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Abstract

Core excited states are challenging to calculate mainly because they are embedded

in a manifold of high energy valence-excited states. Their locality, however, makes their

determination ideal for local correlation methods. In this paper, we demonstrate the

performance of multi-level coupled cluster theory in computing core spectra both within

the core-valence separated and the asymmetric Lanczos implementations of coupled

cluster linear response theory. A visualization tool to analyze the excitations based on

the di�erence between the ground and excited state electron densities is also proposed.
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1 Introduction

X-ray absorption spectroscopy (XAS) is a fundamental spectroscopic method for determining

the electronic and structural properties of molecules, as well as their dynamic behavior.1�7

In this type of spectroscopy, core electrons are excited, leaving behind a core hole. Since

core orbitals are highly local, probing them yields important information about their local

environment in the molecular system. An essential component for disclosing such information

is the availability of computational methods to model the experimental spectra.

The calculation of core excitations using electronic structure theory encounters speci�c

challenges not present for valence excitations. At the typical energies involved in X-ray

spectroscopy, there is a high density of excited states with more loosely bounded electrons.

These states form a continuum and the challenge is to obtain the core excited state within this

continuum of states. Electronic structure programs usually employ subspace algorithms such

as the Davidson algorithm8,9 to determine eigenvalues. These methods are biased towards

the lowest excitation energies, which makes their common implementations impractical for

�nding the high-energy excited states in question.

Due to the signi�cant reduction in the screening of the nucleus following core excitation,

relaxation e�ects play an essential role and need to be accounted for in a reliable manner.

These relaxation e�ects mainly a�ect the molecular system in two ways: a direct, attrac-

tive e�ect contracting the valence electron density and an indirect repulsive e�ect from the

interaction between the excited electron and the valence electrons which increases polariza-

tion. Additional issues that must be considered include the choice of basis set, the e�ect of

relativity, vibrational e�ects and spectral broadening schemes.

Despite such di�culties, many methods have been presented to compute core spectra.

More than forty years ago, Slater proposed the transition state method.10,11 In this method,

the molecular orbitals involved in the excitations are set to half occupation and the excitation

energies are calculated as the di�erence between orbital energies. A somewhat similar method

is the transition potential method where excitation energies are calculated from the derivative

2



of the total energy with respect to the occupation number when the occupations are set to

one half in the relevant orbitals.12,13 Another early approach is the multiple scattering or

KKR14�16 method. It describes electron propagation with a reference Green's function and

a series of scattering events.

Density functional theory (DFT) based methods are the most common methods used to

obtain core excitations and we will mention some of them here. One approach employs pseu-

dopotentials, commonly used to describe core electrons and incorporate relativistic e�ects in

DFT methods.17 Pseudopotentials can be extended to include core holes, allowing the calcu-

lation of high energy excitations.18 In the DFT variant of the ∆SCF method,19 the electron

density corresponding to Kohn-Sham orbitals is subtracted and added in each step of the

self consistent iteration. Core excitations are then be obtained by subtracting the density

corresponding to a core hole.20 Other methods are based on time-dependent DFT (TDDFT).

Examples are the complex propagator approach (CPP) of Norman and coworkers,21,22 and

the TDDFT method with a restricted excitation manifold.23�25 In the CPP approach,21,22 the

absorption cross section of the core excitation process is obtained directly from scanning the

imaginary part of the complex dipole polarizability over the relevant frequency region. The

restricted excitation manifold methods are similar in spirit to the core-valence separation

(CVS) technique.26

The core-valence separation is used in most wave-function-based methods for calculat-

ing X-ray excitations. Due to the large energy di�erence between the valence and core

excited states, core-valence interaction parts of the Hamiltonian are very small and can be

neglected.26 The CVS approximation was �rst implemented within the second-order alge-

braic diagrammatic construction ADC(2)27 method. Wenzel et al.28�31 recently proposed

it for the ADC(2), ADC(2)-x and ADC(3) hierarchy of methods based on the intermediate

state representation variant of the ADC formalism.32,33 Calculating excited states in ADC

requires solving an eigenvalue problem for a secular matrix.32,33 The core-valence separation

greatly simpli�es the eigenvalue problem by making the core excitations extremal eigenvalues

3



and signi�cantly reducing the size of the vector space.

The calculation of X-ray absorption spectra has also been implemented within coupled

cluster (CC) theory.34�41 As in ADC, computing excited states in CC theory requires solving

an eigenvalue problem, speci�cally the eigenvalues of the Jacobian. To obtain the eigen-

values corresponding to core excited states, an asymmetric Lanczos algorithm was used in

Refs. 35 and 36 to construct a truncated tridiagonal representation of the Jacobian matrix.

Diagonalization of this matrix makes it possible to obtain a full spectrum which includes

core excitations.

It is well known that the Lanczos algorithm is numerically unstable and may require

explicit biorthogonalization.42 This makes it necessary to store and read a large number

of vectors from disk, which becomes prohibitive for systems with more than 300 orbitals.

For this reason, the CVS approximation has recently been implemented for CC linear re-

sponse (CCLR) theory both within the Lanczos algorithm, and for conventional CCLR.39

Alternative algorithms targeting X-ray excitations within the CC formalism are the CC-

CPP approach,40 and the energy-speci�c EOM-CC approach of Peng et al.41 With the CVS

approximation, the cost of calculating core excited states is approximately the same as the

calculation of valence excited states and the bottleneck is the steep scaling of the CC methods

with the dimension of the molecular system.

The locality of core excitations makes their calculation suitable for local methods such as

the multi-level coupled cluster (MLCC) approach.43,44 The MLCC method treats a small part

of the molecular system with a high accuracy CC method and the rest of the system more

approximately.43,44 In this paper we test the capability of the multi-level CCSD (MLCCSD)

approach to reproduce full CCSD Near Edge X-ray Absorption Fine Structure (NEXAFS)

spectra. We compare spectra obtained both with the full space or regular Lanczos algorithm

and with the Davidson algorithm with the CVS approximation.

In order to visualize and investigate the local nature of the excitations, ground and

excited state one-electron densities are calculated and the corresponding orbital populations
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are generated. The di�erence in the electron densities is then plotted and a visualization of

the excitation process is obtained.

The paper is organized as follows. In the next section we give a brief outline of how to

compute core spectra within the MLCC approach. Section 3 presents the results of some

example calculations and the last section contains our concluding remarks.

2 Theory

2.1 Computing spectra within CC linear response theory

The CC wave function ansatz for a closed-shell system is de�ned by the exponential parametriza-

tion

|CC〉 = exp(X) |HF〉 (1)

where |HF〉 is the Hartree-Fock reference state and X =
∑

µ xµτµ is the cluster operator

with the cluster amplitudes xµ and the corresponding excitation operators τµ. Note that in

conventional CC theory the cluster operator and amplitudes are usually written as T and

tµ, respectively. Here we use a slightly di�erent notation because the symbols T and tµ are

reserved for the active space cluster operator and amplitudes in MLCC theory,43,44 see also

Section 2.3. The ground state energy and amplitudes are determined by projection of the

Schrödinger equation on the reference state and a manifold of excitations

E = 〈HF| exp(−X)H exp(X) |HF〉 (2)

Ωµ = 〈µ| exp(−X)H exp(X) |HF〉 = 0 . (3)

In CC linear response theory, excitation energies, ωk, and left, Lk, and right, Rk, excita-
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tion vectors are usually obtained solving the asymmetric eigenvalue equations

ARk = ωkRk; LkA = ωkLk (4)

with the biorthogonality condition LiRk = δik. The Jacobian matrix A in Eq. (4) is de�ned

as the derivative

Aµν =
∂Ωµ

∂xν
= 〈µ| exp(−X)[H, τν ] exp(X) |HF〉 (5)

Transition strengths for dipole components A and B are determined from the single residues

of the linear response function, and take the form

SAB0→j =
1

2

{
MA

0jMB
j0 + (MB

0jMA
j0)
∗} (6)

where the left and right transition moments are given by

MA
0j = ηARj + M̄j(ωj)ξ

A; MB
j0 = Ljξ

B (7)

and the auxiliary Lagrangian multipliers M̄j(ωj) are obtained from the solution of the linear

equation

M̄j (A + ωjI) = −FRj. (8)

We refer to Refs. 45 and 46 for the de�nition of the remaining building blocks.

Equation (4) is most often solved iteratively via some generalization of the Davidson

algorithm.8,9 The iterative procedure is initiated by selecting unit vectors corresponding to

speci�c occupied to virtual orbital excitations, often based on Hartree-Fock orbital energy

di�erences. The procedure will converge towards the lowest eigenvalues and eigenvectors even

if the initial start vectors correspond to high energy excitations. This makes the procedure

ill-suited for core excitations.
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Another way to solve Eq. (4) is to build a tridiagonal representation, T, of the Jacobian

matrix A using an asymmetric Lanczos algorithm. The nonzero elements of the tridiagonal

matrix T = PTAQ are given by

Tll = αl = pTl Aql (9)

Tl+1,l = βl =
√

pTl+lql+1 (10)

Tl,l+1 = γl = sgn{pTl+1ql+1}βl (11)

with the biorthogonal pl and ql vectors given by

ql+1 = β−1l (Aql − γl−1ql−1 − αlql) (12)

pTl+1 = γ−1l (pTl A− βl−1pTl−1 − αlpTl ). (13)

It is neither necessary nor convenient to generate the full tridiagonal matrix T, and the

procedure can be truncated at some dimension J � n where n is the dimension of the full

Jacobian. The diagonalization of T produces an e�ective spectrum that covers the entire

frequency range and converges from the top and bottom with increasing Lanczos chain length

J .36,47,48

A convenient choice of start vectors for the Lanczos algorithm is

q1 = u−1A ξA =
ξA

||ξA||
; pT1 = v−1A ηA =

||ξA||
ηAξA

ηA. (14)

With this choice, the eigenvectors L and R of T form the basis for an approximate diagonal

representation of the (complex) linear response function.35,36 The absorption cross-section

can then be computed from its imaginary component.35,36 Moreover, one may compute di-

rectly the transition strengths as

SAA0→j = uAvALj1R1j − v2A
∑
l

Lj1Ll1Flj
(ωj + ωl)

, (15)
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see Refs. 35 and 36 for further de�nitions and details.

2.2 The core-valence separation

The CVS approximation can be implemented within both the Davidson and the asymmetric

Lanczos algorithms.39 Initially, a set of one or more core orbitals is selected. In each itera-

tion of the solver, a projector Pv is applied on the trial vectors, removing all elements not

referencing at least one of the selected core orbitals. For a singles and doubles trial vector,

b, the e�ect of the projector is

 Pvbai = 0 ∀ i = valence,

Pvbabij = 0 ∀ i, j = valence
(16)

For the Davidson algorithm, Eq (4) becomes the projected eigenvalue equation

Pv(APvRk) = ωkPvRk, (17)

and similarly for the left eigenvectors. By applying the projector in each iteration during the

solution of Eq. (8), the computation of CVS-CC transition moments and transition strengths

is also easily obtained.

Within the Lanczos algorithm, the projector is applied during the iterative construction

of the T matrix, i.e. to the pTl and ql vectors and their linear transformations, pTl A and

Aql. The resulting Lanczos eigenvectors, as well as the Lanczos trial vector bases, PT andQ,

only contain excitations involving at least one core orbital. This e�ectively decouples them

from excitations with contributions from occupied valence orbitals only. Diagonalization of

the tridiagonal matrix yields the core excitations as lowest roots and quickly converges to

the exact results with a signi�cantly smaller Lanczos chain lengths. The oscillator strengths

and cross sections are obtained without further modi�cations to the general procedure.
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2.3 Multi-level coupled cluster theory for core spectra

Multi-level coupled cluster theory divides the molecular system into an active and an inactive

part. By treating the active part with a highly accurate method and the inactive part

more approximately, high accuracy results can be achieved at greatly reduced cost.43,44 For

example, the most expensive term in CCSD49 scales as V 4O2 where V and O are the number

of virtual and occupied orbitals respectively. By dividing the system into an active CCSD

part and an inactive part described by CC2,50 one obtains the MLCCSD model. In this

model, the scaling of the most expensive CCSD term is reduced to V 2V 2
AO

2
A where VA and

OA are the number of active virtual and occupied orbitals respectively. For some of the other

CCSD terms arising from the double commutator, see Eq. (19) below, the scaling reduction

is less favorable, but no terms scale worse than V 2O2. This is less than the scaling of CC2

which is V 3O2, so the overall scaling will be that of CC2 for large systems.

To divide the system, a localized set of molecular orbitals (MO) is generated and each

orbital is assigned to an atom. Orbitals corresponding to active atoms then form an active

orbital space while those corresponding to inactive atoms form an inactive space. We require

that the orbitals are orthogonal and that the blocks of the Fock matrix corresponding to

each space are diagonal. In this work, we have used Cholesky orbitals,51 but other schemes

are possible. After generating the orbital spaces, the cluster operator is divided into terms

corresponding to each space, X = T + S, where T corresponds to the active space and S to

the inactive. The approach can be generalized to several spaces.

The amplitude equations, Eq. 3, become

〈µ1| Ĥ + [Ĥ,X2] |HF〉 = 0 (18)

〈µT2 | Ĥ + [Ĥ,X2] +
1

2
[[Ĥ,X2], X2] |HF〉 = 0 (19)

〈µS2 | [F, S2] + Ĥ + [Ĥ, T2] |HF〉 = 0. (20)
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In Eqs. (18)-(20), Ĥ refers to the X1-transformed Hamiltonian operator

Ĥ = exp(−X1)H exp(X1) (21)

and µT and µS denote the active and inactive excited state manifolds, respectively. Note that

the equations for the single amplitudes, Eq. (18), and active double amplitudes, Eq. (19),

are the same as for full CCSD, while the equations for the inactive amplitudes, Eq. (20),

are similar to those of CC2, but contain some extra terms involving the T -operator to give

a balanced description. Excitations only involving active orbitals are referred to as internal

while those only involving inactive orbitals are referred to as external. Excitations between

the spaces are called semi external.

When calculating MLCCSD excitation energies, the equations are similar to those of full

CCSD, however, the Jacobian matrix A is modi�ed. The changes in the A-matrix blocks

are schematically summarized in Eq. (22) below

AMLCCSD =

T1 T2 S2


T1 CCSD CCSD CCSD

T2 CCSD CCSD CCSD

S2 CCX CCX CC2

(22)

The �rst two block rows, projecting against the singles and active doubles, are the same

as for standard CCSD, while the lower right block is the same as in CC2 and is diagonal.

Ideally, the CC2 block will have the largest dimension, resulting in a large reduction in

computational cost compared to CCSD. The blocks labeled CCX in Eq. (22) contain hybrid

terms between CC2 and CCSD that scales as CC2. For more details on MLCCSD linear

response, see Ref. 44.

Similarly, the intensities can be found using either Eqs. (6)-(7) or Eq. (15), both involving

the use of a MLCC-modi�ed F matrix.52 The F matrix can not be as easily divided into
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blocks corresponding to the active and inactive space, but contains a mixture of terms that

scale as CC2.

3 Results

3.1 General computational details

The MLCCSD approach for core excitation spectra has been implemented in a development

version of the Dalton code.53,54 As the current MLCCSD implementation is not optimized,

our study has been limited to the relatively small molecules ethanal (acetaldehyde), propenal

(acrolein) and butanal (butyraldehyde). Core absorption spectra have been computed using

MLCCSD and compared to the corresponding full CCSD and CC2 spectra. As core-valence

polarized basis sets are usually required for an accurate treatment of core excitations, we use

aug-cc-pCVDZ basis set55 for the atoms of the speci�c edges in ethanal and butanal, and

either the aug-cc-pVDZ, indicated by aug-cc-p(C)VDZ, or the aug-cc-pCVDZ basis for the

remaining atoms. Our results indicate that the di�erence in the results between these basis

sets is negligible. Due to the high computational cost associated with the regular Lanczos

algorithm, we only used aug-cc-pVDZ in the case of propenal.

The active spaces used are described for each case in the following subsections. We use the

standard IUPAC numbering when discussing speci�c atoms, e.g. carbon 1 (C1) will always

refer to the carbon closest to the oxygen atom, carbon 2 (C2) to the next carbon in the chain,

and so on. Spectra are plotted using calculated excitation energies and oscillator strengths in

the length gauge with an empirical line broadening of 1000 cm−1 and a normalized Lorentzian

line shape function.

3.2 Ethanal

In Fig. 1, the active atoms of ethanal are colored red. Spaces A, B and C only contain one

second row atom each, and they are the smallest active spaces possible. Our results indicate
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that this is too small for some of the excitations we consider. Consequently we have also

used space D that is the union of A and B.
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Figure 1: Active spaces of ethanal indicated in red.

The oxygen K-edge spectra calculated using the regular Lanczos algorithm with a chain

length of 2000 are presented in Fig. 2a. The plots show the excitation energies and intensities

calculated using CC2, CCSD, and MLCCSD with spacesA andD, employing aug-cc-pCVDZ

for all models except MLCCSD A, where we used aug-cc-p(C)VDZ instead. For the main

edge, both MLCCSD models agree almost perfectly with full CCSD. Model A is not able

to reproduce the higher energy �ne structure, while D is reasonably close. Both MLCCSD

models, unlike CC2, reproduce the large gap between the main edge and the �ne structure.
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Figure 2: Ethanal. Comparison of the oxygen K-edge spectra as obtained in CC2, CCSD and
MLCCSD using both the regular Lanczos algorithm (a) and the Davidson algorithm with the
CVS approximation (b). Basis sets: aug-cc-p(C)VDZ for MLCCSD A and aug-cc-pCVDZ
for the rest.
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Figure 2b contains the equivalent spectra calculated using the CVS approximation within

the standard implementation of CCLR. Note that only �ve excitations were calculated using

each model. As a result, the spectra presented are not complete in the given energy range.

This is particularly important for CC2 because the highest eigenvalue computed was at

537.10 eV. The excitation energies are collected in Table 1. Similar to the Lanczos case, the

MLCCSD results are very good for the main edge and reasonably good for the �ne structure.

Unlike in the Lanczos case, model A overestimates the oscillator strength of the main edge

by about 10%.

Table 1: Ethanal. Oxygen core excitation energies (in eV) and corresponding oscillator
strengths f × 100 (dimensionless, in parenthesis) computed using the CVS-Davidson algo-
rithm. Basis sets: aug-cc-p(C)VDZ for MLCCSD A and aug-cc-pCVDZ for the rest.

CC2 CCSD MLCCSD A MLCCSD D

S1 534.13 (3.64) 534.64 (4.34) 534.65 (4.72) 534.64 (4.32)
S2 535.95 (0.05) 539.46 (0.04) 539.21 (0.05) 539.40 (0.05)
S3 536.62 (0.03) 540.25 (0.03) 539.99 (0.03) 540.20 (0.03)
S4 536.83 (0.00) 540.50 (0.22) 540.26 (0.18) 540.46 (0.20)
S5 537.10 (0.03) 540.56 (0.02) 540.28 (0.02) 540.49 (0.02)

The carbon K-edge spectra obtained using the regular Lanczos algorithm are plotted

in Fig. 3. The main edge is well reproduced by MLCCSD D. For the higher excitations,

however, MLCCSD seems to be closer to CC2. In should be noted that the Lanczos algo-

rithm calculates all roots in this case, so the bands in Fig. 3 originate from both the active

and inactive spaces. Furthermore, it is less straightforward to determine which excitations

correspond to which individual core orbitals when using the Lanczos method without CVS.

These complications are lifted when applying, both in the Davidson and in Lanczos case,

the CVS approximation as shown in Fig. 4. Note that the CC2 results are not included in

the �gure for clarity, but the values are reported in Table 2 and they are very similar to the

Lanczos CC2 results. As the core orbitals are selected beforehand, it is possible to choose

an active space corresponding to the relevant atom or atoms. From Fig. 4, we observe that

MLCCSD C reproduces the carbon excitations of the methyl group very well. Model B has
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Figure 3: Ethanal. Comparison of the carbon K-edge spectrum as obtained in CC2, CCSD
and MLCCSD via the regular Lanczos algorithm. Basis set aug-cc-pCVDZ.

a slightly shifted main edge, whereas D is almost indistinguishable from full CCSD.

Surprisingly, model B reproduces the peak just below 293 eV better than model D.

Similar behavior is observed for the other molecules in this study. At these higher energies,

the excitations have a higher double character and are more delocalized so the MLCCSD

method is expected to be less successful. For this reason we believe the agreement with

model B is a result of fortuitous error cancellation. Some of this may be due to the localized

orbitals. Full CCSD is orbital invariant as long as there is no mixing of occupied and virtual

orbitals. This invariance is broken by the CVS approximation and the Cholesky 1s orbital

energy is about 0.04 eV higher than the canonical orbital energy in active space B while

only 0.01 for active space D. These are small di�erences, but the e�ect is generally greater

for smaller active spaces and basis sets.

To visualize the e�ect of the excitation process, we have plotted the change in the one-

electron density between the ground and core excited states. This is achieved by calculating

the orbital occupations in the two states and calculating the CCSD density di�erence using

14



0

0.05

0.1

0.15

0.2

0.25

287 288 289 290 291 292 293 294 295

in
te
ns
it
y

∆E (eV)

CCSD
MLCCSD C+D

MLCCSD B

Figure 4: Ethanal. Comparison of the carbon K-edge spectrum as obtained in CC2, CCSD
and MLCCSD using the CVS-Davidson algorithm. Basis sets: aug-cc-p(C)VDZ for ML-
CCSD B and aug-cc-pCVDZ for the rest.

Table 2: Ethanal. Carbon core excitation energies (eV) and corresponding oscillator
strengths f × 100 (dimensionless, in parentheses) computed using the CVS-Davidson al-
gorithm. Basis sets: aug-cc-p(C)VDZ for MLCCSD B and aug-cc-pCVDZ for the rest.

CC2 CCSD MLCCSD C+D MLCCSD B

C1

S1 289.74 (6.63) 288.49 (6.23) 288.48 (6.38) 288.63 (7.00)
S2 293.48 (0.84) 292.86 (1.24) 292.89 (1.31) 292.86 (1.28)
S3 294.23 (0.21) 293.83 (0.19) 293.86 (0.20) 293.74 (0.26)
S4 294.54 (0.14) 294.17 (0.24) 294.19 (0.26) 294.07 (0.23)
S5 294.76 (0.12) 294.36 (0.19) 294.37 (0.17) 294.28 (0.14)

C2

S1 290.15 (0.01) 289.55 (0.00) 289.52 (0.00) -
S2 290.21 (0.49) 289.69 (0.64) 289.71 (0.72) -
S3 291.10 (1.23) 290.68 (1.95) 290.67 (2.03) -
S4 291.12 (0.57) 290.77 (1.22) 290.76 (1.34) -
S5 291.66 (0.52) 291.33 (0.68) 291.31 (0.65) -
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Molden.56 In Fig. 5 the density di�erence in the molecular plane is plotted for the most

intense peaks of each atom in ethanal. Immediately noticeable is the very large reduction in

the core density of the atom being excited and a corresponding increase in the density around

the core. Furthermore, the oxygen excitation is highly localized with almost all the change

taking place on the oxygen atom, and only a small change on C1. The carbon excitations

are also fairly localized, but less so than for oxygen, particularly for C1.

Figure 5: Di�erence in excited and ground state electron density in the molecular plane for
the most intense peaks of oxygen (left), C1 (middle) and C2 (right) calculated at the CCSD
level.

Figure 6 shows the same excitations plotted as 3D isosurfaces. Blue surfaces correspond

to increased densities and red to decreased densities. This reveals that most of the increase

goes out of the molecular plane for C1 and oxygen. Analysis of the excitation vector reveals

that the excitations are indeed 1s→ π∗ excitations. The excitation from C2 is also a 1s→ π∗

excitation, but it is less clear from the density change. The greater localization for oxygen

and C2 can explain why MLCCSD A and C perform better for these atoms than MLCCSD

B does for C1.

3.3 Propenal

Propenal is the smallest conjugated aldehyde and we will use it to study the performance

of MLCCSD for a conjugated system. The active spaces adopted are summarized in Fig. 7.
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Figure 6: Di�erence in excited and ground state electron density plotted as isosurfaces (0.01)
for the most intense peaks of oxygen (left), C1 (middle) and C2 (right) calculated with CCSD.
Blue corresponds to increased and red to decreased density.

Spaces A to D only contain one second row element each, while E and F contain a double

bond each.
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Figure 7: Active spaces of propenal in red

The CVS Davidson results for oxygen are presented in Fig. 8 and Table 3. As for ethanal,

both spaces containing oxygen reproduce the main edge well, and E is better for the �ne

structure. Again, CC2 fails and yields too small a gap between the main edge and the next

excitation.
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Figure 8: Propenal. Comparison of the oxygen K-edge spectra obtained with CC2, CCSD,
and MLCCSD A and E and the CVS-Davidson algorithm. Basis set: aug-cc-pVDZ.

Table 3: Propenal. Oxygen CVS-Davidson core excitation energies (eV) and corresponding
oscillator strengths f × 100 (dimensionless, in parentheses). Basis set: aug-cc-pVDZ.

CC2 CCSD MLCCSD A MLCCSD E

S1 534.28 (3.31) 535.01 (4.22) 535.04 (4.53) 535.02 (4.22)
S2 536.53 (0.03) 540.11 (0.02) 539.87 (0.03) 540.12 (0.02)
S3 537.05 (0.01) 540.71 (0.00) 540.45 (0.01) 540.72 (0.00)
S4 537.22 (0.17) 540.93 (0.05) 540.61 (0.07) 540.94 (0.05)
S5 537.29 (0.00) 541.05 (0.13) 540.76 (0.10) 541.06 (0.14)
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Obtaining the carbon K-edge spectrum in propenal is more complicated than for ethanal

because there are more carbon atoms. Combining the regular Lanczos algorithm with ML-

CCSD would produce a large number of peaks corresponding to inactive atoms and make

the spectrum very di�cult to interpret. In Fig. 9 we compare the CCSD and CC2 spectra

obtained with the CVS-Davidson algorithm and to the CCSD regular Lanczos spectrum.

While CC2 performs better for carbon than for oxygen, there are still large discrepancies

compared to CCSD. Comparing the Lanczos and CVS algorithms, we generally �nd a good

agreement below 292 eV, though with some small di�erences. These di�erences may be due

to the Lanczos algorithm not being fully converged for the chosen chain length of 3000.

Above 292 eV, the two spectra di�er signi�cantly. This happens because there is a large

number of states in this energy range and only �ve roots for each C atom were determined

using the CVS-Davidson approach. Consequently, only few states were obtained within this

energy range and it was somewhat arbitrary which states the Davidson algorithm converged

to. Because CCSD and MLCCSD use di�erent orbitals, the two methods will often converge

to di�erent roots in such cases. This complication can be avoided by calculating more states.

The CVS results for CC2 and CCSD, as well as for two sets of MLCCSD active spaces, are

reported in Table 4.

In Fig. 10a, the same CVS CCSD spectrum is compared to a MLCCSD spectrum com-

puted using the minimal active spaces B, C and D. MLCCSD reproduces the main features

of the spectrum and for most applications this will be su�ciently accurate. Figure 10b is

similar to Fig. 10a, but a set of larger active spaces was used in the MLCCSD calculation.

Spaces E and F both contain two second row atoms, E contains oxygen and C1 and F

contains the remaining carbons. As can be seen in the �gure, this gives excellent results for

the excitations below 293 eV. Note that the peak at 287.5 eV appears to be a bit too intense.

This happens because the peak is the sum of two excitations that are separated by 0.07 eV

in the CCSD case and by 0.03 eV in MLCCSD, see Table 4. The calculated intensities are

actually slightly lower for MLCCSD.
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Figure 9: Propenal. Comparison of the carbon K-edge spectra obtained with the CVS-
Davidson and regular Lanczos algorithms. Basis set: aug-cc-pVDZ.
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Figure 10: Propenal. Comparison of the carbon K-edge spectra obtained with CCSD and
MLCCSD B, C and D (a) and E and F (b) with the CVS-Davidson algorithm. Basis: set
aug-cc-pVDZ.
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Table 4: Propenal. Carbon CVS-Davidson core excitation energies (eV) and corresponding
oscillator strengths f × 100 (dimensionless, in parentheses). Basis set: aug-cc-pVDZ.

CC2 CCSD B+C+D E+F

C1

S1 289.99 (5.76) 288.80 (5.56) 288.99 (6.11) 288.82 (5.58)
S2 293.93 (0.92) 293.35 (1.38) 293.37 (1.42) 293.47 (1.49)
S3 294.37 (0.65) 293.64 (0.56) 293.79 (0.69) 294.00 (0.60)
S4 294.56 (0.12) 294.27 (0.15) 294.19 (0.16) 294.40 (0.18)
S5 294.83 (0.06) 294.59 (0.11) 294.49 (0.07) 294.70 (0.10)

C2

S1 288.52 (3.50) 287.48 (3.75) 287.54 (3.66) 287.48 (3.67)
S2 291.03 (0.29) 290.91 (0.71) 290.74 (0.65) 290.91 (0.74)
S3 291.41 (1.66) 290.94 (1.50) 290.86 (1.84) 290.97 (1.73)
S4 291.41 (0.21) 291.41 (0.16) 291.17 (0.36) 291.41 (0.24)
S5 291.97 (0.08) 292.08 (0.07) 291.84 (0.06) 292.07 (0.07)

C3

S1 288.49 (4.40) 287.41 (4.32) 287.45 (4.85) 287.45 (4.31)
S2 291.22 (0.37) 290.81 (0.53) 290.73 (0.53) 290.83 (0.54)
S3 291.71 (0.85) 291.39 (1.51) 291.26 (1.41) 291.42 (1.53)
S4 292.27 (0.02) 291.98 (0.16) 291.83 (0.06) 292.03 (0.18)
S5 292.31 (0.10) 292.24 (0.14) 292.05 (0.18) 292.28 (0.14)

3.4 Butanal

Finally, to investigate the behavior of single bonded carbon chains we calculated the core

excitation energies of butanal.57 We used the active spaces in Fig. 11. Active spaceA contains

the oxygen atom and the attached methine group which proved su�cient for ethanal and

propenal. The active spaces B, C and D only contain a methyl or a methylene group.
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Figure 11: Active spaces of butanal in red.

Figure 12 shows the spectra at the oxygen K-edge of butanal calculated with CC2, CCSD

and MLCCSD and the CVS-Davidson algorithm. Similarly to ethanal and propenal, the

excitation energy of the main edge is too low with CC2 and the gap to the higher shake-up
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excitations is too small. The spectra for CCSD and MLCCSD are almost indistinguishable,

even for the higher excitations.
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Figure 12: Butanal. CVS-Davidson oxygen K-edge calculated with the Davidson algorithm.
Basis set: aug-cc-pCVDZ

Table 5 collects the core excitation energies of oxygen in butanal with the corresponding

oscillator strengths. None of the errors in the MLCCSD energies compared to CCSD are

larger than 0.03 eV. The errors in the oscillator strengths are also small, whereas the relative

errors vary a lot because the magnitude of the oscillator strengths vary by three orders of

magnitude.

Table 5: Butanal. Oxygen CVS-Davidson core excitation energies (eV) and corresponding
oscillator strengths f × 100 (dimensionless, in parentheses). Basis set: aug-cc-pCVDZ.

CC2 CCSD MLCCSD A

S1 534.17 (3.65) 534.68 (4.33) 534.69 (4.31)
S2 535.92 (0.03) 539.44 (0.01) 539.42 (0.01)
S3 536.66 (0.01) 540.17 (0.05) 540.14 (0.05)
S4 536.68 (0.00) 540.39 (0.03) 540.36 (0.03)
S5 536.88 (0.03) 540.60 (0.15) 540.57 (0.15)
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Obtaining the carbon K-edge spectrum requires a bit more care in the choice of active

space, depending on the accuracy required. In Fig. 13, the peaks below 289 eV and above

292 eV correspond to C1 and were calculated using active space A in MLCCSD and these

are well reproduced. The rest of the peaks are from the atoms C2, C3 and C4. They are

shifted down a bit compared to CCSD, but overall correspond reasonably well with CCSD.

The CC2 spectrum is omitted from Fig. 13 for clarity, but it showed similar discrepancies

from CCSD as seen in ethanal and propenal.
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Figure 13: Butanal. CVS-Davidson carbon K-edge calculated with the Davidson algorithm.
Basis set: aug-cc-pCVDZ

Comparing the excitation energies in Tab. 6, the largest error for C1 is about 0.04 eV.

For the other carbons, the errors are larger, but none are larger than 0.3 eV. We note that

in some cases, the CC2 excitation energies are more accurate than the MLCCSD excitation

energies. These are weak excitations that will be di�cult to see in an experiment and

oscillator strengths are better described by MLCCSD.
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Table 6: Butanal. Carbon CVS-Davidson core excitation energies (eV) and corresponding
oscillator strengths f × 100 (dimensionless, in parenthesis). Basis set aug-cc-pCVDZ.

CC2 CCSD MLCCSD

C1

S1 289.70 (6.59) 288.44 (6.21) 288.44 (6.33)
S2 293.34 (0.86) 292.74 (1.27) 292.78 (1.33)
S3 294.16 (0.14) 293.73 (0.15) 293.74 (0.17)
S4 294.25 (0.13) 293.92 (0.22) 293.94 (0.24)
S5 294.43 (0.09) 294.16 (0.11) 294.16 (0.09)

C2

S1 290.04 (0.11) 289.52 (0.01) 289.46 (0.02)
S2 290.08 (0.62) 289.68 (1.01) 289.63 (1.05)
S3 290.75 (0.98) 290.45 (1.78) 290.35 (1.76)
S4 290.96 (0.08) 290.88 (0.17) 290.73 (0.13)
S5 291.28 (0.02) 291.30 (0.03) 291.12 (0.02)

C3

S1 289.93 (0.35) 289.66 (0.60) 289.51 (0.55)
S2 290.51 (0.07) 290.35 (1.25) 290.16 (1.19)
S3 290.52 (0.55) 290.54 (0.06) 290.28 (0.10)
S4 290.80 (0.01) 290.91 (0.07) 290.61 (0.01)
S5 290.84 (0.05) 290.93 (0.05) 290.65 (0.08)

C4

S1 289.70 (0.38) 289.29 (0.50) 289.21 (0.51)
S2 290.48 (0.78) 290.22 (1.45) 290.11 (1.44)
S3 290.51 (0.71) 290.27 (1.47) 290.16 (1.43)
S4 290.80 (0.00) 290.68 (0.02) 290.55 (0.01)
S5 291.36 (0.35) 291.35 (0.43) 291.18 (0.46)

Table 7: Ethanal. Oxygen core excitation energies (in eV) and corresponding oscillator
strengths f × 100 (dimensionless, in parenthesis) computed using the CVS-Davidson algo-
rithm compared with experiment58 Basis sets: aug-cc-pCVTZ.

CC2 CCSD MLCCSD A MLCCSD D Experiment

S1 532.58 (3.85) 532.69 (4.42) 0.00 (0.00) 0.00 (0.00) 531.53
S2 534.61 (0.05) 537.50 (0.04) 0.00 (0.00) 0.00 (0.00) 535.42
S3 535.27 (0.02) 538.28 (0.02) 0.00 (0.00) 0.00 (0.00) 536.32
S4 535.43 (0.00) 538.52 (0.22) 0.00 (0.00) 0.00 (0.00) 537.05
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Table 8: Ethanal. Relative oxygen core excitation energies (in eV) computed using the
CVS-Davidson algorithm compared with experiment58 Basis sets: aug-cc-pCVTZ.

CC2 CCSD Experiment

S1 0.00 0.00 0.00
S2 2.03 4.82 3.89
S3 2.69 5.59 4.79
S4 2.85 5.83 5.52

3.5 Comparison with experiment

4 Conclusions

With the examples presented in this paper, we have demonstrated that it is possible to de-

termine CCSD core excitation energies and oscillator strengths using MLCCSD with small

active spaces. In many cases, the results obtained with the smallest active spaces are su�-

ciently accurate given that a linewidth of 1 eV or more is not uncommon in experiments.58

Small expansions of the active spaces in ethanal and propenal were su�cient to obtain CCSD

results with errors less than 0.01 eV.

The current implementation is not yet fully optimal for production calculations and no

timings are therefore reported in this paper. However, the most expensive term in CCSD

scales as V 4O2, while CC2 scales as V 3O2. Butanal is a quite small molecule and with active

space A, the most expensive term to calculate in MLCCSD will be the same as in full CCSD.

The theoretical time reduction in the CCSD part is

V 4O2

V 2V 2
AO

2
A

=
1872 × 202

612 × 82
≈ 59 (23)

and the overall theoretical scaling is that of CC2. Actual time reduction will depend on

the implementation and size of the active part compared to the whole system, but results

with multi-level CC359 indicate that time reductions are close to the theoretical value for

su�ciently large systems.
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To further investigate the excitation processes, we have visualized the change in elec-

tronic density between states. For core excitations, a large reduction of electronic density is

observed in the core and a corresponding increase in the valence region. This may be used

to determine a suitable active space. If the electron change is delocalized with a low level

method, a larger active space may be required. For small active spaces that only contain one

second row atom, increasing the size will probably not appreciably a�ect the overall compu-

tational cost because the inactive part is relatively more expensive. Systematic studies with

di�erent spaces will give an indication on whether the active space is large enough.
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