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ABSTRACT

This thesis contains four essays on non-parametric estimators of the spot volatility,
the leverage and the volatility-of-volatility. In particular, the focus of this thesis
is on the study of the asymptotic properties of the estimators, the optimization of
their finite-sample performance and the use of the resulting estimates in empirical
applications.

Specifically, in Chapter 2 we prove a central limit theorem for the estimator
of the integrated leverage based on the Fourier method of Malliavin and Man-
cino (2009), showing that it reaches the optimal rate of convergence and a smaller
variance with respect to different estimators based on a pre-estimation of the in-
stantaneous volatility. Then, we exploit the availability of efficient Fourier-based
estimates of the integrated leverage to show, using S&P500 prices over the period
2006-2018, that adding an extra term which accounts for the leverage effect to the
Heterogeneous Auto-Regressive (HAR) volatility model by Corsi (2009) increases
the explanatory power of the latter.

In Chapter 3 we study the sensitivity of the leverage process to changes of the
price and the volatility. In particular, under the Constant Elasticity of Variance
(CEV) model by Beckers (1980), which is explicitly designed to capture leverage
effects, we find that the derivatives of the leverage with respect to the log-price and
the volatility can be expressed as the ratio of quantities that can be consistently
estimated from sample prices, that is, as the ratio of the price-leverage covariation
and, respectively, the volatility and the leverage. From the financial standpoint,
this suggests that the price-leverage covariation may be interpreted as a gauge of
the responsiveness of the leverage to the arrival of new information that causes
changes in the price or the volatility. Additionally, we also find that the price-
leverage covariation is equal to twice the vol-of-vol under the CEV model, thereby
suggesting that the responsiveness of the leverage (i.e., the price-leverage covari-
ation) is proportional to the amount of uncertainty about risk (i.e., the vol-of-vol).
After reconstructing the trajectories of the volatility, the leverage, the vol-of-vol
and the price-leverage covariation through the Fourier methodology by Malliavin
and Mancino (2009), we provide empirical evidence supporting this financial inter-
pretation of the price-leverage covariation in a model-free setting, using 1-second
S&P500 prices over the period March, 2018-April, 2018.
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In Chapter 4, we perform an analytical study to identify the sources of the
finite-sample bias that typically plagues the simplest and most natural vol-of-vol
estimator, the Pre-estimated Spot-variance based Realized Variance (PSRV) by
Barndorff-Nielsen and Veraart (2009). Based on the full knowledge of its analytical
expression, we show that the finite-sample bias of the PSRV may be substantially
reduced by allowing for the overlap of consecutive local windows to pre-estimate
the spot variance. In particular, we provide a feasible analytical rule for the bias-
optimal selection of the length of local windows when the volatility is a process in
the Chan, Karolyi, Longstaff and Sanders (CKLS) class (see Chan et al. (1992))
and show that selections based on this analytical rule match some selections pre-
scribed in the literature, based on simulations.

In Chapter 5, we exploit efficient Fourier estimates of the path of the volatility
to empirically investigate the functional link between the latter and the variance
swap rate. Specifically, using S&P500 data over the period 2006-2018, we find
overwhelming empirical evidence supporting the affine link analytically found by
Kallsen et al. (2011) in the context of exponentially affine stochastic volatility mod-
els. Additionally, based on tests performed on yearly subsamples, we find that ex-
ponentially mean-reverting variance models provide a good fit during periods of
extreme volatility, while polynomial models, introduced in Cuchiero (2011), are
suited for years characterized by more frequent price jumps. These empirical re-
sults are confirmed when replacing Fourier estimates of the spot volatility with
realized local estimates.

Chapter 6 concludes, summarizing the main findings of the thesis.
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1. OVERVIEW OF THE THESIS

Introduction: from volatility to second-order (and third-order) quantities

Based on the seminal work by Jacod (see, e.g., Jacod (1994)1 and Jacod (1997)),
the literature on high-frequency financial econometrics has flourished in the last
three decades, as high-frequency financial data have become progressively more
accessible to scholars and practitioners. In a nutshell, the objective of high-frequency
financial econometrics is to obtain non-parametric estimates of financially relevant
quantities, primarily the volatility2, from high-frequency asset prices. These esti-
mates are in turn used for various applications, e.g., forecasting, model calibration,
derivatives pricing, hedging and risk management.

More specifically, the literature on high-frequency financial econometrics aims
at the development of statistically efficient estimators, with a focus not only on their
asymptotic properties, that is, their consistency and error distribution as the number
of available price observations on a fixed interval goes to infinity (the so-called
infill asymptotics), but also on their finite-sample sample performance, that is, their
efficient implementation in practical applications. These estimators are labeled
“non-parametric” because, for their asymptotic properties to hold, they only require
the data-generating process to be a stochastic volatility model where the price and
the variance processes are Itô semimartingles, without any parametric assumption
on their drift and diffusion components. Such a data-generating process is fairly
general under the no-arbitrage condition (see Delbaen and Schachermayer (1994)).

Historically, the first goal of high-frequency financial econometrics has been
obtaining efficient estimates of asset volatilities. However, in the last decade the
discipline has broadened its scope to include the topic of the estimation of the
so-called second order quantities, that is, quantities that require the knowledge of
the volatility process to be computed. These are the leverage, i.e., the covariation

1This manuscript has actually been published only recently, see Jacod, J. (2018). Limit of ran-
dom measures associated with the increments of a Brownian semimartingale. Journal of Financial
Econometrics, 16(4):526–569.

2Note that in this thesis we will use the terms variance and volatility interchangeably, as custom-
ary in the literature on high-frequency financial econometrics.
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between the logarithmic price process and the volatility process3, and the volatility
of the volatility itself (hereinafter vol-of-vol), i.e., the quadratic variation of the
variance process.

In particular, the first object of interest of the literature on high-frequency fi-
nancial econometrics has been the integrated volatility, that is, the integral of the
volatility process over a given time horizon. Specifically, based on the quadratic
variation formula, the first proposed estimator of the integrated volatility of a fi-
nancial asset was the realized variance, which is simply the sum of the squared
increments of the logarithmic price of the asset of interest. Assuming that the price
process is a continuous semimartingale, the realized volatility is the rate-optimal
estimator of the integrated variance. For a detailed description of the finite-sample
and asymptotic properties of the realized variance see the seminal papers of the late
1990s and early 2000s by Andersen and Bollerslev (1998), Andersen et al. (2001a),
Andersen et al. (2001b), Barndorff-Nielsen and Shephard (2002a), Andersen et al.
(2003).

However, empirical evidence shows that observed asset price dynamics deviate
from the semimartingale hypothesis at high sampling frequencies, where their dy-
namics are well-modeled by the sum of a semimartingale component (termed the
efficient price) and a noise component, whose presence is ascribed to market mi-
crostructure phenomena such as bid-ask bounces, discretization effects and price
rounding (see Hasbrouck (2007) for an extensive statistical treatment of market
microstructure phenomena). In this regard, several realized estimators of the inte-
grated volatility have been developed that are consistent in the presence of noise,
such as the two-scale realized variance by Zhang et al. (2005), the realized kernel
estimator by Barndorff-Nielsen et al. (2008a) or the realized estimator based on
price pre-averaging by Jacod et al. (2009), just to name a few. At the same time,
Malliavin and Mancino (2002, 2009) have also introduced a volatility estimator,
based on the Fourier methodology, which is robust to the presence of noise in sam-
ple observations. Additionally, note that the Fourier methodology is particularly
well-suited for the estimation of multivariate volatilities from asynchronous price
observations. Previously mentioned realized methods can indeed be extended, in
principle, to the multivariate case by replacing squared returns with cross-returns,
that is, by computing realized covariances. However, this may represent a challeng-
ing task, as it requires bivariate price series to be aligned on a synchronized grid
(see Aı̈t-Sahalia et al. (2010) for a description of the statistical challenges related
to data synchronization).

Furthermore, in the presence of jumps in the price trajectory, the realized
volatility is a consistent estimator of the sum of the integrated variance and squared

3See Chapter 2 for the motivation behind the use of the term leverage to indicate such a process.
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jumps. As a consequence, both realized and Fourier-based estimators have been
proposed to allow the consistent estimation of the integrated variance in the pres-
ence of jumps. Jump-robust realized estimators have been introduced by Barndorff-
Nielsen and Shephard (2004) and Mancini (2009), based, respectively, on the use
of the bipower variation and the truncation of jumps, starting a very large literature
(see Chapter 4 and Section IV in Aı̈t-Sahalia and Jacod (2014) for an extensive
treatment of this topic). Instead, Cuchiero and Teichmann (2015) have proposed a
jump-robust version of the Fourier volatility estimator. Estimators which are con-
sistent in the challenging situation where both noise and jumps are present have
also been proposed, see, e.g., Podolskij and Vetter (2009).

A second development of the literature on high-frequency econometrics per-
tains to the reconstruction of the trajectory of the spot volatility. In this regard,
both local and global approaches have been proposed: the latter estimate the entire
path of the volatility on a discrete grid, while the former yield point-wise volatility
estimates. In particular, local estimators are basically obtained as the numerical
derivative of a consistent estimator of the integrated volatility over a local window
(see, e.g., Fan and Wang (2008), Mykland and Zhang (2009), Alvarez et al. (2011),
Zu and Boswijk (2014) and Bandi and Renò (2018); additionally, see Chapter 8 in
Aı̈t-Sahalia and Jacod (2014) for a detailed discussion of the asymptotic properties
of localized estimators). For what entails global methods, instead, estimators based
on the Fourier transform (Malliavin and Mancino (2002, 2009); Mancino and Rec-
chioni (2015); Cuchiero and Teichmann (2015)) and the Laplace transform (Curato
et al. (2018)) have been proposed in the literature. We refer the reader to Chapter 5
for a more detailed illustration of local and global estimators of the spot volatility.

The availability of efficient estimates of the latent spot volatility allows treating
the latter as an observable quantity and this, in turn, is crucial for many financial
applications, such as, among many others, model calibration (see, e.g., Kanaya
and Kristensen (2016)) or risk management (see, e.g., Zu and Boswijk (2014)). In
this regard, in Chapter 5 we exploit the availability of efficient spot volatility esti-
mates to obtain empirical evidence supporting the use of affine models in financial
applications.

As mentioned, in the last decade the scope of the literature on high-frequency
financial econometrics has further expanded to include the estimation of the so-
called second-order quantities, i.e., the leverage and the vol-of-vol. We refer the
reader to, respectively, Chapters 2 and 4 for a discussion of the estimators of
second-order quantities available in the literature, the statistical challenges related
to their computation and the relevance of obtaining efficient estimates of second-
order quantities for financial applications.

Finally, very recently Sanfelici and Mancino (2020) have proposed a consis-
tent estimator of a third-order quantity, the price-leverage covariation, based on
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the Fourier methodology. This quantity already appears in Barucci et al. (2003),
where the authors propose a model-free indicator of financial instability whose for-
mula depends, other than on the volatility and the leverage, on the price-leverage
covariation. In Chapter 3 of this thesis we provide empirical evidence support-
ing the financial interpretation of the price-leverage covariation as a gauge of the
responsiveness of the leverage effect to price and volatility changes.

Outline of the thesis

This thesis contains four essays on the asymptotic and finite-sample properties of
non-parametric estimators of the spot volatility, the leverage and the volatility-of-
volatility. Empirical applications of the resulting estimates are also explored.

Specifically, the thesis is organized as follows. Chapter 2 is dedicated to the
study of the asymptotic normality of the estimation error of the Fourier estimator
of the integrated leverage. A central limit theorem for this estimator has already
been derived by Curato (2019), but the rate of convergence obtained by the au-
thor is sub-optimal. In Chapter 2, instead, we prove a central limit theorem for
the Fourier estimator of the integrated leverage with optimal rate of convergence.
Additionally, we obtain a smaller asymptotic variance with respect to different re-
alized estimators based on the pre-estimation of the spot volatility. In this chapter
we also provide simulation results that confirm the asymptotic result obtained.

Finally, based on the availability of efficient Fourier estimates of the integrated
leverage, we perform an empirical study, where we show, using S&P500 prices
over the period 2006-2018, that adding an extra term which accounts for the lever-
age effect to the Heterogeneous Auto-Regressive volatility (HAR) model by Corsi
(2009) increases the explanatory power of the latter in a statistically-significant
manner. This empirical result extends and robustifies the empirical findings by
Mykland and Wang (2014), which have been obtained using a different volatility
model, namely an auto-regressive model of order 2, and a different data sample,
that is, Microsoft prices over the period 2008-2011.

Chapter 3 is devoted to an empirical study on the relationship between the
derivatives of the leverage process with respect to the price and the volatility and
the price-leverage covariation. This study is motivated by analytical results that
hold under the Constant Elasticity of Variance (CEV) model by Beckers (1980),
which is explicitly designed to capture leverage effects. In fact, under the CEV
model, the derivatives of the leverage with respect to the log-price and the volatil-
ity are equal to ratios of quantities that can be consistently estimated from sample
prices over a fixed time horizon. Specifically, such derivatives are equal to the
price-leverage covariation scaled, respectively, by the volatility and the leverage
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itself. This analytical result suggests that the price-leverage covariation may be
interpreted, from the financial standpoint, as a gauge of the responsiveness of the
leverage to the arrival of new information that causes changes in the price or the
volatility. Additionally, we also find that under the CEV model the price-leverage
covariation is equal to twice the vol-of-vol, a finding which suggests that the re-
sponsiveness of the leverage (i.e., the price-leverage covariation) is proportional to
the amount of uncertainty about risk (i.e., the vol-of-vol).

After reconstructing the trajectories of the volatility, the leverage, the vol-of-vol
and the price-leverage covariation through the Fourier methodology, we provide
empirical evidence supporting such financial interpretation of the price-leverage
covariation in a model-free setting, using 1-second S&P500 prices over the pe-
riod March, 2018-April, 2018. Specifically, we show that the theoretical, model-
dependent predictions of the CEV model for the derivatives of the leverage (and
for the link between the price-leverage covariation and the vol-of-vol) are quite
accurate in approximating their empirical, model-free counterparts.

In Chapter 4, we perform an analytical study to identify the sources of the
finite-sample bias that typically plagues the simplest and most natural vol-of-vol
estimator, the Pre-estimated Spot-variance based Realized Variance (PSRV) by
Barndorff-Nielsen and Veraart (2009). Inspired by the analytical study in Aı̈t-
Sahalia et al. (2013), we follow a similar approach to reconstruct the full paramet-
ric bias expression under the assumption that the volatility follows a model in the
Chan, Karolyi, Longstaff and Sanders (CKLS) class (see Chan et al. (1992)). Then,
based on the full knowledge of this expression, we show that the finite-sample bias
of the PSRV may be substantially reduced by allowing for the overlap of consec-
utive local windows to pre-estimate the spot variance. In particular, we provide a
feasible analytical rule for the bias-optimal selection of the length of local windows
and verify its efficiency both numerically and empirically. Furthermore, we show
that selections based on this analytical rule match the selections prescribed in the
numerical study by Sanfelici et al. (2015).

In Chapter 5, we empirically investigate, using S&P500 sample data over the
period 2006-2018, the functional link between the variance swap rate and the spot
volatility, after reconstructing the trajectory of the latter via the Fourier methodol-
ogy. As a proxy for the variance swap rate we use, instead, the VIX index squared
(see Carr and Wu (2006)). As a result, we find overwhelming empirical evidence
supporting the affine link analytically found by Kallsen et al. (2011) in the context
of exponentially affine stochastic volatility models. Additionally, based on tests
performed on yearly subsamples, we find that exponentially mean-reverting vari-
ance models provide a good fit during periods of extreme volatility, while polyno-
mial models, introduced in Cuchiero (2011), are suited for years characterized by
more frequent price jumps. These empirical results are confirmed when replacing



1. Overview of the thesis 13

Fourier estimates of the spot volatility with realized local estimates.
Finally, Chapter 6 concludes, summarizing the main findings of the thesis.

Note that, for the ease of the reader, each chapter is meant to be self-contained.
As a consequence, some repetitions of the same concepts may appear throughout
the thesis.



2. RATE-EFFICIENT ASYMPTOTIC NORMALITY FOR THE
FOURIER ESTIMATOR OF THE LEVERAGE

2.1 Introduction

The leverage effect, introduced in the seminal paper by Black (1976), refers to
the relationship between asset price returns and volatility changes, which tend to
be negatively correlated on equity markets. From a financial standpoint, this phe-
nomenon has been explained as follows (see Black (1976)): if the asset price de-
creases (increases), the market value of the equity of the corresponding company
automatically decreases (increases) as well, making the leverage of the company,
i.e., its debt-to-equity ratio, larger (smaller) and thus making the asset more risky
and thus more volatile. This explanation, despite being supported by empirical
evidence for some assets, has been criticized: on the one hand, the existence of
a leverage effect has been shown also for some exchange rates and commodities,
where no debt-to-equity ratio (no company) is directly involved; on the other hand,
this mechanism implies that the price decline (raise) causes the increase (decrease)
in the volatility. Other studies (see, e.g., French et al. (1987)) have in fact suggested
that the causal relationship is opposite, being the volatility change the cause of the
price change, based on a mechanism termed “volatility feedback effect”. However,
more recent empirical evidence collected in the literature shows that the leverage
effect, generally interpreted as the covariation between the log-price and variance
processes, is actually time-dependent and random. Accordingly, models that fea-
ture a stochastic leverage effect have been proposed. See, e.g., in this regard, Bandi
and Renò (2012), Veraart and Veraart (2012), Mykland and Wang (2014), Kalnina
and Xiu (2017), Curato (2019).

The estimation of the leverage effect is challenging, because it requires the
knowledge of the latent volatility process. This issue can be dealt with directly
by building estimators of the leverage based on the pre-estimation of the path of
the spot volatility, as done, e.g., by Mykland and Wang (2014), Aı̈t-Sahalia and
Jacod (2014), Chapter 8.4, and Aı̈t-Sahalia et al. (2017). An alternative approach
is offered by the Fourier covariance estimation method by Malliavin and Mancino
(2009), which requires only the pre-estimation of the Fourier coefficient of the
volatility. In this chapter we prove the central limit theorem for the estimator of the
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integrated leverage obtained with the latter approach.
The Fourier estimation method is particularly suited to build estimators of

second-order quantities. In fact, as a first step the Fourier method is applied to ob-
tain estimates of the Fourier coefficients of the volatility. Then, the knowledge of
the Fourier coefficients of the latent volatility process allows iterating the procedure
in order to compute the Fourier coefficients of the covariation process between the
log-price and the volatility. In particular, the integrated leverage requires to com-
pute only the 0-th Fourier coefficient of the covariation process. As mentioned,
this procedure does not require the preliminary estimation of the spot volatility
path, which is typically obtained via a differentiation procedure (see Chapter 8 in
Aı̈t-Sahalia and Jacod (2014)), but only the estimation of the Fourier coefficients
of the volatility, which, being integrated quantities, are less subject to numerical
instabilities.

An early attempt to use the Fourier method to identify the parameters of stochas-
tic volatility models is present in Malliavin and Mancino (2002), Barucci and Man-
cino (2010). Curato (2019) proves the asymptotic error normality for the Fourier
estimator of the leverage with a rate lower than 1/6. The low rate found in Cu-
rato (2019) is a consequence of the assumption that the number of frequencies M
employed for the second step, namely the convolution product between the Fourier
coefficients of the log-price and those of the volatility, satisfies M3/n→ 0, where
n is the number of price observations. As the asymptotic rate of the Fourier lever-
age estimator obtained by the author is M1/2, the result found in Curato (2019) is
clear. At the same time, due to the low rate of convergence, the asymptotic variance
does not depend on the number of the Fourier coefficients N of the log-price used
to obtain the Fourier coefficients of the volatility. Further, Curato and Sanfelici
(2019) study the finite sample properties of the Fourier estimator of the integrated
leverage effect in the presence of microstructure noise contamination, showing its
asymptotic unbiasedness under this condition.

In this chapter we prove that, in the continuous stochastic volatility model con-
sidered in Curato (2019), a careful choice of the two cutting frequencies which
define the Fourier leverage estimator allows reaching the optimal rate 1/4. The
resulting asymptotic variance depends on both the frequencies M and N, except in
the case where N is chosen to be the Nyquist frequency n/2, which is the natural
choice in the absence of microstructure noise, indeed. Furthermore, we consider
two different convolution products to obtain the Fourier coefficients of the lever-
age, based, respectively, on the Dirichlet and Fejér kernel. As it is well known, this
choice does not affect the rate of convergence, but the asymptotic variance. Both
the Fourier leverage estimators reach a smaller asymptotic variance with respect to
the leverage estimator in Mykland and Wang (2014), while only the Fourier lever-
age estimator with the convolution obtained using the Fejér kernel has a smaller
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asymptotic variance with respect to the leverage estimator in Aı̈t-Sahalia and Ja-
cod (2014). The leverage estimator in Aı̈t-Sahalia et al. (2017) reaches an even
smaller asymptotic error variance.

The analytical results derived in this chapter are corroborated by a simulation
study, where we show that, as the sample size increases, the empirical distribu-
tion of the estimation error approaches the asymptotic distribution with accuracy.
Furthermore, the simulation study confirms that the Fourier leverage estimator ob-
tained by means of the Fejér kernel leads to a superior finite-sample efficiency in
terms of mean squared error.

Finally, we exploit the availability of efficient leverage estimates to investigate
the contribution of the leverage effect to the prediction of the future integrated
volatility. In Mykland and Wang (2014), the authors suggest that adding an extra
term, namely the asset return scaled by the leverage effect, to any auto-regressive
model aimed at predicting next-period’s volatility may increase the model’s ex-
planatory power in a statistically significant manner, based on empirical evidence
obtained from Microsoft high-frequency prices over the period 2008-2011. Ac-
cordingly, in this chapter we add the extra term represented by the asset return
scaled by the Fourier estimate of the leverage effect to the popular Heterogeneous
Auto-Regressive (HAR) volatility model by Corsi (2009) and show, using S&P500
prices over the period 2006-2018, that the contribution of this extra term is sta-
tistically significant, thus confirming the empirical result by Mykland and Wang
(2014) on a different model and data set.

The chapter is organized as follow. Section 2.2 introduces the main definitions
and assumptions. In Section 2.3 we state the main theorems. Section 2.4 contains
a numerical study supporting the results of Section 2.3. In Section 2.5 we empiri-
cally demonstrate the additional explanatory power of the asset return scaled by the
leverage effect when added to the HAR volatility model. Section 2.6 summarizes
the main findings of this chapter. Finally, the Appendix (Section 2.7) contains the
proofs and some useful results on the Dirichlet and Fejér kernels.

2.2 The Fourier leverage estimator: definition and assumptions

In this section we introduce the general non-parametric stochastic volatility model
which will be considered through the chapter as the data-generating process and
define the Fourier estimator of the leverage process. Specifically, the assumption
on the data-generating process is as follows.

Assumption 2.1. Data-generating process
Let x and σ be, respectively, the logarithmic price process and the volatility

process over a fixed time period [0,T ]. We assume that x and σ are Brownian
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semimartingales satisfying, respectively, the stochastic differential equations

dx(t) = σ(t)dW (t)+a(t)dt,

dσ(t) = γ̃(t)dZ(t)+ b̃(t)dt,

where W and Z are correlated Brownian motions on a filtered probability space
(Ω,F ,(Ft)t∈[0,T ],P) satisfying the usual conditions. The processes σ , a, γ̃ and b̃
are continuous adapted stochastic processes, bounded in absolute value. Moreover,
we assume that the process σ is bounded away from zero.

By applying the Itô formula, it is easily seen that the process v := σ2 is a Brow-
nian semimartingale under Assumption 2.1, satisfying the stochastic differential
equation

dv(t) = γ(t)dZ(t)+b(t)dt,

where γ and b are expressed in terms of the drift b̃ and diffusion γ̃ , and inherit their
properties.

The leverage process η is defined as the covariation between the log-price pro-
cess x and variance process v, i.e.,

η(t) :=
d〈x,v〉t

dt
. (2.1)

Under the no-arbitrage condition (see Delbaen and Schachermayer (1994)), the
class considered in Assumption 2.1 is fairly general. In fact, it includes most con-
tinuous stochastic volatility models commonly used in financial applications and,
also, is assumed in Aı̈t-Sahalia and Jacod (2014), Chapter 8.4, and in Mykland and
Wang (2014). Further, it coincides with the continuous component of the model
considered in Aı̈t-Sahalia et al. (2017), which reads

dx(t) = σ(t)dW (t)+a(t)dt,

dσ(t) = f (t)dW (t)+g(t)dB(t)+b(t)dt,

where W and B are independent Brownian motions which can be reconciled with
our model by projecting Z on W and an orthogonal Brownian motion W⊥.

As it is the case for Mykland and Wang (2014), Aı̈t-Sahalia and Jacod (2014),
Chapter 8.4, and Aı̈t-Sahalia et al. (2017), in this chapter we are interested in the
estimation of the integral of the stochastic leverage defined in (2.1) as the covari-
ation between the processes x and v. Taking a different point of view, Veraart and
Veraart (2012) and Kalnina and Xiu (2017) focus instead on the estimation of the
stochastic correlation between W and Z in a more general setting which includes
price and volatility jumps.
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We now recall the definition of the Fourier estimator of the integrated leverage
studied by Curato (2019). By re-scaling the unit of time we can always reduce
ourselves to the case where the time window [0,T ] becomes [0,2π]. Suppose that
the asset log-price x, satisfying Assumption 2.1, is observed on the discrete grid
t j,n = j2π/n, j = 0,1 . . . ,n and denote ρ(n) := 2π/n.

The Fourier transform of the discretized price is defined as

ck(dxn) :=
1

2π

n−1

∑
j=0

e−ikt j,nδ
n
j (x), (2.2)

where δ n
j (x) := x(t j+1,n)− x(t j,n), while i denotes the imaginary unit

√
−1.

Further, for any |k| ≤ N, the estimator of the k-th Fourier coefficient of the
volatility is defined as

ck(vn,N) :=
2π

2N +1 ∑
|s|≤N

cs(dxn)ck−s(dxn). (2.3)

Based on the knowledge of the Fourier coefficients of the volatility process, ck(vn,N),
it is then possible to iteratively apply the convolution formula between the volatil-
ity process and the log-price process. The convolution formula as in (2.3), applied
to the volatility and log-price processes, produces the Fourier coefficients of their
covariation, that is, the leverage process. Note that the Fourier coefficients of the
variance increments, ck(dv), are obtained from ck(v), via the integration by parts
formula. It is now evident that only integrated quantities are necessary to define the
Fourier estimator of leverage, and the estimation of spot volatility is not involved.

Using the fact that the integrated leverage is equal to 2π times the 0-th Fourier
coefficient of the same function, the Fourier estimator of 1

2π

∫ 2π

0 η(t)dt is defined
as

η̂n,N,M :=
2π

2M+1 ∑
|k|≤M

ik ck(vn,N)c−k(dxn). (2.4)

It is also possible to weight the convolution with a different kernel, like the Fejér
kernel, as

η̃n,N,M :=
2π

M+1 ∑
|k|≤M

(
1− |k|

M+1

)
ik ck(vn,N)c−k(dxn). (2.5)

In the present chapter we study the rate efficient asymptotic theorem for the esti-
mators (2.4) and (2.5).
Note that the estimators (2.4) and (2.5) differ from the realized kernel estimators
by Barndorff-Nielsen et al. (2008b). In fact, the convolution product leading to
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the Fourier estimators weights the auto-covariances of any order, the weight being
dependent on the number of frequencies N and M, in addition to the lag between
observations, see Mancino et al. (2017) for a detailed comparison.

Remark 2.1. The definition (2.4) (as well as (2.5)) clarifies the reason why asyn-
chronicity issues do not appear in the estimation of the leverage, despite the fact it
is tout à fait a covariance. In fact, the Fourier coefficients of the volatility ck(vn,N)
defined in (2.3) use only the log-prices observations, but all of them, without any
sub-sampling or manipulations. Further, the quantities ck(vn,N) and c−k(dxn) en-
tering into the definition are two separately integrated quantities, thus no issue of
asynchronicity matters.

Remark 2.2. In Lemma 2.2 of Malliavin and Mancino (2009), it is proved that the
drift component of the semimartingale model gives no contribution to the convolu-
tion formula. Therefore, the drift in Assumption 2.1 can be ignored. Moreover, as
observed in Malliavin and Mancino (2009), we can assume that x(0) = x(2π) and
v(0) = v(2π). In fact, if x(0) 6= x(2π), or v(0) 6= v(2π), we introduce, respectively,

x̃(t) = x(t)− t
2π

[x(2π)− x(0)]

and
ṽ(t) = v(t)− t

2π
[v(2π)− v(0)].

Then x̃(0) = x̃(2π), ṽ(0) = ṽ(2π) and, moreover, volatility and co-volatilities esti-
mations are not affected by a modification of the drift as above. From the point of
view of the modeling, we may then consider

dx̃(t) =
√

v(t)dW (t),

dṽ(t) = γ(t)dZ(t).

In fact, for any k 6= 0, it holds ck(dv) = ck(dṽ).

2.3 The Central Limit Theorems

In this Section we study the asymptotic normality of the Fourier estimators of the
integrated leverage (2.4) and (2.5), showing that they reach the optimal rate of
convergence 1/4. Further, we compare the asymptotic variance of the estimators
with some competitor estimators having the same rate of convergence.

Theorem 2.1. Suppose Assumption 2.1 holds. Further, assume that x(0) = x(2π)
and v(0) = v(2π)1. Let Mρ(n)1/2 → cM and Nρ(n)→ cN , where cM and cN are

1See comments in Remark 2.2.
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positive constants. Then, for the leverage estimator (2.4), the following stable
convergence in law holds:

ρ(n)−1/4
(

η̂n,N,M−
1

2π

∫ 2π

0
η(t)dt

)
↓

N

(
0,

1
2π

∫ 2π

0

1
cM

(
γ

2(s)v(s)+η
2(s)
)
+

1
6

cM (1+2θ(cN/π)) v3(s)ds
)
,

where
θ(a) :=

1
2a2 r(a)(1− r(a)), (2.6)

and r(a) = a− [a], being [a] the integer part of a.

The estimator (2.5) has the same asymptotic rate 1/4, while its asymptotic
variance is smaller, due to the presence of the Fejér kernel. The following result is
easily obtained from Theorem 2.1.

Theorem 2.2. Suppose Assumption 2.1 holds. Further, assume that x(0) = x(2π)
and v(0) = v(2π). Let Mρ(n)1/2 → cM and Nρ(n)→ cN , where cM and cN are
positive constants. Then, for the estimator (2.5), the following stable convergence
in law holds:

ρ(n)−1/4
(

η̃n,N,M−
1

2π

∫ 2π

0
η(t)dt

)
↓

N

(
0,

1
2π

∫ 2π

0

2
3

1
cM

(
γ

2(s)v(s)+η
2(s)
)
+

2
15

cM (1+2θ(cN/π)) v3(s)ds
)
,

where θ(a) is defined in (2.6).

The asymptotic rate 1/4 is the same rate reached by the integrated leverage
estimators proposed in Mykland and Wang (2014), Aı̈t-Sahalia and Jacod (2014)
and Aı̈t-Sahalia et al. (2017). We discuss now the asymptotic variances obtained.
Note that if cN is chosen to be equal to π or, equivalently, N = n/2 (i.e., the cutting
frequency N used for the estimation of the volatility coefficients is equal to the
Nyquist frequency), then θ(cN/π) = 0 and the asymptotic variance in Theorem
2.1 becomes

1
2π

∫ 2π

0

(
1

cM

(
γ

2(s)v(s)+η
2(s)
)
+

1
6

cM v3(s)
)

ds, (2.7)
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while that in Theorem 2.2 it becomes

1
2π

∫ 2π

0

(
2
3

1
cM

(
γ

2(s)v(s)+η
2(s)
)
+

2
15

cM v3(s)
)

ds. (2.8)

To compare (2.7) and (2.8) with the asymptotic variance of the leverage estimator
in Mykland and Wang (2014), Theorem 1, note that, under the same notation and
setting of Theorem 2.1 of this chapter, the latter corresponds to

1
2π

∫ 2π

0

(
1

cM
(
8
3

γ
2(s)v(s)+η

2(s))+
4

π2 cM v3(s)
)

ds, (2.9)

which is larger with respect to both (2.7) and (2.8). On the other side, considering
the variance of the (continuous part) of the leverage estimator by Aı̈t-Sahalia et al.
(2017), Theorem 3, which reads

1
2π

∫ 2π

0

(
2
3

1
cM

γ
2(s)v(s)+

1
π2 cM v3(s)

)
ds, (2.10)

we note that (2.10) is smaller with respect to (2.8) (which in turn is smaller than
(2.7)). Finally, compared with the asymptotic variance of the leverage estimator
in Aı̈t-Sahalia and Jacod (2014), Theorem 8.14, we see that (2.8) is smaller, while
(2.7) is larger.

Remark 2.3. The leverage estimator of Curato (2019) is precisely the estimator
(2.4). In Curato (2019) the central limit theorem is obtained under the conditions2

M3/N→ 0 and Nρ(n)→ c, where c is constant, and reads as follows

√
M
(

η̂n,N,M−
∫ 2π

0
η(t)dt

)
↓

N

(
0,

π

2

∫ 2π

0
2(v(s)γ2(s)+η

2(s))+ v(0)γ2(s)+(v(2π)− v(0))2v(2π)ds
)
.

Therefore the rate of convergence is less than 1/6. As for the variance, it is equal
to the asymptotic variance of the covariance estimator in Malliavin and Mancino
(2009) under synchronous observations, plus a terms depending on the boundary
values. Due to the slow rate of convergence, or equivalently, the slower M fre-
quency considered, the asymptotic variance does not depend on the constant ratio
between n and N (i.e., c), as remarked also in Mancino et al. (2017) in the general
case of Fourier covariance estimator.

2Note that in Curato (2019) M and N are interchanged with respect to the present work.



2. Rate-efficient asymptotic normality for the Fourier estimator of the leverage 22

2.4 Simulation study

In this section we perform a simulation study to assess the finite-sample efficiency
of the estimators (2.4) and (2.5). More precisely, we investigate the asymptotic nor-
mality as a function of the sample size n and the accuracy of the leverage estimates
obtained with the two estimators.

The model used for the simulation is the widely-used stochastic volatility model
by Heston (1993):

dx(t) = σ(t)dW (t)+(µ− 1
2

v(t))dt,

dv(t) = γσ(t)dZ(t)+θ(α− v(t))dt,
(2.11)

where µ = 0.01, γ = 0.5, θ = 2, α = 0.2 and W , Z are correlated Brownian mo-
tions with correlation parameter ρ = −0.8. This choice of ρ corresponds to a
strong leverage effect. However, our numerical results are robust to the selection
of different values of ρ and different values of the parameters in the variance pro-
cess.

The standardized estimation errors for the estimators (2.4) and (2.5) are defined
as follows:

ε̂n,N,M := ρ(n)−1/4
η̂n,N,M−

1
2π

∫ 2π

0
η(t)dt√

V̂
, (2.12)

ε̃n,N,M := ρ(n)−1/4
η̃n,N,M−

1
2π

∫ 2π

0
η(t)dt√

Ṽ
, (2.13)

where V̂ and Ṽ denote the asymptotic error variances derived, respectively, in the
Theorem 2.1 and Theorem 2.2. Specifically, we consider the asymptotic error vari-
ances in the form given by (2.7) and (2.8), because the simulated setting does not
account for the presence of a microstructure noise component and thus the optimal
choice for the cutting frequency N is the Nyquist frequency n/2.

Regarding the choice of the second cutting frequency, M, its order with respect
to n is dictated by the asymptotic theory (Theorems 2.1 and 2.2), while guidance
for the choice of the constant cM (recall that M ∼= cM(n/2π)1/2) can be obtained
as follows. First, we generate 104 trajectories of the model (2.11). Each trajec-
tory corresponds to a trading day of length equal to 6.5 hours, i.e., to n = 23400
1-second observations. Then we compute the mean squared error (MSE) of es-
timators (2.4) and (2.5) in correspondence of different values of cM. Figure 2.1
compares the MSE of the two estimators as a function of cM, showing that the
MSE-optimal choice of cM is given by cM = 0.4

√
2π for the estimator (2.4) and
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cM =
√

2π for the estimator (2.5)3. Note that Figure 2.1 confirms that the presence
of the Fejer kernel in the definition of the estimator (2.5) has the effect of reducing
the error variance of the estimator.
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Fig. 2.1: Comparison of the MSE of estimators (2.4) (blue) and (2.5) (red) as a function of
k = cM√

2π
for n fixed and corresponding to the 1-second sampling frequency.

With this choice of the cutting frequencies N and M, we investigate the asymp-
totic normality as a function of the sample size n. Figure 2.2 and Table 2.1 illustrate
a comparison between the empirical density of the standardized estimation error
(2.12), computed from the simulated price trajectories, and the standard normal
density, for different values of the sample size n. Figure 2.2 and Table 2.1 show
that, as n increases, the estimation accuracy improves, thus confirming, numeri-
cally, the finding of Theorem 2.1. Very similar numerical results to those described
in Figure 2.2 and Table 2.1 are obtained for the estimation error (2.13) and thus are
omitted for the sake of brevity.

2.5 Empirical study

In this section we perform an empirical study where the integrated leverage esti-
mator (2.5) is computed for the S&P500 index in order to investigate the predictive
power of the leverage effect on future volatility, in the spirit of Mykland and Wang

3An analogous study has been conducted for the 5-minute sampling frequency which will be
employed in the empirical study of Section 2.5. The optimal choice of cM turns out to be pretty
much the same as in Figure 2.1.
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Fig. 2.2: Comparison between the density of the estimation error (2.12) (blue dashed line)
and the standard normal density (red line), for different values of the sample size
n and T = 1/252 (1 day). The price sampling frequencies corresponding to the
different values of n are reported between brackets. The plots are obtained from
104 simulated trajectories of model (2.11), using the empirical density estimator
with normal kernel. The frequencies are chosen as N = n/2 and M = 0.4

√
n.

n (sampl. freq.) variance mean median 1st quartile 3rd quartile
390 (1 min.) 1.187 0.135 0.146 -0.542 0.841
780 (30 sec.) 1.110 0.056 0.075 -0.618 0.740

1560 (15 sec.) 1.078 0.040 0.063 -0.634 0.730
4680 (5 sec.) 1.054 0.033 0.046 -0.629 0.719

11700 (2 sec.) 1.031 0.029 0.037 -0.644 0.707
23400 (1 sec.) 1.011 0.003 0.009 -0.672 0.676

n→ ∞ 1 0 0 -0.674 0.674

Tab. 2.1: Comparison of the sample statistics of the empirical distributions in Figure 2.2
with the corresponding statistics of the standard normal distribution, i.e., the lim-
iting distribution as n→ ∞.

(2014). We conduct our empirical investigation on S&P500 prices sampled over
the period 2006-2018. This relatively long time frame allows to assess the contri-
bution of the leverage effect in predicting the future variance not only in times of
market stability but also in times of market stress, as it encompasses a number of
turmoil periods, such as the global financial crisis of 2008, the flash-crash of May
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2010, the debt crisis in the Euro area of 2011 and the instability phase caused by
the so-called Brexit in 2016.

Figure 2.3 shows the evolution of the estimated daily integrated leverage over
the period 2006-2018, together with that of the estimated daily integrated volatility.
Note that the integrated leverage changes abruptly in correspondence to volatility
spikes: this happens, e.g., in correspondence to the aforementioned financial tur-
moil periods of 2008, 2010, 2011 and 2016 and is consistent with the findings by
Bandi and Renò (2012) and Kalnina and Xiu (2017), who highlight that the lever-
age effect is not constant and stronger during financial crises.
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Fig. 2.3: Estimates of the S&P500 daily integrated leverage (blue, left) and daily integrated
volatility (red, right) over the period 2006-2018. Leverage estimates are obtained
through the estimator (2.5), while volatility estimates are obtained through the
estimator of Malliavin and Mancino (2009).

In view of studying the predictive power of the leverage on future volatility,
Mykland and Wang (2014) observe that the dynamics of the spot variance depend
on the log-return scaled by the ratio between the leverage and the variance itself.
More precisely, under the Assumption 2.1, the stochastic differential equation for
the variance process can be rewritten as

dv(t)=
η(t)
v(t)

dx(t)+2
√

1−ρ2σ(t)γ̃(t)dW⊥(t)+(2σ(t)b̃(t)−2ργ̃(t)a(t)+ γ̃
2(t))dt,

where W⊥ is a Brownian motion independent of W . Building on this remark, the
authors empirically investigate the dependence between the log-return scaled for
the leverage effect and the integrated variance. In particular, using Microsoft high-
frequency prices over the period 2008-2011, they show that the explanatory power
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of a simple AR(2) model for the integrated variance is substantially improved by
adding an extra term, represented by the log-return scaled by the time-varying
leverage effect. As a conclusion to their empirical study, the authors claim that
their findings strongly suggest the inclusion of the return scaled by the leverage
effect into any auto-regressive volatility model.

Based on this claim, we empirically investigate whether adding the log-return
scaled by the leverage-variance ratio to the HAR model by Corsi (2009) improves
the explanatory power of the latter. Formally, the model reads

IV t+1 = β0 +β1IV t +β2IV (w)
t +β3IV (m)

t +β4
ILt

IV t
∆xt + εt , (2.14)

where IV t is the integrated variance on day t, IV (w)
t is the average of the daily

integrated variance on the one-week period ranging from day t−4 to day t, IV (m)
t is

the average of the daily integrated variance on the one-month period ranging from
day t−20 to day t, ∆xt is the log-return from day t−1 to day t, ILt is the integrated
leverage on day t and εt is a zero-mean random variable with a distribution that
guarantees the positivity of the regressand IVt+1.

Estimates of the integrated variance and leverage are obtained as follows. The
sample size n is selected in correspondence to the 5-minute price sampling fre-
quency, based on the result of the Hausman test by Aı̈t-Sahalia and Xiu (2019) for
the presence of noise in the price process, which tells that the impact of noise at
the 5-minute frequency is negligible in our sample, confirming a well-known styl-
ized fact (see Andersen et al. (2001a)). We also perform the jump-detection test
by Corsi et al. (2010) on 5-minute prices and remove the days in which jumps are
detected, which amount to about 10% of the 13-year sample4. Given this sample,
integrated leverage estimates are obtained by means of the estimator (2.5), setting
N = n/2 and M =

√
n based on the numerical findings of Section 2.4, while the in-

tegrated variance is estimated with the Fourier estimator of Malliavin and Mancino
(2009), setting N = n/2.

In the spirit of Mykland and Wang (2014), it is worth stressing that we do
not aim at discovering the optimal model for volatility forecasting, but rather our
goal is to confirm, using a different data set and a different volatility model, that
the extra term represented by the return scaled by the leverage effect significantly
improves the explanatory power of auto-regressive volatility models. For another

4The literature on non-parametric jump tests provides large and robust empirical evidence,
mainly based on US markets, that price jumps are accompanied by volatility jumps, consistent with
the presence of a leverage effect (see, e.g., Jacod and Todorov (2010); Bandi and Renò (2016);
Bibinger and Winkelmann (2018)). Thus removing days with price jumps basically also takes care
of jumps in the volatility.
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modification of the HAR model that takes into account leverage effects, see Corsi
and Renò (2012).

As in Corsi (2009), we estimate model (2.14) using standard Ordinary Least
Squares coupled with Newey-West standard errors, to account for the presence
of heteroskedasticity and auto-correlations in the residuals. Table 2.2 compares
the results of the estimation of the unrestricted model (2.14) and the restricted
simple HAR model, i.e., model (2.14) with β4 = 0. Note that the estimation yields
statistically significant coefficients at 95% level for both models considered.

model (2.14) simple HAR model
β̂0 9.202 ·10−6 (0.037) 8.163 ·10−6 (0.038)
β̂1 0.353 (10−4) 0.369 (10−4)
β̂2 0.311 (0.009) 0.350 (0.007)
β̂3 0.245 (0.018) 0.209 (0.041)
β̂4 1.374 ·10−4 (0.015) -

Ad justed R2 0.625 0.617
AIC −4.286 ·104 −4.279 ·104

BIC −4.283 ·104 −4.277 ·104

Tab. 2.2: Estimation results for the unrestricted model (2.14) and the simple HAR model by
Corsi (2009) on 2006-2018 S&P500 data. P-values are reported between brack-
ets.

Based of the comparison of Adjusted R2, AIC and BIC values, model (2.14)
should be preferred to the simple HAR in terms of goodness of fit. To statis-
tically test if the additional term, namely the log-return scaled by the leverage-
variance ratio, significantly improves the explanatory power of the simple HAR
model, we perform the likelihood ratio test. The test returns a p-value equal to
1.776 · 10−15, overwhelmingly rejecting the null hypothesis that the two models
carry the same explanatory power. Thus, we have statistical evidence that includ-
ing the information related to the leverage effect improves the explanatory power
of auto-regressive volatility models, confirming the empirical result by Mykland
and Wang (2014).

2.6 Conclusions

The main result of the chapter is proving a central limit theorem for the Fourier
estimator of the leverage with the optimal rate of convergence 1/4 and a smaller
variance with respect to different estimators that are based on a pre-estimation
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of the spot volatility. This analytical result is supported with numerical evidence
that shows the accuracy of the empirical distribution of the error of the Fourier
leverage estimator in approximating the asymptotic distribution for large values
of the sample size. Finally, we exploit the availability of finite-sample efficient
Fourier estimates of the leverage to empirically show, using S&P500 prices over
the period 2006-2018, that adding an extra term that accounts for the leverage effect
to the HAR volatility model by Corsi (2009) increases the explanatory power of
the latter. This result confirms and extends the empirical findings by Mykland and
Wang (2014).

2.7 Appendix

2.7.1 Proofs

Proof of Theorem 2.1
We use the notation in continuous time by letting ϕn(t) := sup{t j : t j ≤ t} and,

for brevity, we denote5

D∗,n(s−u) := D∗(ϕn(s)−ϕn(u)), for ∗= N,M, (2.15)

being D∗(·) the Dirichlet kernel defined in (2.107). Then we rewrite (2.2) as

ck(dxn) :=
1

2π

∫ 2π

0
e−ikϕn(t)dx(t)

and, by applying Itô formula, we can rewrite (2.3) as follows

ck(vn,N) := Ak,n +Bk,n,N +Ck,n,N , (2.16)

where

Ak,n :=
1

2π

∫ 2π

0
e−ikϕn(s)v(s)ds (2.17)

Bk,n,N :=
1

2π

∫ 2π

0
e−ikϕn(s)Yn,N(s,s)σ(s)dW (s) (2.18)

Ck,n,N :=
1

2π

∫ 2π

0
Yk,n,N(s,s)σ(s)dW (s), (2.19)

where we used the notation

Yn,N(t,s) :=
∫ t

0
DN,n(s−u)σ(u)dW (u) (2.20)

5We stress that the notation for discretized Dirichlet kernel DN,n(t − u) is used to denote
DN(ϕn(t)−ϕn(u)), not DN(ϕn(t−u)). The notation is chosen to highlight the role of the convolution
product, one of the key tools of the Fourier methodology, see Malliavin and Mancino (2009).
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and
Yk,n,N(t,s) :=

∫ t

0
e−ikϕn(u)DN,n(s−u)σ(u)dW (u). (2.21)

Therefore, the estimator (2.4) will be studied as the sum of three terms:

2π

2M+1 ∑
|k|≤M

ik Ak,n c−k(dxn), (2.22)

2π

2M+1 ∑
|k|≤M

ik Bk,n,N c−k(dxn), (2.23)

2π

2M+1 ∑
|k|≤M

ikCk,n,N c−k(dxn). (2.24)

Clearly, the terms (2.23) and (2.24) give analogous contribution.
The proof is divided in three steps, the first one shows that the discretization error
converges to zero. The other two steps follow Jacod (1997) in order to identify the
asymptotic variance and prove the stable convergence in law.

Step I: Discretization
We begin with (2.22) and consider

2π

2M+1 ∑
|k|≤M

ik Ak,nc−k(dxn)−
1

2π

∫ 2π

0
η(t)dt,

which is equal to the sum of the following two terms (respectively, discretization
error and continuous limit)

2π

2M+1 ∑
|k|≤M

ik
(

Ak,nc−k(dxn)−
(

1
2π

∫ 2π

0
e−iksv(s)ds

)(
1

2π

∫ 2π

0
eiks

σ(s)dW (s)
))

(2.25)

+
2π

2M+1 ∑
|k|≤M

ik
(

1
2π

∫ 2π

0
e−iksv(s)ds

)(
1

2π

∫ 2π

0
eiks

σ(s)dW (s)
)
− 1

2π

∫ 2π

0
η(t)dt.

(2.26)
In order to study (2.25), by applying the Itô formula and the stochastic Fubini
theorem, we show that

E[ |ρ(n)−1/4 1
2π

∫ 2π

0

∫ 2π

0

(
D′M,n(t−u)−D′M(t−u)

)
v(u)duσ(t)dW (t)|2 ]

converges, for n,M→ ∞, to zero6. Applying again the Itô isometry and using the
assumption of the boundedness of volatility, it is enough to prove the convergence

6For z ∈ C, then |z| denotes the modulus of z.



2. Rate-efficient asymptotic normality for the Fourier estimator of the leverage 30

to zero of

ρ(n)−1/2
∫ 2π

0
E[| 1

2π

∫ 2π

0

(
D′M,n(t−u)−D′M(t−u)

)
v(u)du|2]dt. (2.27)

It holds
1

2π

∫ 2π

0

(
D′M,n(t−u)−D′M(t−u)

)
v(u)du

=
1

2π

∫ 2π

0

1
2M+1 ∑

|k|≤M
ik
(

eik(ϕn(t)−ϕn(u))− eik(ϕn(t)−u)
)

v(u)du (2.28)

+
1

2π

∫ 2π

0

1
2M+1 ∑

|k|≤M
ik
(

eik(ϕn(t)−u)− eik(t−u)
)

v(u)du. (2.29)

Consider (2.28), which is equal to

1
2π

∫ 2π

0

1
2M+1 ∑

|k|≤M
eikϕn(t) (e−ikεn(u)−1) ik e−ikuv(u)du (2.30)

where εn(u) := ϕn(u)−u. By the Taylor expansion, for any u ∈ [0,2π], e−ikεn(u)−
1 =−ikρ(n)+O(k2ρ(n)2), therefore, we need to study the order of

ρ(n)
1

2M+1 ∑
|k|≤M

k
1

2π

∫ 2π

0
ik e−ikuv(u)du (2.31)

or, equivalently, of

ρ(n)
1

2M+1 ∑
|k|≤M

k ck(dv), (2.32)

where we have used the integration by parts formula7. Finally, we obtain

ρ(n)2E[| 1
2M+1 ∑

|k|≤M
k ck(dv)|2]≤C Mρ(n)2

∑
|k|≤M

E[|ck(dv)|2]≤CM2
ρ(n)2E[

∫ 2π

0
γ

2(t)dt].

(2.33)
Then, the term (2.33) multiplied by ρ(n)−1/2 is O(ρ(n)1/2).

Consider now (2.29). It holds

1
2π

∫ 2π

0

1
2M+1 ∑

|k|≤M
ik e−iku

(
eikϕn(t)− eikt

)
v(u)du

7For any k 6= 0, the integration by parts formula gives: ck(v) = i
k

(
v(2π)−v(0)

2π
− ck(dv)

)
=

− i
k ck(dv).
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=
1

2M+1 ∑
|k|≤M

eikt(eik(ϕn(t)−t)−1)
1

2π

∫ 2π

0
ik e−ikuv(u)du.

Then, with analogous arguments, we have

E[| 1
2π

∫ 2π

0

1
2M+1 ∑

|k|≤M
ik e−iku

(
eikϕn(t)− eikt

)
v(u)du|2]≤M2

ρ(n)2 1
2M+1 ∑

|k|≤M
E[| 1

2π

∫ 2π

0
ik e−ikuv(u)du|2].

Finally, as before, the term (2.29) multiplied by ρ(n)−1/2 converges to zero.

Step II: Asymptotic Variance
We identify now the asymptotic variance. First consider the term (2.26), namely:

2π

2M+1 ∑
|k|≤M

ik ck(v)c−k(dx)− 1
2π

∫ 2π

0
η(t)dt. (2.34)

Using the integration by parts formula, for any k 6= 0, then ikck(v) = ck(dv), there-
fore (2.34) is equal to

2π

2M+1 ∑
|k|≤M

ck(dv)c−k(dx)− 1
2π

∫ 2π

0
η(t)dt (2.35)

=
1

2M+1 ∑
|k|≤M

1
2π

(∫ 2π

0

∫ t

0
e−ik(t−s)dx(s)dv(t)+

∫ 2π

0

∫ t

0
e−ik(t−s)dv(s)dx(t)

)
,

where we have applied the Itô formula for the last line. Therefore, it holds

2π

2M+1 ∑
|k|≤M

ck(dv)c−k(dx)− 1
2π

∫ 2π

0
η(t)dt = A(i)

M (2π)+A(ii)
M (2π),

where we denote

A(i)
M (u) :=

1
2π

∫ u

0

∫ t

0
DM(t− s)dv(s)dx(t), (2.36)

A(ii)
M (u) :=

1
2π

∫ u

0

∫ t

0
DM(t− s)dx(s)dv(t). (2.37)

The first addend of the asymptotic variance is determined with the limit in proba-
bility of8

〈M1/2(A(i)
M +A(ii)

M ),M1/2(A(i)
M +A(ii)

M )〉2π . (2.38)

8For ease of notation, we will denote A(i)
M instead of A(i)

M (·) when no confusion may appear.
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Consider first 〈M1/2A(i)
M ,M1/2A(i)

M 〉2π . It holds:

〈M1/2A(i)
M ,M1/2A(i)

M 〉2π = M
∫ 2π

0

(
1

2π

∫ t

0
DM(t− s)dv(s)

)2

v(t)dt

= M
1

(2π)2

∫ 2π

0

∫ t

0
D2

M(t− s)γ2(s)dsv(t)dt (2.39)

+M
1

(2π)2

∫ 2π

0
2
∫ t

0

∫ s

0
DM(t−u)dv(u)DM(t− s)dv(s)v(t)dt. (2.40)

Using Lemma 2.2 , then (2.39) converges in probability to

1
2π

∫ 2π

0

1
2

γ
2(t)v(t)dt. (2.41)

As for (2.40), it gives:

E[(M
1

(2π)2

∫ 2π

0
2
∫ t

0

∫ s

0
DM(t−u)dv(u)DM(t− s)dv(s)v(t)dt)2]

≤C M2
∫ 2π

0

∫ t

0

∫ s

0
D2

M(t−u)duD2
M(t− s)dsdt, (2.42)

where we have applied Itô isometry and used the boundedness of the processes v
and γ . Finally, it is enough to use Lemma 2.2 i) and iii) to see that (2.42) is o(1).
With the same method, it is shown that also 〈M1/2A(ii)

M ,M1/2A(ii)
M 〉2π converges to

(2.41).
Consider now the bracket 〈M1/2A(i)

M ,M1/2A(ii)
M 〉2π (analogous results hold for

〈M1/2A(ii)
M ,M1/2A(i)

M 〉2π ). The bracket is equal to:

M
1

(2π)2

∫ 2π

0

∫ t

0
DM(t− s)dx(s)

∫ t

0
DM(t− s)dv(s)η(t)dt

= M
1

(2π)2

∫ 2π

0

∫ t

0
D2

M(t− s)η(s)dsη(t)dt (2.43)

+M
1

(2π)2

∫ 2π

0

∫ t

0

∫ s

0
DM(t−u)dv(u)DM(t− s)dx(s)η(t)dt (2.44)

+M
1

(2π)2

∫ 2π

0

∫ t

0

∫ s

0
DM(t−u)dx(u)DM(t− s)dv(s)η(t)dt. (2.45)

By Lemma 2.2, the term (2.43) converges to

1
2π

∫ 2π

0

1
2

η
2(t)dt.
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As for (2.44) and (2.45), they are op(1), as for (2.42). Finally, noting that ρ(n)−1/4∼
(cM)−1/2M1/2, we conclude that

〈ρ(n)−1/4(A(i)
M +A(ii)

M ),ρ(n)−1/4(A(i)
M +A(ii)

M )〉2π→
1

cM

1
2π

∫ 2π

0
(γ2(s)v(s)+η

2(s))ds

(2.46)
in probability.

We consider now the other addends of the asymptotic variance. First, we study
(2.23). Applying Itô formula, it holds:

2π

2M+1 ∑
|k|≤M

ik Bk,n,Nc−k(dxn)

=
1

2M+1 ∑
|k|≤M

ik
∫ 2π

0

1
2π

∫ s

0
DN,n(s−u)σ(u)dW (u)v(s)ds

+
1

2M+1 ∑
|k|≤M

ik
1

2π

∫ 2π

0
e−ikϕn(s)

∫ s

0
eikϕn(t)σ(t)dW (t)

∫ s

0
DN,n(s−u)σ(u)dW (u)σ(s)dW (s)

+
1

2M+1 ∑
|k|≤M

ik
1

2π

∫ 2π

0

∫ s

0
e−ikϕn(t)

∫ t

0
DN,n(t−u)σ(u)dW (u)σ(t)dW (t)eikϕn(s)σ(s)dW (s).

Thus (2.23) is the sum of three terms:

B(i)
n,N,M := D′M(0)

1
2π

∫ 2π

0

∫ s

0
DN,n(s−u)σ(u)dW (u)v(s)ds, (2.47)

B(ii)
n,N,M :=

∫ 2π

0

1
2π

(∫ s

0
D′M,n(s− t)σ(t)dW (t)

)(∫ s

0
DN,n(s−u)σ(u)dW (u)

)
σ(s)dW (s),

(2.48)

B(iii)
n,N,M :=

∫ 2π

0

1
2π

∫ s

0

(∫ t

0
DN,n(t−u)σ(u)dW (u)

)
D′M,n(s−t)σ(t)dW (t)σ(s)dW (s).

(2.49)
Note that D′M(0) = 1

2M+1 ∑|k|≤M ik = 0, thus B(i)
n,N,M is identically zero. It remains

to study

〈ρ(n)−1/4(B(ii)
n,N,M +B(iii)

n,N,M),ρ(n)−1/4(B(ii)
n,N,M +B(iii)

n,N,M)〉2π . (2.50)

First compute

ρ(n)−1/2〈B(ii)
n,N,M,B(ii)

n,N,M〉2π . (2.51)
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Using Itô formula, 〈B(ii)
n,N,M,B(ii)

n,N,M〉2π is equal to

∫ 2π

0

1
(2π)2

∫ s

0
|D′M,n(s− t)|2v(t)dt

∫ s

0
D2

N,n(s−u)v(u)duv(s)ds (2.52)

+
∫ 2π

0

2
(2π)2

∫ s

0

∫ u

0
DN,n(s−u′)σ(u′)dWu′ DN,n(s−u)σ(u)dW (u)

∫ s

0
|D′M,n(s−u)|2v(u)duv(s)ds

(2.53)

+
∫ 2π

0

2
(2π)2

∫ s

0

∫ u

0
D′M,n(s−u′)σ(u′)dWu′ D′M,n(s−u)σ(u)dW (u)

∫ s

0
D2

N,n(s−u)v(u)duv(s)ds

(2.54)

+
∫ 2π

0

4
(2π)2

∫ s

0

∫ u

0
D′M,n(s−u′)σ(u′)dWu′ D′M,n(s−u)σ(u)dW (u)× (2.55)

×
∫ s

0

∫ u

0
DN,n(s−u′)σ(u′)dWu′ DN,n(s−u)σ(u)dW (u)v(s)ds.

Consider (2.52). By Lemmas 2.1 and 2.3 it holds in probability

n
∫ s

0
D2

N,n(s−u)v(u)du→ π(1+2θ(cN/π))v(s)

and
1
M

∫ s

0
|D′M,n(s− t)|2v(t)dt→ π

6
v(s).

Therefore, noting that ρ(n)−1/2∼ (cM)−1M, the term (2.52) multiplied by ρ(n)−1/2

gives:
1
24

cM(1+2θ(cN/π))
1

2π

∫ 2π

0
σ

6(s)ds. (2.56)

Now we consider (2.53) and show that it converges to zero in probability when
multiplied by ρ(n)−1/2. The terms (2.54) and (2.55) are analogous. Using the
boundedness of the volatility and the Cauchy-Schwartz inequality

E[|
∫ 2π

0

∫ s

0

∫ u

0
DN,n(s−u′)σ(u′)dWu′ DN,n(s−u)σ(u)dW (u)

∫ s

0
|D′M,n(s−u)|2v(u)duv(s)ds|]

(2.57)

≤
∫ 2π

0
E[(
∫ s

0

∫ u

0
DN,n(s−u′)σ(u′)dWu′ DN,n(s−u)σ(u)dW (u))2]1/2E[(

∫ s

0
|D′M,n(s−u)|2v(u)du)2]1/2ds.

Now, by using twice the Itô isometry and the boundedness of the volatility

E[(
∫ s

0

∫ u

0
DN,n(s−u′)σ(u′)dWu′ DN,n(s−u)σ(u)dW (u))2]≤C

∫ s

0

∫ u

0
D2

N,n(s−u′)du′D2
N,n(s−u)du≤ C

N3 ,
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where we have used Lemma 2.1 and the fact that, for any ε > 0 and u′ < s− ε ,
then D2

N,n(s−u′)≤CN−2 for n large enough. Finally, using Lemma 2.3, the term
(2.57) is O(N−1). Thus, when multiplied by ρ(n)−1/2, the term converges to zero.

Consider now
ρ(n)−1/2〈B(iii)

n,N,M,B(iii)
n,N,M〉2π . (2.58)

Observe that (2.58) is equal to

ρ(n)−1/2
∫ 2π

0

1
(2π)2 |BN,M,n(s)|2 v(s)ds, (2.59)

where
BN,M,n(s) :=

∫ s

0
YN,n(t, t)D′M,n(s− t)σ(t)dW (t).

By applying the Itô formula, it holds that |BN,M,n(s)|2 is equal to∫ s

0
Y 2

N,n(t, t)|D′M,n(s− t)|2v(t)dt (2.60)

+
∫ s

0

∫ t

0
YN,n(t1, t)D′M,n(s− t1)σ(t1)dWt1 YN,n(t, t)D′M,n(s− t)σ(t)dW (t) (2.61)

+
∫ s

0

∫ t

0
YN,n(t1, t)D′M,n(s− t1)σ(t1)dWt1 YN,n(t, t)D′M,n(s− t)σ(t)dW (t). (2.62)

Consider (2.60). By an iterated application of the Itô formula, the first term to be
studied is

ρ(n)−1/2
∫ 2π

0

1
(2π)2

∫ s

0

∫ t

0
D2

N,n(t−u)v(u)du |D′M,n(s− t)|2v(t)dt v(s)ds (2.63)

+ρ(n)−1/2
∫ 2π

0

1
(2π)2

∫ s

0
2
∫ t

0
YN,n(u, t)DN,n(t−u)σ(u)dWu |D′M,n(s−t)|2v(t)dt v(s)ds.

(2.64)
The term (2.63) is studied as (2.52). By Lemma 2.2 and Lemma 2.3 it converges
in probability to the same process as (2.56), that is,

1
24

cM(1+2θ(cN/π))
1

2π

∫ 2π

0
σ

6(s)ds.

We then study (2.64) and show that it converges to zero. Using the boundedness
of the volatility (and neglecting irrelevant constants), we obtain:

E[|ρ(n)−1/2
∫ 2π

0

∫ s

0

∫ t

0
YN,n(u, t)DN,n(t−u)σ(u)dWu |D′M,n(s− t)|2v(t)dt v(s)ds|]
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≤ ρ(n)−1/2
∫ 2π

0

∫ s

0
E[|
∫ t

0
YN,n(u, t)DN,n(t−u)σ(u)dWu|] |D′M,n(s− t)|2dt ds.

Then, it is enough to note that

E[(
∫ t

0
YN,n(u, t)DN,n(t−u)σ(u)dWu)

2]≤C
∫ t

0

∫ u

0
D2

N,n(t−u′)du′D2
N,n(t−u)du,

where we used the Itô isometry and the boundedness of the volatility process.
Moreover, using Lemma 2.1 and the fact that, for any ε > 0 and u′ < t− ε , then
D2

N,n(t−u′)≤CN−2, for n large enough, this term is smaller than Cn−3/2. Finally,
the term (2.64) is Op(ρ(n)).

Now we consider (2.61) and prove that

ρ(n)−1/2
∫ 2π

0

∫ s

0

∫ t

0
YN,n(t1, t)D′M,n(s−t1)σ(t1)dWt1 YN,n(t, t)D′M,n(s− t)σ(t)dW (t)v(s)ds

converges to 0. By the boundedness of the volatility process, it is enough to study

E[|ρ(n)−1/2
∫ s

0

∫ t

0
YN,n(t1, t)D′M,n(s−t1)σ(t1)dWt1 YN,n(t, t)D′M,n(s− t)σ(t)dW (t)|2],

(2.65)
which, by using the Itô isometry, is smaller than

Cρ(n)−1
∫ s

0
E[|
∫ t

0
YN,n(t1, t)D′M,n(s− t1)σ(t1)dWt1 YN,n(t, t)|2] |D′M,n(s− t)|2dt

≤Cρ(n)−1
∫ s

0
E[|
∫ t

0
YN,n(t1, t)D′M,n(s−t1)σ(t1)dWt1 |4]1/2 E[Y 4

N,n(t, t)]
1/2 |D′M,n(s−t)|2dt,

where we have applied the Cauchy-Schwartz inequality in the last line. Observe
now that by the Burkholder-Davis-Gundy inequality, Lemma 2.1 and the bounded-
ness of the volatility, it holds

E[Y 4
N,n(t, t)]

1/2 ≤C
∫ t

0
D2

N,n(t−u)du≤Cρ(n), (2.66)

and

E[|
∫ t

0
YN,n(t1, t)D′M,n(s−t1)σ(t1)dWt1 |4]1/2≤C(

∫ t

0
E[Y 4

N,n(t1, t)]|D′M,n(s−t1)|4dt1)1/2≤CN−2M3/2,

(2.67)
where we have used the fact that, for any ε > 0 and u < t− ε , then D2

N,n(t−u) ≤
CN−2, and Lemma 2.3. Finally, the term (2.65) is O(M−3/2), thus goes to 0.

With the same methodology, it is proved that the contribution of the other two
brackets is the same. Therefore, (2.50) converges to

1
6

cM (1+2θ(cN/π))
1

2π

∫ 2π

0
σ

6(s)ds. (2.68)
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Finally, we show that

〈ρ(n)−1/4(A(i)
M +A(ii)

M ),ρ(n)−1/4(B(ii)
n,N,M +B(iii)

n,N,M)〉2π → 0 (2.69)

in probability. We study in details the term

ρ(n)−1/2〈A(i)
M ,B(ii)

n,N,M〉2π

= ρ(n)−1/2
∫ 2π

0

1
(2π)2

∫ t

0
DM(t−s)γ(s)dZ(s)

∫ t

0
D′M,n(t− s)σ(s)dW (s)

∫ t

0
DN,n(t−s)σ(s)dW (s)v(t)dt.

(2.70)
The other three terms are analogous. An iterated application of Itô formula gives
that (2.70) is equal to:

ρ(n)−1/2
∫ 2π

0

1
(2π)2

∫ t

0

∫ s

0
DM(t−u)DN,n(t−u)η(u)duD′M,n(t− s)σ(s)dW (s)v(t)dt

(2.71)

+ρ(n)−1/2
∫ 2π

0

1
(2π)2

∫ t

0

∫ s

0
D′M,n(t−u)σ(u)dW (u)DM(t−s)DN,n(t−s)η(s)dsv(t)dt

(2.72)

+ρ(n)−1/2
∫ 2π

0

1
(2π)2

∫ t

0

∫ s

0
DM(t−u)γ(u)dZ(u)DN,n(t−s)σ(s)dW (s)

∫ t

0
D′M,n(t− s)σ(s)dW (s)v(t)dt

(2.73)

+ρ(n)−1/2
∫ 2π

0

1
(2π)2

∫ t

0

∫ s

0
DN,n(t−u)σ(u)dW (u)DM(t−s)γ(s)dZ(s)

∫ t

0
D′M,n(t− s)σ(s)dW (s)v(t)dt.

(2.74)
Consider (2.71). The term (2.72) is analogous. By the boundedness of the volatil-
ity, it is enough to study

ρ(n)−1E[|
∫ t

0

∫ s

0
DM(t−u)DN,n(t−u)η(u)duD′M,n(t− s)σ(s)dW (s)|2]

≤Cρ(n)−1
∫ t

0
E[(
∫ s

0
DM(t−u)DN,n(t−u)v(u)du)2]|D′M,n(t− s)|2ds, (2.75)

where, in the last inequality, we have used the Itô isometry and the boundedness of
the volatility. Finally, by the Cauchy-Schwartz inequality and the fact that for any
ε > 0, both D2

M(t−u) ≤CM−2 and D2
N,n(t−u) ≤CN−2 for u < t− ε , for n large

enough, we have that (2.75) has order ρ(n)−1M−2N−2M, which is o(1).
Consider now (2.73). The term (2.74) is analogous. By the boundedness of the

volatility and the Cauchy-Schwartz inequality:

E[|
∫ 2π

0

∫ t

0

∫ s

0
DM(t−u)γ(u)dZ(u)DN,n(t−s)σ(s)dW (s)

∫ t

0
D′M,n(t− s)σ(s)dW (s)v(t)dt|]
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≤C
∫ 2π

0
E[|
∫ t

0

∫ s

0
DM(t−u)γ(u)dZ(u)DN,n(t−s)σ(s)dW (s)|2]1/2E[|

∫ t

0
D′M,n(t− s)σ(s)dW (s)|2]1/2 dt.

Therefore, it is enough to prove the convergence to zero of

ρ(n)−1E[|
∫ t

0

∫ s

0
DM(t−u)γ(u)dZ(u)DN,n(t−s)σ(s)dW (s)|2]E[|

∫ t

0
D′M,n(t− s)σ(s)dW (s)|2].

(2.76)
By the Itô isometry and the boundedness of the volatility and the volatility of
volatility, the term (2.76) is smaller than

Cρ(n)−1
∫ t

0

∫ s

0
D2

M(t−u)duD2
N,n(t− s)ds

∫ t

0
|D′M,n(t− s)|2ds (2.77)

∼= ρ(n)−1M−1N−1M o(1) = o(1),

where we have used Lemmas 2.1 i) and ii) and 2.3.

Step III: Orthogonality
It remains to prove that

〈ρ(n)−1/4(A(i)
M +A(ii)

M +B(ii)
n,N,M +B(iii)

n,N,M),W 〉 → 0 (2.78)

in probability. We show in details the convergence to zero of the bracket 〈ρ(n)−1/4 B(ii)
n,N,M,W 〉.

The other terms are analogous.
It holds:

〈ρ(n)−1/4 B(ii)
n,N,M,W 〉= ρ(n)−1/4

∫ 2π

0

1
2π

∫ s

0
YN,n(t, t)D′M,n(s−t)σ(t)dW (t)σ(s)ds.

(2.79)
Thus

E[|ρ(n)−1/4
∫ 2π

0

1
2π

∫ s

0
YN,n(t, t)D′M,n(s− t)σ(t)dW (t)σ(s)ds|2]

= ρ(n)−1/2E[
1

(2π)2

∫ 2π

0
σ(s)

∫ 2π

0
σ(s′)ZN,M,n(s,s)ZN,M,n(s′,s′)dsds′], (2.80)

where
ZN,M,n(s,u) :=

∫ s

0
YN,n(t, t)D′M,n(u− t)σ(t)dW (t). (2.81)

By symmetry, suppose s′ ≤ s. An application of the Itô formula gives that

ZN,M,n(s,s)ZN,M,n(s′,s′)
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is equal to ∫ s′

0
Y 2

N,n(t, t)D
′
M,n(s− t)D′M,n(s′− t)v(t)dt (2.82)

+
∫ s′

0
ZN,M,n(t,s)YN,n(t, t)D′M,n(s′− t)σ(t)dW (t) (2.83)

+
∫ s′

0
ZN,M,n(t,s)YN,n(t, t)D′M,n(s

′− t)σ(t)dW (t). (2.84)

We study (2.82), which is equal to:∫ s′

0

∫ t

0
D2

N,n(t−u)v(u)duD′M,n(s− t)D′M,n(s′− t)v(t)dt (2.85)

+
∫ s′

0
2
∫ t

0
YN,n(u, t)DN,n(t−u)σ(u)dW (u)D′M,n(s− t)D′M,n(s′− t)v(t)dt. (2.86)

Consider (2.85). Remember that s′ ≤ s. Let, for any ε > 0, s′ < s− ε and consider

E[
∫ 2π

0
dsσ(s)

∫ 2π

0
ds′1(s′<s−ε)σ(s′)

∫ s′

0

∫ t

0
D2

N,n(t−u)v(u)duD′M,n(s−t)D′M,n(s′− t)v(t)dt].

(2.87)
Thus, noting that ρ(n)−1 ∫ t

0 D2
N,n(t− u)v(u)du = Op(1) by Lemma 2.1, we obtain

that (2.85) multiplied by ρ(n)−1/2 reduces to the study of

ρ(n)1/2E[
∫ 2π

0
dsσ(s)

∫ 2π

0
ds′1(s′<s−ε) σ(s′)

∫ s′

0
D′M,n(s− t)D′M,n(s′− t)v2(t)dt]

≤Cρ(n)1/2
∫ 2π

0
ds
∫ 2π

0
ds′1(s′<s−ε)E[|

∫ s′

0
D′M,n(s− t)D′M,n(s′− t)v2(t)dt|]

≤Cρ(n)1/2
∫ 2π

0
ds
∫ 2π

0
ds′1(s′<s−ε)E[

∫ s′

0
|D′M,n(s−t)|2v(t)dt]1/2E[

∫ s′

0
|D′M,n(s

′−t)|2v(t)dt]1/2

∼= ρ(n)1/2M1/2o(1)M1/2 = o(1),

where we have used Lemma 2.3 and the fact that s′ < s− ε , for ε > 0.
Now consider the case for any ε > 0, s− ε ≤ s′ ≤ s. We have

ρ(n)1/2
∫ 2π

0
ds
∫ 2π

0
1(s−ε≤s′≤s)ds′E[|

∫ s′

0
D′M,n(s− t)D′M,n(s′− t)v2(t)dt|]

≤ ρ(n)1/2
∫ 2π

0
ds
∫ 2π

0
1(s−ε≤s′≤s)ds′E[

∫ s′

0
|D′M,n(s−t)|2v(t)dt]1/2E[

∫ s′

0
|D′M,n(s

′−t)|2v(t)dt]1/2

∼= ρ(n)1/2M1/2M1/2 2π ε ∼= ε.
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Consider now the term (2.86). It holds

E[
∫ 2π

0
dsσ(s)

∫ 2π

0
ds′σ(s′)

∫ s′

0
2
∫ t

0
YN,n(u, t)DN,n(t−u)σ(u)dW (u)D′M,n(s−t)D′M,n(s′− t)v(t)dt]

≤C
∫ 2π

0
ds
∫ 2π

0
ds′
∫ s′

0
E[|
∫ t

0
YN,n(u, t)DN,n(t−u)σ(u)dW (u)|]|D′M,n(s−t)D′M,n(s′− t)|dt

≤C
∫ 2π

0
ds
∫ 2π

0
ds′
∫ s′

0

(∫ t

0

∫ u

0
D2

N,n(t−u′)du′D2
N,n(t−u)du

)1/2

|D′M,n(s−t)D′M,n(s′− t)|dt.

(2.88)
Now using that for any ε > 0, D2

N,n(t − u′) < C/N2 for u′ < t − ε , if n is large
enough, then(∫ t

0

∫ u

0
D2

N,n(t−u′)du′D2
N,n(t−u)du

)1/2

= O(ρ(n)3/2).

Moreover, it holds∫ 2π

0
ds
∫ 2π

0
ds′
∫ s′

0
|D′M,n(s− t)D′M,n(s′− t)|dt (2.89)

≤
∫ 2π

0
ds
∫ 2π

0
ds′
(∫ s′

0
|D′M,n(s− t)|2dt

)1/2(∫ s′

0
|D′M,n(s

′− t)|2 dt
)1/2

. (2.90)

Finally, we have obtained that (2.88) multiplied by ρ(n)−1/2 is of order

ρ(n)−1/2
ρ(n)3/2M = O(ρ(n)1/2).

Consider now (2.83). The term (2.84) is analogous. It is enough to show that

ρ(n)−1E[|
∫ s′

0
ZN,M,n(t,s)YN,n(t, t)D′M,n(s′− t)σ(t)dW (t)|2] (2.91)

converges to 0. We study (2.91) using the Itô isometry and the Cauchy-Schwartz
inequality. It holds

ρ(n)−1E[
∫ s′

0
|ZN,M,n(t,s)YN,n(t, t)D′M,n(s′− t)|2v(t)dt]

≤Cρ(n)−1
∫ s′

0
E[|ZN,M,n(t,s)|4]1/2 E[Y 4

N,n(t, t)]
1/2 |D′M,n(s

′− t)|2 dt.

Observe now that
E[Y 4

N,n(t, t)]
1/2 ≤Cρ(n) (2.92)
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and
E[|ZN,M,n(t,s)|4]≤CE[(

∫ t

0
|YN,n(u,u)D′M,n(s−u)|2v(u)du)2]

≤CE[
∫ t

0
Y 4

N,n(u,u)v(u)du]
∫ t

0
|D′M,n(s−u)|4du≤Cρ(n)2 M3,

where we have used Burkoholder-Davis-Gundy inequality, the boundedness of the
volatility and Lemma 2.3. Therefore

E[|ZN,M,n(t,s)|4]1/2 ≤Cρ(n)1/4.

Finally, it holds that the term (2.91) is O(ρ(n)1/4). 2

Proof of Theorem 2.2
The proof is obtained along the lines of Theorem 2.1 by substituting the Dirich-

let kernel with the Fejér kernel (2.108). In particular, with the same notations, the
estimator (2.5) is studied as the sum of three terms:

2π

M+1 ∑
|k|≤M

(
1− |k|

M+1

)
ik Ak,n c−k(dxn) (2.93)

2π

M+1 ∑
|k|≤M

(
1− |k|

M+1

)
ik Bk,n,N c−k(dxn) (2.94)

2π

M+1 ∑
|k|≤M

(
1− |k|

M+1

)
ikCk,n,N c−k(dxn). (2.95)

We detail the main differences in the proof, which appear in the computation of the
asymptotic variance. First of all, we have to consider the terms corresponding to
(2.36) and (2.37), which read

Ã(i)
M (u) :=

1
2π

1
M+1

∫ u

0

∫ t

0
FM(t− s)dv(s)dx(t) (2.96)

Ã(ii)
M (u) :=

1
2π

1
M+1

∫ u

0

∫ t

0
FM(t− s)dx(s)dv(t), (2.97)

such that

2π

M+1 ∑
|k|≤M

(
1− |k|

M+1

)
ck(dv)c−k(dx)− 1

2π

∫ 2π

0
η(t)dt = Ã(i)

M (2π)+ Ã(ii)
M (2π).

In order to illustrate the result, consider 〈M1/2Ã(i)
M ,M1/2Ã(i)

M 〉2π . It holds:

〈M1/2Ã(i)
M ,M1/2Ã(i)

M 〉2π = M
1

(2π)2

∫ 2π

0

(∫ t

0

1
M+1

FM(t− s)dv(s)
)2

v(t)dt
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= M
1

(2π)2

∫ 2π

0

1
(M+1)2

∫ t

0
F2

M(t− s)γ2(s)dsv(t)dt (2.98)

+M
1

(2π)2

∫ 2π

0
2

1
(M+1)2

∫ t

0

∫ s

0
FM(t−u)dv(u)FM(t− s)dv(s)v(t)dt. (2.99)

Using Lemma 2.4 , then (2.98) converges in probability to

1
2π

∫ 2π

0

1
3

γ
2(t)v(t)dt, (2.100)

while (2.99) is op(1). Considering the bracket 〈M1/2Ã(i)
M ,M1/2Ã(ii)

M 〉2π , we obtain:

M
1

(2π)2
1

(M+1)2

∫ 2π

0

∫ t

0
FM(t− s)dx(s)

∫ t

0
FM(t− s)dv(s)η(t)dt

= M
1

(2π)2
1

(M+1)2

∫ 2π

0

∫ t

0
F2

M(t− s)η(s)dsη(t)dt (2.101)

+M
1

(2π)2
1

(M+1)2

∫ 2π

0

∫ t

0

∫ s

0
FM(t−u)dv(u)FM(t− s)dx(s)η(t)dt (2.102)

+M
1

(2π)2
1

(M+1)2

∫ 2π

0

∫ t

0

∫ s

0
FM(t−u)dx(u)FM(t− s)dv(s)η(t)dt. (2.103)

By Lemma 2.4, the term (2.101) converges to

1
2π

∫ 2π

0

1
3

η
2(t)dt,

while (2.102) and (2.103) are op(1).
Finally, noting that ρ(n)−1/4 ∼ (cM)−1/2M1/2, we conclude that

〈ρ(n)−1/4(Ã(i)
M +Ã(ii)

M ),ρ(n)−1/4(Ã(i)
M +Ã(ii)

M )〉2π→
2
3

1
cM

1
2π

∫ 2π

0
(γ2(s)v(s)+η

2(s))ds

(2.104)
in probability.

The second contribution to the asymptotic variance comes from the analogous
of terms (2.23) and (2.24), where the Dirichlet kernel is substituted with the Fejér
kernel. It is enough to check the convergence of

ρ(n)−1/2〈B̃(ii)
n,N,M, B̃(ii)

n,N,M〉2π , (2.105)

where

B̃(ii)
n,N,M :=

∫ 2π

0

1
2π

(
1

M+1

∫ s

0
F ′M,n(s− t)σ(t)dW (t)

)(∫ s

0
DN,n(s−u)σ(u)dW (u)

)
σ(s)dW (s).



2. Rate-efficient asymptotic normality for the Fourier estimator of the leverage 43

The other terms are analogous. Using the Itô formula, it is shown that (2.105) is
equal to

ρ(n)−1/2
∫ 2π

0

1
(2π)2

∫ s

0

1
(M+1)2 |F

′
M,n(s− t)|2v(t)dt

∫ s

0
D2

N,n(s−u)v(u)duv(s)ds

(2.106)
plus some terms which are op(1).

By Lemmas 2.1 and 2.4 it holds in probability

n
∫ s

0
D2

N,n(s−u)v(u)du→ π(1+2θ(cN/π))v(s)

and
1
M

∫ s

0

1
(M+1)2 |F

′
M,n(s− t)|2v(t)dt→ π

15
v(s).

Therefore, noting that ρ(n)−1/2 ∼ (cM)−1M, the term (2.106) gives:

1
30

cM(1+2θ(cN/π))
1

2π

∫ 2π

0
σ

6(s)ds.

Combining the analogous four terms, gives the result

2
15

cM(1+2θ(cN/π))
1

2π

∫ 2π

0
σ

6(s)ds.

The remaining parts of the proof follow along the same lines of Theorem 2.1. 2

2.7.2 Properties of the Dirichlet and Fejér kernels

This subsection of the Appendix contains some results on the Dirichlet kernel,
defined as

DN(x) :=
1

2N +1 ∑
|k|≤N

eikx =
1

2N +1
sin((2N +1)x/2)

sin(x/2)
(2.107)

and the Fejér kernel, defined as

FN(x) := ∑
|k|≤N

(
1− |k|

N +1

)
eikx =

1
N +1 ∑

|k|≤N

(
1− |k|

N +1

)
eikx. (2.108)
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Dirichlet kernel

Lemma 2.1. Under the condition N/n→ a > 0:
i) for any p > 1 there exists a constant Cp such that

lim
n,N

n sup
x∈[0,2π]

∫ 2π

0
|DN,n(x− y)|pdy≤Cp,

ii) it holds:

lim
n,N

n
∫ x

0
D2

N,n(x− y)dy = π(1+2θ(2a))

and, for any α-Hölder continuous function f , with α ∈ (0,1]:

lim
N,n

n
∫ x

0
D2

N,n(x− y) f (y)dy = π(1+2θ(2a)) f (x),

where
θ(a) :=

1
2a2 r(a)(1− r(a)), (2.109)

being r(a) = a− [a], with [a] the integer part of a,
iii) for any ε > 0:

lim
N,n

n
∫ x−ε

0
D2

N,n(x− y)dy = 0.

Proof. See Clement and Gloter (2011) Lemma 1 and Lemma 4.

Lemma 2.2. i) Under the condition M2/n→ a > 0, then

lim
M,n

M
∫ 2π

0
D2

M,n(y)dy = lim
M

M
∫ 2π

0
D2

M(y)dy = 2π.

ii) For any α-Hölder continuous function f , with α ∈ (0,1] we have

lim
M,n

M
∫ x

0
D2

M,n(x− y) f (y)dy = lim
M

M
∫ x

0
D2

M(x− y) f (y)dy = π f (x).

iii) for any ε > 0:

lim
M,n

M
∫ x−ε

0
D2

M,n(x− y)dy = lim
M

M
∫ x−ε

0
D2

M(t− y)dy = 0.

Proof. The proof follows from Lemma 5.1 in Cuchiero and Teichmann (2015).
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Lemma 2.3. Let D′M(x) denote the derivative of the Dirichlet kernel. Under the
condition limn,M→∞ M2/n = a > 0, it holds:
i)

lim
n,M

1
M

∫ 2π

0
|D′M,n(x)|2dx = lim

M

1
M

∫ 2π

0
|D′M(x)|2dx =

π

3
,

ii)

lim
n,M

1
M3

∫ 2π

0
|D′M,n(x)|4dx = lim

M

1
M3

∫ 2π

0
|D′M(x)|4dx =

4π

105
.

Proof. As for i) it holds:

1
M

∫ 2π

0
D′M(x)D′M(x)dx=

1
M

2π

(2M+1)2 ∑
|k|≤M

k2 =
1
M

2π

(2M+1)2
M(M+1)(2M+1)

3
=

2
3

π
M+1
2M+1

→ 1
3

π.

In order to prove ii), observe that∫ 2π

0
|D′M,n(x)|4dx =

1
(2M+1)4 ∑

|k|≤M
∑
|h|≤M

∑
|l|≤M

∑
|m|≤M

∫ 2π

0
k hl mei(k+h−l−m)xdx,

as ikeikx =−ike−ikx, for any k. Then, as the integral is null except for m = k+h− l,
it holds:

1
M3

∫ 2π

0
|D′M,n(x)|4dx = 2π

1
M3

1
(2M+1)4 ∑

|k|≤M
∑
|h|≤M

∑
−M∨(−M+k+h)≤
≤l≤M∧(M+k−h)

k hl (k+h− l)

= 9 (6+30M+101M2 +113M3 +68M4 +32M5)π

105M2(1+2M)3 → 4π

105
.

Fejér kernel

Lemma 2.4. Under the condition M2/n→ a > 0, it holds:
i)

lim
M,n→∞

∫ 2π

0
FM,n(x)dx = lim

M→∞

∫ 2π

0
FM(x)dx = 2π,

ii)

lim
M,n→∞

∫ 2π

0

1
M

F2
M,n(x)dx = lim

M→∞

∫ 2π

0

1
M

F2
M(x)dx =

4π

3
, (2.110)

iii) for any α-Hölder continuous function f , with α ∈ (0,1], we have

lim
M,n

1
M

∫ 2π

0
F2

M,n(x− y) f (y)dy = lim
M

1
M

∫ 2π

0
F2

M(x− y) f (y)dy =
4π

3
f (x).

9This identity can be verified using, e.g., the software Mathematica.
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iv)

lim
n,M

1
M3

∫ 2π

0
|F ′M,n(x)|2dx = lim

M

1
M3

∫ 2π

0
|F ′M(x)|2dx =

1
3

π

Proof. For i), ii) and iii) see, e.g., Lemma 5.1 in Cuchiero and Teichmann
(2015). As for iv), it is enough to observe that

1
M3

∫ 2π

0
|F ′M(x)|2dx=

1
M3 2π ∑

|k|≤M
(1− |k|

M+1
)2k2 =

1
M3

2π

(M+1)2 2
M(M3 +4M2 +6M+4)

30(M+1)
→ 2

15
π.



3. THE PRICE-LEVERAGE COVARIATION AS A MEASURE OF THE
RESPONSE OF THE LEVERAGE EFFECT TO PRICE AND

VOLATILITY CHANGES: EMPIRICAL EVIDENCE

3.1 Introduction

Empirical evidence collected in the literature suggests that the leverage effect is
time-varying. For instance, Kalnina and Xiu (2017) point out that the the intensity
of the leverage effect gets stronger in turbulent periods, that is, in correspondence
of volatility spikes or large returns, while Bandi and Renò (2012) model the lever-
age process as a function of the stochastic volatility of the asset, based on empir-
ical evidence. Thus, in order to get insight into the time-varying dynamics of the
leverage process, it may be interesting to study its sensitivity to increments of the
volatility or the price.

This can be done analytically in the case of the Constant Elasticity of Variance
(CEV) model by Beckers (1980). The CEV model is possibly the most popular ex-
ample in the class of level-dependent models, that is, models that treat the volatility
process as a deterministic function of the price process. Level-dependent models
represent a parsimonious and analytically-tractable tool to reproduce some stylized
facts of financial markets, e.g., the implied volatility smile (see, e.g., Derman and
Kani (1994); Dupire (1994); Hobson and Rogers (1998)). More recently, a level-
dependent model driven by a Fractional Brownian motion has also been introduced,
with the aim of reproducing the empirically-observed long-memory property of the
volatility (see Araneda (2020)). Specifically, the CEV model is explicitly designed
to capture leverage effects. Moreover, under the CEV model, the leverage process
can be viewed as a deterministic differentiable function of either the volatility or
the log-price, thereby allowing the computation of its analytical derivative with
respect to any of these two processes.

In this regard, simple calculations show that both these analytical derivatives
depend on the same quantity: the price-leverage covariation. In particular, it
emerges that the derivative of the leverage with respect to the price (respectively,
the volatility) is equal to the ratio of the price-leverage covariation and the volatil-
ity (respectively, the leverage). This is crucial from the point of view of estimation,
in that such derivatives can be rewritten in terms of quantities which can be consis-
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tently estimated from asset prices sampled over a fixed time horizon. Additionally,
it also emerges that the price-leverage covariation is equal to twice the vol-of-vol
process. However, the result related to the analytical derivative of the leverage
with respect to the volatility holds more generally. In fact, for this derivative to
be equal to the ratio of the price-leverage covariation and the leverage, it is suffi-
cient to assume that the data-generating process is any stochastic volatility model
with continuous paths where the vol-of-vol process is a multiple of a power of
the variance process Popular, widely-used examples of stochastic volatility mod-
els with this feature, beyond the CEV model, are the model by Heston (1993), the
3/2 model by Platen (1997) and the continuous-time GARCH model by Nelson
(1990). Also, in this more general semi-parametric framework, the price-leverage
covariation is still a linear function of the vol-of-vol.

The price-leverage covariation has first been studied in Barucci et al. (2003),
where the authors derive a model-free indicator of financial instability whose an-
alytical expression depends, other than on the volatility and the leverage, on the
price-leverage covariation. However, only recently Sanfelici and Mancino (2020)
have provided a consistent non-parametric estimator of the price-leverage covaria-
tion, based on the Fourier method by Malliavin and Mancino (2002).

The existence of a theoretical, model-dependent link between the price-leverage
covariation and the sensitivity (i.e., the derivative) of the leverage process with re-
spect to the price and the volatility motivates an empirical, model-free investigation
of this link. Accordingly, in this chapter we conduct this investigation on the sam-
ple of S&P500 1-second prices over the period March, 2018 - April, 2018. As
a result, we uncover the existence of a statistically-significant linear relationship
between the theoretical derivative of the leverage with respect to the price (re-
spectively, the volatility) in the CEV framework and the corresponding numerical
derivative of the leverage, computed via finite differences. Remarkably, estimated
regressions coefficients are close to 1, suggesting that theoretical predictions pro-
vide an accurate proxy of the true derivatives of the leverage for the sample ob-
ject of study. Note that, to be able to perform this empirical investigation, we
have reconstructed the unobservable paths of the volatility, the leverage and the
price-leverage covariation from high-frequency prices in a non-parametric fashion
through the Fourier methodology (see, respectively, Malliavin and Mancino (2002,
2009); Barucci and Mancino (2010); Sanfelici and Mancino (2020)).

Based on these empirical findings, the price-leverage covariation can be in-
terpreted, from a financial standpoint, as a model-free measure of the responsive-
ness of the leverage effect to the arrival of new information on the market that
causes changes in the price or in the amount of risk perceived by market partici-
pants (i.e., in the volatility). Further, additional empirical results suggest that the
price-leverage covariation is approximately equal to twice the vol-of-vol for the
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sample of object of study. Again, this results is line with the prediction of the CEV
model, which implies - as already mentioned - that the price-leverage covariation is
exactly equal to twice the vol-of-vol. Interpreting the vol-of-vol as the uncertainty
about the actual level of risk perceived on the market, this finding suggests that
the response of the leverage effect to changes in the price or the volatility is pro-
portional to the intensity of this uncertainty: the larger the latter, the stronger the
response of the leverage (and viceversa). Finally, note that the path of the vol-of-
vol has also been reconstructed non-parametrically using the Fourier methodology
(see Sanfelici et al. (2015)) for this empirical analysis.

This chapter is organized as follows. In Section 3.2 we derive the analytical
expressions of the derivatives of the leverage with respect to the price and the
volatility under the CEV model. In Section 3.3 we give a brief description of
the non-parametric Fourier estimators of the spot volatility, leverage, vol-of-vol
and price-variance covariation and recall their asymptotic properties. Sections 3.4
and 3.5 contain, respectively, numerical and empirical results. Finally, Section 3.6
concludes.

3.2 Analytical derivatives of the leverage in the CEV framework

Let X(t) denote the price process and assume that its dynamics follow the CEV
model, that is,

dX(t) = σX(t)δ dW (t)+µX(t)d(t), (3.1)

where W is a Brownian motion on the filtered probability space (Ω,F ,(Ft)t≥0,P),
satisfying the usual conditions, µ ∈ R, σ > 0 and δ > 0. Note that the role of the
parameter δ is crucial, as it captures leverage effects. Specifically, if δ < 1, the
price and the volatility are negatively correlated, as it commonly happens on equity
markets. Instead, if δ < 1, the price and the volatility move in the same direction,
according to the so-called inverse leverage effect, a phenomenon usually observed
on commodity markets.

Define x(t) := ln(X(t)). Under model (3.1), the following expressions are ob-
tained for the volatility ν(t)dt := 〈x,x〉t , the leverage η(t)dt := 〈x,ν〉t , the vol-of-
vol ξ (t)dt := 〈ν ,ν〉t and the price-leverage covariation χ(t)dt := 〈x,η〉t :

ν(t) = σ
2e2(δ−1)x(t), (3.2)

η(t) = 2(δ −1)ν(t)2, (3.3)

χ(t) = 8(δ −1)2
ν(t)3, (3.4)
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ξ (t) = 4(δ −1)2
ν(t)3. (3.5)

Therefore, the derivatives of the leverage η(t) with respect to the log-price x(t)
and the volatility ν(t) read:

∂η(t)
∂x(t)

=
χ(t)
ν(t)

, (3.6)

∂η(t)
∂ν(t)

=
χ(t)
η(t)

. (3.7)

Based on equations (3.6) and (3.7), in the CEV framework χ(t) could be inter-
preted, from a financial point of view, as the process that captures the response of
the leverage to the arrival of new information that causes changes in the volatility
and/or the price.

Further, note that the derivative of the leverage with respect to the price in
equation (3.6) is strictly positive, since it is equal to the ratio of two strictly positive
processes, ν(t) (see (3.2)) and χ(t) (see (3.4)). This implies that on equity markets
the leverage effect increases (i.e., the leverage process becomes more negative)
in correspondence of a negative return, and viceversa. Instead, the sign of the
derivative of the leverage with respect to the volatility in equation (3.7) depends on
the sign of η(t). Therefore, if at some point in time η(t) is negative, it becomes
more (respectively, less) negative in correspondence of an increment (respectively,
reduction) of the volatility. Overall, model-dependent predictions of the sensitivity
of the leverage effect to the price and the volatility in equations (3.6) and (3.7) are
consistent with the empirical findings by Kalnina and Xiu (2017) and Bandi and
Renò (2012) related to time-varying leverage effects.

Additionally, based on equations (3.4) and (3.5), the process χ(t) is simply
equal to twice the vol-of-vol ξ (t) in the CEV framework. From a financial stand-
point, this linear link could be interpreted as follows. Taking the volatility as a
measure of market risk and the vol-of-vol as a proxy of the uncertainty about the
actual level of market risk perceived by market operators, the larger is the latter,
the more intense is the response of the leverage to price and market risk changes,
as captured by χ(t).

Remark 3.1. For the result in equation (3.7) to hold and for the price-leverage co-
variation to be a linear function of the vol-of-vol, it is sufficient to assume that the
log-price and the volatility are continuous semimartingales driven by two Brow-
nian motions with constant non-zero correlation parameter and that the diffusion
component of the volatility process is a multiple of a power of the volatility process
itself. Formally, assume that
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dx(t) =
√

ν(t)dW (t)+a(t)dt

dν(t) = γν(t)β dZ(t)+b(t)dt

d〈W,Z〉t = ρdt

(3.8)

where: W and Z are Brownian motions on the filtered probability space (Ω,F ,(Ft)t≥0,P),
which satisfies the usual conditions; a, b and ν are continuous adapted processes1;
ρ ∈ [−1,1]−{0}, γ ∈ R and β ∈ R. Then it follows that:

ξ (t) = γ
2
ν(t)2β , (3.9)

η(t) = ρ
√

ν(t)
√

ξ (t), (3.10)

χ(t) =
(

β +
1
2

)
ρ

2
ξ (t). (3.11)

Therefore:

∂η(t)
∂ν(t)

=
χ(t)
η(t)

. (3.12)

The semi-parametric specification (3.8) contains the class of stochastic volatil-
ity models where the volatility is a CKLS process (Chan et al. (1992)), such as the
Heston model, the continuous-time GARCH model and the 3/2 model. Moreover, it
contains also the CEV model, as in (3.1), which indeed can be rewritten as:

dx(t) = σ(t)dW (t)+
(

µ− 1
2

ν(t)
)

dt

dν(t) = γν(t)β dW (t)+ γν(t)
(

µ− 1
2
(γ +1)ν(t)

)
dt

(3.13)

where γ = 2(δ −1) and β = 3/2.

Assuming the CEV model as the data-generating process, consistent estimators
of the derivatives (3.6) and (3.7) can be built as the ratio of non-parametric esti-
mators of χ(t) and, respectively, ν(t) or η(t). We address this aspect in the next
section, using the Fourier methodology.

1The condition ν(t)> 0 a.s., which is clearly desirable from a financial standpoint, may impose
some additional constraints on the parametric form of the drift b (see, e.g., Feller (1951) for the
case when b has a mean-reverting structure). However, any additional constraints on the parametric
form of b do not interfere with the computations of ξ (t), η(t) and χ(t), as they depend only on the
diffusion components of the price and the volatility.
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3.3 Fourier-based estimation of the analytical derivatives of the leverage
in the CEV framework

The Fourier method, introduced by Malliavin and Mancino (2002), is particu-
larly well-suited to build non-parametric estimators of second-order and third-order
quantities. As a first step, one obtains estimates of the Fourier coefficients of the
latent volatility ν(t). Then, the knowledge of these coefficients allows iterating
the procedure to compute the Fourier coefficients of the second-order quantities
ξ (t) and η(t). Finally, a third iteration yields estimates of the coefficients of the
third-order quantity χ(t). In this regard, it is worth noting that these progressive
iterations do not involve any differentiation procedure for the pre-estimation of the
spot volatility (in order to estimate second-order quantities) or the spot leverage
(in order to estimate the third-order quantity χ(t)). Instead, they only require the
pre-estimation of integrated quantities, namely the Fourier coefficients. Given the
numerical instabilities which are typically linked to differentiation procedures, this
feature represents a strength of the Fourier methodology, compared to the real-
ized approach for the estimation of spot processes (see Chapter 8 in Aı̈t-Sahalia
and Jacod (2014) for a detailed description of realized spot estimators and their
asymptotic properties).

The Fourier estimators of ν(t),η(t),ξ (t) and χ(t), which we illustrate in the
following, are termed non-parametric in that, for their asymptotic properties to
hold, they only require that the processes x(t), ν(t) and η(t) are continuous semi-
martingales. Formally, we assume that:

dx(t) =
√

ν(t)dW (t)+a(t)dt

dν(t) = γ(t)dZ(t)+b(t)dt

dη(t) = λ (t)dY (t)+ c(t)dt

where W,Z and Y are correlated Brownian motions on the filtered probability
space (Ω,F ,(Ft)t≥0,P), which satisfies the usual conditions, while the processes
a,b,c,ν ,γ and λ are continuous, adapted and bounded in absolute value.

In the following subsections, after briefly illustrating the Fourier estimators of
ν(t), η(t), and χ(t) and recalling their asymptotic properties, we derive consistent
estimators of the derivatives (3.6) and (3.7) as the ratio of the Fourier estimators of
χ(t) and, respectively, ν(t) or η(t). The Fourier estimator of the vol-of-vol ξ (t) is
also illustrated, as it will be used in the empirical study of Section 3.5.
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3.3.1 Fourier estimator of the volatility

Assume that the log-price process x(t) is observable on the grid of mesh size
ρ(n) := 2π/n over the interval [0,2π]2. Then, for |k| ≤ N, the k-th (discrete)
Fourier coefficient of the volatility is defined as

ck (νn,N) :=
2π

2N +1 ∑
|s|≤N

cs (dxn)ck−s (dxn) , (3.14)

where for any integer k, |k| ≤ 2N,ck (dxn) is the k-th (discrete) Fourier coefficient
of the log-return process, namely

ck (dxn) :=
1

2π

n−1

∑
j=0

e−ikt j,nδ
n
j (x), (3.15)

where δ n
j (x) := xt j+1,n− xt j,n, t j,n = j 2π

n , j = 0,1, ...,n, while the symbol i denotes
the imaginary unit, that is, i =

√
−1.

Once the Fourier coefficients of the volatility (3.14) have been computed, the
application of the Fourier-Fejér inversion formula allows reconstructing the volatil-
ity path. The definition of the Fourier spot volatility estimator is as follows.

Definition 3.1. Fourier estimator of the spot volatility
The Fourier estimator of the spot volatility process is defined as the random

function of time

ν̂n,N,Sν
(t) := ∑

|k|<Sν

(
1− |k|

Sν

)
ck (νn,N)eikt , (3.16)

where Sν is a positive integer smaller than N, while ck (νn,N) is defined in (3.14).

The following theorem demonstrates the uniform consistency of the Fourier
estimator of the spot volatility (3.16).

Theorem 3.1. For any integer |k| ≤ N, if N/n→ 1/2, the following convergence
in probability holds

lim
n,N→∞

ck (νn,N) = ck(ν),

2In applications, we can always assume that the price process x(t) is observed on [0,2π] by re-
scaling the actual time interval. Moreover, note that in this Chapter, to simplify the exposition, we
assume that the price process is observable on an equally-spaced grid, but, in general, the Fourier
method works also with unequally-spaced samples (see Mancino et al. (2017)).
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where ck(ν) is the k-th Fourier coefficient of the volatility process ν(t). Moreover,
if N/n→ 1/2 and Sν/n→ 0, it holds in probability that

lim
n,N,Sν→∞

sup
t∈(0,2π)

|ν̂n,N,Sν
(t)−ν(t)|= 0.

Proof. See Malliavin and Mancino (2009).

3.3.2 Fourier estimator of the leverage

As mentioned, the knowledge of the Fourier coefficients of the latent instantaneous
volatility ν(t) allows treating the latter as an observable process and iterate the pro-
cedure for computing the Fourier coefficients in order to reconstruct the leverage
process η(t). In particular, to estimate the instantaneous leverage η(t) we exploit
the multivariate version of Fourier method introduced in Malliavin and Mancino
(2009). Accordingly, an estimator of the Fourier coefficients of the leverage is
given by

ck (ηn,N,M) :=
2π

2M+1 ∑
| j|≤M

c j (dxn)ck− j (dνn,N) , (3.17)

where M is a positive integer smaller than N, c j (dxn) is given in (3.15) and we use
the approximation c j (dνn,N)∼= i jc j (νn,N)

3. Then the following theorem holds.

Theorem 3.2. If N/n→ 1/2 and M2/n→ 0 for n,N,M→ ∞, then the following
convergence in probability holds

lim
n,N,M→∞

ck (ηn,N,M) = ck(η),

where ck(η) is the k-th Fourier coefficient of the leverage process η(t).

Proof. See Barucci and Mancino (2010).

Finally, a consistent estimator of the the instantaneous leverage η(t) is obtained
as

η̂n,N,M,Sη
(t) := ∑

|k|<Sη

(
1− |k|

Sη

)
ck (ηn,N,M)eikt , (3.18)

where Sη is a positive integer smaller than M, while ck (ηn,N,M) is defined in (3.17).

3See, e.g., Chapter 6 in Mancino et al. (2017).
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3.3.3 Fourier estimator of the vol-of-vol

The knowledge of the coefficients of the volatility process ν(t) also allows build-
ing an estimator of its quadratic variation, the vol-of-vol ξ (t). In particular, an
estimator of the coefficents of ξ (t) is given by

ck (ξn,N,M) :=
2π

2M+1 ∑
| j|≤M

c j (dνn,N)ck− j (dνn,N) , (3.19)

where, again, c j (dνn,N) is approximated with i jc j (νn,N). Then the following the-
orem holds.

Theorem 3.3. If N/n→ 0 and M4/N → 0 for n,N,M → ∞, then the following
convergence in probability holds

lim
n,N,M→∞

ck (ξn,N,M) = ck(ξ ),

where ck(ξ ) is the k-th Fourier coefficient of the vol-of-vol process ξ (t).

Proof. See Sanfelici et al. (2015).

Finally, a consistent estimator of the the spot vol-of-vol ξ (t) can be obtained
as

ξ̂n,N,M,Sξ
(t) := ∑

|k|<Sξ

(
1− |k|

Sξ

)
ck (ξn,N,M)eikt (3.20)

where Sξ is a positive integer smaller than M, while ck (ξn,N,M) is defined in
(3.19).

3.3.4 Fourier estimator of the price-leverage covariation

Similarly to what we have done for the volatility process ν(t), once its Fourier
coefficients have been estimated, we can treat the second-order quantity η(t) as
an observable process and exploit the multivariate Fourier method to estimate the
third-order quantity χ(t). The following asymptotic result is obtained.

Theorem 3.4. If N/n→ 1/2 and L2M2/N → 0 for n,N,M,L→ ∞4, then the fol-
lowing convergence in probability holds

lim
n,N,M,L→∞

ck (χn,N,M,L) = ck(χ),

4Note that these conditions also imply that M2/n→ 0, satisfying the hypotheses of Theorem
3.2.
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where, for L positive integer and smaller than M, we define

ck (χn,N,M,L) :=
2π

2L+1 ∑
| j|≤L

c j (dxn) i jck− j (ηn,N,M) .

Proof. See Sanfelici and Mancino (2020).

Accordingly, a consistent spot estimator of the process χ(t) is defined as

χ̂n,N,M,L,Sχ
(t) := ∑

|k|<Sχ

(
1− |k|

Sχ

)
ck (χn,N,M,L)eikt , (3.21)

where Sχ is a positive integer smaller than L.

3.3.5 Fourier estimators of the derivatives of the leverage

The Continuous Mapping Theorem ensures that the ratio of the non-parametric
Fourier estimators (3.21) and (3.16), i.e.,

χ̂n,N,M,L,Sχ
(t)

ν̂n,N,Sν
(t)

(3.22)

is a consistent estimator of the derivative of the leverage process with respect
to the log-price process under (3.1), as given in (3.6). Analogously, it also ensures
that the ratio of the non-parametric Fourier estimators (3.21) and (3.18), i.e.,

χ̂n,N,M,L,Sχ
(t)

η̂n,N,M,Sη
(t)

, (3.23)

is a consistent estimator of the derivative of the leverage process with respect
to the log-price process under (3.8), as given in (3.7)5.

3.4 Simulation study

Given the availability of consistent Fourier estimators of the volatility, the leverage
and the derivatives of the leverage with respect to the log-price or the volatility,
a simple test to check with empirical data if the true model-free derivatives of
the leverage match the corresponding model-dependent predictions under the CEV

5For n finite, estimators (3.22) and (3.23) are undefined if, respectively, ν̂n,N,Sν
(t) or η̂n,N,M,Sη

(t)
is equal to zero. However, the analysis conducted in this chapter is not affected by this potential
problem, as estimators (3.22) and (3.23) are used only in equations (3.24) and (3.25), which are
rewritten, to reduce numerical instabilities as, respectively, (3.26) and (3.27).
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model, as given in equations (3.6) and (3.7), entails performing a linear regres-
sion between numerical approximations of the true derivatives, obtained via finite
differences, and estimates of the corresponding theoretical derivatives, as given in
(3.22) and (3.23). Formally, the test involves estimating the linear models

η̂n,N,M,Sη
(t +h)− η̂n,N,M,Sη

(t)
x(t +h)− x(t)

= α1
χ̂n,N,M,L,Sχ

(t)
ν̂n,N,Sν

(t)
(3.24)

and
η̂n,N,M,Sη

(t +h)− η̂n,N,M,Sη
(t)

ν̂n,N,Sν
(t +h)− ν̂n,N,Sν

(t)
= α2

χ̂n,N,M,L,Sχ
(t)

η̂n,N,M,Sη
(t)

. (3.25)

If the estimation with empirical data yields statistically-significant estimates of
the coefficients α1 and α2 that are close to the value of 1, then the predictions of
the CEV model could be deemed as an accurate gauge of the true sensitivity of the
leverage to changes in the price and the volatility. This in turn would suggest that
empirical data support the interpretation of χ(t) as the process that captures the
response of the leverage to changes in the price and the volatility, as implied by the
CEV model via equations (3.6) and (3.7).

In order to obtain reliable results from the tests (3.24) and (3.25), it is not only
crucial that finite-sample efficient Fourier-based estimates of the paths of the pro-
cesses ν(t), η(t) and χ(t) are used, but also that the step h for the differentiation
procedure is carefully selected. Accordingly, the aim of the simulation study per-
formed in this section is to provide guidance for the optimal selection of the step
h.

For the simulation study, we generate price observations from the CEV model
in equation (3.1), setting σ = 0.3 and δ = 0.5. These parameter values are taken
from the simulation study in Sanfelici and Mancino (2020). Further, the initial
price value X(0) is selected as X(0) = 1. Recall that a value of δ smaller than 1
reproduces the type of leverage effect usually observed on equity markets, that is,
it yields a correlation between returns and volatility changes with negative sign.
Based on these parameter values, we simulate a total of 100 days of 1-second
observations. Each simulated day is 6.5-hour long.

Specifically, we simulate two scenarios: one where the efficient log-price x(t)
is observable and another, more realistic, where one can only observe the noisy
price x̃(t) := x(t)+ ε(t), that is, the efficient price x(t) contaminated by the pres-
ence of an i.i.d. zero-mean noise component ε(t). For the simulation of ε(t), we
choose a Gaussian distribution, with standard deviation parameter equal to 10−4.

In both simulated scenarios, we use all available data for the estimation of
ν(t), η(t) and χ(t), that is, we select n = 23400, which corresponds to the 1-
second sampling frequency. Further, we make the following selections for the
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cutting frequencies. At the first level, to obtain spot volatility estimates, we select
N = n/2 in the noise-free scenario, while in the noisy scenario we select N based
on the noise-robust procedure proposed by Mancino and Sanfelici (2008); then, we
select Sν = n0.5. At the second level, we estimate the spot leverage by choosing
M = n0.5 and Sη = 4n0.25 Finally, we select L = 4n0.25 and Sχ = 6n0.125 at the third
level, to obtain spot estimates of χ(t). All these selections, with the exception
of N, are based on the numerical minimization of the mean-squared error (MSE).
The estimated trajectories of ν(t), η(t) and χ(t) in the absence and the presence
of noise are plotted, along with the corresponding true values, in Figures 3.1 and
3.2 to demonstrate the accuracy of the estimation. Additionally, in Figures 3.1 and
3.2 we also show the accuracy of the estimated trajectory of ξ (t), which will be
used in the final part of the simulation study. Note that the selection of the cutting
frequencies for the estimation of ξ (t) is performed separately (see Theorem 3.3).
In particular, first we select N either equal to 3n0.75 in the noise-free scenario or via
the noise-robust approach by Mancino and Sanfelici (2008) in the noisy scenario,
then we choose M = 2n0.25 and Sξ = n0.25 based on the numerical optimization of
the MSE.
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Fig. 3.1: Comparison, in the noise-free scenario, between the true and the estimated trajec-
tories of ν(t) (panel a)), η(t) (panel b)), ξ (t) (panel c)) and χ(t) (panel d)). For
each panel, the true and estimated trajectories are plotted on the equally-spaced
grid of mesh size equal to 1 second.
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Fig. 3.2: Comparison, in the noisy scenario, between the true and the estimated trajectories
of ν(t) (panel a)), η(t) (panel b)), ξ (t) (panel c)) and χ(t) (panel d)). For each
panel, the true and estimated trajectories are plotted on the equally-spaced grid of
mesh size equal to 1 second.

After having obtained accurate estimates of ν(t), η(t) and χ(t), we perform
tests (3.24) and (3.25). In this regard, to reduce the numerical instabilities related to
the computation of ratios, we estimate α1 and α2 after rewriting (3.24) and (3.25)
as, respectively,

[
η̂n,N,M,Sη

(t +h)− η̂n,N,M,Sη
(t)
]
ν̂n,N,Sν

(t) = α1

[
x(t +h)− x(t)

]
χ̂n,N,M,L,Sχ

(t),
(3.26)

and[
η̂n,N,M,Sη

(t+h)−η̂n,N,M,Sη
(t)
]
l̂n,N,M,Sη

(t)=α2

[
ν̂n,N,Sν

(t+h)− ν̂n,N,Sν
(t)
]
χ̂n,N,M,L,Sχ

(t)
(3.27)

The estimates of α1 and α2 in the noise-free and the noisy scenarios, obtained
for different values of the step h, are plotted in Figures 3.3 - 3.66. These figures
show that the estimates of α1 and α2 fluctuate around the true level, that is, around
1, for values of h between 5 and 30 minutes7. This suggests that a more reliable

6Note that the estimation of α1 and α2 has been performed using the robust regression method
with a bisquare weighting scheme to penalize outliers (see Holland and Welsch (1977)). The same
holds for the estimation of α1 and α2 in the empirical study of the next section.

7For h smaller than 5 minutes, estimates of α1 and α2 tend to be biased and very noisy and thus
are omitted from the plots.
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estimate of α1 or α2 could be obtained by computing the average of point-wise
estimates in correspondence of values of h between 5 and 30 minutes. Indeed,
such averages, which are also plotted in Figures 3.3 - 3.6 (see the red dashed lines),
appear to be very close to 1. The exact averages of the estimates of α1 and α2,
along with average values of other relevant outputs of the estimation procedure, are
reported in the Table 3.1. Note that these averages are quite accurate, that is, are
quite close to 1. Also, note that point-wise coefficient estimates are all statistically
significant, with a constant p-value equal to zero for both tests in both scenarios
considered. Finally, note that the very large R2 values confirm the accuracy of the
Fourier estimates of ν(t), η(t) and χ(t).
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Fig. 3.3: Estimation of model (3.24) in the noise-free scenario: comparison of point-wise
estimates of the coefficient α1 in correspondence of different values of the step h
(in blue) and their average (red dashed line) with the true value (grey line).

coeff. est. std. err. t stat. p-value R2

model (3.24), w/o noise 1.001 (0.550) 0.004 (0.001) 240.538 (110.971) 0 (0) 0.906 (0.138)
model (3.24), w/ noise 1.039 (0.654) 0.005 (0.002) 188.964 (81.688) 0 (0) 0.877 (0.190)
model (3.25), w/o noise 1.016 (0.587) 0.002 (< 10−3) 590.663 (290.443) 0 (0) 0.955 (0.120 )
model (3.25), w/ noise 1.064 (0.395) 0.002 (< 10−3) 636.648 (223.603) 0 (0) 0.992 (0.005)

Tab. 3.1: Estimation results for models (3.24) and (3.25): average values of coefficient
estimates, standard errors, t statistics, p-values and R2, computed for h ranging
between 5 and 30 minutes. Standard deviations are also reported in brackets.
For each model, the lines “w/o noise” and “w/ noise” refer to, respectively, the
simulated scenario without and with noise.
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Fig. 3.4: Estimation of model (3.24) in the noisy scenario: comparison of point-wise esti-
mates of the coefficient α1 in correspondence of different values of the step h (in
blue) and their average (red dashed line) with the true value (grey line).
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Fig. 3.5: Estimation of model (3.25) in the noise-free scenario: comparison of point-wise
estimates of the coefficient α2 in correspondence of different values of the step h
(in blue) and their average (red dashed line) with the true value (grey line).

As mentioned in the previous section, based on equations (3.4) and (3.11),
another aspect that could be investigated empirically is the existence of a linear
link between χ(t) and the vol-of-vol ξ (t). Specifically, the existence of such a link
could be investigated by performing the linear regression

χ̂n,N,M,L,Sχ
(t) = α3ξ̂n,N,M,Sξ

(t). (3.28)

A statistically-significant estimate of the coefficient α3 would offer evidence,
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Fig. 3.6: Estimation of model (3.25) in the noisy scenario: comparison of point-wise esti-
mates of the coefficient α2 in correspondence of different values of the step h (in
blue) and their average (red dashed line) with the true value (grey line).

in a model-free setting, that χ(t) is actually linear in ξ (t), as predicted by the CEV
model (and, more generally, by the large class of models represented by (3.8)). In-
terpreting χ(t) as the process that captures the response of the leverage to changes
in the volatility or the price, this would mean that the latter is proportional to the
uncertainty perceived by market operators about the actual riskiness of the asset of
interest (i.e., the vol-of-vol ξ (t)).

As for (3.24) and (3.25), the accuracy of the regression (3.28) can also be tested
on simulated observations from the CEV model, to obtain guidance for the selec-
tion of the optimal frequency for the sampling of Fourier estimates of χ(t) and ξ (t).
Estimates of α3 in correspondence of different sampling frequencies between 5 and
30 minutes are shown in Figures 3.7 and 3.8. Note that point-wise estimates of α3
appear to be very reliable, in that they are all very close to the true value of 2, at
least for sampling frequencies smaller than 15 minutes. However, a conservative
approach might suggest to adopt the average as a final estimate of α3 also in this
case (see the red dashed line in Figures 3.7 and 3.8). Average statistics of the re-
gression are reported in Table 3.28. Again, we obtain quite satisfactory R2 values,
which confirm the accuracy of the estimates of χ(t) and ξ (t); also, all estimates of
α3 are significant, with constant p-values equal to zero.

Finally, note that we obtain comparable results in the noise-free and noisy sce-
narios for all three tests performed in this section, thereby confirming the robust-

8To account for auto-correlations in the residuals, we compute Newey-West standard errors, see
Newey and West (1987). We do the same also when estimating α3 in the empirical exercise of the
next section.
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ness of the Fourier methodology to the presence of noise.
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Fig. 3.7: Estimation of model (3.28) in the noise-free scenario: comparison of point-wise
estimates of the coefficient α3 in correspondence of different sampling frequen-
cies (in blue) and their average (red dashed line) with the true value (grey line).
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Fig. 3.8: Estimation of model (3.28) in the noisy scenario: comparison of point-wise esti-
mates of the coefficient α3 in correspondence of different sampling frequencies
(in blue) and their average (red dashed line) with the true value (grey line).

3.5 Empirical study

In this section we perform tests (3.24), (3.25) and (3.28) on the series of 1-second
S&P500 price observations over the period March, 2018− April, 2018 (see Figure
3.9).
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coeff. est. std. err. t stat. p-value R2

model (3.28), w/o noise 2.003 (0.126) 0.326 (0.045) 6.280 (1.177) 0 (0) 0.543 (0.032)
model (3.28), w/ noise 2.020 (0.157) 0.233 (0.041) 8.918 (1.671) 0 (0) 0.538 (0.038)

Tab. 3.2: Estimation results for models (3.24) and (3.25): average values of coefficient
estimates, standard errors, t statistics, p-values and R2, computed for sampling
frequencies ranging between 5 and 30 minutes. Standard deviations are also re-
ported in brackets. The lines “w/o noise” and “w/ noise” refer to, respectively,
the simulated scenario without and with noise.

March 2018 April 2018

2550

2600

2650

2700
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2800

Fig. 3.9: S&P 500 1-second prices over the period March, 2018 − April, 2018.

To obtain Fourier estimates of the paths of ν(t), η(t), χ(t) and ξ (t), we use
all data in the sample, that is, we select n = 23400, corresponding to the 1-second
sampling frequency. Further, we select the cutting frequencies using as guidance
the MSE-optimal values obtained via simulations in the noisy scenario of Section
3.4. Specifically, after choosing N via the noise-robust procedure given in Mancino
and Sanfelici (2008), we select Sν = M = n0.5, Sη = L = 4n0.25 and Sχ = 6n0.125.
For the estimation of ξ (t), instead, we select M = 2n0.25 and Sξ = n0.25. The
estimated trajectories of ν(t), η(t), ξ (t) and χ(t) are plotted in Figure 3.10. Note
that, before performing the estimation, we have removed days with price jumps
from the 2-month sample, using the jump detection test by Corsi et al. (2010). In
particular, the test at 99.9% confidence level detects only two days with jumps,
namely March 20th and March 23rd. These two days are associated with market
turbulence related to the so-called “trade war” between China and the US.

Using the reconstructed paths of ν(t),η(t),χ(t) and ξ (t) we then perform tests
(3.24), (3.25) and (3.28)9. The results are summarized in Table 3.3 and Figures

9To avoid performing a spurious regression (see Granger and Newbold (1974)), we test for the
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Fig. 3.10: Reconstructed 1-second trajectories of ν(t), η(t), ξ (t) and χ(t) for the S&P 500
index over the period March, 2018-April, 2018.

3.11 - 3.13.
Overall, the results of tests (3.24) and (3.25) support the interpretation of the

process χ(t) as a process that captures the instantaneous response of the leverage
to changes in the price and the level of market risk (i.e., the volatility). In fact, not
only we obtain statistically-significant estimates of α1 and α2 for all values of h
considered, but also these estimates fluctuate around average estimates which are
close to 1, taking values equal, respectively, to 1.018 and 0.914

Additionally, the results of test (3.28) support the existence of a statistically-
significant positive linear dependence between χ(t) and ξ (t). This empirical result,
if considered jointly with the results of tests (3.24) and (3.25), suggests that the
sensitivity of the leverage to changes of the price or the volatility is larger when the
uncertainty about the actual level of risk perceived on the market (i.e., the vol-of-
vol) is larger. Additionally, note that point-wise estimates of α3 are close to 2, the
value predicted by the CEV model, with a final average estimate equal to 1.895.

Finally, note that we obtain R2 values which are not far from the values obtained
in simulations, for all three tests. This suggests that the tested models fit the sample
data quite well.

null hypothesis of the presence of a unit root in the all the series of regressors and regressands
involved, using the Augmented Dickey-Fuller test (see Dickey and Fuller (1979)). For all series, test
results at the 99.9% confidence level reject the null hypothesis.
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coeff. est. std. err. t stat. p-value R2

model (3.24) 1.018 (1.119) 0.006 (0.004) 163.605 (159.688) 0 (0) 0.821 (0.225)
model (3.25) 0.914 (0.660) 0.009 (0.002) 92.858 (73.879) 0 (0) 0.847 (0.159)
model (3.28) 1.895 (0.206) 0.625 (0.049) 3.037 (0.323) 0.004 (0.003) 0.409 (0.038)

Tab. 3.3: Estimation results for models (3.24), (3.25) and (3.28): average values of coeffi-
cient estimates, standard errors, t statistics, p-values and R2, computed for values
of h (models (3.24 and (3.25)) or sampling frequencies (model (3.28)) ranging
between 5 and 30 minutes. Standard deviations are also reported in brackets.

5 10 15 20 25 30

h (minutes)

-2

-1

0

1

2

3

4

est. regr. coeff.

average est. value

Fig. 3.11: Estimation of model (3.24): point-wise estimates of the coefficient α1 in corre-
spondence of different sampling frequencies (in blue), along with their average
(red dashed line).

3.6 Conclusions

The main finding of this chapter is uncovering, both from an analytical and an
empirical perspective, the relationship between the price-leverage covariation and
the sensitivity of the leverage process to changes in the price or the volatility.

Indeed, first we show that under the CEV model, which is explicitly designed
to capture the leverage effect, the derivatives of the leverage process with respect
to the price and the volatility are equal to the price-leverage covariation scaled,
respectively, by the volatility and the leverage itself. In this regard, we stress that
a key analytical result we obtain is expressing the derivatives of a stochastic pro-
cess (the leverage) as a function of objects that can be consistently estimated from
sample prices over a fixed time horizon, that is, iterated covariances.
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Fig. 3.12: Estimation of model (3.25): point-wise estimates of the coefficient α2 in corre-
spondence of different sampling frequencies (in blue), along with their average
(red dashed line).
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Fig. 3.13: Estimation of model (3.28): point-wise estimates of the coefficient α3 in corre-
spondence of different sampling frequencies (in blue), along with their average
(red dashed line).

Then, after reconstructing the paths of the volatility, the leverage and the price-
leverage covariation by means of the (non-parametric) Fourier methodology, we
show, empirically, that these model-dependent predictions reproduce the model-
free derivatives of the leverage quite accurately in the case of the S&P500 index
over the period March, 2018-April, 2018.

Based on this empirical evidence, the price-leverage covariation could be un-
derstood by market operators as a gauge of the responsiveness of the leverage ef-
fect to the arrival of new information causing a change in the price level and/or the
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amount of market risk, that is, in the volatility.
Additionally, based on the existence of a linear link between the price-leverage

covariation and the vol-of-vol under the CEV model, we also investigate the empir-
ical dependence between these two quantities in model-free setting, that is, using
non-parametric Fourier estimates of their paths. In this regard, empirical results
support the existence of a statistically significant linear link, with a coefficient
close to 2, the value predicted by the CEV model. This in turn suggests that the
response of the leverage is stronger when the uncertainty about the actual level of
risk perceived, i.e., the vol-of-vol, is larger (and viceversa).

Future research may verify the validity of the empirical findings presented in
this chapter for different asset classes and/or more turbulent economic scenarios.
Further, the findings of this chapter motivate the investigation of the asymptotic
error distribution of the non-parametric Fourier estimator of the price-leverage co-
variation in future research. Additionally, future research may investigate the role
of the price-leverage covariation in forecasting the leverage effect.



4. BIAS-OPTIMAL INTEGRATED VOL-OF-VOL ESTIMATION: THE
ROLE OF WINDOW OVERLAPPING

4.1 Introduction

Estimating the volatility of asset volatility (hereinafter vol-of-vol) is relevant in
many areas of mathematical finance, such as the calibration of stochastic volatility
of volatility models (Barndorff-Nielsen and Veraart (2009), Sanfelici et al. (2015)),
the hedging of portfolios against volatility of volatility risk (Huang et al. (2018)),
the estimation of the leverage effect (Kalnina and Xiu (2017), Aı̈t-Sahalia et al.
(2017)), and the inference of future returns (Bollerslev et al. (2009)), along with
spot volatilities (Mykland and Zhang (2009)).

The literature offers a number of consistent estimators for the integrated vol-
of-vol. The first estimator to appear was the one proposed by Barndorff-Nielsen
and Veraart (2009), termed Pre-estimated Spot-variance based Realized Variance
(PSRV), which is, in fact, simply the realized variance of the unobservable spot
variance, computed using estimates of the latter. Later, Vetter (2015) derived two
sophisticated versions of the simple PSRV: one that allows for a central limit theo-
rem with the optimal rate of convergence, but also for negative values, and another
that preserves positivity at the expense of a slower rate of convergence. Note that
the simple PSRV and its sophisticated versions are consistent when the price and
volatility processes are continuous semimartingales, in the absence of microstruc-
ture noise contaminations. Further, Fourier-based estimators of the integrated vol-
of-vol were introduced by Sanfelici et al. (2015) and Cuchiero and Teichmann
(2015). In particular, the estimator by Sanfelici et al. (2015) is asymptotically
unbiased in the presence of market microstructure noise, while the estimator by
Cuchiero and Teichmann (2015) allows for a central limit theorem in the presence
of jumps in the price and volatility processes.

The numerical studies in Aı̈t-Sahalia et al. (2017) and Sanfelici et al. (2015)
show that both realized and Fourier-based integrated vol-of-vol estimators may
carry a substantial finite-sample bias unless the selection of the tuning parameters
involved in their computation is carefully optimized. However, this is a rather un-
explored issue, which we aim to explore. To do so, we focus on the simple PSRV,
since it represents the most intuitive and easy-to-implement vol-of-vol estimator.
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Furthermore, asymptotically-optimal estimators do not necessarily guarantee the
best finite-sample performance, as pointed out in the extensive study by Gatheral
and Oomen (2010) on integrated volatility estimators and confirmed for integrated
vol-of-vol estimators by the numerical studies in Aı̈t-Sahalia et al. (2017) and San-
felici et al. (2015). Thus, there is no reason to expect a priori that the simple PSRV
would show worse finite-sample performance than its sophisticated version with
optimal rate of convergence.

As mentioned, the PSRV is the realized volatility of the unobservable spot
volatility process, computed from discrete estimates of the latter. In other words,
the PSRV is the sum of the squared increments of estimates of the unobservable
spot volatility on a discrete grid. These estimates are obtained as local averages of
the price realized volatility. Formally, the locally averaged realized variance and
the PSRV are defined as follows.

Definition 4.1. Locally averaged realized variance
Suppose that the log-price process x is observable on an equally-spaced grid

of mesh size δN , with δN → 0 as N → ∞. Also, let kN = O(δ b
N), b ∈ (−1,0), be

a sequence of positive integers such that kN → ∞ and define the local window
WN := kNδN such that WN → 0 as N→ ∞. The locally averaged realized variance
at time t is defined as

ν̂N(t) :=
1

kNδN

kN

∑
j=1

[
x(bt/δNcδN−kNδN + jδN)−x(bt/δNcδN−kNδN +( j−1)δN)

]2
,

where b ·c denotes the floor function.

Definition 4.2. Pre-estimated Spot-variance based Realized Variance
Suppose that the log-price process x is observable on an equally-spaced grid

of mesh size δN , with δN → 0 as N → ∞. The pre-estimated spot-variance based
realized variance (PSRV) on the interval [τ,τ +h] is defined as

PSRV[τ,τ+h],N :=
bh/∆Nc

∑
i=1

[
ν̂N(τ + i∆N)− ν̂N(τ +(i−1)∆N)

]2
,

where:

- ν̂N(·) is the locally averaged realized variance in Definition 4.1, with kN =
O(δ b

N), b ∈ (−1,0);

- ∆N = O(δ c
N), c ∈ (0,1), is the locally averaged realized variance sampling

frequency.
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The following propositions summarize the asymptotic properties of the locally
averaged realized variance and the PSRV. For further details, see Chapter 8 in Aı̈t-
Sahalia and Jacod (2014).

Proposition 4.1. Let the log-price process x be a continuous semimartingale and
let the process ν denote its instantaneous volatility. Then ν̂N(t) is a consistent local
estimator of ν(t) as N→ ∞.

Proof. See Chapter 8.1 in Aı̈t-Sahalia and Jacod (2014).

Proposition 4.2. Let the log-price process x and the spot volatility process ν

be continuous semimartingales. Then the PSRV is a consistent estimator of the
quadratic variation of the volatility process 〈ν ,ν〉[τ,τ+h] if b ∈ (−1/2,0) and c ∈
(0,−b/2).

Proof. See Proposition 8 in Barndorff-Nielsen and Veraart (2009).

Remark 4.1. Note that the requirements for rates b and c that guarantee consis-
tency imply that WN

∆N
→ 0 as N→∞. Indeed, as one can easily verify,−1/2 < b < 0

and 0 < c <−b/2 imply c < 1+b, which, in turn, implies WN
∆N
→ 0 as N→ ∞.

In practical applications, when computing PSRV values, one has to select the
spot volatility estimation grid. Moreover, since the spot volatility is estimated as an
average of the price realized volatility over a local window, the length of the latter
must also be selected. More specifically, the figure below details the different quan-
tities involved in the computation of the PSRV: the time horizon h; the log-price
sampling frequency δN := h

N ; the spot volatility sampling frequency ∆N := λNδN ,
λN = min(N,dλδ

c−1
N e), λ > 0, c ∈ (0,1); the size of the local window to esti-

mate the spot volatility WN = kNδN , kN = dκδ b
Ne, κ > 0, b ∈ (−1,0); and the spot

volatility estimates ν̂(s), s = τ + j∆N , j = 0,1, ...,bh/∆Nc. Note that d ·e denotes
the ceiling function.

ν̂(τ) ν̂(τ +∆N) ν̂(τ +2∆N) ν̂(τ +h)

δN ∆N = λNδNWN = kNδN

... time

Fig. 4.1: Graphic representation of the quantities involved in the computation of the PSRV
on the interval [τ,τ +h].



4. Bias-optimal integrated vol-of-vol estimation: the role of window overlapping 72

As a consequence, for given values of the asymptotic rates b and c, the finite-
sample performance of the PSRV (i.e., the performance of the PSRV for a fixed N)
depends on the selection of two tuning parameters: λ , which determines the mesh
of the spot volatility estimation grid and κ , which determines the length of the local
window used to estimate the spot volatility. With regard to the selection of κ , note
that the efficient computation of the spot volatility in finite samples may require
the selection of fairly long local windows (see, e.g., Lee and Mykland (2008), Aı̈t-
Sahalia et al. (2013) and Zu and Boswijk (2014)). This in turn suggests that the
finite-sample efficient implementation of the PSRV over a given period (e.g., one
day) may require the use of price observations from the previous period(s) (e.g.,
day(s)). At the same time, this might imply that it is optimal to allow consecutive
local windows to overlap in finite samples, that is, WN > ∆N for N finite. This
aspect is confirmed by the numerical study in Sanfelici et al. (2015), which shows
that it is optimal to select κ such that WN > ∆N in finite samples. The aim of this
chapter is to gain insight into the bias-reducing effect due to window-overlapping
from an analytical perspective. To do so, we follow an approach inspired by the
one used in Aı̈t-Sahalia et al. (2013) to solve the “leverage effect puzzle”.

The “leverage effect puzzle” pertains to the absence of correlation between
log-price and (estimated) volatility changes at high-frequencies, observed in em-
pirical samples. Aı̈t-Sahalia et al. (2013) solve this puzzle by showing analyti-
cally that a substantial bias masks the presence of correlation unless log-price and
volatility estimates changes are computed on a suitably sparse grid. The aim is
not to solve the problem of the efficient non-parametric estimation of the leverage
at high-frequencies, but rather to obtain insight into the puzzle by solving it in a
widely used parametric setting that allows for fully explicit computations. This
chapter is written in the same spirit. In fact, we do not address the general problem
of the efficient non-parametric vol-of-vol estimation from high-frequency prices,
but, rather, our aim is to obtain insight from an analytical perspective into why
the PSRV, the simplest and most natural vol-of-vol estimator, is plagued by a large
bias in finite samples and investigate the role of window-overlapping as a tool for
reducing such large bias.

To achieve this aim, we proceed as follows. In Section 4.2 we perform a pre-
liminary numerical exercise that uncovers the crucial role of the local-window pa-
rameter κ in determining the finite-sample performance of the PSRV and, at the
same time, shows that the latter is basically insensitive to the selection of the grid
parameter λ . In particular, it is evident from simulations that the PSRV finite-
sample bias is optimized by selecting κ such that consecutive local windows to
estimate the spot volatility overlap. Numerical results of Section 4.2 confirm those
by Sanfelici et al. (2015) and motivate the analytical study of Section 4.3.

In Section 4.3, we address the problem of the optimal selection of PSRV tuning
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parameters in finite samples from an analytical perspective. To do so, in the spirit
of Aı̈t-Sahalia et al. (2013), we assume a widely-used parametric form for the data-
generating process, which allows us to obtain the full explicit PSRV finite-sample
bias expression. Specifically, we assume the price to be a continuous semimartin-
gale and the volatility to be a CIR process (see Cox et al. (1985)). In general,
independently of the parametric assumption on the data-generating process, the
PSRV finite-sample bias expression differs in case window overlapping is allowed,
i.e., when WN > ∆N , or not, i.e., WN ≤ ∆N . Consequently, in Section 4.3 we study
both cases.

In the no-overlapping case we adopt a conventional approach and isolate the
dominant term of the bias as N→ ∞, thereby showing that a value of κ that anni-
hilates the dominant term of the bias does not always exist and, even when it does
exist, its computation would be basically unfeasible in practice, as it depends on
the drift parameters of the volatility, which cannot be reliably estimated on a fixed
time horizon, due to the fact that their consistent estimation is possible only in the
classic long-sample asymptotics setting (see, e.g., Kanaya and Kristensen (2016)).
In addition, when the optimal value of κ exists, for typical orders of magnitude
of the CIR parameters it actually satisfies the no-overlapping constraint only at
ultra-high frequencies (< 1 second), at which prices are typically not available.

In the overlapping case, instead, the natural expansion as N→ ∞ is precluded,
as the consistency of the PSRV requires that consecutive windows do not overlap
as the number of price observations grows to infinity (see Remark 4.1). Therefore,
in this case we adopt a novel approach and expand sequentially the bias expression
as the the tuning parameter λ and the time horizon h go to zero, based on the
fact that, in practical applications, h and λ are typically very close to zero. This
approach yields a dominant term of the bias which is independent of the tuning
parameter λ and is annihilated by selecting the asymptotic rate of kN as b =−1/2,
the asymptotic rate of ∆N as c < 1/2, and the local-window tuning parameter as
κ = 2

√
ν(τ)γ−1, where ν(t) and γ denote, respectively, the spot variance process

at the initial time τ and the CIR diffusion parameter. This analytical result shows
that, when overlapping is allowed, it is possible to select κ such that the bias is
effectively optimized in practical applications and supports the numerical evidence
on the bias-reducing effect due to window overlapping collected in Section 4.2
and in Sanfelici et al. (2015). However, this rule to select κ is unfeasible unless
reliable estimates of ν(τ) and γ are available. Accordingly, in the Appendix we
detail a simple procedure to estimate ν(τ) and γ .

In Section 4.3 we also address the problem of the bias-optimal implementation
of the PSRV in the more realistic situation where the price process is contaminated
by an i.i.d. microstructure noise process at high frequencies. Again, we distin-
guish between the overlapping and no-overlapping case and derive, for each case,
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the exact parametric expression of the extra bias term due to microstructure noise.
However, in both cases it emerges that this extra term depends not only on some
moments of the noise process but also on the drift parameters of the volatility pro-
cess, which cannot be consistently estimated over a fixed time horizon (see, e.g.,
Kanaya and Kristensen (2016)). This precludes the possibility of efficiently sub-
tracting the bias due to noise in small samples. As a solution, we suggest sampling
prices on a suitably sparse grid as in the seminal paper by Andersen et al. (2001a),
so that the presence of noise becomes negligible and the bias optimal rule to select
the local-window parameter κ can still be applied. The efficiency of this solution
is verified numerically in Section 4.5 for typical values of the noise-to-signal ratio.
For completeness, we also analyze the noise bias expression in the no-overlapping
case. In particular, we exploit this expression to derive the asymptotic rate of di-
vergence of the PSRV bias as N tends to infinity.

Additionally, as a byproduct of the PSRV bias analysis, in Section 4.3 we quan-
tify the bias reduction following the assumption that the initial value of the volatil-
ity process is equal to the long-term volatility parameter, in the case of both the
PSRV and the locally averaged realized variance. This is a very common assump-
tion in the literature, typically made in simulation studies where a mean-reverting
process drives the spot volatility (see, e.g., among many others, Aı̈t-Sahalia et al.
(2013), Sanfelici et al. (2015), Vetter (2015)).

In Section 4.4 we use a heuristic approach based on dimensional analysis to
generalize the rule for the selection of κ to the case of a volatility process be-
longing to the CKLS class (see Chan et al. (1992)). Specifically, we find that it
is optimal, in terms of bias reduction, to select κ = 2 ν(τ)√

ξ (τ)
, where ν(t) is the

variance process and ξ (t) is the vol-of-vol process, while τ is the initial time of
the estimation horizon. Note that in the absence of price and volatility jumps (a
condition required for the PSRV to be consistent), the semi-parametric stochastic
volatility model where the price is a semimartingale and the volatility is a CKLS
process represents a fairly flexible model. In fact, the CKLS framework encom-
passes a number of widely-used models for financial applications. Indeed, besides
the CIR model, which determines the volatility dynamics in the popular Heston
model (Heston (1993)) and its generalized version with stochastic leverage by Ver-
aart and Veraart (2012), the CKLS family includes, e.g., the model by Brennan and
Schwartz (1980) and the model by Cox et al. (1980), which appear, respectively, in
the continuous-time GARCH stochastic volatility model by Nelson (1990) and 3/2
stochastic volatility model by Platen (1997).

In Section 4.5 we perform an extensive numerical study where we test the per-
formance of the feasible rule to select κ derived in Section 4.3 and generalized in
Section 4.4. The results confirm that this rule is effective in reducing the PSRV
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bias. We underline that this rule does not require the estimation of the drift param-
eters of the CIR process, which can not be consistently estimated on a fixed time
horizon. Finally, in Section 4.6 we illustrate the results of an empirical study, in
which we compute PSRV values from high-frequency S&P 500 prices, selecting κ

based on the bias-optimal rule. Section 4.7 summarizes our conclusions. Finally,
the Appendix (Section 4.8) contains the proofs and the illustration of the feasible
procedure that we propose to select κ from sample prices.

4.2 Motivation

The finite-sample accuracy of the PSRV requires the careful selection of the tun-
ing parameters κ and λ . In this section we gain some preliminary insight into
this issue by performing a numerical study, whose result motivate the analytical
investigation of Section 4.3. In particular, we simulate observations from the fol-
lowing data-generating process, where the volatility is a CIR process. Note that
this data-generating process is also used for the analytical study in Section 4.3.

Assumption 4.1. Data-generating process
For t ∈ [0,T ], T > 0, the dynamics of the log-price process x and the spot

volatility process ν read

dx(t) =
√

ν(t)dW (t)

dν(t) = γ
√

ν(t)dZ(t)+θ

(
α−ν(t)

)
dt

where: W and Z are two Brownian motions, with correlation parameter ρ , on the
filtered probability space (Ω,F ,(Ft)t≥0,P), which satisfies the usual conditions;
θ ,α and γ are strictly positive constants (which denote, respectively, the speed of
mean reversion, long-term mean and vol-of-vol parameters) such that 2αθ > γ2 to
ensure that ν(t) is a.s. positive ∀t ∈ [0,T ].

In particular, we simulate one thousand 1-year trajectories of 1-second ob-
servations, with a year composed of 252 trading days of 6 hours each. We con-
sider three scenarios determined by the following sets of model parameters: Set 1:
(α,θ ,γ,ρ,ν(0))= (0.2,5,0.5,−0.2,0.2); Set 2: (α,θ ,γ,ρ,ν(0))= (0.02,10,0.25,
−0.8,0.03); Set 3: (α,θ ,γ,ρ,ν(0)) = (0.2,5,0.5,−0.2,0.4). For all three sets, we
select x(0) = ln(100).

The first set of parameters, Set 1, is used in Sanfelici et al. (2015) and Vetter
(2015) and represents our baseline scenario. The second, Set 2, represents the op-
posite scenario. In fact, the volatility generated by Set 2 is lower than the volatility
generated by Set 1, since the long term mean, α , and the speed of mean reversion,
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θ , are, respectively, much lower and much higher than in Set 1. The second sce-
nario is also characterized by a lower volatility of the volatility, which is captured
by the parameter γ and a more pronounced leverage effect, which is captured by
the correlation parameter ρ . The third set of parameters, Set 3, differs from the first
only in that the initial value of the volatility, ν(0), is twice the long term volatil-
ity, α . In this regard, note that if the initial volatility ν(0) is equal to α , the spot
volatility has a constant unconditional mean over time under Assumption 4.1 (see
Appendix A in Bollerslev and Zhou (2002)). Setting ν(0) = α is a simplifying as-
sumption typically adopted in numerical studies where a mean-reverting volatility
process is used (see, e.g., among many others, Aı̈t-Sahalia et al. (2013), Sanfelici
et al. (2015), Vetter (2015)).

We estimate daily values of the PSRV in these three scenarios from simulated
prices sampled with a 1-minute frequency. For the estimation, we set b=−1/2 and
c = 1/4 1 and study the sensitivity of the bias to different values of κ and λ . With
respect to λ , we consider values in the set (0.0002,0.0004,0.0006,0.0010,0.0019,
0.0029,0.0057), which correspond to ∆N equal to 1,2,3,5,10,15,30 minutes, re-
spectively, thereby preserving the high-frequency nature of the estimator. As for κ ,
we consider values in the set (0.017,0.033,0.05,0.1,0.2,0.4,0.5,1,1.5,2,2.5,3),
which correspond to WN equal to (approximately) 5,10,15,30,60,120,150,300,
450,600,750,900 minutes, respectively. Overall, these sets of values for λ and κ

allow us to consider both cases when window overlapping occurs, that is, when
WN > ∆N , and cases when it does not occur, that is, when WN ≤ ∆N . Figure 4.2
summarizes the results of the numerical exercise for values of κ that lead to a rel-
ative bias smaller than an absolute value of 1. This happens for κ = 1.5,2,2.5,3.
Instead, for κ smaller than 1.5, the relative bias rapidly explodes for all values of
λ considered, as shown in Figure 4.3.

As one can easily verify, the values of κ in Figure 4.2 imply that local windows
for estimating the spot volatility overlap, for all values of λ considered. Conse-
quently, Figure 4.2 tells us that window overlapping is crucial in order to optimize
the relative bias of the PSRV even when ∆N >> δN . This confirms the numerical
results in Sanfelici et al. (2015). Furthermore, one can also easily check that the
combinations of λ and κ such that overlapping does not occur are all included in
Figure 4.3, where the relative bias is larger than 1 and rapidly increases as κ be-
comes smaller, for any λ considered, reaching the order magnitude 103 when WN

equals 5 minutes.
Moreover, focusing on Figure 4.2, it is worth noting that the bias-optimal se-

1Note that this choice of b and c satisfies the constraints for asymptotic unbiasedness (see The-
orem 4.2). Moreover, note that the selection b =−1/2 is also performed in the numerical exercises
of Aı̈t-Sahalia et al. (2017) and Sanfelici et al. (2015).
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Fig. 4.2: Daily PSRV finite-sample relative bias as a function of λ for values of κ

∈ (1.5,2,2.5,3) and δN = 1 minute, b = −1/2, c = 1/4. The values of λ

on the x-axis correspond to ∆N equal to jδN , for j = 1,2,3,5,10,15,30. The
panels refer to the following parameter sets: a) Set 1: (α,θ ,γ,ρ,ν(0)) =
(0.2,5,0.5,−0.2,0.2); b) Set 2: (α,θ ,γ,ρ,ν(0)) = (0.03,10,0.25,−0.8,0.03);
and c) Set 3: (α,θ ,γ,ρ,ν(0)) = (0.2,5,0.5,−0.2,0.4).

lection of κ is strongly dependent on the parameters of the data-generating process.
In fact, the same value of κ may lead to very different values of the bias in the three
scenarios considered: for instance, the selection κ = 2 leads to a relative bias of
approximately −20% in scenario 1, −50% in scenario 2 and −3% in scenario 3.
At the same time, Figure 4.2 also suggests that the bias is not very sensitive to the
selection of λ . Eventually, for all values of λ considered, the bias-optimal value
of κ is between 1.5 and 2 in the baseline scenario, slightly smaller than 1.5 in the
second scenario, and around 2 in the third scenario. The indication for scenario 1
is in line with the numerical findings by Sanfelici et al. (2015), where, based on the
same parameter set, the optimal value of κ is found to be approximately equal to
2.

In sum, our preliminary numerical study shows not only that allowing for win-
dow overlapping is critical to avoid obtaining highly biased vol-of-vol estimates,
but also that the selection of κ is crucial for optimizing the PSRV finite-sample bias
and, in particular, it is critical to uncover the dependence between the bias-optimal
value of κ and the parameters of the data-generating process. Gaining a more in-
depth understanding of these numerical findings is what motivates our analytical
study in the next section.
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Fig. 4.3: Daily PSRV finite-sample relative bias as a function of λ for values of
κ ∈ (0.017,0.033,0.05,0.1,0.2,0.4,0.5,1) and δN = 1 minute, b = −1/2,
c = 1/4. The values of λ on the x-axis correspond to ∆N equal to
jδN , for j = 1,2,3,5,10,15,30. The panels refer to the following pa-
rameter sets: a) Set 1: (α,θ ,γ,ρ,ν(0)) = (0.2,5,0.5,−0.2,0.2); b) Set 2:
(α,θ ,γ,ρ,ν(0)) = (0.03,10,0.25,−0.8,0.03); and c) Set 3: (α,θ ,γ,ρ,ν(0)) =
(0.2,5,0.5,−0.2,0.4). The y-axis is expressed in log-scale.

4.3 Analytical results

In this section we analyze the PSRV finite-sample bias in a parametric setting,
namely assuming that the volatility is a CIR process, so that a fully explicit formula
of the latter can be obtained. We treat the overlapping case (i.e., the case when
WN > ∆N) and the no-overlapping case (i.e., WN ≤ ∆N) separately as, in general,
the finite-sample bias expression differs in the two cases, independently of the
parametric model used. Lemma 4.1 details the explicit expression of the PSRV
bias for N fixed.

Lemma 4.1. Let Assumption 4.1 hold and let N be fixed. If WN ≤ ∆N , the bias of
the PSRV in Definition 4.2 reads

E
[
PSRV[τ,τ+h],N−〈ν ,ν〉[τ,τ+h]

]
= γ

2
αh(AN−1)+γ

2
(

E[ν(τ)]−α

)1− e−θh

θ
(BN−1)+CN .

(4.1)
Instead, if WN > ∆N , it reads
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E
[
PSRV[τ,τ+h],N−〈ν ,ν〉[τ,τ+h]

]
= γ

2
αh(AN−1)+γ

2
(

E[ν(τ)]−α

)1− e−θh

θ
(BN−1)+CN +ON .

(4.2)
The parametric expressions of AN , BN , CN and ON are rather cumbersome and

thus are reported in the Appendix (see, respectively, equations (4.13), (4.14), (4.15)
and (4.16) in the proof to Lemma 4.1).

Proof. See the Appendix.

Remark 4.2. The bias in the case WN ≤ ∆N differs from that in the case WN >
∆N for the presence of the extra term ON , which appears due to the fact that the
parametric expression of E[RV (τ + i∆N ,kNδN)RV (τ + i∆N −∆N ,kNδN)] differs in
the two cases. See the proof of Lemma 4.1 for further details.

In the next subsections we investigate the existence of a rule to select the tun-
ing parameters κ and λ in both the cases WN > ∆N and WN ≤ ∆N . To do so, we
first isolate the leading term of the bias in each case and then verify whether the
latter can be canceled by an ad hoc selection of tuning parameters. We address
overlapping case first, as it is the one relevant for practical applications, based on
the results of the simulation studies in Section 4.2 and in Sanfelici et al. (2015).

4.3.1 The relevant case for practical applications: WN > ∆N

When WN > ∆N , the natural expansion of the bias as the number of sampled price
observations N tends to infinity is precluded, because the consistency of the PSRV
requires that WN

∆N
→ 0 as N → ∞. Thus, we determine the leading term of the bias

through an alternative asymptotic expansion, which exploits some natural, non-
restrictive constraints on the magnitude of the tuning parameter λ and the time
horizon h. Specifically, we first regard the bias in equation (4.2) as a function of λ

and we perform its Taylor expansion with base point λ = 0. Then, regarding each
term of this expansion as a function of h, we perform their Taylor expansions with
base point h= 0. The choice of the base point λ = 0 is supported by the fact that the
largest feasible values of λ are very small, e.g., on the order of 10−3 when c < 1/2
and δN is equal to one minute (see Figure 4.2 for the case c = 1/4). Note that a
value of λ is feasible if it satisfies ∆N := λδ c

N < h. The choice of base point h= 0 is
instead supported by the fact that in the literature on high-frequency econometrics,
the typical time horizon used to estimate the integrated quantities is one trading
day, i.e., h = 1/252 ≈ 4 · 10−3. The order of this sequential expansion is rather
natural: intuitively, we first take the limit λ → 0 to approximate the integral of the
vol-of-vol in an infill-asymptotics sense, then take the limit h→ 0 to localize the
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estimate of the integral near the initial time τ . This approach leads to the following
result.

Theorem 4.1. Let Assumption 4.1 hold. Further, let WN > ∆N . Then, as λ →
0,h→ 0

E
[
PSRV[τ,τ+h],N−〈ν ,ν〉[τ,τ+h]

]
=


(

4E[ν(τ)]2

κ2δ
1+2b
N

− γ
2E[ν(τ)]

)
h+O(h1−b)+O(λ ) if b≥−1/2,c <−b

−γ
2E[ν(τ)]h+O(h−2b)+O(λ ) if b <−1/2,c < 1+b

.

(4.3)
Moreover, let (F ν

t )t≥0 be the natural filtration associated with the process ν . Then,
for N fixed, as λ → 0,h→ 0

E
[
PSRV[τ,τ+h],N−〈ν ,ν〉[τ,τ+h]|F ν

τ

]
=


(

4ν(τ)2

κ2δ
1+2b
N

− γ
2
ν(τ)

)
h+O(h1−b)+O(λ ) if b≥−1/2,c <−b

−γ
2
ν(τ)h+O(h−2b)+O(λ ) if b <−1/2,c < 1+b

.

(4.4)

Proof. See the Appendix.

Remark 4.3. The expansion in Theorem 4.1 is performed under the asymptotic
constraints on rates b and c that ensure the asymptotic unbiasedness of the PSRV
under Assumption 4.1 (see Theorem 4.2).

Remark 4.4. The conditional bias expansion in equation (4.4) allows the domi-
nant term of the bias to be expressed in terms of ν(τ) and γ , two quantities that
can be consistently estimated over a fixed time horizon. This is crucial for the
existence of a feasible procedure to select κ , as detailed below. Instead, the un-
conditional expression in equation (4.3) depends on E[ν(τ)], whose parametric
expression in turn depends on the drift parameters of the volatility and thus cannot
be consistently estimated over a fixed time horizon (see, e.g., Kanaya and Kris-
tensen (2016)). In particular, it holds E[ν(τ)] = (ν(0)−α)e−θτ +α (see equation
(4) in Section 2.2.1 of Bollerslev and Zhou (2002)).

Figure 4.4 compares the true finite-sample bias of the daily PSRV in equation
4.2 with the dominant term of the expansion in equation 4.3 as functions of the
tuning parameter κ . Specifically, the panels refer to the three parameter sets already
used in Section 4.2, that is, Set 1 (panel a)), Set 2 (panel b)), and Set 3 (panel c)).
Note that we have set b = −1/2, c = 1/4, λ = 0.0006, h = 1/252, and N = 360.
The corresponding δN and ∆N are equal to 1 minute and (approximately) 3 minutes,



4. Bias-optimal integrated vol-of-vol estimation: the role of window overlapping 81

as we consider 6-hr trading days. The approximation of the true bias with the
dominant term of the expansion is very accurate.
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Fig. 4.4: Comparison between the true finite-sample bias of the daily PSRV and the dom-
inant term of the expansion in Theorem 4.1 when WN > ∆N as functions of
κ for b = −1/2, c = 1/4, λ = 0.0006, and N = 360. Panel a) refers to the
parameter set (α,θ ,γ,ν(0)) = (0.2,5,0.5,0.2); panel b) to (α,θ ,γ,ν(0)) =
(0.03,10,0.25,0.03), and panel c) to (α,θ ,γ,ν(0)) = (0.2,5,0.5,0.4). For panel
c) we consider τ = 5 days, while the bias terms in panels a) and b) are independent
of τ . The PSRV finite-sample bias is independent of the correlation parameter ρ ,
which therefore does not appear.

Based on the conditional bias expansion in equation (4.4), we make the follow-
ing considerations on the optimal selection of tuning parameters in finite samples.
First, we note that the dominant term of the bias can be annihilated simply by suit-
ably selecting κ for any feasible value of λ when b ≥ −1/2, c < −b. Instead,
when b <−1/2, c < 1+b, the dominant term of the bias is independent of κ and
λ . Specifically, when b≥−1/2, c <−b, the suitable selection is

κ =
2
√

ν(τ)

γ̂δ
b+1/2
N

.

However, since κ is a tuning parameter, it is not allowed to depend on N.
Therefore, the only admissible choice is b =−1/2 and c < 1/2, so that the suitable
selection becomes

κ = κ
∗ :=

2
√

ν(τ)

γ
. (4.5)
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Further, if ν(0) = α , then E[ν(τ)] = α (see equation (4) in Section 2.2.1 of
Bollerslev and Zhou (2002)) and thus, based on equation (4.3), it is immediate to

see that the bias-optimal value of κ reduces to
2
√

α

γ
. Interestingly, this analytical

result supports the optimal selections of b and κ determined numerically in the
literature. Indeed, for the first parameter set in the numerical exercise in Section
4.2, Set 1, which is also used in Sanfelici et al. (2015), κ∗ is equal to 1.79, a value
compatible with the numerical result in Sanfelici et al. (2015), where the optimal κ

is said to be approximately equal to 2. Note also that the numerical studies in Aı̈t-
Sahalia et al. (2017), Sanfelici et al. (2015) both select b = −1/2. Furthermore,
the following remark regarding the selection κ = κ∗ is in order.

Remark 4.5. The overlapping condition WN >∆N implies a constraint on the price
grid δN . In particular, if κ = κ∗, for b = −1/2, c < 1/2, WN > ∆N is equivalent

to δN > δ ∗ :=
(

κ∗

λ

) 1
c−1/2

. The threshold δ ∗ is very small for typical orders of
magnitude of α,θ and γ , h corresponding to one trading day and any feasible
value of λ . For example, for the values of the parameters in Set 1 (see Section 4.2),
λ = 0.0006 and c = 1/4 (so that, if δN = 1 minute, then ∆N := λδ c

N ≈ 3 minutes),
we have δ ∗ = 7.5 ·10−8 seconds and thus the constraint δN > δ ∗ is largely satisfied
at the most commonly available price sampling frequencies.

However, Equation (4.5) implies that the bias-optimal selection κ := κ∗ is un-
feasible unless reliable estimates of ν(τ) and γ are available. In the Appendix
we detail a simple feasible procedure to obtain κ∗. In a nutshell, the procedure is
as follows. First, we estimate ν(τ) using the Fourier spot volatility estimator by
Malliavin and Mancino (2009). Then we estimate γ via a simple indirect inference
method.

4.3.2 The case WN ≤ ∆N

The finite-sample bias expression for WN ≤∆N in equation (4.1) is the starting point
to derive the asymptotic constraints on rates b and c that ensure the asymptotic
unbiasedness of the PSRV. In this regard, we obtain the following result, which is
based on the asymptotic expansion of the bias in the limit N→ ∞.

Theorem 4.2. Let Assumption 4.1 hold. Then, if b ≥ −1/2 and c < −b or b <
−1/2 and c < 1+b, WN

∆N
→ 0 as N→ ∞ and the PSRV as given in Definition 4.2 is

asymptotically unbiased, i.e.,

E
[
PSRV[τ,τ+h],N−〈ν ,ν〉[τ,τ+h]

]
→ 0 as N→ ∞.
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In particular, as N→ ∞,

E
[
PSRV[τ,τ+h],N−〈ν ,ν〉[τ,τ+h]

]
= a1∆N +a2

1
kN∆N

+a3
kNδN

∆N
+o
(

∆N

)
+o
( 1

kN∆N

)
+o
(kNδN

∆N

)
,(4.6)

where:

a1 =−
θ

2
γ

2
αh+

θ

2
γ

2(E[ν(τ)]−α)
1− e−θh

θ
+

θ

2
(1− e−2θh)

[
(E[ν(τ)]−α)2 +

γ2

θ

(
α

2
−E[ν(τ)]

)]
,

a2 =
2
θ

γ
2
αh+

4
θ

γ
2(E[ν(τ)]−α)

1− e−θh

θ
+

2
θ
(1− e−2θh)

[
(E[ν(τ)]−α)2 +

γ2

θ

(
α

2
−E[ν(τ)]

)]
+4α

2h+
8α(E[ν(τ)]−α)(1− e−θh)

θ
,

a3 =−γ
2(E[ν(τ)]−α)

1− e−θh

θ
.

Proof. See the Appendix.

A bias-optimal rule for the selection of the tuning parameters κ and λ when
WN ≤ ∆N is given in the following corollary to Theorem 4.2. Unfortunately, this
bias-optimal rule is of little interest for practical applications, as explained in Re-
mark 4.6.

Corollary 4.1. The leading term of the PSRV finite-sample bias expansion in equa-
tion (4.6) can be canceled in the case b = −1/2 and c = 1/4, provided that there
exists a solution (κ̃, λ̃ ) ∈ R>0×R>0 to the following system:{

a3κ
2 +a1λ

2
κ +a2 = 0

WN ≤ ∆N
.

If a solution (κ̃, λ̃ ) ∈ R>0×R>0 exists, the corresponding bias-optimal selec-
tion of WN and ∆N reads

WN = κ̃δ
1/2
N , ∆N = λ̃ δ

1/4
N .

Proof. See the Appendix.

Remark 4.6. For b = −1/2 and c = 1/4, the no-overlapping condition WN ≤
∆N is equivalent to δN ≤ (λ/κ)4. Assuming that a positive solution κ̃(λ ) to
a3κ2 + a1λ 2κ + a2 = 0 exists for some λ > 0, we define the “no-overlapping”
threshold for δN as δ ∗(λ ) := (λ/κ̃(λ ))4. For the three sets of CIR parameters
used in the numerical study in Section 4.2, Figure 4.5 plots the threshold δ ∗(λ ) as
a function of λ ∈ (0,λ ∗], where λ ∗ is the largest admissible value of λ such that
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λδ ∗(λ )1/4 ≤ h, i.e., such that ∆N ≤ h when δN is equal to the “no-overlapping”
threshold. Specifically, Figure 4.5 shows that the sampling frequency correspond-
ing to δ ∗(λ ) is bounded by a value smaller than, respectively, 0.02 (see Panel a)),
0.05 (see Panel b)) and 0.125 seconds (see Panel c)). This suggests that for typical
values of the CIR parameters, the system in Corollary 1 may be solved only for
ultra-high frequencies at which prices of financial assets are typically not avail-
able. Also, note that the solution (if it exists) depends on a1, a2 and a3, which in
turn depend on the expected initial volatility and all CIR parameters, including the
drift parameters, which can not be consistently estimated over a fixed time horizon.
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Fig. 4.5: The threshold δ ∗(λ ) is plotted in blue. The dotted gray vertical line corresponds
to λ = λ ∗. The dotted red horizontal line corresponds to δ ∗(λ ∗). The panels refer
to the following sets of parameters: a) Set 1: (α,θ ,γ,ν(0)) = (0.2,5,0.5,0.2);
b) Set 2: (α,θ ,γ,ν(0)) = (0.03,10,0.25,0.03); and c) Set 3: (α,θ ,γ,ν(0)) =
(0.2,5,0.5,0.4). δ ∗(λ ) is independent of the correlation parameter ρ , which
therefore does not appear. For panel c) we consider τ = 5 days, while in panels
a) and b) δ ∗(λ ) is independent of τ . We have assumed h = 1/252, corresponding
to 6 hours (21600 seconds).

4.3.3 The impact of noise on the bias

In empirical applications one can only observe the noisy price x̃(t), that is, the
efficient price contaminated by a noise component that originates from market mi-
crostructure frictions, such as bid-ask bounce effects and price rounding. Here, we
assume that the noise component is an i.i.d. process independent of the efficient
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price process, as in the seminal paper by Roll (1984). For a general discussion of
the statistical models of microstructure noise, see Jacod et al. (2017).

Assumption 4.2. Data-generating process in the presence of noise
The observable price process x̃ is given by

x̃(t) = x(t)+ ε(t),

where x(t) represents the efficient price process and evolves according to Assump-
tion 4.1 while ε(t) is a sequence of i.i.d. random variables independent of x(t),
such that E[ε(t)] = 0, E[ε(t)2] =Vε < ∞ and E[ε(t)4] = Qε < ∞ ∀t.

The presence of noise clearly changes the PSRV bias expression, introducing
an extra term, as illustrated in the following lemma. Note that the parametric form
of the extra bias term due to the presence of noise is different in the overlapping
and no-overlapping cases.

Lemma 4.2. Let Assumption 4.2 hold and let N be fixed. Moreover, let P̃SRV [τ,τ+h],N
denote the PSRV in Definition 4.2, computed from noisy price observations. If
WN ≤ ∆N , then

E
[
P̃SRV [τ,τ+h],N−〈ν ,ν〉[τ,τ+h]

]
= γ

2
αh(AN−1)+γ

2
(

E[ν(τ)]−α

)1− e−θh

θ
(BN−1)+CN +DN ;
(4.7)

Instead, if WN > ∆N , then

E
[
P̃SRV [τ,τ+h],N−〈ν ,ν〉[τ,τ+h]

]
= γ

2
αh(AN−1)+γ

2
(

E[ν(τ)]−α

)1− e−θh

θ
(BN−1)+CN +ON +D∗N .
(4.8)

The parametric expressions of AN , BN , CN and ON are as in Lemma 4.1, while
that of the extra term due to the presence of noise DN (respectively, D∗N) in the
no-overlapping case (respectively, overlapping case) is as follows:

DN = [4(Qε +V 2
ε )+16αVεδN ]h

1
kNδ 2

N∆N
+

8
θ

Vε(α−E[ν(τ)])(1−e−θh)
(1+ e−θ∆N )(1− e−θkNδN )

(1− e−θ∆N )k2
Nδ 2

N
;

(4.9)

D∗N = [4
(
Qε +V 2

ε

)
+16αVεδN ]h

1
k2

Nδ 3
N
+

8Vε(α−E[ν(τ)])(1− e−θh)

θ(1− e−θ∆N )k2
Nδ 2

N

{
(2+ kN)

2kNδN

×

[
(eθkNδN−θ∆N −1)(kNδN +∆N)

kNδN−∆N
+(e−θ∆N − eθkNδN )

]
+

kN

2∆N
(1+ eθkNδN )(1− e−θ∆N )

}
.

(4.10)
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Proof. See the Appendix.

Remark 4.7. From the proof of Theorem 4.3 in the Appendix, one can easily see
that the expressions of DN is the same for any continuous mean-reverting volatility
model, as their computation only depends on the drift of ν in Assumption 4.1. The
same holds also for D∗N in the overlapping case.

Ideally, in the overlapping case, if one could efficiently estimate the extra bias
due to noise D∗N and subtract it, then the bias-optimal rule to select κ could still
be applied effectively. Unfortunately, D∗N can not be consistently estimated over
a fixed time horizon, as it depends on the drift parameters of the volatility α and
θ , whose consistent estimation can not be achieved on a fixed time horizon2. As
a solution, we suggest to sample prices on a suitably sparse grid, as done for the
realized variance in the seminal paper by Andersen et al. (2001a), so that the extra
bias term induced by the presence of noise becomes negligible and the bias optimal
rule to select the local-window parameter κ can still be applied. The efficiency of
this solution is verified numerically in Section 4.5.

Finally, for completeness, we also study the asymptotic behaviour of the addi-
tional bias due to noise in the no-overlapping case, DN . More precisely, in the next
theorem we derive its rate of divergence as N→ ∞.

Theorem 4.3. Let Assumption 4.2 hold. Moreover, let P̃SRV [τ,τ+h],N denote the
PSRV in Definition 4.2, computed from noisy price observations. Then, if either
b≥−1

2 and c <−b or b <−1
2 and c < b+1, WN

∆N
→ 0 as N→∞ and P̃SRV [τ,τ+h],N

is asymptotically biased, i.e.,

E
[
P̃SRV [τ,τ+h],N−〈ν ,ν〉

]
[τ,τ+h],N

→ ∞, as N→ ∞,

since the bias term DN in equation (4.7) of Lemma 4.2 diverges as N→ ∞. In
particular, we have

kNδ
2
N∆NDN = 4(Qε +V 2

ε )h+O(δN) and kNδ
2
N∆N → 0, δN → 0.

Proof. See the Appendix.
2Note that Qε and Vε can, instead, be estimated consistently for T fixed, see for instance Zhang

et al. (2005)
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4.3.4 The bias-reducing effect of the assumption ν(0) = α

As mentioned in Section 4.3.1, if ν(0) = α , then E[ν(τ)] = α . Lemmas 4.1 and
4.2 quantify the bias reduction ensuing from assuming that ν(0) = α . Indeed, this
assumption cuts off the entire source of bias BN and part of the sources of bias DN

(see equation (4.9)) or D∗N (see equation (4.10)). The finite-sample bias reduction
ensuing from the assumption ν(0) = α is not peculiar to the PSRV, though. In fact,
this simplifying assumption is also beneficial for reducing the finite-sample bias of
the locally averaged realized variance, as shown in the next theorem.

Theorem 4.4. Let Assumption 4.1 hold. Moreover, let ν̂(τ) denote the locally
averaged realized variance in Definition 4.1 at time τ . Then, if b ∈ (−1,0), ν̂(τ)
is asymptotically unbiased, i.e.,

E[ν̂(τ)−ν(τ)] = (ν(0)−α)e−θτ eθkNδN −1−θkNδN

θkNδN
,

and, as N→ ∞, we have

E[ν̂(τ)−ν(τ)] =
θ

2
(ν(0)−α)e−θ τkNδN +o(kNδN), kNδN → 0.

Let Assumption 4.2 hold. Moreover, let w(τ) denote the locally averaged real-
ized variance in Definition 4.1 at time τ computed from noisy price observations.
Then, ∀ b ∈ (−1,0), w(τ) is asymptotically biased, i.e.,

E[w(τ)−ν(τ)] = (ν(0)−α)e−θτ eθkNδN −1−θkNδN

θkNδN
+

2Vε

δN
,

and, as N→ ∞, we have

E[w(τ)−ν(τ)] =
θ

2
(ν(0)−α)e−θ τkNδN +

2Vε

δN
+o(kNδN), kNδN → 0.

Proof. See the Appendix.

This theorem has two interesting implications. First, under Assumption 4.1,
the locally averaged realized variance is unbiased in finite samples if and only if
ν(0) = α . Second, under Assumption 4.2, if α > ν(0), the presence of noise could
actually compensate for the negative bias originating from the first term of the bias
expression. This also holds for the PSRV finite-sample bias, provided that the term
DN (respectively, D∗N) in Lemma 4.2 is of opposite sign with respect to the sum of
the other terms in the bias expression.
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4.4 Generalization via dimensional analysis

In this section we propose a heuristic approach, based on dimensional analysis, to
generalize the rule for the bias-optimal selection of κ in equation (4.5), derived
under the assumption that the volatility is a CIR process, to the more general case
where the volatility follows a process in the CKLS class (see Chan et al. (1992)).
Specifically, the stochastic volatility model we assume as the data-generating pro-
cess is now as follows.

Assumption 4.3. Generalized data-generating process
For t ∈ [0,T ], T > 0, the dynamics of the log-price process x and the spot

volatility process ν follow

dx(t) =
√

ν(t)dW (t)+µ(t)dt

dν(t) = γν(t)β dZ(t)+
(

α−ν(t)
)

dt

where W and Z are two Brownian motions, with correlation parameter ρ , on the
filtered probability space (Ω,F ,(Ft)t≥0,P), which satisfies the usual conditions,
µ(t) is a continuous adapted process, β ≥ 1/2, θ ,α,γ > 0, and 2αθ > γ2 if β =
1/2.

The stochastic volatility model in Assumption 4.3 is quite flexible to reproduce
empirical prices behaviour in the absence of price and volatility jumps. In fact it
incorporates a number of widely-used stochastic volatility models with continuous
price and volatility paths as special cases. For example, if β = 1/2, one obtains the
model by Heston (1993); if β = 1 one finds the conitnuous-time Garch model by
Nelson (1990); if β = 3/2, one gets the 3/2 model by Platen (1997). Further, by
allowing for a stochastic correlation between W and Z, Assumption 4.3 includes
also the generalized Heston model with stochastic leverage introduced by Veraart
and Veraart (2012). Finally, note that Assumption 4.3 also includes a price drift.
The numerical study in Section 4.5 confirms that the impact of the latter on the
PSRV finite-sample bias is negligible.

We now use dimensional analysis to heuristically derive a rule for the bias-
optimal selection of κ under Assumption 4.3. We test the efficacy of this rule in the
numerical study of Section 4.5, with overwhelming results. Note that dimensional
analysis is typically used in physics and engineering to make an educated guess
about the solution to a problem without performing a full analytical study (see,
e.g., Kyle and Obizhaeva (2017), Smith et al. (2003)).
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The basic concept of dimensional analysis is that one can only add quan-
tities with the same units3. Accordingly, when applying dimensional analysis,
the first step entails identifying the units of the quantities appearing in the equa-
tions being studied. In this specific analysis, we start with the units of the quan-
tities appearing in the model given in Assumption 4.3. Let dim[q] denote the
unit/dimension of the quantity q. The log-return dx(t), t > 0, is a dimension-
less quantity (i.e., a pure number) since it is the logarithm of a ratio of prices.
Instead, the quadratic variation of the Wiener processes W and Z has the dimen-
sion of time since W and Z are continuous-time random walks. As a consequence,
we have dim[dW (t)] = dim[dZ(t)] = time1/2 (see, for example, Wilmott (2000) or
the square-root-of-time rule in Danielsson and Zigrand (2006)). Now consider the
dynamics of the log-price, bearing in mind that we cannot add or subtract quan-
tities with different measurement units. The dimension of the left-hand side must
then be equal to those of the addenda on the right-hand side, thereby implying that
dim[µ] = 1/time and dim[ν(t)] = 1/time. Thus, from the dynamics of ν(t), we
have dim[α] = 1/time, dim[θ ] = 1/time and dim[γν(t)β dZ(t)] = 1/time. The lat-
ter implies dim[γ]dim[ν(t)β ]dim[dZ(t)] = 1/time. Therefore, bearing in mind that
dim[ν(t)β ]dim[dZ(t)] = 1/timeβ−1/2, we obtain dim[γ] = 1/time−β+3/2.

Now, without loss of generality, let ν(0) = α and consider the dominant term
in the expansion of Theorem 4.1, i.e., the term( 4α

κ2δ
1+2b
N

− γ
2
α

)
h.

Since the dominant term of the PSRV bias must clearly have the same dimension
as the expected quadratic variation of ν over any generic interval of length h, i.e.,
γ2αh, we have

dim
[( 4α

κ2δ
1+2b
N

− γ
2
α

)
h
]
= dim[γ2

αh] = 1/time2,

and, as one can easily verify, this implies dim[κ] = time−b (alternatively, one can
show that dim[κ] = time−b by simply noting that kN = κδ b

N is dimensionless and
dim[δ b

N ] = timeb).
Now observe that the leading term of any expansion of the PSRV finite-sample

bias must have dimension equal to 1/time2. Based on this observation, we conjec-
ture that the leading term of the expansion in Theorem 4.1 under Assumption 4.3
is

3Dimensional analysis is also called a unit-factor method or a factor-label method, since a con-
version factor is used to evaluate the units.
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(4E[ν(τ)]2

κ2δ
1+2b
N

− γ
2E[ν(τ)2β ]

)
h,

whose dimension is 1/time2, as one can easily check by recalling that dim[κ] =
time−b, dim[ν(t)] = 1/time and dim[γ] = 1/time−β+3/2. Accordingly, if one con-
ditions the bias to the natural filtration of ν(t) up to time t = τ , the generalized
bias-optimal value of κ , for b =−1/2 and c < 1/2, reads

κ
∗∗ := 2

ν(τ)1−β

γ
, (4.11)

Note that equation (4.11) can be rewritten in non-parametric form as

κ
∗∗ = 2

ν(τ)√
ξ (τ)

,

where ξ (t) := γ2ν(t)2β is the vol-of-vol process. This result, while offering insight
into the non-parametric solution to the problem of the bias-optimal selection of κ ,
is problematic in terms of feasibility as it requires the estimation of the spot vol-
of-vol ξ (t) at t = τ , a challenging issue which has not been addressed so far in the
literature to the best of our knowledge and goes beyond the scope of this paper.

Our conjecture is based on the origin of the two addenda in the leading term of
the bias (see Theorem 4.1) in the CIR framework. In fact, bearing in mind the the
leading term is (

4E[ν(τ)]2

k2δ
1+2b
N

− γ
2E[ν(τ)]

)
h ,

we note that the second addendum, i.e., γ2E[ν(τ)]h, comes from the expected
quadratic variation of the volatility process. More specifically, it originates from
the leading term of the following expansion:

E
[
〈ν ,ν〉[τ,τ+h]

]
= γ

2 E[ν(τ)]h+o(h), h→ 0.

Instead, the first addendum, i.e., 4E[ν(τ)]2

k2δ
1+2b
N

, is due to the drift of the volatility process.
Thus in the case of the CKLS model, the first addendum remains unchanged

since the drift of the process is the same for any β , while the second addendum
changes according to the expected quadratic variation of the volatility process,
which, for small h, reads

E
[
〈ν ,ν〉[τ,τ+h]

]
= γ

2 E[ν(τ)2β ]h+o(h), h→ 0.

since E
[
〈ν ,ν〉[τ,τ+h]

]
= γ2 ∫ τ+h

τ
E[ν(s)2β ]ds.
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4.5 Numerical results

4.5.1 Numerical results in the CIR setting

As detailed in Section 4.3, in the absence of microstructure noise and assuming
ν(τ) to be observable and γ to be known, the finite-sample bias of the PSRV is
optimized, under Assumption 4.1 and for any ν(0), by selecting b=−1/2, c< 1/2
and κ = κ∗ := 2

√
ν(τ)γ−1. In this subsection, we give numerical confirmation of

the optimality of this rule for the selection of κ in three progressively more realistic
scenarios, where incremental sources of biases are added.

In the first scenario, we simulate log-price paths under Assumption 4.1 and
compute daily PSRV values from noise-free price observations assuming that the
CIR parameters are known and the initial volatility value ν(τ) is observable. In this
scenario, we use two price sampling frequencies, that is, δN = 1 minute and δN = 5
minutes. Results show that the bias generated by the price discrete sampling is
relatively small, e.g., less than 5% if δN = 1 minute when κ = κ∗ (see Table 4.1).

In the second scenario, we simulate log-price paths under Assumption 4.2 and
compute PSRV values from noisy prices while assuming that the CIR parameters
are known and the initial volatility value ν(τ) is observable. As the PSRV is not
robust to the presence of noise contaminations in the price process, here we only
consider the sampling frequency δN = 5 minutes, as recommended in the semi-
nal paper by Andersen et al. (2001a), where the authors suggest that this sampling
frequency reduces the impact of noise on returns while still falling within a high-
frequency framework. Indeed, a comparison of the numerical results obtained in
these first two scenarios shows that the impact of the price noise on the PSRV esti-
mates is relatively small at the 5-minute sampling frequency, when κ = κ∗ is used.

In the third scenario, we still simulate the log-price path under Assumption
4.2, but the value of the initial volatility, ν(τ), is now unobservable and the model
parameter γ is unknown. Thus, we compute PSRV values from noisy prices by

selecting κ = κ̂∗ := 2
√

ν̂(τ)

γ̂
. Here, ν̂(τ) and γ̂ are obtained through the estimation

procedure detailed in the Appendix. A comparison of the results obtained in these
different scenarios shows that the PSRV finite-sample bias reduction obtained with
the feasible selection κ = κ̂∗ is very similar to the reduction obtained with the un-
feasible selection κ = κ∗. Overall, for each scenario, we consider the three sets
of parameters described in Section 4.2. For each parameter set, we simulate one
thousand 1-year trajectories of 1-second observations.
The noise component ε in Assumption 4.2 is simulated as an i.i.d. Gaussian pro-
cess, with noise-to-signal ratio ζ ranging from 0.5 to 3.5, as in the numerical ex-
ercise proposed in Sanfelici et al. (2015). We define the noise-to-signal ratio ζ as
in Sanfelici et al. (2015), i.e., ζ := std(ω)

std(r) , where ω and r denote, respectively, the
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increment of the noise process ε in Assumption 4.2 and the noise-free log-return,
both computed at the maximum sampling frequency available in our numerical
exercise, that is, 1 second.

From the simulated prices, we compute daily PSRV values, that is, we set a
small time horizon h, i.e., h = 1/252. Recall that the bias-optimal rule for the
selection of κ is valid when b =−1/2 and c < 1/2. Accordingly, we set b =−1/2
and c = 1/4 in our numerical study.

Tables 4.1–4.3 summarize the results of our numerical exercises and, to make
the results related to the three parameter sets comparable, we report the values
of the relative bias. Since we simulate 6-hr days, N is equal to 360 when δN = 1
minute and 72 when δN = 5 minutes. Note that the overlapping condition WN > ∆N

is always satisfied for the values of ∆N in Table 4.1. In particular, the average length
of WN is approximately equal to: 530 minutes for Set 1, 410 minutes for Set 2 and
580 for Set 3, when δN = 1 minute; 1200 minutes for Set 1, 930 minutes for Set 2
and 1310 minutes for Set 3, when δN = 5 minutes. These averages are computed
over all simulated days and are stable across the three scenarios. Recall that the
length of WN varies by day, as it depends on κ∗, which in turn depends on the
volatility value at the beginning of each day, i.e., ν(τ) (in scenarios 1 and 2), or its
estimate, i.e., ν̂(τ) (in scenario 3).

noise-to-signal ratio ζ δN ∆N λ rel. bias (Set 1) rel. bias (Set 2) rel. bias (Set 3)
ζ = 0 1 min. δN (1 min.) 2 ·10−4 0.003 0.004 0.032

2δN (2 min.) 4 ·10−4 0.006 0.006 0.033
3δN (3 min.) 6 ·10−4 0.008 0.009 0.034
5δN (5 min.) 1 ·10−3 0.011 0.013 0.036

10δN (10 min.) 1.9 ·10−3 0.021 0.025 0.041
15δN (15 min.) 2.9 ·10−3 0.031 0.037 0.047

ζ = 0 5 min. δN (5 min.) 6 ·10−4 0.024 0.024 0.060
2δN (10 min.) 1.3 ·10−3 0.029 0.029 0.061
3δN (15 min.) 1.9 ·10−3 0.031 0.033 0.061
6δN (30 min.) 3.8 ·10−3 0.046 0.049 0.063

Tab. 4.1: Scenario 1: daily PSRV relative bias with κ = κ∗, ζ = 0, γ known and ν(τ)
observable. Model parameters: α = 0.2, θ = 5, γ = 0.5, ρ = −0.2, ν(0) = 0.2
(Set 1); α = 0.03, θ = 10, γ = 0.25, ρ = −0.8, ν(0) = 0.03 (Set 2); α = 0.2,
θ = 5, γ = 0.5, ρ =−0.2, ν(0) = 0.4 (Set 3).
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noise-to-signal ratio ζ δN ∆N λ rel. bias (Set 1) rel. bias (Set 2) rel. bias (Set 3)
ζ = 0.5 5 min. δN (5 min.) 6 ·10−4 0.025 0.024 0.062

2δN (10 min.) 1.3 ·10−3 0.030 0.029 0.062
3δN (15 min.) 1.9 ·10−3 0.032 0.036 0.064
6δN (30 min.) 3.8 ·10−3 0.047 0.052 0.065

ζ = 1.5 5 min. δN (5 min.) 6 ·10−4 0.039 0.037 0.075
2δN (10 min.) 1.3 ·10−3 0.044 0.043 0.076
3δN (15 min.) 1.9 ·10−3 0.046 0.049 0.078
6δN (30 min.) 3.8 ·10−3 0.061 0.065 0.079

ζ = 2.5 5 min. δN (5 min.) 6 ·10−4 0.064 0.064 0.102
2δN (10 min.) 1.3 ·10−3 0.069 0.070 0.103
3δN (15 min.) 1.9 ·10−3 0.075 0.075 0.105
6δN (30 min.) 3.8 ·10−3 0.091 0.091 0.107

ζ = 3.5 5 min. δN (5 min.) 6 ·10−4 0.108 0.105 0.143
2δN (10 min.) 1.3 ·10−3 0.113 0.111 0.145
3δN (15 min.) 1.9 ·10−3 0.115 0.117 0.146
6δN (30 min.) 3.8 ·10−3 0.130 0.132 0.149

Tab. 4.2: Scenario 2: daily PSRV relative bias with κ = κ∗, ζ > 0, γ known and ν(τ)
observable. Model parameters: α = 0.2, θ = 5, γ = 0.5, ρ = −0.2, ν(0) = 0.2
(Set 1); α = 0.03, θ = 10, γ = 0.25, ρ = −0.8, ν(0) = 0.03 (Set 2); α = 0.2,
θ = 5, γ = 0.5, ρ =−0.2, ν(0) = 0.4 (Set 3).

noise-to-signal ratio ζ δN ∆N λ rel. bias (Set 1) rel. bias (Set 2) rel. bias (Set 3)
ζ = 0.5 5 min. δN (5 min.) 6 ·10−4 0.059 0.011 0.046

2δN (10 min.) 1.3 ·10−3 0.059 0.011 0.047
3δN (15 min.) 1.9 ·10−3 0.060 0.013 0.047
6δN (30 min.) 3.8 ·10−3 0.060 0.017 0.047

ζ = 1.5 5 min. δN (5 min.) 6 ·10−4 0.068 0.022 0.049
2δN (10 min.) 1.3 ·10−3 0.068 0.023 0.049
3δN (15 min.) 1.9 ·10−3 0.069 0.024 0.049
6δN (30 min.) 3.8 ·10−3 0.070 0.027 0.050

ζ = 2.5 5 min. δN (5 min.) 6 ·10−4 0.085 0.047 0.053
2δN (10 min.) 1.3 ·10−3 0.088 0.049 0.053
3δN (15 min.) 1.9 ·10−3 0.088 0.049 0.054
6δN (30 min.) 3.8 ·10−3 0.088 0.051 0.054

ζ = 3.5 5 min. δN (5 min) 6 ·10−4 0.112 0.083 0.058
2δN (10 min.) 1.3 ·10−3 0.115 0.083 0.058
3δN (15 min.) 1.9 ·10−3 0.117 0.084 0.059
6δN (30 min.) 3.8 ·10−3 0.118 0.088 0.061

Tab. 4.3: Scenario 3: daily PSRV relative bias with κ = κ∗, ζ > 0, γ unknown and ν(τ)
unobservable. Model parameters: α = 0.2, θ = 5, γ = 0.5, ρ =−0.2, ν(0) = 0.2
(Set 1); α = 0.03, θ = 10, γ = 0.25, ρ = −0.8, ν(0) = 0.03 (Set 2); α = 0.2,
θ = 5, γ = 0.5, ρ =−0.2, ν(0) = 0.4 (Set 3).
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Table 4.1 shows that for δN = 1 minute and ∆N ≤ 3 minutes, the bias is almost
negligible (i.e., less than 1%) when ν(0) = α , while it is slightly larger but still ac-
ceptable (i.e., between 3% and 4%) when ν(0) = 2α . This is in line with equation
4.2 in Lemma 4.1, where it is evident that the source of bias BN is eliminated when
ν(0) = α , which implies E[ν(τ)] = α . With a price sampling frequency of five
minutes, the bias is still acceptable, around 6% at worst. Additionally, Table 4.2
shows that in the presence of noise, price sampling at five-minute intervals to avoid
microstructure frictions represents an acceptable compromise, as the bias is less
than 15% even in the presence of very intense microstructure effects. Finally, Ta-
ble 4.3 shows that the statistical error related to the estimation of γ and ν(τ) could
actually partially compensate for the bias due to the presence of noise, especially
when the common assumption ν(0) = α is violated.

4.5.2 Numerical results in the more general CKLS setting

We conclude this section by testing the efficacy of the generalized, conjecture-
based, criterion for the bias-optimal selection of κ under Assumption 4.3, i.e.,
under the assumption that the volatility evolves as a CKLS model. In this case, the
feasible version of the bias-optimal rule to select κ is given by κ̂∗∗ = 2ν̂(τ)1−β

γ̂
, for

b =−1/2, c < 1/2.
To test the efficacy of this criterion, we repeat the numerical exercise previ-

ously performed in scenario 1 under Assumption 4.1, considering three different
values of β : β = 1/2, corresponding to the model by Heston (1993), which differs
from the model of Assumption 4.1 only in the presence of a price drift; β = 1, cor-
responding to the continuous-time GARCH model by Nelson (1990); and β = 3/2,
corresponding to the 3/2 model by Platen (1997). For all parameter sets, µ is con-
stant and equal to 0.05. Tables 4,5 and 6 show that our general criterion for the
bias-optimal selection of κ under Assumption 4.3 is effective, as it gives satisfac-
tory results in terms of relative bias. Note that the case β = 1/2 is of interest only
in that it confirms that the criterion for the bias-optimal selection of κ derived an-
alytically under Assumption 4.1, i.e., κ = κ∗, is also effective in the presence of a
price drift.

4.6 Empirical study

We conclude this chapter with an empirical analysis, where we apply the bias-
optimal criterion for selecting κ in equation (4.11) to compute daily PSRV esti-
mates. The dataset is composed of two 1-year samples of S&P 500 1-minute prices
relative to the years 2016 and 2017, respectively. The two samples are analyzed
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Model δN ∆N λ rel. bias (Set 1) rel. bias (Set 2) rel. bias (Set 3)
β = 1

2 1 min. δN (1 min.) 2 ·10−4 0.014 0.012 0.027
2δN (2 min.) 4 ·10−4 0.017 0.015 0.029
3δN (3 min.) 6 ·10−4 0.020 0.016 0.029
5δN (5 min.) 1 ·10−3 0.024 0.022 0.031

10δN (10 min.) 1.9 ·10−3 0.034 0.033 0.036
15δN (15 min.) 2.9 ·10−3 0.042 0.044 0.039

Tab. 4.4: β = 1/2: daily PSRV finite-sample relative bias with κ = κ∗∗, ζ = 0, γ known
and ν(τ) observable. Model parameters: α = 0.2, θ = 5, γ = 0.5, ρ = −0.2,
ν(0) = 0.2 (Set 1); α = 0.03, θ = 10, γ = 0.25, ρ = −0.8, ν(0) = 0.03 (Set 2);
α = 0.2, θ = 5, γ = 0.5, ρ = −0.2, ν(0) = 0.4 (Set 3). The price drift, µ , is
constant and equal to 0.05.

Model δN ∆N λ rel. bias (Set 1) rel. bias (Set 2) rel. bias (Set 3)
β = 1 1 min. δN (1 min.) 2 ·10−4 0.003 0.002 0.011

2δN (2 min.) 4 ·10−4 0.004 0.002 0.012
3δN (3 min.) 6 ·10−4 0.005 0.002 0.014
5δN (5 min.) 1 ·10−3 0.006 0.003 0.015

10δN (10 min.) 1.9 ·10−3 0.008 0.005 0.017
15δN (15 min.) 2.9 ·10−3 0.012 0.006 0.021

Tab. 4.5: β = 1: daily PSRV finite-sample relative bias with κ = κ∗∗, γ known and ν(τ)
observable. Model parameters: α = 0.2, θ = 5, γ = 0.5, ρ = −0.2, ν(0) = 0.2
(Set 1); α = 0.03, θ = 10, γ = 0.25, ρ = −0.8, ν(0) = 0.03 (Set 2); α = 0.2,
θ = 5, γ = 0.5, ρ =−0.2, ν(0) = 0.4 (Set 3). The price drift, µ , is constant and
equal to 0.05.

Model δN ∆N λ rel. bias (Set 1) rel. bias (Set 2) rel. bias (Set 3)
β = 3

2 1 min. δN (1 min.) 2 ·10−4 0.004 0.001 0.029
2δN (2 min.) 4 ·10−4 0.004 0.002 0.031
3δN (3 min.) 6 ·10−4 0.005 0.003 0.031
5δN (5 min.) 1 ·10−3 0.006 0.006 0.037

10δN (10 min.) 1.9 ·10−3 0.006 0.007 0.038
15δN (15 min.) 2.9 ·10−3 0.008 0.009 0.041

Tab. 4.6: β = 3/2: daily PSRV finite-sample relative bias with κ = κ∗∗, γ known and ν(τ)
observable. Model parameters: α = 0.2, θ = 5, γ = 0.5, ρ = −0.2, ν(0) = 0.2
(Set 1); α = 0.03, θ = 10, γ = 0.25, ρ = −0.8, ν(0) = 0.03 (Set 2); α = 0.2,
θ = 5, γ = 0.5, ρ =−0.2, ν(0) = 0.4 (Set 3). The price drift, µ , is constant and
equal to 0.05.
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separately since the volatility of these two time series behaves very differently. In
fact, the year 2016 is characterized by volatility spikes (due, e.g., to uncertainty
pertaining to the so-called Brexit in the month of June or the U.S. presidential
election in the month of November), while the year 2017 is characterized by low
volatility, as one can see in Figure 4.6. Analyzing the two series separately al-
lows for validation of the feasible rule for the selection of κ in two very different
scenarios.
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Fig. 4.6: Daily VIX2 values (left) and daily S&P 500 log-returns (right) in the years 2016
and 2017.

We proceed as follows. First, through the method detailed in the Appendix, we
obtain non-parametric Fourier estimates of the process ν at the beginning of each
day and estimates of γ under Assumption 4.3, for the three different values of β

considered in the numerical exercise of Section 4.5. The results of the estimation
of γ are shown in Table 4.74.

Then, based on R2 values, we assume the Heston model (β = 1/2) as the data
generating process for both samples. Consequently, we select b =−1/2, c = 1/4,
κ = 2γ̂−1

√
ν̂(τ) and compute daily PSRV values from empirical prices sampled

at the frequency δN = 5 minutes. The resulting selection of WN is approximately
equal, on average, to 450 minutes in 2016 and 275 minutes in 2018. Note that the
selection δN = 5 minutes is justified by the fact that we assume the impact of mi-
crostructure contaminations to be negligible at that sampling frequency, based on
the application of the Hausman test by Aı̈t-Sahalia and Xiu (2019) for the presence

4The estimates of the process ν at the beginning of each day are not reported for the sake of
brevity. See Chapter 4 in Mancino et al. (2017) for a detailed study which demonstrates the finite-
sample accuracy of the Fourier estimator of the spot volatility.
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Model Sample year γ̂ R2

β = 1
2 2016 0.7127 0.1383

2017 0.4250 0.1736
β = 1 2016 6.1682 0.0725

2017 5.9973 0.0901
β = 3

2 2016 72.0358 0.1141
2017 65.1084 0.0866

Tab. 4.7: Results of the estimation of γ under Assumption 4.3 for different values of β .

of noise, which tells that the impact of noise at the 5-minute frequency is negli-
gible in our samples, confirming a well-known stylized fact (see Andersen et al.
(2001a)). Note that we have also performed the jump-detection test by Corsi et al.
(2010) on 5-minute returns (as the test is not robust to the presence of noise con-
taminations in the price process) and, based on its results, we have removed from
the samples the days in which price jumps are detected. These days amount to
12.25% of the sample in 2016 and 8.30% of the sample in 20175.

The following figures show the PSRV values obtained for four different values
of λ corresponding to a spot volatility estimation frequency ∆N equal to 5, 10, 15,
and 30 minutes, respectively.

Comparing the dynamics of the VIX2 index in Figure 4.6 with those of the
PSRV, one notices that when the VIX2 spikes, the vol-of-vol also spikes (see, e.g.,
the behavior of the plots at the end of June 2016) and, viceversa, when the VIX2

is low and stable (e.g., in 2017) the vol-of-vol is also low and stable. This evi-
dence corroborates the goodness of our vol-of-vol estimates. Finally, note that for
either of the two samples, the plots for different values of ∆N are basically indistin-
guishable. With respect to the bias-optimal selection of λ (i.e., ∆N), this evidence
confirms what emerges from the analytical study in Section 4.3: the impact of the
selection of λ (i.e., ∆N) on PSRV values is marginal, if not negligible.

5Note that the analytical results in Section 4.3 are derived under the assumption of absence of
jumps in the price and volatility. The literature on non-parametric jump tests provides large and
robust empirical evidence, mainly based on US markets, that volatility jumps are accompanied by
price jumps, consistent with the presence of a leverage effect (see, e.g., Jacod and Todorov (2010);
Bandi and Renò (2016); Bibinger and Winkelmann (2018)). Thus removing days with price jumps
basically also takes care of jumps in the volatility. After eliminating days with price jumps, the
assumption of a model in the CKLS class for the volatility could provide a reasonable trade-off
between accuracy in reproducing empirical features of prices and parsimony in terms of parameters
to be estimated, as pointed out, e.g., in Christoffersen et al. (2010) and Goard and Mazur (2013).
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Fig. 4.7: Daily PSRV values in the year 2016.
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Fig. 4.8: Daily PSRV values in the year 2017.
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4.7 Conclusions

The Pre-estimated Spot-variance based Realized Variance (PSRV) by Barndorff-
Nielsen and Veraart (2009), the simplest and most natural consistent estimator of
the integrated vol-of-vol, is typically affected by a substantial finite-sample bias.
The main contribution of this chapter is to show, analytically, that local-window
overlapping in finite samples effectively reduces this bias. This result confirms the
findings of Sanfelici et al. (2015), based on simulations.

The chapter is written in the spirit of Aı̈t-Sahalia et al. (2013). In Aı̈t-Sahalia
et al. (2013), a parametric data-generating process, namely the Heston model, is
used to obtain a fully explicit bias expression for the price-volatility correlation, the
most natural leverage estimator, which is very biased at high frequencies. Based
on the full explicit knowledge of the bias, the authors are able to isolate the sources
of bias that affect the simple leverage estimator and derive a feasible strategy to
correct for them. In this chapter we follow a similar approach. Assuming that the
volatility is a CIR process, we obtain the full explicit expression of the PSRV finite-
sample bias. Crucially, we show that this expression differs in the overlapping case
and the no-overlapping case and, most importantly, that a feasible bias-correction
strategy for finite samples can be derived only in the overlapping case.

Further, using dimensional analysis, we generalize the feasible bias-correction
strategy to hold under the assumption that the volatility process belongs to the
more general CKLS class, which encompasses a number of widely-used paramet-
ric models. Numerical results corroborate the validity of the generalized rule in
that nearly unbiased vol-of-vol estimates are obtained for two other models in the
CKLS class, namely, the continuous-time GARCH model and the 3/2 model.

In the paper, the impact of microstructure noise on the PSRV bias is also in-
vestigated. First, we derive the exact analytical expression of the extra bias due to
noise, which differs in the overlapping and no-overlapping cases. This extra bias
can not be consistently estimated over a fixed time horizon and then subtracted,
as it depends, other than on some moments of the noise process, on the drift of
the volatility. As a solution, we propose to apply the feasible rule for the bias-
optimal selection of the local-window parameter on sparsely-sampled prices, fol-
lowing Andersen et al. (2001a). Numerical evidence of the efficacy of this solution
is provided.

We highlight that the analytical approach used in this chapter to study the PSRV
finite-sample bias could be applied to analyze the finite-sample performance of
other estimators of second-order quantities which require the pre-estimation of the
spot volatility (e.g., estimators of the integral of the stochastic leverage, see Chapter
8 in Aı̈t-Sahalia and Jacod (2014)).

Finally, as a byproduct of this analysis, we quantify, for both the PSRV and the
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locally averaged realized variance, the bias reduction ensuing from the assumption
that the initial value of the volatility is equal to its long-term mean, which is very
common in simulation studies found in the literature.

4.8 Appendix

4.8.1 Proofs

Proof of Lemma 4.1
From Definition 4.2 we have

PSRV[τ,τ+h],N :=
bh/∆Nc

∑
i=1

[
ν̂(τ + i∆N)− ν̂(τ + i∆N−∆N)

]2
,

where, for s taking values on the time grid of mesh-size δN :

- ν̂(s) := RV (s,kNδN)(kNδN)
−1,

- RV (s,kNδN) :=
kN

∑
j=1

∆x2(s+ jδN− kNδN ,δN),

- ∆x(s,δN) := x(s)− x(s−δN).

Note that E[PSRV[τ,τ+h],N ] can be rewritten as

E[PSRV[τ,τ+h],N ] = (kNδN)
−2
bh/∆Nc

∑
i=1

E[RV 2(τ+i∆N ,kNδN)]+E[RV 2(τ+i∆N−∆N ,kNδN)]

−2E[RV (τ + i∆N ,kNδN)RV (τ + i∆N−∆N ,kNδN)]. (4.12)

Therefore, under Assumption 4.1, the explicit formula for E[PSRV[τ,τ+h],N ]
can be obtained by deriving the analytical expression for E[RV 2(τ + i∆N ,kNδN)],
E[RV 2(τ + i∆N −∆N ,kNδN)] and E[RV (τ + i∆N ,kNδN)RV (τ + i∆N −∆N ,kNδN)].
Note that the expression of the last term differs in the no-overlapping case WN ≤∆N

and the overlapping case WN > ∆N .
We derive the exact expression of these terms separately as follows.

I) Analytical expression of E[RV 2(τ + i∆N ,kNδN)]

To simplify the notation, let ai,u,N denote the quantity ai,u,N = τ + i∆N +(u−
kN)δN . Also, let (F v

s )s≥0 be the natural filtration associated with the process ν .
We then have:
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E[RV 2(τ + i∆N ,kNδN)] =
kN

∑
j=1

E[∆x4(τ + i∆N +( j− kN)δN ,δN)]

+2
kN

∑
j=2

E[∆x2(τ + i∆N +( j− kN)δN ,δN)
j−1

∑
h=1

∆x2(τ + i∆N +(h− kN)δN ,δN)]

=
kN

∑
j=1

E
[(∫ ai, j,N

ai, j−1,N

√
v(s)dW (s)

)4]
+2

kN

∑
j=2

j−1

∑
h=1

E
[(∫ ai, j,N

ai, j−1,N

√
v(s)dW (s)

)2
×
(∫ ai,h,N

ai,h−1,N

√
v(s)dW (s)

)2]
,

where:

•
∫ ai, j,N

ai, j−1,N

√
v(s)dW (s)|F v

ai, j,N
∼N

(
0,
∫ ai, j,N

ai, j−1,N

v(s)ds
)

(see equation (2) in Sec-

tion 2.1 of Andersen et al. (2001a)), which implies

E
[(∫ ai, j,N

ai, j−1,N

√
v(s)dW (s)

)4]
=E

[
E
[(∫ ai, j,N

ai, j−1,N

√
v(s)dW (s)

)4
|F v

ai, j,N

]]
= 3E

[(∫ ai, j,N

ai, j−1,N

v(s)ds
)2]

;

• for h < j and s < r,

E
[(∫ ai, j,N

ai, j−1,N

√
v(s)dW (s)

)2(∫ ai,h,N

ai,h−1,N

√
v(s)dW (s)

)2]
= E

[
E
[(∫ ai, j,N

ai, j−1,N

√
v(s)dW (s)

)2(∫ ai,h,N

ai,h−1,N

√
v(s)dW (s)

)2
|F v

ai, j,N

]]
=
∫ ai, j,N

ai, j−1,N

∫ ai,h,N

ai,h−1,N

E[v(s)E[v(r)|F ν
s ]]dsdr.

Under Assumption 4.1 (see Appendix A in Bollerslev and Zhou (2002)), we
also have:

• E
[(∫ ai, j,N

ai, j−1,N

v(s)ds
)2]

=
1

θ 2 (1−e−θδN )2
{

e−2θ i∆N−2θ jδN+2θ(1+kN)δN E[ν(τ)]2

+
[

γ2

θ
(e−θ i∆N−θ jδN+θ(kN+1)δN − e−2θ i∆N−2θ jδN+2θ(kN+1)δN )

+2αe−θ i∆N−θ jδN+θ(kN+1)δN (1− e−θ i∆N−θ jδN+θ(kN+1)δN )
]
E[ν(τ)]

+
(

γ2α

2θ
+α2

)
(1+ e−2θ i∆N−2θ jδN+2θ(kN+1)δN −2e−θi∆N−θ jδN+θ(kN+1)δN )

}
+ γ2

θ 2

(
1
θ
−2δNe−θδN − 1

θ
e−2θδN

)
+2 1

θ
(1− e−θδN )

[
αδN− α

θ
(1− e−θδN )

]
×
[
e−θ i∆N−θ jδN+θ(kN+1)δN E[ν(τ)]+α(1− e−θ i∆N−θ jδN+θ(kN+1)δN )

]
+ γ2

θ 2

[
αδN(1+2e−θδN )+ α

2θ
(e−2θδN +4e−θδN−5)

]
+α2δ 2

N +
α2

θ 2 (1−e−θδN )2−

2 α2

θ
δN(1− e−θδN );
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• for h < j and s < r,

∫ ai, j,N

ai, j−1,N

∫ ai,h,N

ai,h−1,N

E[v(s)E[v(r)|F ν
s ]]dsdr

=
[(

E[ν(τ)]−α

)2
+ γ2

θ

(
α

2 −E[ν(τ)]
)]

1
θ 2 · e−2θ i∆N−θ jδN−θhδN+2θkNδN (1−

eθδN )2

− γ2α

2θ 3 e−θ jδN+θhδN (2−e−θδN−eθδN )+α2δ 2
N−

γ2

αθ
(E[ν(τ)]−α)δN(1−eθδN )e−θ i∆N−θ jδN+θkNδN

−α

θ
(E[ν(τ)]−α)δN(1− eθδN )e−θ i∆N−θhδN+θkNδN .

Finally, putting everything together, we obtain the following expression for
E[RV 2(τ + i∆N ,kNδN)]:

E[RV 2(τ + i∆N ,kNδN)]

= (1−e−2θkNδN )(1−e−2θδN )−1e−2i∆N+2θkNδN (1−e−θδN )2 3
θ 2

[
(E[ν(τ)]−α)2+

γ2

θ

(
α

2
−E[ν(τ)]

)]
+(1− e−θkNδN )(1− e−θδN )−1e−i∆N+θkNδN

{
γ2

θ
(E[ν(τ)]−α) 3

θ 2 (1− e−θδN )2

+ γ2

θ

(
1
θ
−2e−θδN δN− 1

θ
e−2θδN

)
3
θ
(E[ν(τ)]−α)+

[
6 α

θ
δN(1− e−θδN )

]
(E[ν(τ)]−α)

}
+ γ2

θ
kN

[
3α

2θ 2 (1− e−θδN )2 +3 α

θ

(
1
θ
−2e−θδN δN− 1

θ
e−2θδN

)
+3 α

θ
δN(1+2e−θδN )

+ 3α

2θ 2 (e−2θδN +4e−θδN −5)
]
+3α2δ 2

NkN

+2
[

γ2

θ

(
α

2 −E[ν(τ)]
)
+(E[ν(τ)]−α)2

]
1

θ 2 e2θkNδN−2θ i∆N−θδN

×(1− e−θ(kN−1)δN + e−θ(kN+i)δN − e−θδN + e−θ(2kN−1)δN − e−2θkNδN )(1− e−2θδN )−1

+2α(E[ν(τ)]−α) 1
θ

δNeθkNδN−θ i∆N (eθδN −1)−1

×[e−θkNδN (eθkNδN −1+ kN− kNeθδN )+ kN(eθδN −1)+ eθδN (e−θkNδN −1)]
+2 γ2

θ
(E[ν(τ)]−α) 1

θ
δNe−θ i∆N (eθkNδN −1+ kN− kNeθδN )(eθδN −1)−1

+γ2α
1

θ 3 (e−θkNδN −1+ kN− kNe−θδN )+α2δ 2
N(k

2
N− kN).

II) Analytical expression of E[RV 2(τ + i∆N −∆N ,kNδN)]

The analytical expression of E[RV 2(τ + i∆N −∆N ,kNδN)] under Assumption
4.1 is easily obtained by replacing i with i−1 in the explicit expression of E[RV 2(τ+
i∆N ,kNδN)] derived in I).

IIIa) Analytical expression of E[RV (τ + i∆N ,kNδN)RV (τ + i∆N −
∆N∆N ,kNδN)] forWN ≤ ∆N

Assume that we are in the no-overlapping case WN ≤ ∆N . Then



4. Bias-optimal integrated vol-of-vol estimation: the role of window overlapping 103

E[RV (τ + i∆N ,kNδN)RV (τ +(i−1)∆N ,kNδN)]

= E
[
E
[ kN

∑
j=1

(∫ ai, j,N

ai, j−1,N

√
v(s)dW (s)

)2 kN

∑
j=1

(∫ ai−1, j,N

ai−1, j−1,N

√
v(s)dW (s)

)2
|F v

ai,kN ,N

]]
= E

[ kN

∑
j=1

∫ ai, j,N

ai, j−1,N

v(s)ds
kN

∑
j=1

∫ ai−1, j,N

ai−1, j−1,N

v(s)ds
]
=
∫ ai,kN ,N

ai,0,N

∫ ai−1,kN ,N

ai−1,0,N

E[v(s)E[v(r)|F ν
s ]]dsdr,s < r.

Under Assumption 4.1 (see, again, Appendix A in Bollerslev and Zhou (2002)),

E[RV (τ + i∆N ,kNδN)RV (τ +(i−1)∆N ,kNδN)]

=
1

θ 2 eθ∆N
(

1− eθkNδN
)2

e−2θ i∆N

[
(E[ν(τ)]−α)2 +

γ2

θ

(
α

2
−E[ν(τ)]

)]
−e−θ∆N

(
2− eθkNδN − e−θkN δN

)
γ2α

2θ 3 −
1
θ

kNδN

(
1− eθkNδN

)
e−θ i∆N

[(
γ2

θ
+α

)
(E[ν(τ)]−α)

]
− 1

θ
kNδN

(
1− eθkNδN

)
eθ∆N−θ i∆N [α(E[ν(τ)]−α)]+α

2 (kNδN)
2 .

IIIb) Analytical expression of E[RV (τ + i∆N ,kNδN)RV (τ + i∆N −
∆N∆N ,kNδN)] forWN >∆N

Assume now that we are in the overlapping case WN > ∆N . Then the parametric
expression of E[RV (τ + i∆N ,kNδN)RV (τ + i∆N −∆N ,kNδN)] can be decomposed
E[RV (τ + i∆N ,kNδN)RV (τ +(i− 1)∆N ,kNδN)] into the sum of four components,
that is,

E
[
RV (τ + i∆N ,kNδN)RV (τ +(i−1)∆N ,kNδN)

]
=E

[(
RV (τ+i∆N ,∆N)+RV (τ+(i−1)∆N ,kNδN−∆N)

)(
RV (τ+(i−1)∆N ,kNδN−

∆N)+RV (τ + i∆N− kNδN ,∆N)
)]

=E
[
RV (τ+i∆N ,∆N)RV (τ+(i−1)∆N ,kNδN−∆N)

]
+E
[
(RV (τ+i∆N ,∆N)RV (τ+

i∆N−kNδN ,∆N)
]
+E
[
RV 2(τ+(i−1)∆N ,kNδN−∆N)

]
+E
[
RV (τ+(i−1)∆N ,kNδN−

∆N)RV (τ + i∆N− kNδN ,∆N)
]
.
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We then obtain the parametric expressions of these four components, which we term O1, O2, O3
and O4, respectively (we omit the intermediate steps, as are they are analogous to those followed in I)
and IIIa)):

- O1 := E
[
(RV (τ + i∆N ,∆N)RV (τ + i∆N− kNδN ,∆N)

]
= α2∆2

N− (E[ν(τ)]−α)
(

γ2

θ
+α

)
∆N

1
θ

e−θ i∆N
(
1− eθ∆N

)
−α (E[ν(τ)]−α)∆N

1
θ

e−θ i∆N+θkNδN
(
1− eθ∆N

)
−γ2α

2θ 3 e−θkNδN (2− e−θ∆N − eθ∆N )

+
[

γ2

θ

(
α

2
−E[ν(τ)]

)
+(E[ν(τ)]−α)2

] 1
θ 2 e−2θ i∆N (1− eθ∆N )2eθkNδN ;

- O2 := E
[
RV (τ + i∆N ,∆N)RV (τ +(i−1)∆N ,kNδN−∆N)

]
= α2∆N(kNδN−∆N)+(E[ν(τ)]−α)

(
γ2

θ
+α

)
(kNδN−∆N)

1
θ

e−θ i∆N (eθ∆N −1)

+α(E[ν(τ)]−α)∆N
1
θ

e−θ(i−1)∆N (eθ(kNδN−∆N)−1) −γ2α

2θ 3 (1− eθ∆N )e−θkNδN (eθ(kNδN−∆N)−1)

−
[

γ2

θ
(
α

2
−E[ν(τ)])+(E[ν(τ)]−α)2

] 1
θ 2 e−2θ i∆N (1− eθ∆N )eθ∆N (eθ(kNδN−∆N)−1);

- O3 := E
[
RV (τ +(i−1)∆N ,kNδN−∆N)RV (τ + i∆N− kNδN ,∆N)

]
= α2∆N (kNδN−∆N )+(E[ν(τ)]−α)

(
γ2

θ
+α

)
∆N

1
θ

e−θ(i−1)∆N (eθ(kNδN−∆N)−1)

+α(E[ν(τ)]−α)(kNδN−∆N)
1
θ

e−θ i∆N+θkNδN (eθ∆N −1)

+
γ2α

2θ 3 eθ∆N (eθ(kNδN−∆N)−1)e−θkNδN (1− e−θ∆N )

−
[

γ2

θ

(
α

2
−E[ν(τ)]

)
+(E[ν(τ)]−α)2

] 1
θ 2 e−2θ i∆N+θkNδN (1− eθ∆N )eθ∆N (eθ(kNδN−∆N)−1);

- O4 := E
[
RV 2(τ +(i−1)∆N ,kNδN−∆N)

]
= (kNδN−∆N)

1
δN

[3αγ2

4θ 4 (1− e−θδN )2 +
1
θ
−2δNe−θδN − 1

θ
e−2θδN +δN(1+2e−θδN )

+
1

2θ
(e−2θδN +4e−θδN −5)+3α

2
δ

2
N

]
+ e−2θδN (1− e−2θ(kNδN−∆N))(1− e−2θδN )−1

[
3

1
θ 2 (1− e−θδN )2e−2θ i∆N+2θ(1+kN)δN

×
(

E[ν(τ)]2− γ2

θ
E[ν(τ)]−2αE[ν(τ)]+

γ2α

2θ
+α

2
)]

+
3

θ 2 e−θδN (1− e−θ(kNδN−∆N))(1− e−θδN )−1e−θ i∆N+θ(1+kN)δN
[

γ2

θ
(E[ν(τ)]−α)(1− e−θδN )2

+ γ
2(E[ν(τ)]−α)

( 1
θ
−2δNe−θδN − 1

θ
e−2θδN

)
+2α(E[ν(τ)]−α)(1− e−θδN )θδN

]
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+α
2(kNδN−∆N)

2−α
2
δN(kNδN−∆N)

− 2
θ 2 e−2θ i∆N+2θkNδN−2θδN (1−eθδN )(1−e−θδN )−1(1−e−2θδN )−1(1−e−θ(kNδN−∆N))

×
[

γ2

θ
(E[ν(τ)]−α)2 +

(
α

2 −E[ν(τ)]
)]

×
[
− eθδN e−θ(knδN−∆N)+

(
1+ e−θ(kNδN−∆N)

)
− e−θδN

]
+2

γ2α

2θ 3

(
(e−θ(kNδN−∆N)−1)+(kNδN−∆N)δ

−1
N (1− e−θδN )

)
+

2
θ

(
γ2

θ
+α

)
(E[ν(τ)]−α)δNe−θ i∆N+θ∆N (eθδN −1)−1

×
(
(eθ(kNδN−∆N)−1)+(kNδN−∆N)δ

−1
N (1− eθδN )

)
+

2α

θ
(E[ν(τ)]−α)δNe−θ i∆N+θkNδN (eθδN −1)−1

×
[
(kNδN−∆N)δ

−1
N (eθδN −1)+ eθδN (e−θ(kNδN−∆N)−1)

]
.

The contribution to the PSRV finite-sample bias due to the overlapping of con-
secutive local windows to estimate the spot volatility (i.e., due to assuming that
WN = kNδN > ∆N) is mainly due to the terms O2, O3, and O4. In fact, when
kNδN = ∆N (i.e., WN = ∆N), the terms O2, O3, and O4 are equal to zero. Inter-
estingly, the terms O2, O3, and O4 are functions of the quantity (kNδN −∆N) (i.e.,
WN−∆N) and, in particular, are O(kNδN−∆N) as (kNδN−∆N)→ 0+ as N→∞, as
one can check focusing on the terms (kNδN−∆N) and (eθ(kNδN−∆N)−1).

After plugging the explicit expressions obtained in I), II) and IIIa) (respec-
tively, IIIb)) into equation (4.12), simple but tedious calculations yield the para-
metric expression of E[PSRV[τ,τ+h],N ] under Assumption 4.1, which can be ex-
pressed in the following compact form:

E[PSRV[τ,τ+h],N ] = γ
2
αhAN +γ

2
(

E[ν(τ)]−α

)1− e−θh

h
BN +CN i f WN ≤ ∆N ,

E[PSRV[τ,τ+h],N ] = γ
2
αhAN +γ

2
(

E[ν(τ)]−α

)1− e−θh

h
BN +CN +ON i f WN >∆N ,

where:
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AN = (kNδN)
−2

∆
−1
N

{ 2
θ

kN

[ 3
2θ 2 (1− e−θδN )2 +3

1
θ

( 1
θ
−2e−θδN δN−

1
θ

e−2θδN
)

+3
1
θ

δN(1+2e−θδN )+
3

2θ 2 (e
−2θδN +4e−θδN −5)

]
+

2
θ 3 (e

−θkNδN −1+ kN− kNe−θδN )

+
1

θ 3 e−θ∆N (2− eθkNδN − e−θkNδN )
}

; (4.13)

BN = (kNδN)
−2e−θ∆N (1− e−θ∆N )−1

{
(1+ eθ∆N )

[ 3
θ 2 (e

θkNδN −1)(1− e−θδN )

+
3
θ
(eθkNδN −1)(1− e−θδN )−1

( 1
θ
−2e−θδN δN−

1
θ

e−2θδN
)

+2
1
θ

δN(eθδN −1)−1(kN−1+ eθkNδN − kNeθδN )
]
+

2
θ

kNδN(1− eθkNδN )
}

;

(4.14)

CN = (kNδN)
−2

{
e−2θ∆N (1− e−2θh)(1− e−2θ∆N )−1 1

θ 2

[
(E[ν(τ)]−α)2 +

γ2

θ

(
α

2
−ν(τ)

)]
×
{
(1+ e2θ∆N )(1− e−2θδN )−1

[
3(e2θkNδN −1)(1− e−θδN )2 +2(1− e−θδN )

+2eθkNδN (e−2θδN −1)+2e2θkNδN−θδN (1− e−θδN )
]
−2eθ∆N (1− eθkNδN )2

}
+(6α

2
δ

2
NkN−2α

2kNδ
2
N)h∆

−1
N

+ e−θ∆N (1− e−θh)(1− e−θ∆N )−1
{[

6
α

θ
δN(E[ν(τ)]−α)(eθkNδN −1)+2

α

θ
δN(E[ν(τ)]−α)(eθδN −1)−1

× [(eθkNδN −1+ kN− kNeθδN )+ kNeθkNδN (eθδN −1)+ eθδN (1− eθkNδN)]
]
(1+ eθ∆N )

+
2α

θ
kNδN(E[ν(τ)]−α)(1+ eθ∆N )(1− eθkNδN )

}}
; (4.15)
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ON = (kNδN)
−2

{
4α

2hδN

+ γ
2
αhθ

−3 e−θ(δN+kNδN+∆N)

∆N

[
eθδN −2eθδN(1+kN)+ eθδN(1+2kN)−2eθ(δN+∆N)

−4eθ(δNkN+∆N)kN + eθ(δN+δNkN+∆N)(2+ kN(4−6θδN))
]

+2γ
2
αhθ

−3 e−θδN(1+kN)

∆N

[
eθδN +2eθδNkN kN− eθδN(1+kN)(1− kN(3θδN−2))

]
− γ

2
αhθ

−3 e−θ(1+2kN)δN

δN∆N

[
−4e2θδNkN (1− eθδN )∆N +6θeθδN(1+2kN)kNδ

2
N

+δN

(
2eθ(δN+δNkN−∆N)−2eθ(δN+2δNkN−∆N)+4e2θδNkN kN−2eθδN(1+2kN)(2kN +3θ∆N)

)]
− 1

θ 2(1− e−2θ∆N )

[
(−2e−θ∆N )(1− e−2θh)(−1+ eθkNδN )2

+
(−3+ eθδN − eθkNδN +3eθδN(1+kN))(1+ e2θ∆N )

1+ eθδN

(
γ2(α−2E[ν(τ)])

2θ
+(α−E[ν(τ)])2

)]
−2θ

−2(α−E[ν(τ)])(1− e−θh)
(eθkNδN −1)(γ2 +αθ(1+ eθ∆N kN))δN

(−1+ eθ∆N )

+2θ
−3(α−E[ν(τ)])

e−θ(δN+kNδN−∆N)(−e−θh +1)
(−1+ eθδN )(−1+ eθ∆N )

[
αθ

2e2θδN(1+kN)kNδN−αθ
2eθδN(1+2kN)kNδN

−θ(γ2 +αθ)
[
(eθδN −1)eθ(δN+kNδN−∆N)

]
kNδN− eθδN(2+kN)

(
αθ

2(4+ kN)δN + γ
2(6+θkNδN−θ∆N)

)
+ eθδN(1+kN)

(
αθ

2(4+ kN)δN + γ
2(6+θδN(4+ kN)−θ∆N)

)
+ eθ(2δN(1+kN)−∆N)

(
αθ

2(4+ kN)δN + γ
2(6+θ∆N)

)
− eθ(δN+2kNδN−∆N)

(
αθ

2(4+ kN)δN + γ
2(6+4θδN +θ∆N)

)]
− 2α2θ +α(γ2−4θE[ν(τ)])+2E[ν(τ)](θE[ν(τ)]− γ2)

2θ 3(1+ eθδN )(−1+ e2θ∆N )

[
(1− e−2θh)(−1+ eθkNδN )

× (3− eθδN + eθkNδN −3eθ(1+kN)δN )(1+ e2θ∆N )
]

− θ−3(2α2θ +α(γ2−4θE[ν(τ)]))+2E[ν(τ)](−γ2 +θE[ν(τ)])(1− e−2hθ )

(1+ eθδN )(−1+ e2θ∆N )

×
[
−2e2θkNδN +2eθ(1+2kN)δN + eθ∆N +2e2θ∆N + eθ(δN+∆N)

−2eθ(kNδN+∆N)−2eθ(δN+kNδN+∆N)+ eθ(2kNδN+∆N)+ eθ(δN+2kNδN+∆N)−2eθ(δN+2∆N)
]}

.

(4.16)
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The proof is complete.

Proof of Theorem 4.1
Consider the exact parametric expression for the PSRV bias under Assumption

4.1 in the case WN > ∆N , given in Lemma 4.1. By expanding it sequentially, first
as λ → 0, and then as h→ 0, we obtain:

E
[
PSRV[τ,τ+h],N−〈ν ,ν〉[τ,τ+h]

]
=



(
4E[ν(τ)]2

κ2δ
1+2b
N

− γ
2E[ν(τ)]

)
h+O(h1−b)+O(λ ) if b≥−1/2,c <−b

−γ2E[ν(τ)]h+O(h−2b)+O(λ ) if b <−1/2,c < 1+b

,

as λ → 0, h→ 0.
The sequential expansions as h→ 0, λ → 0 are performed using the software

Mathematica. The code is available on request.

Furthermore, let (F ν
t )t≥0 denote the natural filtration associated with the pro-

cess ν . It is straightforward to see that

E
[
PSRV[τ,τ+h],N−〈ν ,ν〉[τ,τ+h]|F ν

τ

]
=



(
4ν(τ)2

κ2δ
1+2b
N

− γ
2
ν(τ)

)
h+O(h1−b)+O(λ ) if b≥−1/2,c <−b

−γ2ν(τ)h+O(h−2b)+O(λ ) if b <−1/2,c < 1+b

,

as λ → 0, h→ 0.

Proof of Theorem 4.2
Consider the exact parametric expression for the PSRV bias under Assumption

4.1 in the case WN ≤ ∆N , given in Lemma 4.1. Then recall that for N→ ∞, ∆N =
O(δ c

N), c ∈ (0,1), and kN = O(δ b
N), b ∈ (−1,0). Moreover, note that for b≥−1/2

and c <−b or b <−1/2 and c < 1+b, we have

lim
N→+∞

1
kN∆N

= 0

and

lim
N→+∞

kNδN

∆N
= 0.

Expanding AN , BN , and CN as N→ ∞, one obtains

• AN ∼ 1+ 2
θkN∆N

+ θ(kNδN)
2

4∆N
− θ 2(kNδN)

2

4 − θ∆N
2 + θ 3(kNδN)

2∆N
8 ;
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• BN ∼ 1+ 4
θkN∆N

+ 2δN
∆N

+ 2
kN
− 4δN

kN∆N
− kNδN

∆N
− 2θδ 2

N
∆N

+ 1
2 θδN − 2θδN

kN
+ 1

2 θ∆N +

θ∆N
kN

+
θδ 2

NkN
2∆N
− θ 2δN∆N

kN
−θ 2δ 2

N + θ 2δN∆N
4 − θ 3δ 2

N∆N
2 ;

• CN ∼ 1−e−2θh

2θ 3

[
(E[ν(τ)]−α)2 + γ2

θ
(α

2 − E[ν(τ)])
][

4θ 2

kN∆N
+ 4θ 3δN

∆N
+ θ 4∆N +

4θ 4∆N
kN

+3θ 5∆NδN

]
+ 4α2h

kN∆N
+ 8α(E[ν(τ)]−α)(1−e−θh)

θkN∆N
,

from which we get equation (4.6).
Based on the corresponding asymptotic expansions, one can easily check that

as N → ∞, if b ≥ −1/2 and c < −b or, alternatively, b < −1/2 and c < 1+ b,
then AN → 1, BN → 1 and CN → 0. This implies that as N → ∞, if b ≥ −1/2
and c < −b or, alternatively, b < −1/2 and c < 1+ b, then E[PSRV[τ,τ+h],N ] =

γ2αhAN + γ2(E[ν(τ)]−α)1−e−θh

h BN +CN converges to E[〈ν ,ν〉[τ,τ+h]] = γ2αh+

γ2(E[ν(τ)]−α)1−e−θh

θ
, where the equivalence E[〈ν ,ν〉[τ,τ+h]] = γ2αh+γ2(E[ν(τ)]−

α)1−e−θh

θ
is obtained from Appendix A in Bollerslev and Zhou (2002).

In particular, one can easily verify that, as N→ ∞:

• for b≥−1/2 and c <−b,

AN−1 = O(∆N), BN−1 = O(∆N), CN = O(∆N) if c <−b/2, (4.17)

AN−1 = O
( 1

kN∆N

)
, BN−1 = O

( 1
kN∆N

)
, CN = O

( 1
kN∆N

)
if −b/2≤ c <−b; (4.18)

• for −2/3≤ b <−1/2 and c < 1+b,

AN−1 = O(∆N), BN−1 = O(∆N), CN = O(∆N) if c < (1+b)/2, (4.19)

AN−1 = O(∆N), BN−1 = O
(kNδN

∆N

)
, CN = O(∆N) if (1+b)/2≤ c <−b/2, (4.20)

AN−1 = O
( 1

kN∆N

)
, BN−1 = O

(kNδN

∆N

)
,CN = O

( 1
kN∆N

)
if −b/2≤ c < 1+b;

(4.21)
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• for b <−2/3 and c < 1+b,

AN−1 = O(∆N), BN−1 = O(∆N), CN = O(∆N) if c < (1+b)/2, (4.22)

AN−1 = O(∆N), BN−1 = O
(kNδN

∆N

)
, CN = O(∆N) if(1+b)/2≤ c < 1+b. (4.23)

The proof is complete.

Proof of Corollary 1
Based on equation (4.6) and the asymptotic rates of AN , BN and CN (see equa-

tions (4.17)− (4.23)), we observe that:

- for b≥−1/2, c <−b/2 or b <−1/2, c < (1+b)/2 or b =−2/3, c < 1/6,

E
[
PSRV[τ,τ+h],N−〈ν ,ν〉[τ,τ+h]

]
= a1λδ

c
N +o(δ c

N);

- for b >−1/2,c ∈ (−b,−b/2),

E
[
PSRV[τ,τ+h],N−〈ν ,ν〉[τ,τ+h]

]
= a2

1
κλ

δ
−b−c
N +o(δ−b−c

N );

- for b∈ (−2/3,−1/2),c∈ ((1+b)/2,1+b) or b <−2/3,c ∈ ((1+b)/2,1+b),

E
[
PSRV[τ,τ+h],N−〈ν ,ν〉[τ,τ+h]

]
= a3

κ

λ
δ

1+b−c
N +o(δ 1+b−c

N );

- for b =−2/3, 1/6 < c < 1/3,

E
[
PSRV[τ,τ+h],N−〈ν ,ν〉[τ,τ+h]

]
= a3

κ

λ
δ

1/3−c
N +o(δ 1/3−c

N );

- for b =−1/2, c = 1/4,

E
[
PSRV[τ,τ+h],N−〈ν ,ν〉[τ,τ+h]

]
=

1
λ

δ
1/4
N (a1λ

2 +a2κ
−1 +a3κ)+o(δ 1/4

N );

- for b =−1/2,c > 1/4,

E
[
PSRV[τ,τ+h],N−〈ν ,ν〉[τ,τ+h]

]
=

1
λ

δ
1/2−c
N (a2κ

−1 +a3κ)+o(δ 1/2−c
N );
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- for b =−2/3, c = 1/6,

E
[
PSRV[τ,τ+h],N−〈ν ,ν〉[τ,τ+h]

]
= δ

1/6
N (a1λ +a3κλ

−1)+o(δ 1/6
N ).

Thus, it is possible to select κ and λ such that the dominant term of the bias
expansion is canceled only when b =−1/2 and c≥ 1/4 or b =−2/3 and c = 1/6,
provided that the selected values of κ and λ verify the condition WN ≤ ∆N , which
is equivalent to κδ

1+b
N ≤ λδ c

N .
The case b = −1/2 and c = 1/4 is of particular interest, as it may allow to

cancel the dominant term under the usual assumption ν(0)=α , which is equivalent
to E[ν(τ)] = α . In fact, if E[ν(τ)] = α , then a3 = 0 and it is not possible to cancel
the leading term of the bias expansion through the selection of κ and λ when
b =−1/2 and c > 1/4 or b =−2/3 and c = 1/6.

Specifically, the leading term of the bias expansion in equation (4.6) can be
canceled in the case b = −1/2 and c = 1/4 if there exists a solution (κ̃, λ̃ ) ∈
R>0×R>0 to the following system{

a3κ
2 +a1λ

2
κ +a2 = 0

WN ≤ ∆N
,

where WN = κδ
1/2
N and ∆N = λδ

1/4
N . If a solution (κ̃, λ̃ ) ∈ R>0×R>0 exists,

the corresponding bias-optimal selection of WN and ∆N reads

WN = κ̃δ
1/2
N , ∆N = λ̃ δ

1/4
N .

Proof of Lemma 4.2
Let Assumption 4.2 hold and consider the estimator:

P̃SRV [τ,τ+h],N :=
bh/∆Nc

∑
i=1

[
w(τ + i∆N)−w(τ + i∆N−∆N)

]2
,

where, for s taking values on the time grid of mesh-size δN :

- w(s) := R̃V (s,kNδN)(kNδN)
−1,

- R̃V (s,kNδN) :=
kN

∑
j=1

∆x̃2(s+ jδN− kNδN ,δN),

- ∆x̃(s,δN) := x̃(s)− x̃(s−δN).
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To simplify the notation, we replace ∆x(τ+i∆N +( j−kN)δN ,δN) with r(i, j,N)

and ∆ε(τ+i∆N +( j−kN)δN ,δN) with ω(i, j,N). Then we decompose E[P̃SRV [τ,τ+h],N ]
as:

E[P̃SRV [τ,τ+h],N ] = E[PSRV [τ,τ+h],N ] (4.24)

+(kNδN)
−2
bh/∆Nc

∑
i=1

E

[
kN

∑
j=1

(
ω

2(i, j,N)−ω
2(i−1, j,N)

)]2

(4.25)

+4(kNδN)
−2
bh/∆Nc

∑
i=1

E

[
kN

∑
j=1

(
r(i, j,N)ω(i, j,N)− r(i−1, j,N)ω(i−1, j,N)

)]2

(4.26)

+2(kNδN)
−2
bh/∆Nc

∑
i=1

{
E
[ kN

∑
j=1

(
r2(i, j,N)− (r2(i−1, j,N)

)]
E
[ kN

∑
j=1

(
ω

2(i, j,N)−ω
2(i−1, j,N)

)]}
(4.27)

+4(kNδN)
−2
bh/∆Nc

∑
i=1

E

[
kN

∑
j=1

(
r2(i, j,N)−r2(i−1, j,N)

) kN

∑
j=1

(
r(i, j,N)ω(i, j,N)−r(i−1, j,N)ω(i−1, j,N)

)]
(4.28)

+4(kNδN)
−2
bh/∆Nc

∑
i=1

E

[
kN

∑
j=1

(
ω

2(i, j,N)−ω
2(i−1, j,N)

) kN

∑
j=1

(
r(i, j,N)ω(i, j,N)−r(i−1, j,N)ω(i−1, j,N)

)]
.

(4.29)
Note that under Assumption 4.2, r is zero-mean and ω is a zero-mean sta-

tionary process independent of r. Therefore components (4.27), (4.28) and (4.29)
are equal to zero. Moreover, note that the analytical expression of (4.24) is al-
ready given in Lemma 4.1. Thus, in order to obtain the analytical expression of
E[P̃SRV [τ,τ+h],N ] under Assumption 4.2, we only have to compute the analytical
expressions of (4.25) and (4.26).

We start with (4.25). We have:

(kNδN)
−2
bh/∆Nc

∑
i=1

E

[
kN

∑
j=1

(
ω

2(i, j,N)−ω
2(i−1, j,N)

)]2

=(kNδN)
−2
bh/∆Nc

∑
i=1

{
kN

∑
j=1

E

[
ω

4(i, j,N)+ω
4(i−1, j,N)−2ω

2(i, j,N)ω2(i−1, j,N)

]
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+2
kN

∑
j=2

j−1

∑
h=1

E

[(
ω

2(i, j,N)ω2(i,h,N)−ω
2(i, j,N)ω2(i−1,h,N)

−ω2(i−1, j,N)ω2(i,h,N)+ω
2(i−1, j,N)ω2(i−1,h,N)

)]}

= (kNδN)
−2
bh/∆Nc

∑
i=1

{
kN

∑
j=1

2E[ω4(i, j,N)]−2E[ω2(i, j,N)]2

}
=

4
(

Qε +V 2
ε

)
h

kNδ 2
N∆N

,

since ω2 is an i.i.d. process such that E[ω2(i, j,N)] = 2Vε and E[ω4(i, j,N)] =
2Qε +6V 2

ε , as one can easily check.

Then we move on to (4.26). We have:

4(kNδN)
−2
bh/∆Nc

∑
i=1

E

[
kN

∑
j=1

(
r(i, j,N)ω(i, j,N)− r(i−1, j,N)ω(i−1, j,N)

)]2

= 4(kNδN)
−2
bh/∆Nc

∑
i=1

{
kN

∑
j=1

E

[
r2(i, j,N)ω2(i, j,N)+ r2(i−1, j,N)ω2(i−1, j,N)

−2r(i, j,N)r(i−1, j,N)ω(i, j,N)ω(i−1, j,N)

]
+2

kN

∑
j=2

j−1

∑
h=1

E

[
r(i, j,N)r(i,h,N)ω(i, j,N)ω(i,h,N)

−r(i, j,N)r(i−1,h,N)ω(i, j,N)ω(i−1,h,N)−r(i−1, j,N)r(i,h,N)ω(i−1, j,N)ω(i,h,N)

+r(i−1, j,N)r(i−1,h,N)ω(i−1, j,N)ω(i−1,h,N)

]}
=

8Vε(α−E[ν(τ)])(1+ e−θ∆N )(1− eθkNδN )(1− e−θh)

θ(1− e−θ∆N )k2
Nδ 2

N
+

16αVεh
kNδN∆N

,

due to the stationariy of ω and the fact that r is zero-mean and independent of ω .

Finally, putting everything together, we have

E[P̃SRV [τ,τ+h],N ] = E[PSRV [τ,τ+h],N ]+DN ,

where

DN := [4(Qε +V 2
ε )+16αVεδN ]h

1
kNδ 2

N∆N
+

8
θ

Vε(α−E[ν(τ)])(1− e−θh)
(1+ e−θ∆N )(1− e−θkNδN )

(1− e−θ∆N )k2
Nδ 2

N
.

Analogous calculations in the overlapping case WN > ∆N lead to
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D∗N = [4
(
Qε +V 2

ε

)
+16αVεδN ]h

1
k2

Nδ 3
N
+

8Vε(α−E[ν(τ)])(1− e−θh)

θ(1− e−θ∆N )k2
Nδ 2

N

×

{
(2+ kN)

2kNδN

[
(eθkNδN−θ∆N −1)(kNδN +∆N)

kNδN−∆N
+(e−θ∆N − eθkNδN )

]
+

kN

2∆N
(1+ eθkNδN )(1− e−θ∆N )

}
.

The proof is complete.

Theorem 4.3
Consider DN in Lemma 4.2. Then recall that as N→∞, ∆N =O(δ c

N), c∈ (0,1),
and kN = O(δ b

N), b ∈ (−1,0). Moreover, note that:

- as N→ ∞, E[PSRV [τ,τ+h],N ]→ 〈ν ,ν〉[τ,τ+h] if b≥−1/2 and c <−b or b <
−1/2 and c < 1+b (see Theorem 4.2);

- as N→∞, DN ∼ 4(Qε +V 2
ε )h

1
kNδ 2

N∆N
+16αVεh 1

kNδN∆N
+8Vε(α−E[ν(τ)])(1−

e−θh)(1+ e−θ∆N ) 1
kNδN∆N

, thus DN → ∞ as N→ ∞ for any (b,c) ∈ (−1,0)×
(0,1). In particular, as N → ∞, DN is O( 1

kNδ 2
N∆N

) for any (b,c) ∈ (−1,0)×
(0,1).

Therefore, as N→∞, if b≥−1/2 and c <−b or b <−1/2 and c < 1+b, then
E[P̃SRV [τ,τ+h],N ] = E[PSRV [τ,τ+h],N ]+DN diverges, with rate 1

kNδ 2
N∆N

. The proof is
complete.

Theorem 4.4
Recall from Definition 4.1 that for τ with values on the price-sampling grid of

mesh size δN :

ν̂(τ) := (kNδN)
−1

∑
kN
j=1

[
x(τ− kNδN + jδN)− x(τ− kNδN +( j−1)δN)

]2
.

Moreover, from Appendix A in Bollerslev and Zhou (2002), we have, under
Assumption 4.1:

E
[∫ τ

τ−∆

ν(t)dt
]
= α∆+(ν(0)−α)θ−1e−θτ(eθ∆−1)

and

E[ν(τ)] = α +(ν(0)−α)e−θτ .

Therefore, under Assumption 4.1,
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E[ν̂(τ)−ν(τ)]= (kNδN)
−1E

[ kN

∑
j=1

[
x(τ−kNδN + jδN)−x(τ−kNδN +( j−1)δN)

]2]
−
[
α +(ν(0)−α)e−θτ

]
= (kNδN)

−1E
[ kN

∑
j=1

[ τ−kNδN+ jδN∫
τ−kNδN+( j−1)δN

√
ν(t)dW (t)

]2]
−
[
α +(ν(0)−α)e−θτ

]
= (kNδN)

−1E
[∫ τ

τ−kNδN

ν(t)dt
]
−
[
α +(ν(0)−α)e−θτ

]
= (ν(0)−α)e−θτ

[
(θkNδN)

−1(eθkNδN −1)−1
]
.

Expanding this as N→∞, we can rewrite E[ν̂(τ)−ν(τ)]= (ν(0)−α)e−θτ 1
2

θkNδN +

o(kNδN). Furthermore, recall that kNδN = O(δ b+1
N ) and b∈ (−1,0). Therefore, un-

der Assumption 4.1, E[ν̂(τ)−ν(τ)] converges to zero as N→ ∞, with rate kNδN .

Now let Assumption 4.2 hold and replace x with x̃ in the definition of the locally
averaged realized variance, i.e., consider the estimator w(τ) :=(kNδN)

−1
∑

kN
j=1

[
x̃(τ−

kNδN + jδN)− x̃(τ− kNδN +( j−1)δN)
]2
. Simple calculations lead to:

E[w(τ)−ν(τ)] = E[ν̂(τ)−ν(τ)]+(kNδN)
−1

kN

∑
j=1

E
[[

ε(τ− kNδN + jδN)

−ε(τ− kNδN + jδN)
]2]

= E[ν̂(τ)−ν(τ)]+2Vηδ
−1
N .

Therefore, under Assumption 4.2, E[w(τ)−ν(τ)] diverges as N→∞, with rate
1

δN
. The proof is complete.

4.8.2 Indirect inference method for the feasible bias-optimal selection of the
local-window tuning parameter

The feasible selection of κ in equation (4.11) requires, for a given β , the knowledge
of the volatility process ν(t) at the instant t = τ and the vol-of-vol parameter γ . A
simple and computationally-efficient indirect inference method to obtain estimates
of those quantities is as follows.

First, one estimates the spot volatility path using the fast Fourier transform
algorithm, following the procedure detailed in Appendix B.5 of Mancino et al.
(2017). In particular, from a given sample of log-price observations, one obtains
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estimates ν̂n,N,S of the spot volatility6 on the grid ti = i−1
2S+1 , i = 1, ...,2S+ 1, of

mesh size ∆S := 1
2S+1 .

Then, using the reconstructed volatility path ν̂n,N,S(ti), one infers the value of
the parameter γ by applying the following zero-intercept multivariate regression,
based on the discretization of the CKLS process in Assumption 4.3:

ν̂n,N,S(ti)−β [ν̂n,N,S(ti+1)− ν̂n,N,S(ti)]=αθ ∆Mν̂n,N,S(ti)−β−θ∆Sν̂n,N,S(ti)1−β +γ
√

∆SZ(ti),
(4.30)

where Z(ti) is i.i.d. standard normal.
Denoting by ψ̂ the estimate of the standard deviation of the disturbance term, ob-
tained from the regression residuals, we have γ̂ = ψ̂/

√
∆M.

An estimate of ν(τ) is simply given by the Fourier estimate of volatility in
correspondence of the beginning of the period of interest.

Finally, note that comparing the R2 of the regression (4.30) for different values
of β allows deciding which model under Assumption 4.3 fits the data better.

6Note that n denotes the sample size, while N and S denote, respectively, the cutting frequencies
for the computation of the Fourier coefficients of the volatility and the reconstruction of the spot
volatility path. See Chapter 4 in Mancino et al. (2017) for guidance on the efficient selection of N
and S for a given n.



5. IS THE VARIANCE SWAP RATE AFFINE IN THE SPOT
VARIANCE? EVIDENCE FROM S&P500 DATA

5.1 Introduction

The class of the exponential affine processes, introduced in the seminal paper by
Duffie et al. (2000) and characterized by Filipovic (2001), has received large con-
sensus in the quantitative finance literature, based on its main advantages in terms
of analytical tractability and empirical flexibility. The classic example of an expo-
nential affine process, and the only one with continuous paths, is the CIR diffusion,
see Cox et al. (1985). The related stochastic volatility model, studied by Heston
(1993), is considered as a reference model by scholars and practitioners. Kallsen
et al. (2011) have studied the valuation of options written on the quadratic variation
of the asset price within the exponential affine stochastic volatility framework. In
particular, they have proved, analytically, the existence of an affine link between
the expected cumulated variance, i.e., the variance swap rate, and the spot vari-
ance. Note that the class of stochastic volatility models considered in Kallsen et al.
(2011) allows for jumps and leverage effects, but fails to include some popular
stochastic volatility models, e.g., the models by Beckers (1980); Platen (1997);
Hagan et al. (2002); Grasselli (2016).

The variance swap is possibly the most plain vanilla contingent claim written
on the realized variance. Indeed, it can be seen, to some extent, as the forward of
the integrated variance of log-returns (see, for instance, Carr and Sun (2007); Carr
and Wu (2008); Kallsen et al. (2011); Filipovic et al. (2016); Bernis et al. (2019);
Jiao et al. (2019)). Volatility derivatives appear nowadays with a vast demand, es-
pecially after the global financial crisis of 2008, which induced large fluctuations
in the volatility and other indicators of market stress. The large demand for volatil-
ity derivatives has resulted in a major increase in their liquidity, and thus in the
reliability of their prices (see, for instance, Carr and Wu (2008)).

Based on the study by Kallsen et al. (2011), two natural questions arise: (i)
could we analytically identify a wider class of models which admits an affine link
between the variance swap rate and the spot variance? (ii) is it possible to test
if empirical data satisfy a given link (e.g., affine, quadratic) between the variance
swap rate and the unobservable spot variance? This chapter contributes to answer-
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ing both questions. Regarding question (i), we prove that a larger class of models
exhibits a linear link between the variance swap rate and the spot variance; also,
we show that, within the class of polynomial models (see Cuchiero (2011) and
Cuchiero et al. (2012)), a quadratic (respectively, affine) link appears between the
variance swap rate and the multidimensional stochastic process characterizing the
model in the presence (respectively, absence) of jumps. Regarding question (ii),
we set up a simple testing procedure, based on Ordinary-Least-Squares (OLS), in
which the unobservable spot variance is replaced with efficient estimates thereof.
Then, we apply it to S&P500 empirical data over the period 2006-2018.

In particular, our first result is showing that a model exhibits the affine link
between the variance swap rate and the spot variance if the stochastic differential
equation satisfied by the latter is the sum of an affine drift and a zero-mean stochas-
tic process. We term this class exponential mean-reverting variance models. This
class is fairly large. In fact, it contains not only exponential affine processes with
jumps (see, e.g., Bates (1996); Barndorff-Nielsen and Shephard (2001, 2002b);
Duffie et al. (2003); Benth et al. (2007); Jiao et al. (2017, 2019)), but also, under
suitable conditions (see Cuchiero et al. (2012); Ackerer et al. (2018)), polynomial
processes. Moreover, it also contains some models based on the fractional Brown-
ian motion (see, for instance, Abi Jaber et al. (2019)). However, it is worth noting
that many popular models, e.g., the CEV model (Beckers (1980)), the SABR model
(Hagan et al. (2002)), the 3/2 and 4/2 models (Platen (1997); Grasselli (2016)),
fail to verify the affine link (see, for instance, the analysis in Section 4 of Jar-
row et al. (2013) for the 3/2 model). Further, we consider the class of stochastic
volatility models based on polynomial processes, introduced in Cuchiero (2011)
and Cuchiero et al. (2012). The exponential affine models by Kallsen et al. (2011),
which exhibit an affine link between the variance swap rate and the spot variance,
are included in the polynomial class, as a special case, see Example 3.1 in Cuchiero
et al. (2012). In the polynomial framework, we prove the existence, in the pres-
ence of jumps, of a quadratic correction in the link between the theoretical variance
swap rate and the spot variance.

On financial markets, traded variance swaps are actually written on the realized
variance, that is, the finite sum of squared log-returns sampled over a discrete grid.
Instead, the corresponding theoretical pricing formulae use the continuous time ap-
proximation given by the quadratic variation of the log-price, in virtue of higher
mathematical tractability. Thus, we also study the case where the theoretical vari-
ance swap rate, i.e., the expected future quadratic variation, is replaced by its em-
pirical counterpart, namely the expected future realized variance. In this regard, we
show that polynomial processes exhibit a quadratic link between the expected fu-
ture realized variance and the (multidimensional) stochastic process characterizing
the model. The pricing error related to this approximation has been investigated by
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Broadie and Jain (2008), who conclude that the approximation works quite well,
based on simulated data obtained from four different models (the Black-Scholes
model, the Heston stochastic volatility model, the Merton jump-diffusion model
and the Bates stochastic volatility and jump model).

Based on these results, our second contribution is testing, using OLS, if an
affine or a quadratic link is satisfied by actual financial data, namely S&P 500 daily
data. This may allow us to determine which class of models, affine or polynomial,
provides a better fit for empirical data. Clearly, such a test requires the availability,
in addition to daily prices, of the daily time-series of variance swap rate and spot
variance observations. For what concerns S&P500 variance swap rates, a reliable
proxy for the maturity equal to one month is quoted on the market in the form
of the (squared) VIX index (see Carr and Wu (2008); CBOE (2019)). The use of
the VIX squared as a proxy of the variance swap rate is present in, e.g., Todorov
(2010); Martin (2011); Aı̈t-Sahalia et al. (2018).

The spot variance is instead a latent process. Thus, the main hurdle imped-
ing the testing of the affine/quadratic link is the latent nature of the variance pro-
cess. To overcome this hurdle, the spot variance is estimated by means of the
Fourier method proposed in Malliavin and Mancino (2009) and extended to jump-
diffusions in Cuchiero and Teichmann (2015). Note that, although reconstructed
from historical data, spot volatility estimates do not depend on the equivalent prob-
ability measure considered. This allows us to conduct our empirical tests under the
risk neutral probability measure, coherently with the use of the (squared) VIX, a
risk neutral object, as a proxy of the variance swap rate. Furthermore, in order to
test the robustness of our findings, we also perform our empirical study replacing
Fourier estimates of the spot volatility with estimates obtained through the local-
ized realized estimators by Zu and Boswijk (2014) and Bandi and Renò (2018).
Furthermore, with the same aim of strengthening our results, we test the possible
relations between the VIX index squared and reconstructed the spot variance using
both opening and closing values of the former.

The findings of our empirical tests are summarized as follows. First, we obtain
overwhelming empirical evidence supporting the use of exponential affine models.
Exponential affine models imply the existence of an affine link between the vari-
ance swap rate and the spot variance, with strictly positive coefficients. The test of
the affine link over the period 2006-2018 is coherent with this prediction, in that it
yields statistically significant positive coefficients and an R2 larger than 0.95, both
when Fourier or realized spot variance estimates are used. Instead, the test of the
quadratic link between the variance swap rate and the spot variance over the period
2006-2018 yields a non-significant quadratic coefficient, using either Fourier or re-
alized spot variance estimates. This result may shed light on the negligibility of the
discrete sampling effect affecting the variance-swap pricing formula. In fact, the
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absence of a significant quadratic coefficient confirms that the daily sampling used
to compute the VIX index is enough to match the continuous-time approximation
of the latter, i.e., the expected future quadratic variation. This empirical finding,
which is achieved in a non-parametric fashion, i.e., without assuming any paramet-
ric form for the price evolution, supports the numerical findings by Broadie and
Jain (2008).

The affine and quadratic tests are performed also on yearly subsamples, to in-
vestigate the sensitivity of the results to different economic scenarios, that is, to
different volatility regimes (see, e.g., Goutte et al. (2017)). Test results on yearly
subsamples are more nuanced. In particular, the intercept in the affine test is not
significant in 2008 and 2011, two years characterized by extreme volatility spikes.
This suggests that S&P500 data in 2008 and 2011 are consistent only with the
broader assumption of an exponential mean-reverting variance framework, which
does not put any restrictions on the sign of the intercept (see, e.g., the model by
Hull and White (1987)). Moreover, the quadratic test yields significant quadratic
corrections in the years characterized by a relatively high number of price jumps.
This findings support the use of polynomial models with jumps in periods when
jumps are frequent. In general, our empirical analysis reveals that jumps play a
non-negligible role, as we detect price-jumps in approximately 10% of days of
our 13-year sample. This result is in accordance with a large literature, see, e.g.,
Bates (1996); Bakshi et al. (1997); Barndorff-Nielsen and Shephard (2002a); Er-
aker (2004). Perhaps surprisingly, high-volatility periods and periods with a larger
number of jumps do not necessarily coincide. For example, in 2007, 2010 and
2013, in spite of a relatively low VIX index, the number of days with jumps is
relatively large. Again, we remark that results on yearly subsamples are robust to
the use of different volatility estimators.

The chapter is organized as follows. In Section 5.2 we describe the analytical
framework of the paper, illustrating the exponential affine model, the exponential
mean-reverting variance model and the polynomial model. In Section 5.3 we detail
the spot variance estimation method and perform empirical tests to investigate if
S&P500 daily data over the period 2006-2018 are consistent with the affine or the
quadratic link. Section 5.4 concludes. The proofs are in the Appendix (Section
5.5).

5.2 Variance swap rate and model set-up

In this section we introduce the problem of the variance swap valuation and inves-
tigate the types of models under which an affine link between the variance swap
rate and the spot variance exists.
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Based on the fundamental theorem of asset pricing by Delbaen and Schacher-
mayer (1994), we assume that the time evolution of the logarithmic asset price x
follows a square-integrable semimartingale model, that is,

x(t) = A(t)+M(t) (5.1)

where M is a square-integrable martingale and A is a finite-variation process on
a filtered space (Ω,F ,P). Being interested in the pricing problem, asset price
dynamics are specified under a risk neutral measure along the paper. Moreover,
in the chapter we denote by [x]t the quadratic variation of the process x up to time
t. The semimartingale hypothesis assures that the [x]t is finite for all times t and
coincides with the quadratic variation of the martingale M, if the finite-variation
process A has continuous paths.

A classical result proves that the quadratic variation can be obtained as the limit
of the realized variance. More precisely, letting πn := {0 = t0 < t1 < .. . < tn = τ}
be a partition of a generic interval [0,τ] and |πn| := sup

k=1,...,n
(tk− tk−1) be the step of

the partition, the realized variance is defined as

RV n
[0,τ] =

n

∑
k=1

(
x(tk)− x(tk−1)

)2
. (5.2)

Then, the following convergence holds in probability

[x]τ = lim
|πn|→0

RV n
[0,τ]. (5.3)

A financial product, called variance swap, has been introduced to hedge volatil-
ity risk.

Definition 5.1. Variance swap
A variance swap is a financial derivative characterized by two legs, one pay-

ing the mean realized variance over an interval [t, t + τ], the other paying a fixed
amount, generally called the rate or strike. Variance swap buyer pays the fix
amount and receives the realized variance RV n

[t,t+τ], with the convention that tk−
tk−1 is one day, t0 = t and tn = t + τ . The strike V Sτ

t reads

V Sτ
t = τ

−1E
[
RV n

[t,t+τ] |Ft

]
. (5.4)

Based on higher mathematical tractability, the finite-sample realized variance
(5.2) is replaced, in the theoretical variance swap pricing formula, by its continuous-
time approximation, the quadratic variation [x]τ . As a consequence, the strike of
the variance swap (5.4), under the continuous-time limit, reads

V Sτ
t = τ

−1E [[x]t+τ − [x]t |Ft ] . (5.5)
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The simulation study by Broadie and Jain (2008), based on four different mod-
els (the Black-Scholes model, the Heston stochastic volatility model, the Merton
jump-diffusion model and the Bates stochastic volatility and jump model), sug-
gests that the continuous-time approximation for the variance swap pricing formula
works quite well. A more general analysis of discrete variance swaps for a gen-
eral time-homogeneous stochastic volatility model is provided by Bernard and Cui
(2014).

A model-free pricing method, used to compute the VIX index (see CBOE
(2019)), has been also proposed by Carr and Lee (2008). This method exploits
the fact that the variance swap can be perfectly statically replicated through vanilla
Puts and Calls, as pointed by the next result (see Carr and Wu (2006) for the proof).
For a more general result, see Baldeaux and Rutkowski (2010).

Proposition 5.1. Assuming that the underlying asset log-price x has continuous
paths, then the variance swap can be statically replicated by a weighted position
on vanilla Puts and Calls, that reads

V Sτ
0 =

2
τ

erτ

(∫ F

0

1
K2 P(K)dK +

∫
∞

F

1
K2C(K)dK

)
, (5.6)

where F, τ and r denote, respectively, the forward of the underlying, the maturity
and the risk-free interest rate, which is assumed to be constant. The prices of the
Call and Put options with strike K and maturity τ are denoted, respectively, by
C(K) and P(K).
Moreover, in the presence of jumps in the log-price process x and assuming that
the jump measure is exponentially integrable, the formula (5.6) is subject to the
correction ε , which depends only on the jump measure and reads

ε =−2
τ

E
[∫

τ

0

∫ (
ex−1− x− 1

2
x2
)

λ (dt,dx)
]
, (5.7)

where λ (dt,dx) denotes the compensated Levy measure of the jump process.

Note that, based on this static replication procedure, variance swap rates are
intrinsically risk neutral objects. As a consequence, the empirical findings we detail
in Section 5.3.2 hold under the risk neutral measure.

As far as equity models are concerned, in this work we focus on a two-dimensional
framework, where the first process is the logarithm of asset price as in (5.1) and the
second, called variance process, is the variance of the martingale part in (5.1) or a
function of the latter. More precisely, in the rest of the chapter we consider various
model specifications within the following general class for the price evolution

dx(t) =
√

v(t)dW (t)+dJ(t)+a(t)dt

dv(t) = dZ(t)+b(t)dt
(5.8)
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where W is a Brownian motion, J is a compensated jump process characterized by
the Levy measure λ and Z is an integrable zero-mean stochastic process satisfying
some technical conditions to preserve the non-negativity of v (see Definition 5.3).
Note that the process Z is not required to be neither a semimartingale nor a Markov
process. This allows us to include also some models based on the fractional Brow-
nian motion (see, for instance, Abi Jaber et al. (2019)).

The class of models (5.8) and its extension to multidimensional volatility pro-
cesses are extremely large and include almost all stochastic volatility models com-
monly used in finance.

5.2.1 Exponential affine model

With pricing and forecasting applications in mind, researchers have focused on
some subclasses of (5.8), which are able to capture equity stylized facts while
still remaining parsimonious. For instance, during the last two decades, a large
literature, started by Duffie et al. (2000), has focused on exponential affine models,
which are defined as follows, see Definition 2.1 in Duffie et al. (2003).

Definition 5.2. Exponential affine stochastic volatility model
A Markov process (x,v) is called affine if the characteristic function of the

process has an exponential affine dependence on the initial condition. That is, for
every 0≤ u < t, there exists functions (ψx

(a,b)(t,u),ψ
v
(a,b)(t,u),φ(a,b)(t,u)) such that

E
[
eax(t)+bv(t)|Fu

]
= exp{x(u)ψx

(a,b)(t−u)+ v(u)ψv
(a,b)(t−u)+φ(a,b)(t,u)}.

Under natural financial hypotheses, we have ψx
(a,b)(t−u)= 1. Moreover, Duffie

et al. (2000) show that ψv
(a,b) satisfies a generalized first order non-linear differen-

tial equation of Riccati type and φ(a,b) is a primitive of a functional of ψv
(a,b).

The most popular exponential affine model, and the only one with continuous
paths, is the model by Heston (1993), which reads

dx(t) =
√

v(t)dW (t)+(r− 1
2

v(t))dt

dv(t) = γ
√

v(t)dB(t)+θ(α− v(t))dt
, (5.9)

where W and B are correlated Brownian motions. Moreover, it is easy to verify
that, under the Heston model, the variance swap strike (5.5) has the following
expression:

V Sτ
t = α +(v(t)−α)

1− e−θτ

θτ
. (5.10)
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The class of exponential affine models is wide, including also jumps processes,
and has been extensively investigated, see for instance Bates (1996); Filipovic and
Mayerhofer (2009); Benth (2011); Keller-Ressel (2011); Hubalek et al. (2017);
Bernis et al. (2019); Horst and Xu (2019); Jiao et al. (2019). In this regard, we
highlight the results by Keller-Ressel et al. (2011) and Cuchiero and Teichmann
(2013), who show that exponential affine processes are regular. Note that, in the
exponential affine framework, the variance process v needs to be driven by a mar-
tingale Z (see (5.8)) with finite quadratic variation. Moreover, the drift process b
and the Levy measure of the jump process J in (5.8) need to be affine with respect
to the variance process v.

Kallsen et al. (2011) show that the affine link between the spot variance and the
expected integrated variance holds for any exponential affine stochastic volatility
model. Their result is presented in the following proposition.

Proposition 5.2. Let (x,v) be an exponential affine stochastic volatility model.
Then, the triplet (x(t),v(t), [x]t) is a Markov exponential affine process. Moreover,
the process [x]t has the following characteristic function

E
[
eu[x]t+τ |Ft

]
= exp

{
u[x]t + v(t)ΨV

u (τ)+Φ
V
u (τ)

}
,

where ΨV
u satisfies a couple of first order non-linear differential equations of Ric-

cati type and ΦV
u is a primitive of a functional of ΨV

u . More precisely, using the
parameter notation for the exponential affine model introduced in Lemma 4.2 of
Kallsen et al. (2011), they satisfy

∂ΨV
u

∂ t
(t)=

1
2

γ
11
1
(
Ψ

V
u (t)

)2
+β

1
1 Ψ

V
u (t)+γ

22
1 u+

∫
R+×R

(
ex1ΨV

u (t)+ux2
2−1−Ψ

V
u (t)h(x1)

)
κ1(dx),

Ψ
V
u (0) = 0,

Φ
V
u (t)=

∫ t

0

[
β

1
0 Ψ

V
u (s)+ γ

22
0 u+

∫
R+×R

(
ex1ΨV

u (s)+ux2
2−1−Ψ

V
u (s)h(x1)

)
κ0(dx)

]
ds.

Moreover, assuming that
∫

τ

0
E[v(t)]dt < ∞, then

V Sτ
t = v(t)Ψ(τ)+Φ(τ), (5.11)

where Ψ(τ) (respectively, Φ(τ)) is the partial derivative of ΨV
u (τ) (respectively,

ΦV
u (τ)) with respect to u, at u = 0.
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Note that this affine link is not satisfied by all stochastic volatility models with
an explicit Laplace transform. For instance, it is not satisfied by the 3/2 model of
Platen (1997) and by the 4/2 model of Grasselli (2016) (see the analysis in Section
4.3 of Jarrow et al. (2013)).

In the following proposition we complete the result by Kallsen et al. (2011),
showing that the functions Ψ(τ) and Φ(τ) are strictly positive. This additional re-
sult is interesting in view of our empirical study of section 5.3, where we test if
S&P data are coherent with the exponential affine framework, based on the signif-
icance of the estimates of the coefficients in (5.11). The proof of this additional
result crucially relies on the characterization of exponential affine models by Fil-
ipovic (2001), who shows, under mild conditions (mainly the non-negativity of v),
that the volatility process v has to be a continuous-state branching processes with
immigration in the exponential affine framework. Note that the explicit stochastic
differential equation satisfied by a generic continuous-state branching process with
immigration is provided by Dawson and Li (2006) and Li and Ma (2008), who also
detail the conditions to have a stationary distribution for the variance process. The
existence of a stationary distribution is usually considered as a natural property of
the variance process.

Proposition 5.3. Let (x,v) follow an exponential affine stochastic volatility model
and assume that the variance process v admits a non-degenerate stationary distri-
bution. Then Ψ(t)> 0 and Φ(t)> 0 for all t > 0.

Based on Proposition 5.3, the exponential affine framework could be rejected
by empirical data if any of the coefficient estimates is not strictly positive. In that
event, it could be worth investigating the adequacy of the more general exponen-
tial mean-reverting variance and polynomial frameworks, respectively detailed in
Subsection 5.2.2 and 5.2.3.

5.2.2 Exponential mean-reverting variance model

In this subsection we introduce a more general subclass of the stochastic volatil-
ity models included in (5.8), which we name exponential mean-reverting variance
models. Moreover, we show that, under this paradigm, an affine relationship be-
tween the variance swap rate and the spot variance holds.

Definition 5.3. Exponential mean-reverting model
The stochastic volatility model (x,v) is an exponential mean-reverting variance

model if (x,v) satisfies

dx(t) =
√

v(t)dW (t)+dJ(t)

dv(t) = dZ(t)+θ(α− v(t))dt
(5.12)
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where θ > 0, the jump process J is square-integrable, with Levy measure affine in
the volatility process, and Z is an integrable zero-mean stochastic process without
negative jumps and such that dZ(t) is zero and the volatility drift is non-zero for all
t such that v(t) = 0, in order to preserve the non-negativity of v (see, for instance,
Feller (1951) and Tanaka (1979) for more details about reflecting conditions on
R+).

This subclass includes not only exponential affine processes but also some non-
Markovian processes driven by a fractional Brownian motion. Relevant examples
with rough behavior inside this subclass are provided by Abi Jaber et al. (2019).
The next result shows that the expected quadratic variation of an exponential mean-
reverting variance model is affine in the spot variance.

Proposition 5.4. Let (x,v) be an exponential mean-reverting variance model, as
defined in (5.12). Then the expectation of the quadratic variation [x] of the log-
price is an affine function of the spot variance v, i.e., there exist deterministic func-
tions Ψ and Φ such that

E [[x]τ ] = v(0)Ψ(τ)+Φ(τ). (5.13)

Differently from the case of the exponential affine framework, in this case the
coefficients Ψ(τ) and Φ(τ) are not strictly positive. A first example of a model
satisfying Definition 5.3 but not Definition 5.2 is the stochastic volatility model by
Hull and White (1987), under which the volatility is log-normal. In particular, the
Hull-White model fits Definition 5.3 for α = 0 and dZ(t) = γv(t)dW (t), where W
is a Brownian motion and γ > 0. A straightforward computation shows that the
variance swap rate is linear with respect to the spot volatility. Moreover, note that
this model only admits a degenerate steady-state distribution, namely a Dirac delta
on zero.

Some other interesting examples are given by models defined via their Laplace
transform as, for instance, those based on stochastic Volterra equations (see Abi Jaber
et al. (2019) and references therein). The main mathematical difficulty inherent to
these models is that the volatility is not a Markov process. One could overcome this
problem by taking an infinite-dimensional point of view. The initial value of the
variance process v(0) is then replaced by a function g0 that takes into account the
initial conditions. Thus, under the infinite-dimensional viewpoint, the link between
the variance swap rate and the initial variance is the functional linear link between
the variance swap rate and the function g0. Finally, note that it is not possible to
work with the function g0 empirically, unless this function is assigned a parametric
form.

In Section 5.3.2 we show that empirical subsamples related to the years 2008
and 2011, where, respectively, the outbreak of the global financial crisis and the
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Euro-zone debt crisis took place, exhibit a non-significant intercept parameter. This
result can tilt the balance in favor of log-normal models like Hull-White during
crisis periods.

5.2.3 Polynomial model

In this section we consider the class of stochastic volatility models based on poly-
nomial processes, introduced in Cuchiero (2011) and Cuchiero et al. (2012). As
pointed out in Cuchiero et al. (2012), exponential affine processes are polynomial
processes. Moreover, under suitable restrictions, the polynomial class could be
considered as a sub-class of (5.8), see Cuchiero (2018).

Let Pk denote the vector space of polynomials up to degree k. In the bi-
dimensional case, we have the following definition of a polynomial process.

Definition 5.4. Polynomial process
A time-homogeneous Markov process (x,v) is said m-polynomial, if, for all

k ∈ {0, . . . ,m}, f ∈Pk, (r,s) in the state space and t > 0, it holds that

(r,s)→ E(r,s) [ f (x(t),v(t))] ∈Pk, (5.14)

where, for any 0 ≤ u < t, we adopt the standard notation E(r,s) [ f (x(t),v(t))] =
E[ f (x(t),v(t))|x(u) = r,v(u) = s]. Also, the semigroup is assumed to be strongly
continuous. Moreover, if (x,v) is m-polynomial for all m ∈ R, then (x,v) is said
polynomial.

A relevant non-affine example in this class is the Jacobi stochastic volatility
model, see Ackerer et al. (2018). Other examples and applications of polynomial
process can be found in Cuchiero (2011); Filipovic et al. (2016); Callegaro et al.
(2017); Cuchiero (2018); Cuchiero et al. (2018); Ackerer and Filipovic (2020).

The following proposition allows us to investigate the existence of a quadratic
correction in the link between theoretical variance swap rates and spot variance in
the polynomial framework.

Proposition 5.5. Let (x,v) be a 2-polynomial process describing a stochastic volatil-
ity model, then the expected quadratic variation of x belongs to P2 in (r,s). More-
over, if (x,v) has continuous paths, then the expected quadratic variation of x is
affine in (r,s).

This result suggests that the presence of a statistically significant quadratic
correction could be explained by the presence of jumps in the underlying. In fact,
the empirical analysis in Section 5.3.2 seems to support this finding. In particular,
in Section 5.3.2, we point out that a quadratic coefficient is statistically significant
in the years with a higher frequency of price jumps.
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We conclude the section by discussing the effects of discrete sampling on the
functional form of the variance swap rate. Indeed, the actual price of traded vari-
ance swaps relies on the computation of the realized variance in place of its asymp-
totic approximation, given by the quadratic variation (see Definition 5.1). In this
regard, the following result holds.

Proposition 5.6. If (x,v) is a 2-polynomial process describing a stochastic volatil-
ity model, then the expected realized variance of x belongs to P2.

Based on Proposition 5.6, the variance swap rate for a polynomial stochas-
tic volatility model is at most quadratic in (x,v), that is, there exist coefficients
pi, j(·), i, j = 0,1,2, such that

V Sτ
t = p0,0(τ)+ p1,0(τ) x(t)+ p0,1(τ) v(t)+ p2,0(τ) x(t)2+ p1,1(τ) x(t)v(t)+ p0,2(τ) v(t)2 .

(5.15)
This result is interesting in that it may help collect empirical evidence supporting
the result by Broadie and Jain (2008). The authors show, for some well known
models, that the expected quadratic variation provides an efficient approximation
of the actual VIX index, whose computation is based on a daily sampling scheme
(see Carr and Wu (2006); CBOE (2019)). In other words, non-significant estimates
of the quadratic coefficients in (5.15) may represent empirical evidence that the
continuous-time approximation works well enough.

Finally, note that, based on Proposition 5.5, the expression (5.15) is also im-
plied by the assumption that the data-generating process is a polynomial stochastic
volatility model with jumps. Section 5.3.2 analyses if a second order correction fits
S&P500 data better than the affine link implied by the affine framework (5.11).

5.3 Empirical study

In this Section we perform an empirical study to investigate if S&P500 daily data
over the period 2006− 2018 are consistent with the affine framework (see Para-
graph 5.3.2) or the polynomial framework (see Paragraphs 5.3.2 and 5.3.2), based
on the statistical significance of the estimates of the coefficients pi, j(·), i, j = 0,1,2,
in (5.15). To perform this study, we use the daily series of variance swap rate and
log-price observations, plus a daily series of estimates of the unobservable spot
variance. Accordingly, this Section begins with the description of the data used
for the empirical exercise, while Section 5.3.1 describes the methods employed to
reconstruct the spot variance path on a daily grid from the series of high-frequency
prices.

The data we use, ranging over the period 2006-2018, are the series of S&P500
prices, recorded at the 1-minute sampling frequency (see panel a) in Figure 5.1),
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and the series of daily VIX index values (see panel b) in Figure 5.1). The period
2006-2018 encompasses a number of volatility peaks, corresponding to historical
financial events such as the global financial crisis of 2008, the flash-crash of May
2010, the Eurozone debt crisis of 2011, the Brexit events of 2016 and the US-China
‘trade war’ of 2018. For a detailed description of the events that have affected the
US stock market since the 1990s, see Horst and Xu (2019).
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Fig. 5.1: Panel a): 1-minute S&P500 trade prices over the period 2006-2018; panel b):
Opening quotes of the VIX index over the period 2006-2018.

5.3.1 Spot variance estimation

The latent spot variance is reconstructed from 1-minute prices using, as a reference,
the Fourier methodology, which is naturally suited to globally reconstruct the spot
volatility trajectory from high-frequency prices (see Chapter 4 in Mancino et al.
(2017)). However, as a robustness check, we also use localized realized variance
estimators (see Chapter 8 in Aı̈t-Sahalia and Jacod (2014)) in our empirical study.
For the reader’s convenience, we briefly recall the definition and main properties
of both Fourier and realized spot variance estimators.

Fourier estimators

Let [0,2π] be the time horizon1 and consider the time price-sampling grid {0= t0 <
.. . < tn = 2π}. For any integer k, |k| ≤ 2N, the k-th (discrete) Fourier coefficient

1In applications, we can always assume that the price process x(t) is observed on [0,2π] by
re-scaling the actual time interval.
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of the log-return process is given by

ck (dxn) :=
1

2π

n−1

∑
j=0

e−ikt j
(

x(t j+l)− x(t j)
)
, (5.16)

where the symbol i denotes the imaginary unit, that is, i =
√
−1.

Then, for |k| ≤ N, the k-th (discrete) Fourier coefficient of the volatility is
defined as

ck (vn,N) :=
2π

2N +1 ∑
|s|≤N

cs (dxn)ck−s (dxn) , (5.17)

The convolution (5.17) contains the identity relating the Fourier transform of
the log-price process x(t) to the Fourier transform ofthe variance v(t). In this re-
gard, it is important to note that the computation of the Fourier coefficients of the
variance process v(t) is not affected by the presence of a price drift, as proved in
Lemma 2.2 of Malliavin and Mancino (2009). Therefore, Fourier volatility esti-
mates obtained from historical prices coincide with those obtained under the risk
neutral measure. The same invariance holds for realized estimators (see Chapter 6
in Aı̈t-Sahalia and Jacod (2014)). Also, as pointed out in Proposition 5.1, variance
swap rates are derived via a static replication based on vanilla options and thus are
risk neutral objects. Consequently, the empirical results we show in Section 5.3.2
hold under the risk neutral measure.

By (5.17) we gather all the Fourier coefficients of the variance function by
means of the Fourier transform of the log-returns. Then, the reconstruction of the
variance function Vt from its Fourier coefficients is obtained through the Fourier-
Fejér summation, i.e., the Fourier estimator of the spot variance is defined the
random function of time

v̂n,N,S(t) := ∑
|k|<S

(
1− |k|

S

)
ck (vn,N)eikt , (5.18)

where S is a positive integer smaller than N. The uniform consistency of this esti-
mator is proven in Malliavin and Mancino (2009)2.

Note that the definition of the estimator v̂n,N,S(t) depends on three parameters,
the number of data n and the two cutting frequencies N and S. An appropriate
choice of the cutting frequencies is needed to filter out microstructure noise ef-
fects. In fact, on one side the estimation of the instantaneous volatility benefits
from the availability of a large amount of data, at least from a statistical point of
view. On the other side, high-frequency data are affected by microstructure noise

2This result is also reported in Chapter 3 of this thesis



5. Is the variance swap rate affine in the spot variance? Evidence from S&P500 data 131

effects deriving from, e.g., bid-ask bounces, infrequent trading and price discrete-
ness. Therefore, it is necessary to employ volatility estimators which are able to
filter out microstructure noise contaminations. The estimator of the spot variance
v(t) by means of the Fourier method has been designed to this aim, and is robust
to the presence of different types of noise contaminations in the price process, see
Mancino and Sanfelici (2008).

The Fourier method to estimate the spot variance has been extended to the case
where jumps are present in the price and the volatility processes by Cuchiero and
Teichmann (2015). The procedure has two steps. First, an estimate of the Fourier
coefficients of a continuous invertible function ρ(v) of the instantaneous variance
is obtained. The estimator of the k-th Fourier coefficient takes the form

1
n

n−1

∑
j=0

e−ikt j g(
√

n(x(t j+1)− x(t j))), (5.19)

where the function g can assume different specifications. We will consider ρg(v(t))=
e−v(t)/2, that is, we choose here g(x) = cos x. Second, we invoke the Fourier-Fejér
inversion formula as in (5.18) to reconstruct the path of the process ρ(v) as follows:

1
2π

1
n

n−1

∑
j=0

FS(t− t j) g(
√

n(x(t j+1)− x(t j))), (5.20)

where FS(·) is the Fejér kernel. Note that also (5.18) can be re-written by means of
FS(·), see Mancino and Recchioni (2015). Finally, this is translated into an estima-
tor of the spot variance by inverting the function ρ(·). The obtained estimator of
the instantaneous variance is consistent and asymptotically efficient in the absence
of microstructure noise (see Cuchiero and Teichmann (2015)).

In order to assess whether the characteristics of the S&P500 1-minute prices
data require either the use of the jump-robust Fourier estimator of spot volatility or
not, we perform the following tests.

First, we split the sample into daily subsamples and apply the test by Aı̈t-
Sahalia and Xiu (2019) for the null hypothesis that the price is an Itô semimartin-
gale. Test results at the 95% confidence level, illustrated in the Figure 5.2, panel a),
show, consistently with the literature Andersen et al. (2001a), that the impact of mi-
crostructure noise on prices can be considered negligible at the 5-minute frequency.
This finding is consistent with the behavior of the volatility signature (Figure 5.2,
panel b)), which shows that the total realized variance of the sample stabilises,
around 0.4, from the 5-minute frequency and downwards.

Secondly, after downsampling the log-price series at the 5-minute frequency,
we apply the jump detection test by Corsi et al. (2010) for the null hypothesis
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that the price is a continuous semimartingale. Test results at the 99.9% confidence
level show that jumps are detected in 10.35% of the daily subsamples over the
period 2006-2018. Figure 5.3 shows the values of the test statistic computed from
daily subsamples (panel a)) and the ensuing percentage of days with jumps per
year (panel b)). The percentage of jumps detected per year is compatible with the
empirical results in Corsi et al. (2010).
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Fig. 5.2: Panel a): rejection rate of the null hypothesis of the noise-detection test by Aı̈t-
Sahalia and Xiu (2019), performed on daily subsamples of S&P500 prices over
the period 2006-2018, for different sampling frequencies; panel b): volatility sig-
nature plot, i.e., total S&P500 realized variance for the period 2006-2018 as a
function of the price sampling frequency.
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Fig. 5.3: Panel a): values of the statistic of the jump-detection test by Corsi et al. (2010)
computed over the period 2006-2018; panel b): ensuing percentage of days with
jumps per year.
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Based on the results of the two tests, in order to obtain spot variance esti-
mates, we proceed as follows. On the consecutive days in which the hypothesis
of absence of jumps is not rejected (amounting approximately to 90% of the sam-
ple), the Fourier estimator (5.18) is applied with all prices recorded at 1-minute
frequency. Instead, for the sparse days in which jumps are detected (amounting
approximately 10% of the sample) we use spot variance estimates obtain through
the Fourier estimator (5.20), applied to sparsely sampled 5-minute prices3.

In the case of the estimator (5.18), the cutting frequencies have been selected
as N = n2/3/2 and S = n2/3/(16π), according to Mancino and Recchioni (2015),
who find these cutting frequencies to be optimal in the presence of different types
of noise and noise intensities. For the estimator (5.20), instead, the frequency S is
selected as S = (n/4)2/3, in accordance to Cuchiero and Teichmann (2015).

Local realized estimators

As mentioned, in order to test the robustness of the results of our empirical study,
we replicate the latter using local realized volatility estimators in place of Fourier
estimators. More precisely, in the absence of jumps, we apply the localized version
of the noise-robust two-scale realized variance of Zhang et al. (2005) to 1-minute
prices, while, when jumps are detected, we apply the localized version of the jump-
robust threshold realized variance of Mancini (2009) to 5-minute prices. These
estimators are defined as follows.

Consider the time window [t− h, t] and assume that n+ 1 prices are sampled
on the grid {t−h = t0 < t1... < tn = t}. The localized two-scale realized variance
and threshold realized variance at time t are given, respectively, by

v̂n,K,h(t) =
1

Kh

n

∑
j=K

(x(t j)− x(t j−K))
2− n̄

n
1
h

n

∑
j=1

(x(t j)− x(t j−1))
2, (5.21)

where n̄ = nh−K+1
Kh , and

v̂n,θ ,h(t) =
1
h

n

∑
j=1

(x(t j)− x(t j−1))
21{(x(t j)−x(t j−1))2 ≤ θ}, (5.22)

where θ is a vanishing threshold. Consistency and asymptotic normality of (5.21)
and (5.22) are proved, respectively, by Zu and Boswijk (2014) and Bandi and Renò
(2018). The finite-sample implementation of (5.21) (respectively, (5.22)) requires

3Note that the estimator by Cuchiero and Teichmann (2015) is also consistent in the presence of
jumps in the volatility, which typically occur jointly to jumps in the price, coherently with the so-
called leverage effect (see, e.g., the empirical studies on US markets in Jacod and Todorov (2010);
Bandi and Renò (2016); Bibinger and Winkelmann (2018)).
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the selection of K and h (respectively θ and h). In the case of (5.21), we select
K = 3 and h = 4 hours based on the feasible method illustrated in Section 3.4 of Zu
and Boswijk (2014). In the case of (5.22), following Section 6 of Bandi and Renò
(2018), we select the threshold θ based on the data-driven procedure suggested by
Corsi et al. (2010) and maintain h = 4 hours to have enough data points to perform
the estimation effectively.

5.3.2 Empirical test results

We now focus on testing the empirical link between the rate of the variance swap
with time to maturity equal to one month, i.e., the VIX index squared, and the
couple spot variance - log price. If estimates of the unobservable spot variance are
available, equation (5.15) can be rewritten, in the case of the S&P500 index, as
follows. Let L = 3267 denote the number of days in our sample and let τ = 1/12.
Then, for ti = i−1

252 , i = 1,2, ...,L4, we write

VIX2
ti = p0,0(τ)+ p1,0(τ)xti + p0,1(τ) v̂n

ti + p2,0(τ)x2
ti + p1,1(τ)xti v̂n

ti + p0,2(τ)(v̂n
ti)

2,
(5.23)

where:

- VIXti denotes the opening (respectively, closing) quote of the VIX index on
the i-th day;

- xti denotes the opening (respectively, closing) log-price of the S&P500 index
on the i-th day;

- v̂n
ti denotes the estimated spot variance at the beginning (respectively, end) of

the i-th day, obtained from a sample of size n through a consistent estimator.

Some comments are needed. First, based on the results of Propositions 5.2 and
5.5, the presence of jumps does not spoil the affine/polynomial structure, thus the
regression coefficients pi, j(τ), i, j = 0,1,2, include the potential contribution of
jumps. In the following, we drop the argument τ from pi, j(τ) as we always con-
sider monthly coefficients. Secondly, the consistency of the spot variance esti-
mators (5.18) and (5.20) (respectively, (5.21) and (5.22)) allows us to neglect the
finite-sample error related to v̂n

ti .
We aim at testing the significance of the estimates of the coefficients in equation

(5.23) in three progressively broader frameworks: the affine framework, introduced
in Definition 5.2 and extended in Definition 5.3 (hereafter, affine framework); the
polynomial framework of Definition 5.4, where the variance swap rate is first as-
sumed to be a quadratic function of v only (hereafter, quadratic framework) and

4This holds for opening quotes. When closing quotes are used, then ti = i
252 , i = 1, ...,L.
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then is assumed to be a polynomial function of the couple (x,v) (hereafter, poly-
nomial framework). Each test is performed using both Fourier and realized spot
variance estimators and both VIX opening and closing quotes to check the robust-
ness of the results.

Affine framework

In this paragraph we consider the exponential affine and exponential mean-reverting
variance models, which both imply the existence of an affine relationship between
the variance swap rate and the spot variance. Note that in the affine framework
equation (5.23) reduces to

VIX2
ti = p0,0 + p0,1 v̂n

ti . (5.24)

Recall that the main discriminant factor between the exponential affine model and
its extension to the exponential mean-reverting variance class is that the former
implies the coefficients p0,0 and p0,1 in equation (5.24) are strictly positive. Thus,
we are not only interested in testing if the affine dependence between the variance
swap rate and the spot variance is satisfied by empirical data, but also in verifying if
both parameter estimates are significantly different from zero, as this would allow
us to accept or reject the exponential affine framework.

The coefficients in (5.24) are estimated using OLS. In order to avoid perform-
ing a spurious regression (see Granger and Newbold (1974)), we first test for the
null hypothesis of the presence of a unit root in the VIX squared series and in
the Fourier (respectively, realized) spot volatility estimates series, using the Aug-
mented Dickey-Fuller test (see Dickey and Fuller (1979)). For all series, test results
at the 99% confidence level reject the null hypothesis. Thus, the series are assumed
to be stationary in the rest of the analysis. The results of the OLS estimation are
overwhelming: we obtain an R2 larger than 0.95 and significant coefficients es-
timates, independently of the spot variance estimator and the VIX sampling time
used, as shown in Table 5.1. In particular, the fact that estimates of both coefficient
are always significant and positive suggests that an exponential affine framework
is a suitable fit for the S&P500 data over the period 2006-2018. Note that the re-
gression standard errors have been computed using the Newey-West methodology
(see Newey and West (1987)), to account for the presence of heteroskedasticity and
autocorrelation in the residuals.

A natural question that arises is whether the coefficients in (5.24) are sensitive
to events of distress, such as the global financial crisis of 2008, or are stable over
time, instead. To investigate this aspect, the coefficients of (5.24) are estimated on
yearly subsamples. Estimation results are detailed in Table 5.5 in the Appendix
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coeff. estimate std. err. t stat. p value R2

Fourier spot var. estimates & p0,0 0.013 0.003 4.142 0 0.958
VIX opening quotes p0,1 0.975 0.129 7.560 0

Fourier spot var. estimates & p0,0 0.013 0.003 3.904 0 0.958
VIX closing quotes p0,1 0.989 0.132 7.516 0

Realized spot var. estimates & p0,0 0.013 0.004 3.804 0 0.950
VIX opening quotes p0,1 1.228 0.196 6.267 0

Realized spot var. estimates & p0,0 0.013 0.003 3.849 0 0.951
VIX closing quotes p0,1 1.251 0.205 6.095 0

Tab. 5.1: Affine framework (5.24): estimation from S&P500 data over the period 2006-
2018 for different combinations of spot variance estimation methods and VIX
sampling times (p-values ≤ 10−4 are reported as zero).

and offer interesting insights. For brevity, here and in the following paragraphs,
for yearly subsamples we report only results for the case when the spot variance is
estimated with Fourier estimators and the VIX opening quotes are used, as results
for other combinations are basically the same for each framework analysed.

In periods of distress, like 2008, when the global financial crisis broke out, or
2011, when the financial turmoil related to sovereign debt crisis in the Euro area
took place, the intercept estimates are not significant at the 95% confidence level.
Thus, based on Proposition 5.3, S&P500 data in 2008 and 2011 look consistent
only with the broader assumption of an exponential mean-reverting variance data-
generating process, which poses no restrictions on the sign of the coefficients. In
other words, results on yearly subsamples tilt the balance in favor of the use, during
crisis periods, of models that imply a linear relationship between the variance swap
rate and the spot variance, such as the model by Hull and White (1987) (see the
discussion in Section 5.2.2). Finally, note that the empirical analysis suggests that
the drift of the variance process is affine in the variance itself. As a consequence,
models with stronger mean reversion, e.g., the 3/2 model, are not coherent with
our empirical findings.

Quadratic framework

In this paragraph we extend the analysis to take into account a possible quadratic
link between variance swap rates and spot variance. Through the following, the
term quadratic is used to refer to polynomial models that are not exponential affine,
where no risk of confusion exists. According to Propositions 5.5 and 5.6, when
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polynomial models with jumps are considered and/or discrete-sampling effects can
not be neglected, the variance swap rate is a bivariate polynomial in X and V .
Based on these results, the rest of our empirical study is aimed to investigating the
possible existence of a quadratic link between the variance swap rate and the spot
variance and/or the log-price. In particular, the analysis is split into two parts. In
this paragraph, devoted to what we have called the quadratic framework, we check
if a quadratic form with respect to the spot variance fits the data better than an
affine form. In the next paragraph we will deal with the general form as in (5.23).
In the quadratic framework, equation (5.23) reads

VIX2
ti = p0,0 + p0,1 v̂n

ti + p0,2
(
v̂n

ti

)2
. (5.25)

However, we measure the sample linear correlation between the reconstructed
spot variance and its square and find it to be larger than 0.8 for both Fourier and
realized estimates, thus signalling the presence of collinearity, which represents a
violation of the OLS hypotheses. The problem of collinearity is typical of poly-
nomial regressions and can be solved by transforming the regressors in equation
(5.25) through the use of orthogonal polynomials, i.e., by performing an orthogo-
nal polynomial regression (see Narula (1979)). This way we are able to isolate the
actual additional contribution of the square of variance estimates to the dynamics
of the VIX index squared, if any. Accordingly, using the Gram-Schmidt algorithm,
we transform the vector of spot variance estimates and the vector of their squared
values into orthogonal vectors and estimate the following regression model:

VIX2
t = q0,0 +q0,1 z(1)t +q0,2 z(2)t , (5.26)

where z(1) and z(2) denote, respectively, the orthogonal transformations of the vec-
tor of the spot variance estimates and the vector of the squared spot variance esti-
mates. Clearly, the coefficients in equation (5.26) are not comparable to those those
in (5.25). However, this is not relevant for our study, as we aim only at assessing
the significance of the additional contribution of the squared variance estimates to
the dynamics of the VIX squared, not at making inference of the coefficients in
equation (5.25).

The results of the OLS estimation of the coefficients in (5.26) over the period
2006-2018 are reported in Table 5.2. These results point out that the additional con-
tribution of the squared spot variance is not statistically significant, independently
of the spot variance estimator and VIX sampling time used. In order to interpret
these results, we first need to recall that, from one side the class of polynomial
models includes exponential affine one as a subclass, from the other, in the pres-
ence of jumps, while the polynomial model gives rise to a quadratic correction (see
Proposition 5.5), the exponential affine model still ensures an affine link between
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the variance swap rate and the spot variance. Therefore, as in Paragraph 5.3.2, we
have already ascertained that the exponential affine framework is a suitable fit for
S&P500 data over the period 2006-2018, we deduce that the results in Table 5.2
confirm the adequacy of the exponential affine framework in capturing the empiri-
cal features of S&P500 data. In other words, Table 5.2 points towards the fact that
the extension to the quadratic framework is not necessary to capture the empirical
link between the variance swap rate and the spot variance.

Furthermore, Table 5.2 offers additional interesting insight. Recall that the
computation of the VIX index is based on a daily sampling scheme. Thus, it is
natural to ask whether the VIX index squared is adequately approximated by its
asymptotic counterpart, namely the future expected quadratic variation. If this
were not the case, one would observe a significant quadratic correction due to the
discrete sampling, see Proposition 5.6. As this is not the case, we infer that the
continuous limit represents a very good approximation, thus providing empirical
support to the numerical result by Broadie and Jain (2008).

coeff. estimate std. err. t stat. p value R2

Fourier spot var. estimates & q0,0 0.040 0.001 32.150 0 0.959
VIX opening quotes q0,1 2.959 0.394 7.507 0

q0,2 0.019 0.566 0.034 0.973
Fourier spot var. estimates & q0,0 0.040 0.001 35.507 0 0.959

VIX closing quotes q0,1 2.713 0.316 8.586 0
q0,2 0.020 0.378 0.054 0.957

Realized spot var. estimates & q0,0 0.041 0.001 35.378 0 0.951
VIX opening quotes q0,1 4.324 0.353 12.257 0

q0,2 0.018 0.268 0.067 0.946
Realized spot var. estimates & q0,0 0.042 0.001 36.699 0 0.952

VIX closing quotes q0,1 4.546 0.330 13.780 0
q0,2 0.019 0.262 0.073 0.942

Tab. 5.2: Quadratic framework (5.26): estimation from S&P500 data over the period 2006-
2018 for different combinations of spot variance estimation methods and VIX
sampling times (p-values ≤ 10−4 are reported as zero).

As in the affine framework (see Paragraph 5.3.2), we also analyse yearly sub-
samples in order to evaluate if coefficient estimates are sensitive to events of dis-
tress. The ensuing estimation results are shown in Table 5.6 in the Appendix. Note
that the quadratic term is not statistically significant in 2006, 2008, 2012, 2014
and 2018. Based on Figure 5.1, panel b), and the detailed analysis in Horst and



5. Is the variance swap rate affine in the spot variance? Evidence from S&P500 data 139

Xu (2019), these years appear truly different, in terms of the state of the finan-
cial market. For instance, during 2008 and 2018, the VIX exhibits spikes, related,
respectively, to the global financial crisis and the ‘China-US trade war’. In con-
trast, 2006 and 2012 do not experience relevant economic events, see Horst and
Xu (2019). The year 2014 represents an intermediate situation, where the VIX is
almost flat until the end of October, when a cluster of spikes arises due to the end
of quantitative easing policy by the Federal Reserve in the US. Thus, it is hard to
attribute the statistical significance of the quadratic terms in Table 5.6 to events of
financial distress.

Focusing on the frequency of price jumps in Figure 5.3, panel b), we highlight
that 2006, 2014, and 2018 show a relatively low percentage of days with jumps.
Thus, keeping in mind the result in Proposition 5.5, the non-significance of the
quadratic coefficient in these years could be linked to the low percentage of days
with jumps. The number of jumps in 2012 seems not coherent with this interpre-
tation of the results in Table 5.6. Indeed, the quadratic term is not statistically
significant in 2012, despite the fact that the percentage of days with jumps in 2012
is the second largest after 2011. However, 2012 can be deemed as an atypical year,
in terms of market liquidity. In 2012 a series of important expansionary monetary
policies were started by central banks to respond to the Euro-zone debt crisis and
its international ramifications. These include the decision by the European Central
Bank to cut its rates in multiple steps and to start a long-term refinancing operation
(LTRO) during the first trimester of 2012, and the decision by the US Federal Open
Market Committee to start a quantitative easing in September and to increase it in
December of 2012. Thus, the year 2012 is characterized by an atypical number of
positive jumps in response to this new paradigm of ‘Infinity Quantitative Easing’,
that massively increased the market liquidity.

Polynomial framework

In the last paragraph, the polynomial framework (5.23) is analysed. Before fitting
this model, we examine the sample correlation matrix of the regressors, which is
shown in Table 5.3 for the case when the spot variance is reconstructed using the
Fourier method and log-price daily opening values are used. Other combinations of
daily opening/closing log-price series and Fourier/realized spot variance estimates
yield sample correlation matrices which are almost identical to that in Table 5.3.

Table 5.3 provides empirical evidence of the existence of an almost perfect lin-
ear dependence between the log-price and its square, and between the spot variance
and the product of the log-price and the spot variance. Moreover, the analysis con-
ducted in Section 5.3.2 has already shown that the additional contribution of the
squared spot variance estimates to the dynamics of the squared VIX is not signifi-
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V̂t V̂ 2
t Xt X2

t XtV̂t

V̂t 1
V̂ 2

t 0.839 1
Xt -0.370 -0.181 1
X2

t -0.362 -0.177 0.999 1
XtV̂t 0.999 0.834 -0.355 -0.347 1

Tab. 5.3: Sample correlation matrix of the regressors of the polynomial form (5.23) over
the period 2006-2018.

cant. Thus, it remains only to evaluate the additional contribution of the log-price.
This polynomial framework could then be associated with a fully affine form in
both the log-return and the spot variance.

With regard to daily (opening and closing) log-prices series, recall that it is a
well-known stylized fact that daily asset price series are non-stationary. Indeed,
the Augmented Dickey Fuller test, performed at the 90% confidence level, con-
firms that our opening and closing log-price series have a unit root. To cope with
non-stationarity, we estimate the coefficients in equation (5.23) after replacing log-
prices with their detrended values, i.e., their values minus their sample mean. The
estimation results are summarized in Table 5.4. Based on Table 5.4, the contribu-
tion of the log-price is not statistically significant at the 95% confidence level, but
only at 90% level, independently of the spot variance estimator and the VIX sam-
pling time used. Overall, this result confirms that the affine framework is sufficient
to adequately fit our sample.

Finally, it is worth evaluating if the additional contribution of the price in ex-
plaining the dynamics of the VIX index squared is statistically significant on yearly
subsamples, i.e., under different economic scenarios. The results of the year-by-
year estimation are summarized in Table 5.7 in the Appendix and are in line with
the whole-sample results.
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coeff. estimate std. err. t stat. p value R2

Fourier spot var. estimates & p0,0 0.015 0.004 4.089 0 0.959
VIX opening quotes p0,1 0.931 0.142 6.549 0

p1,0 -0.018 0.010 -1.774 0.076
Fourier spot var. estimates p0,0 0.016 0.003 5.132 0 0.960

VIX closing quotes p0,1 0.864 0.125 6.898 0
p1,0 -0.018 0.010 -1.783 0.075

Realized spot var. estimates p0,0 0.018 0.003 6.405 0 0.952
VIX opening quotes p0,1 0.899 0.114 7.909 0

p1,0 -0.019 0.010 -1.875 0.061
Realized spot var. estimates p0,0 0.017 0.004 4.686 0 0.953

VIX closing quotes p0,1 1.042 0.156 6.699 0
p1,0 -0.018 0.010 -1.818 0.069

Tab. 5.4: Polynomial (fully affine) framework: estimation from S&P500 data over the pe-
riod 2006-2018 for different combinations of spot variance estimation methods
and VIX sampling times (p-values≤ 10−4 are reported as zero; p1,0 indicates the
coefficient of the detrended price).

5.4 Conclusions

This chapter provides empirical evidence that S&P500 data over the period 2006-
2018 are coherent with the exponential affine framework, introduced by Kallsen
et al. (2011), who analytically prove the existence of an affine relationship between
the expected future variance, i.e., the variance swap rate, and the spot variance.
This chapter collects empirical evidence that this affine relationship fits the data
overwhelmingly well, with statistically significant coefficients and an R2 larger
than 0.95. Further, this chapter provides empirical evidence that the daily sam-
pling used to compute the actual variance swap rates is frequent enough to erase
the quadratic correction due to discrete sampling. The quadratic correction is ex-
pected within the polynomial framework, which includes the exponential affine
framework as a special case. This empirical non-parametric result confirms the re-
sult by Broadie and Jain (2008), which was obtained on data simulated from four
parametric models belonging to the exponential affine class. In general, note that
the empirical findings of the chapter are basically insensitive to the volatility esti-
mator used and the VIX sampling time, and this clearly robustifies their validity.

The chapter focuses also on yearly subsamples, in order to evaluate the sensi-
tivity to events of financial distress. Empirical results on yearly subsamples are
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more nuanced. In particular, it emerges that the exponential affine framework
could be rejected in 2008 and 2011. These two years include the outbreaks of
two global financial crisis sparked, respectively, by the American housing market
and the sovereign debt in the Euro area. Models in the exponential mean-reverting
variance framework seem more adequate to capture the features of empirical data
in those two years of financial distress. Farther, the significance of the quadratic
coefficients in years with a relatively large number of price jumps supports the use
of polynomial models in the presence of more frequent jumps.

5.5 Appendix

5.5.1 Proofs

Proof of Proposition 5.3
Here we adopt, where no ambiguity arises, the parameter notation introduced

in Lemma 4.2 of Kallsen et al. (2011) for the exponential affine model. Using the
equation for ΨV

u and ΦV
u in Proposition 5.2 and differentiating the two equations

with respect to u, we have

∂ 2ΨV
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Taking u = 0 and recalling that ΨV
0 (t) = 0 for all t, we obtain the relations

satisfied by (Ψ,Φ), that read

∂Ψ

∂ t
(t) = β

1
1 Ψ(t)+ γ

22
1 +

∫
R+×R

(
x1Ψ(t)+ x2
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ds .

Note that in our case γ22
0 = 0, see (5.8). Then, splitting the integrals and recall-

ing that h(x) is a truncating function, there exists non-negative parameters (β̃ 1
1 , β̃

1
0 ),

that is, the parameters associated with the truncating function h(x) = x, such that:
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∂Ψ

∂ t
(t) = β̃

1
1 Ψ(t)+ γ

22
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x2
2 κ1(dx),

Φ(t) =
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0

[
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1
0 Ψ(s)+

∫
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x2
2 κ0(dx)

]
ds .

Note that Ψ solves a non-homogeneous linear differential equation with non-
negative external term γ22

1 +
∫
R+×R x2

2 κ1(dx). This term is zero if and only if γ22
1 =

0 and κ1(dx) = 0, that is, in the case of the exponential Levy model. We deduce
that Ψ(s) > 0 for all positive s, except for the exponential Levy model, for which
volatility is constant and thus the stationary distribution is degenerate. We now
turn to Φ and assume Ψ(s) > 0. Using the integral representation of Φ, we easily
obtain that Φ > 0 if and only if β̃ 1

0 6= 0 or κ0(dx) 6= 0, see also Filipovic (2001).
This is equivalent to assuming that the process V is a continuous-state branch-

ing process with immigration. Instead, in the case β̃ 1
0 = 0 and κ0(dx) = 0, the

process V is a continuous-state branching process without immigration. Without-
immigration continuous-state branching processes do not have a stationary distri-
bution, see Theorem 3.20 and Corollary 3.21 in Li (2011).

Proof of Proposition 5.4
The quadratic variation of x is rewritten as [x]t = [xc]t +∑s≤t(∆xs)

2, where xc

denotes the continuous part of the log-price x. According to (5.12), we have [xc]t =∫ t
0 v(s)ds. It is easy to show that the variance process v is integrable using Gron-

wall’s lemma, since the drift of the variance process is affine and Z is integrable by
hypothesis. We now focus on the jump contribution, ∑s≤t(∆xs)

2 = ∑s≤t(∆Js)
2. Re-

calling that the process J is square-integrable, we obtain that the optional version
of the quadratic variation [x]t is finite almost surely. Introducing the predictable
version 〈x〉t of the quadratic variation and recalling that the optional and the pre-
dictable version of the quadratic variation differ by a martingale, we obtain that

E [[x]τ ] = E [〈x〉τ ] = E
[∫

τ

0
v(s)ds+

∫ ∫
τ

0
ζ

2
λ (dζ ,ds)

]
.

Considering first the jump term, exploiting that λ is affine in the variance process
v, we deduce that the jump part is affine in the expectation of the integral of the
variance process. Focusing now on the term E

[∫
τ

0 v(s)ds
]
, we consider the integral

version of the stochastic differential equation (5.12), i.e.,

v(t)− v(0) = Zt +θ

∫ t

0
(α− v(s))ds.

Taking the expectation, we obtain that E
[∫

τ

0 v(s)ds
]
= θ−1 (αθτ + v(0)−E [v(τ)])

and E [v(t)] satisfies a linear ODE. This result, combined with the previous result,
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proves that the expectation of the quadratic variation is an affine function of the
initial spot variance.

Proof of Proposition 5.5
According to the characterization in Proposition 2.12 of Cuchiero et al. (2012),

if (x,v) is a 2-polynomial process then

[x,x]t =
∫ t

0
v(s)ds+

∫ t

0

∫
ζ

2
λ (dζ ,ds) =:

∫ t

0
a(x(s),v(s))ds,

where a ∈ P2. Then, the result for E(r,s)[[x,x]t ] follows from Theorem 3.2 in
Cuchiero (2011) and the application of the stochastic Fubini theorem.
In particular, if we consider the quadratic variation of xc, together with the evo-
lution (5.8), we have that [xc]t =

∫ t
0 v(s)ds. Taking the expectation and applying

the stochastic Fubini theorem, we obtain E [[xc]t ] =
∫ t

0 E [v(s)]ds. Now, using the
hypothesis that (x,v) is 2-polynomial, we see that the function f (r,s) = s ∈P1,
and integrating we obtain the result.

Proof of Proposition 5.6
Using the definition of realized variance RV n

[0,τ] given in (5.2), we take the ex-
pected value of RV n. Due to the finiteness of the sum, the expected value of RV n

[0,τ]
gives

E(r,s)
[
RV n

[0,τ]

]
=

n

∑
k=1

E(r,s)
[
(x(tk)− x(tk−1))

2
]
.

Noting that the function inside the expectation belongs to P2, we have that E
[
RV n

[0,τ]

]
belongs to P2.
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5.5.2 Results of tests on yearly subsamples

year coeff. estimate std. err. t stat. p value R2

2006 p0,0 0.011 0.001 9.422 0 0.441
p0,1 0.473 0.173 2.728 0.006

2007 p0,0 0.014 0.004 3.944 0 0.659
p0,1 0.858 0.205 4.178 0

2008 p0,0 0.020 0.016 1.358 0.175 0.980
p0,1 0.932 0.177 5.293 0

2009 p0,0 0.031 0.008 3.847 0 0.863
p0,1 1.315 0.161 8.188 0

2010 p0,0 0.025 0.008 3.152 0.002 0.824
p0,1 0.936 0.314 2.986 0.003

2011 p0,0 0.014 0.013 1.091 0.275 0.911
p0,1 1.434 0.413 3.470 0.001

2012 p0,0 0.023 0.002 9.383 0 0.319
p0,1 0.550 0.124 4.461 0

2013 p0,0 0.016 0.001 13.223 0 0.495
p0,1 0.351 0.083 4.226 0

2014 p0,0 0.015 0.001 12.823 0 0.541
p0,1 0.486 0.215 2.264 0.024

2015 p0,0 0.015 0.006 2.467 0.014 0.887
p0,1 0.695 0.332 2.094 0.036

2016 p0,0 0.014 0.001 11.834 0 0.817
p0,1 0.599 0.058 10.303 0

2017 p0,0 0.011 0.001 9.000 0 0.248
p0,1 0.245 0.060 4.076 0

2018 p0,0 0.012 0.001 10.055 0 0.912
p0,1 0.753 0.061 12.178 0

Tab. 5.5: Affine framework (5.24): estimation from S&P500 data over yearly subsamples
when Fourier spot variance estimates and VIX opening quotes are used (p-values
≤ 10−4 are reported as zero).
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year coeff. estimate std. err. t stat. p value R2

2006 q0,0 0.020 0.008 2.429 0.015 0.448
q0,1 8.286 4.572 1.812 0.070
q0,2 -6.765 6.979 -0.969 0.332

2007 q0,0 0.028 0.001 23.010 0 0.670
q0,1 2.956 0.584 5.064 0
q0,2 -4.384 0.652 -6.722 0

2008 q0,0 0.052 0.036 1.433 0.152 0.980
q0,1 2.842 0.348 8.159 0
q0,2 0.723 1.237 0.585 0.559

2009 q0,0 0.056 0.002 23.510 0 0.872
q0,1 1.850 0.613 3.020 0.003
q0,2 -3.859 0.799 -4.832 0

2010 q0,0 0.044 0.001 37.123 0 0.838
q0,1 0.309 0.142 2.178 0.029
q0,2 -2.235 0.673 -3.323 0.001

2011 q0,0 0.044 0.036 1.233 0.218 0.930
q0,1 0.512 0.197 2.598 0.009
q0,2 -3.944 1.206 -3.271 0.001

2012 q0,0 0.038 0.010 3.998 0 0.320
q0,1 1.842 0.405 4.552 0
q0,2 0.119 2.924 0.041 0.968

2013 q0,0 0.013 0.004 3.667 0 0.496
q0,1 4.462 1.483 3.008 0.003
q0,2 -3.784 1.047 -3.614 < 10−3

2014 q0,0 0.064 0.017 3.806 0 0.739
q0,1 15.423 7.114 2.168 0.030
q0,2 9.245 4.889 1.891 0.059

2015 q0,0 0.030 0.001 25.012 0 0.890
q0,1 0.340 0.042 8.086 0
q0,2 -1.104 0.234 -4.713 0

2016 q0,0 0.028 0.001 23.007 0 0.867
q0,1 1.301 0.489 2.661 0.008
q0,2 -2.629 1.039 -2.531 0.011

2017 q0,0 0.065 0.022 3.024 0.003 0.330
q0,1 33.004 8.664 3.809 0
q0,2 -22.721 5.791 -3.923 0

2018 q0,0 0.035 0.004 9.667 0 0.914
q0,1 2.903 1.430 2.029 0.042
q0,2 0.453 1.245 0.364 0.716

Tab. 5.6: Quadratic framework (5.26): estimation from S&P500 data over yearly subsam-
ples when Fourier spot variance estimates and VIX opening quotes are used (p-
values ≤ 10−4 are reported as zero).
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year coeff. estimate std. err. t stat. p value R2

2006 p0,0 0.011 0.005 2.248 0.024 0.601
p0,1 0.288 0.126 2.284 0.022
p1,0 -0.052 0.023 -2.261 0.024

2007 p0,0 0.019 0.005 3.997 0 0.670
p0,1 0.855 0.196 4.365 0
p1,0 0.065 0.037 1.741 0.082

2008 p0,0 0.023 0.013 1.726 0.084 0.980
p0,1 0.602 0.191 3.148 0.002
p1,0 -0.387 0.101 -3.830 0

2009 p0,0 0.046 0.016 2.921 0.004 0.909
p0,1 0.874 0.226 3.869 0
p1,0 -0.197 0.049 -3.997 0

2010 p0,0 0.024 0.008 2.855 0.004 0.829
p0,1 0.514 0.179 2.870 0.004
p1,0 -0.180 0.052 -3.486 0.001

2011 p0,0 0.067 0.040 1.696 0.090 0.934
p0,1 0.681 0.302 2.257 0.024
p1,0 -0.483 0.133 -3.619 < 10−3

2012 p0,0 0.017 0.006 2.798 0.005 0.394
p0,1 0.259 0.082 3.174 0.002
p1,0 0.004 0.004 0.999 0.317

2013 p0,0 0.016 0.001 12.989 0 0.496
p0,1 0.356 0.082 4.349 0
p1,0 0.004 0.005 0.749 0.453

2014 p0,0 0.017 0.005 3.497 0.001 0.552
p0,1 0.461 0.225 2.052 0.040
p1,0 -0.014 0.024 -0.600 0.549

2015 p0,0 0.121 0.019 6.307 0 0.894
p0,1 0.141 0.036 3.897 0
p1,0 -0.366 0.069 -5.346 0

2016 p0,0 0.048 0.010 4.996 0 0.900
p0,1 0.420 0.048 8.743 0
p1,0 -0.106 0.033 -3.257 0.001

2017 p0,0 0.022 0.004 5.995 0 0.470
p0,1 0.186 0.058 3.227 0.001
p1,0 -0.025 0.007 -3.497 0.001

2018 p0,0 0.065 0.025 2.569 0.010 0.913
p0,1 0.587 0.089 6.603 0
p1,0 -0.090 0.043 -2.082 0.037

Tab. 5.7: Polynomial (fully affine) framework: estimation from S&P500 data over yearly
subsamples when Fourier spot variance estimates and VIX opening quotes are
used (p-values ≤ 10−4 are reported as zero; p1,0 indicates the coefficient of the
detrended price).



6. CONCLUSIONS: MAIN RESULTS OF THE THESIS

The main findings of this thesis can be summarized as follows. For what regards
analytical results, the main contribution of this thesis is three-fold. First, we derive
a rate-efficient central limit theorem for the non-parametric Fourier estimator of
the integrated leverage (see Chapter 2). Secondly, in a level-dependent setting, we
derive explicit expressions for the derivatives of the leverage process with respect
to the price and the volatility as the ratios of quantities that can be consistently
estimated from sample prices over a fixed time horizon, that is, as the ratios of
the price-leverage covariation and, respectively, the volatility and the leverage (see
Chapter 3). Finally, we uncover the sources of finite-sample bias that affect the
simple realized vol-of-vol estimator, the PSRV by Barndorff-Nielsen and Veraart
(2009), and provide a feasible rule to optimize such bias, based on the overlapping
of consecutive local windows for pre-estimating the spot volatility (see Chapter 4),
when the volatility is a process in the CKLS class (see Chan et al. (1992)).

Additionally, this thesis provides three contributions to the empirical litera-
ture on financial econometrics, based on the study of S&P500 data over the period
2006-2018. First, we show that the inclusion of an extra term that accounts for
the leverage effect increases the explanatory power of the HAR volatility model
by Corsi (2009) in a statistically significant manner, thereby extending and robus-
tifying the empirical results in Mykland and Wang (2014), which are based on a
simple auto-regressive model of order 2 (see Chapter 2). Further, we collect empir-
ical evidence that suggests to interpret the price-leverage covariation as a measure
of the responsiveness of the leverage to price and volatility changes (see Chap-
ter 3). Finally, we collect overwhelming empirical evidence that supports the use
affine stochastic volatility models in financial applications (see Chapter 5).
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