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ON THE LERAY-SCHAUDER DEGREE OF THE TODA SYSTEM

ON COMPACT SURFACES

ANDREA MALCHIODI(1) AND DAVID RUIZ(2)

Abstract. In this paper we consider the following Toda system of equations
on a compact surface:

{

−∆u1 = 2ρ1 (h1e
u1 − 1)− ρ2 (h2e

u2 − 1) ,
−∆u2 = 2ρ2 (h2e

u2 − 1)− ρ1 (h1e
u1 − 1) .

Here h1, h2 are smooth positive functions and ρ1, ρ2 two positive parameters.
In this note we compute the Leray-Schauder degree mod Z2 of the problem

for ρi ∈ (4πk, 4π(k+1)) (k ∈ N). Our main tool is a theorem of Krasnoselskii
and Zabreiko on the degree of maps symmetric with respect to a subspace.
This result yields new existence results as well as a new proof of previous
results in literature.

1. Introduction

In this paper we consider the following problem on a compact orientable surface Σ:

(1)

{

−∆u1 = 2ρ1 (h1e
u1 − 1)− ρ2 (h2e

u2 − 1) ,
−∆u2 = 2ρ2 (h2e

u2 − 1)− ρ1 (h1e
u1 − 1) .

Here h1, h2 are smooth positive functions and ∆ is the Laplace-Beltrami operator.
Equation (1) is known as the Toda system, and has been extensively studied in

the literature. This problem has a close relationship to geometry, since it describes
the integrability of Frenet frames for holomorphic curves in CP

2 (see [5]). Moreover,
it arises in the study of non-abelian Chern-Simons theory in the self-dual case, when
a scalar Higgs field is coupled to a gauge potential, see [4, 17, 19].

Let us first discuss the scalar counterpart of (1), namely a Liouville equation in
the form:

(2) −∆u = ρ (h eu − 1) ,

where ρ ∈ R and h(x) > 0. Equation (2) arises in the prescribed Gaussian curvature
problem under conformal deformation of the metric, and also describes the abelian
counterpart of (1) from the physical point of view. This equation has been very
much studied in the literature; there are by now many results regarding existence,
compactness of solutions, bubbling behavior, etc. We refer the interested reader to
the reviews [14, 18].

Problem (2) presents a lack of compactness, as its solutions might blow-up.
Indeed, take a blowing up sequence un of (1) with ρn ∈ R bounded. Then it was
proved in [2, 11, 12] that, up to a subsequence

ρn → 8kπ, k ∈ N.
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Moreover, eun behaves like the conformal factor of the stereographic projection from
S2 onto R2, composed with a dilation, and located at a finite number of points.

With that result at hand, one can define the Leray-Schauder degree associated
to problem (1) and ρ ∈ (8kπ, 8(k+ 1)π). By the homotopy property of the degree,
the latter is independent of the metric g and the function h, and will only vary with
k and the topology of Σ. The computation of the degree has been accomplished in
[3], where the following formula is given:

(3) dLS =
1

k!
(−χ(Σ)+1) · · · (−χ(Σ)+k), (χ(Σ) is the Euler characteristic of Σ).

In order to obtain this formula, in [3] a detailed study of all blowing-up solutions
and their local degree is performed (see also [13] for a different approach).

Coming back to system (1), it was proved in [6, 8] that the set of solutions is
compact for (ρ1, ρ2) /∈ (4πN×R)∪ (R×4πN). In other words, if blowing up occurs,
at least one of the components is quantized.

Therefore, as above, the degree for (1) is well defined for (ρ1, ρ2) away from that
set. It is easy to observe that this degree is equal to 1 if both ρi are smaller than
4π (one can deform the parameters to ρ1 = ρ2 = 0). Apart from that, there exists
no formula for the Leray-Schauder degree for system (1) yet.

Because of that, most of the existence results for problem (1) have used vari-
ational methods so far. Indeed, it has been proved that there exists at least one
solution in the following cases:

(1) for both ρi < 4π (see [7]);
(2) for any ρ1 < 4π, ρ2 ∈ (4kπ, 4(k + 1)π), k ∈ N (see [15]);
(3) for both ρi ∈ (4π, 8π) (see [16]);
(4) for ρ1 ∈ (4kπ, 4(k + 1)π), ρ2 ∈ (4mπ, 4(m + 1)π), k, m ∈ N and Σ with

positive genus (see [1]).

In (1), it is proved that the associated energy functional is coercive and hence a
minimum is found. The rest of the results use min-max theory, as the functional is
no longer bounded from below.

In this note we discuss the parity of the degree for ρi ∈ (4nπ, 4(n + 1)π), see
Proposition 2.2. Our result is consequence of a general theorem (recalled in the
next section) concerning the degree of maps symmetric with respect to a subspace,
see [9]. We will show that the degree of the Toda system has the same parity as
the degree of the scalar case with ρ = ρi, which is given by (3).

In particular, the degree is always odd for ρi ∈ (4nπ, 4(n+ 1)π) if n = 1, 2, 3.
The case n = 1 implies a new, simpler proof, of the existence result of [16]. The
cases n = 2 or 3 yield a new existence result:

Theorem 1.1. Assume that Σ is homeomorphic to S2, and ρi ∈ (4nπ, 4(n+ 1)π),
with n = 2 or 3. Then there exists a solution to (1).

Acknowledgment: D. R. thanks Rafael Ortega, from the University of Granada,
for several discussions on the degree for symmetric maps and his kind help in finding
reference [9].

2. The parity of the Leray-Schauder degree

The main abstract tool we are going to use is the following one, which is a version
of Theorem 21.12 of [9] (page 115).



ON THE LERAY-SCHAUDER DEGREE OF THE TODA SYSTEM 3

Theorem 2.1. Let P be a continuous linear projection from a Banach space E
onto a (closed) subspace E0 ⊆ E, and define U = −Id + 2P the reflection with
respect to E0, which is assumed to be an isometry. Let A : E → E be a compact
operator equivariant with respect to U , that is

AU(x) = UA(x) ∀x ∈ E.

Observe that in particular A(E0) ⊂ E0. Finally, assume that Φx = x−Ax does not
vanish on the boundary of BR = B(0, R). Then, deg(Φ, BR, 0) and deg(Φ|E0 , BR ∩
E0, 0) have the same parity.

Remark 2.1. Theorem 2.1 is easy to understand if we assume that Φ is C1 and
that all its zeroes are non-degenerate. In such case, all zeroes have index ±1, and
the total degree is the sum of the indexes of all zeroes. Observe now that if x is a
zero of Φ, then also Ux is a zero. Moreover x = Ux if and only if x ∈ E0. In other
words, the zeroes outside E0 come in pairs, and give an even contribution to the
total degree.

Furthermore, the index of x ∈ E0 a zero of Φ could be different from its index
as a zero of Φ|E0 , but in both cases it is ±1. So the difference is even.

The proof of [9] is topological and does not use these arguments.

Let us assume, for simplicity, that V olg(Σ) = 1. For α ∈ (0, 1) we consider the
functional framework

E = C2,α
0

(Σ)× C2,α
0

(Σ),

where C2,α
0

(Σ) stands for the class of C2,α functions with zero average. Define now
the operator A = Ah1,h2

ρ1,ρ2
: E → E as

A

(

u1

u2

)

=





(−∆)−1

[

2ρ1

(

h1
eu1∫

Σ
h1e

u1dVg
− 1

)

− ρ2

(

h2
eu2∫

Σ
h2e

u2dVg
− 1

)]

(−∆)−1

[

2ρ2

(

h2
eu2∫

Σ
h2e

u2dVg
− 1

)

− ρ1

(

h1
eu1∫

Σ
h1e

u1dVg
− 1

)]



 .

Here by (−∆)−1f , f ∈ Cα(Σ), we denote the unique solution u of −∆u = f with
zero average. In the above formula solutions exist by Fredholm’s theory. Notice
also that zeroes of Φ = Id − A give rise to solutions of (1). Indeed, it suffices to
add proper constants to u1, u2 in order to have

∫

Σ
hie

uidVg = 1.

By elliptic regularity theory the operator A is compact. Moreover, if n ∈ N and
ρ1, ρ2 ∈ (4nπ, 4(n + 1)π), the solutions are a priori bounded, see [6]. Therefore
for such values of ρ1, ρ2 and for R sufficiently large the degree deg(Φ, BR, 0) is well
defined. The main result of this paper is the following:

Proposition 2.2. Consider n ∈ N and let ρ1, ρ2 ∈ (4nπ, 4(n + 1)π). Then, for
sufficiently large R, deg(Φ, BR, 0) has the same parity as

dk =
1

k!
(−χ(Σ) + 1) · · · (−χ(Σ) + k),

where χ(Σ) is the Euler characteristic of Σ and k = [n/2].

Proof. Let us consider the homotopy

(1− s)(ρ1, ρ2) + s(ρ, ρ); ρ =
1

2
(ρ1 + ρ2);
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(1− s)(h1, h2) + s(h, h); h =
1

2
(h1 + h2).

By the homotopy invariance of the degree we deduce that (for R sufficiently large)

(4) deg(Φh1,h2
ρ1,ρ2

, BR, 0) = deg(Φh,h
ρ,ρ , BR, 0).

Because of that, it suffices to study the degree for h1 = h2 = h, ρ1 = ρ2 = ρ.
We choose E0 to be the couples of identical functions in E, namely

E0 =

{(

u1

u2

)

∈ E : u1 = u2

}

,

and we define the projection P : E → E0 as

P

(

u1

u2

)

=
1

2

(

u1 + u2

u1 + u2

)

.

Observe that the reflection U is given by:

U

(

u1

u2

)

=

(

u2

u1

)

.

With these definitions, we are in conditions to apply Theorem 2.1, and hence
deg(Φ, BR, 0) has the same parity as deg(Φ|E0 , BR ∩ E0, 0).

We now define:

T : C2,α
0

(Σ) → E0, T (u) =

(

u
u

)

.

Clearly T is an homeomorphism, which implies that:

deg(Φ|E0 , BR ∩ E0, 0) = deg(T−1 ◦ Φ|E0 ◦ T, B̃R, 0),

where B̃R = B(0, R) ⊂ C2,α
0

(Σ).
Observe now that:

Φ̃(u) := T−1 ◦ Φ|E0 ◦ T (u) = u− (−∆)−1

[

ρ

(

h
eu

∫

Σ
heudVg

− 1

)]

.

Moreover, ρ ∈ (4nπ, 4(n+1)π) ⊂ (8kπ, 8(k+1)π) for k = [n/2]. Finally, deg(Φ̃, B̃R, 0)
has been computed in [3] and it is given by the formula (3). Notice that the Leray-
Schauder degree in [3] has been computed in the H1 setting, but using elliptic
regularity theory one can prove that this coincides with the degree in the C2,α

setting, see Theorem B.1 in [10]. This concludes the proof.

Observe that if n = 1, then k = 0 and hence the degree is odd. In this way we obtain
the existence result of [16] with an alternative approach. There are other cases in
which the degree is odd, so we recover some of the results of [1]. In particular, if
n = 2, 3, then k = 1 and the degree is odd for any compact orientable Σ. As a
consequence, we obtain Theorem 1.1, which gives a new existence result.
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tions and their Applications, 72. Birkhäuser Boston Inc., Boston, MA, 2008. An analytical
approach.

[18] Gabriella Tarantello. Analytical, geometrical and topological aspects of a class of mean field
equations on surfaces. Discrete Contin. Dyn. Syst., 28(3):931–973, 2010.

[19] Yisong Yang. Solitons in field theory and nonlinear analysis. Springer Monographs in Math-
ematics. Springer-Verlag, New York, 2001.

(1) University of Warwick, Mathematics Institute, Zeeman Building, Coventry CV4
7AL and SISSA, via Bonomea 265, 34136 Trieste (Italy).
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