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Abstract
In this thesis I shall discuss a class of supersymmetric models characterized by a

Higgs sector with a strongish self-coupling and a relatively heavy spectrum, with the
mass of the lightest CP-even Higgs boson around 200-300 GeV. The effective field the-
ory for these models is λSUSY [1] that is to say the Next-To-Minimal Supersymmetric
Standard Model with large coupling λSH1H2 in the superpotential.

I shall discuss in detail a model with scale-invariant superpotential, with particular
focus on the dynamical origin of the µ term and its relation with the mass of the Higgs
boson.

I shall discuss the fine tuning of the model and various experimental constraints
from LEP direct searches, precision data and direct DM searches. I shall argue that the
model naturally accommodates the current limits and I shall discuss the main features
of the signatures at the LHC.

The material of this thesis comes mostly from two papers [2, 3]. Furthermore,
during my PhD years in Pisa I have worked on other problems in collider phenomenol-
ogy [4] and astro-particle physics [5]. As they do not have direct connection with su-
persymmetry and the Higgs boson they are not discussed in this thesis.
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Ai miei genitori
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"... i discorsi nostri hanno a essere sopra al mondo sensibile, e non sopra un
mondo di carta."

Galileo Galilei - Dialogo sopra i due massimi sistemi del mondo, Firenze, 1632





Contents

Chapter 1. Introduction and plan of the work 7

Chapter 2. Motivation for supersymmetry 13
2.1. WW scattering and unitarity constraints on mh 13
2.2. Stability of the running mass of a scalar 15
2.3. Naturalness and scalars 17

Chapter 3. Supersymmetric Higgs bosons: a brief overview 21
3.1. Electroweak precision tests and the prejudice of the light Higgs boson 21
3.2. The MSSM 25
3.3. Gauge coupling unification in the MSSM 27
3.4. Tree-level Higgs mass of the MSSM 28
3.5. Radiative corrections to mh in the MSSM 29
3.6. How to raise the mass of the Higgs boson is supersymmetric theories 32

Chapter 4. Gauge couplings unification and the UV completion of a Higgs sector
with a strongish self-coupling 39

4.1. The fat Higgs scenario 39
4.2. A specific fat Higgs model 41

Chapter 5. The effective low-energy approach of λSUSY 43
5.1. The NMSSM 43
5.2. λSUSY 43
5.3. Spectrum of the scalar sector 44
5.4. Spectrum of the Higgsino/Singlino sector 46
5.5. Other SUSY particles 47
5.6. EWPT 48

Chapter 6. λSUSY with a scale-invariant superpotential 49
6.1. Stability of the scalar potential 49
6.2. The minimum of the potential 50
6.3. Parameter space 53
6.4. Generation of the µ term 54
6.5. Naturalness 57

Chapter 7. Experimental constraints on scale-invariant λSUSY 63
7.1. The spectrum 63
7.2. LEP direct searches 66
7.3. Indirect constraints from EWPT 67
7.4. Relic abundance of neutralinos 72
7.5. Direct detection of the dark matter 74

5



6 CONTENTS

Chapter 8. A strongish self-coupled Higgs sector at the LHC 79
8.1. Gluino and stop 80
8.2. The lightest Higgs boson 81
8.3. The case of the mixed singlet scalar 81
8.4. The case of the decoupled singlet scalar 88
8.5. The heavy Higgs bosons in the decoupled singlet scenario 90
8.6. The heavy CP-even scalar 91
8.7. The CP-odd scalar 100

Chapter 9. Conclusions and outlook 105

Acknowledgments 109

Appendix A. One loop contributions to S and T 111

Bibliography 113



CHAPTER 1

Introduction and plan of the work

What is known as the "standard model" of particle physics is a gauge theory with
symmetry group

SU(3)color × SU(2)weak × U(1)Y .

The dynamics of the gauge theory have been experimentally tested over a broad range
of energies up to the high energies of LEP, about 200 GeV, TeVatron and recently the
LHC that, as of the end of 2010, produced collisions up to more than 2 TeV of center
of mass energy of the hard and central final state.

The SU(3)color part of the Lagrangian is rather well established and QCD, the
gauge theory of color, seems to be the correct theory of strong interactions, with quarks
and gluons as fundamental degrees of freedom (DoF).

On the other hand the SU(2)weak × U(1)Y part of the Lagrangian is still not com-
pletely established.

In fact the experiments at the LEP collider made precision tests of the interactions
of quarks and leptons with the carriers of the SU(2)weak × U(1)Y gauge forces, the
gauge bosons Z0,W±, γ [6]. LEP also tested the non-abelian interaction among the
gauge bosons Z0 and W± [7]. LEP produced more than 106 Z0 bosons and the four
experiments ALEPH, DELPHI, L3, OPAL studied their interactions with an accuracy of
∼ 10−3. The precision of these results required loop level calculations, that turned out
to match very well with the precise data of LEP. As a matter of fact all the results of
LEP point towards a SU(2)×U(1) gauge theory and the agreement with the theoretical
calculations is impressive.

Despite the impressive agreement between LEP data and the predictions the
SU(2) × U(1) gauge theory, we know that the gauge symmetry cannot be exact as
the gauge bosons are observed to be massive. This requires that the gauge symmetry
must be spontaneously broken, though we do not have yet observed what dynamics
actually breaks the symmetry. The only ingredients that we are sure to be part of the
sector that breaks the electroweak symmetry are the Goldstone bosons associated
with the spontaneous breaking of the symmetry.

In Section 2.1 we shall use our knowledge of the interactions of Goldstone bosons
to estimate the mass scale where we expect the EWSB sector to show up and reveal
its dynamics. Here we can anticipate that the Goldstone bosons of the electroweak
theory are in many respects similar to the pions of QCD, that are the Goldstone bosons
of the chiral symmetry of the massless QCD Lagrangian. Their interaction is described
by a non-linear sigma model, where the source of the breaking of the symmetry is left
unspecified. The simplest, and probably most economic, way to introduce the breaking
is to add to the model a scalar field, the Higgs boson, that has a VEV and triggers the
breaking of the symmetry. One of the virtues of the addition of the Higgs field is that it

7



8 1. INTRODUCTION AND PLAN OF THE WORK

makes the model potentially valid up to arbitrary high energy1, as the non-linear sigma
model plus a Higgs boson with suitable couplings can be written as a renormalizable
λφ4 theory.

The existence of a fundamental scalar with VEV, however, poses some problem
in a field theory at the quantum level. In Sections 2.2 and 2.3 we shall see that the
potential of the scalar is very sensitive to the details of physics at energy scales much
higher than the mass of the scalar. This comes from the fact that loop corrections to
the potential tend to drive the mass of the Higgs boson toward the UV cut-off of the
theory, rather than to correct the tree-level value by a small amount. The tendency of
the Higgs mass, and its VEV, to become higher and higher as one pushes the validity
of the theory to higher energies seems to clash with the fact that the non-linear sigma
model plus the Higgs boson is potentially valid to arbitrarily high scales. Indeed we
know that the VEV of the Higgs, measured to be around 246 GeV, sets the scale
for the masses of the gauge bosons, and these are much smaller than any other scale
expected to appear at higher energies, as for instance the scale of quantum gravity that
is 17 orders of magnitude larger than mW . In this sense the smallness of the masses
of the gauge bosons seems a mere accident, or, better, calls for an explanation in
terms of some dynamics that stabilizes the VEV of the Higgs. This puzzle goes under
the name of "hierarchy problem" and motivated a great deal of theoretical work.

In Section 2.3 we shall see that one of the possible solutions to this problem is the
introduction of a symmetry that stabilizes the VEV of the Higgs and that gets broken
not far from the scale of the EWSB. Such symmetry is supersymmetry and, due to the
fact that it must explain the size of the electroweak scale, we shall call it electroweak
scale supersymmetry, or just SUSY.

The idea of SUSY as the symmetry that stabilizes the electroweak scale motivated
the study of the supersymmetric extensions of the afore-mentioned "standard model",
i.e. the “standard model” has been extended to become invariant under supersym-
metry transformations, yielding the so-called Minimal Supersymmetric Standard Model
(MSSM).

The MSSM predicts the existence of new particles at a mass scale close to the
scale of the breaking of supersymmetry. These additional states happen to have the
notable feature to modify the renormalization group flow of the gauge couplings of the
SM such that in the MSSM the couplings nearly unify at an energyMGUT ∼ 1016 GeV.
Furthermore the model predicts that the Higgs boson at tree-level must be lighter than
the Z0 boson.

For what said, at the dawn of the LEP era hopes were on the discovery of SUSY,
that provided a symmetry principle as solution of the hierarchy problem of the Stan-
dard Model and a serious chance for the Higgs boson to be light and thus to be in
the reach of that machine. The measurements of the gauge couplings performed at
LEP turned out to be in very good agreement with the idea of a unification at scales
MGUT ∼ 1016 GeV, as foreseen in the Minimal Supersymmetric Standard Model. Un-
fortunately, the striking picture emerging from the study of the gauge couplings did not
find a counterpart in the observation of neither a light Higgs boson nor of any of the
numerous superpartners.

The absence of evidence for supersymmetry at LEP might be taken as strongly
disfavoring SUSY. However, one has to acknowledge that the expectation for SUSY,
and in particular for a light Higgs boson, to be discovered at LEP was mostly based

1We put aside for a moment possible issues due to the occurrence of a Landau pole.
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on strict requirements of minimality in model building. The MSSM has in fact a scalar
potential whose quartic part is entirely fixed by the gauge symmetry and this yields the
famous result that the lightest Higgs boson of the MSSM has to be light. As we shall
discuss in more detail later, such lightness of the MSSM Higgs boson can be under-
stood noting that at tree-level the lightest Higgs boson mass can be upper-bounded
by

(1.0.1) mZ cos 2β ,

and therefore can even be vanishing if tanβ = 1.
In the MSSM further contributions to the lightest Higgs mass arise at the one loop

level and can lift the Higgs mass above the experimental lower-bound [8]

(1.0.2) mhSM > 114 GeV .

However such large radiative corrections require soft masses much larger than the
ElectroWeak Symmetry Breaking scale, which loosens the Naturalness argument to
motivate supersymmetry at the TeV scale.

The necessity of large soft masses in the MSSM motivates the study of super-
symmetric models that extend the MSSM and that can possibly alleviate the tension
with LEP direct searches. Indeed a study of extensions of the MSSM with effective
operators [9] indicates that departing from the minimal model one can have substantial
corrections to the bound on the lightest Higgs mass in eq.(1.0.1) 2.

The positive results of LEP about a possible unification of the gauge couplings at
high energies and the theoretical preference for models where unification is reached in
a perturbative regime posed further constraints of minimality in model building. How-
ever relaxing the requirement of strictly perturbative unification does not necessarily
conflict with the idea of unification, that might be reached in a less minimal way, for
instance having the gauge couplings that run to the unified value while the other cou-
plings of the theory do not necessarily stay perturbative at all energies 3. In general this
leads to non-minimal models with significant changes for the phenomenology [10] that
are worth to be studied. Indeed, an attempt along this line has been made in [11–14],
where the self-coupling of the Higgs sector has a strong coupling phase at some inter-
mediate scale between the EWSB and the GUT scale. Handling such a strong coupling
phase for the Higgs sector puts one in position to substantially increase the mass of the
Higgs at the tree-level. The concrete example in [11] shows that this can be done with
no substantial changes in the cherished pattern of unification of the gauge couplings.
The idea has been further elaborated in [13] where it has been discussed a unification-
compatible UV completion for the so-called Next to Minimal Supersymmetric Standard
Model (NMSSM), i.e. for a model described by a superpotential of the form

(1.0.3) W = λSH1 ·H2 + f(S) ,

where the superfields H1 and H2 are Higgs doublets and S is a SM singlet.

2These studies, however, must be taken just as an indication of the room available in going beyond the
MSSM. Indeed to have a significant effect the scale that suppresses the operators relevant for the mass of
the Higgs needs to be not far from the TeV. This signals the need to go beyond the operator analysis and
specify a theory valid well above the TeV, such that higher dimensional operators at the cut-off of the theory
do not endanger the precision measurements of LEP.

3The absence of effects in the QED coupling across the strong coupling scale of QCD seems to give
support to the idea that such pattern of evolution of couplings can be realized in Nature.
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With respect to the commonly studied case with perturbative unification, the low
energy NMSSM of [11–14] can have larger couplings that become non-perturbative
much below the gauge coupling unification scale. The extended range of acceptable
couplings allows the mass of the lightest Higgs boson to reach 200-300 GeV, which
leads to dramatic differences in the phenomenology of the Higgs sector with respect to
the MSSM.

Indeed, if one considers a model with a superpotential that includes the term
λSH1 ·H2, as in (1.0.3), the upper-bound on the lightest Higgs mass is given by

(1.0.4)
√
m2
Z cos2 2β + λ2v2 sin2 2β ,

which does not vanish for any value of tanβ and becomes larger as one takes larger
values for λ.

However the maximal value of λ at the EW scale that does not lead to a Landau
pole below the GUT scale is ∼ 0.7 [15], which only modestly affects the upper-bound
on the Higgs mass, if compared to the MSSM.

Motivated by the strong constraints that follow from perturbative unification one
can try to see what happens dropping the requirement of a perturbative λ up to MGUT

and impose only that λ stay perturbative up to a cut-off scale Λ & 50 TeV, such that
the model still makes sense as a calculable low-energy effective theory, i.e. that any
effect from physics at the cut-off affects negligibly currently available measurements at
energies up to hundreds of GeV. This guise of the NMSSM with coupling λ ' 1− 2 will
have a Higgs boson significantly heavier than what attainable in the perturbative case
and this leads to profound changes in the phenomenology, which makes the model
worth a study. Furthermore, the large Higgs mass attainable for λ ' 1−2 automatically
reduces the sensitivity of the mass of the Higgs to UV effects, and consequently the
model turns out to be less fine tuned, which adds further motivation to pursue this
regime.

Ref. [1] analyzed the case where λ ∼ 2 and (1.0.3) is taken as a low energy effec-
tive superpotential below a scale of O(50 TeV). Given the great importance covered
by the coupling λ in this regime of the NMSSM they dubbed this scenario λSUSY. In
Ref. [1] a very detailed analysis of the Electroweak Precision Tests (EWPT) has been
performed with the result that λSUSY can be in agreement with LEP data. Ref. [1]
also studied the issue of the Naturalness of the model, finding that this kind of mod-
els typically does not need to be tuned. The absence of tuning is somehow expected
because the major source of fine-tuning in the MSSM is due to the need to generate
large loop corrections to raise the Higgs mass above mZ . Including the tree-level con-
tribution coming from the large coupling λ, this need is no longer a concern and one is
not forced to push the model to an unnatural region of its parameter space because of
the LEP bound on the Higgs mass. In this sense λSUSY is a remarkable candidate for
a natural supersymmetric theory of Electroweak Symmetry Breaking.

Furthermore it has been shown that in λSUSY a singlino-like lightest supersym-
metric particle (LSP) can be a weakly interacting massive particle (WIMP) dark matter
candidate with the correct thermal relic abundance. Additionally, λSUSY has a strik-
ingly different Higgs sector with respect to the one of the MSSM and the one of the
perturbative NMSSM, which leads to testable distinctive signals for the LHC [3].
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An additional virtue of the NMSSM, if compared to the MSSM, is the possibility of
generating the Higgsino mass term µ dynamically. Indeed if the singlet S takes a VEV,
the interaction in eq. (1.0.3) generates an effective mass for the Higgsinos µ = λ〈S〉.
In the NMSSM the VEV of the singlet depends on the same soft masses that trigger
the VEV of the doublets. Therefore the µ term is generated by the same dynamics that
breaks the EW symmetry, rendering evident why µ is of the same order of the EW scale
instead of being zero or of the order of some other energy scale that characterizes the
(unspecified) UV theory.

In this sense the solution of the µ problem in the NMSSM is very economical and
constitutes a testable alternative to other mechanisms that generate the µ term through
the same mechanism that generates the soft masses [16–18] [19] 4.

Previous works on λSUSY [1] did not try to study the dynamical generation of µ
and simply put the µ term by hand in the superpotential. In this thesis we shall address
the issue of the dynamical generation of the µ term in λSUSY [2], which constitutes
an important piece of information to complete the current picture of supersymmetry
without a light Higgs boson.

In this thesis we shall discuss analytically the relation between the mass term µ
generated thanks to the interaction λSH1 ·H2 and the other mass scales of the model.
In particular we shall discuss to what extent the dynamical generation of the µ term
through the VEV of the singlet scalar requires the doubletsH1 andH2 to be mixed with
the singlet. Because of the necessity of non-negligible mixing between the doublets
and the singlet, we will generalize the analysis of [1] including the effects of the mixing
where appropriate, as for instance in the EWPT analysis, in the consideration of limits
from the direct searches of dark matter, and in the phenomenology at the LHC.

A recent study of the NMSSM in the large λ regime has been performed in Ref.
[21], where the importance of a dynamical generation of a µ term is not highlighted and
a numeric scan of the parameter space allowed by the many experimental constraints
is performed. Contrary to Ref. [21], we will pursue an analytic approach as much as we
can. Moreover the set of constraints that we shall consider will be slightly different with
respect to [21]. Notably, we shall not require the NMSSM to provide an explanation for
the current discrepancy between the experimental value and the SM prediction of the
g − 2 of the muon. Furthermore, we do not impose the thermal production of lightest
neutralinos to account for the observed relic dark matter abundance, as we content
ourselves to not over-close the Universe with the lightest supersymmetric particle. At
variance with [21] we shall take into account limits coming from direct dark matter
searches through the elastic scattering of a weakly-interacting massive particle on a
nucleus.

The rest of this work is organized as follows. In Chapters 2 and 3 we discuss
the motivation for electroweak scale supersymmetry and we briefly overview the Higgs
sector of the MSSM. In Chapter 3 we also discuss the unification of gauge couplings
in the MSSM. Later in Chapter 4 we present the fat Higgs scenario as an example
of complete model where the Higgs sector has a strong self-coupling and the pattern
of the unification of gauge couplings can resemble very closely that of the MSSM. In

4As a matter of fact explicit models of supersymmetry breaking generically have difficulties [17] to
generate correctly the µ term and special solutions for the generation of µ are needed. In this sense the
NMSSM appears more suitable for an economic dynamical generation of µ. Indeed it has already been
considered the possibility to generate µ from an NMSSM superpotential with soft masses generated by
gauge mediated supersymmetry braking [20].
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Chapter 5 we resume the studies on λSUSY of Ref. [1]. This serves to fix our starting
point, to show some of the characteristic features of λSUSY in the more familiar set-up
of the two-Higgs-doublets-model and to introduce the notation.

Chapters 6, 7, and 8 are devoted to the exposition of the original work contained
in this thesis [2, 3]. In particular Chapter 6 describes how the NMSSM with large λ
can dynamically generate the µ mass term for the Higgsinos through the VEV of the
singlet S. In Section 6.4 we shall describe how the generation of the µ terms differs
from the usual case of perturbative λ and we shall work out the relation between the
generated µ and the other mass scales of the theory, in particular with the Higgs mass.
Then in Section 6.5 we shall quantify the necessity of tuning the parameters of the
model to get a viable phenomenology and we shall obtain limits from Naturalness on
the spectrum of the theory. In Chapter 7 we discuss the experimental bounds that
the theory has to satisfy. In particular, in Section 7.2 we discuss the limits from LEP
direct searches. Then, in Section 7.3 we study the indirect constraints coming from
Electroweak Precision Tests. In Sections 7.4 and 7.5 we discuss the relic abundance of
the LSP of the model and its detection in current experiments. Finally in Chapter 8 we
present our expectation for the phenomenology of λSUSY at the LHC. In Section 8.3
we shall discuss the generic features of the phenomenology of the regimes of λSUSY
where the singlet is significantly mixed with the doublets, i.e. the regime suggested by
the possibility of generating the µ term dynamically. In Section 8.5 we shall present
a detailed study of the observability of the distinguishing signatures of λSUSY in the
more elusive case of a singlet that does not mix with the doublets. Finally in Chapter 9
we give our conclusions.



CHAPTER 2

Motivation for supersymmetry

2.1. WW scattering and unitarity constraints on mh

The Fermi theory is a four fermion contact interaction theory which successfully
accounts for what in modern language we describe as low energy weak interactions. It
is an effective field theory with interaction given by:

Lint ∼ GF ψ̄µψνµ ψ̄eψνe ,
and can be used to compute the muon lifetime with very good agreement with mea-
surement. Although low energy physics is beautifully accounted for, the theory cannot
be more than “effective”. Indeed, the cross section of the two fermions to two fermions
scattering processes increase with energy and exceeds unitarity bounds at energy
scales around G−1/2

F . In the past this has been considered as a signal for the need
of a more fundamental description and led to the modern formulation of weak inter-
actions. The W boson has been speculated to be the unitarizer of the four fermions
scattering process and then it has been actually observed.

With almost the same script we can introduce the Higgs boson as the unitarizer of
the standard model and find constraints on its mass.1

After spontaneous symmetry breaking (SSB) has occurred the standard model
has massive weak gauge bosons with both transverse and longitudinal polarization.
The longitudinal modes are the eaten Goldstone bosons and this make them special
probes of the properties of the Higgs. Indeed, the amplitude of the WLWL → WLWL

scattering is a powerful tool to understand how heavy the standard model Higgs can
be [22]. To this aim, we focus on

(2.1.1) {W+
LW

−
L , Z

0
LZ

0
L, hh} → {W+

LW
−
L , Z

0
LZ

0
L, hh}

processes. These nine reactions constitute a coupled set of scattering processes
among all the degrees of freedom of the Higgs sector2. To study unitarity of these
processes we decompose each amplitude in partial waves according to S = 1 + iT
with

T (s, t) = 16π
∑
J

(2J + 1)aJ(s)PJ(cos θ) =
∑
J

tJ

where s and t are the usual Mandelstam variables, J is the angular momentum eigen-
value, PJ are a set of angular momentum eigenfunctions that we use as a basis for the
expansion and aJ(s) the partial wave amplitudes. Given that the polarization vector of

1One does not need to say how fruitful and effective the introduction of the Higgs boson can be. Indeed
it provides Fermi scale masses for the weak gauge boson while preserving massless photons, it breaks
undesired global symmetries like the axial baryonic and leptonic number otherwise exact the SM, it provides
a mechanism for mass generation of fundamental fermions.

2HZ0
L → HZ0

L is the only missing possibility and, since it is decoupled from the three considered
channels, is left out.

13



14 2. MOTIVATION FOR SUPERSYMMETRY

the longitudinal gauge bosons can be chosen εµL(k) ∼ (|k| , 0, 0, E)/mW,Z and given
the momentum dependence of the coupling between gauge bosons, one can show
that for k � mW

aJ = A

(
k

mW

)4

+B

(
k

mW

)2

+ C .

The part A of the amplitude depends only on pure gauge diagrams, while B and
C feel also the Higgs boson.

Due to the structure of the couplings among gauge bosons in a gauge theory A
is vanishing. If the Higgs boson is an elementary scalar coupled as dictated by gauge
invariance the amplitude B for the scattering of 4 on-shell gauge bosons vanishes as
well. Thus the amplitude of a gauge theory with an elementary scalar does not grows
with the energy. This means the theory can be extrapolated to very high energy and
still make sense. However the C part of the amplitude, despite being constant w.r.t the
energy of the process, is an increasing function of the Higgs mass. For instance

a0

(
W+
LW

−
L →W+

LW
−
L

)
−−−−→
s�m2

h

− GFm
2
h

4π
√

2

and imposing
∣∣a0

(
W+
LW

−
L →W+

LW
−
L

)∣∣ ≤ 1 one finds

m2
h ≤

4π
√

2

GF
.

Computing the nine amplitudes of Eq. (2.1.1) and taking the J = 0 partial wave in the
large s limit one finds

(2.1.2) t0−−−−−→s�mh2
− GFm

2
h

4π
√

2

 1 1√
8

1√
8

1√
8

3
4

1
4

1√
8

1
4

3
4

 .

The tightest bound that one can place comes from the combination of channels
2W−LW

+
L + Z0

LZ
0
L + hh. This combination corresponds to the highest eigenvalue of

Eq. (2.1.2), which is 3GFm
2
h/8π

√
2 and yields the bound:

(2.1.3) m2
h ≤

8π
√

2

3GF
' (1 TeV)

2 .

This bound implies that a standard model Higgs boson lighter that 1 TeV is compatible
with a perturbation theory description of weak interactions, while a heavier Higgs would
be the trace of a strong coupling in the Higgs sector3.

Broadening the scope of the discussion, we can say that any physics beyond the
standard model (BSM) needs a “unitarizer” of the longitudinal gauge bosons scattering
and the calculation above suggests that this has to be lighter than about 1 TeV. There-
fore, the LHC, colliding protons with 14 TeV center of mass energy, has the potential to
asses the nature of the unitarization mechanism. In this respect it is interesting the fact
that weak boson fusion (see Fig.2.1.1), which is mainly due to longitudinal bosons, is
considered a discovery channel for a heavy enough Higgs boson.

It is worth to notice that other unitarization mechanisms can occur in BSM. These
typically rely on new vectorial resonances either coming from an enlarged gauge group

3However there are strongly coupled theories where the Higgs is kept light with some mechanism
[23–25].
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FIGURE 2.1.1. Weak boson fusion diagram for Higgs production and
decay into fermions(left) and into vectors(right).

FIGURE 2.1.2. Double Higgs production through gauge boson scat-
tering(left). Double gauge boson production through gauge boson
scattering (right).

[23, 24] or as mesons of a strong dynamic [26] or from compactification of extra-
dimensions [27]. These states would be more likely discovered in the direct production
followed by the observation of their decay products.

However, one can also find their traces in precise measurement of the Higgs width,
couplings, production rate and branching fractions [25], that are of more direct rele-
vance to assess the role of these states in the breaking of the electroweak symmetry.
Indeed the most direct probe of the role of these states in the electroweak symmetry
breaking is the study of the scattering of longitudinal vectors, i.e. the energy depen-
dence of weak boson fusion production of W−LW

+
L , ZLZL, hh, f f̄ (see diagrams in

Fig. (2.1.1) and in Fig.2.1.2). As such longitudinal gauge bosons are a key tool to
understand the SSB of the gauge symmetry.

2.2. Stability of the running mass of a scalar

We have seen how important is the value of the mass of the Higgs in the stan-
dard model. Unfortunately, when one includes quantum corrections to the Higgs mass
these bring in a quadratic sensitivity to the UV scale. Precisely this means that if one
regularize the divergences with a physical cut-off, i.e. we assume that the SM is valid
up to the scale Λ, where some new physics enters in the dynamics, then

(2.2.1) δm2
h ∼ −Nf

y2
f

8π2

[
Λ2 + . . .

]
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t

h h

FIGURE 2.2.1. SM contribution to the one-loop Higgs mass.

t̃

h h

h h

t̃

FIGURE 2.2.2. SUSY contribution to the one-loop Higgs mass.

where yf is the Yukawa coupling of the Higgs with the fermion f , Nf is the number of
helicity states of the fermion and the dots stand for less divergent and finite pieces 4.
Eq. (2.2.1) singles out the top loop ( see Fig. 2.2.1) as the main contribution.

Taking Λ ∼Mpl and m2
h ∼ (1 TeV)

2 means that the “bare mass” and the one-loop
contribution must cancel with an accuracy of 10−30. Such need of fine tuning (FT) of
the parameters of the theory is a highly unpleasant feature of the quantum corrections
to the Higgs mass. On the other hand, when one compute loop corrections to the mass
of a fermion one finds corrections of the form

δmf ∼ m0
f (1 + c · log Λ) ,

where c is a constant, meaning that the mass of the fermion is not sizably affected by
physics at the physical cut-off Λ where some new physics starts to modify the SM.

The difference between this “multiplicative” correction to fermion mass and the
“additive” correction to the scalar mass can be traced back to the chiral symmetry of
the massless Dirac Lagrangian. The point is that the kinetic term ψ̄∂µγ

µψ preserves
chirality, while a mass term ψ̄mψ mixes left and right-handed fermions. Therefore
a massless fermion cannot acquire mass radiatively unless chirality is violated. The
scalar has no symmetry to protect its mass, that is to say mh = 0 does not enhance
the symmetry of the Lagrangian 5. This is the reason of its sensitivity to UV effects.

Adding NS scalars t̃i=1..NS with trilinear and quadrilinear coupling to the Higgs
given by vλ and λ, respectively, we have the two new diagrams of Fig. 2.2.2 in the one

4Here we concentrate on the loops with fermions of the SM, that are numerically more important than
the contributions form the bosons of the SM.

5One might object that for mh = 0 the Lagrangian becomes invariant under conformal transformations
at the classical level. However the conformal symmetry is broken at the quantum level, therefore we do not
consider it as a symmetry to protect the mass of the scalar.



2.3. NATURALNESS AND SCALARS 17

loop mass shift. Precisely

δm2
h =Nf

y2
f

8π2

[
−Λ2 + 6m2

f log

(
Λ

mf

)
− 2m2

f

]
+

+

NS∑
i

λ

16π2

[
−Λ2 + 2mt̃i

log

(
Λ

mt̃i

)]
+

− λ2v2

16π2

[
−1 + 2 log

(
Λ

mt̃i

)]
,(2.2.2)

where we denoted with mf the mass of the fermion and with mf̃ the mass of the NS
scalars that we introduced.

If we introduce as many scalars as the fermionic degrees of freedom, NS = 2Nf ,
and set

(2.2.3) λ = −y2
f

the Λ2 term vanishes yielding

δm2
h =

NF /2∑
i

y2
f

4π2

[(
m2
f −m2

t̃

)
log

(
Λ

mt̃i

)
+ 3m2

f log

(
mt̃i

mf

)]
.(2.2.4)

This can be seen as an accident in the coupling space or as the consequence of
a symmetry: supersymmetry (SUSY).

We refer to [28, 29] for an introduction to SUSY and details about the derivation
of what follows. We content ourselves with quoting the interesting result that SUSY,
being a symmetry between scalars and fermions, forces us to have the same number
of fermionic and bosonic degrees of freedom with couplings that in our case must be
related through Eq. (2.2.3). In case SUSY is exact one also has

(2.2.5) mt = mt̃ ,

that puts to zero the one-loop correction to the Higgs mass. However, Eq. (2.2.5)
is phenomenologically not acceptable because such scalar partner for every known
fermion has not been observed. Thus one has to introduce a violation of the supersym-
metric mass relation Eq. (2.2.5), which can potentially yield a large δm2

h ∼ m2
f −m2

t̃
.

If we want to exploit supersymmetry to explain the Fermi scale in a natural way, we are
forced to assume m2

f −m2
t̃
. (1 TeV)

2 that is to say “TeV scale SUSY”. In this way we
can motivate SUSY through the requirement of a protection mechanism for the Higgs
mass. This relation between the Higgs mass and the scale of supersymmetry puts the
LHC in position to discover TeV-scale supersymmetry in the first months of operation
at design energy and luminosity.

2.3. Naturalness and scalars

Other kinds of stabilization of the UV sensitivity of the Higgs mass are possible.
Instead of reviewing the proposed mechanisms I would like to spend time to recast
the problem of the UV sensitivity of the Higgs mass in another way, that allows to
understand it more generally.

Indeed our problem with the Higgs boson is a generic problem of the braking of a
symmetry with a fundamental scalar. To give masses to electroweak bosons we need
this scalar to take vacuum expectation value of the order of the Fermi scale. This in turn
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requires that the potential of the scalar has a quadratic negative term of size similar to
the VEV. More precisely for a potential

V = −µ2h2 + λh4 ,

the VEV is v = µ√
2λ

. Experiments tell that the VEV, and therefore the Fermi scale, is
roughly 246 GeV.

The SM with a Higgs boson is a theory in principle valid up to arbitrary high energy.
However to generate a VEV of the correct order of magnitude it is necessary to impose
a size for the quadratic term of the potential that seems completely unnatural in a
quantum field theory. Indeed our computation of Section 2.2 of the loop corrections
to the quadratic parameter of the potential shows that it should be as large as the
maximal scale up to which the theory is valid. Thus, if we pretend the SM to be valid
up to the Planck scale, i.e. 1019 GeV, we expect a VEV of the same size. The quest for
an explanation of the hierarchy between the maximal scale of the SM and the Fermi
scale is what we call the hierarchy problem of the SM.

Indeed the hierarchy problem is related to a more general problem of field theories,
the problem of the natural generation of mass scales. The general issue and the
reasons why the SM with a Higgs boson is problematic can be visualized as follows
[30].

Imagine to have a theory valid at a scale ΛUV . The theory is defined at the scale
ΛUV by a set of parameters pi. The parameters pi can be taken to be the coefficients
of the operators that appear in the Lagrangian. These coefficients have some value at
the scale ΛUV that we denote as pi,UV ≡ pi(ΛUV ).

We want to study how the theory looks like at a lower energy scale that we call
ΛIR . We assume that in a large range of energies E � ΛIR the theory is very close
to be a conformally invariant theory.

Due to the renormalization flow [31], the parameters change value as one consid-
ers the Lagrangian at a different energy. In the limit of a conformal field theory (CFT)
the scaling of the coefficients is given by

(2.3.1) pi(E) = pi(ΛUV )(
E

ΛUV
)4−di ,

where by di we denote the dimension of the operator Oi whose coefficient in the La-
grangian is pi.

The operators with di = 4 − ε . 4 are the operators whose coefficients grows
when one consider the Lagrangian at scales E < ΛUV . Given the behavior of their
coefficient they are called relevant operators. From eq. (2.3.1) we can derive the scale
Λ̂IR at which the running coefficient pi(E) of the relevant operators Oi becomes ∼ 1,

Λ̂IR = p
1/ε
i,UV · ΛUV .

This shows how the dimensional transmutation behind the renormalization flow of the
Lagrangian can generate the scale Λ̂IR, that is the scale where the phenomena con-
nected to the operator Oi become relevant. For sufficiently small ε one can generate a
large separation between the scales ΛUV and Λ̂IR.

In the cases where exist some operator Ok with 4 − dk & 1 the scaling law eq.
(2.3.1) is no longer accurate and one must consider the full renormalization group
equations (RGE) of the coefficients pk. The coefficients pk of the relevant operators
still tend to grow when one consider energies E < ΛUV but with a different behavior.
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If one wants to generate a large separation between Λ̂IR and ΛUV it is necessary to
take very small values of the pi,UV .

However one can limit the size of the pi imposing a symmetry on the system that
enforces certain pi to be zero. The size of the pi(E) will be in this case determined not
by the scale ΛUV but by the scale of the symmetry breaking, Λs.b.. This is for instance
the case of the masses of the quarks that are protected by the chiral symmetry of the
QCD Lagrangian.

The SM with the Higgs boson fails to respect the above assumptions as it has
operators of dimension 2 in its Lagrangian and it does not encompass any symmetry
to protect them. The fact that the SM do not fall in neither of the two categories outlined
above renders unclear what is the mechanism that keeps the Fermi scale so small
compared to the Planck scale.

This observation motivated extensions of the SM that incorporates some mecha-
nism to generate the value of the Fermi scale.

One such attempt is the supersymmetric extension of the SM. In supersymmetry
(SUSY) the coefficients of the operators involving the Higgs boson must be related
to those involving fermions. The coefficients of the fermionic operators are in turn
controlled by a chiral symmetry analogous to the symmetry that controls the masses of
the quarks in QCD. Thus the Fermi scale is generated by the breaking of SUSY, i.e. the
symmetry preventing the Higgs mass from becoming very large. This breaking must
occur not far from the Fermi scale to not reintroduce an unnatural separation between
the Fermi scale and the symmetry breaking scale.

Other solutions to the hierarchy problem exploit the dimensional transmutation
mechanism explained above. The paradigm of this class of BSM theories is a model
with a strong dynamics characterized by the scale f at which the strong dynamics pro-
duces a scalar composite with the quantum numbers of the Higgs boson. The scale
f cannot be too large compared to the Fermi scale or a new unexplained hierarchy of
scales would appear in the model. The scale f in turn naturally emerges as a con-
sequence of the UV dynamics of the model as explained above in the language of
CFT.

The presence of a dynamically generated scale not far from the Fermi scale or the
existence of a new symmetry broken around the TeV are motivations to expect new
physics in the reach of the LHC. This discovery potential for BSM physics is comple-
mentary to the discovery potential expected from the study of the high energy behavior
of the scattering of longitudinal W bosons. This is why the LHC is expected to discover
the missing pieces of the SM and the necessary beyond the standard model physics
present at the TeV scale.





CHAPTER 3

Supersymmetric Higgs bosons: a brief overview

3.1. Electroweak precision tests and the prejudice of the light Higgs boson

As of 2010 the Higgs boson has not been observed and therefore all we said in the
previous Sections is after all speculative, the Higgs boson could even not be there at
all. However there have been attempts to find measurable effects of the Higgs boson
in electroweak precision observables (EWPO). Obviously, these analysis should be
taken as guide in the direct search for the Higgs more than an attempt to discover
it. Figure 3.1.1 reports the EWPO measurements, while Figure 3.1.2 shows the mh

values suggested by a χ2-fit of the EWPO. These analyses clearly point towards a
light Higgs boson with a 2.5σ bound of 144 GeV. However, two comments are in order:
this result is valid only in the pure SM (or in case the BSM does not affect these
observables); the sensitivity to mh is only logarithmic, thus small changes in the input
parameters of the fit can change significantly the result.

This logarithmic sensitivity deserves a comment, indeed it arises from symmetry
features of the SM. In fact, the standard model Higgs potential is symmetric under
SO(4) transformations among the the four real components φi of the complex Higgs
doublet Φ. This is because the potential is a function of the invariant ΦΦ† =

∑
i φ

2
i .

This symmetry implies that, in absence of hypercharge interactions the gauge boson
get all the same mass m2

Wi
= 1

2g
2
2v. Taking into account hypercharge and the weak

angle mixing necessary to conserve electric charge, one gets the tree level relation

(3.1.1)
m2
W

m2
Z cos2 θW

≡ ρ = 1 ,

which can be ascribed to the SO (4) symmetry. At one-loop, the Yukawa interaction
responsible for the top loop vacuum polarization breaks the SO (4) down to the SU(2)
of the weak interactions yielding a correction δρ ∼ m2

t of order 10−2. This sensitivity
to m2

t allowed to make a rather precise prediction of the top mass. Unfortunately we
have no such strong predictive power for mh. Indeed the SO(4) symmetry forbids any
one loop correction to ρ proportional to the Higgs self-coupling λ ∼ m2

h and we are
left with a milder logarithmic sensitivity δρ ∼ logmh. Despite this mild sensitivity, the
huge statistic achieved at LEP severely constrains the vacuum polarization amplitudes
of gauge bosons. Thus it is worth to define some phenomenological quantities to
parametrize the precision observables and then use them to constrain the Higgs both
in SM and in BSM [32, 33]. To this aim we introduce 4 one-loop vacuum polarization
amplitudes Π

(
q2
)

through

Lpheno = −1

2
W 3
µΠ33

(
q2
)
W 3
µ −

1

2
W+
µ Π+−

(
q2
)
W−µ −

1

2
BµΠ00 (q)

2
Bµ −

1

2
BµΠ03

(
q2
)
W 3
µ .

21
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Measurement Fit |Omeas−Ofit|/σmeas

0 1 2 3

0 1 2 3

∆αhad(mZ)∆α(5) 0.02758 ± 0.00035 0.02768

mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1875

ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4957

σhad [nb]σ0 41.540 ± 0.037 41.477

RlRl 20.767 ± 0.025 20.744

AfbA0,l 0.01714 ± 0.00095 0.01645

Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1481

RbRb 0.21629 ± 0.00066 0.21586

RcRc 0.1721 ± 0.0030 0.1722

AfbA0,b 0.0992 ± 0.0016 0.1038

AfbA0,c 0.0707 ± 0.0035 0.0742

AbAb 0.923 ± 0.020 0.935

AcAc 0.670 ± 0.027 0.668

Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1481

sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314

mW [GeV]mW [GeV] 80.398 ± 0.025 80.374

ΓW [GeV]ΓW [GeV] 2.140 ± 0.060 2.091

mt [GeV]mt [GeV] 170.9 ± 1.8 171.3

FIGURE 3.1.1. LEP electroweak working group (LEPEWWG) results
for precision observables and corresponding χ2-fit of mh in the SM
[62]. All data shown comes from LEP except for mt from Tevatron,
mW and ΓW which are a combination of LEP and Tevatron data,
and the leptonic average polarization Al from SLD. Axfb stands for
forward-backward asymmetries in the spatial distribution of x, Al(Pτ )
is the average τ polarization. Rx is the fraction Γ(Z → xx)/Γ(Z →
hadrons), σ0

had is the hadronic cross section at the Z pole, ∆αhad is
the shift in the fine-structure constant due to light quarks and photon
as measured at the Z pole and sin2 θeff is the weak mixing angle ob-
tained combining several measure in a large range of energies (from
atomic scale to Z-pole!).
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FIGURE 3.1.2. LEP electroweak working group (LEPEWWG) χ2-fit
of mh in the SM [62].

Assuming that the scale at which SM is replaced by some other theory is far
enough, we can expand each Πxy(q2) in powers of q2 around q2 = 0. Dimensional
analysis establishes that only Π (0) and Π′ (0) can be sensitive to the growth of mh.
Therefore we have a set of 4 Π(0) and 4 Π′(0) which feel the value of mh. Since the
Lagrangian has input values g2, g1, v and the vanishing mass of the photon requires
Πγγ (0) = ΠZγ (0) = 0, we are left with only three independent quantities.

The three quantities can be chosen as:

Ŝ =
4sW cW
αem

Π′30 (0) ,

T̂ =
Π33 (0)−Π+− (0)

m2
W

,

Û =
Π′33 (0)−Π′+− (0)

m2
W

.

The parameters T̂ and Û are responsible for the violation of Eq. (3.1.1). Involving
higher derivatives, Û is numerically smaller than T̂ and in the following we shall set
it to zero. These two parameters are associated to the breaking of a global SO(4)
symmetry, the so-called custodial symmetry of the Higgs potential, that implies eq.
(3.1.1).

The breaking of the custodial symmetry can be understood in terms of higher-
dimensional operators that we can add to the renormalizable interactions of the SM
and change the accidental relation eq. (3.1.1). Among the gauge invariant operators
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that involve only gauge bosons there is the operator
cHH
Λ2

∣∣H†DµH
∣∣2 ,

which after the EWSB generates a splitting between the mass of the W and the Z

boson and is in one-to-one correspondence to T̂ . On the other hand, the parameter
Ŝ is not related to the breaking of the custodial symmetry and is generated by the
effective operator

cBW
Λ2

H†σaHW a
µνBµν ,

that after the EWSB produces a kinetic mixing between the B and W3.
In the SM one can compute Ŝ and T̂ for variable Higgs mass. This can be done

using

Π(0) =
1

16π2

[
m2

1 +m2
2

2
− m2

1m
2
2

m2
1 −m2

2

ln
m1

m2

]
Π′(0) =

1

96π2

[
− ln

Λ4

m2
1m

2
2

+
4m2

1m
2
2

(m2
1 −m2

2)2
+

+
m6

1 +m6
2 − 3m2

1m
2
2(m2

1 +m2
2)

(m2
1 −m2

2)3
ln
m2

1

m2
2

]
for a generic bosonic loop with internal masses m1 and m2 and coupling ıWµφ1

←→
∂ φ2.

In case that one of the particles in the loop is a scalar that takes a VEV, say the Higgs
boson, the parameter Ŝ has an additional contribution stemming from the diagram with
a W and a h in the loop:

mW

2π

[
2m2

hm
2
W

(m2
h −m2

W )2
ln

mh

mW
− m2

h +m2
W

(m2
h −m2

W )2

]
.

For a fermionic loop with masses m1 and m2 and coupling Wµψ̄1γ
µψ2 one has:

Π(0) =
1

16π2

[
(m1 −m2)2 ln

Λ4

m2
1m

2
2

− 2m1m2+

+
2m1m2(m2

1 +m2
2)−m4

1 −m4
2

m2
1 −m2

2

ln
m2

1

m2
2

]
Π′(0) =

1

24π2

[
− ln

Λ4

m2
1m

2
2

− m1m2(3m2
1 − 4m1m2 + 3m2

2)

(m2
1 −m2

2)
+

+
m6

1 +m6
2 − 3m2

1m
2
2(m2

1 +m2
2) + 6m3

1m
3
2

(m2
1 −m2

2)3
ln
m2

1

m2
2

]
The result is shown in the yellow area of Figure 3.1.3 together with the 1σ ellipse

coming from the experimental data. This plot obviously confirms the result of Figure
3.1.2 that the SM Higgs has to be light, but it can also be used in a more model
independent way. Indeed, these phenomenological quantities can be computed in
any model BSM and every model must be checked against these EWPT. This is of
great importance, since until the LHC or the TeVatron will pose significant bounds
on the Higgs, the EWPT and other constraints from flavor physics [34] are the only
significant way to restrict the wide range of possibilities beyond the standard model. In
this respect it is important to underline that there is no need to have a light Higgs in
BSM. Indeed one can build models with new particles whose contributions to Ŝ and
T̂ (almost) balance with the contribution from the heavy Higgs [35]. This observation
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FIGURE 3.1.3. The ellipse shows the experimental determination of
S = 4 sin2 θW /αemŜ and T = T̂ /αem from the LEPEWWG [62]. The
yellow area is the SM prediction for variable mh and mt. The arrow
points the direction in which the result shifts for increasing mh or mt.

opens a wide range of possibilities in model building. In particular one can imagine a
phenomenology completely different from the SM or other standard scenarios of BSM
like the Minimal Supersymmetric Standard Model (MSSM).

3.2. The MSSM

The structure of a supersymmetric theory beyond the gauge interactions can be
specified through an analytic function of fields called superpotential, W (φ), and of a
non analytic function K(φ, φ†). For sake of brevity we shall not talk about superspace
techniques and we shall deal with the these potentials as a tool to formulate a renor-
malizable Lagrangian theory invariant under SUSY transformations. We refer to [28,36]
for a deeper and more detailed treatment, while here we shall just list some result in
terms of component fields.

The superpotential is a function of “super -fields” that are multiplets containing the
same number of bosonic and fermionic degrees of freedom (DoF). We shall need two
kind of superfields: the chiral and the vector superfield. Chiral superfields are those
containing a Weyl fermion and a complex scalar. They are the superfields that contains
the chiral fermions of the SM and the Higgs boson(s) of the MSSM. Vectorial super-
fields are those containing massless gauge fields and Weyl fermions that transform in
the adjoint of the gauge group. The vector superfields are needed to introduce gauge
interactions in a manifestly supersymmetric way.
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Given a superpotential W (ϕi) function of the chiral superfields ϕi we obtain the
resulting interaction Lagrangian terms through:

(3.2.1) LWint = |δW
δϕi
|2 + ψj

δW

δϕjδϕi
ψi,

where δ means functional differentiation evaluated in terms of the sfermion φ, the scalar
components of the chiral superfield, and ψ is the corresponding fermion. From Eq.
(3.2.1) we conclude that, to get a power-counting renormalizable Lagrangian, the su-
perpotential must have mass-dimension less or equal to 3.

Kinetic terms for the chiral fields can be introduced as well and by the proper
"minimal coupling" procedure one can introduce gauge interaction such that eq. (3.2.1)
is completed by the necessary gauge-covariant kinetic term for all the introduced fields.
These yields the interactions:

(3.2.2) LGint = g
√

2λaψT aφ+ g
√

2λaψT aφ+ g2(φ∗T aφ)2,

where λa is the gaugino, the fermionic partner belonging to the vector superfield, and
the last term comes from the auxiliary fields needed to have a consistent SUSY- and
gauge-invariant theory.

Gathering together eqs. (3.2.2) and (3.2.1), the resulting scalar potential is

(3.2.3) V =
∑
i

|δW
δϕi
|2 +

∑
a

g2
a(φ∗T aφ)2 ,

where the first term comes from the superpotential and is know as F-term, while the
second term comes from gauge interactions and is known as D-term.

All this shows that, once one specifies the gauge group and the representations of
the fields, the only freedom in building a SUSY model lies in the choice of the super-
potential. The Minimal Supersymmetric Standard Model is specified by:

WMSSM = ˆ̄uyuQ̂ · Ĥu + ˆ̄dydQ̂ · Ĥd + ˆ̄eyeL̂ · Ĥd + µĤu · Ĥd,

where y are the dimension-less Yukawa couplings, µ is a parameter of the model
with the dimensions of a mass and the hat on top of the fields denotes that they are
superfields.

First of all we note that there are two Higgs doublets. The reason is twofold. First,
we cannot use H∗u, as happens in the SM, because W has to be analytic. Thus, if we
want to have Yukawa interactions for down-type fermions, we need a Hd. Second, the
introduction of one single Higgs superfield would add a fermion to matter content of
the SM, spoiling anomaly cancellation. Therefore, one can introduce a second doublet
with opposite hypercharge, such that the fermions in Ĥu and Ĥd form a vector-like
representation of the gauge group that give a net zero contribution to the anomaly.

The final phenomenological Lagrangian of the MSSM must take into account the
breaking of SUSY. This breaking is needed to explain why we did not observe scalar
partners of the SM fermions. However, we do not want to spoil the reason for intro-
ducing SUSY, that is we do not want to reintroduce quadratic divergences in the mass
of the Higgs eqs. ((2.2.1)) and (2.2.2)). This requires in particular that one does not
alter the relation eq. (2.2.3) between Yukawa and scalar self-couplings. The two in-
volved couplings are dimensionless parameters, as such their RGE is not changed by
the introduction of relevant operators that break supersymmetry, i.e. a soft breaking of
SUSY. The general form of such a breaking has been studied in Ref. [37] and for the
MSSM the soft Lagrangian terms are:
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Lsoft =− 1

2
(M3g̃g̃ +M2W̃W̃ +M1B̃B̃ + h.c.)+

+ Q̃†m2
Q̃
Q̃+ L̃†m2

L̃
L̃+ ˜̄u†m2

˜̄u
˜̄u+ ˜̄d†m2

˜̄d

˜̄d+ ˜̄e†m2
˜̄e
˜̄e

− (˜̄uauQ̃ ·Hu − ˜̄dadQ̃ ·Hd − ˜̄eaeL̃ ·Hd + h.c.)+

−m2
u|Hu|2 −m2

d|Hd|2 −Bµ(Hu ·Hd + h.c.),(3.2.4)

where tilde denotes partners of the SM particle.

3.3. Gauge coupling unification in the MSSM

The supersymmetric extension of the standard model to the MSSM brings new
fields charged under the gauge group of the SM, thus affecting the value of the beta
function of the gauge couplings. Indeed the evolution of the gauge couplings of the SM
is determined at one loop level by the RGE equations

(3.3.1)
dgi
dt

=
bi

16π2
g3
i ,

where t = log Q
Q0

and the coefficients bi depends on the content of fields charged
under the gauge group.

A generic expression for the bi of a supersymmetric model with arbitrary content
of fermions F , scalars S, and gauge group G is:

bi = −
(

11

3
C2(G)− 4

3
κFS2(S)− κS

1

6
S2(F )

)
,

where the C2(r) are the Casimir for the representation r, i.e. for the generators t(r)

(t(r)t(r))ij = C2(r)δij , S2(r) =
dim(R)

dim(G)
C2(r) ,

κF = 1
2 for a single Weyl fermion and κS = 1 for a real scalar or κS = 2 for a complex

scalar, i.e. a complete chiral superfield corresponds to κF = 1
2 , κS = 2 .

In the MSSM the coefficients bi are b1 = 33/5, b2 = 1, b3 = 3 where we have
chosen a GUT normalization of the hypercharge g1 =

√
5/3 e

cos θW
. The RGE can be

recast in the form
d

dt
α−1
i = − bi

2π
,

and inserting the coefficients bi for the MSSM the resulting evolution of the gauge cou-
plings at energies above the Fermi scale is shown in figure 3.3.1. The figure shows
that the matter content of the MSSM is suitable to have unification of the gauge cou-
plings within a significant accuracy. This accuracy can be quantified assuming that the
gauge couplings unifies at the scale of grand unification and running the coupling α3

to the scale of the mass of the Z boson, where it has been determined with a precision
of about 6 × 10−3. Depending on the details of the MSSM spectrum assumed, the
measured value of α3(mZ) = 0.1184 ± 0.0007 [38] is compatible within roughly 1-σ
with the one-loop prediction 1.

1A proper prediction of the low energy value of α3 with uncertainties compatible with the experimental
measure requires the integration of the RGE from the GUT scale to mZ , including two-loops effects and a
proper matching at the thresholds of the heavy particles of the theory [39]. For a thorough discussion of
these effects we refer to Refs. [40].
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FIGURE 3.3.1. MSSM evolution of the gauge couplings at the scale
µ from the experimental values at mZ .

3.4. Tree-level Higgs mass of the MSSM

From eqs. (3.2.3) and (3.2.4) we can compute the scalar potential. We introduce
the shorthand notation for the fundamental parameters m2

1,2 = m2
u,d + |µ|2 and m2

3 =
Bµ and decompose the Higgs doublets in weak-isospin components

Hu =
(
H+
u , H

0
u

)t
,

and similarly for Hd. The potential reads:

V = m2
1(|H0

d |2 + |H−d |
2) +m2

2(|H0
u|2 + |H+

u |2)−m2
3(H+

u H
−
d −H

0
2H

0
1 + h.c.)+

+
g2

2 + g2
1

8
(|H0

d |2 + |H−d |
2 − |H0

u|2 + |H+
u |2)2 +

g2
2

2
|H−∗d H0

d +H0∗
u H

+
u |2 .

All the three m2
i can be taken real exploiting the re-phasing freedom on the fields.

Furthermore one can see that the stable minima with broken SU(2)× U(1) automati-
cally preserve the electric charge and CP [41].

Now we can exploit the gauge freedom and parametrize the fields around the
ground state as

Hu = (H+, vu +
hu + ıP2√

2
), Hd = (vd +

hd + ıP1√
2

, 0) ,

and compute the Higgs sector spectrum. Since CP is conserved we can deal with the
CP-odd and the CP-even states separately. This amount to compute the appropriate
matrices of second derivatives evaluated at the ground state (GS):

Mφ
ij =

∂V

∂φj∂φi
, φ = (P1, P2) or (hu, hd)

When φ = (P1, P2) we have a massless eigenstate that is one of the three Gold-
stone bosons we owe to gauge-invariance, and a massive pseudo-scalar, A, with mass

m2
A = − 2m2

3

sin 2β
,
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where we used the customary definition tanβ = vu/vd.
When φ = (hu, hd) the mass matrix in interaction basis is diagonalized by a rota-

tion of angle α defined by

(3.4.1) tanα =
(m2

A −m2
Z) cos 2β +

√
(m2

A +m2
Z)2 − 4m2

Am
2
Z cos2 2β

(m2
A +m2

Z) sin 2β
.

The resulting eigenstates are

(3.4.2) h = −h0
d sinα+ h0

u cosα, H = h0
u sinα+ h0

d cosα ,

and the masses are

(3.4.3) m2
h,H =

1

2

(
m2
A +m2

Z ∓
√

(m2
A +m2

Z)2 − 4m2
Am

2
Z cos2 2β

)
,

where we have used m2
Z = 1

2 (g2
1 + g2

2)(v2
u + v2

d). From Eq. (3.4.3) one can find the
tree level mass ordering

(3.4.4) mh < mZ | cos 2β| < mZ < mH .

3.5. Radiative corrections to mh in the MSSM

Eq. (3.4.4) does not mean that the MSSM Higgs boson had to be observed at
LEP, since the Higgs mass mh get significantly corrected when one includes one-loop
corrections. The reason is that the scalar potential at tree level does not contain all
the terms allowed by gauge symmetry in the most general two Higgs doublets model
(2HDM) potential. The supersymmetric structure results in the accidental vanishing of
some terms that receive their leading contribution at one loop level. Such correction
to the potential are controlled by the supersymmetry breaking parameters, i.e. the soft
masses, and can be found from the zero of the inverse propagator computed from the
one-loop effective action [42]. Precisely, the effective action Γ generates the n-point
functions for one-particle-irreducible diagrams through n functional differentiations:

δΓ(φ)

δφn
|φ=0 = Γ(n).

As such, the Fourier transform of Γ(2), Γ̃(2), is the inverse propagator of the field. Thus
one can define the mass of the particle as the p2 value that satisfies

Γ̃(2)(p) = p2 −m2 + Σ(p2) = 0 ,

where Σ denotes one-loop self-energy of the particle.
That is to saym2

phys = m2−Σ(m2
phys) = −Γ̃(2)(0)−Σ(m2

phys)+Σ(0). Expanding
the effective action in powers on the derivative operator one sees that Γ(φ) = −V (φ)+
derivatives, which yields

m2
phys =

∂V

∂φ∂φ
− Σ(m2

phys) + Σ(0)

In the case of a light particle this formula gets simpler. In fact, denoting the mass of
the particle in the loop as mloop and taking m2

phys � 4m2
loop, the self-energy amplitude

Σ(m2
phys) is never resonant, thus one can assume Σ(m2

phys) ' Σ(0). This result al-
lows us to compute the physical mass of the lightest Higgs boson just diagonalizing the
proper second derivative matrix of a one-loop corrected potential. This is the effective
potential of the Coleman-Weinberg formalism.
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Softly broken supersymmetry does not have quadratic divergences, therefore the
effective potential induces only a field-dependent logarithmic shift on the classical po-
tential:

(3.5.1)
1

64π2
StrM4(log

M2

Q2
− 3

2
)

where Strf(M2) =
∑
i(−1)2Ji(2Ji + 1)f(m2

i ), Ji is the spin of the i-th particle in the
sum and m2

i is the i-th eigenvalue of the field-dependent mass matrixM2.
An interesting limiting case is suggested by current experimental data. We ignore

stop mixing and taking mt̃ � mZ we compute the field dependent masses from the
leading terms only:

L ⊃ ψ̄thuψyt +
1

2
y2
t (hut̃)

2 +
1

2
t̃m2

t̃ t̃

We find m2
t (hu) = y2

t h
2
u and m2

t̃
(hu) = y2

t h
2
u +m2

t̃
. This in turn can be plugged in Eq.

(3.5.1) yielding

∆V =
1

32π2
[m4

t̃ (log
m2
t̃

Q2
− 3

2
)−m4

t (log
m2
t

Q2
− 3

2
)]

Adding this shift to the classical potential we can look for the new minimum con-
dition and compute the new value of the second derivative evaluated at this new min-
imum. This amounts to find the one-loop corrected physical mass of the Higgs. The
minimization condition now reads:

∂(V + ∆V )

∂hu
=

∂V

∂hu
+

1

16π2

∂m2
t (hu)

∂hu
[m2

t̃ (log
m2
t̃

Q2
− 1)−m2

t (log
m2
t

Q2
− 1)] = 0

where we exploited ∂m2
t (hu)/∂hu = ∂m2

t̃
(hu)/∂hu (again barring sub-leading D-

term). Choosing the appropriate Q = Q̂ one can set the square bracket to zero and
keep the tree level minimum condition ∂V/∂hu = 0. Once this scale choice is made
also the second derivative is simpler, at the ground state it reads:

1

2

∂2(V + ∆V )

∂h2
u

|hu=vu =
1

2

∂2V

∂h2
u

|φ=vu +
1

32π2

(
∂m2

t (hu)

∂hu

)2

log

(
m2
t̃

Q̂2

)∣∣∣∣∣
φ=v

=
1

2

∂2V

∂h2
u

|hu=vu +
g2

2

32π2

m4
t

m2
W

log

(
m4
t̃

m4
t

)
(3.5.2)

where m2
W = 1

2g
2
2v

2 has been used in the last line. We see from the last line that the
physical Higgs boson mass has a potentially large contribution from the breaking of
supersymmetry. Indeed this contribution is crucial to make the MSSM compatible with
the null results of LEP Higgs boson searches.

However, the lift induced by the radiative corrections cannot be too large, because
a large scale for the soft masses would reintroduce an unwanted and unexplained
hierarchy in the model.

Limiting the stop mass to 2 TeV yields an upper bound mh . 140 GeV for mt =
175 GeV. This means the Higgs boson of the MSSM is only slightly heavier than the Z0,
thus the lore of the light Higgs of the MSSM. The lightness of the Higgs boson is appar-
ent from Figure 3.5.1, which shows the one-loop Higgs mass in the MSSM as function
of tanβ and the scale of the soft masses ∆S , that for our purposes corresponds to the
mass of the stop.
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FIGURE 3.5.1. One-loop Higgs mass in the MSSM as function of
tanβ and the scale of the soft masses ∆S .

3.5.1. An effective derivation of the loop corrected Higgs mass. The loop cor-
rected Higgs boson mass eq.(3.5.2) can be computed alternatively in the language of
effective field theory [43]. This derivation allows to quickly estimate the correction from
the loops and gives some further insight on the origin of the shift in the Higgs mass.

One can imagine that the spectrum of supersymmetric particles is heavy with re-
spect to mZ and sufficiently compressed to consider the sparticles as degenerate.
Denoting as mSUSY the common mass of the sparticles one can describe physics
above the mass scale mSUSY as if supersymmetry were exact, while below mSUSY

we can assume that the correct effective field theory is just the SM.
With this set-up in mind we can approximate the mass eigenstates and the mixing

angle α taking mA � mZ in equation (3.4.2) and eq. (3.4.1), i.e.

h = sinβ h0
u + cosβ h0

d .

The Higgs boson renormalization group improved effective potential is

Vh = −1

2
µ(t)2h2 +

λ(t)

4
h4,

where t = log(h/mSUSY ). At the leading order the potential is minimized requiring
that

∂V

∂h

∣∣∣∣
h=v

= 0

and the resulting Higgs mass is then

mh = vλ|h=v .

The structure of the MSSM enforces a boundary condition for the quartic coupling

λ =
1

8
(g2

2 + g2
1) cos2 2β .

Starting from this boundary condition at the scale mSUSY we can run the quartic
coupling according to the RGE of the SM quartic

dλ

dt
=

1

16π2

(
−6y4

t + 12λy2
t +

3

8

(
2g4

2 +
(
g2

1 + g2
2

)2)− 3
(
g2

1 + 3g2
2

)
λ+ 24λ4

)
,
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FIGURE 3.5.2. One-loop Higgs mass in the MSSM.

supplemented with the eq. (3.3.1) for the running gauge couplings and the RGE of top
Yukawa coupling

dyt
dt

=
1

16π2

(
9

2
y2
t − 8g2

3 −
17g2

1

12
− 9g2

2

4

)
.

The resulting mass of the Higgs is given in figure 3.5.2 as a function of the ratio
mZ/mSUSY . From this result it is clear that a separation of at least a factor ∼ 5 is
necessary to increase the mass of the Higgs above the LEP bound.

3.6. How to raise the mass of the Higgs boson is supersymmetric theories

The strict tree-level bound of eq. (3.4.4) and the missed observation of a Higgs
boson at LEP triggered several attempts to raise the mass of the Higgs boson. Besides
the effect of loops from the MSSM matter sector that we already discussed in Section
3.5 several other mechanism have been proposed and this Section will be devoted to
a brief review of these mechanisms.

The simplest possibility to raise the Higgs boson mass is to pursue the solution of
loop corrections and try to augment the effect discussed in Section 3.5. The increase
of the Higgs mass that can be obtained in this way is sensitive to the effective mass
of the sector that is coupled to Higgs boson. Indeed in the case considered in Section
3.5 the most important effect arose from the stop squark and the size of the effect was
controlled by mt̃.

As such we can try to couple new matter to the Higgs boson and take this matter
as heavy as possible to have a large effect on the mass of the Higgs. To not induce
large effects on the EWPT this heavy matter is forced to be in a real representation of
the SM gauge group. In this way they can have large gauge invariant mass terms that
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only mildly affect the precision measurements. This solution however do not yield a
large increase of the Higgs mass and therefore we prefer to not give any further detail
on it. For a recent and extensive discussion on this possibility see Ref. [44].

In general the mass of the Higgs boson can be augmented adding new sources
of quartic coupling in the potential. Due to the supersymmetric origin of the potential
we shall differentiate two possible sources for the new quartic: the D-terms and the
F-terms. The former are present in models with an extended gauge group with respect
to the SM group and the latter are a consequence of the choice of the superpotential.

3.6.1. Tree-level mass induced by non-decoupling effects from abelian D-
terms. In models with extended gauge symmetry it is possible to increase the mass
of the Higgs boson through the new D-terms that must appear in the scalar potential
due to the supersymmetric structure of the model. An extra U(1) factor will suffice to
explain the mechanism [45].

Let us consider a model with a new U(1)x gauge symmetry and a superpotential

(3.6.1) W = λN(φφC − w2) .

The charges of the MSSM matter under this new group are Y + (B − L)/2. The new
matter fields N and φ, φC are SM singlets and under the new U(1) they have charge
0 and q,−q respectively. The soft Lagrangian for the scalar degrees of freedom is

(3.6.2) Lsoft = −m2
φ

(
|φ|2 +

∣∣φC∣∣2)−m2
NN

2 + (Bsφφ
C + h.c.)

and the scalar potential has F-term contributions

(3.6.3) VF = λ2 |φ|2
∣∣φC∣∣2 − λw2(φφC + h.c.) + λ2

(
|NφC |2 + |Nφ|2

)
.

The D-term contributions from the new U(1) factor is

(3.6.4) VDx =
1

2
g2
x

(
1

2
|Hu|2 −

1

2
|Hd|2 + q |φ|2 − q

∣∣φC∣∣2)2

.

Assuming that N is not taking a VEV the quadratic part of the potential for φ and φC is

(3.6.5) V2 = m2
φ

(
|φ|2 +

∣∣φC∣∣2)− (Bs + λw2)(φφC + h.c.).

When the following condition holds

(3.6.6) m2 < Bs + λw2 ,

the origin of the φ, φC field space is not stable and the fields φ and φC develop a VEV

(3.6.7) 〈φ〉2 =
〈
φC
〉2

=
Bs + λw2 −m2

φ

λ2
.

After this spontaneous breaking of the new U(1), its vector boson will acquire a
mass mZ′ = gx 〈φ〉. Also the scalars φ and φC get a mass from the breaking of the
symmetry and for B � v they become heavy degrees of freedom with respect to the
SM states. This fact allow us to make an effective field theory where the states φ and
φC do not propagate and can be integrated out. This results in a shift in the quartic of
the light states Hu and Hd from the new U(1) interaction

(3.6.8)
g2
x

2

(
1

2
|Hu|2 −

1

2
|Hd|2

)2

×

(
2m2

φ

2m2
φ +m2

Z′

)
.
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FIGURE 3.6.1. Diagrams originating from the interactions contained
in the new D-terms, which contribute to the quartic of the light Higgs
boson h after that the heavy state H has been integrated out.

This new quartic can be used to raise the mass of the Higgs boson, however there are
several limitations on the size of this new contribution. The maximal shift of the quartic
corresponds tomZ′/mφ → 0. This situation cannot be realized taking a vanishingmZ′

because this is strongly constrained by direct and indirect limits on new vector bosons.
Thus we must take mZ′ at least a few TeV and a soft mass mφ large compared to
mZ′ , say tens of TeV. This solution would be phenomenologically viable but not very
satisfactory. Indeed this large soft mass of the order of tens of TeV would induce a
tuning. This tuning can be quantified by mean of

(3.6.9) ∆ ≡

∣∣∣∣∣∂ logm2
Z′

∂ logm2
φ

∣∣∣∣∣ =
m2
φ

Bs + λw2 −m2
φ

.

The relation between this tuning and the achievable Higgs boson mass is made appar-
ent observing that

(3.6.10)
m2
Z′

2m2
φ

= g2
x

Bs + λw2 −m2
φ

2λ2m2
φ

=
g2
x

2λ∆
.

This in turn allows to express the new upper bound on the mass of the Higgs in terms
of the tuning

(3.6.11) mh ≤ m2
Z +

g2
xv

2

2

1

1 +
g2x

2λ2∆

,

which shows that the model need to be tuned to have a shift of the mass of the
Higgs. This relation between the Higgs boson mass and the tuning of the model is
rather generic of models which exploit the non-decoupling of D-terms from an extended
gauge sector. Indeed in this kind of models there are are two clashing requirements,
the decoupling of the effects of the broken gauge dynamics and the effect of the same
dynamics on the quartic. In the following section we give an example of non-abelian
extension to make the point more general.

3.6.2. Tree-level mass induced by non-decoupling effects from non-abelian
D-terms. We take a model with two SU(2) gauge groups SU(2)A and SU(2)B which
are broken to the diagonal subgroup SU(2)A+B by the VEV of a bi-doublet field Σ ∼
(2A, 2B). The unbroken combination of these two SU(2) factors is identified with the
gauge group of the SM, which at this stage has massless vector bosons Wi. The
orthogonal combination is the broken SU(2) associated to a heavy triplet of vectors
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Xi. The expression of the SM gauge coupling g2 in terms of the coupling gA and gB is

(3.6.12)
1

g2
2

=
1

g2
A

+
1

g2
B

,

as it can be found by writing explicitly the covariant derivatives and then going in the
mass basis. In the same way one can see that the heavy mass eigenstates are present
in the interaction eigenstates in a fraction controlled by gA/gB . For later convenience
we define the angle φ such that

(3.6.13) cosφ = g2/gB , sinφ = g2/gA.

In a fashion similar to the U(1) example we take the superpotential

(3.6.14) W =
1

2
λN(Σ · Σ− w2)

where N is a singlet of SU(2)A × SU(2)B and Σ · Σ = Tr(ΣεΣtε). This yields the
F-terms contribution to the superpotential

(3.6.15) VF =
1

4
λ|Σ · Σ|2 + λw2(Σ · Σ + h.c.)

plus terms containing the singlet. From the gauge structure we have the D-terms
contribution to the potential

(3.6.16) VD =
g2
A

8

(
Tr
(
Σ†σaΣ

)
+H†uσaHu −H†dσaHd

)2

+
g2
B

8

(
Tr
(
Σ†σaΣ

))2
.

The relevant soft terms for the fields that we added with respect to the MSSM are

(3.6.17) Lsoft = −m2
Σ|Σ|2 +Bs(Σ · Σ + h.c.) .

The origin of the field space Σ = 0 is not stable when holds the condition

(3.6.18) Bs + λw2 > mΣ .

In this case the field Σ develops a VEV

(3.6.19) 〈Σ〉 = u1

where

(3.6.20) u2 = (Bs + λw2 −m2
Σ)/λ2 .

This VEV leaves unbroken the diagonal combination of SU(2)A and SU(2)B . Further-
more, when u2 ' ω2

λ the potential at the VEV is vanishing, that is to say supersymmetry
is restored when mΣ, Bs � λω2.

As seen in the case of the U(1) extension the VEV of Σ gives mass to some
component of Σ itself and we can make an effective field theory below the mass of
these states. The quartic coupling of the Higgs boson in this effective theory is lifted by
the effect of the analogous of the diagrams of figure 3.6.1 . The resulting upper bound
for the mass of the Higgs is

(3.6.21) m2
h <

v2

2
(g2

1 + ηg2
2) ,

where

(3.6.22) η =
1 + δ

g22
cos2 φ

1 + δ
g22

sin2 φ cos2 φ
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with δ = 2m2
Σ/u

2. From these expressions is clear that η = 1 corresponds to the usual
MSSM case and that to increase the mass of the Higgs we have to take η as large as
possible. To achieve this goal we need some degree of tuning. Indeed we can quantify
the tuning of the VEV u with respected to mΣ and find

(3.6.23) ∆ ≡
∣∣∣∣ ∂ log u2

∂ logm2
Σ

∣∣∣∣ =
m2

Σ

λ2u2
=

δ

2λ2
.

This allows us to express η, and thus the limit on the mass of the Higgs, in terms of the
tuning

(3.6.24) η =
1 + 2λ2∆

g22
cos2 φ

1 + 2λ2∆
g22

sin2 φ cos2 φ

When λ2∆ is small compared to g2
2 the factor η grows linearly with ∆ and for

infinite tuning it reaches the value 1/ sin2 φ. Thus we see that, as in the abelian case,
to increase the mass of the Higgs boson we have to accept some tuning. However
for ∆ ∼ 10/λ2 we can obtain significant shift such that mh ' few mZ . The precise
value of the mass of the Higgs boson that can be reached depends on the parameter
φ which is in turns subject to several limitations.

Firstly the parameter φ cannot be 0 nor π
2 because this corresponds to take infi-

nite gauge gauge couplings in the new gauge groups. For a given value of φ one can
study the RGE of gA, gB and λ and find up to which scale the couplings are perturba-
tive. Thus the range for φ depends on the limitations that one wants to impose on the
perturbativity of the couplings. we shall comment later on this point.

The parameter φ also control the coupling of the heavy vectors Xi to the SM mat-
ter and thus has to respect some limitation. The tightest bounds arise from the mea-
surements of four fermions contact interactions and oblique corrections to the gauge
bosons propagators. These limits can be encoded in the parameters X,Y and S, T of
Ref. [33]. An analysis for the case considered in this example has been performed in
Ref. [33,46] and gives

(3.6.25) u > max(6.5 cos2 φ, 3.7 cos2 φ) TeV .

This lower bound on u implies an m2
Σ = λ2u2∆ very large compared to the elec-

troweak scale. Thus one can expect large loop level contributions to the soft masses
of the MSSM Higgs bosons.

A detailed study of the effect the large m2
Σ has been performed in [10]. The analy-

sis of [10] also addresses the issue of the maximal scale of perturbativity of the model
once the shift on the mass of the Higgs boson is connected to the running of λ, gA
and gB . The result is that for mh = 2mZ and ∆ < 10 the theory needs a mechanism
for the generation of the soft terms that operates not much above few hundreds of TeV
and that some coupling goes non-perturbative at scales below MGUT .

From this brief analysis and the more general results of [10] we can conclude that
D-term are a viable possibility to lift the mass of the Higgs boson. They are particularly
suitable to get the modest increase needed to have a tree-level mass compatible with
LEP. However to get a large correction to the MSSM tree-level prediction is rather
generic to have a significant tuning and some coupling that goes non-perturbative at
scales below MGUT .
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3.6.3. Tree-level mass from F-terms. The source of the new quartic coupling
responsible for lifting the Higgs mass can be obtained changing the superpotential of
the MSSM. This solution to the tension between the LEP result and the prediction of the
MSSM relies on new Yukawa couplings and in principle does not require any extension
of the SM gauge group.

To get a new F-term contribution the Higgs quartic we need to introduce a chiral
superfield X linearly coupled to a Higgs bilinear

(3.6.26) W = yXXHuHd .

The field X must be either a SM gauge singlet, that we denote by S, or a SU(2)
triplet, that we denote by T . The resulting extension of the MSSM has the most general
superpotential

(3.6.27) W = λHu ·HdS + λ2Hu · T0Hd + χ1Hu · T+Hd + χ2Hd · T−Hu,

which yields the tree level bound for the mass of the Higgs boson:

(3.6.28)
m2
h

v2
≤ 1

2
(g2

1 + g2
2) cos2 2β+

(
λ2 +

1

2
λ2

2

)
sin2 2β+ 4χ2

1 cos4 β+ 4χ2
2 cos4 β .

The SU(2) triplet affects the running of the gauge couplings and alters the pre-
diction of the unification. Furthermore the presence of a triplet with a VEV is rather
constrained by the EWPT. For these reasons we consider the case with just the singlet
S and from now on we shall set the couplings χ1,2 and λ2 to zero. Going to this limit
the model that we want to study is an incarnation of the so-called NMSSM.

How large can be the bound eq. (3.6.28) depends only on how large we allow the
coupling λ to be at the weak scale. This is a Yukawa couplings and because of to the
structure of supersymmetric theories it runs according to an RGE that has the form

(3.6.29)
dλ

dt
∼ λ

16π2
(λ2 − g2) ,

where g is some combination of the gauge couplings experienced by the fields involved
in the interaction mediated by λ.

When λ < g the evolution of the Yukawa is driven by the gauge dynamics. The
Yukawa will run to zero in the UV when g is UV-free or will grow in the UV following the
growth of g.

When λ > g the Yukawa grows in the UV and eventually hits a Landau pole. The
choice of the lowest scale at which we tolerate a Landau pole reflects how fundamental
we want our model to be. If the Landau pole is above the scale of the unification of
gauge couplings our model has the right to be considered fundamental up to the scale
where a theory of Grand Unification should onset. A model with a Landau pole at
lower energies is just as meaningful as the model valid up to the GUT scale, but it has
a limited range of energies at which it makes sense perturbatively.

Traditionally models where the Yukawa couplings hits a Landau pole before the
GUT scale have been considered less appealing and great effort have been done to
compute the maximal value of λ that still allow for manifest2 unification. Adding suitable
matter in complete representations of SU(5) one can reach λ = 0.7 [47]. Hence,
insisting on manifest unification yields an upper bound on the mass of the Higgs of
about 150 GeV.

2read "à la MSSM"
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FIGURE 3.6.2. One-loop Higgs mass in the NMSSM computed for
the maximal λ that stay perturbative up to Λ.

The increase of the Higgs mass that can be obtained in this way is already suffi-
cient to go above the LEP limit, however the maximal value of the mass of the Higgs
boson is strongly limited by the requirement of perturbative unitarity. Therefore it is
worth considering how large the Higgs mass can be if one allows non-perturbative
couplings at some scale Λ. Once the value of λ at the weak scale is fixed we can
integrate the RGE of λ

(3.6.30)
dλ

dt
=

λ

16π2

(
4λ2 + 3y2

t − 3g2
2 − g2

1

)
,

and find the scale Λ where the coupling is equal to 4π. Figure 3.6.2 shows the corre-
sponding maximal mh in the NMSSM with couplings perturbative up to Λ. We can see
that for Λ ' 50 TeV one can have a Higgs of few hundreds GeV mass that corresponds
to λ = 2 at the weak scale.

This strongish coupling at low energy is surely affecting the phenomenology of the
model. The most striking difference with respect to the MSSM is certainly the large
mass of the Higgs boson, which implies a rather different decay pattern of the states
in the Higgs sector. Other peculiar features of this class of models are expected to
originate from this large couplings. Indeed we shall see in the rest of this work that
many parts of the supersymmetric paradigm of the MSSM should be reconsidered and
changed when we study a model with a strongish self-interacting Higgs sector.



CHAPTER 4

Gauge couplings unification and the UV completion of
a Higgs sector with a strongish self-coupling

4.1. The fat Higgs scenario

We have already discussed in Section 3.6 how the addition of new quartic cou-
plings through F-terms can raise significantly the mass of the Higgs boson. The price
to pay to raise this mass is the low energy at which the Higgs self-coupling blows up
hitting a Landau pole. This has not to be regarded as a fault of the theory. Rather it
may reflect the fact that the description given in terms of a Higgs boson is not funda-
mental in the sense that the Higgs is not a degree of freedom of the theory that holds
at higher energy.

A very fitting example of such phenomenon is provided in Nature and is the one of
the interaction of pions at low energy. As a matter of fact at energies well below the GeV
the pions interact a with coupling that shows an energy dependence characteristic of
the interaction of non fundamentals objects. Indeed their interactions are mediated by
effective operators of dimension greater than 4 and the strength of their coupling grows
with the energy until a scale where it is necessary to change the degrees of freedom
used to describe the interactions. This change in favor of quarks and QCD represent
a familiar case of UV completion that one does when the energy of the processes with
pions crosses the dynamical scale of QCD, ΛQCD.

In a similar fashion we can imagine that the Higgs sector consists of composite
objects that play the role of the pions and experience a coupling that stay perturbative
up to energies comparable with the dynamical scale of the analogous of QCD and at
larger energies hits a Landau pole. As in the previous case we can make sense of this
phenomenon providing a UV completion whose onset lies at energies well below the
Landau pole of the sector of composites.

This idea is the basic of the so-called "fat Higgs" scenario, that solves the problem
of lifting the tree-level mass of the Higgs boson taking an NMSSM set-up where the
three Higgs statesHu,Hd,S are composites formed at some scale Λ� mW and giving
them a large self-coupling at the Fermi scale, such that the increase in the Higgs mass
can be substantial. The RGE of the self coupling sets the order of magnitude for the
scale of the onset of the UV completion that can be estimated running the self-coupling
and finding the scale where it reaches 4π.

Concrete examples of fat Higgs models have a confining gauge theory in the UV
with matter degrees of freedom which form condensates with the quantum numbers
of the Higgs states of the NMSSM. The UV theory is defined choosing an appropriate
number of flavors, to be UV free and to have a IR conformal phase. In this way the
scale of compositeness is generated by the evolution of the UV gauge coupling and
the value of the couplings at this scale have only little sensitivity to the choice of the
UV boundary conditions.
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It is important to stress that these are just the details of this particular realization of
the idea and nothing prevents the UV completion to be something completely different
still sharing the same IR properties of the models studied in the literature. In this
respect the effective low energy approach of λSUSY proves particularly useful as it
encompasses all the testable features of this class of models and disregards the details
of the UV theory.

However we believe that the issue of the gauge coupling unification, although not
directly testable at low energy, deserves some discussion as it is a conceptually impor-
tant feature of the UV completion. Furthermore the measures of the gauge couplings
performed at LEP provide a strong hint for this unification to happen. This fact is very
evocative of the features of the UV theory and we believe that is not very plausible that
the results of LEP are fooling us.

In the original formulation of the fat Higgs [12] and in some of its variants [14] the
unification of gauge couplings can be achieved but only with addition of rather ad-hoc
matter that compensate for the fact that some state charged under the standard model
gauge group, such as the three Higgs states of the NMSSM or the third generation
quarks, is not elementary. The existence of these models proves that unification is not
in contradiction with the idea of the fat Higgs. However we consider very important
that one can formulate models where the unification is reached in a way very close to
what happens in the MSSM [11] and in the following we shall give more details on the
so-called "new fat Higgs".

Another major difficulty with the original fat Higgs scenario that motivates in going
beyond it is the generation of large Yukawa couplings. As a matter of facts the large
top mass can hardly fit in the original scenario because the top quark is an elemen-
tary fermion while the MSSM Higgs boson Hu is a composite that is formed at the
dynamical scale of the model ΛFH where the fundamental constituents go to strong
coupling. As such the interaction of the composite Higgs and the top quark is actually
an interaction with the constituents of the Higgs and can be estimated as

(4.1.1) ytop '
ytm · yhm

M

ΛFH
4π

where M is the mass of the mediator state that interact directly with both the con-
stituents of the Higgs and with the top and ytm and yhm are the coupling of the medi-
ator with the top and the components of the Higgs. Generically on can expect to have
the mass of the mediator to be above, and not necessarily close to, the dynamical
scale of the Fat Higgs model implying a certain difficulty to get a large effective Yukawa
for the top quark. Furthermore the direct couplings of the messenger need to be large
in order to achieve a sizeable effective Yukawa coupling and this is not generic as well.

The simple solution pursued in the “new fat Higgs model” is to arrange for the
MSSM Higgs boson to be elementary in such a way that the standard Yukawa interac-
tion can be written in the Lagrangian in the usual way. Pursuing this solution the only
composite state of the model is the SM singlet, who has no effect in the RGE. Thus the
running of the gauge coupling follows the same pattern of the MSSM, in other words
making the MSSM Higgs bosons elementary one gets back for free the standard pat-
tern of gauge coupling unification 1.

1Subtleties connected with the presence of a strong coupling phase in the rest of the Higgs sector can
be raised, however they are at the same level of uncertainty of the anyway unknown threshold corrections
due to the unknown matter content present in the energy range from the weak scale to the scale of unification.



4.2. A SPECIFIC FAT HIGGS MODEL 41

Alternatively one can solve the issue of the mass of the top quark giving some
degree of compositeness to the third family of quarks or to part of it [14]. In this way
a large top mass can be understood in terms of large couplings in a composite sector.
However to reach the unification the model needs some ad-hoc adjustment. Therefore
this latter possibility will not be discussed here and we shall concentrate on the "new
fat Higgs" model.

4.2. A specific fat Higgs model

The new fat Higgs model consists in taking SM SU(2) doubletsX,Xc and singlets
φ, φc with the superpotential

(4.2.1) W = λ1φHuX + λ2φHdX
c +MXXX

c + ...

For the sake of gauge coupling unification à la MSSM one can add X̃, X̃c to com-
plete a fundamental of SU(5) with the X and Xc, though this is not necessary for the
argument about the generation of large Yukawa couplings. Altogether we have

(4.2.2) φ ∼ (1, 1, 0) , X ∼ (1, 2,−1

2
) , X̃ ∼ (3, 1,

1

3
)

under SU(3) × SU(2) × U(1). All the fields X, X̃, φ transforming as fundamentals
under a new strong gauge group SU(4) under which the field content of the MSSM is
completely singlet.

Below the scale MX the heavy X,Xc fields can be integrated out generating the
effective superpotential term

(4.2.3) Weff =
λ1λ2

MX
HuHdφφ

c .

The bilinear φφc has the quantum numbers of the SM singlet of the NMSSM and if
one can arrange the strong SU(4) dynamics to make it form a composite the effective
Yukawa coupling generated is

(4.2.4) λeff =
λ1λ2

MX

ΛFH
4π

.

The size of the effective Yukawa coupling is controlled by the size of the Yukawa cou-
plings in the fundamental theory and is remarkable that the strong dynamics of SU(4)
can be used at the same time to have large couplings λ1,2. Indeed λ1,2 can be taken
as UV-free Yukawa couplings that run to a quasi-fixed point in the IR pretty much in the
same way the top Yukawa coupling could be generated in the SM [48]. Indeed in the
context of supersymmetric strongly coupled gauge theories this kind of argument is put
on firmer ground compared to the SM case by the existence of methods to account for
the non-perturbative effects in the RGE. The RGE of λ1,2 is

(4.2.5)
dλ1,2

dt
= λ1,2

(
7

16π2
λ2

1,2 + γ∗

)
where γ∗ is the contribution to the anomalous dimension from non perturbative dynam-
ics. The RGE has an IR fixed point for

(4.2.6) λ2
1,2 = −16π2

7
γ∗

whose value can be computed using the results of [49]. The anomalous dimension of
a gauge invariant operator made of chiral superfield in a strongly coupled supersym-
metric SU(Nc) gauge theory with Nf active flavors is given by γ∗ = 1 − 3Nc/Nf . In
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a SU(4) gauge theory with just the fields φ,X, X̃ that transform in the fundamental of
SU(4) and as in eq.(4.2.2) under the SM gauge group we would have Nf = 6 above
MX and Nf = 1 below MX , where the 5-plet X ⊕ X̃ is decoupled. In this case the
theory below MX would not have Nf > Nc that is a necessary condition to have a
s-confining supersymmetric gauge theory. In order to achieve the s-confining phase is
necessary to add 4 additional flavors active below MX such that the theory goes to
a s-confining phase in the IR and gives negative values of γ∗ that drive the Yukawa
couplings to be UV-free and to have the desired IR fixed point.

The presence of additional flavors lead to a larger sets of gauge invariant operators
made of chiral superfields and thus to a larger set of composites than just the needed
singlet of the NMSSM. We shall not comment further on their presence assuming that
they are made heavy enough to not be of relevance for the phenomenology.

Using the IR fixed point of the fundamental Yukawa couplings one can see that the
maximal effective coupling in the NMSSM at the scale ΛFH is

(4.2.7) λmax '
4π

7
γ∗ < max(λ1, λ2) .

Running this coupling down to the electroweak scale can give sizeable couplings λ ∼ 2
that are of phenomenological interest as they lead to a very non standard supersym-
metric Higgs sector.



CHAPTER 5

The effective low-energy approach of λSUSY

5.1. The NMSSM

A recent review on the NMSSM can be found in [50], but for sake of completeness
and to fix our notation, we give here some details on the model.

We take SU(3)C × SU(2)L × U(1)Y as gauge group. We consider the same
matter sector of the MSSM and a Higgs sector made of the Higgs fields of the MSSM
plus a singlet chiral field denoted by S. The most general superpotential that we can
assign to the theory is

(5.1.1) Wgen(Φi) = µH1 ·H2 +
M

2
S2 + λSH1 ·H2 +

k

3
S3 ,

where H1 and H2 are the Higgs superfields with −1/2 and 1/2 hypercharge respec-
tively.

This superpotential generalizes the superpotential of the MSSM and still contains
dimensionful parameters such as µ and M . These parameters appear in the superpo-
tential and therefore they are not subject to large effect from renormalization. However
their size is crucial to have an acceptable phenomenology. For instance studying the
minimization of the potential of the MSSM one can see that µ needs to be close to the
electroweak scale and such a coincidence of scales calls for an explanation. One of
the topics of the rest of our work will be study of a dynamical mechanism to generate
these terms.

The D-terms of the model are exactly the same of the MSSM:

VY =
1

8
g2

1(|H2|2 − |H1|2)2 ,(5.1.2)

V2 =
1

8
g2

2

(
H†1T

iH1 +H†2T
iH2

)2

,(5.1.3)

where T i = σi

2 . Using the identity for canonical generators of SU(2)
∑
i T

i
abT

i
cd =

2δadδbc − δabδcd, we can write the total gauge potential as

(5.1.4) VD ≡ VY + V2 =
1

8

(
g2

2 + g2
1

)
(|H2|2 − |H1|2)2 +

1

2
g2

2 |H
†
1H2|2 .

5.2. λSUSY

As explained in the Introduction and Section 3.6.3, there is a class of extensions of
the MSSM that contains large extra contributions to the quartic part of the Higgs
potential. These models are not fundamental models in the sense that they
reach a strong-coupling regime well below the scale of the unification of the
gauge couplings. All of them have a different dynamic in the UV but they all
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share the fundamental feature of having a sector with a Higgs sector with a
strongish self-interaction at the Fermi scale. The UV dynamics sets-in at some
scale Λ and below this scale we can make use of an effective theory where the
heavy degrees of freedom of the UV have been integrated out.

In the effective theory the details of the UV-completion are lost and the
theory contains just the superpotential term λSH1 ·H2, where the fields S, H1

and H2 are suitable combinations of the fundamental degrees of freedom. Ref.
[1] studied the class of effective theories characterized by the superpotential:

(5.2.1) W = µ(S)H1H2 + f(S) ,

where f is a generic function of the field S. For later convenience we define
λ = dµ/dS.

5.3. Spectrum of the scalar sector

From the superpotential 5.2.1 we can compute the F-terms contribution to
the potential
(5.3.1)
VF = µ2

1(S)|H1|2 + µ2
2(S)|H2|2 − (µ2

3(S)H1H2 + h.c.) + λ2|H1H2|2 + V (S).

For our purpose we shall neglect the D-term contributions to the quartic term
of eq. (5.1.4), which are small compared to the superpotential contribution
for the largish values of λ ∼ 2 that we shall consider in our analysis 1. The
mass parameters of the potential also include contributions from the soft SUSY-
breaking Lagrangian. For simplicity, we assume CP invariance of V and W .

Many of the phenomenologically relevant properties of λSUSY can be char-
acterized by the functions µ2

i (S), µ(S), and M(S) = f ′′(S) evaluated at the
Vacuum Expectation Value (VEV) s of the field S. These background values
will be denoted below as µ2

i , µ and M leaving their argument s understood.
For example, the electroweak symmetry breaking (EWSB) is described by the
equations

tanβ ≡ v2

v1
=
µ1

µ2
,(5.3.2)

λ2v2 =
2µ2

3

sin 2β
− µ2

1 − µ2
2 ,(5.3.3)

where v1,2 are the VEVs of the Higgs fields (v ≡ (v2
1 + v2

2)1/2 = 175 GeV).
The mass of the charged Higgs bosons H± is

m2
H± = µ2

1 + µ2
2.

In this Chapter we shall simplify the analysis of the the general superpoten-
tial 5.2.1 making the approximation of negligible mixing of the singlet with the
doublet scalars. This decoupling can be realized in explicit model where the
superpotential mass of the singlet M is large. As a matter of fact this mass can
be few TeV without reintroducing any fine-tuning [1]. For such large masses

1The D-terms increase the mass of the lightest Higgs boson of the model by 5− 10 GeV compared to
the expressions given below.
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we can legitimately neglect the mixing between the neutral components of the
Higgs doublets and the real and imaginary components of S. Indeed a nu-
merical analysis shows that the decrease in the masses of h,H,A due to this
mixing does not typically exceed 5 − 10 % and that the singlet admixture in
h,H,A stays below 0.2− 0.3.

Neglecting the singlet-doublet mixing the masses of the light neutral scalars
can be expressed via µ2

i . In particular the mass of the pseudo-scalar A is then
given by

m2
A =

2µ2
3

sin 2β
= m2

H± + λ2v2.

The CP-even states hi have mass matrix(
m2
A sin2β (λ2v2 − 1

2m
2
A) sin 2β

(λ2v2 − 1
2m

2
A) sin 2β m2

A cos2β

)
.

The masses and compositions of the mass eigenstates h,H are

m2
H,h =

1

2
(m2

A ±X), X2 = m4
A − 4λ2v2m2

H± sin2 2β ,(5.3.4)

H = cosαh1 + sinαh2, h = − sinαh1 + cosαh2 ,

tanα =
m2
A cos 2β +X

(λ2v2 −m2
H±) sin 2β

.

It is convenient to parametrize the scalar sector of the model in terms of the
parameters tanβ and mH+ .

Anticipating the result of the EWPT analysis, we observe from Figure 5.6.1
that large values of tanβ tends to give too large values to T and are disfavored.
The analysis of the supersymmetric contributions to the b→ sγ transition, and
in particular that of the charged Higgs boson, suggests a conservative bound
on the mass of the charged Higgs boson [51]

(5.3.5) mH+ & 350 GeV .

Taking these phenomenological indications together with Naturalness con-
siderations the preferred parameter space is given by:

1.5 . tanβ . 3 ,(5.3.6)

350 GeV . mH± . 700 GeV.

The masses of neutral scalars in this range of parameters are given in
Figure 5.3.1 and Figure 5.3.2. The key feature of the spectrum is that the
lightest Higgs boson h is in the 200− 300GeV range, hence much heavier than
in MSSM or the perturbative NMSSM. Another notable feature of the spectrum
which is shown in Fig. 5.3.2 is the fixed ordering of the spectrum:

mh < mH+ < mH < mA .
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FIGURE 5.3.1. The mass of the lightest CP-even scalar h in the pre-
ferred region (5.3.6) of the parameter space. The coupling λ is fixed
at λ = 2.
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coupling λ is fixed at λ = 2.

5.4. Spectrum of the Higgsino/Singlino sector

In the fermion sector of λSUSY, we shall assume for simplicity that the
electroweak gauginos are heavy and we shall neglect their mixing with the Hig-
gsinos. This is justifiable since the Higgsinos are mixed with the Singlino S̃ by
terms proportional to λv, while mixing with the gauginos are controlled by the
relatively small terms of order gv.
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In this approximation the lightest chargino is just a pure charged Higgsino
and has mass µ. We shall denote it as χ+.

We define the states

(5.4.1) N1 =
1√
2

(
H̃1 − H̃2

)
, N2 =

1√
2

(
H̃1 + H̃2

)
, N3 = S̃ .

In the basis (N1, N2, N3) the neutral Higgsino mass matrix is

(5.4.2) MN =

 µ 0 v√
2
λ(cβ − sβ)

0 −µ − v√
2
λ(cβ + sβ)

v√
2
λ(cβ − sβ) − v√

2
λ(cβ + sβ) M

 .

From this mass matrix one can see that there is a massless Higgsino state if
holds the condition

(5.4.3) µ = −v
2λ2 sin 2β

M
.

Furthermore the lightest neutralino is always lighter than the chargino

(5.4.4) mχ0
1
≤ mχ± .

Studying the stability of the potential one can see that exists an upper bound
for the chargino mass

(5.4.5) mχ± ≤ cosβ mH± ,

which together with eq. (5.4.4) implies that the lightest neutralino typically has
a mass in 100− 200 GeV range.

5.5. Other SUSY particles

The masses of the top squarks and of the gluino masses affects the running
of µ2

2 at the one- and two-loop level, respectively, and can thus be bounded
from Naturalness considerations. For 20% fine tuning (∆ = 5) and tanβ as in
(5.3.6) these masses have to satisfy [1]

mt̃ . 600− 800 GeV ,(5.5.1)

mg̃ . 1.2− 1.6 TeV

(looser bounds corresponding to smaller tanβ). For larger fine tuning ∆ these
bounds increase by a factor

√
∆/5.

The masses of the electroweak gauginos, sleptons and all the other squarks
except for the stops are taken to be several TeV. This is very similar to the ap-
proach of the "effective" supersymmetry [52] originally proposed to address the
SUSY flavour problem. The analysis of [53] assesses that this separation of
the spectrum can be done without introducing significant tuning.
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FIGURE 5.6.1. Result of the EWPT analysis of λSUSY. Red curves
are the prediction of λSUSY for tanβ as in the label and variable
mH+ . The red points corresponds to mH+ = 350, 500, 700 GeV. For
comparison, in black, is shown the SM with mh from 100 GeV to 350
GeV with a stepping of 50 GeV.

5.6. EWPT

We have seen in the previous sections that λSUSY can have a Higgs boson
as heavy as 300 GeV. In the pure SM such a mass of the Higgs boson would be
hardly compatible with the EWPT because of a too large value of the parameter
S. However this is not the case in λSUSY or in any other model that generate
a significant contribution to T together with the contribution to S from the heavy
Higgs.

In this respect λSUSY is very naturally in agreement with LEP precision
data thanks to the combined effect of the Higgs/Higgsino sector on both the
parameter T and the parameter S. As a matter of fact the potentially danger-
ous contribution to S coming from the heavy Higgs boson is controlled by the
coupling λ, that is the same parameter controlling the mass splittings between
the states of the Higgs sector and between the states in the Higgsino sector.
As such the Higgs sector and the Higgsino sector will give contributions to T
that bring the model back inside the ellipses of the S − T plane.

This effect does not rely on any tuning because both the positive shift to T
and the positive shift to S are controlled by λ. The systematic entanglement
of the two contributions is apparent in Figure 5.6.1 where we report the result
of [1] for the total contribution to the EWPT arising from the scalar sector.



CHAPTER 6

λSUSY with a scale-invariant superpotential

In this chapter we study the possibility to dynamically generate the µ term
in λSUSY. As starting point we specialize the superpotential of λSUSY to a
superpotential without dimensionful parameters. To forbid all the superpoten-
tial terms with a dimensionful constant we impose a continuous R-symmetry.
Consequently our superpotential is

(6.0.1) WNMSSM(Φi) = λSH1 ·H2 +
k

3
S3 .

The corresponding soft supersymmetry breaking potential is 1

(6.0.2) Vsoft = m2
1 |H1|2 +m2

2 |H2|2 +µ2
S |S|

2− (AλSH1H2 +G
k

3
S3 +h.c.) .

The D-terms of our model are exactly the same of the MSSM and have
already been given in eq. (5.1.4).

The total scalar potential of the theory will also include several terms involv-
ing the squark and slepton fields, but for our purposes it will not be necessary
to deal with them. In the following we shall assume for simplicity that all the
parameters of the Higgs-Higgsino potential are real. In addition, we conven-
tionally choose the coupling λ to be positive and in all our examples we shall
take positive k. A complementary study that deals with the case of negative k
can be found in Ref. [55], that finds conclusions similar to ours.

6.1. Stability of the scalar potential

The first requirement we have to impose to the scalar potential is that it is
bounded from below. At large values of the fields the quartic part of the potential
dominates and, since its coupling is not negative, the only way to destabilize the
potential is to make the quartic part vanishing along some direction. However,
the quartic potential of the NMSSM is the sum of D-terms and F-terms which
are each positive definite and, as we shall recall in the following, they cannot
vanish at the same time, if not for the trivial field configuration. As such, the
global stability of the potential is guaranteed by the supersymmetric structure
of the theory and no constraint for the soft terms emerges.

1Note that this definition of the NMSSM superpotential and soft masses is not the same of the Les
Houches Accord [54]. The parameters must be mapped according to: k → k, λ → −λ,A → −Aλ, G →
−Ak and consistently µ→ −µ.

49



50 6. λSUSY WITH A SCALE-INVARIANT SUPERPOTENTIAL

The global stability of the potential can be explicitly shown as follows. The
quartic part of the potential is given by V (4) = VF + VD where we denote the
contributions from the F-terms and D-terms as VF and VD respectively. Since

VF =
∑

i

∣∣∣∂W∂Φi

∣∣∣2 ≡∑i |Fi|
2, the F-term part of the potential vanishes only if all

the Fi vanish. This condition is satisfied, in general, along the direction

(6.1.1) S = 0 , H1 ·H2 = 0 ,

and for k = 0 also along the direction of generic S and

(6.1.2) H1 = 0 , H2 = 0 .

The D-term part of the potential in eq. (5.1.4) is a sum of positive terms as
well. Requiring each term to vanish, one finds that VD vanishes only along the
non-trivial direction

H†1H2 = 0 ,(6.1.3)

|H1| − |H2| = 0.

Consequently, for k 6= 0 the function V (4) vanishes only if both the condi-
tions (6.1.1) and (6.1.3) hold, and this is only possible for the trivial configuration

(6.1.4) H1 = 0 , H2 = 0 , S = 0 .

Namely, in the k 6= 0 case there is no non-trivial direction in field space along
which the whole quartic potential vanishes. Consequently the potential is al-
ways positive at large values of the fields, and there are no constraints on the
parameter space resulting from the condition of stability of the potential.

In the k = 0 case, instead, there is the additional F-flat direction of (6.1.2).
Along this direction the condition for vanishing VD (eq. (6.1.3)) is always valid
and therefore the whole quartic potential vanishes. As such, the large field
behavior of the potential along this direction is dictated by the soft terms. Re-
quiring the potential to be positive for large field values yields the condition
µ2
S > 0.

6.2. The minimum of the potential

The minimum of the potential has to be a stationary point, therefore the
extremal point conditions with respect to Hi = (H0

1 , H
0
2 , S) must hold in a non-

trivial point (v1, v2, s)

(6.2.1)
∂

∂Hi
V |H0

1=v1, H0
2=v2, S=s = 0 ,

which are equivalent to

sin 2β =
2sλ(A− ks)

m2
1 +m2

2 + 2s2λ2 + v2λ2
,(6.2.2)

λ2v2 =
2sλ(A− ks)

sin 2β
+
m2

1 −m2
2

cos 2β
+m2

Z ,(6.2.3)
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and

(6.2.4) 4k2s3 − 2Gks2 + 2s
(
v2λ(k sin 2β + λ) + µ2

S

)
−Av2λ sin 2β = 0 .

The three conditions (6.2.2)-(6.2.4) will be used as relations to trade v,
tanβ and s for the soft parameters m1,m2 and µS .

For k = 0 we can write explicitly the solution of the last equation for the
VEV s

(6.2.5) s =
Aλv2 sin 2β

2
(
µ2
S + v2λ2

) .
Instead in the general case of k 6= 0 there are three different solutions of

(6.2.4). As in the following we shall impose the CP invariance of the vacuum,
we shall take the only real solution for s. This, however, will not be reported in
the text, because of its quite complicated and not transparent expression.

This stationary point has to be a minimum and therefore we shall require the
Hessian to be positive definite. In addition we want it to be a global minimum,
hence we require it to be deeper than the origin

(6.2.6) V (v1, v2, s) < V (0, 0, 0) = 0 .

This latter condition reads

(6.2.7) µ2
Ss

2 + k2s4 − 2G
k

3
s3 − λ2

4
v4 sin2 2β −

m2
Zv

2

4
cos2 2β < 0 ,

while the condition on the Hessian happens to have a rather complicated ex-
pression when k 6= 0 and therefore we do not give it explicitly here.

Additionally we have to require that no other stationary point of the potential
is a minimum deeper than the electroweak symmetry breaking minimum. In
particular we shall to require that

(6.2.8) V (0, 0, s) > V (v1, v2, s)

for all solutions s of eq.(6.2.4).

For the potential to break the electroweak symmetry we have to ensure
that the neutral Higgs boson potential has a global minimum in a point with non
vanishing VEVs v1 and v2. Due to the structure of the potential the stability
condition on the SU(2) breaking point implies that CP is not broken at this
point [41]. The conservation of CP allow us to treat the real and imaginary part
of the scalar fields as non-mixing fields such that their mass matrices will be
respectively a 3-by-3 and a 2-by-2 matrices, as opposed to the general case
where a 5-by-5 mass matrix is needed.

In what follows we shall use the fact that CP conservation is a neces-
sary condition for the stability of the minimum to derive constraints on the soft
masses. This requirement amounts to impose that the VEVs of the scalar fields
at the minimum of the potential have zero imaginary parts. The set of con-
straints from CP conservation are necessary conditions for the stability of the
minimum and can result in analytically simpler expressions than those coming
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from the constraint of the stability of the minimum, thus allowing a simpler dis-
cussion of some feature of the allowed region of the parameter space, see for
instance the discussion around eq. (6.3.2).

The requirement of real VEVs v1 and v2 is given by

λs(A− ks) >

√
λs
A− ks
tanβ

− λ2v2 cos2 β +
m2
Z

2
cos 2β×(6.2.9)

×
√

(A− ks)λs tanβ − λ2v2 sin2 β −
m2
Z

2
cos 2β ,

where s is expressed by the real solution of (6.2.4).
To discuss the conservation of the U(1)em symmetry we go to the basis

where only one Higgs doublet gets a VEV, v. In addition we exploit gauge
invariance to set to zero the charged component of this same Higgs doublet
such that we are left with a single charged scalar field that we call φ±. The
absence of a VEV for φ± is then expressed by the condition

(6.2.10)
∂2V

∂φ±∂φ±†

∣∣∣∣
φ±=0

> 0 ,

which yields the condition on the soft breaking parameters

(6.2.11) A >
λv2

2s
sin 2β + ks−

m2
W

2λs
sin 2β .

For the discussion of spontaneous CP breaking we set all the parameter of
the Higgs potential to be real, we assume the condition (6.2.11) for the conser-
vation of the electromagnetism to hold, so that we can write the potential at the
minimum as

Vneutral = λ2|S|2(|H0
1 |2 + |H0

2 |2) + λ2|H0
1H

0
2 |2 +

+ m2
1|H0

1 |2 +m2
2|H0

2 |2 + µ2
S |S|2 + k2|S|4 +

− (AλSH0
1H

0
2 +G

k

3
S3 − λkS2H0†

1 H
0†
2 + h.c.) +

+
g2

1 + g2
2

8
(|H0

1 |2 − |H0
2 |2)2 .(6.2.12)

With a suitable U(1) rotation of the scalar fields we can cancel the imag-
inary part of H0

1 , so that we can write the three Higgs fields at the minimum
as

H1 = (v1, 0) ,(6.2.13)

H2 = (0, v2e
ıφ) ,

S = seıθ ,

where v1, v2 and s are taken real and positive.
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Replacing these fields in the scalar potential (6.2.12), and requiring a min-
imum in correspondence of the point φ = θ = 0, we find that for k 6= 0 the
conditions

3Gks2 − 5kλv1v2s+ 2Aλv1v2 > 0 ,(6.2.14)

λk (Gs(A− ks)− 3Aλv1v2) > 0(6.2.15)

that ensures that CP is not broken at the minimum and are necessary condi-
tions for the stability of the extremal point. In the particular case of k = 0, these
conditions get simplified to just the requirement that A > 0.

6.3. Parameter space

In this section we give explicit bounds on the parameter space arising from
the various constraints discussed in Section 6.2. Each point of the parameter
space is fixed by coordinates λ, k, tanβ, s,A and G that are in principle uncon-
strained, however we shall focus on particular regions described and motivated
in the following.

We are particularly interested in the large λ regime that helps in pushing the
Higgs sector beyond LEP direct searches. Ref. [1] shows that this can be done
for λ > 1 and a small tanβ. Remarkably this is precisely the regime where
contributions to the precision observables from the Higgs sector are better fit-
ting LEP data. In the same work, all the contributions to the T parameter were
worked out in a particular model coming from a superpotential with the Peccei-
Quinn (PQ) symmetry broken by the term MS2. In that case the PQ-symmetric
limit M → 0 resulted in too large contributions to the EW oblique parameter
T from the Higgsino sector. In close analogy, we shall explore the breaking of
the PQ symmetry through the coupling k, with particular attention to the case
of large k, where the symmetry is dramatically broken. A representative point
of the interesting region of the parameter space is

(6.3.1) λ = 2, tanβ = 1.5, k = 1.2 ,

which is singled out by the request of a moderate tanβ and the maximal values
of k and λ, such that the theory will stay perturbative at least up toO(10 TeV) 2.
Having fixed a region of the parameters space in the surroundings of the point
(6.3.1), the remaining parameter space is spanned by the VEV s and the soft
breaking parameters A and G. Since the soft breaking terms are naturally ex-
pected to be of the same order of magnitude, we decide to make the simplifying
assumption

(6.3.2) G = A .

In fact, a large hierarchy betweenA andG is not possible since the requirement
of absolute minimum given in (6.2.7) does not allow G� A and the constraint

2Precisely we require that starting the supersymmetric one-loop RGE with boundary condition
eq.(6.3.1) at 500 GeV the couplings are less than 4π at 10 TeV.
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from CP invariance of (6.2.15) does not allow G � A. Variations on the as-
sumption (6.3.2) are conceivable but we checked that they do not lead to any
important change in our analysis.

Finally we decide to parametrize the two dimensional parameter space s, A
in terms of the parameters µ andmH+ that are parameters with direct relevance
for the spectrum of the model and defined by

(6.3.3) µ = λs , m2
H+ = m2

W − λ2v2 +
2µ(A− k

λµ)

sin 2β
.

For later convenience we also introduce the combination of parameters

(6.3.4) m̃2
A = m2

H+ −m2
W + λ2v2 .

The green shaded region in figure 6.3.1 shows the physical parameter space
for the particular choice of parameters in (6.3.1) and (6.3.2). The lower-bound
onmH+ is given by the condition of absence of spontaneous CP violation given
in (6.2.15), that in the new variables, after imposing the condition G = A, reads
simply

(6.3.5) m2
H+ > 2λ2v2 +m2

W .

The other bound mainly shaping the allowed parameters space is given by the
two conditions of absolute minimum of eq. (6.2.7) and eq. (6.2.8). The former
in the new variables has the simple approximate form

(6.3.6) m2
H+ < m2

W + 4
µ2

sin2 2β
+

m2
Z

tan2 2β
+O

(
1

λ

)
and cuts values of mH+ in the upper part of the plane in Figure 6.3.1. The
condition eq. (6.2.8) to not have further minima of the potential that are more
shallow than the electroweak breaking minimum cuts the strip of parameter
space that divides the two disconnected allowed regions.

The union of the requirements (6.3.5) and (6.3.6) gives a minimal allowed
value for µ on which we further comment in Section 6.4.

6.4. Generation of the µ term

One of the original motivations of the NMSSM is the possibility to dynam-
ically generate an effective µ term in the Lagrangian at the Fermi scale. This
possibility is very interesting because in the MSSM such a term has to be fixed
by hand to a value close to mZ or the model would be badly unrealistic. Indeed
such a term gives mass to the chargino and is crucial to have a correct EWSB.
On the other hand in the NMSSM an effective µ-term is dynamically generated
by EWSB through the VEV of the Higgs singlet resulting in

(6.4.1) µ = λs .

This dynamical generation of µ in connection to EWSB is particularly welcome
also in view of fine-tuning problems. In facts the minimization equation (6.2.2)
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FIGURE 6.3.1. Region of the µ,mH+ parameter space allowed by
the conditions on the vacuum discussed in Section 6.2 for parameters
fixed according to eqs. (6.3.1) and (6.3.2).

can be rewritten as

(6.4.2) µ2 +
1

2
m2
Z −

m2
1 −m2

2 tan2 β

tan2 β − 1
= 0 ,

which shows that in a natural theory µ ∼ mZ . Generating the µ term via EWSB
relates the size of µ to that of the soft terms and therefore solves at the same
time the issue of the presence of the term and the issue of its size.

In the traditional approach to the µ-problem within the NMSSM one requires
that the coupling λ has to stay perturbative up the GUT scale, which means
λ . 0.7 at the EW scale [15]. As such, to obtain a value of µ compatible
with current searches and with the requirement of EWSB, one has to go in
the regime s & v. In particular, to have λs ∼ mZ when λ → 0 one expects
s � v, so that the minimization equation (6.2.4) has an approximate stable
solution [56]

(6.4.3) s ' 1

4k
(G+

√
G2 − 8µ2

S) .

This approximate solution generates larger values of µ as one takes larger
λ and therefore seems to signal that the theory will be fine-tuned when a too
large λ is considered. However this is not worrisome because the approximate
solution (6.4.3) cannot be valid for any large value of λ as the approximation
s� v breaks down.

Indeed one can consider the minimization equation (6.2.4) in the large λ
regime for generic s and find an approximate solution

(6.4.4) s ' 1

2

A sin 2β

k sin 2β + λ
,

that in the limit λ→∞ gives

µ∞ ≡ λ lim
λ→∞

s =
1

2
A sin 2β .



56 6. λSUSY WITH A SCALE-INVARIANT SUPERPOTENTIAL

The existence of such finite limit is not surprising as we have already no-
ticed in Section 6.3 that µ cannot be taken arbitrarily large because of the in-
compatibility of the requirement of absolute minimum (6.2.6) and the require-
ment of positives masses squared of the CP-even scalars. Indeed one can be
more quantitative and show that the presence of such maximal value of µ is a
generic feature of the model due to the largeness of λ and that the value of the
maximal µ is linked to the maximal mass of lightest Higgs boson.

The actual maximal allowed value of µ can be estimated observing that in
the region close to the boundary defined by the condition of absolute minimum
given in (6.2.7) and for k < λ the condition m2

s1 > 0 can be approximated by

(6.4.5)
√
m2
H+ −m2

W + λ2v2 > µ
3− k/λ
sin 2β

+
3

2
vλ(k/λ− 1) .

This is a lower-bound on mH+ that, for values of µ large enough, gets incom-
patible with the condition (6.2.7) for the minimum of the potential. The value of
µ where the two conditions get incompatible can be estimated taking (6.2.7) in
the approximate form given by the upper-bound on mH+ of (6.3.6), yielding a
relatively simple condition in terms of ρ ≡ k/λ

(6.4.6)

µ <
vλ sin 2β

2

3(ρ− 4)ρ+
√

8(ρ− 1)(5ρ− 7) + 9

(ρ− 5)(ρ− 1)
' 3

2
vλ sin 2β +O

(
k

λ

)
,

from which we observe that for generic tanβ and generic k < λ the model has
a maximal allowed value of µ of the order of λv.

Furthermore, from the requirements of absolute minimum and of the ab-
sence of spontaneous CP breaking given in (6.2.7) and (6.2.15), we can see
that there is a minimum allowed value for µ that can be estimated taking the
approximate condition in (6.3.6) in place of (6.2.7) giving

(6.4.7) µ2 >
λ2v2

2
sin2 2β −

m2
Z

4
cos2 2β .

Taking together this result and the condition (6.4.6) for the absolute mini-
mum, we find that the model is consistent only for values of µ within an interval
that, neglecting the term mZ cos 2β/2, reads

(6.4.8)
λv√

2
sin 2β . µ .

3λv

2
sin 2β .

In the large λ regime this relation automatically ensures that the chargino
with mass µ is above the LEP bound (see later eq. (7.2.2)) and, at the same
time, gives an upper-bound for µ linked to the mass of the lightest Higgs boson.
In this sense eq. (6.4.8) shows that, specializing the generic λSUSY super-
potential in (5.1.1) to a superpotential without dimensionful parameter gives a
model where the µ term is phenomenologically acceptable and is necessarily
close to mZ , thus solving the so-called “µ-problem”. It is important to stress
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that eq. (6.4.8) holds only for k < λ and that this is generically the case in the
large λ regime of λSUSY.

Furthermore, we can use (6.4.8) to establish a relation between the mass
of the chargino and the mass of the lightest Higgs

(6.4.9) mχ+ ∼ ms1 ,

which is of phenomenological interest for collider searches.

6.5. Naturalness

In this Section we want to quantify the degree of tuning of the fundamental
parameters needed to get a realistic model. In particular we want to quantify
how much tuning is needed to enforce the VEV of our fields to be of the order
of the electroweak scale. The VEVs encode the dynamics of the breaking of
the electroweak symmetry and therefore are the quantities where the tuning is
expected to show up.

From the minimization equations (6.2.2), (6.2.4), and (6.2.3) we see that
when the coupling λ is large the value of the VEVs can be understood by the
approximate relations

(6.5.1) v '
msoft

λ
, s '

msoft

λ
,

where by msoft we denote some suitable combination of the soft masses.
The non observation of superpartners neither at LEP nor at TeVatron gener-

ically requires a separation between the scale of the soft masses and the Fermi
scale. From eq. (6.5.1) it is apparent that the choice of large λ naturally yields
a moderate separation between the scale of the soft terms and the scale of
the VEV. Thus in the large λ regime the needed separation of scales can be
achieved with a low degree of tuning. The relation eq. (6.5.1) also shows that
in the limit of large λ is generic to have the VEV s and the VEV v of the same
order, as required by eq. (6.4.8) to solve the µ problem.

To quantify the tuning we want to study the sensitivity of the value of the
VEV to the change of the fundamental parameters of the soft potential of the
model. In particular we adopt the approach of [57] and for a fixed maximum
amount of fine tuning 1

∆ we impose

(6.5.2) ∆aj ≡

∣∣∣∣∣a2
j

v2

d v2(ai)

d a2
j

∣∣∣∣∣ < ∆ .

We shall consider the sensitivity to the parameters aj = (µS ,m1,m2, G,A).
To compute the several logarithmic derivatives in (6.5.2), we have to consider
the conditions of minimization of the potential (6.2.2) and (6.2.4).

To remove the implicit dependence on the soft parameters that feeds in the
expression for the VEV v through the angle β we first combine eq. (6.2.2) and
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eq. (6.2.3) in the new relation

(6.5.3) cos2 β =
m2

2 +m2
Z/2 + λ2s2

m2
1 +m2

2 +m2
Z + 2λ2s2

.

This relation is used to remove the dependence on β contained in the eqs.
(6.2.3) and (6.2.4). Then we use eq. (6.2.3) to eliminate the dependence on
the VEV v in the relation for the VEV s given by equation (6.2.4). After this
treatment we can directly compute the several derivatives of s with respect to
the dimensional parameters of the Lagrangian ∂s/∂a2

j and express the level of
fine tuning ∆aj as

(6.5.4) ∆aj =

∣∣∣∣∣a2
j

v2

dv2(ai, s)

da2
j

∣∣∣∣∣ =

∣∣∣∣∣a2
j

v2

(
∂v2(ai, s)

∂a2
j

+
∂v2(ai, s)

∂s

∂s

∂a2
j

)∣∣∣∣∣ .
From our analysis it turns out that considering just the dimensional param-

eters m1,m2, G and µS the level of fine tuning required is in general very small
in all the parameter space allowed by the conditions on the scalar potential an-
alyzed in Section 6.2 and by the LEP bound on the mass of the lightest Higgs
given in (1.0.2). The parameter that needs the largest degree of tuning is the
soft trilinear coupling A. However the fine tuning required on this parameter
is always relatively small. For example, for the reference point in (6.3.1) it is
always smaller than ∼ 25 when the mass of the lightest Higgs is in agreement
with the LEP bound. Our result for the fine tuning on A is shown in Figure 6.5.1,
as a function of the mass of the lightest Higgs, for the representative point of the
parameter space presented in (6.3.1) for a representative choice of the mass
the chargino µ = 230 GeV (on the left panel) and µ = 400 GeV (on the right
panel). The result for fixed values of µ is rather representative of the general
case. Indeed we checked explicitly that in the region allowed by LEP the fine
tuning depends only mildly on the value of µ.

As expected from the considerations following eq. 6.5.1 the fine-tuning is
a decreasing function of the mass of the Higgs. With this result in mind we
can conclude that the non-observation of the the Higgs boson at LEP is pretty
Natural in this model. Indeed we shall see in the following Section 7.1 that
imposing the LEP bound on the Higgs mass will rule out only a tiny strip of the
parameter space.

6.5.1. Naturalness bounds on sparticles masses. Using Naturalness
arguments, we want to set upper bounds for the masses of sparticles. These
bounds are particularly relevant to understand the expected size of the contri-
butions of the sparticles to low-energy processes like the well studied flavour
transitions and LEP precision data. Moreover with these bounds at hand one
can estimate the timescale for the observation of such states at the LHC.

For the case of the stops-sbottoms, neglecting the mixing term proportional
to the A-term, the physical masses of the stop and the sbottom squark are
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FIGURE 6.5.1. Logarithmic derivative of the VEV of the Higgs with
respect to the dimensional parameter A as a function of the lightest
Higgs boson mass ms1 . The parameters are fixed as in the represen-
tative point eq. (6.3.1) and the chargino mass µ is fixed to 230 GeV
(on the left), and 400 GeV (on the right). The blue shaded area de-
notes the range of Higgs masses allowed by the constraints on the
scalar potential discussed in Section 6.2 for the parameters choice of
eq. (6.3.1) and the two choices of µ. The vertical dashed line is the
LEP limit of 114 GeV.

mt̃L
=

√
m2
Q̃

+m2
t +m2

Z cos 2β

(
1

2
− 2

3
sin2 θW

)
,(6.5.5)

mb̃L
=

√
m2
Q̃

+m2
b +m2

Z cos 2β

(
−1

2
+

1

3
sin2 θW

)
,(6.5.6)

We can put bounds on these masses observing that the soft mass mQ̃

affects the soft Higgs mass m2 through the one loop renormalization group
equation (RGE) [58]

(6.5.7)
dm2

2

dt
=

3

8π2
λ2
t (m

2
Q̃

+m2
t̃R

) + · · · ,

where the ellipsis stands for terms not dependent, in first approximation, on the
soft squark masses. One can integrate these equations up to the messenger
scale Λmess, obtaining, at the leading log,

(6.5.8) δm2
2 ' −

3

8π2
λ2
t (m

2
Q̃

+m2
t̃R

) ln
Λmess

1 TeV
.

To give an estimate of the bound on the masses of stops and sbottoms,
one can simply make the identification mQ̃ = mt̃R
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FIGURE 6.5.2. Upper bound on the mass of the stop (left panel) and
of the gluino (right panel) for Λmess ∼ 100 TeV an allowed fine tuning
of 10%, computed for the representative point in (6.3.1) and for the
chargino mass µ equal to 400 GeV. The blue shaded area denotes
the range of Higgs masses allowed by the constraints on the scalar
potential discussed in Section 6.2 for the parameters choice of eq.
(6.3.1) and the two choices of µ. The vertical dashed line is the LEP
limit of 114 GeV.

Imposing the Naturalness condition (6.5.2) with respect to the parameter
mQ̃ and using the approximate expression

(6.5.9)

∣∣∣∣∣m
2
Q̃

v2

d v2

dm2
Q̃

∣∣∣∣∣ ∼
∣∣∣∣∣m

2
Q̃

v2

d v2

dm2
2

dm2
2

dm2
Q̃

∣∣∣∣∣ ,
one can find analytically the bound

(6.5.10) mQ̃ ≤ v
√

4π2

3
sinβ

√
∆√

dv2

dm2
2

ln Λmess
1 TeV

.

The result for the bound on the mass of the stop for a messenger scale
of 100 TeV and an allowed fine tuning of 10% is shown in the left panel of
Figure 6.5.2 for the point of the parameter space presented in (6.3.1) and
µ = 400 GeV 3. From the figure it is evident that the upper bound on the stop
mass mt̃L

increases when one increases the value of the mass of the lightest
Higgs, and, for a Higgs mass satisfying the LEP bound, the stop mass bound
is mt̃ . 550 GeV − 1000 GeV for an allowed fine tuning of 10% depending on
the lightest Higgs boson mass.

It is clear from eq. (6.5.8) that in the case of the sleptons and the first
and second generation of squarks we would have a bound that is too loose to
be useful because of the smaller Yukawa couplings. However, extending eq.

3There are no relevant changes in the curve for the bound on the stop mass, for µ fixed to be equal to
the second reference value (230 GeV) discussed in the previous subsection.
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(6.5.8) to include two-loops gauge effects the recent analysis of [53] shows that
in our model Naturalness bounds on the sfermion masses are around 10 TeV.
We remark that squarks close to saturate these bounds are of no practical
impact for our analysis of EWPT and for LHC phenomenology, but are still of
potential relevance for flavor physics, which requires us to assume some struc-
ture in the sector of the first and second generation squarks to evade current
bounds.

The mass of the gluino mg̃ can be bounded as well as it contributes to m2

via a two-loop effect enhanced by the large QCD coupling constant. At two
loops, the main dependence of m2 on the gluino mass is given by [58]

(6.5.11)
dm2

2

dt
∼ 3

8π2

(
λ2
t (m

2
Q̃

+m2
t̃R

) + h2
t

)
+

1

8π4
g2
smg̃

(
2λ2

tmg̃ − λ†tht − λth
†
t

)
.

The second term is a purely two loop contribution directly dependent on the
gluino mass, instead, in the first (one loop) term, we have dependence on the
squark masses of third generation and on the third generation trilinear term ht.
At one loop, they are related to the mass of the gluino through the equations

dm2
Q̃

dt
∼
dm2

t̃R

dt
∼ − 2

3π2
g2
s m

2
g̃ ,(6.5.12)

dht
dt

∼ 2

3π2
g2
s λtmg̃ ,(6.5.13)

that can be solved, using the leading log approximation. Assuming that at the
high scale ht is small, if compared to its running, then it is easy to prove that
numerically the most relevant contributions in (6.5.11) are those not involving
the trilinear term ht.

Plugging this finding in the RGE for m2 where the squark masses are taken
to be the solution of the differential equation (6.5.12) one finally obtains

(6.5.14) δm2
2 ≈

g2
s

4π2
λ2
t m

2
g̃ ln2 Λmess

1 TeV
.

Imposing the Naturalness condition (6.5.2), with respect to the parameter mg̃,
and using the approximate expression

(6.5.15)

∣∣∣∣∣m2
g̃

v2

d v2

dm2
g̃

∣∣∣∣∣ ∼
∣∣∣∣∣m2

g̃

v2

d v2

dm2
2

dm2
2

dm2
g̃

∣∣∣∣∣ ,
one can find analytically the bound

(6.5.16) mg̃ ≤ 2π2v sinβ

√
∆

gs
√

dv2

dm2
2

ln2 Λmess
1 TeV

.
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The result for the bound on the mass of the gluino for a messenger scale of
100 TeV and an allowed fine tuning of 10% is shown in the right panel of Figure
6.5.2 for the parameter point presented in (6.3.1) and for µ = 400 GeV. From
the figure it is evident that the upper bound on the gluino mass mg̃ increases
when one considers increasing values of the mass of the lightest Higgs, and,
for a Higgs mass satisfying the LEP bound, the mass of the gluino can be
∼ 1.3 TeV for an allowed fine tuning of 10%.

The general conclusion of our study of Naturalness is that the model is less
tuned when the lightest Higgs boson is heavier. This is somehow expected be-
cause the sensitivity to large corrections to the Higgs boson mass is necessarily
smaller as the mass itself gets larger, for instance taking the usual measure of
fine-tuning with respect to the mass of the stop

m2
t̃

m2
h

∂m2
h

∂m2
t̃

< ∆

it is clear that the sensitivity is quadratically reduced as one takes larger mh.
From this simple consideration it follows that the bounds on the third gen-

eration squarks and gluinos are rather loose when compared to the bounds in
a light Higgs boson scenario. This means that these colored states of SUSY
might not have any observable signature at the early LHC. As we shall see in
Section 7.3 also LEP phenomenology is rather unaffected by the presence of
this heavy superpartners of top and bottom.

Pretty much as for the stop and sbottom, one can find bounds on the
masses of first and second generation squarks by requiring

m2
q̃

m2
h

∂m2
h

∂m2
q̃

< ∆ .

The limits originate dominantly from two-loops diagrams with squark and gauge
bosons loops and turn out to be of the order of 10-20 TeV [53], that is a factor
3-4 larger than what obtained in the MSSM. The possibility of taking larger
masses for the first and second generation of squarks of course helps to solve
the flavor problem of SUSY by advocating a hierarchical spectrum.

It must be stressed that this improvement of the SUSY flavor problem is
a peculiar feature of λSUSY and not of the other mechanisms to increase the
Higgs boson mass reviewed in Section 3.6. Indeed the alternatives to λSUSY
all introduce new gauge interactions that are needed to have new D-term con-
tributions to the Higgs quartic. These new gauge interactions also bring new
two-loops contributions to the Higgs soft masses from squark loops, thus re-
ducing the possibility to take hierarchical squark masses [53] in the alternatives
to λSUSY.



CHAPTER 7

Experimental constraints on scale-invariant λSUSY

7.1. The spectrum

The Higgs sector of the theory contains seven bosonic degrees of freedom.
In particular, in the mass eigenstates basis we expect one charged Higgs, three
neutral scalar fields and two neutral pseudo scalars, that do not mix with the
scalars, since we imposed CP invariance. In order to investigate the spectrum
of these six particles, it is convenient to express the scalar potential with the
Higgs fields expressed by

(7.1.1)

S = s+
S1 + iS2√

2
, H1 = e

−i σ̄π̄1
v1

(
v1 + h1√

2

0

)
, H2 = e

−i σ̄π̄2
v2

(
0

v2 + h2√
2

)
.

After some algebra, we obtain the mass matrices given in the following,
where we have used sβ ≡ sinβ, cβ ≡ cosβ, tβ ≡ tanβ, s2β ≡ sin 2β and
µ and m̃A as defined in (6.3.3) and (6.3.4) respectively. For the scalar Higgs
bosons, in the basis (h1, h2, S1) we get

(7.1.2)

M2
S =


c2
βm

2
Z + s2

βm̃
2
A cβsβ

(
2v2λ2 −m2

Z − m̃2
A

)
µv(2λcβ + sβk)− s2

βcβvλ
m̃2
A
µ

. m2
Zs

2
β + c2

βm̃
2
A −vλc2βsβm̃

2
A

µ + vµ(2λsβ + kcβ)

. . 4 k
2

λ2µ
2 −G k

λµ+ λ2v2s2
2β

m̃2
A

4µ2 + λk
2 v

2s2β

 .

For the pseudoscalar we use the basis (π(3), S2), where π(3) is defined by
π(3) = sinβπ

(3)
1 − cosβπ

(3)
2 and we get

(7.1.3) M2
PS =

 m̃2
A −vλcβsβm̃

2
A

µ − 3kvµ

. λ2v2c2
βs

2
β
m̃2
A
µ2 − 3kλcβsβv

2 + 3Gµ kλ

 .

The charged Higgs boson mass is just equal to the parameter mH+

(7.1.4) mH± = mH+ = m2
W − λ2v2 +

2µ(A− k
λµ)

sin 2β
.

For the neutralino and chargino sector we assume that the gaugino mass
parameters M1,M2 are large. In this case the only light chargino is a pure

63
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FIGURE 7.1.1. Masses (in GeV) of the neutral scalars in the plane
µ,mH+ for parameters fixed as in (6.3.1): (from the left to the right)
the mass of the lightest CP-even (ms1 ), the masses of the two heavy
CP-even (ms2,3 ), and the masses of the two CP-odd scalars (ma1,2 ).
In all the panels the overlaid yellow area corresponds to ms1 > 114
GeV and the overlaid green area corresponds to the parameter space
where the SU(2) breaking vacuum is the absolute minimum and CP
is conserved.
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FIGURE 7.1.2. Higgsino masses (in GeV) as function of the chargino
mass µ for fixed parameters as in (6.3.1). The dashed line corre-
sponds to mZ/2 which is taken as limit from LEP (eq. (7.2.4)).

Higgsino and has exactly the mass

(7.1.5) mχ+ = µ .

For the neutralinos we choose the basis defined by

(7.1.6) N1 =
1√
2

(
H̃1 − H̃2

)
, N2 =

1√
2

(
H̃1 + H̃2

)
, N3 = S̃ ,

and the mass matrix reads

(7.1.7) MN =

 µ 0 v√
2
λ(cβ − sβ)

0 −µ − v√
2
λ(cβ + sβ)

v√
2
λ(cβ − sβ) − v√

2
λ(cβ + sβ) −2 kλµ

 .
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From this mass matrix one can see that there is a massless Higgsino state if

(7.1.8) µ2 =
λ

k

v2λ2 sin 2β

2
,

and that

(7.1.9)
∑

i=1,2,3

m2
χi = 2

[
µ2

(
2k2

λ2
+ 1

)
+ v2λ2

]
.

All the masses given in this section are plotted in Figures 7.1.1 and 7.1.2 in
the plane µ,mH+ for the choice of parameters in (6.3.1). Few comments are in
order. Firstly, we note that, due to the large value of λ, the spectrum consists
of relatively heavy Higgs bosons with a lightest CP-even mass of roughly (200-
300) GeV and, due to the large value of k, there is no light state in the CP-odd
sector, in fact the lightest CP-odd has mass of few hundreds GeV. This shows
how this realization of the NMSSM is rather at odds with the widely studied
case of small λ.

Another interesting point is the fact that the requirement of a mass for the
lightest Higgs in accordance with the LEP bound tends to clash with the re-
quirement of absolute minimum of (6.2.7). This implies that the model cannot
have an arbitrarily large value of µ because this would yield a negative mass
squared for the lightest Higgs boson. The existence of a maximal allowed µ
can be understood taking the the CP-even mass matrix (7.1.2) in the large µ
and large λ limit and observing that all the diagonal sub-matrices have negative
eigenvalues independently of the other parameters. This fact is very welcome
in view of the need to generate a µ term of the order of mZ and we shall study
the consequences of this fact in Section 6.4.

For later convenience, we conclude this section fixing some notation. We call
the scalar and pseudoscalar mass eigenstates (from the lightest to the heav-
iest) s1, s2, s3 and a1, a2 respectively and we shall denote the Higgsino mass
eigenstates as χ1, χ2, χ3 (still from the lightest to the heaviest).

We introduce the combination of doublet fields that take VEV, h = h1 cosβ+
h2 sinβ, and its orthogonal one H = h1 sinβ − h2 cosβ. The rotation U from
the mass basis to the basis (H,h, S1) is defined by

(7.1.10)

 s1

s2

s3

 = U

 H
h
S1

 .

Analogously for the pseudoscalars the rotation matrix P is defined such
that

(7.1.11)
(
a1

a2

)
= P

(
π(3)

S2

)
.

For the Higgsinos we call V the rotation matrix from the basis (N1, N2, N3)
to the mass eigenstates χm such that
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(7.1.12) χm = VimNi .

Finally, we introduce the rotation matrix R(x) for a generic angle x

(7.1.13) R(x) =

(
cosx − sinx
sinx cosx

)
,

such that the states Nn can be written as

(7.1.14) Nn = δn3S̃ + (1− δn3)
∑
i=1,2

R
(π/4)
ni H̃i .

7.2. LEP direct searches

Using the formulas for the masses of the Higgs bosons and Higgsinos given
in Section 7.1, we can impose the bounds from LEP direct searches [59], [60],
[8], [61]

mh > 114 GeV,(7.2.1)

mχ+ > 103 GeV,(7.2.2)

mH± > 79 GeV,(7.2.3)

mχ1 > mZ/2 ,(7.2.4)

and exclude regions of the parameter space accordingly1.
The union of the constraints from vacuum stability found in Section 6.2 and

the constraints from LEP is shown in Figure 7.2.1 for the choice of parameters
in (6.3.1) and two variations of λ and tanβ. The strongest constraint on the
parameter space comes from the bound on the neutralino mass given in (7.2.4),
which cuts a region in µ around the value given in (7.1.8) where the lightest
neutralino is massless. On the other hand, we see that chargino, charged
and neutral Higgs boson searches have basically no impact on the physical
parameter space, once that the constraints on the scalar potential of Sections
6.2 and 7.1 are imposed. Indeed the maximal chargino mass that could be
probed at LEP is less than the minimum allowed µ given in (6.4.7). Analogously,
for the neutral and the charged Higgs bosons the typical mass in our model is
significantly larger than the bounds and therefore only little restrictions arise
from (7.2.1) and (7.2.3).

1 We are aware of the fact that a χ1 with massmχ1 < mZ/2 might be sufficiently decoupled to not be
observable at the Z pole and thus allowed by LEP. For sake of simplicity we shall not impose the exact limits
on the cross-section for neutralino production and on the invisible width of the Z boson. For our purpose of
showing that a phenomenologically allowed parameter space exists one can impose the simpler condition
eq. (7.2.4) .
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FIGURE 7.2.1. Six panels showing the area of the plane µ, mH+

allowed by the constraints on the minimum discusses in Section 6.2
and LEP direct searches. The left column is for λ = 1.5 and the
right column is for λ = 2. In each column is shown, from the top
to the bottom, the result for tanβ equal to 1.5, 2 and 2.5. In all the
cases k = 1.2, that is representative of the all the cases with k ∼
1. The green (dark) region corresponds to the requirements on the
minimum of Section 6.2. The yellow (lighter) area corresponds to
allowed region by mh > 114 GeV. The phenomenologically viable
region is the overlap of the yellow and green regions. A solid blue line
indicates the points where 2mχ1

= ma1 and mχ > 45 GeV.

7.3. Indirect constraints from EWPT

The NMSSM in the large λ regime can have significant impact on the
EWPT. Indeed a large λ increases the mass of the Higgs boson, which can
have an impact on the EWPT. Furthermore there are other contributions to the
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EWPT from the Higgs and Higgsino sector proportional to λ [1]. As such, we
compute the new physics contributions to the oblique parameters T and S,
coming from the new scalars and the new fermions of the model.

Scalar contributions arise from the enlarged Higgs sector and from the
sfermions. All the sleptons, the first and second generation of squarks are not
restricted to be particularly light by Naturalness arguments (see Section 6.5)
and therefore their contribution can be neglected, assuming they are heavy.
Third generation squarks are somehow special, indeed we have seen explic-
itly in Section 6.5 using Naturalness arguments, that they cannot be taken too
heavy. Therefore the stop-sbottom system can potentially give a sizeable con-
tribution to the electroweak precision observables T and S which we compute
in Section 7.3.2. The contribution arising from the enlarged Higgs sector with
a heavy spectrum will be discussed in Section 7.3.3. In the following section,
instead, we discuss the contribution from the fermions that, in the limit of heavy
gauginos, reduces just to the contribution of the Higgsinos.

7.3.1. Higgsinos. In the basisN1,2,3 the interaction Lagrangian of the Hig-
gsinos reads

L = −g2

2
W+
µ χ̄

_ (γµN1 − γµγ5N2

)
+ h.c.(7.3.1)

+
g2

2
W 3
µ

(
χ̄_γµχ_ +N1γ

µγ5N2

)
+

g1

2
Bµ
(
χ̄_γµχ_ −N1γ

µγ5N2

)
.

Therefore the contributions to T and S can be given using the loop functions F̃
and Ã given in Appendix A by the expressions

T =
∑
i=1,2

∑
m=1,2,3

V 2
miÃ(µ,mχm) +(7.3.2)

−
∑

m=1,2,3

∑
n>m

(V1mV2n + V1nV2m)2Ã(mχm ,−mχn) +

− 1

2

∑
m=1,2,3

(V1mV2m + V2mV1m)2Ã(mχm ,−mχm) ,

S =
∑

m=1,2,3

∑
n>m

(V1mV2n + V1nV2m)2F̃ (mχm ,−mχn) +(7.3.3)

+
1

2

∑
m=1,2,3

(V1mV2m + V1mV2m)2F̃ (mχm ,−mχm) +

− F̃ (µ, µ) ,

where V is the rotation matrix for the Higgsinos defined in (7.1.12).
In Figure 7.3.1 we present the result as functions of µ and the coupling

k for several representative values of tanβ and λ. The figure shows that the
generic value of the contribution to S is sizable but of the same order of the
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experimental uncertainty; on the other hand the value of T is more problematic
and deserves some more discussion.

The result of Figure 7.3.1 shows that T prefers small values of both λ and
tanβ, as expected from the dependence of the mass splittings of the Higgsinos
on these two parameters. Moreover it shows that values of k close to zero or
close the perturbative bound of∼ 1.2 give the best results, with the latter gener-
ically giving a better result than the former. This can be understood noting from
(7.1.9) that the mass scale of the Higgsinos for fixed λ goes like the product
kµ, thus, in general, larger values of k and µ tend to give a smaller contribution
to T . However, for any finite value of µ, there is a non-vanishing value of k
given by (7.1.8) that renders massless the lightest neutralino. In the regions of
the µ, k plane where (7.1.8) is satisfied, and of course in the vicinity of them,
the contribution to T is enhanced by the presence of the light state. From this
discussion it is clear that for k large enough the critical value of µ is pushed to
be smaller than the minimal phenomenologically interesting µ ' 100 GeV and
that, away from the line where (7.1.8) is satisfied, a larger k gives a smaller
contribution to T .

This preference of the EWPT for large values of k gives further motivation
to consider the regime of the NMSSM with large coupling k (see eq. (6.3.1)),
namely the regime where the PQ symmetry is broken by a large coupling and
hence all the states in the CP-odd sector are heavy.

7.3.2. Stop and sbottom squarks. We compute the contribution to S and
T in the limit of diagonal squark mass matrices so that the interaction eigen-
states for squarks coincide with mass eigenstates and the contribution to S and
T are just

T = 6A(mt̃L
,mb̃L

) ,(7.3.4)

S = F (mb̃L
,mb̃L

)− F (mt̃L
,mt̃L

) ,(7.3.5)

where the loop functions A and F are reported in the Appendix A and the
masses of the third generation squarks are given by (6.5.5) and (6.5.6) respec-
tively. In order to estimate the minimal effect of the stop-sbottom, we assume
that the soft mass mQ̃ saturates the upper bound due to fine tuning constraints
given in (6.5.10).

Both the contributions to T and S are rather small compared to the exper-
imental uncertainties. In Figure 7.3.2 we show the value of T in the plane µ,
mH+ , for an allowed fine tuning of 10% and the point of parameter space pre-
sented in (6.3.1). We find that, for a 10% fine tuning and for a lightest Higgs
boson in accordance with the LEP bound (yellow region in the Figure 7.3.2),
the contribution to T is always smaller than ∼ 0.04, which is small compared
to the contribution coming from Higgsinos. This feature is due to the relatively
heavy stops and sbottoms, allowed by Naturalness constraints, and does not
change significantly for larger values of tanβ.
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FIGURE 7.3.1. Contribution of the Higgsinos to T and S in the pa-
rameter space µ, k for different values of tanβ and λ. The left column
is for λ = 1.5, the right column is for λ = 2. From the top to the bot-
tom of each column are shown the results for tanβ equal to 1.5, 2
and 2.5. Solid red lines with squared labels are the contributions to
T , dashed black lines with round labels are the contributions to S.



7.3. INDIRECT CONSTRAINTS FROM EWPT 71

0.005

0.005 0.01

0.01

0.01

0.01

0.03
0.03

100 200 300 400 500

500

600

700

800

900

1000

Μ @GeVD

m
H

+
@
G

eV
D

FIGURE 7.3.2. Minimal contribution to T coming from the stop-
sbottom sector in the plane µ,mH+ for the reference point of pa-
rameter space presented in (6.3.1), in the approximation of no mixing
between t̃L and t̃R, and with the stop mass saturating the upper-
bound (6.5.10). The overlaid yellow area corresponds to ms1 > 114
GeV.

7.3.3. CP-odd and CP-even Higgs bosons . For the Higgs sector we
compute the contribution to T and S coming from the three CP-even states
and the two CP-odd states. We compute the total value of S and T , taking as
zero the value of the LEP Electroweak Working Group [62] minus the contribu-
tion that arises in the SM from a Higgs boson with a reference mass just above
the LEP bound mhSM = 115 GeV. This latter contribution is given by

T (mhSM) = 3 (A(mhSM ,mZ)−A(mhSM ,mW )) ,(7.3.6)

S(mhSM) = F (mhSM ,mZ) +m2
ZG(mhSM ,mZ) ,(7.3.7)

with the loop functions A, F and G given in the Appendix A.
Subsequently, we add the contributions coming from the enlarged Higgs

sector of the theory

T =

3∑
i=1

U2
i2 T (msi) +

3∑
i=1

U2
i1A(mH+ ,msi) +(7.3.8)

+

2∑
j=1

P 2
j1A(mH+ ,mai)−

3∑
i=1

2∑
j=1

U2
i1P

2
j1A(msi ,maj ) ,

S =
3∑
i=1

U2
i2S(msi) +

3∑
i=1

2∑
j=1

U2
i1P

2
j1F (maj ,msi) +(7.3.9)

− F (mH+ ,mH+) ,
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where msi and mai are the masses of the scalar and pseudoscalar Higgs re-
spectively, the rotation matrices U and P are defined in (7.1.10) and (7.1.11)
respectively, and the loop functions F , T , S and A are given in the Appendix A.

Once tanβ, λ and k are fixed, the mass spectrum and the mixing matrices
still depend on the parameters µ, mH+ . Therefore, in place of the customary
plot of the position of the model in the S-T plane, we show in Figure 7.3.3 the
contribution to T and S in the µ,mH+ plane for representative values of tanβ
and λ. The contributions are generically well within the experimental uncer-
tainty and sub-dominant with respect to the contributions from the Higgsinos
sector computed before.

7.4. Relic abundance of neutralinos

The relic abundance of a heavy particle that decouples as a non-relativistic
species can be computed solving its Boltzmann equation [63]. The resulting
relic abundance is given by the approximate formula

(7.4.1) Ωh2 ' 1.07× 109 GeV−1

√
g∗MP (axf.o. + bx2

f.o./2)
,

where a and b are constants related to the annihilation cross-section of the LSP,
g∗ = 86.25 for mb � Tf.o. . mW is the number of SM degrees of freedom at
the time of freeze out, MP the Planck mass and xf.o. the normalized freeze-out
point temperature xf.o. = Tf.o./mLSP , with mLSP the mass of the LSP, that in
our model is supposed to be the lightest Higgsino χ1. The freeze-out point can
be found solving numerically the equation

(7.4.2)
1

xf.o.
' log

0.037gχMP mLSP 〈σv〉
√
xf.o.√

g∗
,

with gχ = 2.

The only relevant quantity from particle physics is the thermally averaged
annihilation cross-section σv of the LSP which can be expanded around its
non-relativistic limit as

(7.4.3) 〈σv〉 = a+ bx .

As far as mLSP < mW , the only available contributions to (7.4.3) are those
coming from the annihilation χχ → ff̄ . In general this process can be me-
diated by a s-channel exchange of a Higgs boson or a Z boson, and by the
t-channel exchange of a sfermion. Since in this paper we are interested in the
case of heavy sfermions (see Section 6.5.1), we shall only investigate the s-
channel contributions. The most important contributions to the s-channel can
be understood in terms of symmetry arguments. Indeed the annihilation cross-
section, as expanded in (7.4.3), corresponds to a partial wave expansion of the
annihilation process. Using CP properties of the mediators and the chirality
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FIGURE 7.3.3. Contribution of the scalar sector to S and T in the
plane µ,mH+ for different values of tanβ and λ. The left column is
for λ = 1.5, the right column is for λ = 2. From the top to the bottom
of each column are shown the results for tanβ equal to 1.5, 2, 2.5.
In all the cases k = 1.2 and for k ∼ 1 the results are qualitatively
unchanged. Solid red lines with squared labels are the contributions
to T , dashed black lines with round labels are the contributions to S.
The blue area denotes the region of the plane where all scalars have
positive mass squared.
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structure of the intervening interactions, one can find that the s-wave annihila-
tion can be mediated only by CP-odd scalars, while the p-wave receives con-
tributions from both a CP-even scalar and the Z boson [64]. The s-wave part
of the cross-section is typically suppressed by the smallness of the Yukawa
couplings involved, with the only exception of the on-shell production of the
CP-odd scalar. The line in the parameter space where this condition is fulfilled
is shown in Figure 7.2.1 as a solid line. Away from this line we can just re-
peat the analysis of the previous investigations of Higgsino DM in the large λ
regime [1]. In fact, making the identification M → −2kµ/λ, the Higgsino sector
of our model is equivalent to the one studied in [1] and therefore the resulting
relic abundance is the same in the two cases.

Above the WW and ZZ threshold new channels open and the LSP can
now annihilate via a s-channel exchange of a Z boson or a CP-even Higgs
boson, and a t-channel exchange of a chargino. Once again by symmetry
arguments the s-channels contribute only to the p-wave, while the t-channel
contributes to the s-wave and the p-wave. Also in this case the resulting relic
abundance coincides with that one obtained in [1].

In Figure 7.4.1, the resulting Ωh2 is given as a function of µ for different val-
ues of tanβ for both λ = 1.5 (on the left) and λ = 2 (on the right). The features
of the curves of Figure 7.4.1 are mainly due to the dependence of the cross-
section on the mass of the LSP. In fact, when mZ/2 < mLSP < mW , the only
annihilation channel is that one into fermions that is mediated by an off-shell Z
boson, which yields a cross-section behaved as σ ∼ 1/m2

LSP . This means that
the relic abundance increases withmLSP until new channels open. When anni-
hilations into WW and ZZ are available, the relic abundance has to decrease
accordingly with the opening of the phase-space for the new modes. Alto-
gether the curves have a rise-and-fall shape with a maximum corresponding to
mLSP ' mZ and a maximal value being determined by the mixing coefficient
that affects the annihilation into fermions.

Generically the annihilation cross-section of the Higgsino DM is too large
and the relic abundance is then too low to account for the observed amount
of DM, Ωh2 ' 0.11 [65]. In spite of this general trend there are regions of
the parameter space where mχ1 . mZ and tanβ . 1.5 where the LSP has
a large singlino component [1, 66] and the relic abundance is reproduced. In
those regions of parameter space the model can be tested by direct searches
of DM through elastic scattering which we describe in the following section.

7.5. Direct detection of the dark matter

Direct searches of DM particles stored in the halo of our galaxy have been
performed and several bounds on the properties of the DM exist [67–69]. The
quantity probed by these experiments is the local DM density times the cross-
section of an elastic scattering between a DM particle of mass M and the
nuclei of the experiment [70]. The local density is typically assumed to be
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FIGURE 7.4.1. Relic abundance of neutralinos for λ = 1.5 (left) and
λ = 2 (right). The horizontal blue band corresponds to the 3σ interval
from the 7-years WMAP result [65]. Dotted blue lines are for tanβ =
1.1, purple solid lines for tanβ = 1.3, dashed red lines for tanβ = 1.5
and finally dot-dashed green lines for tanβ = 2. The vertical purple
shaded area corresponds to mLSP < mZ/2 in the case tanβ = 1.3.

0.3 GeV/cm3, so that bounds are given directly on the DM-nucleon cross-
section. Therefore in the following we shall compute the cross-section for the
scattering of the LSP of the model on a proton.

As we have already discussed, in our model the sfermions are heavy and
the LSP is a mixture of Higgsinos and singlino. Therefore the only particle
that can mediate a DM-nucleon scattering is a Higgs boson interacting via the
Yukawa couplings dictated by the superpotential:

−Lyuk =
λ√
2

(SH̃1H̃2 +H1S̃H̃2 +H2H̃1S̃) +
k√
2
SS̃2 + h.c. .

These interactions contributes to the effective operator

(7.5.1) OSI =
1

Λ2
χ̄1χ1N̄N ,

which mediates the spin-independent elastic scattering of the lightest neutralino
χ1 on a nucleus N probed in [67–69].

The elastic cross-section at zero transferred momentum can be written as

(7.5.2) σSI(χ1p→ χ1p) =
1

16π(mp +mLSP )2
|M|2 ,

where the matrix element is given by

(7.5.3) M =
∑
m

2mLSP
1

m2
sm

gχχsm

[
2m2

p

v
(UmuFu + UmdFd)

]
,
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where

(7.5.4) gχχsm =
λ√
2

∑
(a,b,c)

2V1aV1b U−1
cm +

√
2kV2

13U−1
3m ,

and the indices (a, b, c) run over all the ordered permutations of (1, 2, 3), the
matrix V is the matrix that brings the Higgsinos H̃1, H̃2, S̃ to the mass eigen-
states χi and the matrix U brings the scalar CP-even interaction eigenstates
h1, h2, S1 to the mass eigenstates sm. In particular the V matrix is related to
the matrix V defined in (7.1.12) through V = V tR(π/4) and U is related to U of
(7.1.10) through U = UR(β−π/2).

The effect of heavy quarks in the nucleon is taken into account according
to [71] and incorporated in the values of Fu and Fd which we take from chiral
perturbation theory respectively equal to 0.11 ± 0.02 and 0.44 ± 0.13 [72] or,
from QCD on the lattice, 0.14± 0.02 and 0.23± 0.01 [73].

The quantity affecting the most the cross-section σSI is the mass of the
lightest Higgs boson which is the scale that suppresses the operator of the
interaction (7.5.1). In fact, the spin-independent cross section can be estimated
as

(7.5.5) σSI '
1

16π

m2
p

v2

m2
p

m4
s1

' 10−43cm2

(
200 GeV
ms1

)4

,

that is of the order of the sensitivity of current experiments. Therefore di-
rect searches of WIMPs can significantly restrict the allowed parameter space
where Ωh2 . 0.1 [65]. From the previous section, we know that for 1.5 < λ < 2
such interesting regions are those with tanβ . 1.5 and mH+ and µ in the
regions outlined in Figure 7.2.1.

Given the relevance of the mass of the lightest Higgs for the cross-section,
the latter has a significant dependence on the parameters of the scalar sector µ
and mH+ . However none of the two is of direct significance for the experiments
that, on the contrary, probe mLSP . Thus we shall show our result trading µ for
mLSP and we shall fix some representative values of mH+ taken in the range
that is allowed by all the constraints on the scalar potential analyzed in Section
6.2. The resulting DM-nucleon cross-section is given in Figure 7.5.1 as a solid
and a dashed thin line, obtained using hadronic matrix elements from [73] and
[72] respectively and assuming that the LSP accounts for the entire dark matter
in the Universe. However the actual rate of DM-nuclei scattering in the model is
typically reduced by the scarce amount of thermal relic neutralinos, therefore in
Figure 7.5.1 we give also thick lines which correspond to the prediction of the
model taking this reduction into account.

From the thin lines in Figure 7.5.1, we see that the predicted cross section
is typically above the lower bounds from experiments. This shows that in this
model is difficult to reproduce the relic abundance of the dark matter without
violating the experimental limits on WIMP scattering.

On the other hand when one takes into account the actual abundance of
LSP computed in Section 7.4 the limits from direct detection experiments are
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FIGURE 7.5.1. Three panels showing the prediction of the spin-
independent DM-proton scattering cross-section fixing tanβ = 1.5.
On the left for λ = 1.5 and mH+ = 500 GeV, in the middle λ = 2
and mH+ = 550 GeV, on the right λ = 2 and mH+ = 700 GeV.
The dashed and solid lines correspond to the prediction obtained tak-
ing the values of the hadronic matrix element from [72] and from [73]
respectively. Thick lines show the prediction of the model once the
actual relic abundance is taken into account. The shaded orange,
green and cyan areas are those excluded by Xenon 2011 [67], Xenon
2007 [68] and CDMS 2009 [69] respectively.

less stringent. The region of low mH+ tends to be below the limits because
of a low nucleon-DM cross-section and a low relic abundance, while for larger
mH+ the regions corresponding to mχ1 > 60 GeV are typically excluded. In
both cases the region that is compatible with direct WIMP searches indicates a
preference for small of µ ∼ (200− 300) GeV.





CHAPTER 8

A strongish self-coupled Higgs sector at the LHC

In the preceding Chapters we have outlined and discussed in details a class
of supersymmetric models where the Higgs boson is significantly heavier than
the Z boson. The very origin of this large mass is the strongish self-coupling of
the Higgs sector. The supersymmetric nature of the model enforces this strong
coupling to appear in the Higgsino sector as well. Therefore we expect large
Yukawa interaction among Higgs scalars and higgsinos.

We have already discussed the possible direct effects of this large coupling
in the direct detection of the dark matter. In this Chapter we shall discuss the
observable consequences of this strongish coupling for the LHC phenomenol-
ogy. In this discussion we shall consider two possible λSUSY scenarios.

The first scenario is the scenario that naturally emerges in the model pro-
posed to dynamically generate the µ term and discussed at length in the Chap-
ters 6 and 7. It is characterized by a singlet S with VEV of the order of the VEV v
of the MSSM Higgs. The scalar and pseudoscalar mass eigenstates are rather
even mixtures of the interaction eigenstates. All the mass eigenstates are ex-
pected to be significantly coupled to the MSSM matter although with significant
deviations from the coupling of a SM-like Higgs boson of the same mass. This
scenario therefore is expected to offer many hints signaling deviations in the
Higgs sector from the SM or MSSM picture.

The second scenario that we shall discuss is the scenario originally dis-
cussed in [1] and [3]. In this case the µ term of the superpotential is put by
hand. The model breaks the PQ symmetry putting by hand a mass for the sin-
glet S. The mass of this singlet can be large without reintroducing fine-tuning,
as it has only limited impact on the RGE. For this reason the model can natu-
rally go in a limit where the singlet is decoupled from the rest of the fields.

From the analysis of the EWPT, and to help to generate a large mass for
the Higgs boson, this model prefers a moderate or small value of tanβ . 3.
With such a small tanβ the lightest Higgs boson is coupled in rather SM-like
manner.

The luminosity needed at the LHC to discover such a SM-like Higgs boson
is expected to be close to the luminosity needed to discover the gluino up to
roughly 1 TeV. The same luminosity is expected to be sufficient for the evidence
of squarks in a similar mass range. Hence in this scenario we expect the dis-
covery of supersymmetry and the discovery of a Higgs boson with properties

79
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completely different from those of the MSSM Higgs boson. The emerging pic-
ture will certainly compel to search the other states of the Higgs sector. Study-
ing the properties of these heavier states, in Sections 8.5, 8.6 and 8.7 we shall
find distinctive and observable signatures of λSUSY.

We shall articulate our discussion following the expected timeline of discov-
eries. Thus we shall first discuss the discovery of gluinos and stop in Section
8.1. Then in Section 8.2 we shall discuss the possibilities for the lightest Higgs
in the two scenarios outlined above. We shall see that in the scenario with the
largely mixed singlet there are clean and distinctive features of λSUSY that
can be observed already at the time of the discovery of the lightest Higgs bo-
son. In the following Sections 8.5 8.6 and 8.7 we shall discuss the distinctive
signatures of λSUSY observable in the long run of LHC in the scenario with
small mixing between the singlet and the doublet.

8.1. Gluino and stop

The standard way to discover SUSY at the LHC is via pair-production of
squarks and gluinos [74,75]:

pp→ g̃g̃, q̃g̃, q̃q̃ .

Since these sparticles are strongly interacting, the production cross section can
be larger than a pb in a large range of masses that extends up to one TeV [76].
The produced sparticles give rise to well-studied cascade decays with lightest
neutralinos in the final state, giving events with several jets, leptons and missing
ET . The invariant mass spectrum of the decay products allow to constrain the
masses of the particles involved in the chain. In the following we shall assume
to be able to roughly determine the mass of discovered sparticles 1.

The majority of available studies [74,75] of this signal focus on the mSUGRA
case, which gives degenerate squark spectra. While the same discovery strat-
egy will apply also in the λSUSY case, the discovery is expected to be more
difficult due to the fact that only stop squarks may be light enough to be pro-
duced. For a rough estimate we can use the existing study [77] of the LHC
discovery potential in the case of effective supersymmetry [52]. Indeed in this
scenario the 1st and 2second generation squarks are decoupled, while sbot-
tom and stop masses are similar. However, notice that in λSUSY the LSP is
expected to be relatively light with respect to the gaugino and stop (see Sec-
tion 5.4), which helps the discovery. According to [77], in this favorable case
10 fb−1 of integrated luminosity at

√
s = 14 TeV should be enough for a discov-

ery of SUSY in the entire range (5.5.1) of stop and gluino masses suggested
by Naturalness.

1A typical example could be mt̃ > m(llq)max in t̃→ llqχ1
0.
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FIGURE 8.3.1. The spectrum of the model for fixed parameters as in
eqs. (6.3.1) and (8.3.1). Solid lines correspond to neutral fermions,
dashed lines to CP-even and CP-odd scalars, dot-dashed lines to
charged particles. The two thin dashed lines correspond to mZ/2 (in
green) and 114 GeV (in red).

8.2. The lightest Higgs boson

The properties of the colored particles cannot tell much about the structure
of the Higgs sector. To obtain information on the Higgs states it is necessary
to discover the scalars and pseudoscalars of the model and study in detail
their properties. We outlined two scenarios, one with a large singlet-doublet
mixing and another with negligible mixing. In the two following sections we
shall describe how their lightest Higgs boson appears at the LHC.

8.3. The case of the mixed singlet scalar

The spectrum of the model with large singlet-doublet mixing is described
in Section 7.1. Here we shall fix a representative point of the parameter space
given in eq. (6.3.1). Furthermore we shall fix the remaining parameters

(8.3.1) µ = 240 GeV , mH+ = 520 GeV .

The resulting spectrum is given in Figure 8.3.1 and shows several interesting
features. We notice that there is a light neutralino as LSP, χ1, a second lightest
neutralino, χ2, rather close to the chargino, χ+, of mass µ, and a significantly
heavier χ3. In the scalar sector we find a relatively heavy lightest CP-even
Higgs boson, s1, that is rather close to its maximal mass (3.6.28) and to the
second CP-even state, s2. Both these scalar states have a mass of order λv
and from the relation (6.4.8) we deduce that their closeness to the fermionic
states χ+ and χ2 is in fact generic in the entire region of parameter space al-
lowed by all the constraints discussed in Chapters 6 and 7. The pseudo-scalars
always have a heavy state close to the TeV and a light state of roughly few hun-
dreds of GeV. This large separation between the pseudo-scalars is the result
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of a significant level-repulsion effect arising from the large mixing between the
two states. Because of this effect, it is rather typical to have a spectrum with
2ma1 < ms1 .

The precise values of the masses in the point defined by eqs. (6.3.1) and
(8.3.1) are

ms1 = 305 GeV , ms2 = 353 GeV , ms3 = 573 GeV ,(8.3.2)

mχ1 = 66 GeV , mχ2 = 255 GeV , mχ3 = 609 GeV ,(8.3.3)

ma1 = 100 GeV , ma2 = 905 GeV .(8.3.4)

8.3.1. Production of the new states. We want to focus on the production
of the scalar particles as they provide a direct handle on λ, the characteristic
coupling of the model. Furthermore the production of scalars is well studied in
the SM and can be easily understood in terms of ratios between a coupling of a
scalar of our model and the corresponding coupling of the SM Higgs boson of
equal mass. In such a way one inherits all the studies available in the literature
about (differential and inclusive) QCD effects in Higgs production. The ratios
directly affecting the cross-section of the partonic production process

(8.3.5) gg → si, aj

are those of the couplings of up-type quarks to CP-even and CP-odd scalars
denoted respectively by ξttsi and ξttaj and given by

ξttsi = (sinβU∗i2 − cosβU∗i1)2 ,(8.3.6)

ξttaj = cosβ2P 2
j1 ,(8.3.7)

where the matrices U and P are defined in (7.1.10) and (7.1.11) respectively.
The reduced couplings squared ξttsi for the the CP-even Higgs bosons are

shown in Figure 8.3.2 in the relevant region of the plane µ, mH+ after that the
constraints on the scalar potential, the constraints from direct searches at LEP,
and from direct dark matter searches are imposed.

The state s1 is in general significantly coupled to the up-type quarks and
it has, over the majority of the parameter space, a cross-section of at least
50% of the one of the SM Higgs boson with the same mass. The state s2, on
the contrary, has at most 30% of the cross-section of the SM Higgs boson of
equal mass. The converse of this slight decoupling of s2 is the relatively large
coupling of s3, which can have a cross-section up to 15% of the one of the SM
Higgs boson of the same mass. This quantitative analysis shows that the scalar
CP-even sector consists altogether of three states all significantly coupled to
up-type quarks. In particular we find remarkable to have such a large coupling
for the heaviest state, s3. In general such mixing scenario seems favorable for
the discovery of states beyond the lightest one.

For the pseudo-scalars the value of the couplings to the up-type quarks
are mainly determined by the fact that the two mass eigenstates are almost
maximal admixtures of singlet and doublet interaction eigenstates. As such,
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FIGURE 8.3.2. (Left column) Reduced couplings squared of the up-
type quarks with the CP-even scalars as defined in (8.3.6). (Right
column) Reduced couplings squared of the SM vectors with the CP-
even scalars as defined in (8.3.9).

the two states nearly equally share a coupling equivalent to a fraction cosβ of
the Yukawa of the SM Higgs boson. In particular, for the case of the point of
parameter space (6.3.1) and (8.3.1), we obtain ξtta1 ' 0.16 and ξtta2 ' 0.14.
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For the partonic production processes

(8.3.8) qq → V V qq → qqsi and qq̄ → V V qq̄ → qq̄si ,

we define the reduced couplings squared

(8.3.9) ξV V si = U2
i2 .

In this case, as we observe in Figure 8.3.2, the heavy states s2 and s3 are more
decoupled, thus their discovery in the vector boson fusion processes (8.3.8) is
considerably more difficult than for a SM Higgs boson of the same mass.

Finally, the fermionic states χ1, χ2, χ3, χ
+ are produced through their gauge

couplings, as in the MSSM. Similarly, the production of H+ will occur through
its gauge and Yukawa interactions, as it happens in the MSSM.

8.3.2. Decays. The ordering of the masses shown in Figure 8.3.1 and di-
mensional considerations on the decay width allows for a rough determination
of the relevant decay channels of each state. We discuss some of them begin-
ning from the lowest lying states.

The state χ1 is the lightest particle with negative R-parity and therefore
it is stable. As well known its production results in large amount of missing
transverse momentum.

The next lightest state is typically a1 that, due to kinematics, can decay only
in SM fermion pairs. Therefore its main decay modes are

(8.3.10) a1 → bb̄ ,

(8.3.11) a1 → τ τ̄ .

The lightest CP-even state, s1, has the usual decays into SM vector bosons

(8.3.12) s1 → ZZ , s1 →WW ,

and the non-SM decays

(8.3.13) s1 → a1a1 ,

(8.3.14) s1 → a1Z ,

(8.3.15) s1 → χ1χ1 ,

(8.3.16) s1 → χ1χ2 .

However, due to the fact that ms1 ' µ ' mχ2 , the decay s1 → χ2χ1 is not
available over the majority of the interesting parameter space.

The state s1 has a total width of several tens of GeV, as show in figure
8.3.3. The contribution from the non SM-like decays is sizeable and therefore
the decays intoW−W+, which would be dominant for a SM-like state, is always
sub-dominant, as shown by the branching fraction into W−W+ shown in figure
8.3.4.
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FIGURE 8.3.3. The total width of the lightest CP-even Higgs boson
in the region of parameters space compatible with direct constraints
from LEP, dark matter searches and the stability of the potential.

The reduced rate of the resonant production of W−W+ through Higgs
states that results from the lessening of branching fraction and the Higgs pro-
duction cross section is the first evidence of the non-SM nature of the Higgs
boson that we expect to show up at the LHC. The reduced production rate of
vectors motivates the search of the Higgs boson in other final states. As show
in figure 8.3.5, when kinematically accessible, the decay into pseudoscalars
s1 → a1a1 is dominant. The process

(8.3.17) gg → h→ a1a1 → τ τ̄bb̄ ,

is potentially interesting to clarify the reason of the reduced production rate
of resonant W+W− pairs. However we observe that the decay into pseu-
doscalar is dominant especially where the SM-like decay into vectors is more
suppressed. As such we find that the Higgs boson could be observed earlier in
the non-SM decay s1 → a1a1. A search for the Higgs boson in the channel eq.
(8.3.17) might well be in the reach of the first few fb−1 of luminosity of LHC at
7 TeV center of mass energy [78].

Among the non-SM decay modes of the state s1 the decay into LSP is
particularly interesting because it results in an invisible decay width of the Higgs
boson of up to ∼ 10 GeV, as shown in figure 8.3.6. The presence of a sizable
invisible width is a sign of the strongish coupling λ and therefore represents
an indication of λSUSY. The invisible width can be measured reconstructing
the line-shape of the Higgs resonance using decay modes in clean final states
as s1 → ZZ → 4` and comparing the total width of the resonance with the
widths of the observable channels. The measurement becomes easier when
the decay into pseudoscalars is absent as the decay into ZZ gets a larger
branching fraction. As such the measurement of the invisible width helps to
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FIGURE 8.3.4. The branching fraction of the lightest CP-even Higgs
boson intoW−W+ in the region of parameters space compatible with
direct constraints from LEP, dark matter searches and the stability of
the potential.
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FIGURE 8.3.5. The branching fraction of the lightest CP-even Higgs
boson into a1a1 in the region of parameters space compatible with
direct constraints from LEP, dark matter searches and the stability of
the potential.

cover the portion of parameters space where the decay into pseudoscalars is
not available.
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FIGURE 8.3.6. The invisible width of the lightest CP-even Higgs bo-
son due to the decay into χ1χ1 in the region of parameters space
compatible with direct constraints from LEP, dark matter searches and
the stability of the potential.

ZZ WW tt̄ χ1χ1 χ1χ2 a1Z a1a1 Γ [GeV]
s1 0.088 0.196 0 0.09 0 0.059 0.568 30.3
s2 0.004 0.008 0.002 0.179 0.027 0.001 0.782 33.6
s3 0.023 0.047 0.039 0.461 0.013 0.165 0.255 48.2

TABLE 1. The branching fractions and the total widths of the CP-even
scalars computed with parameters fixed as in eqs. (6.3.1) and (8.3.1).

The states s2 and s3 are typically not heavy enough to decay into pairs of
s1, thus the results of previous studies contained in [3] are not applicable to
this case. We have seen in Figure 8.3.2 that s2 and s3 are relatively decoupled
from SM vectors, therefore the relevant modes are

(8.3.18) s2,3 → a1Z and s2,3 → a1a1 ,

and those into fermions. For the latter case we notice that the modes

(8.3.19) s2,3 → χ1χ2 and s2,3 → tt̄

are always kinematically allowed. However, because of the mass dependence
of the partial widths and the largeness of λ and k, we expect the decays involv-
ing a1 of (8.3.18) to be dominant.

The branching fractions and the total widths of the CP-even scalars com-
puted with parameters fixed as in (6.3.1) and (8.3.1) are given in Table 1.
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FIGURE 8.4.1. The couplings of h with SM matter normalized to the
SM values: ξhtt (left) and ξhV V (right) for λ = 2 and the rest of the
parameters as in eq. (5.3.6).

Due to the heaviness of the charged Higgs boson H+, the only two-body
decay mode available for the chargino is

χ+ → χ1W
+ .

Similarly, the fact that ms1 & mχ2 implies that the only relevant modes for χ2

are the two-body decays

χ2 → χ1Z and χ2 → χ1a1 .

The situation for a2 is more involved as it has all the following decay chan-
nels: a2 → sja1, a2 → Zsk, a2 → fSM f̄SM , a2 → χiχj . Among the available
decay modes, more than one involves large couplings and/or large final state
multiplicities. As such, a detailed computation of the partial width is needed to
determine which channel actually dominates.

8.4. The case of the decoupled singlet scalar

When the singlet has a large supersymmetric mass M or happen to not
be mixed to the doublet fields, the Higgs sector tends to have branching ratios
similar to the MSSM, despite the important difference of the large mass of the
lightest Higgs boson.

To identify the production mechanism of this Higgs boson we first find the
largest couplings of h with SM particles, which are the couplings with the top
and with the W and Z bosons. In the case of small mixing between the sin-
glet and the Higgs doublets we can use the standard 2 Higgs Doublet Model
(2HDM) result for these couplings. They are equal to the coupling of the SM
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Higgs boson times the following factors:

ξhtt =
cosα

sinβ
, ξhV V = sin(β − α) .

The values of the couplings normalized to the SM value are given in Fig. 8.4.1.
We see that these factors are very close to one (within 10%) in the whole pa-
rameter space of Eq. (5.3.6), and thus the properties of h are very similar to
those of the SM Higgs boson. In particular, the dominant production process is
via the gluon fusion with top quark in the loop.

For the decay the total width of the Higgs boson is saturated by the decays
into vectors, which is exactly what is expected for the SM Higgs in the 200−300
GeV mass range. The discovery of the Higgs boson can be made with 5σ
confidence level (CL) in the “gold-plated” channel h → ZZ → l+l−l+l−, with
as little as 5 fb−1 of integrated luminosity [74], [75]. The mass of h will also
be easily measurable thanks to good energy resolution of the final leptons.
Ref. [75] report that 30 fb−1 will be enough to measure mh with a relative error
of order 10−3.

At the time the discovery of this Higgs boson will be possible, there are seri-
ous chances that the colored superpartners will have been already discovered.
In that case it will be necessary to investigate the differences of the Higgs boson
h with respect to the SM Higgs boson. The gluon-fusion cross section of the
Higgs boson originate from a coupling between the gluons and the Higgs that
arise only at one-loop level. This fact makes the coupling of the Higgs to the
gluons a very sensitive probe of the new physics seen by the Higgs [79]. In our
model the major source of deviation from the SM is the stop loop contribution.
The effect of the stop on the gluon fusion cross section can be parametrized by

K(σh)stop =
σh(stop+ top)

σh(top)
.

This factor is the ratio of the h production cross section summing stop and top
diagrams over the cross section with only top loops.

We computed the cross section including the stop contribution using the
results reported in [29]. Neglecting small effects from D-terms, the relevant
parameters are: the SUSY breaking stop masses m2

t̃R
and m2

t̃L
„ the top soft

trilinear breaking At, µ, , α and β. Using Eq. (5.3.4) we can trade α for mH+ .
In Figure 8.4.2 we present the factor K(σh)stop as a function of At and the
average stop mass m̄t̃ ≡ (mt̃1

+mt̃2
)/2 for the choice of parameters:

tanβ = 2, mH+ = 500 GeV,(8.4.1)

|mL,t̃ −mR,t̃| = 100 GeV, µ = 250 GeV.

The cross section results quite insensitive to variations of the fixed param-
eters. The stop loop contribution is less than 20% in most of the parameter
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FIGURE 8.4.2. K(σh)stop plotted in the parameter space of the av-
erage stop mass, m̄t̃, and the top trilinear SUSY breaking term At.
Parameters were fixed accordingly to Eq. (8.4.1). The two white ar-
eas in the lower left and lower right corners yields mt̃ ≤ 100 GeV and
are therefore excluded by direct stop searches [80] (see right panel
in Fig. 8.6.3).

space, which is numerically comparable with NNLO QCD effect. The small-
ness of the supersymmetric contribution to the gluon fusion cross section ren-
ders very difficult to distinguish this Higgs boson from a SM one by looking at
the production rate.

The generic difficulty to distinguish a SM Higgs boson from the lightest
Higgs boson of the scenario with a decoupled singlet motivates the search for
other states of the Higgs sector. The existence of such states would clearly
signal a Higgs sector different from the SM and the detailed properties of these
states can have traces of the strongish self-coupling of the Higgs sector of
λSUSY.

8.5. The heavy Higgs bosons in the decoupled singlet scenario

The discovery of both a SM-like Higgs boson with a 200 − 300 GeV mass
and strongly-interacting cascade-decaying heavy particles will will give a strong
evidence for supersymmetry but at the same time rule out the MSSM as the un-
derlying theory. Indeed, in the MSSM, the lightest Higgs boson mass has a the-
oretical upper bound of about 140 GeV and there is no way to make the model
compatible with the phenomenology of sections 8.1 and 8.4. Same conclusion
holds for all other SUSY models considered in Section 3.6. For this reason, at
the time 10 fb−1 will be available, we could have a very puzzling picture with a
heavy Higgs on one side and typical supersymmetric events on the other side.
Since λSUSY is a possible solution to this puzzle we should look closer to the
heavier scalars and ask ourselves if their detection can give an experimental
evidence for this model.
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FIGURE 8.6.1. ξHtt(left) and ξHV V (right) plotted in the range (5.3.6)
for λ = 2.

To answer this question we assume h, g̃ and t̃ have been observed and
mh is known, then we turn to study the discovery reach for H and A. In fact,
measuring mh,mH and mA we can determine mH± , tanβ and λ (see Section
5.3) and make the theory predictive. Knowing λ, we can say what is the scale
of compositeness/strong coupling, which is very important to support λSUSY
hypothesis. Moreover, we can look for a charged Higgs boson whose mass is
now given by the theory2.

In our discussion we shall always assume λ = 2 and tanβ and mH± be-
longing to the preferred range (5.3.6). More specific Monte Carlo studies will
be performed for a benchmark point

(8.5.1) mH± = 500 GeV, tanβ = 2 .

8.6. The heavy CP-even scalar

8.6.1. Production. From the discussion of the spectrum of the theory, and
in particular eq. (5.3.4) and Fig. 5.3.2 , we see that the heavy CP-even Higgs
bosonH has mass in the 500-800 GeV range. Due to the large supersymmetric
mass M of the singlet Its couplings to fermions and electroweak gauge bosons
are equal to the couplings of the SM Higgs boson times the factors of the 2HDM

ξHtt =
sinα

sinβ
, ξHbb =

cosα

cosβ
, ξHV V = cos(β − α) ,

which we show in fig. 8.6. Couplings to stop can be found in Ref. [29].
Production can occur in both gluon fusion and weak boson fusion process.

In particular gluon fusion can have both a top and stop loop diagrams. As a
matter of fact the bottom loop contribution can safely be neglected because

2Although very important, the issue of observability of H+ will not be covered here and we leave its
study to the future.
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FIGURE 8.6.2. The NLO production cross section of the H via the
gluon fusion (left) and the weak boson fusion (right) plotted in the
range (5.3.6) for λ = 2.

FIGURE 8.6.3. (left)The ratio of the cross section including the stop
over the cross section with top only in the parameter space of the
average stop mass, m̄t̃, and the top trilinear SUSY breaking term
At. Parameters were fixed accordingly to Eq. (8.4.1). (right)Mass of
the lightest stop for parameters fixed accordingly to Eq. (8.4.1). In
both plots the two white areas in the lower left and lower right cor-
ners yields mt̃ ≤ 100 GeV and are therefore excluded by direct stop
searches [80].

ξHbb is not large enough to make it comparable with the top loop for moderate
tanβ as in (5.3.6). In analogy with the light Higgs case, we define

K(σH)stop =
σH(stop+ top)

σH(top)
,



8.6. THE HEAVY CP-EVEN SCALAR 93

FIGURE 8.6.4. ΓH omitting supersymmetric decays into Higgsino
pairs, see Fig. 8.6.6.

the ratio of the H production cross section summing stop and top diagrams over
the cross section with only top loops. Figure 8.6.3 shows this ratio for the choice
of parameters given in eq. (8.4.1). At variance with the light Higgs case, stop
contribution to H production can have a sizable effect. Looking at the lightest
stop mass plotted in figure 8.6.3 one see that the largest contributions arise for
a lighter stop, while the area corresponding to

(8.6.1) mt̃ > 400 GeV

is the area where K(σH)stop is close to one (deviation is less than 20%). This
has to be ascribed to decoupling of the stop contribution as it gets heavier.
Variations of choice of parameters are inessential to conclude that, when Eq.
(8.6.1) holds, the stop is decoupled enough to induce effects as small as NNLO
QCD or less. In the following we shall assume to work in this scenario, neglect-
ing possible contribution from the stop.

With the priors explained above, we obtain the gluon fusion (GF) and weak
boson fusion (WBF) production cross sections of the H by simply rescaling the
NLO results for the SM Higgs boson of the same mass, generated by HIGLU [81]
and VV2H [82] codes. For instance the gluon fusion production cross section is
given by:

σGF (H) = ξ2
Httσ

GF
SM .

The resulting production cross sections are given in Fig. 8.6.2. The main
channel is gluon fusion, which has a production cross section of the order of
100 fb. From the order of magnitude of the cross-section we expect that at least
tens of 1/fb are needed to observe this state.
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FIGURE 8.6.5. BR(H → hh) (left) and BR(H → ZZ) (right) in the
preferred range (5.3.6) of the parameter space. The H decay width
into Higgsinos Γχχ is neglected. For nonzero Γχχ, these branching
ratios have to be multiplied by a factor Γ/(Γ + Γχχ), where Γ is the
visible decay width plotted in Fig. 8.6.4. The H → hh decay mode
is dominant except for the lower left corner of the parameter space
where this decay channel is closed (mH < 2mh).
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FIGURE 8.6.6. The H decay width into Higgsino pairs for λ = 2,
mH+ and tanβ at the benchmark point (8.5.1), and for µ (chargino
mass) and M within their ranges determined by stability of the poten-
tial and Naturalness considerations [1]. The gray area corresponds
to mLSP < mZ/2 and is excluded.

8.6.2. Decays. The visible decay width of the H is dominated by decays
into hh, tt̄ and V V pairs3).Decays into a stop pair are not considered because
of the heavy stop assumption Eq. (8.6.1). The Hhh coupling is proportional to

3Here and below V stands for W,Z.
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λ2 and is given by4

gHhh =
vλ2

2
√

2
[sin(α+ β)− 3 sin(3α− β)] .

The total visible decay width is given in Fig. 8.6.4 and ranges between 5 and
25 GeV. The branching ratio for decays into hh and, for comparison, into ZZ
pairs, is plotted in Fig. 8.6.5. Because λ is large, decay into hh pairs is a
dominant decay mode whenever this channel is open, which happens in most
of the parameter space.

The H will also decay into Higgsino pairs. This decay width depends on
the neutralino parameters µ and M . Fig. 8.6.6 gives the decay width of H
into Higgsinos for the benchmark point (8.5.1) and for µ, M within their ranges
(determined by stability of the potential and Naturalness considerations [1]): it
takes values between a few and 15 GeV. Thus the Higgs can be a considerable
source of neutralinos. This can result in visible final states accompanied by
substantial missing energy or even completely invisible decays of the Higgs
boson H .

For sake of simplicity in most of our discussion below we shall neglect the
decay width into Higgsinos. This means that in a realistic situation for fixed M
and µ all branching ratios and signal rates will have to be multiplied by a factor
Γ/(Γ + Γχχ).

8.6.3. Detection strategies. Let us first discuss the lower left corner of the
parameter space, where the H → hh decay channel is closed (see Fig. 8.6.5).
In this region BR(H → V V ) becomes significant. We believe that H could be
discovered in this region via H → ZZ → 4l, ννll combined with H →WW →
lνlν. A rough estimate of the discovery reach can be obtained using results of
the SM Higgs boson studies [74,75], and then taking into account that the width
of our H scalar is significantly smaller that the width of the SM Higgs boson of
the same mass. More precisely, the discovery significance can be estimated by
rescaling the corresponding significances in the SM case with a factor

(σH ×BR)λSUSY
(σH ×BR)SM

√
ΓSM
ΓH

where the quantities marked by SM refer to the SM Higgs boson of the same
mass as the H . The factor

√
ΓSM/ΓH reflects the reduction of background

events passing the event selection in the mass window ±const.Γ. This rescal-
ing procedure gives a 5 − 6σ significance with 100 fb−1 for the H discovery in
H → V V when H → hh is closed 5

In the remaining, larger region of the parameter space, BR(H → V V )
is too small for a convincing H discovery in the V V decay channel. In what
follows, we shall discuss how H could be discovered in that region using the

4The corresponding Lagrangian term is gHhhHh2/2.
5The preceding discussion used the gluon fusion production mechanism. This result can presumably

be improved using vector boson fusion, which is not normally used in the SM for this range of the Higgs
mass, but becomes significant in λSUSY for low mH+ (see Fig. 8.6.2).
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decay mode H → hh. The fact that this decay mode is dominant when open
reflects a very basic property of λSUSY: the large value of λ.

8.6.4. Signal. For H → hh decay we cannot rely on existing SM studies.
To perform a careful analysis, we shall consider a benchmark point (8.5.1). This
point is generic rather than chosen for some special properties. The relevant
particle parameters at this point take the following values6:

σGFH = 150 fb, σV BFH = 27 fb,

mH = 555 GeV, mh = 250 GeV,

ΓH = 21 GeV, Γh = 3.8 GeV,(8.6.2)

ξ2
Htt = 0.058, ξ2

HV V = 0.060,

BR(H → hh) = 0.76, BR(H → V V ) = 0.2 .

As discussed in Section 8.6.1, the H is mainly produced via gluon fusion;
in the following we shall consider only this channel. Once produced, most of
the Hs will decay into hh and then into 4V , resulting in σgg→H→4V = 110 fb.
The final weak bosons can decay leptonically, but the branching fractions in this
case are so small that relevant decay modes have at most one leptonic decay,
while the remaining weak bosons have to be allowed to decay handronically.
Our choice for a quantitative study is therefore7

(8.6.3) gg → H → hh→ 2Z2V → l+l−6J , σ ×BR = 2.67 fb .

To increase the signal cross section, we assumed that final state jets J are
generic jets, i.e. J = j, b, c, where j is a usual gluon or light-quark jet. Flavor
labels are not necessary, since we shall not deal with flavor tagging issues at
all.

To produce a sample of signal events, we first used MADGRAPH [84] to
produce matrix-element-generated gg → H → V V Zl+l− events, and then we
decayed the remaining weak bosons through the DECAY routine by F. Maltoni
[84].

8.6.5. Backgrounds. We scanned the long list of SM processes with l+l−6J
final state and used ALPGEN [85] or MADGRAPH+DECAY to compute their cross
sections for the total invariant mass near the H mass8. We found that only
Z6J and tt̄Z processes are relevant, i.e. have cross section large enough to
potentially compete with the signal.

6The reported decay widths and branching ratios are calculated assuming zero decay widths into
Higgsinos. See discussion in Section 8.6.2.

7The alternative channel H →WWV V → lν6J benefits from a higher rate and could perhaps yield
a higher statistical significance. Another promising channel is H → WWWW with several same-sign or
opposite sign-different flavor leptons in the final state, which was recently used in a related study of non-
SUSY H → hh decays [83]. We preferred channel (8.6.3) to avoid discussing additional sources of missing
energy among which there are particularly delicate detector effects (jet energy scale, finite cone size effects,
calibration, etc.).

8Possible SUSY backgrounds like sparticle mediated diffuse hh production and l+l−6J + LSP in
gluino and squark decay have been estimated to be negligible.
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Process specific cuts σ

(Z → l+l−)6j — 1118(2) fb
(Z → l+l−)bb̄4j plT > 10 GeV 94(2) fb
(Z → l+l−)cc̄4j plT > 10 GeV 92(1) fb

(Z → l+l−)(tt̄→ 6J) ηl < 2.5,plT > 10 GeV 5.86(2) fb
TABLE 2. Simulation of the relevant SM backgrounds for H →
l+l−6J . Apart from the shown specific cuts, all l+l− pairs and jets
fulfill Eq. (8.6.4). Final state total invariant mass is between 400 and
2400 GeV except for Ztt̄, which is produced without invariant mass
restrictions.

We then proceeded with a more complete analysis of these two relevant
backgrounds. Samples of (Z → l+l−)6j and (Z → l+l−)4jQQ̄ events were
generated with ALPGEN using the CTEQ5L parton distribution functions (pdf)
enforcing the cuts

∆RJJ > 0.7 , pJT > 20 GeV, ηJ < 2.5,(8.6.4)

80 GeV < mll < 100 GeV, ηl < 10.

We also enforced the total invariant mass cut

(8.6.5) 400 GeV < mtot,inv < 2400 GeV,

covering by a large margin the region near the H mass. This allows us to
properly introduce a jet spectrum smearing and take into account possible ef-
fects from high invariant mass tails9. With these cuts, our results for the cross
section are reported in Table 2. These results were obtained for the ALPGEN

factorization and renormalization scale set at µ2
F = m2

Z + p2
T,Z . Our moti-

vation for choosing this scale is twofold. First, the Tevatron experiments [86]
have confronted the observed rates of Z + N jets events with ALPGEN simu-
lations for various µ2

F , finding µ2
F values not far from our choice as best fitting

the observations. Second, our µ2
F yields nearly the largest cross section we

found trying out several possibilities available in ALPGEN. Thus we believe that
the systematic uncertainty of background normalization is conservatively taken
into account.

The (Z → l+l−)tt̄ process, with subsequent 6J decay of the tt̄ pair, was
simulated with MADGRAPH+DECAY using the CTEQ6L1 PDF. We generated a
sample using cuts (8.6.4) setting the renormalization and factorization scale at
µ2
F = m2

Z . The resulting cross section is given in Table 2 and results sub-
dominant with respect to the Z6J background.

8.6.6. Analysis. The total background cross section reported in Table 2
is much bigger than that of the signal Eq. (8.6.3). However, we expect signal

9At the same time the lower invariant mass cut is indispensable with our limited computer resources,
since it improves greatly ALPGEN unweighting efficiency.
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events to have a very specific structure due to the presence of intermediate res-
onances (h,W,Z). Typical background events are not expected to have such
structure and can be rejected by imposing reconstruction cuts, i.e. requiring
that the intermediate state resonances be reconstructed by final state jets and
leptons. This is the general idea of the analysis described below. The main
issue is whether the rejection efficiency will be enough to sufficiently suppress
the backgrounds.

The details of the analysis (performed with ROOT [87]) are as follows. First
of all, our analysis is completely partonic, so neither showering nor jet recon-
struction effects are taken into account. We also ignore flavor tagging and
trigger issues, but our inclusive definition of jet and final selection cuts for lep-
tons, respectively, make these simplifications fully justified. However, in order
to make the analysis more realistic, we do introduce a smearing of energies of
individual jets using the expression

(8.6.6)
σ

E
=

0.5√
E/GeV

+ 0.03

to generate the smearing coefficient, as prescribed in Table 9-1 of [88]10.
After smearing, we impose the kinematical cuts (8.6.4) on the jets and

slightly tighten the corresponding leptonic cuts

(8.6.7) ∆RlJ > 0.1, plT > 10 GeV, ηl < 2.5 .

Background and signal events not passing these cuts are removed from the
samples. The signal events passing these cuts correspond to 0.48(1) fb of
cross section to be compared with 2.47 fb without any kinematical cuts, see eq.
(8.6.3). The backgrounds cross section are reduced by these tighter cuts only
by a small amount compared to the values reported in Table 2.

Finally, we impose the reconstruction cuts, proceeding as follows11.
R1. For each event we try to group the 6 final jets into 3 pairs so that the

jets in each pair reconstruct a W or a Z. By this we mean that the invariant
mass minv of each pair has to satisfy the requirement:

MV − δV ≤ minv ≤MV + δV , δV = 8 GeV, V ∈ {W,Z} .

In practice, the value of δV cannot be taken too small because otherwise too
many signal events will be rejected. The given value was motivated by the finite
resolution of the W and the Z peaks which is determined by their natural widths
as well as by the energy resolution of the detector as taken into account by the
smearing procedure described above.

R2. If a grouping into jet pairs reconstructing a W or a Z each is found, we
proceed to impose a further condition that two h’s be reconstructed by four jets
from two of these three pairs, say pair 1 and 2, and by two jets of pair 3 and the

10This is also the smearing adopted in the ATLFAST++ detector simulator [89]
11Geometrical discrimination has been attempted too, but turned out not to be very helpful, since both

signal and background result in a largely boosted system.
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Process σ

H → 6Jl+l− 0.286(9) fb
(Z → l−l+)6j 0.15(1) fb

(Z → l−l+)QQ̄4j 0.032(5) fb
(Z → l−l+)(tt̄→ 6J) 0.022(1) fb

TABLE 3. Signal and background cross sections after imposing the
reconstruction cuts. For ZQQ̄4j the given value is the sum over Q =
b, c.

two leptons. In this case the precise reconstruction cut that we used is

mh − δh ≤ mpair1+pair2 ≤ mh + δh, δh = 33 GeV,

mh −
δh√

2
≤ mpair3+l+l− ≤ mh +

δh√
2
,

where mpair1+pair2 and mpair3+l+l− are the invariant masses of the 4J and
2Jl+l− final states. The value of δh is again motivated by the natural width of
h (with an additional spreading caused by the jet energy resolution). We also
check that the gauge boson reconstructed by the jets of pair 3 is a Z, while the
two gauge bosons reconstructed by the jets of pairs 1 and 2 have the same
type (both W or both Z).

If no grouping of 6 jets into 3 pairs satisfying both R1 and R2 can be found
(we go over all combinations), the event is rejected, otherwise it is retained.
The retained events show the expected intermediate state resonance structure
of the signal.

We ran the reconstruction analysis on the signal sample and on each of the
relevant background samples shown in Table 2. The signal and background
cross sections after the reconstruction cuts are given in Table 3. For each
sample the number of events which passed the reconstruction cuts was large
enough so that the statistical uncertainty in determining the rejection efficiency
is reasonably small12. In fact it is this statistical uncertainty (determined from
the usual

√
N fluctuations of the number of events passing the reconstruction

cuts) which underlies the errors for the cross sections quoted in Table 3.
Two basic conclusions are evident from Table 3. On the one hand, we see

that for the chosen parameters δV,h the reduction in the signal cross section
from what we had after the kinematical cuts is reasonably small (from 0.48 to
0.36 fb). On the other hand, we see that the reconstruction cuts have huge
effect on backgrounds, giving the rejection efficiency of about 10−3. The fi-
nal background cross section is comparable to that of the signal, making the
discovery possible.

Finally, in Figure 8.6.7 we show the distribution of the signal and the total
background cross section versus the total invariant mass of the event.

12For example, we had 1481 events in the signal sample which passed all the cuts.
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FIGURE 8.6.7. λSUSY at the benchmark point (8.5.1), (8.6.2) (black)
and Standard Model (gray) expectation for the differential cross sec-
tion dσ/dMinv(l

+l−6j) after the kinematical and reconstruction cuts
discussed in Section 8.6.6.

8.6.7. Discovery potential after 100 fb−1. From Figure 8.6.7 we see that
signal and backgrounds peak in the same invariant mass range. The discovery
of H will thus comes not from an observation of a new peak, but rather from
an overall excess of events compared to the SM prediction, as well as from the
enhanced prominence of the SM peak.

For an integrated luminosity of 100 fb−1, the expected number of events
passing all the cuts is 20 in the SM, and 49 in λSUSY at the benchmark point
(8.5.1), (8.6.2), giving 3.4σ if one uses the significance estimator formula given
in Eq. (A.3) of [75]. Of course, once this global excess is found, it is worth to
scan the invariant mass range to find where the excess is localized. Optimizing
the range, much better discovery significance can be achieved. For instance,
for 510 GeV< Minv < 590 GeV we have 3 events in the SM, and 23 events in
λSUSY, 7.2σ away from the SM. When going beyond benchmark-point analysis
(something we do not attempt for the time being), such localized excess can be
used to determine mH .

Our conclusion is that the λSUSY signal (8.6.3) is indeed observable at the
LHC with 100 fb−1 of integrated luminosity. If observed, it can provide clean
evidence for the heavy scalar H as well as for the H → hh dominant decay
chain.

8.7. The CP-odd scalar

8.7.1. Production and decays. The pseudo-scalar Higgs boson A has
mass in the same 500-800 GeV range as the heavy scalar H but is always
heavier than H (see Fig. 5.3.2). Its couplings to the third generation SM
fermions are given by [29]:

gAtt =
mt

v
cotβ , gAbb =

mb

v
tanβ.
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FIGURE 8.7.1. Pseudo-scalar Higgs boson production cross section
plotted in the parameter space of Eq. (5.3.6) for λ = 2.
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FIGURE 8.7.2. BR(A → Zh) plotted in the parameter space of Eq.
(5.3.6) for λ = 2, assuming negligible decay width into Higgsinos.
BR(A→ tt̄)≈ 1−BR(A→ Zh).

There is also a coupling with the Z boson and the lightest CP-even Higgs boson
h from the interaction Lagrangian term gAhZ (A

←→
∂ µh)Zµ where [29]

gAhZ =
g

2 cos θw
cos(β − α),

and g is the SU(2) gauge coupling.
By CP-invariance AV V couplings vanish, therefore the only relevant pro-

duction mechanism of A is gluon fusion via the top loop. The production cross
section has been evaluated at NLO with HIGLU [81] and is plotted in Fig. 8.7.1.
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The total width of A ranges between 5 and 30 GeV and is dominated by
A→ tt̄ and A→ hZ decays. Although the branching ratio of A→ tt̄ is almost
always dominant (see Fig. 8.7.2), we cannot exploit this channel. Indeed, [90]
showed that for the mass values we are interested in, the tt̄ SM background
does not allow discovery of a scalar resonance decaying into tt̄. Therefore,
we focus on A → hZ, whose BR is smaller, but still significant. Most of the
produced h’s will decay into vectors, yielding σtot(gg → A → ZV V ) ∼ 10 fb
over all the parameter space. Such a cross section will give too small event rate
if more than one V is allowed to decay leptonically. Therefore we concentrate
on the signature

(8.7.1) gg → A→ hZ → V V Z → 4Jl+l− (signal).

For a detailed study we go to our benchmark point (8.5.1), which gives the
following numerical values 13:

(8.7.2) mA = 615 GeV, ΓA = 11 GeV, σ × BR = 5.5 fb.

8.7.2. Analysis and discovery potential. The analysis is quite analogous
to what was done in Section 8.6 for the heavy CP-even Higgs. We will therefore
be relatively brief.

We generated a sample of signal events with MADGRAPH+DECAY.
We then computed cross sections for all SM processes with 4Jl+l− final

state and we found that only the Z4j and ZW2j processes are relevant14.
Table 4 contains details about the relevant and neglected backgrounds.

Event samples of relevant backgrounds were generated for a more com-
plete analysis. The Z4j process was simulated with ALPGEN using the CTEQ5L

PDF, setting µ2
F = m2

Z + p2
T,Z and enforcing cuts:

500 GeV < Minv < 750 GeV(8.7.3)

pjT > 20 GeV , plT > 10 GeV ,

∆Rjj,lj,ll > 0.4, ηj,l < 2.5

80 GeV < mll < 100 GeV .

The ZW2j process was simulated with MADGRAPH using the CTEQ6L1 pdf,
setting µ2

F = m2
Z and imposing the same cuts. The resulting background cross

sections are the ones given in Table 4. Finally, to model finite detector energy
resolution, we apply energy smearing to the signal and background events us-
ing the smearing function (8.6.6).

From Table 3 we see that the background cross section in the relevant
interval of minv is more than 3 orders of magnitude above the signal. To reduce
the background, we proceed by imposing the reconstruction cuts. Namely, we

13The quoted value of ΓA does not include the width into Higgsino pairs depending on µ and M . The
latter can be as large as 10 GeV, but in most of the parameter space is below 2 GeV. See the analogous
discussion for the H in Section 8.6.2.

14In particular, backgrounds ZZ2j, V V V, h2j were analyzed and found negligible.
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Channel σ

A→ (Z → l+l−)4J 3.02(4) fb
(Z → l+l−)4J 7.006(4) pb

(Z → l+l−)W2j 176.0(8) fb
Sum of neglected ' 90 fb

TABLE 4. Cross sections of the signal and of the relevant SM back-
grounds after the kinematical cuts (8.7.3).

require that the 4 final jets can be divided into 2 pairs reconstructing a vector
boson each. Moreover, we require that these two vector bosons be of the
same type. If they are both W, then we require that they reconstruct an h. If
they are both Z, we require that out of the 3 final Z’s (the two from jets and
the one reconstructed by the leptons) we should find two reconstructing an h.
Reconstruction parameters δV,h, having the same meaning as in Section 8.6.6,
are chosen

δV = 8 GeV , δh = 18 GeV.
If the above requirements can be satisfied, the event is retained, otherwise it is
rejected.

The fraction of the signal event sample which passes the reconstruction
cuts amounts to 2.2 fb, i.e. the cross section is reduced only by a small factor
compared to the value after kinematical cuts given in Table 4. Under the recon-
struction cuts the total SM background cross section in 500−750 GeV invariant
mass range drops down by a factor about 200, i.e. to 51.1 fb.

The differential cross sections versus the invariant mass for both the back-
ground and signal+background are plotted in Fig. 8.7.3. We see that the signal
distribution presents a clearly visible peak above the background. The dis-
covery significance can be optimized choosing a range with largest S/

√
B ra-

tio. For example, assuming 100 fb−1 of integrated luminosity, in the 595 − 635
GeV range we expect 816 events in the SM, and 989 events in λSUSY at the
benchmark point of eqs. (8.5.1) and (8.7.2), which amounts to 6.1σ discovery
significance.

In summary, we showed that the CP-odd Higgs boson of λSUSY has a
clear experimental signature in the 4jl+l− channel, allowing for its discovery
at the LHC with ∼ 100 fb−1 of integrated luminosity. Moreover, the peaked
shape of the signal distribution should allow background extraction from data
and an easy mass measurement. Even though the A → Zh decay mode is
less distinctive of λSUSY than the H → hh mode discussed in Section 8.6, its
signature is much simpler and cleaner, and it could be the easiest channel to
pursue when looking for λSUSY signals.
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CHAPTER 9

Conclusions and outlook

In this thesis we have examined in detail the properties and the phenomenol-
ogy of a class of supersymmetric models characterized by a large mass of the
Higgs boson arising from a term λSH1 ·H2 in the superpotential.

This class of models can emerge as the low energy theory of a class of
UV complete theories where the Higgs sector has some degree of compos-
iteness. Within these UV complete models we discussed examples that are
manifestly compatible with the gauge couplings unification to the same extent
of the MSSM. The existence of such models constitutes a great motivation to
study the low energy phenomenology of the theories with largish λ that, still
being compatible with the greatest indirect hint of SUSY, can result in a phe-
nomenology significantly different from the MSSM. To perform a phenomeno-
logical study we disregarded the details of the particular UV complete models
and introduced λSUSY , a supersymmetric effective theory that corresponds to
the usual NMSSM with strongish couplings in the Higgs sector. This model, as
an effective field theory, has the merit to describe the phenomenology relevant
for the LHC and the other experiments performed and foreseeable so far, thus
capturing the essence of the physical picture of the whole class of UV complete
models.

In the context of λSUSY we found two phenomenologically interesting re-
gions of the parameter space. In one region the models is such that all the
physics connected to the new singlet S is decoupled, thus leaving a phe-
nomenology that resembles very closely that of the MSSM, except for a Higgs
boson mass around 200 or 300 GeV. The other region, on the contrary, cor-
responds to the regime where the singlet fully participates in the dynamics of
the whole Higgs sector leading to order one deviations with respect to the phe-
nomenology of the MSSM in addition to the large Higgs mass. This last sce-
nario has been studied in closer detail with particular focus on the issue of the
dynamical generation of the µ term.

Indeed the generation of the µ term by means of the dynamics that breaks
the electroweak symmetry is one of the motivation for the extension of the
MSSM to the NMSSM. In this thesis we assessed how the NMSSM with a
strongish self coupling in the Higgs sector is very well suited to generate the µ
term in a natural way. Indeed we found that in the regime of λSUSY in which
the singlet is not decoupled is very natural to have its VEV, s, of the same order
of magnitude, and typically very close to, the VEV of the Higgs doublets. To-
gether with our choice of largish coupling λ, i.e. λ ' 1, this leads naturally to

105
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the generation of
µ = λs & mZ .

More in detail, we have been able to prove that when the singlet is not
decoupled from the rest of the scalars, that is generically the case when v ' s,
the generation of the mass of the Higgs and of the µ term are very closely
connected phenomena, as one would expect in a theory that is characterized
by only one physical scale, λv, and generates the two masses at the moment
of the breaking of the same symmetry. Thus our result

mh ∼ λv ,
λv√

2
sin 2β < µ <

3

2
λv sin 2β

appears completely natural and expected.
We also quantified how natural is our model. We examined the logarithmic

sensitivity of the electroweak scale to the change of the fundamental parame-
ters of the model and we found that the most natural region is that where the
Higgs boson mass is well above mZ . This also implies that µ is preferred to
be at least slightly heavier than mZ . Assuming a messengers mass around
100 TeV we have made predictions for the masses of the colored sparticles, in
particular of the stop and the gluino. We found that they can be easily heavier
than 1 TeV still not rendering our model unnatural. This quantitative assess-
ment of the fine tuning of the model and the consequent bounds of the masses
show that the null results of Higgs bosons and superpartners searches of LEP
is not necessarily a killer of low energy supersymmetry but rather an element
of tension for the MSSM and its extensions with perturbative gauge couplings
unification.

The model in the regime of not decoupled singlet has been extensively
checked against the current experimental data. In particular we examined the
bounds from direct searches at LEP and the indirect constraints coming from
precision measurements. We find that direct observations do not pose any
serious bound on the model. More constraints arise from the analysis of the
electroweak precision observables that forces the model to have a small tanβ
and self couplings in the Higgs sector not too large. Interestingly the couplings
allowed are large enough to obtain a Higgs boson above 200 GeV. Further-
more the range of tanβ preferred by precision data maximizes the effect of the
coupling λ on the Higgs mass.

We also computed the thermal relic abundance of the lightest neutralino,
that is a dark matter candidate. The model parameter space left after the con-
sideration of the several constraint from particle physics experiments can ac-
commodate a lightest neutralino with the correct relic abundance. This requires
some particular choice of the parameters such that the lightest neutralino is an
almost pure singlino interaction eigenstate with mass close to the mass of the
Z boson.

The limits from direct detection of dark matter that scatters with heavy nuclei
in underground experiments have been taken into account as well. We find that
the higgsino and singlino components of the lightest neutralino both scatter
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rather efficiently on ordinary matter through the exchange of the lightest Higgs
boson. The bounds in the case of a not decoupled singlet are more stringent
than in the decoupling case as the mixing of the singlet with the doublet adds
up a whole new class of diagrams for the scattering of the LSP with ordinary
matter mediated by the self-coupling of the singlet and by mixed singlet-doublet
interactions. We find that the model is more easily compatible with the current
data when the Higgs boson is heavier that about 200 GeV, which is rather
natural in this class of models. However, the bounds from the spin-independent
cross section of the LSP on the proton constitutes an important constraint for
the model.

The model has very striking and observable consequences for the LHC,
which we studied in detail for both the scenarios with the mixed and unmixed
singlet.

The mixed scenario offers more immediate observable deviations from the
SM and the MSSM as it substantially modifies the properties of the lightest
Higgs boson. Indeed the lightest Higgs boson is rather strongly coupled to
the whole sector of Higgs and higgsino states. This leads to a number of un-
suppressed decay channels that in the MSSM are at best sub-dominant and
typically nearly absent. This will result in a substantial deviation from the SM
rate for the process

gg → h→WW,ZZ .

The low rate for the gluon fusion process and the large mass of the Higgs
boson will point toward scenario beyond the SM and beyond the MSSM. The
case of λSUSY with a mixed singlet offers a number of possible observations
to be carried on right after the establishing of a non-standard Higgs boson. A
notable possibility is the decay of the Higgs to a pair of LSP, which lead to an
invisible decay of the Higgs, i.e. to an invisible decay width that can potentially
be measured 1. Furthermore in a large fraction of the allowed parameters space
the Higgs boson can decay to a pair of pseudoscalar states with mass of the
order of 100 GeV. In this case the Higgs boson can be observed in processes
as

gg → h→ aa→ bb̄bb̄, bb̄τ τ̄ , gg → h→ Za→ bb̄`¯̀,

that might be observable with few fb−1 of integrated luminosity at
√
s = 7

TeV [78].
The unmixed singlet scenario, on the contrary, manifests itself in a more

subtle manner. The deviations of the properties of the lightest Higgs boson
from the ones of the SM are too tiny to be observed at the LHC and we estab-
lished that it will be necessary to search for the heavy states of the Higgs sector
of λSUSY to find evidence for a non SM Higgs sector. We studied the observ-
ability of the heavy CP-even Higgs boson H and the lightest CP-odd boson A
that in this regime have masses of several hundreds of GeV. Our study shows

1See for instance page 1419 of Ref. [91] for the estimates of ATLAS for the direct measurement of
signals of the invisible decay of the Higgs boson.
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that these states are observable in the channels

gg → H → hh V V → `¯̀6j , gg → A→ hZ → `¯̀4j ,

with an integrated luminosity of 30 to 100 fb−1 at
√
s = 14 TeV.

In summary, we have studied in detail the phenomenology of λSUSY, the
low energy realization of supersymmetric UV complete models with composite
Higgs states having strongish self-coupling. The supersymmetric structure of
our model can be captured by the NMSSM with large coupling of the Higgs
sector. This large coupling results in a generically heavy Higgs boson, easily
heavier than 200 GeV, in striking contrast with the MSSM case and the usual
NMSSM.

We studied the generation of the µ terms and the fine-tuning of the model
finding that the model can naturally give a dynamical generated µ term of a
phenomenologically acceptable size. The request of a dynamically generated
µ term favors the regime of the model in which the singlet state does not decou-
ple. We have studied in detail the limits from high energy particle physics and
dark matter experiments finding that the least tuned region of the parameter
space is preferred by the current data.

Finally we have studied the observability of this model for both the case
of a mixed and an unmixed singlet field. We have argued that the LHC might
have the potential to observe signals of deviation from the SM and the MSSM
already in the first few fb−1. In the case of a mixed singlet the same amount
of luminosity might be sufficient to find evidences of λSUSY in most of the
parameters space. For the unmixed singlet case we studied the observability
of the heavier states of the Higgs sector finding that they can be observed with
30 to 100 fb−1.

This work shows that λSUSY is a viable and motivated alternative to the
MSSM. Indeed it can result in a relieve of the tensions between the LEP results
and the MSSM, still maintaining desirable features of the MSSM as the stabi-
lization of the electroweak scale, the presence of a dark matter candidate, and
the possibility of gauge couplings unification. Very interestingly, the model has
verifiable predictions for the LHC, that is certainly in position to test thoroughly
the idea of a strongish self-coupling in a supersymmetric Higgs sector.
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APPENDIX A

One loop contributions to S and T

We collect here the one loop functions used through the paper.
For a boson loop with internal masses m1 and m2 and coupling the the

gauge boson Wµ given by iWµφ
∗
1∂µφ2, we have

2αemv
2A(m1,m2) ≡ 1

16π2
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Additionally, also the diagram in which the gauge boson Wµ and the Higgs
boson φ propagate in the loop contributes to the parameter S, giving as loop
function

(A.0.6) G(m1,m2) ≡ 1

2π

[
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2)3
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2)2

]
.

For a fermion loop with internal masses m1 and m2 and a vector coupling
Wµψ̄iγ

µψ2, we have

2αemv
2Ã(m1,m2) ≡ 1
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m2
1m

2
2

− 2m1m2 +

+
2m1m2(m2

1 +m2
2)−m4

1 −m4
2

m2
1 −m2

2

ln
m2

1

m2
2

]
,(A.0.7)

1

4π
F̃ (m1,m2) ≡ 1

24π2

[
− ln

Λ4

m2
1m

2
2

− m1m2(3m2
1 − 4m1m2 + 3m2

2)

(m2
1 −m2

2)2
+

+
m6

1 +m6
2 − 3m2

1m
2
2(m2

1 +m2
2) + 6m3

1m
3
2

(m2
1 −m2

2)3
ln
m2

1

m2
2

]
.(A.0.8)

Differently, for an axial coupling, the result can be obtained by letting m1 →
−m1. These expressions are valid for both Dirac and Majorana fermions, with
an extra factor of 2 in the case of identical Majorana fermions.
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