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Abstract
We study the performance of some preconditioning techniques for a class of block
three-by-three linear systems of equations arising fromfinite element discretizations of
the coupled Stokes–Darcy flow problem. In particular, we investigate preconditioning
techniques including block preconditioners, constraint preconditioners, and aug-
mented Lagrangian-based ones. Spectral and field-of-value analyses are established
for the exact versions of these preconditioners. The result of numerical experiments
are reported to illustrate the performance of inexact variants of the various precon-
ditioners used with flexible GMRES in the solution of a 3D test problem with large
jumps in the permeability.

Mathematics Subject Classification 65F10

1 Introduction

The coupled Stokes–Darcy model describes the interaction between free flow and
porous media flow. It is a fundamental problem in several fields [14]. In one subregion
of theflowdomain� a free-flowingfluid is governedby the (Navier–)Stokes equations;
in another subregion, the fluid follows Darcy’s Law. The equations are coupled by
conditions across the interface between the two subregions. In this paper we will only
consider the case of stationary problems and Stokes flow.

Let� be a computational domain partitioned into two non-overlapping subdomains
�1 and �2, separated by an interface �12. We assume that the flow in �1 is governed
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258 F. P. A. Beik, M. Benzi

by the stationary Stokes equations:

−∇ · (2νD(u1) − p1I) = f1 in �1,

∇ · u1 = 0 in �1,

u1 = 0 on �1 = ∂�1 ∩ ∂�.

Here ν > 0 represents the kinematic viscosity, u1 and p1 denote the velocity and
pressure in �1, f1 is an external force acting on the fluid, I is the identity matrix, and

D(u1) = 1

2

(
∇u1 + ∇uT1

)

is the rate of strain tensor. We also assume that the boundary �2 = ∂� ∩ ∂�2 of the
porous medium is partitioned into disjoint Neumann and Dirichlet parts �2N and �2D ,
with �2D having positive measure. The flow in �2 is governed by Darcy’s Law:

−∇ · K∇ p2 = f2 in �2,

p2 = gD on �2D,

K∇ p2 · n2 = gN on �2N .

Here p2 represents the Darcy pressure in �2, and the symmetric positive definite
(SPD) matrix K represents the hydraulic conductivity in the porous medium. The
Darcy velocity can be obtained from the pressure using

u2 = −K∇ p2 in �2.

The coupling between the two flows comes from the following interface conditions
on the internal boundary �12. Let n12 and t12 denote the unit normal vector directed
from �1 to �2 and the unit tangent vector to the interface. Then we impose

u1 · n12 = −K∇ p2 · n12,
(−2νD(u1)n12 + p1n12) · n12 = p2,

u1 · t12 = −2νG(D(u1)n12) · t12.

The first two conditions enforcemass conservation and the balance of normal forces
across the interface; the third condition represents the Beavers–Joseph–Saffman (BJS)
law, in which G is an experimentally determined constant. Let

X = {v1 ∈ (H1(�1))
2 | v1 = 0 on �1}, Q1 = L2(�1)

be the Stokes velocity and pressure spaces and let

Q2 = {q2 ∈ H1(�2) | q2 = 0 in �2D}
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be the Darcy pressure space. The weak formulation of the coupled Stokes–Darcy
problem is:
find u1 ∈ X, p1 ∈ Q1 and p2 ∈ Q2 such that

a(u1, p2; v1, q2) + b(v1, p1) = f(v1, q2) ∀v1 ∈ X, ∀q2 ∈ Q2,

b(u1, q1) = 0 ∀q1 ∈ Q1.

Here

a(u1, p2; v1, q2) = a�1(u1, v1) + a�2(p2, q2) + a�12(u1, p2; v1, q2)

where

a�1(u1, v1) = 2ν
∫

�1

D(u1) : D(v1) + 1

G

∫

�12

(u1 · t12)(v1 · t12),

a�2(p2, q2) =
∫

�2

K∇ p2 · ∇q2,

a�12(u1, p2; v1, q2) =
∫

�12

(p2v1 − q2u1) · n12.

Also,

b(u1, q1) = −
∫

�1

(∇ · u1)q1,

and

f(v1, q2) =
∫

�1

f1 · v1 +
∫

�2

f2q2 +
∫

�2N

gNq2.

The well-posedness of the weak formulation is a consequence of Brezzi-Fortin theory
(see, e.g., [11]). The weak form is discretized using conforming finite elements spaces
Xh ⊂ X, Qh

1 ⊂ Q1 satisfying the inf-sup condition for the Stokes velocity and
pressure, such as theMINI and Taylor–Hood elements. For the Darcy pressure a space
of piecewise continuous polynomials Qh

2 ⊂ Q2 is used (linear in 2D, quadratic in
3D).

The discrete form of the weak formulation can be cast as a block linear system of
the form

Au =
⎡
⎣

A�2 AT
�12

0
−A�12 A�1 BT

0 B 0

⎤
⎦

⎡
⎣
p̂2
û1
p̂1

⎤
⎦ =

⎡
⎣

f̂2,h
f̂1,h
ĝh

⎤
⎦ = b

where A�2 , A�1 , A�12 are the matrices of the discrete bilinear forms and B is the
discrete divergence. Under our assumptions A�2 and A�1 are SPD and B has full row
rank; we refer the reader to [12,13] for further details.
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We now introduce a slight change of notation and rewrite the previous linear system
of equations in the following form:

Au =
⎡
⎣
A11 A12 0
A21 A22 BT

0 B 0

⎤
⎦

⎡
⎣
u1
u2
u3

⎤
⎦ =

⎡
⎣
b1
b2
b3

⎤
⎦ = b, (1)

where A11 and A22 are both SPD, A21 := −AT
12 and B has full row rank. We observe

in passing that this system is an example of a double saddle point problem, and that
similarly structured systems arise in a number of applications, see [5]. In particular
we note that using the following similarity transformation,

A1 =
⎡
⎣
A22 BT −AT

12
B 0 0
A12 0 A11

⎤
⎦ = XTAX , (2)

where

X =
⎡
⎣
0 0 I
I 0 0
0 I 0

⎤
⎦ ,

we can immediately conclude (under our assumptions) the invertibility of A from [5,
Proposition 2.1].

The iterative solution of the discrete coupled Stokes–Darcy equations has attracted
considerable attention in recent years. Here we limit ourselves to discussing solution
algorithms based on preconditioned Krylov subspace methods. In [13], the following
two constraint-type preconditioners were proposed for accelerating the convergence
of Krylov subspace methods:

PconD =
⎡
⎣
A11 0 0
0 A22 BT

0 B 0

⎤
⎦ and PconT =

⎡
⎣
A11 0 0
A21 A22 BT

0 B 0

⎤
⎦ . (3)

Also Cai et al. [12] proposed the following block triangular preconditioner,

PT1,ρ := PT1(ρ) =
⎡
⎣
A11 0 0
0 A22 0
0 B −ρMp

⎤
⎦ , (4)

where Mp is the mass matrix associated with the Stokes pressure space, and ρ > 0
is a user-defined parameter. For 2D problems, the preconditioner PconT outperforms
the other preconditioners in terms of both iterations and CPU-time when used with
GMRES. Exact variants of the preconditioners result in h-independent rates of conver-
gence, as predicted by the theory. For 3D problems, only the inexact variants of these
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preconditioners are feasible. Of the inexact variants, PT1,ρ with suitable ρ requires
the least CPU time, according to [13].

The constraint preconditioners and PT1,ρ are norm equivalent to A in (1) under
certain conditions; see [12,13]. On the other hand, the Field-of-Values (FOV) equiva-
lence of constraint preconditioners with A was proved in [13]. It is well-known that
if a preconditioner is norm equivalent to the coefficient matrix of a linear system of
equations, the spectra of the preconditioned system remain uniformly bounded and
bounded away from zero as the mesh size h → 0, see [23] for more details. Here, we
directly determine some bounds for the eigenvalues of the preconditioned matrices
associated withPconD ,PconT andPT1,ρ . In particular, we show that the eigenvalues of
the preconditioned matrix corresponding to PconT are nicely clustered under certain
conditions.

In the present work, we also consider the following block triangular preconditioner:

Pr =
⎡
⎣
A11 A12 0
0 A22 + r BT Q−1B BT

0 0 − 1
r Q

⎤
⎦ (5)

applied to the augmented linear system of equations Āu = b̄, where

Ā =
⎡
⎣
A11 A12 0
A21 A22 + r BT Q−1B BT

0 B 0

⎤
⎦ , (6)

and b̄ = (b1; b2 + r BT Q−1b3; b3), with Q being an arbitrary SPD matrix and r >

0 a user-defined parameter. Evidently, the linear system of equations Āx = b̄ is
equivalent toAu = b. This approach is motivated by the success of the use of grad-div
stabilization and augmented Lagrangian techniques for solving saddle point problems.

The remainder of this paper is organized as follows. In Sect. 2 we derive lower and
upper bounds for the eigenvalues of the preconditionedmatrices corresponding to all of
the above-mentioned preconditioners. In Sect. 3, we establish FOV-type bounds for the
preconditioned system associated with the preconditioner of type (5). Some numerical
experiments are reported in Sect. 4 to compare the performance of preconditioners,
in particular in the presence of inexact solves. Brief conclusive remarks are given in
Sect. 5.

Notations. We use “i” for the imaginary unit. The notation σ(A) is used for the
spectrum of a square matrix A. When all eigenvalues of A are real and positive,
we use λmin(A) and λmax(A) to respectively represent the minimum and maximum
eigenvalues of A. The notation ρ(A) stands for the spectral radius of A. When A is
symmetric positive (semi)definite, we write A � 0 (A � 0). Furthermore, for two
given matrices A and B, by A � B (A � B) we mean A − B � 0 (A − B � 0). For
H � 0, the corresponding vector norm is given by

〈v, v〉H = 〈Hv, v〉 = vT Hv = ‖v‖2H ,
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whose induced matrix norm is defined by

‖M‖H = max
0 �=v

‖Mv‖H
‖v‖H .

For given vectors x , y and z of dimensions n, m and p, (x; y; z) will denote a column
vector of dimension n + m + p.

2 Spectral analysis

This section is devoted to deriving lower and upper bounds for the eigenvalues of pre-
conditionedmatricesP−1

conTA,P−1
conDA,P−1

T1,ρ
A andP−1

r Ā. To this end, first, we recall
the following basic lemma which is an immediate consequence of Weyl’s Theorem,
see [20, Theorem 4.3.1].

Lemma 2.1 Let A and B be two Hermitian matrices. Then,

λmax(A + B) ≤ λmax(A) + λmax(B),

λmin(A + B) ≥ λmin(A) + λmin(B).

The following two results provide information on the eigenvalues of the constraint-
preconditioned matrices.

Theorem 2.2 Suppose that PconD is defined by (3). The eigenvalues of P−1
conDA are

either equal to unity, or complex numbers of the form 1 ± i
√

ξ , where

0 < ξ ≤ λmax(AT
12A

−1
11 A12)

λmin(A22)
.

Proof Let λ ∈ σ(P−1
conDA) with the corresponding eigenvector (x; y; z). Therefore,

we have

A11x + A12y = λA11x (7)

A21x + A22y + BT z = λ(A22y + BT z) (8)

By = λBy. (9)

Notice that λ = 1 is a possible eigenvalue of P−1
conDA with corresponding eigenvector

(0; y; z) where y ∈ Ker(A12) and z is an arbitrary vector such that y and z are not
both zero.

It is also immediate to observe that λ �= 1 implies y �= 0. Otherwise, in view of
(7), we have x = 0 when y = 0. In this case, Eq. (8) results in BT z = 0, which is
equivalent to z = 0 since BT has full column rank. Hence, we get (x; y; z) = (0; 0; 0),
which is impossible since (x; y; z) is an eigenvector.
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In the rest of proof, we assume that λ �= 1, which implies By = 0 by (9). Now, we
can compute vector x from (7) as follows:

x = 1

λ − 1
A−1
11 A12y.

Multiplying both sides of Eq. (8) by y∗ and recalling that A21 = −AT
12, we get

(λ − 1)2 = − y∗AT
12A

−1
11 A12y

y∗A22y
,

which is equivalent to

λ = 1 ± i

√
y∗AT

12A
−1
11 A12y

y∗A22y
,

from which the assertion follows immediately. ��
Theorem 2.3 Let PconT be defined by (3). Then

σ(P−1
conTA) ⊂

[
1, 1 + λmax(AT

12A
−1
11 A12)

λmin(A22)

]
.

Proof Let λ be an arbitrary eigenvalue of P−1
conTA with the corresponding eigenvector

(x; y; z). Therefore, we have,

A11x + A12y = λA11x (10)

A21x + A22y + BT z = λ(A21x + A22y + BT z) (11)

By = λBy. (12)

For y ∈ Ker(A12), we observe that 1 ∈ σ(P−1
conTA)with the corresponding eigenvector

(x; y; z) where x and z are arbitrary vectors with at least one of them nonzero when
y = 0. In the rest of proof, we assume that λ �= 1. From (10), we obtain

x = 1

λ − 1
A−1
11 A12y.

Notice that from the fact that BT has full column rank, similar to the proof of The-
orem 2.2, one can conclude that y �= 0. In addition, Eq. (12) shows that By = 0
when λ �= 1. Now, we first substitute x from the above expression into (11) and then
multiply both sides by (λ − 1)y∗, which yields

y∗A21A
−1
11 A12y + (λ − 1)y∗A22y = λy∗A21A

−1
11 A12y + λ(λ − 1)y∗A22y.
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264 F. P. A. Beik, M. Benzi

Using A21 = −AT
12, we obtain the following quadratic equation:

λ2 − (2 + γ̂ )λ + (1 + γ̂ ) = 0, (13)

where

γ̂ =
y∗

(
AT
12A

−1
11 A12

)
y

y∗A22y
. (14)

The roots of (13) are given by λ1 = 1 and λ2 = 1 + γ̂ . This shows that the
eigenvalue λ ∈ σ(P−1

conTA), not being equal to one, can be written in the following
form:

1 +
y∗

(
AT
12A

−1
11 A12

)
y

y∗A22y
,

which completes the proof. ��
Remark 2.4 If A22 � AT

12A
−1
11 A12, then from the proof Theorem 2.3 we can conclude

that λ ∈ [1, 2] for λ ∈ σ(P−1
conTA). Similarly, from the proof of Theorem 2.2, for

λ ∈ σ(P−1
conDA), we can deduce that |Im(λ)| ≤ 1 when A22 � AT

12A
−1
11 A12.

We have been able to verify numerically that for linear systems of the form (1)
arising from the finite element discretization of coupled Stokes–Darcy flow, the con-
dition A22 � AT

12A
−1
11 A12 in the above remark is indeed satisfied. In fact, we observed

that the condition A22 � AT
12A

−1
11 A12 + σ BT M−1

p B (with 0 < σ ≤ 2) holds true for
problems of small or moderate size, and numerical tests suggest that it may hold for
larger problems as well.

We now turn to the spectral analysis of the block triangular preconditioner PT1,ρ .
Based on numerical experiments, Cai et al. [12] pointed out that the performance
of PT1,ρ is not very sensitive to the scaling factor ρ, particularly when it belongs to
interval [0.6, 1.05]; see [12, Table 2]. Moreover, it is numerically observed that the
spectrum P−1

T1,ρ
A lies in a semi-annulus which does not include zero and is entirely

contained in the right half-plane; see [12, Figure 2]. In what follows, we show that
the experimentally observed eigenvalue distribution of P−1

T1,ρ
A can be theoretically

proven for certain values of ρ. To do so, first, we recall a theorem established by
Kakeya [21] in 1912.

Theorem 2.5 If p(z) = ∑n
j=0 a j z j is a polynomial of degree n with real and positive

coefficients, then all the zeros of p lie in the annulus R1 ≤ |z| ≤ R2 where R1 =
min

0≤ j≤n−1
a j/a j+1 and R2 = max

0≤ j≤n−1
a j/a j+1.

Notice that if amonotonicity assumption holds for the coefficients of the polynomial
p in the above theorem, i.e., 0 ≤ a0 ≤ a1 ≤ · · · ≤ an , then all zeros of p are strictly
less than unity in modulus. The latter results is the well-known Eneström–Kakeya
Theorem [1].
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Proposition 2.6 Consider the preconditioned matrix P−1
T1,ρ

A where PT1,ρ is defined

by (4), with ρ > 0. If A22 � AT
12A

−1
11 A12 + ρ−1BT M−1

p B and λ ∈ σ(P−1
T1,ρ

A), then
either λ = 1, or ξ ≤ |λ − 1| ≤ 1 and |λ| > τ , for some positive constants ξ < 1
and τ .

Proof Let λ be an arbitrary eigenvalue of P−1
T1,ρ

A with the corresponding eigenvector
(x; y; z). As a result, we have

A11x + A12y = λA11x (15)

A21x + A22y + BT z = λA22y (16)

By = λBy − ρλMpz. (17)

Note that 1 ∈ σ(P−1
T1,ρ

A) with the corresponding eigenvector (0; y; 0) for 0 �= y ∈
Ker(A12). From now on, we assume that λ �= 1. From (15) and (17), we obtain
x = (λ − 1)−1A−1

11 A12y and z = ρ−1λ−1(λ − 1)M−1
p By, respectively. Notice that y

is nonzero, otherwise x and z are both zero which is in contradiction with the fact that
(x; y; z) is an eigenvector. In the sequel, without loss of generality, we assume that
y∗y = 1. Noting that A21 = −AT

12, we substitute x and z in (16) which yields

(1 − λ)−1 p + (1 − λ)q + λ−1(λ − 1)r = 0,

where,

p = y∗AT
12A

−1
11 A12y, q = y∗A22y and r = ρ−1y∗BT M−1

p By.

Multiplying both sides of the preceding relation by λ(1 − λ), we derive

λ(λ − 1)2 − r

q
(λ − 1)2 + p

q
λ = 0.

For simplicity, we set t = λ − 1 and rewrite the previous relation as follows:

t2(t + 1) − r

q
t2 + p

q
(t + 1) = 0. (18)

It is easy to check that that if λ �= 1, then y ∈ Ker(B) ∩ Ker(A12) implies that y is
a zero vector, which is impossible. As a result, p and r cannot be both zero. When
p = 0, we readily obtain

λ = r

q
≥ min

{
ρ−1y∗BT M−1

p By

λmax(A22)

∣∣∣∣∣ y /∈ Ker(B)

}
.
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Notice that if r = 0 then either t = ±i pq or t + 1 = 0. Since λ �= 0, in this case,

we only conclude that λ = 1 ± i pq and ϕ1 <
p
q < 1 with

ϕ1 = min

{
y∗AT

12A
−1
11 A12y

λmax(A22)

∣∣∣∣∣ y /∈ Ker(A12)

}
> 0.

Next, we assume r , p �= 0 (i.e., y /∈ Ker(B) ∪ Ker(A12)) and rewrite (18) as
follows:

t3 +
(
1 − r

q

)
t2 + p

q
t + p

q
= 0.

By the assumption q > r + p, hence

p

q
≤

(
1 − r

q

)
< 1.

Therefore, from Theorem 2.5, we conclude that ξ ≤ |t | = |λ − 1| ≤ 1 by setting
ξ = min{ϕ1, ϕ2} where

ϕ2 = λmin(A22 − ρ−1BT M−1
p B)

λmax(A22)
> 0,

keeping in mind that p
q ≤ p

q−r . Now, from Eq. (18), we observe that

|λ| = |t + 1|
≥ r |t |2

q|t |2 + p
≥ rξ2

q + p

≥ τ

λmax(A22 + AT
12A

−1
11 A12)

,

where τ = min
{
ξ2ρ−1y∗BT M−1

p By
∣∣∣ y /∈ Ker(B)

}
> 0. ��

Theorem 2.7 Suppose that Pr and Ā are respectively defined by (5) and (6). The
eigenvalues of P−1

r Ā are all real and positive. More precisely, we have

σ(P−1
r Ā) ⊆

[
θ, 2 + λmax(AT

12A
−1
11 A12)

λmin(A22)

]
,

where

θ = ζ

2 + λmax(AT
12A

−1
11 A12)/λmin(A22)

,
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with

ζ = min

{
r y∗BT Q−1By

y∗A22y + r y∗BT Q−1By

∣∣∣∣ y /∈ Ker(B)

}
.

Proof For ease of notation, we set Ā22 = A22 + r BT Q−1B. Let λ ∈ σ(P−1
r Ā) be an

arbitrary eigenvalue with the corresponding eigenvector (x; y; z). Therefore, we have

A11x + A12y = λ(A11x + A12y) (19)

A21x + Ā22y + BT z = λ( Ā22y + BT z) (20)

By = −λ

r
Qz (21)

Notice that for y /∈ Ker(B), we have that λ = 1 is an eigenvalue of P−1
r A with the

corresponding eigenvector (0; y;−r Q−1By). Also, λ = 1 is obviously an eigenvalue
of P−1

r A associated with eigenvector (0; y; 0) when 0 �= y ∈ Ker(B).
In the rest of proof, we assume that λ �= 1. From Eqs. (19) and (21), we respectively

derive

x = −A−1
11 A12y and z = − r

λ
Q−1By.

The preceding two relations for x and z make it clear that y cannot be the zero vector.
Without loss of generality, we may assume that ‖y‖2 = 1.

If 0 �= y ∈ Ker(B), we deduce that z = 0. It follows that

λ = 1 + y∗AT
12A

−1
11 A12y

y∗ Ā22y
≤ 1 + λmax(AT

12A
−1
11 A12)

λmin(A22)
,

recalling that A21 = −AT
12. Now, we discuss the case that y /∈ Ker(B). Substituting

vectors x and z into (20) and performing straightforward computations, we obtain

y∗AT
12A

−1
11 A12y + (1 − λ)y∗ Ā22y + r

(
1 − 1

λ

)
y∗BT Q−1By = 0.

Multiplying both sides of the above relation by −λ, we obtain the following quadratic
equation:

λ2 − γ λ + η = 0, (22)

where

γ = 1 +
y∗

(
AT
12A

−1
11 A12 + r BT Q−1B

)
y

y∗ Ā22y
and η = r y∗BT Q−1By

y∗ Ā22y
.
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Evidently, γ = 1 + γ̃ + η with

γ̃ =
y∗

(
AT
12A

−1
11 A12

)
y

y∗ Ā22y
.

Observing that γ 2 − 4η ≥ (1 + η)2 − 4η ≥ 0, we have that all of the eigenvalues of
P−1
r Ā are real. Moreover, if λ1 and λ2 are the roots of (22) then

λ1λ2 = η and λ1 + λ2 = γ.

Hence, recalling that Ā22 = A22 + r BT Q−1B, we easily obtain

λ1λ2 → 1 and (λ1 + λ2) → 2,

as r → ∞, i.e., all eigenvalues satisfying (22) tend to 1 for r → ∞. From (22), we
have

λ1 = γ − √
γ 2 − 4η

2
and λ2 = γ + √

γ 2 − 4η

2
.

It is not difficult to verify that

λ1 = 2η

γ + √
γ 2 − 4η

≥ η

γ
. (23)

Consequently, in view of the facts that λmin(BT Q−1B) = 0, η ≤ 1 and 0 < ζ ≤ η

for y /∈ Ker(B), we conclude that

λ1 ≥ η

γ
≥ ζ

2 + y∗(AT
12A

−1
11 A12)y/y∗ Ā22y

≥ ζ

2 + λmax(AT
12A

−1
11 A12)/λmin(A22)

.

Evidently, since η ≤ 1, we have

λ2 ≤ γ ≤ 2 + y∗AT
12A

−1
11 A12y

y∗A22y
,

which completes the proof. ��
Remark 2.8 Notice that when A22 � AT

12A
−1
11 A12, then from the proof of Theorem 2.7,

we obtain that σ(P−1
r Ā) lies in the interval [1, 2] in the limit as r → ∞. Moreover,

“most” of the eigenvalues of the preconditioned matrix are either equal to 1, or tend
to 1 as r → ∞.
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Fig. 1 Eigenvalue distributions of Ā (top) versus that of the preconditioned matrix P−1
r Ā (bottom) for

different values of r , with Q = diag(Mp) for a 3D coupled Stokes–Darcy problem with 1695 degrees of
freedom

The eigenvalue distribution in Theorem 2.7 and Remark 2.8 is illustrated in Fig. 1.
A full description of the test problem and of its finite element discretization can be
found in Sect. 4.

3 Field-of-values analysis

In the previous section,we established eigenvalue bounds for the preconditionedmatri-
ces.A clustered spectrum (away from0) often results in rapid convergence, particularly
when the preconditioned matrix is close to normal; see [6] for more details. However,
the situation is more complicated when the problem is far from normal. Indeed, the
eigenvalues may not describe the convergence of nonsymmetric matrix iterations like
GMRES; see [19]. The notions of norm equivalence and of field-of-values equivalence
often provide the theoretical framework needed to establish optimality of a class of
preconditioners for Krylov methods like GMRES [2,4,9,15,16,22,23]; see also [7] for
a recent overview.

Herewe derive FOV-type bounds for the preconditionedmatrix associatedwith pre-
conditioner Pr . For the constraint preconditioners PconD and PconT , this equivalence
has been established by Chidyagwai et al. [13].

3.1 Basic concepts

In this subsection we briefly overview the required background for establishing FOV-
type bounds, see [13,23] for more details.

We begin by reviewing the notion of spectral equivalence for families of SPD
matrices [3]. Recall that two families of SPD matrices {An} and {Bn} (parametrized
by their dimension n) are said to be spectrally equivalent if there exist n-independent
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constants α and β with

0 < α ≤ λi (B
−1
n An) ≤ β, ∀i .

Equivalently, {An} and {Bn} are spectrally equivalent if the spectral condition num-
berκ(B−1

n An) is uniformly boundedwith respect ton. Yet another equivalent condition
is that the generalized Rayleigh quotients associated with An and Bn are uniformly
bounded:

0 < α ≤ 〈Anx, x〉
〈Bnx, x〉 ≤ β, ∀x �= 0.

Note that this is an equivalence relation between families of matrices.
Next, we recall the concepts of H -norm-equivalence and H -field-of-value-

equivalence, where H corresponds to a given SPD matrix. For simplicity, in the
following we drop the subscript n but it should always be kept in mind that matri-
ces representing discretizations always depend on the dimension n (which in turn
depends on the mesh size h). Similarly, with a slight abuse of language we will talk
of equivalence of matrices rather than of families of matrices.

Definition 3.1 Two nonsingular matrices M, N ∈ R
n×n are H -norm-equivalent,

M∼H N , if there exist positive constants α0 and β0 independent of n such that the
following holds for all nonzero x ∈ R

n :

α0 ≤ ‖Mx‖H
‖Nx‖H ≤ β0.

Equivalently, M∼H N is equivalent to

∥∥∥MN−1
∥∥∥
H

≤ β0,
∥∥∥NM−1

∥∥∥
H

≤ α−1
0 .

Definition 3.2 Let H be an n×n symmetric positive definite matrix and let A ∈ R
n×n .

The H -field of values of A is the set

FH (A) := {z ∈ C | z = 〈Ax, x〉H , ‖x‖H = 1}.

Definition 3.3 Two nonsingular matrices M, N ∈ R
n×n are H -field-of-values-

equivalent, M≈H N , if there exist positive constants α0 and β0 independent of n
such that the following holds for all nonzero x ∈ R

n :

α0 ≤
〈
MN−1x, x

〉
H

〈x, x〉H and
∥∥∥MN−1

∥∥∥
H

≤ β0. (24)

This definition implies that if M≈H N , the H -field of values of MN−1 lies in the
right half-plane and is both bounded and bounded away from 0 uniformly in n.
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Remark 3.4 If M and N are symmetric positive definite and H = In , then M≈H N
reduces to spectral equivalence.

Proposition 3.5 Let M and N be two symmetric nonsingular matrices such that
M≈H N where H is a given symmetric positive definite matrix. Then M−1≈H−1N−1.

Proof The result follows from some algebraic computations. Note that M and N are
both symmetric and relations (24) hold for some constant α0 and β0.

Let v be an arbitrary nonzero vector. Setting y = H−1v, we have

〈
M−1Nv, v

〉
H−1

〈v, v〉H−1
=

〈
M−1NHy, y

〉

〈Hy, y〉

=
〈
y, NM−1y

〉
H

〈y, y〉H
.

Now setting y = MN−1z in the above relation, we find that

〈
M−1Nv, v

〉
H−1

〈v, v〉H−1
=

〈
MN−1z, z

〉
H∥∥MN−1z

∥∥2
H

=
〈
MN−1z, z

〉
H/ ‖z‖2H∥∥MN−1z

∥∥2
H / ‖z‖2H

≥ α0

β2
0

.

To complete the proof, we need to show that there exists β̂0 such that

∥∥∥M−1N
∥∥∥
H−1

≤ β̂0.

For an arbitrary nonzero vector v, we have that

‖v‖H−1∥∥M−1Nv
∥∥
H−1

= ‖v‖H−1

∥∥M−1Nv
∥∥
H−1∥∥M−1Nv

∥∥2
H−1

≥
〈
M−1Nv, v

〉
H−1〈

M−1Nv, M−1Nv
〉
H−1

.

Consequently, setting v = N−1My, we derive

‖v‖H−1∥∥M−1Nv
∥∥
H−1

≥
〈
MN−1H−1y, y

〉
〈
H−1y, y

〉 .

Now, we set y = Hx which together with the above relation implies that

‖v‖H−1∥∥M−1Nv
∥∥
H−1

≥
〈
MN−1x, x

〉
H

〈x, x〉H ≥ α0.
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Defining β̂0 = α−1
0 , we obtain

∥∥M−1Nv
∥∥
H−1

‖v‖H−1
≤ β̂0,

which completes the proof. ��
Remark 3.6 With a similar argument used in the proof of the above proposition, one
can verify thatM≈H N implies N≈HM for any symmetric nonsingularmatricesM, N
and symmetric positive definite matrix H with appropriate dimensions.

We also recall the following useful definitions and properties.

Definition 3.7 Let M ∈ R
m×n and let H1 ∈ R

n×n , H2 ∈ R
m×m be two symmetric

positive definite matrices, then

‖M‖H1,H2 = max
v∈Rn\{0}

‖Mv‖H2

‖v‖H1

.

Note that when H1 = H2 = H and m = n, the above definition reduces to the
following standard matrix norm,

‖M‖H,H = ‖M‖H .

Also, it can be seen that

‖H−1/2
2 MH−1/2

1 ‖2 = ‖M‖H1,H
−1
2

=
∥∥∥MH−1

1

∥∥∥
H−1
1 ,H−1

2

=
∥∥∥H−1

2 M
∥∥∥
H1,H2

.

It can be shown that when H1 = H2 = H , from the above relation, we have

∥∥∥H−1/2MH−1/2
∥∥∥
2

=
∥∥∥MH−1

∥∥∥
H−1

=
∥∥∥H−1M

∥∥∥
H

.

We further observe that

‖MN‖H3,H1 ≤ ‖N‖H3,H2‖M‖H2,H1 ,

where H3 is a given arbitrary SPD matrix of the appropriate size.
Henceforth we assume that the matrix A ∈ R

n×n satisfies the following stability
conditions [12,13]:

max
w∈Rn\{0} max

v∈Rn\{0}
wTAv

‖w‖H‖v‖H ≤ c1, (25a)

min
w∈Rn\{0} max

v∈Rn\{0}
wTAv

‖w‖H‖v‖H ≥ c2, (25b)
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where c1 and c2 are positive constants independent of n, and the matrix H is SPD.
For the coupled Stokes–Darcy problem H is a block diagonal matrix with diagonal
blocks H1 ∈ R

n1×n1 and H2 ∈ R
n2×n2 (with n1 + n2 = n) given by

H1 =
[
A11 0
0 A22

]
, H2 = Mp, (26)

where Mp denotes the mass matrix for the Stokes pressure space; see [13] for more
details.

Similar to [13], we also need the following results from [23] which can be obtained
making use of the stability conditions (25).

Lemma 3.8 Let (25) hold, then H ∼H−1 A and H−1 ∼H A−1, and in particular

‖H−1A‖H = ‖AH−1‖H−1 ≤ c1,

‖A−1H‖H = ‖HA−1‖H−1 ≤ c−1
2 .

Lemma 3.9 Let (25) hold and assume that P ∼H−1 H, then

P ∼H−1 A and P−1 ∼H A−1.

Lemma 3.10 Let (25) hold, then ‖A‖H1,H
−1
1

≤ c1, ‖C‖H1,H
−1
2

≤ c1, where C = [0 B]

and

A =
[
A11 A12
A21 A22

]
.

Lemma 3.11 Let (25) hold. If there exists c3 independent of n1 such that

min
w∈Rn1\{0}

max
v∈Rn1\{0}

wT Av

‖w‖H1
‖v‖H1

≥ c3, (27)

then S = CA−1CT satisfies S ∼H−1
2

H2 and H−1
2 ∼H2 S−1, where C and A

are defined as in Lemma 3.10. Hence, there exists c4 independent of n1 such that
‖S−1‖H−1

2 ,H2
≤ c4 .

Lemma 3.12 [13, Lemma 3.8] ‖M‖H1,H
−1
2

= ‖MT ‖H2,H
−1
1

3.2 FOV-type bounds

The following proposition is established in [17] for symmetric matrices. In [18, Popo-
sition 2.1], it is pointed out that the result remains true for nonsymmetric matrices as
well.
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Proposition 3.13 Suppose that A is a general n × n matrix, C is full row rank p × n
matrix (p ≤ n), and W is a p × p matrix. Define,

K(W ) =
[
A + CTWC CT

C 0

]
. (28)

If K := K(0) is nonsingular, then K(W ) is a nonsingular matrix for any nonzero W
and

K−1(W ) = K−1 −
[
0 0
0 W

]
.

Let us consider the following partitioning for Ā and write the matrix in the form of
(28),

Ā =
⎡
⎣
A11 A12 0
A21 A22 + r BT Q−1B BT

0 B 0

⎤
⎦ :=

[
A + rCT Q−1C CT

C 0

]
.

As a result, from Proposition 3.13, we have

Ā−1 = A−1 −
⎡
⎣
0 0 0
0 0 0
0 0 r Q−1

⎤
⎦ . (29)

The above discussion allows one to find sufficient conditions which ensure that
stability conditions similar to (25) hold for Ā. In particular, it turns out that stability
conditions for Ā can be deduced from (25) by suitable choices of Q including the case
that Q = Mp. To this end, we recall the following observation, which is a consequence
of [23, Lemma 2.1] and Lemma 3.12.

Remark 3.14 Let the matrices H and A be defined as before. Then

‖A‖H ,H−1 = max
w∈Rn\{0} max

v∈Rn\{0}
wTAv

‖w‖H‖v‖H , (30)

∥∥∥A−1
∥∥∥

−1

H−1,H
= min

w∈Rn\{0} max
v∈Rn\{0}

wTAv

‖w‖H‖v‖H . (31)

In view of the above remark, we need to establish that ‖Ā‖H ,H−1 and ‖Ā−1‖H−1,H

are bounded from above in order to show that Ā satisfies stability conditions similar
to (25). Notice that (25) together with (29) imply that

‖Ā−1‖H−1,H ≤ ‖A−1‖H−1,H + r‖H1/2
2 Q−1H1/2

2 ‖2
≤ c−1

2 + rλmax(MpQ
−1). (32)
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On the other hand, we have that

∥∥Ā∥∥
H ,H−1 ≤ ‖A‖H ,H−1 + r‖H−1/2

1 CT Q−1CH−1/2
1 ‖2

≤ c1 + r‖H−1/2
1 CT H−1/2

2 H1/2
2 Q−1H1/2

2 H−1/2
2 CH−1/2

1 ‖2
≤ c1 + r‖H−1/2

1 CT H−1/2
2 ‖2‖H1/2

2 Q−1H1/2
2 ‖2‖H−1/2

2 CH−1/2
1 ‖2

= c1 + r‖CT ‖H2,H
−1
1

‖Q−1‖H−1
2 ,H2

‖C‖H1,H
−1
2

.

It is known that ‖CT ‖H2,H
−1
1

= ‖C‖H1,H
−1
2
. Therefore, by Lemma 3.10, the following

inequality holds when the first condition in (25) is satisfied:

∥∥Ā∥∥
H ,H−1 ≤ c1 + rc21‖Q−1‖H−1

2 ,H2

= c1 + rc21λmax(MpQ
−1). (33)

From the above discussions, it can be observed that if we set Q = Mp then Eqs. (32)
and (33) reduce to the following inequalities, respectively:

‖Ā−1‖H−1,H ≤ c−1
2 + r ,

and

∥∥Ā∥∥
H ,H−1 ≤ c1 + rc21

In order to deal with the augmented system, the following lemma provides a useful
expression for the Schur complement. The lemma is an immediate consequence of
Proposition 3.13, see [10, Lemma 4.1] for more details.

Lemma 3.15 Let A ∈ R
n×n and B ∈ R

m×n (m ≤ n). Let γ ∈ R, and suppose that
A, A + γ BTW−1B, BA−1BT , and B(A + γ BTW−1B)−1BT are all nonsingular
matrices. Then

[B(A + γ BTW−1B)−1BT ]−1 = (BA−1BT )−1 + γW−1. (34)

We denote the negative Schur complement associated with Ā by S̄. By the above
lemma, it is immediate to see that

S̄−1 = [C(A + rCT Q−1C)−1CT ]−1 = S−1 + r Q−1.

Hence, we have

∥∥∥S̄−1
∥∥∥
H−1
2 ,H2

≤
∥∥∥S−1

∥∥∥
H−1
2 ,H2

+ r
∥∥∥Q−1

∥∥∥
H−1
2 ,H2

=
∥∥∥S−1

∥∥∥
H−1
2 ,H2

+ rλmax(MpQ
−1).
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Assuming that the assumption of Lemma 3.11 holds, we readily obtain

∥∥∥S̄−1
∥∥∥
H−1
2 ,H2

≤ c4 + rλmax(MpQ
−1). (35)

For simplicity we set Ā = A + rCT Q−1C , SA = A22 − A21A
−1
11 A12, and SĀ =

SA + r BT Q−1B. It is well known (see, e.g., [8, page 18]) that

Ā−1 =
[
A−1
11 + A−1

11 A12S
−1
Ā

A21A
−1
11 −A−1

11 A12S
−1
Ā

−S−1
Ā

A21A
−1
11 S−1

Ā

]
,

in which A21 = −AT
12. Straightforward computations show that

SĀ = S1/2A

(
I + r S−1/2

A BT Q−1BS−1/2
A

)
S1/2A .

Hence, considering the singularity of S−1/2
A BT Q−1BS−1/2

A , one can conclude that

∥∥∥S−1
Ā

∥∥∥
A−1
22 ,A22

=
∥∥∥A1/2

22 S−1
Ā

A1/2
22

∥∥∥
2

= λmax

(
A1/2
22 S−1/2

A (I + r S−1/2
A BT Q−1BS−1/2

A )
−1

S−1/2
A A1/2

22

)

= λmax

(
S−1/2
A A22S

−1/2
A (I + r S−1/2

A BT Q−1BS−1/2
A )

−1)

≤ λmax

(
S−1/2
A A22S

−1/2
A

)
λmax

(
(I + r S−1/2

A BT Q−1BS−1/2
A )

−1)

= λmax

(
A1/2
22 S−1

A A1/2
22

)
/
(
1 + rλmin(S

−1/2
A BT Q−1BS−1/2

A )
)

=
∥∥∥S−1

A

∥∥∥
A−1
22 ,A22

. (36)

Let H1 be defined by (26). Under the assumptions of Lemma 3.11, we now show
that

min
w∈Rn\{0} max

v∈Rn\{0}
wT Āv

‖w‖H1
‖v‖H1

≥ c̄3

for some c̄3. The assumption (27) is equivalent to
∥∥A−1

∥∥
H−1
1 ,H1

≤ c−1
3 ; see [23,

Lemma 2.1]. In order to show that
∥∥ Ā−1

∥∥
H−1
1 ,H1

is bounded from above by a constant,

we need to show that the norm of each four blocks of H1/2
1 Ā−1H1/2

1 is bounded from
above. To this end, we first note that
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∥∥∥S−1
A

∥∥∥
A−1
22 ,A22

=
∥∥∥A1/2

22 S−1
A A1/2

22

∥∥∥
2

= λmax

(
A1/2
22 S−1

A A1/2
22

)

= λmax

((
I + A−1/2

22 AT
12 A

−1
11 A12A

−1/2
22

)−1
)

< 1,

hence
∥∥∥S−1

Ā

∥∥∥
A−1
22 ,A22

< 1 from (36). By Lemma 3.10 we have ‖A‖H1,H
−1
1

≤ c1. On

the other hand, we have that ‖A‖2
H1,H

−1
1

= 1+ ‖A21‖2A11,A
−1
22

as A21 = −AT
12 and H1

is a block diagonal matrix with blocks A11 and A22. This ensures that ‖A21‖A11,A
−1
22

=
‖A12‖A22,A

−1
11

≤ c1. For the (1, 1) block of Ā−1, we get

∥∥∥A−1
11 + A−1

11 A12S
−1
Ā

A21A
−1
11

∥∥∥
A−1
11 ,A11

=
∥∥∥I + A−1/2

11 A12S
−1
Ā

A21A
−1/2
11

∥∥∥
2

≤ 1 +
∥∥∥A−1/2

11 A12A
−1/2
22 A1/2

22 S−1
Ā

A1/2
22 A−1/2

22 A21A
−1/2
11

∥∥∥
2

≤ 1 + ‖A12‖A22,A
−1
11

∥∥∥S−1
Ā

∥∥∥
A−1
22 ,A22

‖A21‖A11,A
−1
22

.

Now, Eq. (36) implies that

∥∥∥A−1
11 + A−1

11 A12S
−1
Ā

A21A
−1
11

∥∥∥
A−1
11 ,A11

≤ 1 + ‖A12‖A22,A
−1
11

∥∥∥S−1
A

∥∥∥
A−1
22 ,A22

‖A21‖A11,A
−1
22

≤ 1 + c21. (37)

It is not difficult to verify that

∥∥∥A−1
11 A12S

−1
Ā

∥∥∥
A−1
22 ,A11

=
∥∥∥S−1

Ā
A21A

−1
11

∥∥∥
A−1
11 ,A22

≤ c1.

Therefore, the above relation togetherwith the fact that
∥∥∥S−1

Ā

∥∥∥
A−1
22 ,A22

< 1 and inequal-

ity (37) show that
∥∥ Ā−1

∥∥
H−1
1 ,H1

≤ c̄−1
3 for some constant c̄3, i.e., c̄

−1
3 = 1+(1+c1)2.

Let us assume that there exists a constant η̄ such that

rλmax(MpQ
−1) ≤ η̄. (38)

Then, by virtue of the above observation, Eqs. (32), (33) and (35), we can find constants
c̄1, c̄2 and c̄4 such that

max
w∈Rn\{0} max

v∈Rn\{0}
wT Āv

‖w‖H‖v‖H ≤ c̄1, (39a)
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min
w∈Rn\{0} max

v∈Rn\{0}
wT Āv

‖w‖H‖v‖H ≥ c̄2, (39b)

and
∥∥S̄−1

∥∥
H−1
2 ,H2

≤ c̄4 provided the stability conditions (25) hold for A. As pointed

earlier, if Q = Mp then λmax(MpQ−1) = 1 and we get η̄ = r . In practice, the
matrixMp can be efficiently approximated by itsmain diagonal. Therefore, we suggest
choosing Q as the main diagonal of Mp in numerical experiments. In the sequel, we
assume that Q is chosen such that there exits an η̄ for which (38) holds. Consequently,
similar to Lemma 3.11, the following lemma can be stated.

Lemma 3.16 Let the assumptions of Lemma 3.11 hold and suppose there exists η̄ > 0
such that (38) is satisfied independent of n. Then S̄ ∼H−1

2
H2 and H−1

2 ∼H2 S̄−1.

Hence, there exists c̄4 independent of n such that ‖S̄−1‖H−1
2 ,H2

≤ c̄4, where S̄ =
C Ā−1CT .

Consider again the matrix Ā in the following form:

Ā =
[
Ā CT

C 0

]
.

We note that for r = 0, Ā = A and Ā reduces to

A =
[
A CT

C 0

]
.

The constraint preconditioners can be written in the following form

Pcon =
[
Pcon CT

C 0

]
,

and it is shown thatPcon is H -norm equivalent (and consequently H -f.o.v equivalent)
to the operator A where

H =
[
H1 0
0 H2

]
, (40)

with H1 and H2 being symmetric positive definite given by (26) under suitable con-
ditions, see [13].

Now consider the following preconditioner:

Pr =
⎡
⎣
A11 A12 0
0 A22 + r BT Q−1B BT

0 0 − 1
r Q

⎤
⎦ ,

where Q is symmetric positive definite and r > 0 is given. Here, we comment that Q
can be taken to be any SPD matrix such that (38) holds for a constant η̄ > 0.
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For simplicity, we rewrite Pr as follows:

Pr =
[
P̄ CT

0 − 1
r Q

]
(41)

with the obvious definition of P̄ . Now we establish a proposition which will be useful
in proving norm-equivalence of the preconditioner Pr to Ā. To this end, we first need
to recall the following well known fact.

Theorem 3.17 [20, Theorem 7.7.3] Let A and B be two n×n real symmetric matrices
such that A is positive definite and B is positive semidefinite. Then A � B if and only
if ρ(A−1B) ≤ 1, and A � B if and only if ρ(A−1B) < 1.

Proposition 3.18 Under the assumptions of Lemma 3.16, if

0 < r ≤ 1

ρ(Q−1 S̄)
, (42)

then there there exists c̄4 independent of n such that ‖r Q−1‖H−1
2 ,H2

≤ c̄4 where

S̄ = C Ā−1CT .

Proof First note that Theorem 3.17 implies

S̄ − 1

r
Q � 0.

Since H2 is a symmetric positive definite matrix, we have H−1/2
2 (S̄− 1

r Q)H−1/2
2 � 0.

As a result, for any nonzero unit vector x , we have

〈
H−1/2
2 S̄H−1/2

2 x, x
〉
≤

〈
r−1H−1/2

2 QH−1/2
2 x, x

〉
,

which is equivalent to

〈
r−1H−1/2

2 QH−1/2
2 x, x

〉−1 ≤
〈
H−1/2
2 S̄H−1/2

2 x, x
〉−1

≤
(

min‖x‖2=1

〈
H−1/2
2 S̄H−1/2

2 x, x
〉)−1

=
∥∥∥H1/2

2 S̄−1H1/2
2

∥∥∥
2

=
∥∥∥S̄−1

∥∥∥
H−1
2 ,H2

.

Lemma 3.16 ensures that there exists c̄4 such that
∥∥S̄−1

∥∥
H−1
2 ,H2

≤ c̄4. Hence, from

the preceding relation, we deduce that

〈
r−1H−1/2

2 QH−1/2
2 x, x

〉−1 ≤ c̄4,
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for any nonzero vector x with ‖x‖2 = 1. ��
Proposition 3.19 Let the stability conditions (25) and the assumptions of Proposi-
tion 3.18 hold. Suppose that H1 and P̄ are defined as in (26) and (41), respectively. If
P ∼H−1

1
H1 then P̄ ∼H−1

1
H1, where P is obtained from P̄ by setting r = 0.

Proof By the assumptions, there exist α0 and β0 such that

∥∥∥PH−1
1

∥∥∥
H−1
1

≤ β0,

∥∥∥H1P
−1

∥∥∥
H−1
1

≤ α−1
0 .

It is obvious that

P̄ = P +
[
0 0
0 r BT Q−1B

]
.

Consequently, we have

∥∥∥P̄ H−1
1

∥∥∥
H−1
1

=
∥∥∥H−1/2

1 P̄ H−1/2
1

∥∥∥
2

≤
∥∥∥H−1/2

1 PH−1/2
1

∥∥∥
2
+ r

∥∥∥A−1/2
22 BT Q−1BA−1/2

22

∥∥∥
2

≤
∥∥∥PH−1

1

∥∥∥
H−1
1

+
∥∥∥A−1/2

22 BT H−1/2
2

∥∥∥
2

∥∥∥r H1/2
2 Q−1H1/2

2

∥∥∥
2

∥∥∥H−1/2
2 BA−1/2

22

∥∥∥
2

≤ β0 +
∥∥∥CT

∥∥∥
H2,H

−1
1

∥∥∥r Q−1
∥∥∥
H−1
2 ,H2

‖C‖H1,H
−1
2

. (43)

Now from Lemma 3.10 and Proposition 3.18, we find that for β̄0 = β0 + c21 c̄4, we
have

∥∥∥P̄ H−1
1

∥∥∥
H−1
1

≤ β̄0.

Note that
∥∥∥H1 P̄

−1
∥∥∥
H−1
1

=
∥∥∥H1/2

1 P̄−1H1/2
1

∥∥∥
2
,

and

H1/2
1 P̄−1H1/2

1 =
⎡
⎣ I −A−1/2

11 A12 Ā
−1
22 A1/2

22

0 A1/2
22 Ā−1

22 A1/2
22

⎤
⎦

=
⎡
⎣ I −A−1/2

11 A12A
−1/2
22 A1/2

22 Ā−1
22 A1/2

22

0 A1/2
22 Ā−1

22 A1/2
22

⎤
⎦ ,
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where Ā22 = A22 + r BT Q−1B. Since
∥∥∥A1/2

22 Ā−1
22 A1/2

22

∥∥∥
2

= 1, we have that

∥∥∥H1/2
1 P̄−1H1/2

1

∥∥∥
2

≤ 2 + ‖A21‖A11,A
−1
22

‖A12‖A22,A
−1
11

.

Recalling that ‖A21‖A11,A
−1
22

= ‖A12‖A22,A
−1
11

≤ c1, from the preceding inequality we

deduce that
∥∥H1 P̄

−1
∥∥
H−1
1

≤ ᾱ−1
0 for ᾱ−1

0 = 2 + c21, which completes the proof. ��

The proof of the next theorem follows from a similar argument used in [13, Theorem
3.9], where Pcon ∼H−1

1
H1 was an assumption. In view of the previous proposition, the

assumption P̄ ∼H−1
1

H1 in the theorem is a consequence of the fact that P ∼H−1
1

H1,
where P is the block upper triangular part of A. On the other hand, the matrix Pcon in
the constraint preconditionersPconD andPconT is, respectively, the block diagonal and
block lower triangular part of A. However, consideringEq. (26), one can see that if Pcon
and P are the block lower or the block upper triangular part of A, then Pcon ∼H−1

1
H1

and P ∼H−1
1

H1 can be deduced from ‖A21‖A11,A
−1
22

= ‖A12‖A22,A
−1
11

≤ c1. More
precisely, it turns out that

‖PconH−1
1 ‖H−1

1
= ‖H1P

−1
con‖H−1

1
≤ 2 + ‖A21‖A11,A

−1
22

and

‖PH−1
1 ‖H−1

1
= ‖H1P

−1‖H−1
1

≤ 2 + ‖A12‖A22,A
−1
11

.

We comment that if Pcon is the block diagonal part of A, then

‖PconH−1
1 ‖H−1

1
= ‖H1P

−1
con‖H−1

1
= 1.

Therefore, in the analysis of [13, Section 3], there is no need to require that Pcon ∼H−1
1

H1 for establishing FOV bounds (independent of the mesh-width) when the precon-
ditioner is applied “exactly”, i.e., when direct methods are used for the block solves.

Theorem 3.20 Let H and Pr be defined as in (40) and (41), respectively. In addition
to the hypotheses of Proposition 3.18, assume that r > 0 is such that

H2 − 1

r
Q � 0. (44)

If P̄ ∼H−1
1

H1, then Pr ∼H−1 Ā and P−1
r ∼H Ā−1.

Proof When the stability conditions (39) hold, considering Lemma 3.9, we only need
to show thatPr ∼H−1 H . To this end we need to derive upper bounds (independent of
n) for ‖Pr H−1‖H−1 = ‖H−1/2Pr H−1/2‖2 and ‖HP−1

r ‖H−1 = ‖H1/2P−1
r H1/2‖2.
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The assumption P̄ ∼H−1
1

H1 implies that there exist positive constants α1 and β1 such

that ‖P̄ H−1
1 ‖H−1

1
≤ β1 and ‖H1 P̄−1‖H−1

1
≤ α−1

1 . Evidently, we have

H−1/2Pr H
−1/2 =

[
H−1/2
1 P̄ H−1/2

1 H−1/2
1 CT H−1/2

2

0 − 1
r H

−1/2
2 QH−1/2

2

]
.

Notice that from (44), we get

1

r
‖H−1/2

2 QH−1/2
2 ‖2 ≤ 1.

By Lemmas 3.10 and 3.12 , we have

‖H−1/2Pr H
−1/2‖2 ≤ ‖H−1/2

1 P̄ H−1/2
1 ‖2 + ‖H−1/2

1 CT H−1/2
2 ‖2 + 1

r
‖H−1/2

2 QH−1/2
2 ‖2

≤ ‖P̄ H−1
1 ‖H−1

1
+ ‖CT ‖H2,H

−1
1

+ 1

≤ β1 + c1 + 1.

Furthermore, we have

P−1
r =

[
P̄−1 r P̄−1CT Q−1

0 −r Q−1

]
.

Consequently, we have

H1/2P−1
r H1/2 =

⎡
⎣ H1/2

1 P̄−1H1/2
1 r H1/2

1 P̄CT Q−1H1/2
2

0 −r H1/2
2 Q−1H1/2

2

⎤
⎦ .

From the assumption, ‖H1 P̄−1‖H−1
1

= ‖H1/2
1 P̄−1H1/2

1 ‖2 ≤ α−1
1 . In addition, Propo-

sition 3.18 ensures that
∥∥r Q−1

∥∥
H−1
2 ,H2

= ‖r H1/2
2 Q−1H1/2

2 ‖2 ≤ c̄4. Observing that

r H1/2
1 P̄CT Q−1H1/2

2 = H1/2
1 P̄ H1/2

1 H−1/2
1 CT H−1/2

2 H1/2
2 (r Q−1)H1/2

2 ,

we obtain
∥∥∥r H1/2

1 P̄CT Q−1H1/2
2

∥∥∥
2

≤
∥∥∥H1/2

1 P̄ H1/2
1

∥∥∥
2

∥∥∥H−1/2
1 CT H−1/2

2

∥∥∥
2

∥∥∥H1/2
2 (r Q−1)H1/2

2

∥∥∥
2

≤ α−1
1

∥∥∥CT
∥∥∥
H2,H

−1
1

∥∥∥r Q−1
∥∥∥
H−1
2 ,H2

≤ α−1
1 c1c̄4.

Therefore, it is immediate to see that
∥∥∥H1/2P−1

r H1/2
∥∥∥
2

≤ α−1
1 + α−1

1 c1c̄4 + c̄4,
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which completes the proof. ��
Remark 3.21 By Theorem 3.17, assumption (44) is equivalent to setting the following
lower bound for r :

r ≥ λmax(H
−1
2 Q).

Noting that

λmax(Q)

λmin(H2)
≥ λmax(H

−1
2 Q),

we deduce that the condition (44) holds for r ≥ λmax(Q)/λmin(H2).

We are now in a position to establish the main result of this section.

Theorem 3.22 Let Ā, Pr be defined as before. In addition to the hypotheses of Propo-
sition 3.18, suppose that the condition (44) is satisfied and there exists a constant
ν > 0 such that for any nonzero y ∈ R

n2 the following inequality holds:

ν ≤

〈
S̃r Q−1y, y

〉
H−1
2

〈y, y〉H−1
2

, (45)

where S̃r = C P̄−1CT = C(P + rCT Q−1C)−1CT . If r > 1 and Ā ≈H−1
1

P̄, then

there exists ρ0 > 0 such that Ā ≈H−1 Pr for all r ≥ ρ0 provided

‖ Ā P̄−1 − I‖H−1
1

≤ r−1.

Proof The assumption Ā ≈H−1
1

P̄ implies Ā ∼H−1
1

P̄ . On the other hand, we have

Ā ∼H−1
1

H1 in view of stability conditions (39). As a result, we can deduce that

P̄ ∼H−1
1

H1. Therefore, by the previous theorem, ‖ĀP−1
r ‖H−1 is bounded from

above.
Let x = (x1; x2) be given. To complete the proof, in the sequel, we show that there

exists a positive constant τ such that

xT H−1ĀP−1
r x ≥ τ xT H−1x

= τ(xT1 H−1
1 x1 + xT2 H−1

2 x2)

= τ(‖x1‖2H−1
1

+ ‖x2‖2H−1
2

).

Next, observe that

H−1ĀP−1
r =

[
H−1
1 Ā P̄−1 r H−1

1 ( Ā P̄−1 − I )CT Q−1

H−1
2 C P̄−1 r H−1

2 C P̄−1CT Q−1

]
.
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From Ā ≈H−1
1

P̄ we know that there exists a positive constat α0 such that

xT1 H−1
1 Ā P̄−1x1 ≥ α0‖x1‖2H−1

1
. (46)

By some simple computations, we have

∣∣∣r xT1 H−1
1 ( Ā P̄−1 − I )CT Q−1x2

∣∣∣
=

∣∣∣r xT1 H−1/2
1 H−1/2

1 ( Ā P̄−1 − I )CT Q−1H1/2
2 H−1/2

2 x2
∣∣∣

≤
∥∥∥r( Ā P̄−1 − I )CT Q−1

∥∥∥
H−1
2 ,H−1

1

‖x1‖H−1
1

‖x2‖H−1
2

≤
∥∥∥rCT Q−1

∥∥∥
H−1
2 ,H−1

1

∥∥∥ Ā P̄−1 − I
∥∥∥
H−1
1

‖x1‖H−1
1

‖x2‖H−1
2

≤
∥∥∥r Q−1

∥∥∥
H−1
2 ,H2

∥∥∥CT
∥∥∥
H2,H

−1
1

∥∥∥ Ā P̄−1 − I
∥∥∥
H−1
1

‖x1‖H−1
1

‖x2‖H−1
2

≤ c̄4c1
∥∥∥ Ā P̄−1 − I

∥∥∥
H−1
1

‖x1‖H−1
1

‖x2‖H−1
2

. (47)

By making use of
∥∥ Ā P̄−1 − I

∥∥
H−1
1

≤ r−1, it can be observed that

∣∣∣r xT1 H−1
1 ( Ā P̄−1 − I )CT Q−1x2

∣∣∣ ≤ c̄4c1r
−1 ‖x1‖H−1

1
‖x2‖H−1

2
. (48)

The fact that P̄ ∼H−1
1

H1 ensures the existence of a positive constant α1 such that

∥∥∥H1 P̄
−1

∥∥∥
H−1
1

≤ α−1
1 .

Hence, we obtain

∣∣∣xT2 H−1
2 C P̄−1x1

∣∣∣ =
∣∣∣xT2 H−1/2

2 H−1/2
2 CH−1/2

1 H1/2
1 P̄−1H1/2

1 H−1/2
1 x1

∣∣∣
≤

∥∥∥H−1/2
2 CH−1/2

1

∥∥∥
2

∥∥∥H1/2
1 P̄−1H1/2

1

∥∥∥
2
‖x1‖H−1

1
‖x2‖H−1

2

= ‖C‖H1,H
−1
2

∥∥∥H1 P̄
−1

∥∥∥
H−1
1

‖x1‖H−1
1

‖x2‖H−1
2

≤ c1α
−1
1 ‖x1‖H−1

1
‖x2‖H−1

2
. (49)

Evidently, by the assumption (45), we have

xT2 (r H−1
2 C P̄−1CT Q−1)x2 = ‖x2‖2H−1

2

xT2 (r H−1
2 C P̄−1CT Q−1)x2

xT2 H−1
2 x2

≥ rν ‖x2‖2H−1
2

,

(50)
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From Eqs. (46)–(50), we derive the following bound

xT H−1ĀP−1
r x ≥ α0 ‖x1‖2H−1

1
− (c̄4c1r

−1 + c1α
−1
1 )‖x1‖H−1

1
‖x2‖H−1

2
+ rν ‖x2‖2H−1

2
.

Since r > 1, we have

xT H−1ĀP−1
r x ≥ α0 ‖x1‖2H−1

1
− γ ‖x1‖H−1

1
‖x2‖H−1

2
+ rν ‖x2‖2H−1

2

where γ = c1(c̄4 + α−1
1 ). If we set

ρ0 = max

{
1,

γ 2

2α0ν
+ α0

2ν

}
.

then it holds that

xT H−1ĀP−1
r x ≥ α0

2

(
‖x1‖2H−1

1
+ ‖x2‖2H−1

2

)

+α0

2
‖x1‖2H−1

1
− γ ‖x1‖H−1

1
‖x2‖H−1

2
+ γ 2

2α0
‖x2‖2H−1

2

= α0

2

(
‖x1‖2H−1

1
+ ‖x2‖2H−1

2

)
+

(√
α0√
2

‖x1‖H−1
1

− γ√
2α0

‖x2‖H−1
2

)2

≥ α0

2

(
‖x1‖2H−1

1
+ ‖x2‖2H−1

2

)

for r ≥ ρ0. Hence,

xT H−1ĀP−1
r x

xT H−1x
≥ α0

2
,

therefore we can take τ = α0
2 and the proof is complete. ��

Remark 3.23 The assumption that r > 1 in the inequality ‖ Ā P̄−1 − I‖H−1
1

≤ r−1 can

be relaxed if we assume that there exists a constant c5 such that ‖Q−1‖H−1
2 ,H2

≤ c5.
Then, there is no need to set the assumption r ≥ 1 in the statement of Theorem 3.22.
Indeed, in view of Eq. (47), Eq. (48) can be replaced by

∣∣∣r xT1 H−1
1 ( Ā P̄−1 − I )CT Q−1x2

∣∣∣ ≤ c1c5 ‖x1‖H−1
1

‖x2‖H−1
2

,

since r
∥∥ Ā P̄−1 − I

∥∥
H−1
1

≤ 1. Thus, in the proof of previous theorem ρ0 can be taken

to be

ρ0 = γ 2

2α0ν
+ α0

2ν
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with γ = c1(c5 +α−1
1 ), while the rest of the proof remains unchanged after removing

the restriction r ≥ 1.

For the sake of generality, we add the following remark showing that the above
result can be stated under weaker conditions.

Remark 3.24 In Proposition 3.18, the assumption (42) was used to deduce that
‖r Q−1‖H−1

2 ,H2
is bounded above by a constant. On the other hand, the condition

(44) ensures that

‖r−1H−1/2
2 QH−1/2

2 ‖ ≤ 1.

Following the preceding discussion, the assumption (44) can be relaxed by setting the
condition that

‖r−1H−1/2
2 QH−1/2

2 ‖ = ‖r−1QH−1
2 ‖H−1

2

is bounded above by a constant. Now, in view of the following equality

‖r Q−1‖H−1
2 ,H2

= ‖H2(r
−1Q)−1‖H−1

2
,

one can relax the assumptions (42) and (44). To this end, we need to choose r and Q
such that 1

r Q ∼H−1
2

H2.

We have checked numerically that for linear systems of the form (1) arising
from the finite element discretization of coupled Stokes–Darcy flow, the condition
λmax(A

−1
22 AT

12A
−1
11 A12) ≤ 0.5 holds true for problems of small or moderate size. As

seen in Theorem 3.22, it is assumed that Ā ≈H−1 P̄ . Note that for r = 0 this condition
reduces to A ≈H−1

1
P which is similar to the assumption in [13, Theorem 3.10]. The

following proposition establishes sufficient conditions under which Ā ≈H−1
1

P̄ .

Proposition 3.25 Let Ā and P̄ be defined by

Ā =
[
A11 A12

A21 Ā22

]
and P̄ =

[
A11 A12

0 Ā22

]
,

where A21 = −AT
12 and H1 is given by (26). If the stability conditions (39) hold, then

there exists β0 > 0 such that

∥∥∥ Ā P̄−1
∥∥∥
H−1
1

≤ β0.

Furthermore, assume that A22 � AT
12A

−1
11 A12 and λM := λmax(A

−1
22 AT

12A
−1
11 A12) ≤

3/4. If the following relation holds:

1

2
− λM

rλmax(A
−1
22 B

T Q−1B)

1 + rλmax(A
−1
22 B

T Q−1B)
≥ 0, (51)

then Ā≈H−1
1

P̄.
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Proof It is straightforward to check that

Ā P̄−1 =
[

I 0
A21A

−1
11 I + AT

12A
−1
11 A12 Ā

−1
22

]
,

having in mind that AT
12 = −A21. Moreover, we have that

∥∥∥ Ā P̄−1
∥∥∥
H−1
1

=
∥∥∥H−1/2

1 Ā P̄−1H1/2
1

∥∥∥
2

≤ 2 + c1 + c21 =: β0,

where we made use of

H−1/2
1 Ā P̄−1H1/2

1

=
[

I 0
A−1/2
22 A21A

−1/2
11 I + A−1/2

22 AT
12A

−1/2
11 A−1/2

11 A12A
−1/2
22 A1/2

22 Ā−1
22 A1/2

22

]
,

(52)

∥∥∥A1/2
22 Ā−1

22 A1/2
22

∥∥∥
2

= 1 and ‖AT
12‖A11,A

−1
22

= ‖A12‖A22,A
−1
11

≤ c1.

To prove the assertion, we need to show that there exists α0 such that

α0 ≤
〈
Ā P̄−1x, x

〉
H−1
1

〈x, x〉H−1
1

.

To this end, we first show that the assumption (51) guarantees that the matrix
F = 1

2 I +A−1/2
22 Ŝ Ā−1

22 A1/2
22 (where we set Ŝ := AT

12A
−1
11 A12 for notational simplicity)

is positive semi-definite, in the sense that the quadratic form 〈F z, z〉 is nonnegative
for any real vector z. We comment that F is symmetric positive definite for r = 0
since in this case Ā22 = A22.

By the Sherman-Morrison-Woodbury matrix identity we have

Ā−1
22 = A−1

22 − r A−1
22 B

T Q−1/2(I + r Q−1/2BA−1
22 B

T Q−1/2)−1Q−1/2BA−1
22 ,

hence we can write

A−1/2
22 Ŝ Ā−1

22 A1/2
22 = A−1/2

22 Ŝ A−1/2
22 − A−1/2

22 Ŝ A−1/2
22 E,

where E is a symmetric positive semi-definite matrix given by

E = r A−1/2
22 BT Q−1/2(I + r Q−1/2BA−1

22 B
T Q−1/2)−1Q−1/2BA−1/2

22 .

Next, we observe that the nonzero eigenvalues of E are the same as those of the matrix

Ẽ = r Q−1/2BA−1
22 B

T Q−1/2(I + r Q−1/2BA−1
22 B

T Q−1/2)−1.
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and that the spectrum of Ẽ is given by

σ(Ẽ) =
{

rλ

1 + rλ

∣∣∣ λ ∈ σ(Q−1/2BA−1
22 B

T Q−1/2)

}
.

Notice that the function gr (x) = r x
1+r x is monotonically increasing for x, r > 0.

Hence, we have

‖E‖2 = λmax(E) = λmax(Ẽ)

= rλmax(Q−1/2BA−1
22 B

T Q−1/2)

1 + rλmax(Q−1/2BA−1
22 B

T Q−1/2)

= rλmax(A
−1
22 B

T Q−1B)

1 + rλmax(A
−1
22 B

T Q−1B)
.

Let z be an arbitrary real vector, then, using the above relation, we have

〈F z, z〉 = 1

2
〈z, z〉 +

〈
A−1/2
22 Ŝ A−1/2

22 z, z
〉
−

〈
A−1/2
22 Ŝ A−1/2

22 Ez, z
〉

≥
(
1

2
−

∥∥∥A−1/2
22 Ŝ A−1/2

22

∥∥∥
2
‖E‖2

)
‖z‖22

=
(
1

2
− λM

rλmax(A
−1
22 B

T Q−1B)

1 + rλmax(A
−1
22 B

T Q−1B)

)
‖z‖22 ≥ 0,

as claimed. Considering (52), we can rewrite H−1/2
1 Ā P̄−1H1/2

1 as follows:

H−1/2
1 Ā P̄−1H1/2

1 =
[

I 0
A−1/2
22 A21A

−1/2
11

1
2 I + F

]
.

By assumption, we have

‖A−1/2
22 A21A

−1/2
11 ‖22 = ρ(A−1/2

11 AT
21A

−1
22 A21A

−1/2
11 )

= ρ(A−1
22 A21A

−1
11 AT

21) = ρ(A−1
22 AT

12A
−1
11 A12) ≤ 3/4.

Now let x = (x1; x2) be an arbitrary nonzero vector and w = H−1/2
1 x (with

block partitioning w = (w1;w2)). Using the Cauchy–Schwarz inequality and some
straightforward computations, we obtain

〈
Ā P̄−1x, x

〉
H−1
1

=
〈
H−1/2
1 Ā P̄−1H1/2

1 w,w
〉

= 〈w1, w1〉 +
〈
A−1/2
22 A21A

−1/2
11 w1, w2

〉
+ 1

2
〈w2, w2〉 + 〈Fw2, w2〉

≥ 〈w1, w1〉 − ‖A−1/2
22 A21A

−1/2
11 ‖2‖w1‖2‖w2‖2 + 1

2
〈w2, w2〉
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≥ 1

4
〈w1, w1〉 + 3

4
〈w1, w1〉 −

√
3

2
‖w1‖2‖w2‖2 + 1

2
〈w2, w2〉

= 1

4
(〈w1, w1〉 + 〈w2, w2〉) +

(√
3

2
‖w1‖2 − 1

2
‖w2‖2

)2

≥ 1

4
(〈w1, w1〉 + 〈w2, w2〉) = 1

4
〈x, x〉H−1

1
.

Setting α0 = 1
4 , the proof is complete.

��

We end this section with the following comments on assumption (45) in Theo-
rem 3.22.

Remark 3.26 Assume that S̃0 ≈H−1
2

Q, where S̃0 = CP−1CT = BA−1
22 B

T . As

a result of Remark 3.6, there exists a constant γ̃ (independent of n) such that∥∥∥QS̃−1
0

∥∥∥
H−1
2

≤ γ̃ . The assumption S̃0 ≈H−1
2

Q implies that there exists ν0 > 0

such that

ν0 ≤

〈
S̃0Q−1y, y

〉
H−1
2

〈y, y〉H−1
2

, (53)

for any nonzero vector y. Next, we show that we can find ν > 0 such that (45) holds
for r < ν−1

0 . Note that using Lemma 3.15, we obtain

QS̃−1
r = Q(C P̄−1CT )−1 = Q(C(P + rCT Q−1C)−1CT )−1

= Q((CP−1CT )−1 + r Q−1) = QS̃−1
0 + r I .

Let y be an arbitrary nonzero vector and set y = QS̃−1
r w. Now, using a similar

argument to the one in [9, Page 781], we get

〈
S̃r Q

−1y, y
〉
H−1
2

〈y, y〉H−1
2

=

〈
w, QS̃−1

r w
〉
H−1
2∥∥∥QS̃−1

r w

∥∥∥
2

H−1
2

≥

〈
w, QS̃−1

0 w
〉
H−1
2

+ r〈w,w〉H−1
2

2(‖QS̃−1
0 w‖2

H−1
2

+ r2 ‖w‖2
H−1
2

)

= k + r t

2(1 + r2t)
,
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where t =
〈w,w〉

H−1
2∥∥∥QS̃−1

0 w

∥∥∥2
H−1
2

and k =
〈
w,QS̃−1

0 w
〉
H−1
2∥∥∥QS̃−1

0 w

∥∥∥2
H−1
2

. Notice that setting z = QS̃−1
0 w, using

the assumption (53), we have

k =

〈
S̃0Q−1z, z

〉
H−1
2

‖z‖2
H−1
2

≥ ν0.

Let f (x) = ν0+r x
2(1+r2x)

. The function f (x) is monotonically increasing for 0 < r < ν−1
0 .

Using the fact that t ≥ γ̃ −2, it follows that

〈
S̃r Q

−1y, y
〉
H−1
2

〈y, y〉H−1
2

≥ ν,

where ν = ν0+r γ̃ −2

2(1+r2γ̃ −2)
. Finally, we observe that in [23, Theorem 3.8], for the case

r = 0, it is assumed that Q−1 ≈H2
S̃−1
0 . Here we point out that Proposition 3.5

shows that S̃0 ≈H−1
2

Q is a consequence of S̃−1
0 ≈H2

Q−1 (which is equivalent to

Q−1 ≈H2
S̃−1
0 by Remark 3.6).

4 Numerical experiments

In practice, all the preconditioners considered so far must be applied inexactly, espe-
cially when solving 3D problems. Whether the mesh-independent behavior is retained
or not by the inexact variants is not clear a priori; as we will see, the choice of
inexact solver may impact some preconditioners more than others. In this section
we illustrate the performance of inexact variants of the block preconditioners using
a test problem, taken from [13, Subsection 5.3], which corresponds to a 3D cou-
pled flow problem in a cube � = �1 ∪ �2 with �1 = [0, 2] × [0, 2] × [1, 2] and
�2 = [0, 2]×[0, 2]×[0, 1]. The porous medium�2 contains an embedded imperme-
able cube [0.75, 1.25] × [0.75, 1.25] × [0, 0.50]. The hydraulic conductivities of the
porous medium and embedded impermeable enclosure are κ1I an κ2I, respectively,
with κ1 = 1 and κ2 = 10−10. The kinematic viscosity is set to ν = 1.0. On the
horizontal part of �1 = ∂�1 ∩ ∂� we prescribe u1 = (0, 0,−1)T at z = 2 and
the no-slip condition on the lateral sides of �1. We prescribe homogeneous Dirich-
let boundary conditions on �2 = ∂� ∩ ∂�2 (z = 0) and homogeneous Neumann
conditions on the rest of the boundary of the porous medium. The large jump in the
hydraulic conductivity in the porous medium region makes this problem challenging.

We report the performances of several preconditioner variants in conjunction with
FGMRES [24]. The initial guess is taken to be the zero vector and the iterations are
stopped once ‖Auk −b‖2≤ 10−7‖b‖2 (or ‖Āuk − b̄‖2≤ 10−7‖b̄‖2 for the augmented
Lagrangian variants) where uk is the obtained k-th approximate solution. In addition,
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we have used right-hand sides corresponding to random solution vectors and averaged
results over 10 test runs. At each iteration of FGMRES, we need to solve at least
two SPD linear systems as subtasks. To this end we applied two different approaches,
discussed in the following two subsections.

All computations were carried out on a computer with an Intel Core i7-10750H
CPU @ 2.60GHz processor and 16.0GB RAM using MATLAB.R2020b.

4.1 Implementation based on IC-CG

First we present the results of experiments in which, inside FGMRES, the SPD subsys-
tems were solved inexactly by the preconditioned conjugate gradient (PCG) method
using loose tolerances. More precisely, the inner PCG solver for linear systems with
coefficient matrix A11 (A22 and A22 + r BT Q−1B) was terminated when the relative
residual norm was below 10−1 (respectively, 10−2) or when the maximum number of
5 (respectively, 25) iterations was reached. In the implementation of the preconditiner
PT1,ρ , the inverse of Mp was applied inexactly using PCG with a relative residual
tolerance of 10−2 and a maximum number of 20 iterations. The preconditioner for
PCG are incomplete Cholesky factorizations constructed using the MATLAB func-
tion “ichol(., opts)” where opts.type =’ict’ with drop tolerances between
10−4 and 10−2. The FGMRES iteration count is reported in the tables under “Iter”.
Under “Iterpcgi ” (“Itercgi ”) we further report the total number of inner PCG (or CG)
iterations performed for solving the linear systems corresponding to block (i, i) of the
preconditioner, where i = 1, 2. For more details, in the “Appendix” we summarize
the implementation of preconditioners PconD , PconT and PT1,ρ

in Algorithms 1-3.

For the linear system corresponding to A22 + r BT Q−1B, we distinguish between
two approaches:

• Approach I. The matrix A22 + r BT Q−1B is not formed explicitly and the CG
method is used without preconditioning with a relative residual tolerance of 10−3

and a maximum allowed number of 25 iterations.
• Approach II. The matrix A22 + r BT Q−1B is formed explicitly, and PCG with
incomplete Cholesky preconditionign was used. We note that while we could
successfully compute the “ichol” factorwithout diagonal shifts for the two smallest
problem sizes, adding the shift 0.01 was found to be necessary for larger sizes. We
further note that with this approach we can use larger values of r , leading to faster
FGMRES convergence.

In Tables 1 and 2 , we report the performance Pr for Approaches I and II. From the
results presented, we can see that even when implemented inexactly, the augmented
Lagrangian-based preconditioner Pr results in convergence rates of FGMRES that
are essentially mesh-independent, as predicted by our theoretical analysis. As for the
number of inner PCG iterations, we observe some differences in the results obtained
with Approaches I and II. In the case of Approach I we see an increase in the total
number of inner PCG iterations as the mesh is refined, reflecting the known fact
that the CG method, with or without incomplete Cholesky preconditioning, is not
mesh-independent in general. With Approach II this increase is not observed, how-
ever, the total timings are much higher and still scale superlinearly with the number
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Table 1 Results for FGMRES in conjunction with preconditioner Pr , Approach I

Size r = 2 r = 5
FGMRES Inner iterations FGMRES Inner iterations
Iter CPU time Iterpcg1 Itercg2 Iter CPU time Iterpcg1 Itercg2

1695 22 0.0521 70 432 15 0.0404 52 337

10809 20 0.7018 79 525 15 0.5293 63 387

76653 20 7.4126 93 570 15 5.7076 71 390

576213 23 71.439 110 595 21 63.847 98 536

Table 2 Results for FGMRES in conjunction with preconditioner Pr , Approach II

Size r = 5 r = 10
FGMRES Inner iterations FGMRES Inner iterations
Iter CPU time Iterpcg1 Iterpcg2 Iter CPU time Iterpcg1 Iterpcg2

1695 16 0.0864 57 150 13 0.0467 43 80

10809 15 1.3697 63 121 12 0.8918 49 69

76653 13 11.966 64 95 11 8.2454 50 56

576213 14 189.43 64 103 11 155.603 49 58

Table 3 Results for FGMRES in conjunction with preconditioners PconD and PconT

Size PconD PconT
FGMRES Inner iterations FGMRES Inner iterations
Iter CPU time Iterpcg1 Iterpcg2 Iter CPU time Iterpcg1 Iterpcg2

1695 21 0.1295 77 606 18 0.1001 68 462

10809 20 1.2693 97 697 19 1.2694 89 619

76653 29 18.417 109 975 26 16.920 103 860

576213 61 319.99 167 805 72 380.37 189 974

of degrees of freedom. This is due to the fact that explicitly forming the augmented
matrix A22 + r BT Q−1B and computing its incomplete Cholesky factorization leads
to a considerably less sparse matrix and superlinear growth in the fill-in in the incom-
plete factors, and thus to more expensive PCG iterations. We conclude that with Pr ,
Approach I is to be preferred to Approach II.

In Table 3, we report the results corresponding to the constraint preconditioners.
Our numerical tests illustrate that in the inexact implementation of these precondi-
tioners using IC-CG for the inner SPD linear solves, the outer iteration counts grow
each time the mesh size is halved. Hence, the mesh-independence of the outer FGM-
RES iteration is lost when the preconditioner is applied inexactly using incomplete
Cholesky as the preconditioner for the inner PCG iterations. We add that in our imple-
mentation of these preconditioners, we approximated BA−1

22 B
T by Mp and solved

the corresponding linear system using PCG with a maximum number of 25 iterations
and relative residual tolerance tolerance 10−2 and with incomplete Cholesky precon-
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Table 4 Results for FGMRES in conjunction with preconditioners PT1,0.6 and P̃T1,0.6 (Case I)

Size PT1,0.6 P̃T1,0.6
FGMRES Inner iterations FGMRES Inner iterations
Iter CPU time Iterpcg1 Iterpcg2 Iter CPU time Iterpcg1 Iterpcg2

1695 21 0.1482 69 437 31 0.2066 97 680

10809 21 2.2306 57 418 37 3.9359 127 836

76653 21 22.175 63 466 38 26.219 117 511

576213 22 214.43 101 516 37 317.45 167 753

ditioning where opts.droptol” was set to 10−2. We also tried approximating BA−1
22 B

T

by the diagonal of Mp but the results were generally worse and we do not report them
here.

Next, we consider inexact variants of the following block triangular precondition-
ers,

PT1,ρ := PT1(ρ) =
⎡
⎣
A11 0 0
0 A22 0
0 B −ρMp

⎤
⎦ , (54)

and

P̃T1,ρ := P̃T1(ρ) =
⎡
⎣
A11 0 0
0 A22 0
0 B −ρ diag(Mp)

⎤
⎦ .

In Tables 4 and 5 , we present results for ρ = 0.6. In [12], it was experimentally
observed that the performance of PT1,ρ is not sensitive to ρ when ρ ∈ [0.6, 1.05].
However, based on our experimental results, we found the optimumvalue ρ = 0.6. For
more details, we report the results for two different cases (referred as Cases I and II)
in Tables 4 and 5 by setting opts.droptol” to be 10−4 and 10−2, respectively. Similar
to Pr , in Table 4, it is seen that for PT1,0.6, the outer iteration count for FGMRES
remains essentially constant as the grid is refined, in agreement with our analysis for
the exact case. Although the results in Table 5 indicate a better performance of the
preconditioner for the first three problem sizes, the number of outer iterations increases
drastically for the largest problem size.

From these resultswe see that replacing the inexact solves involving themassmatrix
Mp with a simple diagonal scaling involving the diagonal of Mp leads to a degradation
of the rate of convergence. We found that in terms of CPU time, this degradation more
than offsets the savings obtained by using simple diagonal scalings in place of solves
of linear systems involving Mp.

Overall, when the subsystems associated with the block preconditioners are solved
using (P)CG with incomplete Cholesky factorization, the fastest solution times are
achieved with the inexact variant of the augmented Lagrangian preconditionrPr using
what we called “Approach I”. For the largest size problems, this approach is about
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Table 5 Results for FGMRES in conjunction with preconditioners PT1,0.6 and P̃T1,0.6 (Case II)

Size PT1,0.6 P̃T1,0.6
FGMRES Inner iterations FGMRES Inner iterations
Iter CPU time Iterpcg1 Iterpcg2 Iter CPU time Iterpcg1 Iterpcg2

1695 21 0.0724 85 429 35 0.1232 131 765

10809 22 0.8061 105 467 36 1.2528 167 780

76653 28 9.0421 100 523 39 11.849 142 918

576213 80 231.15 177 633 109 300.31 191 1446

3.3 times faster, in terms of CPU time, than the block triangular preconditioner from
[12], which is in turn far more efficient than the inexact variants of the constraint
preconditioners. Furthermore, the construction cost of the incomplete Cholesky fac-
torizations used with these preconditioners is negligible. The CPU time scaling of all
these methods with respect to the mesh size is, however, superlinear in the number of
unknowns due to the use of IC preconditioning in conjunction with the CG method to
perform the inner iterations.

4.2 Implementation based on ARMS preconditioner

In an attempt to have better scalability of the number of inner iterations with respect
to mesh refinements, as an alternative to using IC-CG, we performed some experi-
ments with an algebraic multilevel solver for approximately solving the subsystems
associated with the block preconditioners. We chose the MATLAB implementation of
the ARMS preconditioner [25], which can be downloaded from https://www-users.
cs.umn.edu/~saad/software/.

Since the ARMS preconditioner is not SPD, for inexact solves involving sub-blocks
we use it with GMRES (with relative residual tolerance 0.1 and a maximum number
of iterations equal to 20) in conjunction with ARMS. With this approach, all tested
preconditioners (including constraint preconditioners) appear robust, displayingmesh-
independent convergence of the outer FGMRES iteration, and faster convergence of
the inner iterations. The obtained numerical results are shown in Tables 6 for the
block triangular, constraint preconditioners, and the augmented Lagrangian-based
preconditioner. To implement the preconditioner Pr , the subsystem corresponding to
sub-block (1, 1) is solved by GMRES in conjunction with the ARMS preconditioner.
For the subsystem associated with A22 + r BT Q−1B, forming the ARMS precondi-
tioner is not practically feasible for the larger problem sizes. Therefore, the matrix
A22 + r BT Q−1B is not formed explicitly and the corresponding system is solved
by the preconditioned GMRES where the ARMS preconditioner for A22 is used. As
before, we report under “Iter” the number of (outer) FGMRES iterations. Under “Iteri”
we report the total number of inner iterations performed for solving the linear systems
corresponding to block (i, i) of the preconditioner where i = 1, 2. To obtain results in
Table 6, PCG with tolerance 10−2 and a maximum of 20 iterations was used for solv-
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Table 6 Results for constraint
preconditioners, PT1,0.6 and
Pr ; Inner solvers: GMRES in
conjunction with ARMS
preconditioners for sub-blocks
(1, 1) and (2, 2)

Size Pre FGMRES Inner iterations
Iter CPU time Iter1 Iter2 Iter3

1695 PT1,0.6 20 0.0689 123 100 33

PconD 20 0.1170 125 186 35

PconT 15 0.0811 91 135 25

P15 11 0.0684 51 101 –

P7 13 0.0705 80 131 –

P5 15 0.0912 92 150 –

10809 PT1,0.6 20 0.7176 164 148 31

PconD 18 1.1279 150 259 31

PconT 14 0.8637 114 194 22

P15 12 0.5631 71 117 –

P7 13 0.6443 95 131 –

P5 15 0.7134 94 146 –

76653 PT1,0.6 20 8.3387 190 209 25

PconD 16 12.136 160 310 26

PconT 13 9.2989 130 240 19

P15 13 5.5103 92 130 –

P7 13 5.5541 102 131 –

P5 14 6.1664 111 141 –

576213 PT1,0.6 20 82.834 186 200 20

PconD 14 100.91 141 272 17

PconT 12 88.234 120 230 12

P15 23 91.508 160 230 –

P7 18 75.246 130 180 –

P5 16 63.587 126 156 –

ing linear systems associated with Mp. The corresponding total number of iterations
are given under “IterMp”.

Iteration times were also found to exhibit better (though not perfect) scalability than
in the experiments described in the previous subsection. The construction costs for
ARMS, however, appear to be prohibitive, at least in the MATLAB implementation,
completely off-setting any gains in performance. In particular, for the largest problem
sizes it takes hours to compute the ARMS preconditioners.

We can see from these experiments that for all preconditioners tested, both the
number of outer FGMRES iterations and (for large enough problem sizes) the total
number of inner preconditioned GMRES and CG iterations remain almost constant,
with outer iteration counts even improving for smaller mesh sizes. Asmentioned, how-
ever, this improved scaling behavior comes at the price of much higher preconditioner
construction costs. The reported solution times show that in conjunction with ARMS,
the augmented Lagrangian-based preconditioner Pr is both efficient and fairly robust
with respect to the parameter r , and outperforms all other preconditioners for large
enough problem sizes. However, it does not outperform the implementation of Pr

123



296 F. P. A. Beik, M. Benzi

based on IC-CG for the inner solves. Given the enormous set-up costs associated with
ARMS, we conclude that its use does not bring about any actual advantage in terms
of times to solution, at least when working in MATLAB.

In conclusion, the results of our experiments indicate that among all preconditioner
variants we tested, the inexact variant of Pr with IC-CG inner solves (Approach I) is,
by a large margin, the fastest solver in terms of total solution times.

5 Conclusions

In this paper we have provided a theoretical analysis of several types of block pre-
conditioners for the discrete Stokes–Darcy problem. Both eigenvalue bounds and
FOV-equivalence have been considered, completing the analyses given in [12] and in
[13]. Our analysis extends previous results and explains the experimentally observed
mesh-independence of the exact variants of the block preconditioner based on the
augmented Lagrangian approach.

Numerical experiments show that inexact variants of these block preconditioners
may or may not retain mesh-independence, depending on the solver used for the
inexact solves. All preconditioners show near mesh-independence when a multilevel
algebraic solver (ARMS) is used for the inexact solves, but this preconditionr is found
to have exceedingly high construction costs. When cheaper inner solvers based on
incomplete Cholesky-preconditioned CG are used, the fastest total solution times are
achieved by the augmented Lagrangian-type preconditioner. It is possible, of course,
that better results may be achieved with different multilevel solvers.

Future work should consider the development of similar preconditioners for the
coupled Navier–Stokes–Darcy model.
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Appendix

For the sake of clarity, we summarize the required steps for implementation of the
constraint preconditioners and PT1,ρ

inside FGMRES in the following algorithms.

We recall that in the numerical experiments the matrix BA−1
22 B

T was replaced by Mp.
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Algorithm 1: Computation of (w1;w2;w3) = P−1
conD (w1;w2;w3).

Step 1. Solve A11w1 = r1 for w1;
Step 2. Solve A22z = r2 for z;

Step 3. Solve BA−1
22 BT w3 = Bz − r3 for w3;

Step 4. Solve A22v = BT w3 for v;
Step 5. Set w2 = z − v.

Algorithm 2: Computation of (w1;w2;w3) = P−1
conT (r1; r2; r3).

Step 1. Solve A11w1 = r1 for w1;
Step 2. Solve A22z = r2 − A21w1 for z;
Step 3. Solve BA−1

22 B
Tw3 = Bz − r3 for w3;

Step 4. Solve A22v = BTw3 for v;
Step 5. Set w2 = z − v .

Algorithm 3: Computation of (w1;w2;w3) = P−1
T1,ρ

(r1; r2; r3).
Step 1. Solve A11w1 = r1 for w1;
Step 2. Solve A22w2 = r2 for w2;
Step 3. Solve Mpw3 = −ρ−1(r3 − Bw2) for w3.
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