathfinding is capable of re-
trieving information from partially ordered topographies through a mechanism that
involves FA-sensing.

Finally, pharmacological rescue of neurite alignment was investigated. Nocoda-
zole, a potent microtubule depolymerizing agent that is known to increase cell con-
tractility via Rho-A pathway activation, emerged as an effective drug to improve
neurite alignment and aligned-FAs maturation at low substrate directionalities.

4.4 STEM CELL MECHANOTRASDUCTION ON NOISY NANO-
TOPOGRAPHIES

The modulation of cell migration, invasion and terminal differentiation by artifi-
cial physical cues is of paramount importance for implementing effective stem cell
based tissue engineering protocols for regenerative medicine applications[*9°]. Al-
though micro- and nanomaterial driven differentiation has been studied by many
groups['70191192] the regulation of stem cell migration by contact interaction is still
largely unknown.

Bone-marrow human mesenchymal stem cells (BM-hMSCs) are the most com-
monly used cells in clinical applications and basic research. Many therapeutical
approaches based on hMSCs have been proposed. Some of them take advantage
of hybrid hMSC-biomaterial scaffolds that are implanted in the human body. When
in situ, cells migrate off the scaffold and undergo terminal differentiation leading
to device integration and regeneration of the damaged area. Beyond soluble factors,
other factors can stimulate this process[93194] and improve the final transplantation
outcome 9519 such as the physical properties of the scaffold (e. g. stiffness, density,
topography, porosity, roughness).

Owing to the rather invasive extraction procedure, however, in the last few years,
hMSCs have been actively sought for in other human tissues'97]. Wharton'’s jelly
human mesenchymal stem cells (WJ-hMSC) are extracted from the part of the um-
bilical cord composed of a mucous-connective tissue matrix that is rich in stem cells,
collagen fibers and proteoglycans 1981991,
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Here, I will report my results in the study of WJ-hMSC polarization and mi-
gration as a function of the controlled directional stimuli provided by noisy NGs.
Mechanotransduction in WJ-hMSC was measured by evaluating cell morphology
and alignment, cytoskeleton polarization, FA development and spatial distribution
by fluorescence microscopy on fixed and living cells. Finally, dynamical interaction
of WJ-hMSC with negative noise (NM ™) was studied by the analysis of single-cell
migration.

4.4.1  Cell viability

Experiments were performed at short and medium term: 24h and one week after
seeding. In order to detect living and dead cells, we used different fluorescent dyes
and 3-channel epifluorescence microscopy.

Measurements demonstrated that none of the six topographies affects cell viability
significantly. In particular, for both time points, the percentage of viable cells was
(94 & 2%) in line with typical values obtained for standard plastic substrates, e.g.
tissue culture poly (styrene) (TCPS). This result confirmed the possibility to test our
topographies in long-term experiments, such as cell proliferation, migration and
differentiation assays.

4.4.2 Single cell morphological analysis

In order to quantify cell area, polarization and alignment to the gratings, cells were
stained with Calcein AM and images were acquired by epifluorescence microscopy
(two representative fields are reported in FIGURE 4.10a). Then, image binarization
and automatic analysis were used to measure single-cell morphological parameters
(FIGURE 4.10a).

FIGURE 4.10b shows the average cell area (A ) measured with the different nan-
otopographies. Overall, patterned surfaces resulted in a cell-area reduction of a-
bout 20% as compared to FLAT, even though this difference was not statistically
significant. Remarkably, noise did not affect A e with respect to the no-noise condi-
tion (A1 substrate). Results on cell polarization (ee;)—defined as the ratio between
cell-major and -minor axes—are shown in FIGURE 4.10c. WJ-hMSC are naturally po-
larized cells, with eq = 0.4 £ 0.03 on FLAT. As expected, interaction with A1 led to
€cell Teduction of about the 25%. Contrary to what observed for cell area, €. was
restored to its FLAT value by nano-modifications, regardless of its density. The angu-
lar distribution of cell alignment (o) for each substrate showed that cells on all the
noisy NGs and on FLAT were randomly oriented ['%]. Instead, as demonstrated in

83



84

d)
~ 100
e
‘;)’ 80 A RRR RRRE
8 60
g
o 40
2P
* -] e
os . NS
31.920.017.916.114.1 0.8 31.920.017.916.1 14.10.8 31.920.117.916.1 14.10.8
§ (dB) § (dB) § (dB)

Figure 4.10: WJ-hMSC morphology. (a) Representative cell images at t = 24 h after seeding on A1 and
FLAT. Cells were stained with Calcein AM. Scalebar 50 pm. A schematic of the method used for cell
morphology characterization is reported. After fitting the cell contour with an ellipse, major and minor
axes (2 and b, respectively) and orientation (&) were measured. (b) Cell area (A.y) vs noise. Data
were normalized to the FLAT value. (c) Cell polarization (&) Vs 8. €cep — O indicates full polarization,
€cell = 1 correspond to round shaped cells. (d) Percentage of aligned cells (c¢een < 15°) vs 6. Four
independent experiments were performed. (**** P < 0.0001)

FIGURE 4.10d, Al induced a net (70%) and significant improvement of cell alignment
with respect to all other conditions.

Analysis of cell cytoskeleton was performed by immunofluorescence techniques.
Three fluorescent dyes were used to detect actin cytoskeleton, vinculin aggregation
in FAs, and cell nuclei (see ArPENDIX B.10). Confocal microscopy was used to acquire
high-resolution images. FIGURE 4.11a reports six representative images of actin cy-
toskeletons, acquired on the different substrates. WJ-hMSC showed a well-organized
cytoskeleton, with evident actin stress fibers. Fourier transform (FT) analysis was
exploited to study the spatial organization of actin fibers (see APPENDIX B.10.3). FIG-
URE 4.11b shows that 85 £ 6% of cells grown on Al presented well-oriented actin
fibers extending along the grating-direction (X,ctin < 15 °). Notably, this percentage
was reduced by 42% in the presence of 20%NM™, which resulted significantly more
aligned than those with higher percentages of noise (p > 60%).

Single-cell actin dispersion is reported in FIGURE 4.11c. In this case the best per-
formances were also obtained with A1 gratings, whose dispersion was almost one
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Figure 4.11: Actin cytoskeleton polarization. (a) Representative fluorescence images of actin cytoskeleton
acquired at t = 24h after cell seeding. Scalebars 20 um. (b) Percentage of cells with aligned actin
(Xactin < 15°) vs 8. (c) Single cell actin dispersion vs 5. Five independent experiments were performed
(*P < 0.05, **P < 0.001, **P < 0.0001).

half of the one measured for all the noisy topographies. Interestingly, data relative to
high noise percentage (p = 60-80%) substrates indicated a greater dispersion with
respect to data obtained on FLAT.

4.4.3 Focal adhesion morphology

FAs were detected as vinculin clusters (see SECTION 3.1.1) by immunofluorescence
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techniques and confocal microscopy (representative images are shown in FIGURE 4.12a).

FA morphological parameters were semi-automatically measured from fluorescence
images by image correlation methods[**°l. FAs were modeled as ellipsoidal bodies
and described by the following parameters: area (Ag,), axis length (dmin and daax),
elongation (pea = dmin/dmax), and alignment to the pattern (¢’r,). We also quanti-
fied FA density (i. e. the average number of FAs per cell) and FA spatial distribution
within single cells. FIGURE 4.12b indicates that NGs inhibited the full development
of FAs. As shown in FIGURE 4.12¢, Al and the 20%NM™ led to din =~ 0.55+0.03 pm,
a value comparable to the substrate ridge width.
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Figure 4.12: Focal adhesion morphology. (a) Representative fluorescence images of vinculin clusters on
AT1,40%NM™ and FLAT and schematics of FA morphometric analysis. FAs were modeled as ellipses, for
which major (dyax) and minor axes (dmin), and directionality (¢ ’g) were measured. Scalebars 20 pm.
b) Area (Ag,), (c) minor axis (dmin) and (d) major axis (dwax) vs 6. Three independent experiments were
performed (*P < 0.05).

Increased noise made a larger surface area available for cell adhesion and FA
maturation. Indeed, dpin reached values indistinguishable from those obtained on
FLAT (dmin < 1um) while dyax displayed a different response (FIGURE 4.12d). FAs
could elongate freely on FLAT and Al (dyax = 3.92 £0.21 um and 3.76 = 0.27 um,
respectively), while noisy NGs reduced FA stretching by approximately 35%. Thus,
these modifications affected both FA area and elongation, as shown in FIGURE 4.12b—
d. FAs were naturally ellipsoidal with pg, = 0.259 & 0.007 on FLAT. Polarization
almost halved (46%) on A1, while the presence of NMs™ restored the conformation
found on FLAT. Moreover, as shown in FIGURE 4.12b, all the NGs—with or without
nano-modifications—halved the Az, with respect to the value measured on FLAT.
The cells that were mainly affected by this effect were those grown on substrates
with a low noise (p = 20-40%), where an increased number of FAs could also be
observed 9],
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Figure 4.13: Focal adhesion alignment to nanogratings. (a) FA angle distribution with respect to the
grating direction for different &. Bin size: 15° (*P < 0.05). (b) Percentage of aligned FAs (¢'r < 15°)
vs & (*P < 0.05).

FA spatial distribution within single cells were also modified by NGs. Majority
of FAs were aligned to the cell polarization direction on Al. FLAT and 80%NM™
maintained 60% of FAs aligned to the cell axis, whereas low and medium percent-
ages of noise reduced this alignment slightly. As expected, the radial distribution of
FAs was unaffected by any of the substrates: 60% of FAs were consolidated at the
cell periphery, where they experienced the maximum traction applied by actin stress
fibers [19°],

@'5a strongly depended on the specific topography used (FIGURE 4.13), showing a
behavior similar to that obtained for cell alignment. On Al, cells established almost
all the FAs (90%) parallel (¢ s < 15°) to the pattern, while no FAs were found with
@'pa > 60°. The addition of NMs™ broadened this distribution. On low-noise grat-
ings (p = 20-40%) a reduced number of parallel FAs (40—60%) and an overall rise
of all the other bins of the angular distributions were measured. Above 60%NM ™
the distribution flattened, showing a slight increase of misaligned FAs (¢'zs > 45°)
for the 60%NM™ pattern. FIGURE 4.13b focuses on aligned FAs (¢'3a < 15°) demon-
strating that A1 and 20%NM™ lead to a significant increase in the number of aligned
FAs with respect to all other substrates.

Summarizing, FAs primarily assemble along the cell periphery and exhibit a po-
larized shape defined by the pattern direction. FA size halved on A1 with respect to
measurements on FLAT and was modulated by noise level. In particular, small FA
clusters were favored by 20%NM ™, suggesting that this specific geometrical arrange-
ment of imperfections may particularly influence FA maturation. This is supported
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by the presence of a larger number of FAs at this noise level that we argue are part
of a feedback mechanism to successfully counteract the presence of weak anchor
points and to maintain the correct internal mechanical stress balancel'751. FA spatial
distribution drives the formation of actin stress fibers that in turn align[201:22], re-
flecting FA angular distribution, and finally lead to cell remodeling and alignment
to the pattern. Good correspondence between cell alignment (FIGURE 4.10) and actin
alignment (FIGURE 4.11) was found. Importantly, the actin reshaping did not signifi-
cantly affect cell area, a condition that could promote pathological dysfunctions[2°3!.

4.4.4 Single cell migration

WJ-hMSC migration was recorded by time-lapse microscopy after staining cell nu-
clei with a vital fluorescent dye (Syto16, Invitrogen, Italy). Frames were acquired
every 15min for 15h, which allowed information to be gathered at two time-scales.
None of the NGs affected migration global parameters, i.e. the distance from the
origin after 15h (R), total path covered in 15h (S), average migration step (dS)
or speed (V). Specifically, we measured R = 127.2+35um, S = 3244 £11.6 um,
dS =52£02um and V = 20.9 £ 0.8 um/h. These quantities were calculated by
averaging the values measured for each substrate (see APPENDIX B.12). Nonethe-
less, migration directionality was driven by contact guidance. FIGURES 4.14a and b
show representative tracks: cell random walks were observed on FLAT and were
compared with Al-driven migration in which tracks followed NG lines. Migration
was then characterized along two directions: parallel (0°-15°) and perpendicular
(75°-—90°) to the NGs. For FLAT, one random direction was chosen together with
its perpendicular. The percentage of parallel migration steps doubled on AT with re-
spect to FLAT and high-noise topographies (60%NM™ and 80%NM™), as shown in
the graph in FIGURE 4.14d. A reduction, though to a lesser extent, was also found for
20%NM™ and 40%NM . On the contrary, gratings did not affect the parallel speed
(Vpar) (FIGURE 4.14f) and results were not significantly modified. The same was ob-
tained for the speed calculated along other directions with angles up to 75° with
respect to the grating. FIGURE 4.14e reports the percentage of perpendicular steps
on the different substrates. As expected, Al led to a suppression of the migration
across the ridges where increasing noise progressively reduced this constraint. Per-
pendicular movement was slower on Al, leading to a reduced perpendicular speed
(Vper) of 50% with respect to Vper on FLAT. Conversely to what was obtained for
Vpar, noise was found to affect Vper (FIGURE 4.14g). The presence of bridges between
ridges made more anchoring points available, allowing easier movement across the
grating.
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Figure 4.14: (a,b) Representative tracks of cells moving on A1 and FLAT surfaces, respectively. (c) Mea-
surement schematic. (d) Percentage of steps aligned (dSpar) to the pattern direction (0-15°) and (f)
relative speed (Vpar). (e) Percentage of steps perpendicular (dSper) to the pattern directionality (75-90 °)
and (g) relative speed (Vper). 4 independent experiments were performed (*P < 0.005).
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Cell migration is one of the important biological processes regulated by ECM-cell
interaction['56204295]; it is fundamental for embryogenesis, development, and for
many other physiological processes such as tissue renewal or immune response. Mi-
gration is also pivotal for pathogenic processes (e.g. cancer-cell invasion of healthy
tissues), and tissue repair after injury. Controlled migration would be particularly de-
sirable with stem cells in order to drive injected cells towards their target position as
rapidly as possible. These results showed that NGs do not strongly affect global mi-
gration parameters (path and speed), but can control the movement direction. This
property is consistent with previous studies with other cell types (e. g. fibroblasts) on
similar anisotropic substrates2°02°7, Cells freely moved on FLAT substrates, while
their motion on NGs was confined along the pattern direction. This effect was tuned
by NMs™—, which progressively reduced migration directionality. For p > 40%, the
substrates are ineffective in directing cell motion.

4.4.5 Dependence on %

These results show a difference in WJ-hMSC tolerance to nano-topographical noise
compared to what was found in sEcTION 4.3 for PCI12 neurite alignment. Nano-
modifications interfere dramatically with W]-hMSC ability to respond to noise-de-
graded directional stimuli, causing a major loss of cell-response after only 20%NM ™.

This behavior can be explained by considering the dependence of 6 on the pattern
area A (see SECTION 4.2.2). The average area of a WJ-hMSC-cell on a FLAT surface
is 3421 pm?, much wider than a PC12 (approximately 100 um?). Indeed, 5(p, 3421)
monotonically decreases with p, but with a marked non-linear behavior, reducing
by 42% when p increases from 0 to 20%. This effect rapidly saturates and a further
increase of p from 20% to 80% leads to a reduction in & of only 8%.

4.4.6 Conclusions

In conclusion, I investigated the influence of highly anisotropic and noisy substrates
on WJ-hMSC by focusing on cell morphotype and migration by means of biochemi-
cal assays and fluorescence/confocal microscopy. My results show that migration on
perfect nanogratings is highly directional. On the contrary, pattern degradation may
means of negative nano-modifications (NMs™) leads to a loss of cell directionality,
even at very low noise levels. The same effect was also observed on cell morphol-
ogy: while a slight cell area reduction was reported for all NGs, only the non-noisy
gratings induced cell polarization. Molecular analysis revealed that cell polarization
corresponds to actin cytoskeleton organization, with ordered stress fibers following
NG lines. Furthermore, this cytoskeletal structure correlated with FA size and spatial
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arrangement. In the case of unperturbed NGs we observed FAs that developed at cell
terminations and were aligned to the pattern. Finally, we observed that NGs, with or
without noise, constrained and stretched FAs along ridges, reducing their area and
inhibiting their maturation. These results indicate that highly-anisotropic topogra-
phies might be successfully applied to drive stem-cell migration in new regenerative-
medicine protocols. Importantly, I showed that pattern fidelity is crucial for proper
translation of the topographical signal into the desired cell response: pattern degra-
dation may result in altered mechanotransduction at molecular (rearrangement of
FA and actin fibers), morphological (cell area and polarization), and functional (cell
migration) levels. This indicates that small scaffold alterations resulting from in-
teraction with the host tissue—e. g. deposition of extracellular matrix components,
degradation of bioresorbable devices, cell invasion—need to be carefully considered
when evaluating the actual scaffold operation time for active regenerative therapies.
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TOWARDS PRE-CLINICAL
TRANSLATION

Previously, I introduced micro- and nanogratings for polarizing cell bodies and migration
patterns, discussing the potential benefits of their use in the field of regenerative medicine.
In this chapter I will present the results obtained by applying directional topographies to
a specific clinical problem, i.e. the regeneration of peripheral nerves. First I will introduce
the problem and discuss an in vitro study of Schwann cell migration on PDMS gratings,
comparing structures of different periodicity. Then I will present preliminary results on the
pre-clinical translation of this technology using a rat model of median nerve transection.
Finally, I will report the first results of a collaboration aimed to transfer of nanogratings
onto PCL/PLA membranes, an FDA-approved, biodegradable polymer blend optimized for
the regenerative medicine applications.

5.1 INTRODUCTION

Peripheral nerve injury is a common form of trauma with up to 400000 cases each
year 298299 Nerve lesions can significantly complicate the clinical course and out-
come of injured patients and are present in about 5% of all open wounds in the
extremities caused by sports or traffic accidents. In the peripheral nervous system,
nerves regenerate spontaneously when injuries are minor. In the most severe lesions,
in which there is distortion of the endo-neural tubes with or without peri-neural
disruption (Sunderland grade III or grade IV), prognosis for spontaneous regrowth
is diminished and surgical repair is often required. In complete nerve lesions (Sun-
derland grade V) axonal regrowth will not usually occur unless the nerve endings
are free from scar tissue and are surgically reapproximated >*°l.

Although advances in surgical techniques have brought significant improvements,
functional recovery is often suboptimal. The choice of surgical protocol is depen-
dent on the size of the nerve gap between the proximal and distal stumps[>*]. Short
gaps can be repaired directly by mobilization of the proximal and distal stumps
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with end-to-end coaptation and epi-neural suturing. Long nerve gaps (> 2cm) re-
quire additional material to bridge the defect, which further reduces the functional
outcome 2],

The current standard repair method is based on the use of autologous nerve grafts
(autografts), which provide the regenerating axons with a natural guidance chan-
nel populated with functioning Schwann cells (SCs) surrounded by their basal lam-
inal>3]. Nerve autografting, however, is far from being an optimal treatment, and
even after optimal surgical repair the functional outcome is disappointingly poor,
especially for sensory recovery!>'4l. This poor outcome is largely due to the death of
primary sensory neurons, but also to the lack of fiber regeneration over the gap that
leads to target-organ denervation.

A promising alternative to nerve autografting is the use of artificial scaffolds. They
are typically composed of an active biomaterial embedded in a supporting conduit.
This approach has several advantages over autografts. First of all it does not require
the extraction of healthy tissue from the patient. Then, the scaffold typically provides
a guidance channel and mechanical support, and reduces scar formation by limiting
the invasion of the connective tissue into the lesion>'5]. Moreover, it can be engi-
neered to provide the optimal chemical and physical microenvironment for nerve
functional recovery!>'°l. Basic research and clinical results have shown that bioab-
sorbable devices can induce comparable or even superior nerve reconstruction than
nerve autografts?3]. Nevertheless, the functional recovery of the nerve is still not
satisfying and the use of scaffolds is limited to rather small nerve gaps>'7l (< 5cm
in humans and 1.5 cm in rats).

Anisotropic topographies represent interesting tools for peripheral nerve regener-
ation. Their ability to spatially bias cell migration patterns and neurite outgrowth
can potentially reduce the times needed for the regrowing end to fill the nerve
transection-gap. Moreover, surface structuring does not alter either the chemistry
or the bulk properties of the scaffolds, making geometry- and material-optimization
almost orthogonal processes. In the rest of this chapter I will describe the use of
different micro-gratings to control the migration of SCs, glial cells crucial in the reg-
ulation of neuronal survival and differentiation[>'8219]. In healthy peripheral nerves,
SCs grow in close contact with axons, contributing to the propagation of electrical
signals[>"9]. If a lesion causes nerve transection, SCs migrate from the stumps, guid-
ing the regrowing proximal end towards the distal one. Given the crucial role that
SCs have in peripheral nerve regeneration, the scaffolds for the treatment of nerve in-
jury have to provide a suitable environment for the migration of these cells between
the nerve stumps. Therefore, in vitro studies of SC interaction with the scaffolds are
an accepted model for a preliminary evaluation of the scaffold performances before
pre-clinical testing [208,218-220],
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Name Periodicity (A) Depth (d) Aspect ratio (AR)

Adp 4 um 0.85 um 0.43
A20p 20 pm 2.50 pm 0.25

Table 5.1: Microratings for nerve conduits. Gratings for the creation of microstructured PDMS mem-
branes.

The topographies were initially fabricated on PDMS membranes, in order to ob-
tain scaffolds suitable for in vitro analysis of cell migration and, notably, for pilot
tests of in vivo nerve regeneration in a rat model of median nerve transection. PDMS
has several features making it a widely suitable material material for biomedical
use?21222]: it is chemical and biological inert, non-toxic, has excellent mechanic re-
sistance and elasticity, and is compatible with standard soft lithography techniques.
These characteristics make PDMS very useful for scaffold-prototyping, but its lack
of biodegradability imposes severe limits over its use for long-term applications. For
this reason, I will finally present preliminary results on pattern transfer of nanograt-
ings on a polymer blend of poly (caprolactone) and poly (lactic acid) (PCL/PLA),
a biocompatible and biodegradable scaffold with interesting mechanical (strength,
flexibility) and chemical (balanced hydrophobicity/hydrophilicity) properties[>>°]
for the realization of implantable conduits.

5.2 SCHWANN CELL DIRECTIONAL MIGRATION ALONG PDMS
MICROGRATINGS

5.2.1 PDMS-membrane fabrication

Two different topographies were produced on PDMS membranes (see SECTION A.6
for details). Membranes, produced by soft lithography, are suitable for bright field
microscopy and yield for highly reproducible micropatterning over macroscopic ar-
eas (1 cm?, FIGURE 5.1a). Two microgratings, named A4, and A20,, were tested (see
TABLE 5.1). These gratings have a periodicity of A = 4pum and A = 20 pm, respec-
tively, with duty cycle 0.5 (i.e. w = wy = wg, see FIGURE 3.3 on page 50). The depths
are d = 0.85 um and 2.5 um, respectively, as reported in TABLE 5.1. Flat PDMS mem-
branes (FLAT) were used as a control.

The different periodicity of the gratings used resulted in different guidance re-
gimes—namely contact guidance and boundaries guidance—on SCs. The first is distinc-
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Figure 5.1: Microgratings on PDMS membranes. (a) PDMS membrane patterned with a A4, grating
(blue diffraction pattern). (b) SEM image of the cross-section of the A4, grating. Scalebar 1 um. (c) 3D
representation of the structure of a A4, grating and (d) profile of the grating, obtained by optical pro-
filometry. (e) 3D representation of the structure of a A20,, grating and (f) profile of the grating, obtained
by optical profilometry.

tive of gratings whose groove width is much less than cell diameter, and has been
described in CHAPTER 3 and 4. The second regime characterizes the interaction be-
tween cells and structures wider than their body size. The resulting cell behavior is
thus determined by physical boundaries of the grating, and whole cells can lay on
ridges or inside the grooves[??3]. Given that average SC body size is 250--300 um?,
A4y, resulted in a contact guidance regime and A20,, in a boundary guidance regime.

5.2.2 In vitro Schwann cell migration

Substrate functionalization

Before cell culturing, the scaffold wettability was characterized by static water con-
tact angle measurements along two different directions: parallel and perpendicular
to the grating lines!>'7]. Overall, the membranes were hydrophobic, as expected for
PDMS!24] surfaces. The patterns slightly increased the hydrophobicity, in particu-
lar along the perpendicular direction. In order to improve wettability and to allow
cell adhesion and spreading, all the PDMS surfaces were chemically functionalized.
As suggested by 223, functionalization was carried out by using poly-L-lysine 0.01%
and laminin 50 pg/mL. To improve protein absorption, substrates were also exposed
to oxygen plasma activation (see APPENDIX B.6.7) before functionalization.
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Single cell migration analysis

Cell migration was acquired by time-lapse bright-field microscopy for 17h with
a time resolution of 15min. Individual cells were manually tracked and quantita-
tive parameters (e.g. distance from the starting point, speed, displacement) were
measured as detailed in APPENDIX B.12. SCs, like other cell-types contacting simi-
lar gratings!>*3], were driven along the topography lines, while on FLAT substrates
they showed random spatial migration (FIGURE 5.2). The total path S, calculated at
17h, and the migration steps dS (see APPENDIX B.12 for additional details) were
not affected by the presence of micropatterns, and they measured 481.5 £ 9.0 ym
and 7.0 4 0.1 um, respectively. Interestingly, the cell displacement R on A20, was in-
stead significantly enhanced with respect to that of A4, and FLAT membranes (see
FIGURE 5.2g). Considering that the average cell velocity was similar for all the sub-
strates (28.1 & 0.5 pm/h), this improvement must originate from non-isotropic cell
migration. In order to verify this hypothesis, migration data were analyzed by di-
viding the step vectors dS in two components: dSpar and dSper, i. €. vectors forming
an angle between 0° and 15°, and between 75° and 90 ° with the grating lines, as
sketched in FIGURE 4.14 on page 89. Random perpendicular directions were chosen
for FLAT substrates. FIGURE 5.2g-i report the results of this analysis. A4, and A20,
significantly induced cell motion directionality. In particular, 2 different effects were
observed: first, both the gratings led to a significant increase of the percentage of
dSpar with respect to the FLAT condition (FIGURE 5.2h); second, perpendicular mo-
tion was strongly inhibited on both of the gratings, that is, only 5% of the total was
found within dSper (FIGURE 5.2i).

These results agree with what was observed by Mitchel et al.[**3]. These authors
tested single SC migration along large PDMS-microgratings (A = 30 um and 60 pm),
but they did not report any data in the contact guidance regime (i.e. A < cell body
diameter). These results demonstrate that migration can be highly directional in both
the interaction regimes, and that boundary guidance can be slightly more efficient
than contact guidance. Specifically, A20, showed a slightly stronger effect among
the tested substrates.

Conclusions

Altogether, our data suggest the micrograting geometry as promising surface tex-
tures to meliorate artificial scaffolds for nerve regeneration applications, possibly
improving the clinical course of patients suffering from injuries to the peripheral
nervous system.
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Figure 5.2: SC migration on microgratings. Representative bright-field images of cell migration on (a)
FLAT, (c) A4, and (e) A20, PDMS substrates. White arrows represent the pattern direction. Coloured
tracks were obtained by the Manual track] plugins of Image] software and they highlight SC motion.
Scalebars 50 um. Representative SEM images of SC on (b) FLAT, (d) A4}, and (f) A20, PDMS substrates.
Scalebars 10 um. (g) Single cell displacement R after 17 h for the different substrates. (h) Percentage of
cell steps d.S parallel and (i) perpendicular to the pattern direction for each substrate.
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5.3 IN VIVO EXPERIMENTS AND BIODEGRADABLE FILMS

5.3.1  Implantable PDMS membranes

Pilot in vivo experiments were conduced in collaboration with the group of Prof. Ge-
nua at the Universita di Torino (Italy). Peripheral nerve regeneration was evaluated
on a rat model of median nerve transection. The experimental protocol consisted of
the surgical transection of a 1 cm portion of median nerve of a rat and the insertion of
an artificial scaffold to bridge the severed ends (see FIGURE 5.3). The nerve was then
left to regrow on the membrane and explanted after 3 or 7 days for the evaluation
of the regrowth.

The thickness of the PDMS membranes was optimized using FLAT scaffolds. The
best performance was achieved by membranes of 220 & 30 um. Thinner membranes
did not have the mechanical resistance necessary to withstand the surgery and broke
during suturing to the nerve.

Experiments with FLAT membranes demonstrated that nerves can regrow on the
PDMS scaffolds. FIGURE 5.3a shows a nerve explanted 7 days after the surgery, where
an evident regrowth of the proximal stump on the 10 mm x 2 mm membrane (dashed
line in figure) is visible. The immunohistochemistry for neurofilament—a marker for
neuronal cytoskeleton—is reported in FIGURE 5.3b and confirms that the membrane
was successfully colonized by the regrowing axons of the proximal stump, even
though the fibers did not seem to be highly aligned to the bridge.

These experiments also showed that the regrowing tissue did not cover both the
sides of the membrane but, on the contrary, regenerated along a single side. For
this reason, a protocol for the patterning of both sides of the membrane was devel-
oped (see APPENDIX A.6 for details), so that the nerve could be in contact with the
micrograting independently from the side chosen for the regrowth.

The experimental protocol for the evaluation of the effect of microgratings in
peripheral nerve regeneration used a bilateral surgery, implanting on one median
nerve structured membrane and a FLAT one on the other. FLAT membranes were
prepared with the same protocol used for the double-sided scaffolds described
above, using a flat silicon wafer as mold. Even though the experiments are still ongo-
ing, preliminary results suggest that micropatterned membranes provide a suitable
environment for nerve regeneration. FIGURE 5.3e shows the early regrowth (3 days
from the surgery) of a median nerve on a A20, grating. This experiment reported
a polarized outgrowth of the nerve extending between the stumps without the for-
mation of clusters or neuroma-like structures. Further experiments are going to be
performed to assess the long-term effects of the treatment, providing a more detailed
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Figure 5.3: Nerve regeneration in vivo. (a) Median nerve regrowth (from proximal toward distal stump)
on a FLAT PDMS membrane. (b) Immunohistochemistry with neurofilament, staining regrowing axons
emerging from the proximal stump. (c) Microstructured mold and double-sided PDMS replica of A4
grating. Five 2mm x 10 mm areas are patterned on the same mold. One patterned membrane is placed
on the left of the mold. The inset shows a scheme of the cross-section of the membrane (the top layer
was partially removed for sake of visualization). (d) Surgery for the implant of a A20, membrane. (e)
Analysis of the early regrowth of the nerve on a A20, membrane.
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a) b) A2, c) Ay

il

Figure 5.4: Nanogratings on PCL/PLA membranes. (a) Biodegradable PCL/PLA membrane carrying a
A2, grating. The grating is oriented along the longer side of the patterned area. Scalebar 5 mm. (b) SEM
image of a A2, grating on PCL/PLA. Scalebar 10 um. (c) SEM image of a A2,.; grating on PCL/PLA.
Scalebar 10 pm

description of the interaction between regrowing nerves and microstructured mem-
branes, and achieving a deeper insight into their possible use for clinical application.

5.3.2 Biodegradable, micropatterned scaffolds

As previously discussed, PDMS has several properties making it a suitable material
for the optimization of engineered scaffolds—e. g. optical transparency, non-toxicity
and compatibility with soft lithography 2212222251, However, the physical stability
of PDMS prevents biodegradation, and can thus represent a limitation for the clin-
ical practice, since a second surgery would be needed to remove the scaffold after
the injury is healed[**l. For this reason, I worked in collaboration with the the
group of Prof. Terenghi, from the School of Medicine of the University of Manch-
ester (United Kingdom), to transfer the nanogratings onto a polymer blend based
on PCL and PLA. Both these polymers are individually approved by FDA and
widely used as scaffolds for tissue engineering!>°%22°l. The PCL/PLA blend have
been optimized and tested by Terenghi et al., showing high compatibility with cell
culturing and promising physical and chemical properties for the use in regenerative
medicine2°8220l,

Here, I will show preliminary results on transferring gratings with An,.; geometry
(see TABLE 3.2 on page 52) to PCL/PLA foils. Three molds with increasing periodicity
and AR of 1 were fabricated as described in sEcTION 3.2 (details on the process
are reported in APPENDIX A.4.2). The scaffolds were produced by solvent casting:
the molds were covered by a film of liquid PCL/PLA, which was left to dry until
the solvent had evaporated and then was mechanically separated from the master.
FIGURE 5.4 shows the results obtained using this process for the A2,.; and A4;.;. The
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Topography Ridge-width (um) Groove-width (um) Depth (um)

A4 0.58 £0.10 0.32+0.20 1.01£0.10
A4 241 +0.30 0.96 +0.26 241 +£0.30

Table 5.2: PCL/PLA microgratings. Analysis of the gratings patterned on biodegradable PCL/PLA foils
by solvent casting.

gratings were transferred onto the replica maintaining a well defined geometry over
macroscopic areas (i.e. 5 x 13 mm?).

Interestingly, a reduction in the original periodicity was observed (see TABLE 5.2).
This effect may be attributed to the difficulty in controlling the solvent evaporation,
which could have led to a mold-replica detachment when the foils were not com-
pletely dry. This could have resulted in a residual contraction after release. Grating
depth (d) was not affected by this reduction. On the contrary, a 21% increase in d
was observed for the A4,.; topography. Al grating was also tested, but the pat-
tern on the replica presented several imperfections probably caused by an inefficient
filling of the narrow grooves of the mold. Further tests will be carried out using
hot embossing to imprint the micro- and nanopatterns. This protocol, exploiting the
thermoplastic behavior of the PCL/PLA foils (Tg ~ —68 °C), should overcome issues
related to solvent evaporation and groove filling.

5.4 CONCLUSIONS

In this chapter I showed my efforts in transferring the microstructured topographies
presented in CHAPTER 3 to a clinical problem, i.e. peripheral nerve regeneration.
First I conducted an in vitro study of SC interaction with PDMS microgratings. Sin-
gle cell migration patterns were monitored by time lapse microscopy, reveling that
A20, gratings were more efficient than A4, in polarizing SC migration along the
direction of the grating. Then I optimized the fabrication of double-sided PDMS mi-
cropatterned membranes for the surgical implant and tested them on a rat model
of median nerve transection. Preliminary experiments suggest that such membranes
could be a suitable support to guide nerve regrowth, but further experiments are
needed to obtain quantitative results on their performance. Finally, in collaboration
with University of Manchester, I worked on the improvement of the materials used
for scaffold fabrication. The optimization of the nanograting-transfer onto an FDA
approved, biodegradable polymer blend was started, resulting in the production of
nanopatterned PCL/PLA foils, ready to be tested in vitro and in vivo.



CONCLUSIONS

In this thesis I presented results on the design and use of engineered devices for biomedical
applications. My work was focused on two different aspects of artificial bio-systems: micro-
fluidics and surface nano-patterning. This chapter contains a summary of my results, my
conclusions and future perspectives.

The first topic I focused on was the creation of microfluidic networks, detailed in
CHAPTER 2. | developed several devices for the detection of nanoparticles and in-
dividual micrometer-sized objects, and for cell-culturing in physio-chemically con-
trolled environments. Particular effort was dedicated to the design of a bioreactor ca-
pable of performing complex tasks while maintaining considerable ease-of-use. I be-
lieve that the progress of microfluidics has to deal with the simplification of the pro-
tocols required for chip operation. Here, I demonstrated a device that achieved au-
tomated cell loading—with the possibility to create cell co-cultures with constrained
initial spatial organization—and allowed monitoring of cell behavior in chemically
anisotropic environments. Importantly, device operation only required equipment
already available in standard tissue culture laboratories, making it usable outside
physics laboratories by researchers without specific training in microfluidics.

The second topic I presented was the use of anisotropic nanotopographies for the
study of cell-contact guidance. In cHAPTER 3 I detailed the fabrication of transpar-
ent and biocompatible PET and COC scaffolds patterned with surface nanogratings.
Such devices, known in literature for polarizing cell bodies and migration, were
applied to the fields of orthopedics and endothelial tissue engineering. I believe
that the results obtained could lead to interesting applications. In particular, human
mesenchimal stromal cells (hMSCs) cultured on PET-microgratings acquired a mor-
phology correlated with a more efficient osteogenic differentiation. Since PET is a
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FDA approved material which is already used in orthopedics for the creation of ar-
tificial ligaments, we can speculate that the use of surface patterning could improve
the efficiency of state-of-art prostheses through better integration with the regrow-
ing bone. Further experiments are ongoing to understand the effective applicability
of this approach.

An insight over the applicability of directional topographies in vivo is contained in
CHAPTER 4, Where I introduced an original geometry whose directional signal can be
modulated by the addition of randomly distributed topographical noise. The study
of cellular contact guidance on partially ordered structures allowed the collection
of data that could be useful while designing implantable scaffolds, which experi-
ence a gradual deterioration owing to the accumulation of biological debris and
degradation of the scaffold itself. The ability of two cell types to read partially hid-
den topographical stimuli was evaluated on the whole spectrum extending from a
nanograting (maximum directionality) to a flat surface (isotropic environment). The
loss of contact guidance induced by topographical noise was shown to be dependent
on cell-contractility. A pharmaceutical strategy to modulate this phenomenon was
tested on NGF-differentiated PC12 cells. Notably, increasing cell-contractility was
effective in improving PC12 contact guidance, preserving neurite alignment also on
topographies with low directionality.

Finally, preliminary results on the pre-clinical translation of the above described
technology were presented in CHAPTER 5. In particular, I focused on peripheral nerve
regeneration, exploiting surface microgratings to improve the regrowth of a severed
nerve. I compared the performances of gratings with different periodicity in driving
the migration of Schwann cells (SCs), a glial cell type involved in the regulation of
axon regrowth during nerve regeneration. SC migration was first studied in vitro,
then the topography showing the best performance in terms of SC directional mi-
gration was used to pattern PDMS membranes. Such membranes were used on a
rat model of median nerve transection. Preliminary results suggest that short-term
nerve regeneration is more efficient on directional micro-patterns than on isotropic
surfaces, but additional experiments are needed to confirm this result.

In conclusion, during my Ph. D. I designed, realized and tested several micro- and
nanostructured devices for biomedical applications. I worked in collaboration with
researchers with disparate expertise (i. e. physicists, biologists, clinicians), trying to
achieve an efficient technology transfer from nanotechnological research towards
the clinical use. I do believe that these devices have the potential to achieve clinical
translation in a short or medium time, contributing to the improvement of biomedi-
cal technologies.



A FABRICATION PROTOCOLS

A1 MICROFLUIDIC DEVICES

A.1.1  Fluidic layer fabrication

Several PDMS devices were presented in CHAPTER 2 of this thesis. The fluidic layer
for each device was fabricated by soft lithography using the following protocol:

e PDMS was prepared by mixing the prepolymer and the curing agent (Syl-
gard 184 silicone elastomer kit, Dow Corning) in a proportion of 10:1 in weight,
followed by degassing by centrifugation (2min at 1350 g);

o the mixture was poured onto the microstructured molds and degassed again
inside a desiccator until no bubbles could be seen (= 15 min);

o the mixture was then baked at 80 °C for 3h;

e finally, the cured PDMS was removed from the mold with a scalpel, and access-
holes were created using Harris Uni-Core punchers.

A.1.2 PDMS bonding protocols

Different techniques were used to seal the fluidic layer depending on the substrate
used as a sealing layer.

Glass bonding

PDMS was irreversibly bonded to glass by oxygen plasma activation:
o glass was exposed to oxygen plasma (100W, 1.4 .10~ " mbar) for 1 min;
e PDMS was exposed to oxygen plasma (10W, 1.4-107 " mbar) for 255s;

e the two surfaces were brought in conformal contact, placed at 70 °C for 1h and
then left to rest at room temperature overnight.
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COC bonding

A heterogeneous bonding protocol was used to obtain an irreversible bond between
COC and PDMS, as reported in reference [226].

e PDMS and COC foils were exposed to oxygen plasma (1.4-10~ " mbar, 10W)
for 255 and 15s, respectively;

e PDMS and COC were then immersed for 20 min in a 1% (3-aminopropyl)tri-
ethoxysilane (APTES) aqueous solution and in water, respectively;

o the substrates were then carefully dried with nitrogen flow and brought into
conformal contact at room temperature. An irreversible bond formed after ap-
proximately 1h.

Metal bonding

The bonding technique employed to join the metalized surface with the soft PDMS
fluidic layer used an interlayer of UV cured SU8 (MicroChem) as a glue layer be-
tween the metal and the PDMS fluidic layer according to the following protocol:

o clean the metalized surface with acetone and isopropanol;

e spin-coat the SU8 adhesion promoter Omnicoat (Microchem) on the surface
for 10s at 500 rpm and 30s at 3000 rpm;

e spin-coat SU8 2000.5 (Microchem) for 30s at 2000 rpm;

o before solvent evaporation, bond on plasma-treated PDMS fluidic layer;
o wait for 2 second, then soft-bake for 1 min at 65 °C and 2 min at 95 °C;
e UV expose;

e store for 2min at 95 °C and then wait overnight before pressurization.

Maximum pressure resistance of the bonded device was not tested. During the ex-
periments the maximum operating pressure used was 30 psi.

A.2 MOLDS FOR PDMS SOFT LITHOGRAPHY

The molds were fabricated by standard UV lithography on silicon wafers using the
following protocols:
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A.2.1  LC nanoresonators detection

The mold for the microfluidic device used in SECTION 2.3.2 was fabricated using the
following protocol:

e photoresist AZ9260 (MicroChem) was spin-coated on the silicon wafer for 30's
at 1500 rpm and softbaked on a hotplate for 80s at 110°C;

e a second layer of AZ9260 was deposited over the first layer using the same
spincoating parameters and the sample was soft-baked for 180s at 115 °C, ob-
taining a single photoresist layer 30 pm thick;

e the channels were patterned by UV lithography with a Suss MJB4 mask aligner
(Suss, MicroTec) exposing the AZ9260 for 113s at a constant light intensity
of 15mW/cm?;

o the sample was developed for 4 min in a 1:3 solution of AZ400K (MicroChem)
in water, using DI-H,O water to stop the development;

e the mold was then placed on a hotplate for 2min at 110°C;

e finally, the mold was exposed to vapours of chlorotrimethylsilane (Sigma Al-
drich) for 15 min, in order to facilitate the master-replica detachment.

A.2.2 Photoacoustic phantom

The mold for the microfluidic device used in SECTION 2.3.3 was fabricated using the
following protocol:

e the photoresist SU8 2075 (MicroChem) was spin-coated with a 2-step protocol,
first for 10s at 500 rpm and then for 1 min at 3 000 rpm;

o the sample was soft-baked on a hotplate with a temperature ramp from 65 °C
and 95 °C, followed by 8 min at 95 °C;

o the channels were patterned by UV lithography with a Suss MJB4 mask aligner
(Suss, MicroTec), exposing the SU8 for 5s at 9mW /cm?;

e the sample was post-baked on a hotplate for 7min at 95°C and developed
for 3.5min in SU8 Developer (MicroChem), using isopropanol to stop the de-
velopment;

o the sample was hard-baked on a hotplate by means of a temperature ramp
from 65 °C to 200 °C, followed by 10min at 200 °C and a ramp down to 95°C;
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A2.3

finally, the mold was exposed to vapours of chlorotrimethylsilane (Sigma Al-
drich) for 15min, in order to facilitate the master-replica detachment.

Chip for anisotropic cell culturing

The microfluidic device reported in SECTION 2.4 was fabricated using a bilayered
SUS8 structure. This mold was obtained by a combination of EBL and UV lithography.
First, gold (Au) markers were deposited by lift-off on the silicon wafer, and used for
the alignment of the 2 SUS layers:

S1818 (Microposit) was spin-coated for 1min at 6000rpm on a silicon wafer,
and soft-baked for 1min at 90 °C;

the sample was exposed for 3.5s at 15mW using a Suss MJB4 mask aligner
(Suss, MicroTec) and developed for 30s with MF 319 (Microposit), using DI-
H,O water to stop the development;

100 nm-Au was evaporated on the sample (KJL thermal evaporator), which was
subsequently immersed in hot acetone (50 °C) for 2 h to dissolve the S1818;

the excess of Au was mechanically removed by flushing with acetone from a
syringe;

a first layer of SU8 2002 was spin-coated on the sample for 1 min at 1000 rpm
and soft-baked using a hotplate for 2 min at 95 °C;

the 2.5 pm-thick channels (FCs) were exposed by EBL (20keV, 1.25 uC/cm?);

a second layer of SU8 2025 was spin-coated for 2min at 3000 rpm over the
EBL-exposed layer;

the sample was baked on a hotplate for 2min at 65 °C and for 5min at 95°C
(a temperature ramp was applied between the two baking-points);

the 20 pm-thick channels were exposed by UV lithography using a Suss MJB4
mask aligner (10s at 15 mW/cm?);

the SU8-bilayer was post-baked for 1min at 65°C and 5min at 95°C (a tem-
perature ramp was applied between the two baking-points), then temperature
was ramped down to 65 °C;

the sample was developed for 2.5min in SU8 Developer (All resist, GmbH),
using isopropanol to stop the development;
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e the mold was hard-baked on a hotplate by means of a temperature ramp
from 65 °C to 200 °C, followed by 10 min at 200 °C and a second ramp down
to 95°C;

e finally, the mold was exposed to vapours of chlorotrimethylsilane (Sigma Al-
drich) for 15min, in order to facilitate the master-replica detachment.

A.3 GOLD NANORODS FABRICATION

The gold nanorods (GNRs) presented in SECTION 2.3.3 were produced by the group
of Dr. Ratto as described in detail in reference!79]. Briefly:

o the GNRs were fabricated by autocatalytic reduction of chloroauric acid using
ascorbic acid in combination with cetrimonium bromide, silver nitrate and
gold nuclei;

e the nanoparticles were grafted with poly (ethylene glicol) (PEG) in a 100 mM
acetate buffer (pH 5.0) containing 50 uM alpha mercapto omega methoxy PEG
strands (molecular weight of 5000 g/mol);

e finally, the particles were transferred into ultrapure water at a nominal concen-
tration of 20mM Au (116 nM nanoparticles).

A.4 MOLDS FOR HOT EMBOSSING

The silicon molds used for the hot embossing processes were fabricated by a com-
bination of EBL and RIE. Different protocols were used depending on the specific
geometry.

A.4.1  Constant-depth molds

o PMMA (AR-P 679.04, Allresist) was spin-coated for 1min at 3000rpm and
soft-baked for 15min at 120 °C on a hotplate;

o the sample was exposed by EBL (30 keV, 320 uC/cm?) and developed for 2.5 min
in AR 600 — 56 (Allresist), using isopropanol to stop the development;

¢ a descum was performed by a 2min oxygen plasma treatment (2.5- 10~ " mbar,
20W);
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A.4.2

the nanopatterns were transferred on silicon by means of a RIE process of 80s
at 50 W in a 20:3 atmosphere of SF¢ and Ar (2.98 =0.06- 10~ > mbar, 65 £ 1V);

the leftovers of the PMMA mask were removed using hot acetone (50 °C), and
oxygen plasma (5min, 100 W, 2.5- 10~ ! mbar);

finally, the molds were immersed for 30 min in Silanization solution I (di-
methyldichlorosilane in heptane, Sigma Aldrich) in order to obtain low-energy
surfaces, easing the master-replica detachment (followed by a 10 min wash in
hexane and 1-octanol).

Constant-AR molds
first, a 100 nm-thick layer of aluminum (Al) was evaporated on the silicon
wafers using a KJL thermal evaporator;

AR 300.80 (Allresist) was spin-coated for 1min at 4000rpm and soft-baked
for 5min at 120 °C on a hotplate;

ma-N 2403 (Micro resist technology) was then spin-coated for 1 min at 6 000 rpm
and soft-baked for 1 min at 90 °C on a hotplate;

the nanogratings were exposed by EBL (10keV, 16.5 uC/cm?);

the samples were developed for 60s in ma-D 525 (Micro resist technology),
using DI-H,O to stop the development;

descum was performed by a 1 min oxygen plasma (50 sccm O,, T0W);

the nanogratings were transferred onto the Al layer by means of an ICP-RIE
process using a 5:4:3 atmosphere of Cl,, BCl; and Ar (5 min);

the remaining ma-N 2403 was removed by an oxygen plasma treatment (5 min,
80sccm O,, 50 W);

the nanogratings were transferred onto the silicon by using an RIE process
employing at 220 W in a 5:1 atmosphere of O, and SFg (1.01 £0.01- 10~ " mbar,
530+ 9V);

the Al mask was removed by ICP-RIE (5:4:3 Cl,:BCl;:Ar, 5min);

finally, the molds were immersed for 30min in Silanization solution I (di-
methyldichlorosilane in heptane, Sigma Aldrich) in order to obtain low-energy
surfaces, easing the master-replica detachment (10min wash in hexane and
1-octanol).
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A5 HOT EMBOSSING

The hot embossing process was performed with an Obducat Nanoimprint 24 system
(Obducat, Sweden) with the following protocols:

A5 PET

e a film of PET was placed on top of the mold and softened by raising the
temperature up to 75 °C (=Tg"™),

e pressure (20 bar) was then applied for 5 min,
e samples were cooled down to 50 °C,

o pressure was released.

A2 COC

e a film of COC was placed on top of the mold and softened by raising the
temperature up to 150 °C (Tg“°“~ 134 °C),

e pressure (50 bar) was then applied for 5 min,
e samples were cooled down to 70 °C,

o pressure was released.

After the hot embossing cycle, replicas were detached from the molds with the help
of tweezers and a scalpel. The imprinted foils were carefully attached to the bottom
of hollowed 35 mm WillCo dishes by using a silicone glue (RS Components RS692 —
524).

A.D PDMS SCAFFOLD FABRICATION

The PDMS membranes reported in SECTION 5.2.1 were prepared using a 10:1 (in
weight) mixture of PDMS:curing agent as described in APPENDIX A.1.1. Then, the
following protocol was applied:

o the PDMS mixture was poured onto the microstructured molds and spin-
coated for 4 min at 500 rpm;
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A.6.1

the sample was left resting for 10 min in order to reduce the surface inhomo-
geneity and baked for 10 min at 80 °C;

the membrane was removed with a scalpel and the mold was cleaned of PDMS
residuals.

Double sided membranes

the first layer was created by spin-coating the mixture over the mold for 4 min
at 300 rpm, leaving it to rest for 5 min and baking it for 10 min at 80 °C;

the membrane was removed with a scalpel and the mold was cleaned of PDMS
residuals;

the second layer was created by spincoating the mixture over the mold for 2 min
at 1000 rpm, leaving it rest for 5 min and baking for 10 min at 80 °C;

both the PDMS membranes were activated by an oxygen plasma treatment
of 155, T0OW, 1.4 x 10~ ' mbar and immediately brought in contact. The align-
ment was performed free-hand with the help of a mask aligner (Suss MJB4,
MicroTec);

the sample was placed for 1h at 80 °C to ease the bonding between the PDMS
layers, then the membrane was removed from the mold with a scalpel.



B PROTOCOLS AND METHODS

B.1 TERAHERTZ SETUP

The optical setup introduced in SECTION 2.3.1 is described in detail in reference[57).
Briefly, a 2.6-THz QCL source was cooled down to the operating temperature of
30K with a compact Sterling cryostat (RICOR). It was driven with 800mA pulses
at a duty-cycle of 10%, resulting in a few mW of average output power. The hi-
divergence laser radiation was emitted through a polyethylene window and col-
lected and focused using two f/1 Picarin lenses. The smallest spot obtained was
approximately 200 um in diameter. The focal point corresponded to the position
where the plasmonic antenna was positioned. From this point the radiation was col-
lected by a gold-plated 50 mm parabolic mirror (NA ~ 0.447) and then focused onto
the detector through another parabolic mirror. The THz sensor employed was a sil-
icon bolometer operating at liquid helium temperature (4 K) connected to a lock-in
amplifier. The antenna alignment was carried out by fixing the chip on a sample
holder connected to a XYZ motorized stage and maximizing the transmitted signal
by moving the stage. The setup also contained a CCD camera (for visible light) with
a 10x microscope objective. The center position of the field of view of the CCD was
at a calibrated distance from the position of the THz focus. The camera was used as
an easy-alignment system and also gave information on particle flow in the channel
before the THz measurement.

B.2 STICS MEASUREMENTS

The velocity fields shown in SECTION 2.4 were measured via spatio-temporal im-
age correlation spectroscopy (STICS) using a standard inverted microscope (Nikon
Eclipse Ti) equipped with a fast camera (Basler A602-f). The device was filled with
a suspension of 500 nm latex beads (Sigma Aldrich L3280 diluted 1:10 in water) and
a time series of 300 bright-field images of the entire MC was acquired at 30 fps with
an air 10x NA = 0.45 objective and a 1.5x lens (1.07 um/pixel).

Active pressurization measurements were performed after seeding the fluid with
100nm particles (Sigma Aldrich L9902). In order to further reduce microchannel
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clogging at these high flow rates, the suspension (diluted 1:5 in water) was fil-
tered using a membrane with 0.22 um pores (Millipore Millex-GP Filter unit) prior
to experiments. A 6000 frame time series was acquired in bright-field microscopy
at 400 fps with an air 20x NA = 0.45 objective and a 1.5x lens (0.53 um per pixel).

Calculations were carried out in the hydrostatic regime on a square grid of points
separated by 8 um using 16 um wide interrogation areas, while for the active pres-
surization measurements both the pitch of the grid and the size of the interrogation
areas were increased to 30 um to increase the signal-to-noise ratio.

B.3 SHEAR-STRESS CALCULATION IN MC

The shear-stress experienced by cells in each point of the MC (see SECTION 2.4.2) was
calculated from the velocity field measured by STICS, by summing the components
of the stress tensor related to the shear forces:

0(x,y,2z) = oxy(x,Y,2) + 0yz(x,y,2) + 0xz(x,Y,2),

which, according to EQUATION (2.9), can be written as

o=n [(ayvx + 0xvy) + (0zvy 4+ 0yvz) + (0zvx + axvz)}
:n[(ayvx—kaxvy) + 02 (vy +vx)}, (B.1)

where we assumed v, = 0 for the symmetry conditions applicable to microchan-
nels with constant h (see SECTION 2.1.1). EQUATION (B.1) can be further simplified
assuming that

o the STICS measures were performed focusing the microscope at z = 2.5 um
from the bottom of the MC,

o the fluid velocity field near the substrate (0 < z < 2.5um) varies linearly with
z, as shown in simulations, showing that the linear approximation introduces
an error lower than 1%2271.

Under this conditions, 9,v = v|,—a,/Az, where v is the velocity measured by STICS
at a distance Az from the bottom of the MC. EQuaTioN (B.1) thus becomes

o= [(ayvx + 0xvy) + (vy + vx)/Az} , (B.2)

which can be calculated point-to-point to produce a stress-map in the MC. The aver-
age shear-stress in the MC can therefore be easily calculated from EQuUATION (B.2).
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B.4 DIRECTIONALITY CALCULATION

Substrate directionality is calculated using the FT of the virtual images of the nanopat-
terns. Briefly:

e a matrix with a spatial resolution of 166 nm ( corresponding to a spatial sam-
pling frequency of 6 um™") was created;

o each element of the matrix was set to 1 or o depending from the noise map
associated to the pattern (see FIGURE 4.1 on page 69);

e a random number was added to each point in order to emulate a surface
roughness equal to 6% of NG-depth (d). This number was generated by the
rand function of Matlab and was a pseudorandom scalar from the standard
uniform distribution in the interval [0, 0.06] /d;

o the Fourier transform (FT) of these matrices was calculated by using the fft2
function of Matlab. The frequency resolution is set to 2.92-1073 um™" by ap-
plying a zero-padding to the input geometries;

¢ nanopattern directionality 6(p, A) was finally calculated using EQUATION (4.1)
on page 71.

Signal bands (Bs) were defined as the FWHM signal peak for the non-noisy NG (see
FIGURE 4.2 on page 71). This band was centered in fx = 1um™", fy, = 0um™* and its
width varied from 0.1 um™? for A = 6 x 6 um? to 0.005 um™* for A = 160 x 160 um?.
Since the frequency distribution of noise does not change with A, Bn was centered
infy =0pum™", fy, = O0pum™" and had a radius of 0.8 um™" for every A. Due to the
symmetry of the FT, only the fy > 0 spectrum was used for the calculation of o.

B.5 MICROCHAMBER FILLING AND AUTOMATED CELL LOAD-
ING

The reproducible and reliable filling of the microfluidic network shown in skc-
TION 2.4 was obtained by degassing the whole chip at 4- 107> mbar for 10 min, ster-
ilizing by oxygen plasma treatment (60's, 1.4- 10~ mbar, 10 W) just before LR filling
and immediately moving into the incubator (37 °C, 95% humidity, 5% CO,). The
absorption of air into degassed PDMS was used to fill the channels and, at the same
time, it prevented bubble formation during the heating of the device. The whole
process was achieved in approximately 20 min.
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Before cell loading, the chips were filled with DMEM and incubated for 1h. Cells
were harvested and diluted at a concentration of 3 - 105 cells/mL. The volume used
for LR-filling depended on the shape of the LR used. In the experiments reported in
SECTION 2.4, 450 uL or 200 uL reservoirs were used. The change in volume did not
change column height used in the experiments, i. e. both input pressure (150 Pa) did
not change.

Symmetric loading

In order to obtain symmetric cell loading, the reservoirs were emptied of DMEM
and the LR was filled with cell suspension (symmetric loading, see TABLE 2.3 on
page 34) at the concentration indicated above. After 30 min, the LR. was emptied
and perfusion was restored by adding fresh DMEM into the LR, 3.

Asymmetric loading

Asymmetric loading was obtained by the same protocol with the exception of remov-
ing the liquid from only one of the two lateral LRs before adding the cell suspension
into the LRc (asymmetric loading, see TABLE 2.3 on page 34).

B.O CELL CULTURING PROTOCOLS

B.6.1 Hela cell culturing

HelLa cells were obtained from American Type Culture Collection (ATCC, Rockville,
Maryland). HeLa cells were grown in a complete culture medium consisting of
DMEM supplemented with 2mM L-glutamine, 100 IU/mL penicillin, 100 ug/mL
streptomycin, and 10% heat-inactivated fetal bovine serum (FBS) (Gibco, Invitrogen).
Cells were detached by trypsinization, counted in a Thoma’s camera and suspended
in cell culture medium at a concentration of 3 - 105 cells/mL prior to cell loading in
the microfluidic device.

B.6.2 REF culturing

REF52 cells (a rat fibroblast line) stably expressing paxillin-YFP were obtained from
Prof. Joachim Spatz (Max-Planck Institute for Metals Research, Stuttgart, Germany).
Cells were grown in a complete culture medium consisting of DMEM supplemented
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with 2mM L-glutamine, 100 IU/mL penicillin, 100 pg/mL streptomycin, and 10%
heat-inactivated FBS (Gibco, Invitrogen).

Cells were detached by trypsinization, counted in a Thoma’s camera and sus-
pended in cell culture medium at a concentration of 3-10° cells/mL prior to cell
loading in the microfluidic device.

B.6.3 hMSC isolation, culturing and immunostaining

hMSC were isolated as described in ref[>*]. Briefly, human bone marrow samples
were obtained from patients undergoing hip replacement. Mononuclear cells were
then isolated and cultured under standard conditions, using DMEM (Invitrogen,
Carlsband CA-USA) supplemented with 10% FBS (Invitrogen), 100 ug/ml gentam-
icin (Sigma Aldrich), 2mM L-Glutamine (Invitrogen). The attached cells were then
grown at 37 °C in a humidified atmosphere containing 5% CO,. Cultured hMSCs
were detached by trypsin digestion and characterized by incubation with anti-CD105
FITC-conjugated, anti-HLA-DR PE conjugated and anti-CD90 PE-Cys-conjugated
(all antibodies were purchased from BD Bioscience, San Jose, CA), acquired by a
flow cytometry analyzer (FACScan, BD Bioscience), and analyzed using CellQuest
analysis software (BD Bioscience).

Immunostaining

Cells were fixed in 4% paraformaldehyde and then immunostained with anti-{3 Tubu-
lin III antibody (3ng/mL, Sigma Aldrich) and phalloidin-Alexa Fluor 647 (0.17 uM,
Invitrogen) in permeabilization buffer (2% gelatin, Triton X-100, NaCl, PBS). Samples
were then washed, incubated with Alexa Fluor 488-secondary antibody (0.02 mg/mL,
Invitrogen) and mounted with Fluoroshield (Sigma Aldrich) with DAPI for nucleus
detection.

B.6.4 hUVEC culturing

Human umbilical-vein endothelial cell (hUVEC) (Invitrogen) were grown in medium
200PRF supplemented with fetal bovine serum 2% v/v, hydrocortisone 1 mg/mL,
human epidermal growth factor 10ng/mL, basic fibroblast growth factor 3ng/mL
and heparin 10mg/mL (all reagents from Invitrogen) and were maintained at 37 °C
and 5% CO,. All experiments were performed using cells with less than seven pas-
sages in vitro.

Before cell-seeding, the textured COC substrates were incubated with 1.5% Gelatin
(DIFCO 214340) in DI-H,O for Th at room temperature. Then, Gelatin was fixed
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using 2% glutaraldehyde in DI-H,O for 15min at room temperature. After fixation
glutaraldehyde was exchanged with 70% ethanol in PBS and incubated for 60 min
at room temperature. Next, gelatin-coated substrates were washed 5 times with PBS
and stored overnight in a PBS solution containing 2mM glycine. Finally, the samples
were washed in sterile PBS and stored at 4 °C until the seeding of hUVECs.

To generate confluent monolayers, cells were seeded on COC substrates at high
density (6-7 - 105 cells/cm?) as reported by Lampugnani et al.[**] and cultured for
two days.

Immunostaining

Mouse anti-vinculin (V4505) and mouse anti-tubulin (T6074) were purchased from
Sigma Aldrich. Phalloidin-Alexa 647 (V22886) was purchased from Invitrogen. Sec-
ondary goat anti-mouse Alexa 488 was purchased from Sigma Aldrich. Paxillin-
EGFP was kindly provided by Juergen Wehland (Helmholtz Centre for Infection
Research, Braunschweig, Germany).

B.6.5 PC12 culturing, differentiation and contractility modulation

Cell culturing

PC12 cells (CRL-17210, ATCC) were grown in RPMI medium supplemented with 10%
horse serum (HS), 5% FBS, 2 mM glutamine, 10 U/mL penicillin and 10 mg/mL strep-
tomycin and were maintained in standard conditions (37 °C, 95% humidity, 5% CO,).
Cells (within the 16" passage) were cultured until sub-confluence, then harvested
for cell tests, pipetted to obtain a single cell suspension (through a 10mL syringe
with G21 needle), and seeded onto the imprinted dishes at a final concentration
of 10% cells/cm?. Before cell culturing, the imprinted dishes were sterilized by treat-
ment with ethanol and then rinsed twice with DI-H,O.

Neuronal differentiation
Neuronal differentiation was induced by treatment with NGF, 100 ng/mL. PC12 cells
were allowed to adhere for 8 — 12 h before stimulation with NGFE.

Contractility modulation

For contractility inhibition experiments during PC12 differentiation, the cells were

treated with nocodazole (methyl-[5-(2-thienylcarbonyl)-1H-benzimidazol-2-yl]-carba-
mate 10 —25nM in DMSO) or blebbistatin (1-phenyl-1,2,3,4-tetrahydro-4-hydroxpyrr-
olo[2,3-b]-7-methylquinolin-4-one 25 mM in DMSO). DMSO concentration never ex-
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ceeded 0.5% v/v and the corresponding solvent concentration was added to the
untreated condition. Nocodazole, a microtubule destabilizer, was added after 6h
from NGF treatment, while blebbistatin, an inhibitor of myosin-II, was added 30 min
before NGF stimulation (and repeated every 24 h).

B.6.6 WJ-hMSC extraction, culturing and immunostaining

Extraction and culturing

WJ-hMSC were isolated from umbilical cords from full-term deliveries, which were
collected at the Gynaecology Unit of the Azienda Ospedaliera Universitaria (Pisa).
Wharton’s jelly (W]) was separated from the cord vessels and placed in 6-well dishes
containing alpha-minimum essential medium (a-MEM; GIBCO) supplemented with
20% FBS (Euroclone, Italy) and incubated at 37 °C with 5% humidified CO,. Fresh
medium was added twice a week up to 90% confluence. W]-hMSC were then har-
vested with 0.25% trypsin and TmM EDTA solution (Cambrex, Italy) and re-plated
at 8000 cells/cm?. Successive passages were performed in DMEM medium supple-
mented with 10% FBS, 2mM L-glutamine, 10 U/mL penicillin and 10 mg/mL strep-
tomycin.

The expanded cells were characterized after the primoculture (P0) by flow cyto-
metric analysis (FACS Canto I, Becton Dickinson CA, USA) of specific surface anti-
gens (CD142, CD342, CD202, CD452, CD731, CD901 and CD1051) according to the
mesenchymal immunophenotype. Cells were used within the 8" passage. In order
to perform single-cell experiments, WJ-hMSC were seeded at the final concentration
of 3-105 cells/cm? and kept in humidified atmosphere until experiment time.

Immunostaining

24h after seeding, cells were fixed by a 15min treatment with 4% paraformalde-
hyde and rinsed 3 times with PBS. Cells were permeabilized and stained at 4°C
overnight with 0.165 mM Alexa Fluor 647-phalloidin (Invitrogen) and the primary
antibody 2.5mg/mL, 0.5% Triton, 0.8 M NaCl, 30 mM phosphate buffer. Cells were
washed and incubated at room temperature for 45 min in 20 mg/mL secondary anti-
body Alexa Fluor 488 diluted in GDB solution. Nuclei were labeled with 5mg/mL
of Hoecst (Invitrogen) in PBS.

B.6.7 SC extraction and culturing

Primary SC culture was established from sciatic nerves of adult Wistar rats. Nerves
were removed and incubated in culture for 2 weeks: then the tissues were dissociated
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and cultured in the presence of glial growth factor (63 ng/mL) and forskolin (10 uM)
in DMEM supplemented with 10% FBS, 4mM L-glutamine, and antibiotics. Cells
were routinely immunodepleted by anti-rat Thy1.1 antibody to enrich the culture in
SCs and reduce the presence of fibroblasts. SCs were maintained in standard tissue
culture plates functionalized by poly-D-lysine (100 mg/mL).

The PDMS membranes required functionalization in order to facilitate cell adhe-
sion. The membranes were exposed to oxygen plasma (15s, 10W, 1.4 x 10~ mbar)
to improve protein absorption, and coated with poly-L-lysine and laminin, 0.01%
(at room temperature) and 50 pg/mkL (at 37 °C) respectively, for 30 min. SCs were
seeded on the functionalized PDMS membranes to perform single cell migration
experiments at concentrations of 8 - 10# cells/cm?.

B.7 CELL VIABILITY ASSESSMENT

Cell viability was evaluated by simultaneous labeling with Calcein AM (5 uM, Invit-
rogen), PI (8 ug/ml, Sigma Aldrich) and Hoechst (5 pg/ml, Invitrogen) at 24 and/or
72h after seeding. Viability and necrosis were evaluated as percentage of Calcein
AM and PI positive cells, respectively. Apoptosis was quantified as a percentage of
cells with pyknotic nuclei.

B.8 EGFP-PAXILLIN TRANSFECTION

PC12 cells were transfected with EGFP-Paxillin construct by electroporation, as pre-
viously reported['4°l. EGFP-Paxillin was a kind gift from Juergen Wehland (Helm-
holtz Centre for Infection Research, Braunschweig, Germany). Cells were imaged
after 24 h from transfection (and > 12h from NGF administration).

B.g MICROSCOPY

B.g.1 Bright-field and epifluorescence microscopy

Living-cell imaging was performed using an inverted Nikon-Ti Eclipse microscope
(Nikon, Japan) and a CCD ORCA R2 (Hamamatsu, Japan). The textured substrates
were examined while maintained in an incubated chamber coupled to the micro-
scope (Okolab, Italy). Cell images were collected using an air 20x 0.45NA (Plan-
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Fluor, Nikon), an oil immersion 40x 1.30 NA objective (PlanFluor, Nikon) or an oil
immersion 60x 1.40 NA objective (PlanFluor, Nikon). In particular:

HeLa cell loading in the microfluidic chamber and doubling time were ana-
lyzed by means of bright-field microscopy (20x objective);

for REF and HeLa cocultures, epifluorescence microscopy (60x objective) was
used. The full area of the microfluidic chamber was acquired by using the
stitching option of the Nikon imaging software (NIS Elements);

for hUVECs morphometric analysis, single-cell images were collected with
the 20x objective;

for PC12 differentiation experiments, at least 15 transmission images (40x ob-
jective) were acquired for each specimen;

for WJ-hMSC and SC migration analysis, 3 independent time-lapse experi-
ments were performed in epifluorescence (20x objective) with a perfect focus
systems. Images were acquired for 15 and 17h, respectively, with sampling
time of 15 min.

B.9.2 TIRF microscopy

TIRF imaging was performed using an inverted Leica AF6000 microscope with an
oil immersion 100x 1.46 NA TIRF objective. For each region, 2 bright-field (focused
on the cell and on the nanostructure), an epifluorescence and a TIRF (100 nm-depth)
images were acquired.

B.9.3 Confocal microscopy

Fixed and stained cells were mounted in Vectashield (VectorLaboratories, USA) and
imaged using a confocal microscope (TCS SP5 and SP2 AOBS, Leica Confocal Mi-
croscopy, Germany) equipped with Ar (emission 488nm, detection 495-550 nm),
He/Ne (emission 633 nm, detection 650-800nm) and UV (emission 405 nm, detec-
tion 410-470nm) lasers with an oil immersion 40x 1.25NA objective. The image
size was 1024 x 1024 pixels.
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B.10 MORPHOMETRICAL ANALYSIS

B.10.1  Neurite alignment

Neurites of differentiated PC12 cells were semi-automatically segmented (from the
point of origin at the perimeter of the cell body to the tip of the neurite growth cone)
using Neuron], a plugin of Image] (National Institute of Health, USA) designed for
neurite tracking. The presence of neurites was evaluated and the alignment quanti-
fied by measuring the angle of each neurite with the direction of the NG (or with a
randomly chosen direction for cells on FLAT substrate). Only protrusions originat-
ing from the cell body and longer than 10 pm (about one average cell body diame-
ter) were counted as neurites. Only neurites which terminated in a free end or with
growth cones cleanly abutting neighboring cells were considered.

A file containing the tracks was exported and loaded in Matlab (MathWorks)
where a custom script calculated the neurite length ¢ (the distance of the traced neu-
rite path) and alignment oy, (measured by approximating the neurite as a straight
line from the initial to end point and taking the angle of this line versus the NG
orientation), for each time point.

B.10.2 Cell-body and nuclear alignment to NGs

Cell morphology was evaluated by using the Image] software (National Institute of
Health, USA), by a free-hand selection of the cell contours. The measured cell param-
eters were: feret and min feret, which are the maximum and minimum distance be-
tween two parallel lines tangential to the region of interest borderline (respectively),
cell area, cell alignment (defined as the absolute value of the difference between the
NG lines and the feret direction).

Nuclear morphology and position were also measured. Nuclei were segmented
using the measure tool (with the elliptic fit option) on the free-hand contour of the
nuclei. The following parameters were extracted: feret and min feret, area, alignment,
Ax and Ay (which measure the nuclear-centroid position with respect to the cell
centroid).

B.10.3 Cytoskeletal alignment

Actin and tubulin fiber alignment to NGs in individual cells was measured using
the directionality tool of Image].

This plugin calculated a directionality histogram by exploiting image FFT algo-
rithms: an anisotropic filter was applied to the image FFT and rotated between 0
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and 180 °, with increments of 2 °, to calculate the amount of signal associated to each
direction. Note that isotropic images generate a flat histogram, whereas oriented im-
ages give a peaked histogram. Finally, the plugin calculates a Gaussian fit on such
histograms and returns 2 parameters: dispersion and directionality (the SD and the
mean of the Gaussian curve, respectively). The first indicates how anisotropic is the
image, the second represents the direction in which it is oriented. Cytoskeletal align-
ment to the NG was calculated as the difference between the direction of the grating
and the directionality value. Given the symmetry of the NG, cytoskeletal alignment
could be defined between 0 and 90°. Average alignment angles of 0 and 45 ° indi-
cate perfect and random alignment, respectively. Samples were considered aligned
if 0° < (otfiper) < 15°. Data were calculated for 5 independent experiments.

B.11 FOCAL ADHESION ANALYSIS

B.11.1  hUVECs FA-lifetime analysis

The analysis of paxillin-transfected hUVECs was processed using a custom Matlab
script. For each TIRF time series, image-intensity histograms were created. These
histograms usually displayed 2 peaks, corresponding to the background pixels and
the pixels of the transfected cells, respectively. The second signal peak was used
for thresholding, eliminating all background values. For every pixel above threshold
the standard deviation (SD) was calculated and converted to 16 bit. Furthermore,
appearance time (AT) over threshold and lifetime (LT) was recorded. Normalized
SD and LT were converted into a scatter plot, and analyzed.

B.11.2 PC12 cell manual FA analysis

For PC12 cells, TIRF images (see APPENDIX B.9.2) of FAs were loaded into Image]J
and inverted. FAs were manually drawn using the free-hand selection tool. Then
measurements of FA area (in pm?) and alignment angle versus NG direction were
then obtained using the measurement and angle tools of Image], respectively. The
angle was measured with respect to the NG direction choosing the cell center as
origin; a random reference direction was chosen for the FLAT surfaces. FAs were
considered aligned if the angle was between 0 and 15° and misaligned if it was
between 15 and 90 °. The number of FAs per cell was also registered.

123



124

| PROTOCOLS AND METHODS

B.11.3 WJ-hMSCs semi-automated analysis

For WJ-hMSC, FAs were modeled as elliptic objects and were semi-automatically
processed by image correlation methods[>°°]. Adhesions were manually divided into
groups according to their shape, size and orientation. Each group was manually se-
lected using a free-hand selection tool, and a background threshold was set. These
selections were spatially auto-correlated and the resulting correlation function was
fitted using a 2D-Gaussian function, characterized by 3 parameters: two perpendic-
ular standard deviations (dmin and duax) and the angle between the FA-major axis
and the pattern direction (¢’r,). FAs were defined as aligned when 0 < @', < 15°.
A calibration curve was created to limit the artifacts due to non-punctual microscopy
point spread function (PSF): a series of simulated images were produced and ana-
lyzed using the correlation method as described above. The calibration curve was
validated using images of 1 um and 4 um fluorescent beads (Tetraspeck, Invitrogen,
Italy). FA-shape was finally described by area (Ag,) and elongation (pga). pra Was cal-
culated as the ratio between the FA long (dwax) and short (dmin) axis. This parameter
spans from O (fully stretched, or linear, adhesions) to 1 (round adhesions).

B.12 MIGRATION ANALYSIS

Four independent time-lapse experiments were performed in epifluorescence using
a 20x air objective (see APPENDIX B.9). Time-series were analyzed with the Image]
manual tracking plugin to extract the coordinates of single cells as a time function.
Data were then analyzed by a custom-made application written in Matlab. The fol-
lowing parameters were measured: cell displacement (R) (distance from the origin at
the end of the time-lapse), total path covered during the time-lapse (S), migration step (d.S)
and average speed (V) (calculated for intervals of 15 min). Directionality and the speed
of each step was measured and classified in the two populations: parallel (dSpar) and
perpendicular (dSper) steps. dS was considered parallel if the angle between the step
and the pattern was less than 15 °, while it is considered perpendicular if this angle
was between 75 and 90 °.
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D, see diffusion coefficient

Pé, see Péclet number

Re, see Reynolds number

Az, see focal adhesion area

A\, see nanograting periodicity

5, see directionality

1, see dynamic viscosity

xn, see neurite alignment

P, see nano-modification probability
NM™, see negative nano-modification
NMT, see positive nano-modification
Tg, see glass transition temperature
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acoustic impedance, 30
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autograft, 96

B

blebbistatin, 8o
boundaries guidance, 97

C

cellular valving, 38
chemotaxis assay, 2
contact guidance, 97
creeping flow, 8

D

Diffusion coefficient, 12
directionality, 72

dispersion (cytoskeletal), 60
dynamic viscosity, 8

E

electrospinning, 50

equation
Navier-Stokes, 7
Stokes, 8

F

Fick’s laws of diffusion, 12
FLAT substrate, 58
focal adhesion, 47
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glass transition temperature, 54
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hydraulic resistance, 11
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integrin, 47
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laminar flow, 8
loading mode, 34
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mechanotransduction, 3
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nano-modification probability, 72
nanograting, 51

periodicity, 53
negative nano-modification, 71
neurite, 76
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neurofilament, 101
nocodazole, 80
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Péclet number, 12
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perfusion mode, 34
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photoacustic imaging, 28
Poiseuille flow, 9

positive nano-modification, 71
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Reynolds number, 8
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Schwann cell, 96
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topographical sub-unit, 7o
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