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Abstract:We consider some singular Liouville equations and systems motivated by uniformization problems
in a non-smooth setting, as well as from models in mathematical physics. We will study the existence of
solutions from a variational point of view, using suitable improvements of the Moser–Trudinger inequality.
These reduce the problem to a topological one by studying the concentration property of conformal volume,
which will be constrained by the functional inequalities of geometric flavour. We will mainly describe some
common strategies from the papers [11, 12, 20] in simple situations to give an idea to the non-expert reader
about the general methods we use.
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1 Introduction
One among the most classical problems in Riemannian geometry is to find canonical metrics on a givenman-
ifold. In two dimensions, a natural choice is to uniformize a surface looking for metrics of constant Gaussian
curvature. One way to achieve this is to choose a conformal representative, namely a metric pointwise scaled
by a suitable positive function. Given a compact, boundary-less surface (Σ, g) with Gaussian curvature Kg,
consider the conformal change g Ü→ g̃ = e2wg, where w is a smooth function on Σ. It is known that under
conformal changes the Gaussian curvature transforms according to the formula

− ∆gw + Kg = Kg̃e2w . (1.1)

Hence looking for constant Kg̃ amounts to solving the following PDE on Σ:

−∆gw + Kg = Ke2w , (U)

where K ∈ ℝ. By the Gauss–Bonnet formula, the sign of K has to be the same as that of the Euler characteristic
of Σ.

We introduce next a singular version of (U). Singular objects attracted a lot of attention over the past
decades since they arise in many different situations such as limits of Einstein metrics [1, 13, 65], Kähler–
Einstein metrics [27] and in physical applications such as the study of interfaces or in general relativity.

One of the simplest singular objects consists of two-dimensional surfaces with finitely many conical
points. The model object is a standard cone, that can be realized with an isometry from a planar circular
sector. Isometries preserve the Gaussian curvature and hence a cone is geometrically flat on its side surface,
but in aweak sense the curvature behaves like ameasure at the conical tip. Precisely, if the opening angle θ of
the cone is written as θ = 2π(1 + α), α > −1, the curvature at the vertex is a Diracmass with amplitude −2πα.
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With this model in mind, for points p1, . . . , pm in Σ and α1, . . . , αm > −1, we will consider the following
problem on a compact, closed surface (Σ, g) of total volume 1:

− ∆gu + Kg = ρe2u − 2π
m
∑
j=1
αjδpj , ρ ∈ ℝ. (1.2)

Equation (1.2) is a singular version of (U), and a solution will endow Σ with a constant-curvature metric on
Σ \ ⋃m

i=1{pi} and conical angles θi = 2π(1 + αi) at each point pi. All the singular structure is encoded in the
divisor, written as a formal sum,

α :=
m
∑
i=1
αipi .

Still, by the Gauss–Bonnet formula (assuming without loss of generality that Volg(Σ) = 1), that can be
obtained by rounding-off the conical points and applying the usual Gauss–Bonnet theorem, the constant ρ
should satisfy the geometric constraint

ρ = 2πχ(Σ) + 2π
m
∑
i=1
αi . (1.3)

As we will see, equations (or systems) like (1.2) also have applications in physics and are particularly inter-
esting for these integer values of the parameters αi. Geometrically, these would correspond to orbifold points
with angle greater than 2π, but for most of this paper we will limit ourselves to describe the case of nega-
tive αi’s, which is simpler to analyse. Liouville equations arise in mathematical physics as well, to describe
mean field vorticity in steady flows (see [17, 23]), Chern–Simons vortices in superconductivity or electroweak
theory (see [63, 70]). For these problems ρ represents a positive physical parameter, and is not assumed to sat-
isfy (1.3). The points pj are called vortices, and describe either points where vorticity is imposed by external
forces [68], or vortex points, namely zeroes of the Higgs field with vanishing order αi.

To study existence for (1.2), it is useful to desingularize the problem, as one could exploit its variational
structure. Consider Green’s function of −∆g on Σ with pole p, namely the solution to

−∆gGp(x) = δp − 1 on Σ with ∫
Σ

Gp(x) dVg = 0.

It is a standard fact that Gp has the asymptotic behavior Gp ≃ − 1
2π log dg(x, p) near the singularity, where

dg( ⋅ , ⋅ ) stands for the distance induced by the background metric g. Consider the change of variables

u Ü→ u + 2π
m
∑
j=1
αjGpj (x). (1.4)

After this, (1.2) becomes

− ∆gu = ρ(h̃(x)e2u − ã(x)) on Σ, where h̃(x) = e−2π∑
m
j=1 αjGpj (x). (1.5)

Here ã(x) is a smooth function on Σ such that ∫Σ ã(x) dVg = 1, while by the asymptotics of Gpj the function h̃
satisfies

h̃ > 0 on Σ \⋃
j
{pj}, h̃(x) ≃ γjdg(x, pj)2αj near pj (1.6)

for some constant γj > 0.
Solutions to (1.5) can be found as critical points of the Euler–Lagrange energy

Iρ,α(u) = ∫
Σ

|∇gu|2 dVg + 2ρ∫
Σ

ã(x)u dVg − ρ log∫
Σ

h̃(x)e2u dVg , u ∈ H1(Σ).

Let us recall that in twodimensionsH1(Σ) embeds into Lp(Σ) for any p ∈ (1,∞): the embedding canbe indeed
extended up to exponential class. Thewell-knownMoser–Trudinger inequality holds and gives a quantitative
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estimate on exponentials of Sobolev functions

log∫
Σ

e2(u−u) dVg ≤
1
4π ∫

Σ

|∇gu|2 dVg + CΣ,g , (1.7)

where u = −∫Σ u dVg stands for the average of u on Σ.
In the singular case the Moser–Trudinger inequality on Σ has a different best constant, as was proven by

Chen [26] and Troyanov [67] (see also [22]).

Proposition 1.1 ([26, 67]). Let αj > −1 for all j and let h̃ : Σ → ℝ be as in (1.6). Then one has the inequality

log∫
Σ

h̃(x)e2(u−u) dVg ≤
1

4πmin{1, 1 +minj αj}
∫
Σ

|∇u|2 dVg + Ch̃,g (1.8)

for all u ∈ H1(Σ).

Notice that the multiplicative constant appearing in the last formula is determined by the most singular
behavior of the function h̃, see (1.6), that becomes unbounded at the points pi with negative αi’s.

Depending then on the value of ρ, we distinguish three geometric cases: the subcritical, the critical and
the supercritical. In the first case, ρ < 4πmin{1, 1 +minj αj}, and the latter term in Iρ,α can be absorbed
into the first one, giving coercivity of the energy. As a consequence, one always finds solutions using the
direct methods of the calculus of variations, i.e. taking weak limits of minimizing sequences. See for exam-
ple [50, 64, 66]. In the regular case (U), this situation corresponds to the negative or zero curvature case.
In the second case (ρ = 4πmin{1, 1 +minj αj}), the energy Iρ,α is bounded below but coercivity is lost, so it
is unclear whether minimizing sequences would converge. If compactness fails, a typical behavior of solu-
tions (described inmore detail later) leads to indefinite concentration of conformal volume at a finite number
of points. For example, in the positive curvature case of (U) (i.e. on the sphere), the loss of compactness is
caused by the action of the Möbius group, whichmight cause all conformal volume to concentrate to a single
point but leaving the Euler–Lagrange energy for (U) invariant. A careful blow-up analysis of the minimizing
sequences might still lead to existence results; we will not discuss the details here but refer the reader to
[33, 58] (and to [32] specifically for the uniformization problem). The third case (ρ > 4πmin{1, 1 +minj αj})
is the most delicate one, and has no regular counterpart in (U). The fact that ρ exceeds the Chen–Troyanov
constant causes unboundedness from below of the energy, so it is hopeless to try to find global minima as
before. Worse than that, there are situations in which solutions do not exist: one well-known example is the
tear-drop, namely a spherical surface with only one singularity. It is known that there is indeed no constant
curvature metric on such an object (see also [19, 38, 39, 55] for more general results of this type).

The supercritical case will be the one we will mostly be interested in, and we will show that a variational
approach might still give conclusions in the search of critical points for Iρ,α of saddle type. In order to find
them, as for the direct minimization methods, one fundamental condition is compactness. Concerning prob-
lem (1.2), an alternative was proved in [8] (after previous results in [15, 46, 47] for the regular case): either
a sequence (un)n of solutions to (Eρn ) (with ρn → ρ ∈ ℝ) stays uniformly bounded, or it develops a finite num-
ber of spheres at regular points and/or American footballs at singular points; see Theorem 3.5 for a precise
statement. An American football is obtained from a sphere (possibly covered multiple times) by cutting two
meridians and by gluing the remaining edges. This results in a constant-curvature singular surface having
two equal conical angles θ = 2π(1 + α): by the modified Gauss–Bonnet formula (1.1) the total curvature of
this object must be 4π(1 + α).

In the blow-up alternative all the curvature is exhausted in this way and therefore ρn, the total curvatures
of the conformal metric h̃e2un , must converge to a number in the discrete set

S = {ρ : ρ = 4πn + 4π∑
i∈I

(1 + αi), n ∈ ℕ, I ⊆ {1, . . . ,m}} ⊆ ℝ+. (1.9)

On the other hand, if ρ does not belong to this set, solutions have to stay compact and variational methods
can be applied. Recall that in the supercritical regime the Euler–Lagrange energy is unbounded from below.
However there is a way to describe how the lower bounds fail, in terms of concentration of conformal volume.
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It turns out that themultiplicative constant in (1.8) improves if the conformal volume spreads over Σ; see
Lemma 2.1. Having a better constant implies more chances to bound the energy from below, and therefore
a low energy forbids too much spreading of the volume. Suppose that all the weights αi are negative. Local-
izing (1.8) via cut-off functions near a regular or a singular point, we find in the denominator the value 4π or
4π(1 + αi), respectively. This suggests to introduce a weighted cardinality χ on points of Σ as follows: Set

{
χ(q) = 4π if q ∈ Σ \ {p1, . . . , pm},
χ(pi) = 4π(1 + αi) for all i = 1, . . . ,m.

Define also
P(Σ) = {μ : μ is a probability measure on Σ}.

As the total curvature we have at hand is ρ, this counting suggests that the limit measures for small energy
should be the following:

Σρ,α = {μ ∈ P(Σ) : 4πχ(supp(σ)) < ρ}.

Without singularities, such spaces coincide with the measures supported on a given number of points
(depending on ρ), and are useful in studying problems in higher dimensions or of higher order, see, e.g.,
[3, 35, 36, 51].

For simplicity, we will assume here the following upper bound on ρ:

ρ < 4πmin{1, min
i ̸=j

(2 + αi + αj)}. (1.10)

In this case, by setting
A = {pi : 4π(1 + αi) < ρ}, (1.11)

one can check that Σρ,α takes the simple form

Σρ,α = {δp : p ∈ A}.

In this case, one has the following result, whose statement becomes rather simple.

Theorem 1.2 ([20], particular case). Suppose that αi < 0 for all i and that ρ satisfies (1.10). Then (1.5) admits
a solution provided card(A) > 1.

While the main result in [20] is more general and deals with sets Σρ,α of arbitrary structure (see also [5, 53]),
the proof of existence is rather simple to explain under the assumptions of Theorem 1.2, and we will treat
only this case in the present paper. See also [24] for an existence result relying on degree theory.

Wenext discuss the singular Toda systemarising inChern–Simons theory,which represents anon-abelian
counterpart of (1.2). Specifically, we consider the following system:

{{{{{{
{{{{{{
{

−∆u1 = 2ρ1(
h1eu1

∫Σ h1e
u1 dVg

− 1) − ρ2(
h2eu2

∫Σ h2e
u2 dVg

− 1) − 4π
m
∑
j=1
α1,j(δpj − 1),

−∆u2 = 2ρ2(
h2eu2

∫Σ h2e
u2 dVg

− 1) − ρ1(
h1eu1

∫Σ h1e
u1 dVg

− 1) − 4π
m
∑
j=1
α2,j(δpj − 1),

(1.12)

where h1, h2 are smoothpositive functions on Σ, and the coefficients αi,j are again larger than−1. In geometry,
(1.12) describes Frenet frames of holomorphic curves in ℂℙn, see [14, 18, 28], with the pi’s standing for
ramification points of the curves. From the physical point of view, abelian Chern–Simons vortices have been
quite well studied for some time, see, e.g., [16, 21, 57, 62], while the treatment of the non-abelian case is
more recent, see, e.g., [37, 44, 45, 58].

With a change of variable similar to (1.4) the latter problem transforms into

{{{{{{
{{{{{{
{

−∆u1 = 2ρ1(
h̃1eu1

∫Σ h̃1e
u1 dVg

− 1) − ρ2(
h̃2eu2

∫Σ h̃2e
u2 dVg

− 1),

−∆u2 = 2ρ2(
h̃2eu2

∫Σ h̃2e
u2 dVg

− 1) − ρ1(
h̃1eu1

∫Σ h̃1e
u1 dVg

− 1),
(1.13)
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where the functions h̃i satisfy

h̃i > 0 on Σ \ {p1, . . . , pm}, h̃i(x) ≃ d(x, pj)2αi,j near pj , i = 1, 2. (1.14)

As for the scalar case, one gains the variational structure with the Euler–Lagrange functional

Jρ,α(u1, u2) = ∫
Σ

Q(u1, u2) dVg +
2
∑
i=1
ρi(∫

Σ

ui dVg − log∫
Σ

h̃ieui dVg), (1.15)

where Q(u1, u2) is defined as

Q(u1, u2) =
1
3 (|∇u1|

2 + |∇u2|2 + ∇u1 ⋅ ∇u2).

For the regular Toda system a sharpMoser–Trudinger inequality was found in [43] (see also [29, 69] for other
Liouville systems), where it was shown that

4π
2
∑
i=1

log∫
Σ

eui−ui dVg ≤ ∫
Σ

Q(u1, u2) dVg + C, u ∈ H1(Σ). (1.16)

Notice that one always has the inequality Q(u1, u2) ≥ 1
4 |∇u1|

2, and hence (1.16) can be thought of as an
extension of (1.7). Our next goal is to introduce the following theorem, which extends both (1.8) and (1.16).

Theorem 1.3 ([11]). Suppose p1, . . . , pm ∈ Σ and let αi,j, i = 1, 2, j = 1, . . . ,m, satisfy αi,j > −1 for all i, j.
Then, if the h̃i satisfy (1.14), the following inequality holds:

4π
2
∑
i=1

min{1, 1 +min
j
αi,j} log∫

Σ

h̃ieui−ui dVg ≤ ∫
Σ

Q(u1, u2) dVg + C, u1, u2 ∈ H1(Σ). (1.17)

The constants in the above inequality are sharp.

The above result is a first step of a variational attack for the study of (1.2). In the recent paper [10], the case
of non-negative coefficients and positive genus has been treated by using simply inequality (1.16), as the
corresponding functions h̃i are uniformly bounded (see also [52, 54, 59] for the regular case and [4] for the
scalar singular case). Inequality (1.17) is indeed needed in a general situation.

It is possible, by using blow-up analysis, to show that inequality (1.17) holds for any smaller couple of
coefficients on the left-hand side, and moreover that there exist extremal functions for the corresponding
Euler functionals (1.15). This is what we will present in this paper. One can then pass to the limit for these
extremals when the parameters approach the critical ones. The presence of singularities causes a variety
of blow-up behaviors (different blow-up rates for the two components, and blow-up at regular or singular
points): these can be reduced to two cases only, by using a Pohozaev identity from the recent paper [48].

The above reasoning in terms of volume concentration for the scalar singular equation (see the com-
ments before Theorem 1.2) allows to prove a related alternative for the two components of the system. As
a counterpart of (1.10), we define

ρ1 := 4πmin{1, min
m ̸=m�

(2 + α1m + α1m� )}, ρ2 := 4πmin{1, min
m ̸=m�

(2 + α2m + α2m� )}, (1.18)

and suppose that ρi < ρi. Define also

Ai = {pj : 4π(1 + αi,j) < ρi}, i = 1, 2. (1.19)

Under the above condition on the ρi’s it turns out that for Jρ,α(u) low either h̃1eu1 concentrates near a singular
point in A1 or h̃2eu2 concentrates near a singular point in A2. To express this (non-exclusive) alternative, it
is natural to introduce the join of two topological spaces X and Y (see for instance [40]):

X ⋆ Y := X × Y × [0, 1]
∼

, (1.20)
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where ∼ is the equivalence relation among triples (x, y, t) given by

(x, y, 0) ∼ (x, y�, 0) for all x ∈ X, y, y� ∈ Y, (x, y, 1) ∼ (x�, y, 1) for all x, x� ∈ X, y ∈ Y.

The join of the sets A1 and A2 could then be used to characterize low-energy levels of Jρ,α, with the join
parameter s ∈ [0, 1] expressing whether h̃1eu1 is distributionally closer to a Dirac mass or whether h̃2eu2 is
closer to a Dirac mass (for example s = 1

2 would describe couples with the same scale of concentration).
This description is however not optimal in general, as it does not take into account the interaction

between two components u1 and u2 via the mixed term in the quadratic form Q, which penalizes aligned
gradients. For the regular case of (1.12), in [54] it was shown that the relative rate of concentration of the two
components plays a role in this matter.

It turns out that if u1, u2 concentrate near the same point and with the same scale (a more precise
definition is given below), then the Moser–Trudinger constants for the system double. As a consequence of
this fact, it follows that when ρ1, ρ2 ∈ (4π, 8π) and no singularities occur, then join elements of the form
(x, x, 12 r), x ∈ Σ have to be excluded (see [41] for higher values of ρ1). We will present a new improved
inequality from [12] for the singular system (1.12) in order to understand at the same time the effect of
the interaction of the two components between themselves and with the singularities. As a consequence of
this improved inequality, we deduce the following theorem, which to be stated needs the definition of the
counterpart to (1.9): Let Γ�i,M ⊂ ℝ+ be defined, for i = 1, 2 andM ⊂ {1, . . . ,m}, by

Γ�i,M := 4π{n + ∑
j�∈M�

(1 + αij� ) + ∑
j∈M

(2 + α1j + α2j) : n ∈ ℕ, M� ⊂ {1, . . . ,m} \M}

and define also

Γα1 ,α2 = ⋃
M⊂{1,...,M}

(Γ�1,M × [ ∑
j∈M

4π(1 + α2j), +∞) ∪ [ ∑
j∈M

4π(1 + α1j), +∞) × Γ�2,M). (1.21)

We then set
Γ = Γα1 ,α2 .

Theorem 1.4 ([12]). Let Γ be as in (1.21), let (ρ1, ρ2) be as in (1.18) and let ρ ∈ ℝ2+ \ Γ satisfy ρi < ρi for both
i = 1, 2. Define integer numbers M1, M2, M3 by

M1 := #{j : 4π(1 + α1j) < ρ1},
M2 := #{j : 4π(1 + α2j) < ρ2},
M3 := #{j : 4π(1 + αij) < ρi and ρi < 4π(2 + α1j + α2j) for both i = 1, 2}.

Then system (1.12) admits solutions provided the following condition holds:

(M1,M2,M3) ̸∈ {(1, j, 0), (j, 1, 0), (2, 2, 1), (2, 3, 2), (3, 2, 2), j ∈ ℕ}.

By the previous description, low sub-levels of Jρ,α can be identified with the topological join ofA1 and ofA2,
with some points removed. Under the assumptions on the ρi’s, this join consists of a graph X made of seg-
ments whose end-points belong to {p1, . . . , pm}. The conditions on (M1,M2,M3) in the previous theorem
ensure that this graph is non-contractible. It turns out that the above assumptions on theMi’s are necessary:
in fact, in [12] a non-existence result for every case not covered by the theorem is proved.

2 Variational Aspects of Singular Liouville Equations:
Improved Moser–Trudinger Inequalities

In this section,we treat problem (1.2) via variationalmethods.Wefirst show that, in a regimewhere coercivity
fails, low energy implies volume concentration at suitable points. We will then use this characterization to
build min-max schemes leading to the existence of solutions.
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We describe how improved Moser–Trudinger inequalities can be employed to deduce information on
functionswhose Euler–Lagrange energy is small enough.Wewould like to give some conditions on a function
u in order to obtain lower bounds on the energy evenwhenweare beyond the coercivity threshold. Indeed, the
spreading of the function e2uover the surface gives sufficient conditions to obtain this lower bound, deduced
via some improvement of the Moser–Trudinger inequality. Two well-known examples were due to Moser [56]
and Aubin [2]. Moser proved that one can replace 1

4π by 1
8π on the standard sphere (S2, gS2 ) provided u is

antipodally symmetric. Aubin showed instead that on (S2, gS2 ) one can take any constant larger than 1
8π

provided u is balanced, which means that

∫
S2

xie2u dVS2 = 0, i = 1, 2, 3.

Here xi stand for the Euclidean i-th coordinate function, so the balancing conditionmeans having zero center
of mass inℝ3 for the conformal volume.

Chen andLi [25] extended this argument to arbitrary surfaces by showing that if e2u has integral bounded
from below into two separate subsets of Σ, then the constant 1

4π in (1.7) can be basically divided by two. The
result was then extended in [35, 36] for an arbitrary number of spreading regions.

Lemma 2.1 ([25]). Let Ω1, Ω2 be subsets of Σ satisfying dg(Ω1, Ω2) ≥ δ0, where δ0 is a positive real number,
and let γ0 ∈ (0, 12 ). Then for any ε̃ > 0 there exists a constant C = C(ε̃, δ0, γ0) such that

log∫
Σ

e2(u−u) dVg ≤ C +
1

8π − ε̃ ∫
Σ

|∇gu|2 dVg

for all the functions u ∈ H1(Σ) satisfying

∫Ωi e
2u dVg

∫Σ e
2u dVg

≥ γ0 for all i = 1, 2.

Proof. Assume without loss of generality that u = 0: one can find two functions g1, g2 such that

{{{{{{{
{{{{{{{
{

gi(x) ∈ [0, 1] for every x ∈ Σ,
gi(x) = 1 for every x ∈ Ωi , i = 1, 2,

gi(x) = 0 if dg(x, Ωi) ≥
δ0
4 ,

‖gi‖C4(Σ) ≤ Cδ0 ,

where Cδ0 is a positive constant depending only on δ0. By interpolation, for any ε > 0 there exists Cε,δ0
(depending only on ε and δ0) such that for any v ∈ H1(Σ) and for any i = 1, 2 we have

∫
Σ

|∇g(giv)|2 dVg ≤ ∫
Σ

g2i |∇gv|
2 dVg + ε∫

Σ

|∇gv|2 dVg + Cε,δ0 ∫
Σ

v2 dVg . (2.1)

We next notice that
∫
Σ

e2u dVg ≤
1
γ0

∫
Ωi

e2u dVg ≤ ∫
Σ

e2giu dV.

Using the standard Moser–Trudinger inequality, we find

log∫
Σ

e2u dVg ≤ log 1
γ0

+
1
4π

2
∑
i=1

∫
Σ

|∇g(giv)|2 dVg +
2
∑
i=1
giu + Cl,Σ,g .

By (2.1) we then deduce

log∫
Σ

e2u dVg ≤ log 1
γ0

+
1 + ε
4π

2
∑
i=1

∫
Σ

|∇gu|2 dVg +
2
∑
i=1
giu + Cl,Σ,gCε,δ0 ∫

Σ

v2 dVg .
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Since we are assuming the average of u to be zero, the average terms in the last formula are bounded by
a constant times the Dirichlet norm of u by Poincaré’s inequality. Therefore, using the elementary inequality
t ≤ εt2 + 1

4ε , we find that

log∫
Σ

e2u dVg ≤ log 1
γ0

+
1 + ε
4π

2
∑
i=1

∫
Σ

|∇gu|2 dVg + Cl,Σ,g,ε + Cε,δ0 ∫
Σ

v2 dVg .

It can be shown, for example by using truncations (in height or in Fouriermodes), that the last term is of lower
order and it can be absorbed into the Dirichlet energymultiplied by an arbitrarily small constant, concluding
the proof.

We discuss next the counterpart of the previous result in presence of singularities, for which we recall the
inequality in Proposition 1.1. Again, we wish to derive some improved inequalities in terms of the spreading
of the function

̃fu :=
h̃(x)e2u

∫Σ h̃(x)e
2u dV

,

appearing in the singular Euler–Lagrange energy.
Similarly to Lemma 2.1, inequality (1.8) can also be localized. If some portion of ̃fu is localized near

a regular point, the corresponding gain in the constantwill still be 4π. If instead ̃fu is localized near a singular
point pi with negative weight αi, we will gain locally a quantity of size 4π(1 + αi). One therefore gets the
following result.

Lemma 2.2 ([20]). Let n ∈ ℕ, let I ⊆ {1, . . . ,m} with n + card(I) > 0, and let αi < 0 for all i ∈ I. Assume there
exist r > 0, δ0 > 0 and pairwise distinct points {q1, . . . , qn} ⊆ Σ \ {p1, . . . , pm} such that the following condi-
tions hold:
∙ For any couple {a, b} ⊆ {q1, . . . , qn ∪ (⋃i∈I pi)} with a ̸= b one has dg(Br(a), Br(b)) ≥ 4δ0.
∙ For any a ∈ {q1, . . . , qm} and any i ∈ {1, . . . ,m} \ I one has dg(pi , Br(a)) ≥ 4δ0.
Consider any γ0 ∈ (0, 1

n+card(I) ).
Then for any ε̃ > 0 there exists a constant C := C(Σ, g, n, I, r, δ0, γ0, ε̃) such that

log∫
Σ

h̃e2(u−u) dVg ≤
1

4π(n + ∑i∈I(1 + αi) − ε̃)
∫
Σ

|∇gu|2 dVg + C

for all functions u ∈ H1(Σ) satisfying

∫Br(a) h̃e
2u dVg

∫Σ h̃e
2u dVg

≥ γ0 for all a ∈ {q1, . . . , qn ∪ (⋃i∈I pi)}.

The above lemma states that the more the conformal volume is spread over the surface, the more one gains
in the Moser–Trudinger inequality, especially when some volume accumulates near regular points. In this
situation, one then get lower bounds on the energy even in supercritical regimes. Therefore, if the energy gets
low enough, one should expect concentration of volume. We next state two lemmas making this reasoning
rigorous via a covering procedure.

Lemma 2.3. Let ℓ ∈ ℕ and fix two positive numbers ε and r. Suppose for a non-negative function f ∈ L1(Σ)with
‖f‖L1(Σ) = 1 that the following condition holds:

∫

⋃ℓ
i=1 Br(qi)

f dVg < 1 − ε for every ℓ-tuple q1, . . . , qℓ ∈ Σ.

Then there exist ε > 0and r > 0, depending only on ε, r, ℓ, and Σ (but not on f ), and ℓ + 1points q1, . . . , qℓ+1 ∈ Σ
(which depend on f ) satisfying

∫

Br(q1)

f dVg ≥ ε, . . . , ∫

Br(qℓ+1)

f dVg ≥ ε, B2r(qi) ∩ B2r(qj) = 0 for i ̸= j.
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Proof. Arguing by contradiction, we assume that for every ε, r > 0 there exists f as in the statement and such
that for every (ℓ + 1)-tuple of points q1, . . . , qℓ+1 in Σ we have

∫
Br(qj)

f dVg ≥ ε for all j = 1, . . . , ℓ + 1 â⇒ B2r(qi) ∩ B2r(qj) ̸= 0 for some i ̸= j. (2.2)

Let r = r
8 , where r is given in the statement. We can find h ∈ ℕ and h points x1, . . . , xh ∈ Σ such that

⋃h
i=1 Br(xi) covers Σ. For ε as in the statement of the lemma, we also define ε = ε

2h . We remark that the
choice of r and ε depends on r, ε, ℓ, and Σ only, as required.

Let {x̃1, . . . , x̃j} ⊆ {x1, . . . , xh} denote the points for which ∫Br(x̃i) f dVg ≥ ε. Define x̃j1 = x̃1 and let A1
denote the set

A1 = {⋃
i
Br(x̃i) : B2r(x̃i) ∩ B2r(x̃j1 ) ̸= 0} ⊆ B4r(x̃j1 ).

If there exists x̃j2 with B2r(x̃j2 ) ∩ B2r(x̃j1 ) = 0, we set

A2 = {⋃
i
Br(x̃i) : B2r(x̃i) ∩ B2r(x̃j2 ) ̸= 0} ⊆ B4r(x̃j2 ).

Proceeding in this way, we choose recursively points x̃j3 , x̃j4 , . . . , x̃js such that

B2r(x̃js ) ∩ B2r(x̃ja ) = 0 for all 1 ≤ a < s,

and introduce sets A3, . . . , As by

Ak = {⋃
i
Br(x̃i) : B2r(x̃i) ∩ B2r(x̃jk ) ̸= 0} ⊆ B4r(x̃jk ), k = 3, . . . , s.

Because of (2.2), the process cannot go further than x̃jℓ , and hence s ≤ ℓ. Using the definition of r, we obtain

j
⋃
i=1
Br(x̃i) ⊆

s
⋃
i=1
Ai ⊆

s
⋃
i=1
B4r(x̃ji ) ⊆

s
⋃
i=1
Br(x̃ji ). (2.3)

Then by our choice of h, ε, {x̃1, . . . , x̃j} and by (2.3), one has

∫

Σ\⋃s
i=1 Br(x̃ji )

f dVg ≤ ∫

Σ\⋃j
i=1 Br(x̃i)

f dVg ≤ ∫

(⋃h
i=1 Br(xi))\(⋃

j
i=1 Br(x̃i))

f dVg < (h − j)ε ≤ ε
2 .

Finally, if we choose qi = x̃ji for i = 1, . . . , s and qi = x̃js for i = s + 1, . . . , ℓ, we get a contradiction to the
assumptions of the lemma.

Using Lemmas2.1 and2.3,we can analyse the volume concentration for functionswith large negative energy,
showing that it has to concentrate near at most one singular point inA, see (1.11).

Lemma 2.4. Suppose the assumptions of Theorem 1.2 hold true. Then for any ε > 0 and any r > 0 there exists
a large L = L(ε, r) such that for every u ∈ H1(Σ) with Iρ,α(u) ≤ −L there exist pi ∈ A such that

1
∫Σ h̃(x)e

2u dVg
∫

Σ\Br(pi)

h̃(x)e2u dVg < ε.

Proof. We first claim that the conformal volume of functions with low energy must concentrate near a single
point. Indeed, suppose by contradiction that there exist ε, r > 0 and (un)n ⊆ H1(Σ) with Iρ,α(un) → −∞ and
such that for every point q ∈ Σ one has

∫

⋃k
i=1 Br(qi)

eun dVg < 1 − ε.
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Noting that Iρ,α is invariant under adding constants,we canassume that for every nwehave thenormalization
∫Σ h̃(x)e

2un dVg = 1. Then we can apply Lemma 2.3 with ℓ = 1 and f = h̃(x)e2un , and afterwards Lemma 2.2
with n + card(I) = 2 and δ0, γ0 sufficiently small (depending on r and ε) to obtain

Iρ,α(un) ≥ ∫
Σ

|∇gun|2 dVg + 2ρ∫
Σ

ãun dVg − Cρ −
ρ

4πmini ̸=j(2 + αi + αj) − ε̃
∫
Σ

|∇gun|2 dVg − ρun ,

with C and ε̃ independent of n (ε̃ arbitrarily small). Since we are assuming ρ < 4πmini ̸=j(2 + αi + αj), we can
choose ε̃ > 0 so small that

1 −
ρ

4πmini ̸=j(2 + αi + αj) − ε̃
=: δ > 0.

Hence using also the Poincaré inequality, we find

Iρ,α(un) ≥ δ∫
Σ

|∇gun|2 dVg + 2ρ∫
Σ

ã(un − un) dVg − Cρ

≥ δ∫
Σ

|∇gun|2 dVg − C(∫
Σ

|∇gun|2 dVg)
1
2
− Cρ ≥ −C.

This lower bound contradicts the fact that Iρ,α(un) → −∞, and proves our claim.
To conclude the proof, we must show that the volume concentrates near a singular point in A. In order

to show this, it is sufficient to argue as before and still apply Lemma 2.2 with I = 0 and n = 1, using the fact
that ρ < 4π and that the local Moser–Trudinger constant is bigger than ρ if the singular concentration point
does not belong toA.

By Lemma 2.4, it follows that if the Euler–Lagrange energy is low enough, then the function h̃(x)e2u, normal-
ized in L1, is localized near at most one singular point of Σ. Choosing ε and r sufficiently small, one can easily
see that the point pi in the statement of Lemma 2.4must be unique, and therefore we obtain a canonical map
from low-energy levels into the set of singular points.

Proposition 2.5. Under the assumptions of Theorem 1.2 there exist a large constant L and a continuous map
Ψ : {Iρ,α ≤ −L} → A such that if Iρ,α(un) → −∞, then

1
∫Σ h̃(x)e

2un dVg
h̃(x)e2u ⇀ δΨ(un)

as n → ∞.

Remark 2.6. If card(A) > 1, sinceA is discrete, from the continuity of Ψ it follows that {Iρ,α ≤ −L} is discon-
nected for L sufficiently large.

We will see in the next section how to construct a sort of inverse map to Ψ, which will allow to prove the
existence of solutions via suitable min-max schemes.

3 Proof of Theorem 1.2
In this section, we prove our first existence result, concerning singular Liouville equations.

3.1 Test Function Estimates

For each singular point pi and λ > 0 define the function

φi,λ(x) = log λ
(1 + λ2d(x, xi)2(1+αi))

.

This function satisfies the following properties.
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Proposition 3.1. Let pi be a singular point inA. Then as λ → +∞, the following properties hold true:
(i) We have

1
∫Σ h̃(x)e

2φi,λ dVg
h̃(x)e2φi,λ ⇀ δpi

weakly in the sense of distributions.
(ii) Iρ,α(φi,λ) → −∞.

Proof. To prove (i) we first notice that since h̃(x) ≃ d(x, pi)2αi , one has

h̃(x)e2φi,λ(x) ≥ λ−2αi λ2

(1 + λ2d(x, xi)2(1+αi))2
≥ C−1 λ−2αi λ2

(λ2λ−2(1+αi)r)2
≥ C−1λ2 in B2λ−1(pi) \ Bλ−1(pi).

Integrating this, we obtain

∫
Σ

h̃(x)e2φi,λ dVg ≥ ∫
B2λ−1(pi )\Bλ−1(pi )

h̃(x)e2φi,λ dVg ≥ C−1. (3.1)

On the other hand, one has that

∫
Σ\B2λ−1(pi )

h̃(x)e2φi,λ dVg ≤ C
∞

∫
2λ−1

r2αi λ2

(1 + λ2r2(1+αi))2
r dr.

By the change of variables λr1+αi = s1+αi , we then obtain

∫
Σ\B2λ−1(pi )

h̃(x)e2φi,λ dVg ≤ C
∞

∫

2λ
−

αi
1+αi

s2αi+1

(1 + s2(1+αi))2
ds → 0

as λ → +∞. Property (i) follows from the latter formula and (3.1).
To show (ii), we prove the following estimates:

ρ∫
Σ

φi,λ dVg = −(ρ + oλ(1)) log λ (oλ(1) → 0 as λ → +∞), (3.2)

∫
Σ

|∇gφi,λ|2 dVg ≤ 8(1 + αi)π(1 + oλ(1)) log λ as λ → +∞. (3.3)

Once we have these, (ii) follows immediately.
Proof of (3.2). Fixing any δ > 0 small, we have that

log λ
1 + λ2diam(Σ)2(1+αi)

≤ φi,λ(y) ≤ log λ
1 + λ2δ2(1+αi)

, y ∈ Σ \ Bδ(pi),

and
log λ

1 + λ2δ2(1+αi)
≤ φi,λ(y) ≤ log λ for y ∈ B2δ(pi).

From these two estimates and some elementary computations we deduce that

ρ∫
Σ

φi,λ dVg = ρ[(− log λ)(1 + O(δ2)) + O(1) + O(δ2)(|log λ| + |log δ|)]

as λ → +∞. By the arbitrarity of δ, estimate (3.2) follows.
Proof of (3.3).We will show the following two pointwise estimates on the gradient of φi,λ:

|∇φi,λ(y)| ≤ Cλ for every y ∈ Σ, (3.4)
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where C is a constant independent of σ and λ, and

|∇φi,λ(y)| ≤
2(1 + αi)
d(y, pi)

. (3.5)

To check (3.4) we notice that
λ2d(y, pi)

1 + λ2d(y, pi)2(1+αi)
≤ Cλ

1
1+αi , (3.6)

where C is a fixed constant (independent of λ). Moreover,

∇φi,λ(y) = −2(1 + αi)λ2
d(y, pi)1+2αi∇y(di(y))
(1 + λ2d(y, pi)2(1+αi))

. (3.7)

Using |∇ydi(y))| ≤ 1 and inserting (3.6) into (3.7), we obtain immediately (3.4). Similarly, erasing the term 1
from the denominator, we deduce (3.5).

Estimate (3.4) then implies

∫
B∗(pi)

|∇gφi,λ|2 dVg ≤ C, where B∗ := B 1
λ1/(1+αi )

(3.8)

for some fixed C depending only on Σ and αi. On the other hand, using polar coordinates centred at pi and
using (3.5), we find that

∫
Σ\B∗(pi)

|∇gφi,λ|2 dVg ≤ 4 ∫
Σ\B∗(pi)

(1 + αi)2

dg(y, xi)2
dVg ≤ 8π(1 + oλ(1))(1 + αi) log λ

as λ → +∞. From (3.8) and the last formula we finally deduce (3.3).

3.2 Min-Max Scheme and Existence

Wenext introduce a variational scheme for obtaining the existence of solutions for (1.5). First, let L be so large
that Proposition 2.5 applies with L

4 , and then choose two distinct points pi1 , pi2 such that 4π(1 + αi) < ρ.
Next choose λ be so large that Iρ,α(φi1 ,λ) ≤ −L and Iρ,α(φi2 ,λ) ≤ −L (see Proposition 3.1 (ii)). Fixing this

value of λ, we define the family of maps

Πλ = {ϖ : [0, 1] → H1(Σ) : ϖ is continuous and ϖ(0) = φi1 ,λ , ϖ(1) = φi2 ,λ}. (3.9)

Lemma 3.2. The family Πλ is non-empty. Moreover, letting

Πλ = inf
ϖ∈Πλ

sup
t∈[0,1]

Iρ,α(ϖ(t)),

we have
Πλ > −

L
2 .

Proof. To show that Πλ ̸= 0, it suffices to consider the map

ϖ(t) = (1 − t)φi1 ,λ + tφi2 ,λ . (3.10)

Arguing by contradiction, we suppose that Πλ ≤ − L2 . Then there would exist a map ϖ ∈ Πλ with

sup
t∈[0,1]

Iρ,α(ϖ(t)) ≤ −
3
8L.

Since by our choice of L Proposition 2.5 applies with L
4 , the composition

t Ü→ Ψ ∘ ϖ(t)

is well defined and continuous. However, by Proposition 3.1 (i) and Proposition 2.5 one has that

Ψ ∘ ϖ(0) = p1, Ψ ∘ ϖ(1) = p2,

which contradicts the continuity of this map.



A. Malchiodi, On Singular Liouville Equations and Systems | 123

By the statement of Lemma 3.2 and standard variational arguments, one can find a Palais–Smale sequence
(un)n for Iρ,α at level Πλ, namely a sequence for which

Iρ,α(un) → Πλ , I�ρ(un) → 0.

Unfortunately it is not knownwhether Palais–Smale sequences admit converging subsequences. To show this
property, recall first that u Ü→ e2u is compact from H1(Σ) to Lp(Σ), which by Hölder’s inequality implies the
compactness of u Ü→ h̃(x)e2u from H1(Σ) into L1(Σ). Therefore, it would be sufficient to show that a Palais–
Smale sequence is bounded.

This indeed can be proved indirectly, following an argument in [60], by slightly modifying the value
of the parameter ρ. We choose a small ρ0 > 0, and allow ρ to vary in the interval [1 − ρ0, 1 + ρ0]. We con-
sider then the functional Iρ,α for these values of ρ. If ρ0 is sufficiently small, the interval [1 − ρ0, 1 + ρ0] will
be compactly contained in the complement of the set S; see (1.9). Following the previous estimates with
minor changes, we easily check that the min-max scheme applies uniformly for ρ ∈ [1 − ρ0, 1 + ρ0] and for λ
sufficiently large. Precisely, given any large L > 0, there exist ρ0 sufficiently small and λ so large that for
ρ ∈ [1 − ρ0, 1 + ρ0] we have

sup
t∈{0,1}

Iρ,α(ϖ(m)) < −2L, Πρ := inf
ϖ∈Πλ

sup
t∈[0,1]

Iρ,α(ϖ(t)) > −
L
2 , (3.11)

where Πλ is defined in (3.9). Moreover, by using for example the test map (3.10), one shows that for ρ0 suffi-
ciently small there exists a large constant L such that

Πρ ≤ L for every ρ ∈ [1 − ρ0, 1 + ρ0].

We have the following result, regarding the dependence in ρ of the min-max value Πρ; see [34].

Lemma 3.3. Let λ be so large and ρ0 be so small that (3.11) holds. Then the function

ρ Ü→ Πρ/ρ is non-increasing in [1 − ρ0, 1 + ρ0].

Proof. For ρ� ≥ ρ we have
Iρ,α(u)
ρ −

Iρ� (u)
ρ� =

1
2(

1
ρ −

1
ρ� )∫

Σ

|∇gu|2 dVg ≥ 0,

which clearly implies Πρ/ρ ≥ Πρ�/ρ�.

From Lemma 3.3 we deduce that the function ρ Ü→ Πρ/ρ is differentiable almost everywhere, and we obtain
the following corollary.

Corollary 3.4. Let λ and ρ0 be as in Lemma3.3, and let Λ ⊂ [1 − ρ0, 1 + ρ0] be the (dense) set of ρ for which the
function Πρ/ρ is differentiable. Then for ρ ∈ Λ the functional Iρ,α possesses a bounded Palais–Smale sequence
(ul)l at level Πρ, weakly converging to a solution of (1.5).

Proof. The existence of a Palais–Smale sequence (ul)l follows from Lemma 3.2, and the boundedness is
proved exactly as in [34, Lemma 3.2].

From the above result we obtained a sequence ρk → ρ such that Iρk ,α has a critical point.

Theorem 3.5 ([6–8]). Let Σ bea compact surface and let ui solve (1.5)with h̃ as in (1.6), ρ = ρi, ρi → ρ. Suppose
that ∫Σ fui dVg ≤ C for some fixed C > 0. Then along a subsequence uik one of the following alternatives holds:
(i) uik is uniformly bounded from above on Σ.
(ii) maxΣ(2uik − log∫Σ fuik dVg) → +∞ and there exists a finite blow-up set S = {q1, . . . , ql} ∈ Σ such that

(a) for any s ∈ {1, . . . , l} there exist xsk → qs such that uik (xsk) → +∞ and uik → −∞ uniformly on the
compact sets of Σ \ S,
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(b) ρik ̃fuik ⇀ ∑l
s=1 βsδqs in the sense of measures, with βs = 4π for qs ̸= {p1, . . . , pm}, or βs = 4π(1 + αj)

if qs = pj for some j = {1, . . . ,m}. In particular, one has that

ρ = 4πn + 4π∑
j∈J

(1 + αj),

for some n ∈ ℕ ∪ 0 and J ⊆ {1, . . . ,m} (possibly empty) satisfying n + card(J) > 0.

Proof of Theorem 1.2. By Corollary 3.4 there exists a sequence ρk → ρ such that Iρk ,α has a critical point uk.
By Theorem 3.5, since ρ ̸∈ S, the sequence uk must then converge to a solution of (1.2).

We also refer to [34, 61] for previous results on surfaces with positive genus concerning the regular case
of (1.2). The above method can actually be used to find multiplicity results as well for generic data;
see [30, 31].

4 A Moser–Trudinger Inequality for Singular Systems
In this section, we are going to prove the following Moser–Trudinger-type inequality. It is a weaker version of
Theorem 1.3, but anyway sufficient to prove the existence result Theorem 1.4. We denote by x− the negative
part of a real number x, that is,

x− := {
0 if x ≥ 0,
−x if x ≤ 0.

For i ∈ {1, 2} we set
α̃i = − max

j∈{1,...,m}
αi,j−. (4.1)

Proposition 4.1. Let Σ be a closed surface with area |Σ| = 1, let h̃i be as in (1.14) and let α̃i be as in (4.1).
Then for any ρ = (ρ1, ρ2) ∈ ℝ2+ satisfying ρi < 4π(1 + α̃i) for both i ∈ {1, 2} there exists C(ρ) > 0 such that the
Euler–Lagrange functional (1.15) verifies

Jρ,α(u) > −C(ρ) for all u ∈ H1(Σ)2.

Definition 4.2. As in [43], we define the set of admissible parameters Λ as

Λ := {ρ ∈ ℝ2+ : Jρ,α is bounded from below}.

Clearly, Λ preserves the partial order ofℝ2+, that is if ρ ∈ Λ, then ρ̃ ∈ Λ until ρ̃i ≤ ρi for both i ∈ {1, 2}; in these
terms, Proposition 4.1 is equivalent to saying

(0, 4π(1 + α̃1)) × (0, 4π(1 + α̃2)) ⊂ Λ.

Remark 4.3. One can easily see that Λ is not empty: since there holds

|∇u1|2 + |∇u2|2

6 ≤ Q(u1, u2),

one can apply the scalar Moser–Trudinger inequality (1.8) to both components to get

(0, 83π(1 + α̃1)) × (0, 83π(1 + α̃2)) ⊂ Λ.

To prove Proposition 4.1, some lemmas will be needed. First of all, we notice that when the parameter ρ is in
the interior of the set Λ, then the energy functional is not only bounded from below, but even coercive and it
has a minimizer; on the other hand, if ρ is on the boundary of Λ, then Jρ,α cannot be coercive.
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Lemma 4.4. For any ρ ∈
∘
Λ there exists a constant C such that

Jρ,α(u) ≥
∫Σ(|∇u1|

2 + |∇u2|2) dVg
C − C.

Moreover, Jρ,α admits a minimizer u = (u1, u2) that solves (1.13).

Proof. Taking δ ∈ (0, d(ρ,∂Λ)√2 ), we have (1 + δ)ρ ∈ Λ, so J(1+δ)ρ,α(u) ≥ −C. Therefore, we can write

Jρ,α(u) =
δ

1 + δ ∫
Σ

Q(u1, u2) dVg +
J(1+δ)ρ,α(u)

1 + δ

≥
δ

6(1 + δ) ∫
Σ

(|∇u1|2 + |∇u2|2) dVg − C

and the first claim follows.
To prove the rest, we notice that if we restrict ourselves to the subset of H1(Σ)2 consisting of all functions

satisfying ∫Σ h̃ie
ui dVg = 1, the energy is coercive since, from Poincaré’s inequality and (1.8) we have

∫
Σ

u2i dVg = ∫
Σ

(ui − ui)2 dVg + (ui)2

≤ C∫
Σ

|∇ui|2 dVg + (C +
1

16π(1 + α̃i)
∫
Σ

|∇ui|2 dVg)
2

≤ C(1 + ∫
Σ

|∇ui|2 dVg)
2
.

By Jρ,α being weakly lower semi-continuous as well, the existence of a minimizer follows from the direct
methods of calculus of variations.

Lemma 4.5. For any ρ ∈ ∂Λ there exists a sequence {ũk}k∈ℕ ⊂ H1(Σ)2 verifying

∫
Σ

(|∇ũ1,k|2 + |∇ũ2,k|2) dVg
k→+∞
ÚÚÚÚÚ→ +∞, lim

k→+∞

Jρ,α(ũk)
∫Σ(|∇ũ1,k|

2 + |∇ũ2,k|2) dVg
≤ 0.

Proof. Suppose by contradiction that

∫
Σ

(|∇u1,k|2 + |∇u2,k|2) dVg
k→+∞
ÚÚÚÚÚ→ +∞ â⇒

Jρ,α(uk)
∫Σ(|∇u1,k|

2 + |∇u2,k|2) dVg
≥ θ > 0

for any choice of {uk}. This would mean that

Jρ,α(u) ≥
θ
2 ∫
Σ

(|∇u1|2 + |∇u2|2) dVg − C.

Hence for any small δ we would get

J(1+δ)ρ,α(u) = (1 + δ)Jρ,α(u) − δ∫
Σ

Q(u1, u2) dVg

≥ ((1 + δ) θ2 −
δ
2)∫

Σ

(|∇u1|2 + |∇u2|2) dVg − C

≥ −C.

Thus (1 + δ)ρ ∈ Λ, whereas one clearly has (1 − δ)ρ ∈ Λ; this is in contradiction to ρ ∈ ∂Λ.

Next, we need a basic calculus lemma. Its proof will be omitted, as it can be found in [43] (following an idea
of Ding).
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Lemma 4.6 ([43, Lemma 4.4]). Let {ak}k∈ℕ and {bk}k∈ℕ be two sequences of real numbers satisfying

ak
k→+∞
ÚÚÚÚÚ→ +∞ and lim

k→+∞

bk
ak

≤ 0.

Then there exists a smooth function F : [0, +∞) → ℝ satisfying, up to subsequences,

0 < F�(t) < 1 for any t ≥ 0, F�(t) t→+∞
ÚÚÚÚÚ→ 0, F(ak) − bk

k→+∞
ÚÚÚÚÚ→ +∞.

Lemma 4.6 will be applied to the sequences

ak = ∫
Σ

Q(ũ1,k , ũ2,k) dVg , bk = Jρ,α(ũk),

where ũk is as in Lemma 4.5, and we will consider the auxiliary functional

J̃ρ,α(u) := Jρ,α(u) − F(∫
Σ

Q(u1, u2) dVg),

whose behavior is described by the following lemma.

Lemma 4.7. For any ρ ∈
∘
Λ the functional J̃ρ,α is bounded from below on H1(Σ)2 and its infimum is achieved by

a function satisfying

{{{{
{{{{
{

−(1 −
2
3g(u))∆ui +

g(u)
3 ∆u3−i = 2ρi(h̃ieui − 1) − ρ3−i(h̃3−ieu3−i − 1),

∫
Σ

h̃ieui dVg = 1,

where g(u) = F�(∫Σ Q(u1, u2) dVg). On the other hand, if ρ ∈ ∂Λ, then infH1(Σ)2 J̃ρ,α = −∞.

Proof. For ρ ∈
∘
Λ one can argue as in Lemma 4.4, yielding lower semi-continuity from the regularity of F and

coercivity from the behavior of F� at infinity.
For ρ ∈ ∂Λ, taking ũk as in Lemma 4.5 and applying Lemma 4.6, we get

J̃ρ,α(ũk) = bk − F(ak)
k→+∞
ÚÚÚÚÚ→ −∞.

This concludes the proof.

Next, we need the following two results. The first one is from [11], and its proof is rather similar to
[43, Theorem 3.1].

Theorem 4.8 ([11]). Let h̃i be as in (1.14), let uk = (u1,k , u2,k) ∈ H1(Σ)2 be solutions of

{{{{{{{{{{
{{{{{{{{{{
{

7 − 0∆ui,k = 2Vi,k h̃ieui,k − V3−i,k h̃3−ieu3−i,k + ψi,k ,

∫
Σ

h̃ieui,k dVg ≤ C,

‖ψi,k‖Lp(Σ) ≤ C,

Vi,k
k→+∞
ÚÚÚÚÚ→ 1 in L∞(Σ),

i ∈ {1, 2}, for some p > 1, C > 0 and define the sets Si as

Si := {p ∈ Σ : there exists xk
k→+∞
ÚÚÚÚÚ→ p such that ui,k(xk)

k→+∞
ÚÚÚÚÚ→ +∞}.

Then, after taking subsequences, one of the following alternatives occurs:
(i) For each i ∈ {1, 2} either ui,k is bounded in L∞(Σ) or it tends uniformly to −∞.
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(ii) Si ̸= 0 for some i ∈ {1, 2}. In this case, Si is finite and either uj,k is bounded in L∞loc(Σ \ (S1 ∪ S2)) or it con-
verges to −∞ in L∞loc(Σ \ (S1 ∪ S2)) for each j ∈ {1, 2}. Moreover, if Si \ S3−i ̸= 0, then the latter alternative
occurs for ui,k.

Theorem 4.9 ([48, Proposition 3.1]). Let uk = (u1,k , u2,k) ∈ H1(Σ)2 be solutions of (1.13), let α̂i(p) stand for 0
if p is regular and for αi,j if p = pj. Define also

σi(p) := lim
r→0

lim
k→+∞

∫
Br(p)

h̃ieui,k dVg .

Then one has

σ1(p)2 − σ1(p)σ2(p) + σ2(p)2 = 4π(1 + α̂1(p))σ1(p) + 4π(1 + α̂2(p))σ2(p). (4.2)

We are now in a position to prove the main result of this section.

Proof of Proposition 4.1. Suppose by contradiction that

(0, 4π(1 + α̃1)) × (0, 4π(1 + α̃2)) ̸⊂ Λ;

then there is some ρ ∈ ∂Λ with ρi < 4π(1 + α̃i) for both i ∈ {1, 2}.
Consider a sequence {ρk}k∈ℕ ∈

∘
Λwith ρk → ρ, as k → +∞, and aminimizer uk for J̃ρk ,α, as in Lemma 4.7.

Then vk := uk + log ρk solves

{{{{
{{{{
{

−∆vi,k = 2 6 − 5g(vk)
6 − 8g(vk) + 2g(vk)2

(h̃ievi,k − ρi,k) −
3 − 4g(vk)

3 − 4g(vk) + g(vk)2
(h̃3−iev3−i,k − ρ3−i,k),

∫
Σ

h̃ievi,k dVg = ρi,k ,

with
6 − 5g(vk)

6 − 8g(vk) + 2g(vk)2
and 3 − 4g(vk)

3 − 4g(vk) + g(vk)2

both uniformly converging to 1, so Theorem 4.8 can be applied to this sequence. The normalization on the
integral implies that ui,k cannot tend to −∞ for any i ∈ {1, 2}; moreover, we can also exclude boundedness
in L∞(Σ) because this would imply convergence to a minimizer u of J̃ρ,α, contradicting Lemma 4.7.

The only case left is the blow-up around at least one point p: Pohozaev’s identity (4.2) implies that if there
is a singularity of mass αi,j on p, then σi ≥ 4π(1 + αi,j) for some i ∈ {1, 2}, whereas if p is a regular point, then
there is a component with a mass of at least 4π around it. In both cases, for such an i we obtain

4π(1 + α̃i) ≤ lim
r→0

lim
k→+∞

∫
Br(p)

h̃ievi,k dVg ≤ lim
k→+∞

∫
Σ

h̃ievi,k dVg = ρi < 4π(1 + α̃i),

which is a contradiction.

We conclude the section by showing a partial converse of Theorem 4.1, namely that for higher values of the
parameter ρ the functional Jρ,α is unbounded from below. Estimates of this type will be needed in Section 5
and are in the spirit of Proposition 3.1.

Proposition 4.10. If ρi > 4π(1 + α̃i) for some i ∈ {1, 2}, then infH1(Σ)2 Jρ,α = −∞, that is,

Λ ⊂ (0, 4π(1 + α̃1)] × (0, 4π(1 + α̃2)].

Proof. We will give the proof for i = 1; it is nearly identical for i = 2.
Choosing a point p1 such that α̂1(p1) = α̃i, we define for large λ the functions

φ1,λ(x) = log( λ1+α̃1
1 + (λd(x, p1))2(1+α̃1)

)
2
, φ2,λ(x) = −

1
2 log( λ1+α̃1

1 + (λd(x, p1))2(1+α̃1)
)
2
.
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Using the fact that
!!!!∇(d(x, p1)

2(1+α̃1))!!!! ≤ 2(1 + α̃1)d(x, p1)1+2α̃1 ,

we obtain

|∇φ1,λ(x)| =
!!!!!!!
−2λ2(1+α̃1)|∇(d(x, p1)2(1+α̃1))|

1 + (λd(x, p1))2(1+α̃1)
!!!!!!!
≤
4(1 + α̃1)λ2(1+α̃1)d(x, p1)1+2α̃1

1 + (λd(x, p1))2(1+α̃1)
≤ min{Cλ, 4(1 + α̃1)

d(x, p1)
},

and therefore

∫
Σ

Q(φ1,λ , φ2,λ) dVg =
1
4 ∫
Σ

|∇φ1,λ|2 dVg

≤ Cλ2 ∫
B 1
λ
(p1)

dVg + 4(1 + α̃1)2 ∫
Σ\B 1

λ
(p1)

dVg
d( ⋅ , p1)2

≤ C + 8π(1 + α̃1)2 log λ.

Moreover, by

max{1, (λd(x, p1))2(1+α̃1)} ≤ 1 + (λd(x, p1))2(1+α̃1) ≤ Cmax{1, (λd(x, p1))2(1+α̃1)} (4.3)

one gets the following estimate on the average of φ1,λ:

φ1,λ = ∫
Σ

(max{2(1 + α̃1) log λ, −2(1 + α̃1)(log λ + 2 log d( ⋅ , p1))} + O(1)) dVg .

Further, dividing Σ into the two regions where the above maximum is attained and using the integrability of
log d( ⋅ , p1) in two dimensions, we get

φ1,λ = 2(1 + α̃1) log λ ∫
B 1
λ
(p1)

dVg − 2(1 + α̃1) log λ ∫
Σ\B 1

λ
(p1)

dVg − 4(1 + α̃1) ∫
Σ\B 1

λ
(p1)

log d( ⋅ , p1) dVg + O(1)

= −2(1 + α̃1) log λ + O(1), (4.4)

and clearly also
φ2,λ = (1 + α̃1) log λ + O(1).

For a small but fixed δ > 0 we have

∫
Σ

h̃1eφ1,λ dVg ≥ C ∫
Bδ(p1)\B 1

λ
(p1)

d( ⋅ , p1)2α̃1eφ1,λ dVg

≥
C

λ2(1+α̃1)
∫

Bδ(p1)\B 1
λ
(p1)

dVg
d( ⋅ , p1)4+2α̃1

≥ C, (4.5)

again by (4.3). On the other hand, we can write

∫
Σ

h̃2eφ2,λ dVg ≥ Cλ1+α̃1 ∫
Σ\B 1

λ
(p1)

h̃2d( ⋅ , p1)2(1+α̃1) dVg ≥ Cλ1+α̃1 . (4.6)

Therefore, from (3.7) and (4.4)–(4.6) we conclude that

Jρ,α(u) ≤ 2(1 + α̃1)(4π(1 + α̃1) − ρ1) log λ + O(1)
λ→∞
ÚÚÚÚ→ −∞,

as desired.
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5 Improved Vectorial Inequalities
First of all, we recall the following result from [9], which extends Lemma 2.2 to the vectorial case.

Lemma 5.1 ([9, Lemma 4.3]). Let δ > 0, J1, K1, J2, K2 ∈ ℕ be given, let

{m11, . . . ,m1J1 ,m21, . . . ,m2J2} ⊂ {1, . . . ,m} and {Ωij}j=1,...,Ji+Kii=1,2

be open subsets of Σ such that

αimij ≤ 0 for all i = 1, 2, j = 1, . . . , Ji ,
d(Ωij , Ωij� ) ≥ δ for all i = 1, 2, j, j� = 1, . . . , Ji + Ki , j ̸= j�,
d(pj , Ωij) ≥ δ for all i = 1, 2, j = 1, . . . , Ki +Mi and all j = 1, . . . ,m, j ̸= mij ,

and let u ∈ H1(Σ)2 satisfy

∫
Ωij

fi,u dVg ≥ δ for all i = 1, 2, j = 1, . . . , Ji + Ki .

Then for any ε > 0 there exists C = CΣ,δ,J1 ,K1 ,J2 ,K2 ,ε > 0 such that

4π
2
∑
i=1

(Ki +
Ji
∑
j=1

(1 + αimij ))(log∫
Σ

h̃ieui dVg − ∫
Σ

ui dVg) ≤ (1 + ε) ∫
Σ

Q(u) dVg + C.

Next, we will consider some improved functional inequalities that take into account the relative speeds of
concentration of the two components of the system. Let us first set

L := {f ∈ L1(Σ) : f > 0 a.e. in Σ, ∫
Σ

f dVg = 1}. (5.1)

We will define, for each f ∈ L, a center of mass and a scale of concentration, inspired by [54, Proposition 3.1]
but such that the center ofmass belongs to a given finite setF ⊂ Σ (whichwill be, in our applications, a subset
of the singular points). As in [54], wewill mapL onto the topological cone overF of height δ, which is defined
by

CδF := F × [0, δ]
∼

, (5.2)

where the equivalence relation ∼ is given by (x, δ) ∼ (x�, δ) for any x ∈ Σ. The meaning of such an identifica-
tion is the following: if a function f ∈ L does not concentrate around any point x ∈ F, then we may not be
able to define a center of mass. In this case, the equivalence relation in the definition of the cone leaves it
undetermined.

Lemma 5.2. Let F := {x1, . . . , xK} ⊂ Σ be a given finite set and letL, Cδ be defined by (5.1) and (5.2). Then for
δ > 0 small enough there exists a map ψ = (β, ς) = (βF , ςF) : L → CδF such that the following hold:
∙ If ς(f) = δ, then either

∫
Σ\⋃x∈F Bδ(x)

f dVg ≥ δ

or there exist x�, x�� ∈ F with x� ̸= x�� and

∫
Bδ(x�)

f dVg ≥ δ, ∫
Bδ(x��)

f dVg ≥ δ.

∙ If ς(f) < δ, then
∫

Bς(f)(β(f))

f dVg ≥ δ, ∫
Σ\Bς(f)(β(f))

f dVg ≥ δ.

Moreover, if f n → δx as n → +∞ for some x ∈ F, then (β(f n), ς(f n)) → (x, 0) as n → +∞.
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Proof. Fix τ ∈ (12 , 1), take

δ ≤
minx,x�∈F, x ̸=x� d(x, x�)

2
and define, for k = 1, . . . , K,

Ik(f) := ∫
Bδ(xk)

f dVg , I0(f) := ∫
Σ\⋃x∈F Bδ(x)

f dVg = 1 −
k
∑
k=1

Ik(f).

Choose now indices k̃, k̂ such that

Ik̃(f) := max
k∈{0,...,K}

Ik(f), Ik̂(f) := max
k ̸=k̃

Ik(f).

We will define the map ψ depending on k̃ and Ik̃(f):

k̃ = 0: Since f has littlemass around eachof the points xk, we set ς(f) = δ anddonot define β(f), as itwould be
irrelevant by the equivalence relation in (5.2). The assertion of the Lemma is verified, up to taking a smaller δ,
because

∫
Σ\⋃x∈F Bδ(x)

f dVg = I0(f) ≥
1

K + 1 ≥ δ.

k̃ ≥ 1, Ik̃(f) ≤
Kτ
1−τ Ik̂(f): Here, f has still little mass around the point xk̃ (which could not be uniquely defined),

so again we set ς(f) := δ. It is easy to see that Ik̂(f) ≥
1−τ
K , so

∫
Bδ(xk̃)

f dVg ≥ ∫
Bδ(xk̂)

f dVg ≥
1 − τ
K .

k̃ ≥ 1, Ik̃(f) ≥
Kτ
1−τ Ik̂(f): Now, Ik̃(f) > τ, so one can define a scale of concentration s(xk̃ , f) ∈ (0, δ) of f around

xk̃ ∈ F, uniquely determined by
∫

Bs(xk̃ ,f)(xk̃)

f dVg = τ.

We can also define a center of mass β(f) = xk̃ but we have to interpolate for the scale:

Subcase Ik̃(f) ≤
2Kτ
1−τ Ik̂(f): Setting

ς(f) = s(xk̃ , f) +
Ik̃(f)
Kτ
1−τ Ik̂(f)

(δ − s(xk̃ , f)),

we get s(xk̃ , f) < ς(f) < δ. Moreover, Ik̂(f) ≥
1−τ
K(1+τ) , hence

∫
Bς(f)(β(f))

f dVg ≥ ∫
Bs(xk̃ ,f)(xk̃)

f dVg = τ ≥ δ,

∫
Σ\Bς(f)(β(f))

f dVg ≥ ∫
Σ\Bδ(xk̃)

f dVg ≥
1 − τ
K(1 + τ) ≥ δ.

Subcase Ik̃(f) ≥
2Kτ
1−τ Ik̂(f): We just set ς(f) : s(xk̃ , f) and we get

∫
Bς(f)(β(f))

f dVg = τ ≥ δ, ∫
Σ\Bς(f)(β(f))

f dVg = 1 − τ ≥ δ.

To prove the final assertion, write (up to sub-sequences), (β∞, ς∞) = limn→+∞(β(f n), ς(f n)). For large n
we will have

∫
Σ\⋃x�∈F Bδ(x�)

f n dVg ≤
δ
2 , ∫

Bδ(x��)

f n dVg ≤
δ
2 for any x�� ∈ F \ {x},
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which excludes ς∞ = δ. We also exclude ς∞ ∈ (0, δ) as it would give

∫
B 3

2 ς∞
(β∞)

f n dVg ≥ δ, ∫
Σ\B ς∞

2
(β∞)

f n dVg ≥ δ,

which is a contradictions since
F ∩ (A ς∞

2 , 32 ς∞ (β∞)) = 0.

Finally, we exclude β∞ ̸= x because we would get the following contradiction:

∫
Bδ(β∞)

f n dVg ≥ δ.

This concludes the proof.

Define

(u1, u2) Ü→ (
h̃1eu1

∫Σ h̃1e
u1 dVg

, h̃2eu2

∫Σ h̃2e
u2 dVg

) =: (f1,u , f2,u).

Combining such amapψwith Lemma5.1, we deduce some extra information on low sub-levels of Jρ,α. Recall
first the definition of the setsAi from (1.19).

Corollary 5.3. Let δ, ψ be as in Lemma 5.2 and define, for u ∈ H1(Σ)2,

β1(u) = βA1 (f1,u), ς1(u) = ςA1 (f2,u), β2(u) = βA2 (f2,u), ς2(u) = ςA2 (f2,u).

Then for any δ� > 0 there exists Lδ� such that if ςi(u) ≥ δ� for both i = 1, 2, then Jρ,α(u) ≥ −Lδ� .

Proof. Assume first ς1(u) = δ: from the statement of Lemma 5.2, we get one of the following:

∫

Σ\⋃m
j=1 Bδ(pj)

f1,u dVg ≥
δ
2 , (5.3a)

∫
Bδ(pj)

f1,u dVg ≥
δ
2M for some pj ̸∈ A1, (5.3b)

∫

Bδ(p�j )

f1,u dVg ≥ δ, ∫
Bδ(pj�� )

f1,u dVg ≥ δ for some j� ̸= j��. (5.3c)

Depending on which possibility occurs in (5.3), define respectively

Ω11 := Σ \
m
⋃
j=1
Bδ(pj), (5.4a)

Ω11 := Bδ(pj), (5.4b)
Ω11 := Bδ(pj� ), Ω12 := Bδ(pj�� ). (5.4c)

It is easy to verify that such sets satisfy the hypotheses of Lemma 5.1, up to eventually redefining the map ψ
with a smaller

δ ≤
minj ̸=j� d(pj , pj� )

4 .

In the first case, we have J1 = 0 and K1 = 1, in the second case either J1 = 0 and K1 = 1, or J1 = 1 and K1 = 0
but ρ < 4π(1 + α1j), and in the third case we have J1 = 2 and K1 = 0.

If δ� ≤ ς1(u) < δ, then
∫

Σ\Bδ� (β1(u))

f1,u dVg ≥ δ,
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so we have one among the following:

∫

Σ\⋃m
j=1 Bδ(x)

f1,u dVg ≥
δ
2 , (5.5a)

∫
Bδ(β1(u))

f1,u dVg ≥ δ, ∫
Bδ(pj)

f1,u dVg ≥
δ
2M for some pj ̸= β1(u), (5.5b)

∫
Aδ� ,δ(β1(u))

f1,u dVg . (5.5c)

Depending on which is the case in (5.5), define

Ω11 := Σ \
m
⋃
j=1
Bδ(pj), (5.6a)

Ω11 := Bδ(u)(β1(u)), Ω12 := Bδ(pj), (5.6b)
Ω11 := Aδ� ,δ(β1(u)). (5.6c)

Repeat the same argument for u2 to get similarly Ω21, and possibly Ω22. Applying Lemma 5.1, we get
Jρ,α(u) ≥ −Lδ� .

With some extra work (see [12] for the details) it can be shown that the vectorial Moser–Trudinger inequality
improves each time the two scales (in the sense defined by Lemma 5.2) coincide, no matter how small they
are.

Proposition 5.4 ([12]). Let βi(u), ςi(u) be as in Corollary 5.3. There exists L ≫ 0 such that if

{
β1(u) = β2(u) = pm with ρ1, ρ2 < 4π(2 + α1m + α2m),
ς1(u) = ς2(u),

then Jρ,α(u) ≥ −L.

6 Proof of Theorem 1.2
Let us introduce the spaceX, which is simply a graph and will be used in our min-max scheme. It is obtained
by removing some points from the join of the weighted barycentersA1 ⋆A2 defined by (1.20). The points to
exclude correspond to improved inequalities for functions centered around the same point and at the same
rate of concentration (see the previous section for more details). Precisely, we set

X := A1 ⋆A2 \ {(pj , pj ,
1
2) : ρ1, ρ2 < 4π(2 + α1j + α2j)}. (6.1)

We will prove that, under the assumptions of Theorem 1.4, the space X is not contractible, showing that it
has a non-trivial homology group. In order to do this, we will recall how to compute the homology groups of
the join of two known spaces. Since the join is homotopically equivalent to a smash product of X, Y and S1
(see [40] for details), its homology groups only depend on the homology of X and Y.

Theorem 6.1 ([40, Theorem 3.21]). Let X and Y be two topological spaces. Then

H̃q(X ⋆ Y) =
q
∑
q�=0

H̃q� (X) ⊕ H̃q−q�−1(Y).

In particular, if X = (SD1 )∨N1 and Y = (SD2 )∨N2 are wedge sum of spheres, then X ⋆ Y has the same homology as
(SD1+D2+1)∨N1N2 .
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Actually, in the same book [40] it is shown that the following homotopical equivalence holds:

(SD1 )∨N1 ⋆ (SD2 )∨N2 ≃ (SD1+D2+1)∨N1N2 .

We then have the following result.

Proposition 6.2. Let X be as in (6.1) and suppose we are under the assumptions of Theorem 1.4. Then the
space X has non-trivial homology groups and it is not contractible.

Proof. The spaces Ai are discrete sets of Mi points, for i = 1, 2, that is a wedge sum of Mi − 1 copies of S0.
Therefore, by Theorem 6.1, the spaceA1 ⋆A2 has the same homology as (S1)∨(M1−1)(M2−1). The set we have to
remove from the join consists of M3 singular points {pm1 , . . . , pmM3

} for some {m1, . . . ,mM3 } ⊂ {1, . . . ,M}.
Then if, for some fixed δ < 1

2 , we define

Y :=
M3

⋃
j=1
Bδ(pmj , pmj ,

1
2),

this retracts on {pm1 , . . . , pmM3
}. On the other hand,X ∩ Y is a disjoint union ofM3 punctured intervals, that

is a discrete set of 2M3 points, and X ∪ Y is the whole join. Therefore, the Mayer–Vietoris sequence yields

H1(X ∩ Y)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
0

→ H1(X) ⊕ H1(Y)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
0

→ H1(X ∪ Y)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
ℤ(M1−1)(M2−1)

→ H̃0(X ∩ Y)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
ℤ2M3−1

→ H̃0(X) ⊕ H̃0(Y)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
ℤM3−1

→ H̃0(X ∪ Y)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
0

.

The exactness of this sequence implies that b1(X) − b̃0(X) = (M1 − 1)(M2 − 1) −M3, so if the latter number is
not zero, we get at least a non-trivial homology group. Algebraic computations show, under the assumption
M1,M2 ≥ M3, that (M1 − 1)(M2 − 1) ̸= M3 is equivalent to the assumption of Theorem 1.4, and therefore the
proof is complete.

We will now introduce some test functions from the space X to arbitrarily low sub-levels of Jρ,α. Such test
functions will have a profile which resembles the entire solutions of the Liouville equation and of the Toda
system. We will use suitable interpolation between each of the above three profiles depending on whether
the points in Ai coincide or not and depending on the parameters ρi. The map Φλ will therefore be defined
case by case.

Let us start by setting Φλ(ζ) = (ϕ1 −
ϕ2
2 , ϕ2 −

ϕ1
2 ) when ζ = (pj , pjm, t) for some j. The functions ϕ1, ϕ2

will be defined in different ways, depending on the relative positions of ρ1, ρ2, α1j, α2j in ℝ. When dealing
with the same singular point, we define ϕ1 and ϕ2 as follows:
(<<) ρ1, ρ2 < 4π(2 + α1j + α2j):

ϕ1 :=
{{{
{{{
{

−2 logmax{1, (λd( ⋅ , pj))2(1+α1j)} if t < 1
2 ,

0 if t > 1
2 ,

ϕ2 :=
{{{
{{{
{

0 if t < 1
2 ,

−2 logmax{1, (λd( ⋅ , pj))2(1+α2j)} if t > 1
2 .

(<>) ρ1 < 4π(2 + α1j + α2j) < ρ2:

ϕ1 := −2 logmax{1, max{1, (λt)2(1+α2j)}(λd( ⋅ , pj))2(1+α1j)},
ϕ2 := −2 logmax{1, (λtd( ⋅ , pj))2(2+α1j+α2j)}.

(><) ρ2 < 4π(2 + α1j + α2j) < ρ1:

ϕ1 := −2 logmax{1, (λ(1 − t)d( ⋅ , pj))2(2+α1j+α2j)},
ϕ2 := −2 logmax{1, max{1, (λ(1 − t))2(1+α1j)}(λd( ⋅ , pj))2(1+α2j)}.
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(>>) ρ1, ρ2 > 4π(2 + α1j + α2j):

ϕ1 := −2 logmax{1, (λ max{1, λt}
max{1, λ(1 − t)})

2+α1j+α2j
d( ⋅ , pm)2(1+α1j), (λd( ⋅ , pj))2(2+α1j+α2j)},

ϕ2 := −2 logmax{1, (λmax{1, λ(1 − t)}
max{1, λt} )

2+α1j+α2j
d( ⋅ , pj)2(1+α2j), (λd( ⋅ , pj))2(2+α1j+α2j)}.

Let us now consider the case x1 ̸= x2, xi ∈ Ai. Here, we define Φλ just by linearly interpolating between
the test functions defined before:

Φλ(x1, x2, t) = Φλ(1−t)(x1, x1, 0) + Φλt(x2, x2, 1).

We then have the following result.

Proposition 6.3. The above test functions {Φλ}λ : X → H1(Σ)2 satisfy

Jρ,α(Φλ(ζ)) λ→+∞
ÚÚÚÚÚ→ −∞ uniformly for ζ ∈ X.

We are finally in a position to prove Theorem 1.4. The proof will follow by showing that low sub-levels are
dominated by the space X (see [40, p. 528]), which is not contractible by Proposition 6.2.

Lemma 6.4. For L ≫ 0 large enough there exist maps Φ : X → J−Lρ,α and Ψ : J−Lρ,α → X such that Ψ ∘ Φ is homo-
topically equivalent to IdX.

To prove Lemma 6.4 we need the following estimate. Notice that the choice of τ (see the proof of Lemma 5.2),
which was not relevant in the rest of this paper, will be made in the proof of this lemma to let the following
result hold true; for the proof we refer to [11].

Lemma 6.5. Let δ be as in Lemma 5.2, let βi(u), σi(u) be as in Corollary 5.3 and let Φλ be as in Theorem 6.3.
Then, for a suitable choice of τ, there exist C0 > 0, δ� ∈ (0, δ) such that we have the following results:
∙ If either t ≥ 1 − C0

λ or

{{{{
{{{{
{

t > 1
2 ,

x1 = x2 =: pj ,
ρ1, ρ2 < 4π(2 + α1j + α2j),

then σ1(Φλ(ζ)) ≥ δ�; otherwise, σ1(Φλ(ζ)) < δ and β1(Φλ(ζ)) = x1.
∙ If either t ≤ C0

λ or

{{{{
{{{{
{

t < 1
2 ,

x1 = x2 =: pj ,
ρ1, ρ2 < 4π(2 + α1j + α2j),

then σ2(Φλ(ζ)) ≥ δ�; otherwise, σ2(Φλ(ζ)) < δ and β2(Φλ(ζ)) = x2.

Proof of Lemma 6.4. Let δ be as in Lemma 5.2, let βi(u), ςi(u) be as in Corollary 5.3 and let δ� be as in
Lemma 6.5. Take now L so large that Corollary 5.3 and Theorem 5.4 apply.

We define Φ = Φλ0 as in Theorem 6.3, with λ0 such that Φλ(X) ⊂ J−2Lρ,α for any λ ≥ λ0. As for Ψ : J−2Lρ,α → X,
we write

Ψ(u) = (β1(u), β2(u), t�(ς1(u), ς2(u)))
with

t�(ς1(u), ς2(u)) =

{{{{{
{{{{{
{

0 if ς2(u) ≥ δ�,
δ� − ς2(u)

2δ� − ς1(u) − ς2(u)
if ς1(u), ς2(u) ≤ δ�,

1 if ς1(u) ≥ δ�.
Let us now verify the well-posedness of Ψ. The definition of t� makes sense because Jρ,α(u) < −L implies
min{ς1(u), ς2(u)} ≤ δ� by Corollary 5.3. Moreover, if t� > 0 (resp. t� < 1), then ς1 < δ is well-defined (resp.
ς2 < δ is well-defined), hence β1 (resp. β2) is also defined. Finally, Ψ is mapped on X because, from
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Theorem 5.4, when Jρ,α(u) < −L, we cannot have

(β1(u), β2(u), t�(ς1(u), ς2(u))) = (pj , pj ,
1
2) with ρ1, ρ2 < 4π(2 + α1j + α2j).

To get a homotopy between the two maps, we first let λ tend to +∞, in order to get x1 and x2, then we
apply a linear interpolation for the parameter t. Writing Ψ(Φλ(ζ)) = (βλ1(ζ), β

λ
2(ζ), t�λ(ζ)), we have F = F2 ∗ F1,

with

F1 : (ζ, s) = ((x1, x2, t), s) Ü→ (β
λ0
1−s
1 (ζ), β

λ0
1−s
2 (ζ), t�λ0 (ζ))

F2 : (x1, x2, t�λ0 (ζ)) Ü→ (x1, x2, (1 − s)t�λ0 (ζ) + st).

We have to verify that all is well-defined.
If we cannot define βλ0/(1−s)1 (ζ), then by Lemma 6.5 we either have

t ≥ 1 −
C0(1 − s)

λ0
≥ 1 −

C0
λ0

or we are on the first half of the punctured segment. By the same lemma, we get ς1(Φλ0 (ζ)) ≥ δ�, that is
t�λ0 (ζ) = 1. For the same reason, if βλ0/(1−s)2 (ζ) is not defined, then t�λ0 (ζ) = 0, so F1 : X × [0, 1] → A1 ⋆A2
makes sense. Its image is actually contained in X because if x1 = x2 and ρ < 4π(χ1(x) + χ2(x)), where we
have set

χi({x}) := {
1 + αi,j if x = pj ,
1 if x ̸∈ {p1, . . . , pm},

then from Lemma 6.5 we have t�λ0 (ζ) ∈ {0, 1}, hence in particular it does not equal 12 .
Concerning F2, the previous lemma implies βλ0/(1−s)1 (ζ) = x1 if t ≤ 1 − C0

λ (1 − s) and in particular, if t < 1,
taking the limit s → 1. A similar condition holds for β2, which gives F2( ⋅ , 0) = F1( ⋅ , 1). If x1 is not defined,
then t�λ0 (ζ) = 1, hence (1 − s)t�λ0 (ζ) + st = 1; similarly there are no issues when x2 cannot be defined. Finally,
by the argument used before, if x1 = x2 = pj and ρ1, ρ2 < 4π(2 + α1j + α2j), then (1 − s)t�λ0 (ζ) + st ̸= 1

2 .

Concerning compactness, we have a useful result which can be deduced from minor modifications of the
argument in [49]. It basically states the existence of bounded Palais–Smale sequences for ρ belonging to
a dense set of ℝ2+ \ Γ, relying on the results in [42, 48]. Putting this together with the compactness result
stated before, we get the following lemma.

Lemma 6.6. Let ρ ̸∈ Γ be given and let a < b be such that (1.12) has no solutions in {Jρ,α ∈ [a, b]}. Then
{Jρ,α ≤ a} is a deformation retract of {Jρ,α ≤ b}.

Wealsodeduce that Jρ,α is uniformlybounded fromaboveon solutions, hencewehave the following corollary.

Corollary 6.7. Let ρ ̸∈ Γ be given. Then there exists L > 0 such that {Jρ,α ≤ L} is a deformation retract of H1(Σ)2;
in particular, it is contractible.

Proof of Theorem 1.4. Suppose by contradiction that system (1.12) has no solutions. By Lemma 6.6, we
know that {Jρ,α ≤ −L} is a deformation retract of {Jρ,α ≤ L}, hence by Corollary 6.7 it is contractible. Let
H(ζ, s) : X × [0, 1] → X be the homotopy equivalence defined in Lemma 6.4 and let H� be a homotopy equiv-
alence between a constant map and Id{Jρ,α≤−L}. Then

H��(ζ, s) = Ψ(H�(Φ(ζ), s)) : X × [0, 1] → X

is an equivalence between the maps Ψ ∘ Φ and a constant, and H�� ∗ H is an equivalence between IdX and
a constant map. This means that X is contractible, contradicting Theorem 6.2.
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