Neighborhoods and manifolds of immersed curves

Andrea C. G. Mennucci*

November 22, 2021

Abstract

We present some fine properties of immersions $i:M\to N$ between manifolds; with particular attention to the case of immersed curves $c:S^1\to\mathbb{R}^n$. We present new results, as well as known results but with quantitative statements (that may be useful in numerical applications) regarding: tubular coordinates, neighborhoods of immersed and freely immersed curve, local unique representations of nearby such curves, possibly "up to reparameterization". We present examples and counter-examples to support the significance of these results. Eventually we provide a complete and detailed proof of a result first stated in a 1991 paper by Cervera, Mascaró and Michor: the quotient of the freely immersed curves by the action of reparameterization is a smooth (infinite dimensional) manifold.

1 Introduction

In general, let M and N be smooth finite dimensional connected Hausdorff paracompact manifolds without boundary, with $\dim(M) < \dim(N)$.

This paper studies properties of immersions $i:M\to N$, that are C^1 maps such that Ti_x is full rank at each x.

A particular but very interesting case are closed immersed curves $c: S^1 \to \mathbb{R}^n$, that are C^1 maps with $c'(\theta) \neq 0$ at all $\theta \in S^1$; where $S^1 = \{x \in \mathbb{R}^2 : |x| = 1\}$ be the circle in the plane. They will be called planar when n = 2.

This paper is mostly devoted to this case. ¹

Immersed planar curves $c: S^1 \to \mathbb{R}^2$ have been used in Computer Vision for decades; indeed the boundary of an object in an image can be modeled as a closed embedded curve, by the Jordan Theorem. Possibly the first occurrence was *active contours*, introduced by [9] and used for the segmentation problem: the idea is to minimize an energy, defined on contours or curves, that contains an image based edge attraction term and a smoothness term, which becomes large when the curve is irregular. An evolution is derived to minimize the energy based on principles from the calculus of variations. There have been many variations to original model of [9]; for example [6], and a survey in [3].

An unjustified feature of the model of [9] was that the evolution is dependent on the way the contour is parameterized. Thereafter, [11] [4] considered minimizing a geometric energy, which is a generalization of Euclidean arclength, defined on curves for the edge-detection problem. The authors derived the gradient descent flow in order to minimize the geometric energy.

This lead to a principle: all operations related to curves should be *independent of the choice of parameterizations*.

Operations on the space of curves are best described and studied if the whole space of curves is endowed with a differential structure, so that it becomes a smooth manifold.

The above two remarks lead to the following question. If I is the space of curves that we are interested in, and D is the action of reparameterization, then the quotient

$$B = I/D$$

^{*}Scuola Normale Superiore, Pisa, Italy (andrea.mennucci@sns.it)

 $^{^02010}$ Mathematics Subject Classification. 58D05, 58D10, 58D15.

⁰Keywords. Immersed curves, tubular neighborhoods, immersions, diffeomorphisms, manifold of mappings.

¹A forthcoming paper [15] will generalize many results in this paper to the general case of immersions $i: M \to N$.

is the space of curves up to parameterization (also called geometric curves in the following): when (and how) can we say that this quotient B is a smooth manifold?

This was discussed in [16], using a result from [5].

A purpose of this paper is to revisit the key result in [5]: indeed the proof in that paper is missing two key steps.

1.1 Plan of the paper

In Section 2 we will define the needed topologies on the space of functions; we will present well known definitions and notations for curves, such as: derivation and integration in arc parameter, length, normal vectors, curvature, etc; we will classify immersed and freely immersed curves and present results and examples.

In Section 3 we will present advanced results for immersed curves; we will discuss representation of nearby curves in tubular coordinates; we will show how the open neighborhood of a curve c in the space of curves can be defined using tubular coordinates, so that if c is immersed (respectively, freely immersed) then all curves in the neighborhood are immersed (respectively, freely immersed); we will show with examples what goes wrong when hypotheses are not met.

In Section 4 we will present the proof of this theorem: the quotient of the freely immersed curves by the action of reparameterization is a smooth (infinite dimensional) manifold. We will then explain, in a step by step analysis, why the original proof in [5] was incorrect.

A supplemental file contains Wolfram Mathematica code to generate some of the figures.

2 Definitions

In this section we will present well known definitions and results regarding immersions, with particular attention to immersed curves.

2.1 Topologies

Definition 2.1. We denote by $C^r(M,N)$ the space of all maps $f:M\to N$ that are of class C^r . Here $r\in\{0,1,2\ldots,\infty\}$.

There are classically two types of topologies for this space.

- The weak topology, as defined in Ch. 1 Sec. 1 in [8], that coincides with the compact-open C^r -topology as defined in 41.9 in [12]; if $N = \mathbb{R}^n$, then the "weak topology" is the topology of the Fréchet space of local uniform convergence of functions and their derivatives up to order r.
- The strong topology as defined Ch. 1 Sec. 1 in [8], that coincides with the Whitney C^r -topology as defined in 41.10 in [12].

If M is compact, then the two above coincide; if moreover $N = \mathbb{R}^n$ and $r < \infty$ then $C^r(M, \mathbb{R}^n)$ is the usual Banach space.

Remark 2.2. If $N = \mathbb{R}^n$ but M is not compact, then "strong topology" does not make $C^r(M, \mathbb{R}^n)$ a topological vector space, since it has uncountably many connected components; but the connected component containing $f \equiv 0$ contains only compactly supported functions, and it has the topology $C_c^r(M, \mathbb{R}^n)$ (as defined in 6.9 in Rudin [18]) that is the strict inductive limit ² of the immersions

$$V_K \to C^r_c(M,\mathbb{R}^n)$$

where, for each $K \subset M$ compact, V_K is the space of $f: M \to N$ that are zero outside of K, with a standard Banach (or Fréchet, for $r = \infty$) structure.

Proposition 2.3. The sets of immersions, submersions, embeddings, are open in $C^r(M, N)$ with the strong topology, for $r \geq 1$.

²For the definition of *strict inductive limit* and its properties, we refer to 17G at page 148 in [10].

Proofs are in Ch. 1 Sec. 1 in [8].

Definition 2.4. For $r \in \{1, ..., \infty\}$, let $Diff^r(M)$ be the family of diffeomorphisms of M: all the maps $\phi: M \to M$ that are C^r and invertible, and the inverse ϕ^{-1} is C^r . It is a group, the group operation being "composition of functions".

Proposition 2.5. Diff^r(M) is open in $C^r(M, M)$ with the strong topology.

See Thm. 1.7 in Ch. 1 Sec. 1 in [8].

We will omit the superscript "r" from $\operatorname{Diff}^r(M)$ in the following, for ease of notation.

2.2 Immersions

2.2.1 Free Immersion

Definition 2.6. An immersion $i: M \to N$ is called "free" if $i \equiv i \circ \phi$ for $\phi \in Diff(M)$ implies that ϕ is the identity.

Proposition 2.7 ([5] Lemma 1.3). If i is immersed and $i(\phi(t)) = i(t)$ for all t and $\phi(t) = t$ for a t, then $\phi = Id$.

Proof. Indeed it is easily seen that

$$\{t \in M : \phi(t) = t\}$$

is closed; and it is also open, since an immersion is also a local diffeomorphism with its image. \Box

As a corollary, if $i \circ \phi \equiv i$ and $i \circ \psi \equiv i$ and $\phi(t) = \psi(t)$ for a t, then $\phi \equiv \psi$. Another corollary states that:

Corollary 2.8 ([5] Lemma 1.4). If i is an immersion and there is a $x \in \mathbb{R}^n$ s.t. i(t) = x for one and only one t, then i is a free immersion.

This implies that, when $\dim(M) < \dim(N)$, the free immersions are a dense subset of all immersions (for all the topologies considered in this paper).

2.2.2 Reparameterizations, Isotropy group

We first consider the general case of immersions $i: M \to N$.

Definition 2.9. The isotropy group³ \mathcal{G}_i is the set of all $\phi \in Diff(M)$ such that $i \equiv i \circ \phi$; it is a subgroup of Diff(M).

Obviously i is freely immersed if and only if \mathcal{G}_{i} contains only the identity.

We will prove that \mathcal{G}_i is discrete, and finite when M is compact.

Remark 2.10. If we reparameterize $\tilde{i} = i \circ \tilde{\varphi}$ then \mathcal{G}_i changes by conjugation

$$\phi \in \mathcal{G}_i \quad \leftrightarrow \quad \tilde{\varphi}^{-1} \circ \phi \circ \tilde{\varphi} \in \mathcal{G}_{\tilde{i}} \quad .$$

Remark 2.11. If M is orientable then Diff(M) has a subgroup $Diff^+(M)$ of orientation preserving diffeomorphisms; for the case of curves then we obtain that $Diff(S^1)$ has two connected components

$$\operatorname{Diff}^+(S^1) = \operatorname{Diff}^+(S^1) \cup \operatorname{Diff}^-(S^1)$$

where

- $Diff^+(S^1)$ is the family of diffeomorphisms with $\phi' > 0$, and is a normal subgroup;
- Diff (S^1) is the family of diffeomorphisms with $\phi' < 0$.

Consider a curve c and let \mathcal{G}_c be its *isotropy group*: we will prove in 3.5 that if $\phi \in \mathcal{G}_c$ then $\phi \in \mathrm{Diff}^+(S^1)$.

We will mostly use $\text{Diff}^+(S^1)$ in the following.

Note that $\operatorname{Diff}^+(S^1)$ is a perfect group [19] (see [13] for a self contained presentation); it is also a simple group: see the discussion in Sec. 2 in [2] for further references ⁴.

³a.k.a. "stabilizer subgroup" or "little group".

⁴The author thanks Prof. Kathryn Mann for her help on these subjects.

2.3 Curves

Remember that $S^1 = \{x \in \mathbb{R}^2 : |x| = 1\}$ is the circle in the plane. We will often associate $\mathbb{R}^2 = \mathbb{C}$, for convenience. In this case we will associate $S^1 = \{e^{it}, t \in \mathbb{R}\} \subset \mathbb{C}$.

Definition 2.12. A closed curve is a map $c: S^1 \to \mathbb{R}^n$. We will always assume that the curve is of class C^1 (at least). The image of the curve, or trace of the curve, is $c(S^1)$.

When convenient, we will (equivalently) view S^1 as $\mathbb{R}/(2\pi)$ (that is \mathbb{R} modulus 2π translations), and consequently a closed curve will be a map $c: \mathbb{R} \to \mathbb{R}^n$ that is 2π -periodic.

In particular this will be the correct interpretation when we will write the operation $\theta_1 + \theta_2$ for $\theta_1, \theta_2 \in S^1$.

Remark 2.13. The "distance" of points in S^1 will be the intrinsic distance; this distance will be represented by the notation

$$d_{S^1}(\theta_1, \theta_2)$$

for $\theta_1, \theta_2 \in S^1$, and it is the length of the shortest arc in S^1 connecting the two points θ_1, θ_2 . Note that if we identify S^1 to $\mathbb{R}/(2\pi)$, and pick two points $\theta_1, \theta_2 \in \mathbb{R}/(2\pi)$ and represent them as real numbers, it may happen that

$$|\theta_1 - \theta_2| > d_{S^1}(\theta_1, \theta_2)$$
.

Definition 2.14 (basepoint). We will select a distinguished point θ_0 in the circle S^1 : for $S^1 \subset \mathbb{R}^2$, it will be $\theta_0 = (1,0)$; for $S^1 \subset \mathbb{C}$, it will be $\theta_0 = 1$; for $S^1 = \mathbb{R}/(2\pi)$, it will be $\theta_0 = 0$. Given a curve as above, we will call $c(\theta_0)$ the basepoint for the curve.

, (0)

The doubly traversed circle, defined as

Example 2.15 (of a non-freely immersed curve).

- $c_2(z) = z^2$ for $z \in S^1$ when we consider $S^1 \subset \mathbb{C}$, or equivalently
- $c_2(\theta) = (\cos(2\theta), \sin(2\theta))$ for $\theta \in \mathbb{R}/(2\pi)$ that we identify with S^1 .

Setting $\phi(t) = t + \pi$, we have that $c_2 = c_2 \circ \phi$, so c_2 is not freely immersed.

Example 2.16 (Taken from [5]). Note that there are free immersions without a point with only one preimage: consider a figure eight which consists of two touching circles. Now we may map the circle to the figure eight by going first three times around the upper circle, then twice around the lower one. This immersion $c: S^1 \to \mathbb{R}^2$ is free.

We provide a simple example 3.2 that shows how such curve can be made smooth.

2.3.1 Length, tangent, curvatures

In the following let $c: S^1 \to \mathbb{R}^n$ be an immersed curve.

Definition 2.17. If the curve c is immersed, we can define the derivation with respect to the arc parameter

$$\frac{\partial}{\partial s} = \frac{1}{|c'|} \frac{\partial}{\partial \theta} \ .$$

We will write $\frac{\partial}{\partial c}$ instead of $\frac{\partial}{\partial s}$ when we are dealing with multiple curves, and we will want to specify which curve is used.

Definition 2.18. We define the tangent vector

$$T(\theta) = \frac{c'(\theta)}{|c'(\theta)|} = \frac{\partial}{\partial s}c(\theta) .$$

Definition 2.19. The length of the curve c is

$$\operatorname{len}(c) \stackrel{\text{\tiny def}}{=} \int_{S^1} |c'(\theta)| \, \mathrm{d}\theta \ . \tag{2.1}$$

Definition 2.20. We define the integration by arc-parameter of a function $g: S^1 \to \mathbb{R}^n$ along the curve c by

$$\int_{c} g(s) \, \mathrm{d}s \stackrel{\text{\tiny def}}{=} \int_{S^{1}} g(\theta) |c'(\theta)| \, \mathrm{d}\theta \ .$$

There are two different definitions of *curvature* of an immersed curve: mean curvature H and signed curvature κ , which is defined when c is valued in \mathbb{R}^2 .

H and k are extrinsic curvatures, they are properties of the embedding of c into \mathbb{R}^n .

Definition 2.21 (H). If c is C^2 regular and immersed, we can define the (mean) curvature H of c as

$$H = \frac{\partial}{\partial s} \frac{\partial}{\partial s} c = \frac{\partial}{\partial s} T$$

It is easy to prove that $H \perp T$.

Definition 2.22 (N). When the curve c is planar we can define a normal vector N to the curve, by requiring that |N| = 1, $N \perp T$ and N is rotated $\pi/2$ degree anticlockwise with respect to T.

Definition 2.23 (κ). If c is in \mathbb{R}^2 and \mathbb{C}^2 , then we can define a signed scalar curvature $\kappa = \langle H, N \rangle$, so that

$$\frac{\partial}{\partial s}T = \kappa N = H \quad and \quad \frac{\partial}{\partial s}N = -\kappa T \quad .$$

There is a choice of sign in the above two definitions; this choice agrees with the choice in [21].

When we will be dealing with multiple curves, we will specify the curve as a subscript, e.g. T_c, κ_c, N_c will be the tangent, curvature and normal to the curve c.

Remark 2.24. Note that T, κ, N, H are geometrical quantities. If $\psi \in Diff^+(S^1)$ and $\tilde{c} = c \circ \psi$, then $T_{\tilde{c}} = T_c \circ \psi$, $\kappa_{\tilde{c}} = \kappa_c \circ \psi$, $N_{\tilde{c}} = N_c \circ \psi$ and $H_{\tilde{c}} = H_c \circ \psi$.

2.3.2 Arc parameter

Let c be an immersed planar curve. We recall this important transformation.

Lemma 2.25 (Constant speed reparameterization). A curve $c \in C^1$ can be reparameterized to $\tilde{c} = c \circ \varphi$ using a $\varphi \in Diff^+(S^1)$ so that $|\tilde{c}'| \equiv \ell$ where $\ell = \operatorname{len}(c)/(2\pi)$ is constant.

Proof. For simplicity we assume that $S^1 = [0, 2\pi]$. Let L = len(c), let $\psi(t) = \frac{2\pi}{L} \int_0^t |c'(\theta)| \, d\theta$. Then $\psi: [0, 2\pi] \to [0, 2\pi]$ is a diffeomorphism, let $\varphi = \psi^{-1}$.

Reparameterization to constant speed is a smooth operation in the space of curves, see Theorem 7 in [20].

When $|c'| \equiv 1$ we will say that the curve is by arc parameter. A curve can be reparameterized to arc parameter without changing its domain (as done above) iff $len(c) = 2\pi$. (If this is not the case, we will rescale the curve to make it so.)

2.3.3 Angle function, Rotation index

Proposition 2.26 (Angle function, rotation index). If $c \in C^1$ is planar and is immersed, then T = c'/|c'| is continuous and |T| = 1, so there exists a continuous function $\alpha : \mathbb{R} \to \mathbb{R}$ satisfying

$$T(s) = (\cos(\alpha(s)), \sin(\alpha(s))) \tag{2.2}$$

and $\alpha(s)$ is unique, up to adding the constant $k2\pi$ with $k \in \mathbb{Z}$. α is called the angle function.

Moreover $\alpha(s+2\pi) - \alpha(s) = 2\pi I$, where I is an integer, known as rotation index of c. This number is unaltered if c is deformed by a smooth homothopy.

(See 2.1.4 in [1] or Thm. 53.1 in [17], and following).

Figure 1: Examples of curves of different rotation index

Remark 2.27. We can use the angle function to compute the scalar curvature κ , that was defined in 2.23 by $\partial_s T = \kappa N$, indeed deriving (2.2) and combining this with

$$N(s) = (-\sin(\alpha(s)), \cos(\alpha(s)))$$
(2.3)

we obtain

$$\kappa = \frac{\alpha'}{|c'|} = \partial_s \alpha \quad . \tag{2.4}$$

2.4 Shapes

Shapes are usually considered to be *geometric objects*. Representing a curve using $c: S^1 \to \mathbb{R}^n$ forces a choice of parameterization, that is not really part of the concept of "shape".

Suppose that I is a space of immersed curves $c: S^1 \to \mathbb{R}^n$.

Definition 2.28 (Geometric curves). The quotient space $B = I/\text{Diff}(S^1)$ is the space of curves up to reparameterization, also called geometric curves in the following. Two parametric curves $c_1, c_2 \in M$ such that $c_1 = c_2 \circ \phi$ for a $\phi \in \text{Diff}(S^1)$ are the same geometric curve inside B.

B is mathematically defined as the set $B = \{[c]\}$ of all equivalence classes [c] of curves that are equal but for reparameterization,

$$[c] \stackrel{\text{def}}{=} \{c \circ \phi \text{ for } \phi \in \text{Diff}(S^1)\}.$$

We may also consider the quotient w.r.t $\operatorname{Diff}^+(S^1)$. The quotient space $I/\operatorname{Diff}^+(S^1)$ is the space of geometric oriented curves.

Unfortunately, the quotient of immersed curves by reparameterizations is not a manifold; but the quotient of *freely immersed curve* is.

Theorem 2.29. Suppose that I is the space of the freely immersed curves; and that I and $Diff(S^1)$ have the topology of the Fréchet space of C^{∞} functions, then the quotient $B = I/Diff^+(S^1)$ is a smooth manifold modeled on C^{∞} .

One aim of this paper will be to give a complete proof of this result, first presented in [5]; ⁵ the proof is in Sec. 4.1. Indeed, as we will discuss in section 4.2, the proof in [5] misses some key arguments.

3 Advanced properties of immersed curves

In this section we will present results regarding immersed curves that are either new, or presented in more precise form than usually found in the literature.

Most of the results are presented, for sake of simplicity, for planar curves $c: S^1 \to \mathbb{R}^2$, but can be extended to the case of curves $c: S^1 \to N$ taking values in a manifold N, up to some nuisance in notations.

The general case of immersions $i: M \to N$ requires instead some arguments that will be discussed in a future paper [15].

⁵We remark that the theorem in [5] was presented for the case of immersions $i: M \to N$.

3.1 Examples

Definition 3.1. We start with some classical examples of C^{∞} functions of compact support. Let

$$\eta_0: \mathbb{R} \to \mathbb{R} \quad , \quad \eta_0(u) \stackrel{\text{def}}{=} \begin{cases} e^{\frac{4}{\pi} - \frac{1}{u} - \frac{1}{\pi - u}} & u \in [0, \pi] \\ 0 & elsewhere \end{cases}$$
(3.1)

and

$$\eta_1: \mathbb{R} \to \mathbb{R} \quad , \quad \eta_1(u) \stackrel{\text{def}}{=} \begin{cases} 4(2u - \pi)e^{-\frac{1}{u} - \frac{1}{\pi - u}} & u \in [0, \pi] \\ 0 & elsewhere \end{cases}$$
(3.2)

(see figures 2 on the following page)

We will use these to build some following examples.

Example 3.2. We present here a simple smooth formula for example 2.16

$$c: [0, 5\pi] \to \mathbb{R}^2 \quad , \quad c(u) \stackrel{\text{\tiny def}}{=} \big(\sin(2u) \; , \; c_2(u) \big) \quad , \quad c_2(u) \begin{cases} \eta_0(u) & u \leq \pi \\ \eta_0(u - \pi) & u \leq 2\pi \\ -\eta_0(u - 2\pi) & u \leq 3\pi \\ -\eta_0(u - 3\pi) & u \leq 4\pi \\ -\eta_0(u - 4\pi) & u \leq 5\pi \end{cases} \tag{3.3}$$

this is a C^{∞} function depicted at figure 3 on the next page.

3.1.1 Trace and parameterization

If a curve is embedded then the curve is identified by its image, in these senses.

- If $c, \tilde{c}: S^1 \to \mathbb{R}^n$ are embedded and have the same image, then there is an unique reparameterization ϕ such that $\tilde{c} = c \circ \phi$
- Suppose that $c_0: S^1 \to \mathbb{R}^n$ is embedded and $A = c(S^1)$ is the trace; suppose that c_0 is parameterized by constant speed parameter; let us fix a candidate basepoint $v \in A$ in the trace.

We can state that A, v characterize the embedded curve up to a choice of direction: precisely, there are exactly two different $c_1, c_2 : S^1 \to \mathbb{R}^n$, parameterized by constant speed parameter, such that $c_1(\theta_0) = c_2(\theta_0) = v$, and they satisfy

$$c_1(\theta)=c_0(\theta+a) \ , \ c_2(\theta)=c_0(b-\theta) \ ,$$

for unique choices of $a, b \in S^1$ (dependant on v).

In particular, if the rotation index of c_0 is r, then the latter curves have rotation indexes $\pm r$.

Since the definition of *freely immersed curve* says that the curve identifies an unique parameterization, then we may be induced to think that the above two properties extend to *freely immersed curves*: but this is not the case.

Example 3.3. The following two curves have the same trace, are freely immersed, are smooth, but have rotation indexes 0 and 1.

1. This immersed closed curve $c:[0,2\pi]\to\mathbb{R}^2$ with components

$$c_1(u) = \sin(2u) \ , \ c_2(u) = \begin{cases} \eta_1(2u) & u \in [0,\pi/2] \\ \eta_1(2u - \pi/2) & u \in [\pi/2,\pi] \end{cases} \eqno(3.4)$$

2. This immersed closed curve $c:[0,2\pi]\to\mathbb{R}^2$ with components

$$c_2(u) = \sin(2u) \ , \ c_2(u) = \begin{cases} \eta_1(2u) & u \in [0,\pi/2] \\ -\eta_1(2u - \pi/2) & u \in [\pi/2,\pi] \end{cases} \eqno(3.5)$$

See figure 4 on the following page.

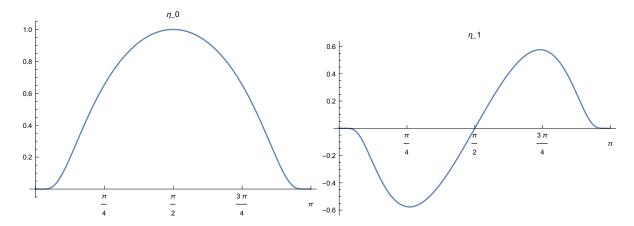


Figure 2: Graph of η_0 as defined in (3.1); graph of η_1 as defined in (3.2)

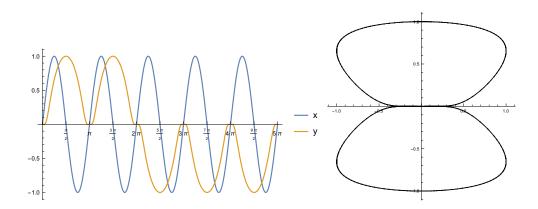


Figure 3: x and y coordinates of curve defined in 2.16; trace of curve defined in 2.16

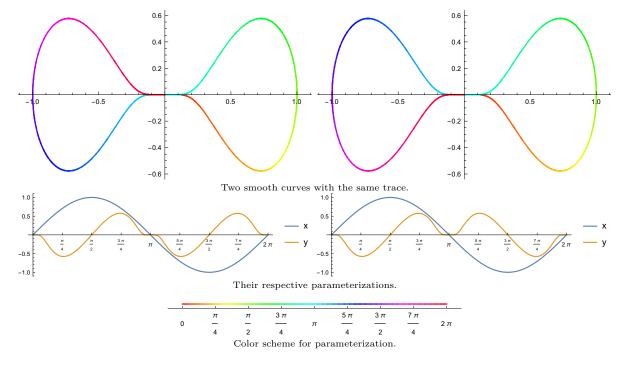


Figure 4: Trace of the two curves and parameterization defined in Example 3.3; with color scheme used for the parameter

3.2 Reparameterizations, Isotropy group

Lemma 3.4. If $\phi \in Diff^-(S^1)$ then ϕ has two fixed points.

Proof. We represent ϕ as a map $\phi:[0,2\pi]\to\mathbb{R}$ that is continuous, strictly decreasing and such that

$$\phi(0) \in [2\pi, 4\pi)$$
 , $\phi(2\pi) = \phi(0) - 2\pi$,

then

$$\phi(2\pi) \in [0, 2\pi)$$

so the graph $y=\phi(x)$ must intersect both the graph y=x and the graph $y=x+2\pi$ for two different points $x_1,x_2\in[0,2\pi)$, that are the two fixed points.

Lemma 3.5. If c is immersed and $\psi \in \mathcal{G}_c$ then $\psi \in Diff^+(S^1)$.

Proof. Suppose that $\psi \in \text{Diff}^-(S^1)$, let $u \in S^1$ be a fixed point (by 3.4). By deriving

$$c'(\theta) = c'(\psi(\theta))\psi'(\theta)$$

setting $\theta = u$

$$c'(u) = c'(u)\psi'(u)$$

and this is impossible since $\psi'(u) < 0$.

3.3 Local embedding

3.3.1 Length of curve arcs

Definition 3.6. Suppose $c: S^1 \to \mathbb{R}^n$ is C^1 . Let $\sigma, \tilde{\sigma} \in S^1$. When $\sigma \neq \tilde{\sigma}$ there are two arcs in S^1 connecting σ to $\tilde{\sigma}$. By

$$\operatorname{len} c_{|[\sigma,\tilde{\sigma}]} \tag{3.6}$$

we will mean the minimum of the lengths of c when restricted to one of the two arcs connecting σ to $\tilde{\sigma}$.

If c is periodically extended to $c: \mathbb{R} \to \mathbb{R}^n$ and $\sigma, \tilde{\sigma} \in \mathbb{R}$, then there is an unique $k \in \mathbb{Z}$ such that

$$\sigma < \tilde{\sigma} + k2\pi < \sigma + 2\pi$$

and then, letting

$$l_1 = \int_{\sigma}^{\tilde{\sigma} + k2\pi} |c'(\theta)| \, \mathrm{d}\theta \quad , \quad l_2 = \int_{\tilde{\sigma} + k2\pi}^{\sigma + 2\pi} |c'(\theta)| \, \mathrm{d}\theta$$

we define

$$\operatorname{len} c_{\left| [\sigma,\tilde{\sigma}] \right|} = \min\{l_1,l_2\} \quad .$$

In particular when c is parameterized at constant speed $(i.e. |c'| \equiv \ell)$ then we will (covertly) assume that $\sigma, \tilde{\sigma}$ are chosen (up to adding $k2\pi$) so that $|\sigma - \tilde{\sigma}| = d_{S^1}(\sigma, \tilde{\sigma}) \leq \pi$ and then

$$\operatorname{len} c_{\left| [\sigma, \tilde{\sigma}] \right|} = \ell |\sigma - \tilde{\sigma}| \tag{3.7}$$

Remark 3.7. When c is not parameterized by constant velocity, the above may lead to some confusion. The interval $[\sigma, \tilde{\sigma}]$ in the notation (3.6) implicitly refers to the choice of arc in S^1 that provides the above minimum. Note that this may not be the shortest arc connecting σ to $\tilde{\sigma}$ in S^1 . This may happen if the parameterization of c has regions of fast and slow velocity, as in this example.

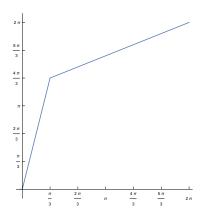


Figure 5: Plot of function ϕ in Eqn. 3.8 in Example 3.8

Example 3.8. Let $\tilde{c}(\theta) = (\cos(\theta), \sin(\theta))$ be the standard circle, and

$$\phi(\theta) = \begin{cases} 4\theta & 0 \le \theta \le \pi/3\\ \frac{2}{5}(x+3\pi) & \pi/3 \le \theta \le 2\pi \end{cases}$$
(3.8)

(see plot in Figure 5) then smooth out the corners of ϕ so that it becomes a diffeomorphism of S^1 ; let

$$c = \tilde{c} \circ \phi$$

let $\theta_0 = 0, \theta_1 = \pi/3$ in $S^1 \sim \mathbb{R}/(2\pi)$; then $d_{S^1}(\theta_0, \theta_1) = \pi/3$, and is given by the arc moving counter-clockwise from θ_0 to θ_1 , while

$$\operatorname{len} c_{\left| [\sigma_0,\sigma_1] \right|} = 2\pi/3$$

is given by the arc moving clockwise from θ_0 to θ_1 .

This never happens for small distances/lengths, though.

Theorem 3.9. Fix an immersed curve $c: S^1 \to \mathbb{R}^n$; let

$$M = \max |c'|$$
 , $m = \min |c'|$ $\sigma_c \stackrel{\text{\tiny def}}{=} \frac{1}{\frac{M}{m} + 1}$;

• for any θ_0, θ_1 in S^1 such that

$$d_{S^1}(\theta_0, \theta_1) < 2\pi\sigma_c$$

the shortest arc connecting them in S^1 is also the arc where

$$\operatorname{len} c_{\left[\theta_0,\theta_1\right]}$$

 $is\ computed$

• for any θ_0, θ_1 in S^1 such that

$$\operatorname{len} c_{\left[\theta_0,\theta_1\right]} < \sigma_c \operatorname{len}(c)$$

the arc where

$$\operatorname{len} c_{\left[\theta_0,\theta_1\right]}$$

is computed is also the shortest arc connecting them in S^1 , whose length is

$$d_{S^1}(\theta_0, \theta_1)$$
 ;

• in any of the above cases

$$md_{S^1}(\theta_0, \theta_1) \le \text{len } c_{[\theta_0, \theta_1]} \le Md_{S^1}(\theta_0, \theta_1)$$
 (3.9)

3.3.2 Estimates

We begin with this estimate.

Proposition 3.10. Let $\alpha(s)$ be the angle function, for $s \in J = [0, 2\pi]$. The fact that the curve is closed imposes lower bounds on $\max_{J} |\alpha'|$.

- If the rotation index I of the curve is not zero, then $|\alpha(2\pi) \alpha(0)| = 2\pi |I|$ so necessarily $\max_{J} |\alpha'| \ge |I|$.
- If the rotation index of the curve is zero, then necessarily $\max_J |\alpha'| \ge 1/2$. Indeed we can prove that

$$\max_{J} \alpha - \min_{J} \alpha \ge \pi \ ;$$

otherwise, let

$$\beta = \frac{\max_{J} \alpha + \min_{J} \alpha}{2}$$

taking $v = (\cos \beta, \sin \beta)$, we would have

$$v \cdot c'(\theta) = |c'(\theta)| \cos(\beta - \alpha(\theta)) > 0$$

for all θ , hence the curve would not be closed.

Definition 3.11. Given $c: S^1 \to \mathbb{R}^2$, a C^2 immersed closed curve, we recall that κ is the scalar curvature of c; we define ⁶

$$\delta_c \stackrel{\text{def}}{=} \pi/(3 \max |\kappa|)$$
 , $\tau_c \stackrel{\text{def}}{=} 1/(2 \max |\kappa|)$

Note that $\delta_c = \tau_c \frac{2\pi}{3}$ but we define two quantities since this simplifies the notation in the following. We have $2\tau_c \le \delta_c$ but $3\tau_c \ge \delta_c$.

Remark 3.12. Note that if we rescale the curve c by a factor λ then δ_c, τ_c and $\operatorname{len} c_{[\sigma, \tilde{\sigma}]}$ are multiplied by λ as well. If we rotate or translate c then δ_c, τ_c and $\operatorname{len} c_{[\sigma, \tilde{\sigma}]}$ are unaffected. If we reparameterize then δ_c, τ_c are unchanged, whereas if $\psi \in \operatorname{Diff}(S^1)$ and $\tilde{c} = c \circ \psi$ we have

$$\operatorname{len} \tilde{c}_{[\psi(\sigma),\psi(\tilde{\sigma})]} = \operatorname{len} c_{[\sigma,\tilde{\sigma}]} \quad .$$

In all ⁷ following definitions, propositions and theorems, the formulas are built to be "geometrical": this means if the curves are reparameterized, rescaled, translated or rotated, then the formulas change in predictable ways (as explained above).

This simplifies the proofs: in the proofs we can assume, with no loss of generality, that the curve is parameterized by arc parameter.

Remark 3.13. Note that $\delta_c \leq \operatorname{len}(c)/3$ for curves of index zero, and $\delta_c \leq \operatorname{len}(c)/(6|I|)$ for curves of index $I \neq 0$.

Proof. We use 3.10. The formula in the thesis is invariant for reparameterizations and scaling; we rescale the curve so that $|\operatorname{ec}(c)| = 2\pi$ and reparameterize by arc parameter so that $|\operatorname{ec}(c)| = 1$. For curves of index zero the thesis $\pi/(3\max_J|\kappa|) \leq \operatorname{len}(c)/3$ that is $\pi \leq \max_J|\kappa|\operatorname{len}(c)$; since $|\operatorname{ec}(c)| = 1$ by (2.4) this last becomes $1/2 \leq \max_J|\alpha'|$, that was proved above. For curves of index I the thesis $\pi/(3\max_J|\kappa|) \leq \operatorname{len}(c)/(6|I|)$ that is $2\pi|I| \leq \max_J|\kappa|\operatorname{len}(c)$ then becomes $|I| \leq \max_J|\alpha'|$, that was proved above.

For $I \neq 0$ the above is sharp, as in the case of $c(\theta) = (\cos(I\theta), \sin(I\theta))$.

⁶Note that, since the curve is closed, then κ cannot be identically zero.

⁷With the exception of relation (3.23) in Lemma 3.25.

3.3.3 Local embedding of curves

It is well known that a C^1 immersion $i: M \to N$ is a local embedding. For curves of class C^2 , we can provide a simple quantitative statement.

 $\begin{array}{l} \textbf{Proposition 3.14 (Local embedding).} \ \ Let \ c: S^1 \rightarrow \mathbb{R}^2 \ \ a \ C^2 \ \ immersed \ \ curve. \ \ Define \ \delta_c \ \ as \ in \ 3.11. \\ For \ any \ a,b \in S^1 \ \ let \ L \stackrel{\text{\tiny def}}{=} \operatorname{len} c_{|[a,b]}, \ \ assume \ \ that \ L \leq 2\delta_c \ \ then \ |c(b)-c(a)| \geq L/2; \ so \ c_{|[a,b]} \ \ is \ \ embedded. \\ \end{array}$

Proof. For simplicity we assume that c is periodically extended to $c : \mathbb{R} \to \mathbb{R}^2$; then we identify the interval in \mathbb{R} that is associated to the arc of the curve where the length len $c_{|[a,b]}$ is computed; for simplicity, we call this interval [a,b] again. (If the arc is short enough, then by Thm. 3.9 no ambiguity is possible).

Using 2.25 and 3.12 assume that $|c'| \equiv \ell = \text{len}(c)/(2\pi)$; then $\partial_s = \frac{1}{\ell} \partial_{\theta}$, so $T = c'/\ell$ and

$$\operatorname{len} c_{|_{[a,b]}} = \ell(b-a) \quad .$$

As noted in (2.4)

$$|\kappa| = |\partial_s T| = |T'|/\ell = |\alpha'|/\ell$$

so $\delta_c = \ell \pi/(3 \max |\alpha'|)$. Let m = (a+b)/2 be the middle point. Let $\alpha(t)$ be the angle function (2.2). Up to rotation suppose $c'(m) = (\ell,0), T(m) = (1,0)$ so we can assume $\alpha(m) = 0$. Let $L = \ker c_{|a,b|} = \ell(b-a) \le 2\delta_c$. For any $\theta \in [a,b]$ we have $\ell|\theta-m| \le \delta_c$ hence $|\theta-m| \le \pi/(3 \max |\alpha'|)$ hence for all $a \le \theta \le b$ we have

$$|\alpha(\theta)| \le |\theta - m| \max |\alpha'| \le \frac{\pi}{3}$$

hence $\cos(\alpha(\theta)) \ge 1/2$; hence for $a \le \theta_1 \le \theta_2 \le b$ for the abscissa we can write

$$c_1(\theta_2) - c_1(\theta_1) = \ell \int_{\theta_1}^{\theta_2} \cos(\alpha(\theta)) \, \mathrm{d}\theta \geq \ell(\theta_2 - \theta_1) \frac{1}{2} \quad .$$

3.4 Isotropy group is discrete

Given an immersion $i: M \to N$, it is possible to prove that the isotropy group is discrete (when M is paracompact) and even finite (when M is compact; this latter result appears in [5]). When considering curves, we can obtain the same results (and even more) in a more direct and geometric way.

Lemma 3.15. Let $c: S^1 \to \mathbb{R}^n$ be immersed.

- \mathcal{G}_c is finite.
- If $c \circ \psi \equiv c \circ \phi$ and $\psi(a) = \phi(a)$ for an $a \in S^1$ then $\psi \equiv \phi$.
- If c is parameterized by constant speed (see Lemma 2.25), then there is a $k \in \mathbb{N}, k \geq 1$ s.t. \mathcal{G}_c is the set of all $\phi(t) = t + \frac{2\pi j}{k}$ for $j = 0, \dots, k-1$.
- Proof. We prove the third point. Indeed deriving $c=c\circ\phi$ and noting that $|c'|\equiv\ell$ we obtain $\phi'\equiv 1$ so $\phi(t)=t+\beta$ hence $\phi^j(t)=t+j\beta\in\mathcal{G}_c$ for all j; if β/π is irrational then $j\beta$ would be dense in $S^1=\mathbb{R}/(2\pi)$, and this is denied by Prop. 3.14. Moreover if $\phi(t)=t+\frac{2\pi}{k}$ and $c=c\circ\phi$ then $c(0)=c(2\pi/k)$ but by Prop. 3.14 $(2\pi)/(3\max|\kappa|)\leq \frac{2\pi\ell}{k}$ that is $k\leq 3\ell\max|\kappa|$. So there is an unique k such that any $\phi\in\mathcal{G}_c$ can be written as $\phi(t)=t+\frac{2\pi j}{k}$.
 - The above characterization shows that if $\phi' \equiv 1 \equiv \psi'$ and $\phi(a) = \psi(a)$ then $\phi \equiv \psi$. By 2.10 this is valid for any curve (even when it is not parameterized by constant speed). This proves the second point.
 - The first point follows again from 2.10.

 8 The proof of this is a special case of the 2nd step of the proof of 3.31

3.5 Tubular neighborhoods

Existence of tubular neighborhood is well known; we provide a quantitative result for C^2 planar immersed curves.

Proposition 3.16 (tubular neighborhood). Define δ_c, τ_c as in 3.11. Fix $a, b \in S^1$ with len $c_{|_{[a,b]}} \leq 2\delta_c$. Let

$$\Phi: [a,b] \times [-\tau_c, \tau_c] \to \mathbb{R}^2 \quad , \quad \Phi(s,t) = c(s) + tN(s) \tag{3.10}$$

then Φ is a diffeomorphism with its image. Moreover if the arc $[s_1, s_2]$ is contained in the arc [a, b] identified above, then

$$|\varPhi(s_1,t_1)-\varPhi(s_2,t_2)| \geq \frac{1}{4} \mathrm{len}\, c_{|_{[s_1,s_2]}} \quad ,$$

whereas (obviously)

$$|\varPhi(s,t_1)-\varPhi(s,t_2)|=|t_2-t_1|\quad.$$

Proof. Assume that the curve has length 2π , is parameterized in arc parameter; with no loss of generality (recalling 3.12); let α be the angle function (2.2).

Extend c to a periodic function $c: \mathbb{R} \to \mathbb{R}^2$ and identify the interval in \mathbb{R} that is associated to the arc of the curve where the length len $c_{|[a,b]}$ is computed. For simplicity, we call this interval [a,b] again. (If the arc is short enough, then by Thm. 3.9 no ambiguity is possible).

The Jacobian of Φ is

$$\frac{\partial}{\partial s} \Phi = T(1 - \kappa t)$$

$$\frac{\partial}{\partial t} \Phi = N$$

so its determinant is $(1 - \kappa t) \ge 1/2$ by the hypothesis $|t| \le \tau_c$.

We will then prove that Φ is injective so it will be an homeomorphism with its image, and since it is a local diffeomorphism, it will be a diffeomorphism.

 $\text{Choose } (s_1,t_1) \text{ and } (s_2,t_2) \text{ with } a \leq s_1 < s_2 \leq b \text{ and } |t_1| \leq \tau_c, \ |t_2| \leq \tau_c.$

We set $m=(s_2+s_1)/2$. Up to rotation we assume that $T(m)=e_1=(1,0)$ and $\alpha(m)=0$, so that N(m) is perpendicular to the x axis. As in 3.14 we can prove that $\cos(\alpha(s)) \geq 1/2$ for all $s_1 \leq s \leq s_2$.

We write

$$\varPhi(s,t) = c(s) + tN(s) = c(m) + \int_m^s T(s) \, \mathrm{d}\theta + tN(s)$$

and then for the abscissa

$$\varPhi(s,t)_1 = c(m)_1 + \int_m^s \cos(\alpha(\theta)) \, \mathrm{d}\theta + t \sin(\alpha(s)) \quad ,$$

note that $\Phi(m,t)_1 = c(m)_1$. Deriving we obtain

$$\frac{\partial}{\partial s} \varPhi(s,t)_1 = \cos(\alpha(s)) \big(1 - t\alpha'(s)\big) \geq \frac{1}{4}$$

We then obtain that

$$\varPhi(s_2,t_2)_1 - \varPhi(m,t_2)_1 \geq \frac{1}{4}(s_2-m)$$

while

$$\varPhi(m,t_1)_1 - \varPhi(s_1,t_1)_1 \geq \frac{1}{4}(m-s_1)$$

and recalling that $\Phi(m,t_1)_1 = \Phi(m,t_2)_1 = c(m)_1$ and summing we obtain

$$\varPhi(s_2,t_2)_1 - \varPhi(s_1,t_1)_1 \geq \frac{1}{4}(s_2-s_1) \quad .$$

We will call tubular coordinates around c the formula (3.10)

3.5.1 Counterexample

The hypothesis " $c \in C^2$ " in the previous proposition may be broadened to " $c \in C^{1,1}$ "; but the results fails if we only assume that " $c \in C^{1,\alpha}$ " with $\alpha \in (0,1)$, as seen in this example (adapted from [1])

Example 3.17. Let $0 < \alpha < 1$ and $c(\theta) = (\theta, |\theta|^{1+\alpha})$; then for $\theta > 0$

$$c(\theta) + aN(\theta) = \left(\theta - \frac{a(\alpha+1)\theta^{\alpha}}{\sqrt{(\alpha+1)^2\theta^{2\alpha}+1}}, \frac{a}{\sqrt{(\alpha+1)^2\theta^{2\alpha}+1}} + \theta^{\alpha+1}\right)$$

and this meets the y axes for

$$a = \tilde{a}(\theta) = \frac{\theta^{1-\alpha}\sqrt{(\alpha+1)^2\theta^{2\alpha}+1}}{\alpha+1}$$

so, by symmetry,

$$c(\theta) + \tilde{a}(\theta)N(\theta) = c(-\theta) + \tilde{a}(-\theta)N(-\theta)$$

and at the same time

$$\lim_{\theta \to 0} \tilde{a}(\theta) = 0 \quad .$$

3.5.2 Nearby points

Suppose $c: S^1 \to \mathbb{R}^2$ is a C^2 immersed curve. Let $0 < \tau \le \tau_c$ and $V_\tau = S^1 \times [-\tau, \tau]$. and

$$\varPhi: V_\tau \to \mathbb{R}^2 \quad , \quad \varPhi(s,t) = c(s) + t N(s)$$

and $U_{\tau} = \Phi(V_{\tau})$.

Proposition 3.18. U_{τ} is also the set of points at distance at most τ from the trace $c(S^1)$.

Proof. Let $K=c(S^1)$ be the trace of the curve (it is a compact subset of \mathbb{R}^2). We use the distance function $d_K:\mathbb{R}^2\to\mathbb{R}$ defined as

$$d_K(x) := \inf_{y \in K} |x - y| \tag{3.11}$$

(for an introduction to this object, see [14] and references therein).

Let $x \in U_{\tau}$, there is a $\theta, t \in V_{\tau}$ such that

$$x = c(\theta) + tN(\theta)$$

SO

$$|x - c(\theta)| < |t| < \tau$$
 ;

then let $\tilde{\theta}$ be a minimum for

$$|x - c(\theta)|$$

so clearly

$$d_K(x) = |x - c(\tilde{\theta})| \leq \tau \quad .$$

Vice versa if $d_K(x) \leq \tau$ let $\tilde{\theta}$ be a minimum as above, then geometrical considerations tell that the segment from x to $c(\tilde{\theta})$ is orthogonal to the tangent $T(\tilde{\theta})$ at $c(\tilde{\theta})$.

As a corollary of 3.16, for any such neighborhood of the image of c, the "projection to c" is a C^1 multi valued map (with finitely many projections in S^1).

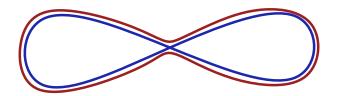


Figure 6: Figure for example in Sec. 3.6; the curve c is blue and the curve \tilde{c} is red.

3.6 Not a covering map

By looking at the previous Prop. 3.16 we may think that Φ is the universal covering map of $U = \Phi(V)$ (see [17] for the definition). This would be very convenient, indeed we could use the *lifting lemma* to ease some of the following proofs.

Suppose $\tilde{c}, c: S^1 \to \mathbb{R}^2$ are C^2 immersed curves. Consider this statement, that is usually called *lifting lemma*:

«if the trace of \tilde{c} is contained in U_{τ} then there is a choice of continuous $\varphi:\mathbb{R}\to\mathbb{R},\ a:\mathbb{R}\to[-\tau,\tau]$ such that

$$\forall \theta \ , \ \tilde{c}(\theta) = \varPhi(\varphi(\theta), a(\theta)) = c(\varphi(\theta)) + a(\theta)N(\varphi(\theta)) \ .$$
 (3.12)

Unfortunately this is not the case, as seen in this example in Figure 6, where the curve c is blue and the curve \tilde{c} is red. The trace of the curve \tilde{c} is all contained in the open set U_{τ_c} , but the representation (3.12) cannot hold. We can though prove a version of the lifting lemma useful in the following.

3.7 Neighborhoods

3.7.1 Nearby projection

Lemma 3.19 (Nearby projection). Fix a C^R immersed curve c, with $R \geq 2$.

1. If $x \in \mathbb{R}^2$ and $\tilde{\sigma} \in S^1$ and

$$d \stackrel{\text{\tiny def}}{=} |x - c(\tilde{\sigma})| < \delta_c/4$$

then there is an $a \in \mathbb{R}$ with $|a| \le d$ and $a \sigma \in S^1$ with

$$\operatorname{len} c_{|\sigma,\tilde{\sigma}|} \le 4d \tag{3.13}$$

such that

$$x = c(\sigma) + aN(\sigma)$$
 .

(Note also that a is uniquely identified by σ).

2. They are unique in the family of σ, a such that $|a| \leq \tau_c$ and

$$\operatorname{len} c_{\left| [\sigma,\tilde{\sigma}] \right|} \le \delta_c \tag{3.14}$$

so we can see σ , a as functions of x, as follows.

3. Consider $\tilde{x} \in \mathbb{R}^2$ and $\tilde{\sigma} \in S^1$ for which

$$d \stackrel{\scriptscriptstyle def}{=} |\tilde{x} - c(\tilde{\sigma})| \leq {}^{\tau_c/\!2} \quad ; \quad$$

 $\begin{array}{l} \mbox{let } \varepsilon > 0 \mbox{ small such that } d + \varepsilon < {}^{\delta_c}\!/\! 4 \mbox{ and let } B = B(\tilde{x}, \varepsilon) \stackrel{\mbox{\tiny def}}{=} \{x \in \mathbb{R}^2 : |x - \tilde{x}| < \varepsilon\} \mbox{ for convenience.} \\ \mbox{There is a choice of function } a, \varphi : B \to \mathbb{R} \mbox{ of class } C^{R-1} \mbox{ such that} \end{array}$

$$x = \Phi(\varphi(x), a(x)) = c(\varphi(x)) + a(x)N(\varphi(x)) . \tag{3.15}$$

for all $x \in B$, and they are unique as specified above.

(Note that
$$\tau_c/2 < \delta_c/4 < \tau_c$$
).

Proof. Suppose c is by arc parameter (with no loss of generality as explained in 3.12); so we write (recalling (3.7)) |a-b| instead of len $c_{|[a,b]}$.

• Choose $x, \tilde{\sigma}$ as in the statement and let $J_{\tilde{\sigma}} = [\tilde{\sigma} - \delta_c, \tilde{\sigma} + \delta_c]$ then consider any minimum point $\hat{\theta}$ of

$$\min_{\theta \in J_{\tilde{\sigma}}} |x - c(\theta)| \quad ;$$

note that the minimum value has to be less than d: so

$$|c(\tilde{\sigma}) - c(\hat{\theta})| \le |c(\tilde{\sigma}) - x| + |x - c(\hat{\theta})| \le 2d$$

but at the same time (since $\tilde{\sigma}$ and $\hat{\theta}$ are at arc distance at most δ_c) by the previous Lemma 3.14

$$|c(\tilde{\sigma})-c(\hat{\theta})| \geq \frac{1}{2}|\hat{\theta}-\tilde{\sigma}|$$

so combining the two

$$4d \geq |\hat{\theta} - \tilde{\sigma}|$$

but $4d < \delta_c$ so $\hat{\theta}$ is not at extremes. Then any $\hat{\theta}$ providing the minimum must be internal in the interval $J_{\tilde{\sigma}}$: by geometrical reasoning the segment from x to $c(\hat{\theta})$ is orthogonal to the curve so there is a a such that

$$a = \varPhi(\hat{\theta}, a)$$

- Recall that $\delta_c/4 \le \tau_c$; the map Φ is injective for $\theta \in J_{\tilde{\sigma}}$ and $|a| \le \tau_c$ so $\hat{\theta}, a$ are unique.
- For any $x \in B$ we have

$$|x - c(\tilde{\sigma})| < d + \varepsilon$$

and since $d + \varepsilon < \delta_c/4$ then there is an unique $\sigma \in J_{\tilde{\sigma}}$ and a with $|a| \leq \tau_c$ such that

$$x = c(\sigma) + aN(\sigma) \quad .$$

and we denote them by $\sigma = \varphi(x)$, a = a(x). Moreover we can invert the function

$$\Phi: J_{\tilde{\sigma}} \times [-\tau_c, \tau_c] \to \mathbb{R}^2$$

and write

$$(\varphi(x),a(x))=\varPhi^{-1}(x)$$

for $x \in B$. This proves that $\varphi, a \in C^1(B)$.

3.7.2 Global lifting

Proposition 3.20 (Global Lifting). Suppose $c: S^1 \to \mathbb{R}^2$ is a C^R immersed curve and $\tilde{c}: S^1 \to \mathbb{R}^2$ is C^{R-1} ; with $R \geq 2$. Fix $0 < \tau < \delta_c/4$. Suppose that we have $|\tilde{c}(\theta) - c(\theta)| \leq \tau$ for all θ . There exists choice of $a: S^1 \to \mathbb{R}$ and $\varphi: S^1 \to S^1$ such that

$$\forall \sigma \in S^1 \quad , \quad \tilde{c}(\sigma) = \Phi(\varphi(\sigma), a(\sigma)) = c(\varphi(\sigma)) + a(\sigma)N_c(\varphi(\sigma)) \quad . \tag{3.16}$$

with $|a(\sigma)| \leq \tau$ and

$$\operatorname{len} c_{|[\sigma,\varphi(\sigma)]} \le 4\tau \tag{3.17}$$

holding for all σ . And they are unique in the class of C^{R-1} functions such that $|a| \leq \tau_c$ and

$$\operatorname{len} c_{|[\sigma,\varphi(\sigma)]} \le \delta_c \tag{3.18}$$

(Note also that a is uniquely identified by φ).

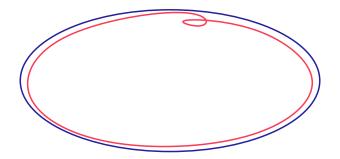


Figure 7: Curves in Example 3.22; the curve c is blue and the curve \tilde{c} is red.

Proof. We just substitute $x = \tilde{c}(\sigma)$ in the previous Lemma. By the second point we can define functions $\varphi(\theta)$, $a(\theta)$ uniquely as prescribed. By the third point they are C^1 .

Remark 3.21. Suppose we are given two curves c_1, c_2 and we know that there exists a choice (a, φ) such that

$$\forall \sigma \in S^1 \quad , \quad c_2(\sigma) = c_1(\varphi(\sigma)) + a(\sigma) N_{c_1}(\varphi(\sigma))$$

as in equation (3.16). If we rotate or translate the two curves, then the above relation will hold, with the same (a, φ) . If we rescale the two curves by $\lambda > 0$ then the relation will hold with $(\lambda a, \varphi)$.

If we choose $\psi \in \operatorname{Diff}^+(S^1)$ and we reparameterize all curves at the same time by $\tilde{c}_i = c_i \circ \psi$, then

$$\forall s \in S^1 \quad , \quad \tilde{c}_2(s) = \tilde{c}_1(\tilde{\varphi}(s)) + \tilde{a}(s) N_{\tilde{c}_1}(\tilde{\varphi}(s)) \quad ,$$

holds for

$$\tilde{a} = a \circ \psi \quad , \quad \tilde{\varphi} = \psi^{-1} \circ \varphi \circ \psi \quad .$$
 (3.19)

This follows from direct computation and Remark 2.24.

Example 3.22. So far so good ... but φ may fail to be a diffeomorphism, as in this simple example in Figure 7, where the curve c is blue and the curve \tilde{c} is red.

But some simple Lemmas can help.

Lemma 3.23. Let $0 < \alpha < 1$. If we have $w, v \in \mathbb{R}^n$ such that

$$|w-v| < \alpha |v|$$

then the angle β between v and w satisfies $|\beta| \leq \arcsin(\alpha)$ and moreover

$$(1-\alpha)|v| \le v \cdot w \le (1+\alpha)|v|$$
 , $(1-\alpha)|v| \le |w| \le (1+\alpha)|v|$.

See Figure 8 on the next page.

Remark 3.24. Let $\alpha>0$. Suppose $c_1,c_2,c_3:S^1\to\mathbb{R}^2$ are C^1 maps and

$$|c_2'(\theta) - c_3'(\theta)| \le \alpha |c_1'(\theta)| \tag{3.20}$$

if $\psi \in Diff^+(S^1)$ and we reparameterize all curves at the same time by $\tilde{c}_i = c_i \circ \psi$, then

$$|\tilde{c}_2'(\theta) - \tilde{c}_3'(\theta)| \le \alpha |\tilde{c}_3'(\theta)|$$
.

Similarly if we rescale, rotate, or translate all curves at the same time.

So (3.20) is a geometric estimate, indeed we may rewrite it as

$$|\partial_{c_1} c_2(\theta) - \partial_{c_1} c_3(\theta)| \le \alpha \quad . \tag{3.21}$$

where $\partial_{c_1} = \frac{1}{|c_1'|} \frac{\partial}{\partial \theta}$.

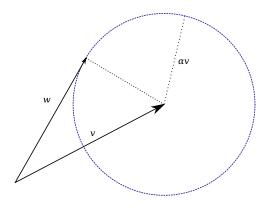


Figure 8: Scheme for Lemma 3.23 on the preceding page.

Lemma 3.25. Assume all hypotheses in 3.20. Assume moreover that $\tau \leq \tau_c/4$, and assume that

$$|\tilde{c}'(\sigma) - c'(\sigma)| \le \frac{1}{2}|c'(\sigma)| \quad \forall \sigma \in S^1 \tag{3.22}$$

then \tilde{c} is immersed, φ is a diffeomorphism. Moreover when c is parameterized at constant speed, we can state that

$$\frac{1}{5} \le \varphi' \le 4 \quad . \tag{3.23}$$

Proof. We rescale and reparameterize c to arc parameter using a reparameterization ψ , and at the same time we rescale and reparameterize \tilde{c} using the same rescaling and ψ (note that \tilde{c} is not necessarily by arc parameter); with no loss in generality, as explained in 3.24 and 3.21.

Let β be the angle between $\tilde{c}'(\sigma)$ and $c'(\sigma)$: by Lemma 3.23 $\beta = \arcsin(\alpha)$ so it is at most $\pi/6$. Let $\theta = \varphi(\sigma)$ we know that $|\sigma - \theta| \le 4\tau \le \tau_c$; the angle γ between $c'(\sigma)$ and $c'(\theta)$ is at most $|\sigma - \theta| \max |k|$ so $\gamma \le 1/2$: so the angle $\beta + \gamma$ between $\tilde{c}'(\sigma)$ and $\tilde{c}'(\varphi(\sigma))$ is at most $1/2 + \pi/6$, and this is less than $\pi/2$.

Deriving in σ and assuming that c is by arc parameter

$$\tilde{c}'(\sigma) = T\varphi'(\sigma)(1 - \kappa a) + a'N$$

where T, N, κ are evaluated at $(\varphi(\sigma))$; then

$$\tilde{c}'\cdot T=\varphi'(\sigma)(1-\kappa a)$$

now if $|a| \le \tau_c$ then $(1 - \kappa a) \ge 1/2$; moreover by the above reasoning $\tilde{c}' \cdot T > 0$ so $\varphi'(\sigma) > 0$. Moreover we note that $1/2 \le |\tilde{c}'| \le 3/2$, $1/2 \le (1 - \kappa a) \le 3/2$ and $\cos(1/2 + \pi/6) \le 6/10$ to prove (3.23). Relation (3.19) tells then that φ will always be a diffeomorphism, for any curve satisfying the hypotheses.

We summarize all the above: we show sufficient hypothesis such that \tilde{c} may be represented in tubular coordinates around c.

Theorem 3.26 (Representation Theorem). Suppose $c: S^1 \to \mathbb{R}^2$ is a C^R immersed curve and $\tilde{c}: S^1 \to \mathbb{R}^2$ is C^{R-1} ; with $R \geq 2$. Define δ_c, τ_c as in 3.11. Fix $0 < \tau \leq \tau_c/4$. Suppose that we have $|\tilde{c}(\theta) - c(\theta)| \leq \tau$ and

$$|\tilde{c}'(\theta) - c'(\theta)| \leq |c'(\theta)|/2$$

for all θ .

Then \tilde{c} is immersed, there are $\varphi \in Diff^+(S^1)$ and $a: S^1 \to [-\tau, \tau]$ of class C^{R-1} such that

$$\forall \theta$$
 , $\tilde{c}(\varphi(\theta)) = \Phi(\theta, a(\theta)) = c(\theta) + a(\theta)N(\theta)$

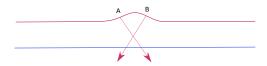


Figure 9: Curves for the example in Sec. 3.7.3; the curve c is blue and the curve \tilde{c} is red.

with $|a(\sigma)| \leq \tau$ and

$$\operatorname{len} c_{|[\sigma,\varphi(\sigma)]} \le 4\tau \tag{(3.17)}$$

holding for all σ .

They are unique in the class of C^1 functions such that $|a| \leq \tau_c$ and

$$\operatorname{len} c_{[\theta,\varphi(\theta)]} \le \delta_c \tag{(3.18)}$$

(Note also that a is uniquely identified by φ).

Proof. We can rescale and reparameterize c to arc parameter, and we rescale and reparameterize \tilde{c} at the same time (\tilde{c} will not be by arc parameter in general); as discussed in Remarks 3.12, 3.21 and 3.24, the hypotheses and theses are unaffected by this action. Then we apply all previous results. Just note that

$$\max_{\theta \in S^1} |\theta - \varphi(\theta)| = \max_{\theta \in S^1} |\theta - \varphi^{-1}(\theta)|$$

for any diffeomorphism.

Remark 3.27. Actually, rerunning on the above proofs with some patience, we can improve the above thesis a bit. We add to the previous theorem these hypotheses: fix $0 < \alpha \le 1/2$ and then $0 < \tau \le \alpha \tau_c/2$ and suppose that we have $|\tilde{c}(\theta) - c(\theta)| \le \tau$ and

$$|\tilde{c}'(\theta) - c'(\theta)| \le \alpha |c'(\theta)|/2 \tag{3.24}$$

for all θ .

Then all above thesis hold, moreover there are two continuous functions $f, g : [0, \infty] \to \mathbb{R}$ (independent on α, τ) with f(0) = g(0) = 1, such that

$$f(\alpha) \le \varphi' \le g(\alpha) \quad . \tag{3.25}$$

3.7.3 Asymmetry

Warning. The previous theorem seems symmetric, but it is not. The caveat is in the constants τ_c, δ_c : it may be the case that they are quite different from $\tau_{\tilde{c}}, \delta_{\tilde{c}}$. In the Figure 9, we see a piece of the two curves: the curve c is blue and is flat; the curve \tilde{c} is red, and it has two inflections points A, B where the tangents are at an angle β which is as small as we would like; but then the inflection points can also be so close that the normals will cross before reaching the curve c. So, while there is an easy way of representing \tilde{c} using tubular coordinates around c, there is no way to find $\tilde{\varphi} \in \text{Diff}(S^1), \tilde{a}$ so as to write

$$c(\varphi(\theta)) = \tilde{c}(\theta) + \tilde{a}(\theta)\tilde{N}(\theta)$$
 .

3.7.4 Vice versa

We have also a sort of vice versa of the previous theorem 3.26.

Proposition 3.28 (Derepresentation). Suppose $c: S^1 \to \mathbb{R}^2$ is a C^2 immersed curve and $c_1, c_2: S^1 \to \mathbb{R}^2$ are given by tubular coordinates

$$c_i(\theta) = \varPhi(\theta, a_i(\theta)) = c(\theta) + a_i(\theta) N(\theta)$$

where i = 1, 2 and $a_1, a_2 : S^1 \to \mathbb{R}$ are of class C^1 ; define

$$\alpha \stackrel{\text{\tiny def}}{=} \|a_1 - a_2\|_{\infty} \max |\kappa| \quad , \quad \beta \stackrel{\text{\tiny def}}{=} \left\| \frac{\partial}{\partial c} a_1 - \frac{\partial}{\partial c} a_2 \right\|_{\infty}$$

(where κ is the curvature of c). Then

$$|c_1'(\theta)-c_2'(\theta)|\leq |c'(\theta)|\sqrt{(\alpha^2+\beta^2)}$$

and (obviously) $\|c_1-c_2\|_{\infty}=2\alpha\tau_c,$ for all $\theta.$

Proof. We rescale and reparameterize c by arc parameter, and we rescale and reparameterize c_1, c_2 along with c, as explained in 3.24; this operation is justified by Remarks 3.12, 3.21; in particular, note that α, β are scale invariant; then

$$c_i' = T(1-\kappa a_i) + a_i'N$$

so

$$c_1'-c_2'=-T\kappa(a_1-a_2)+(a_1'-a_2')N$$

hence

$$|c_1' - c_2'| \le \sqrt{\alpha^2 + \beta^2} \quad .$$

3.7.5 Loss of Regularity

Unfortunately the representation discussed above suffers from a loss of regularity. Indeed, if $c: S^1 \to \mathbb{R}^2$ is C^2 and $a: S^1 \to \mathbb{R}$ is C^{∞} , it may be the case that

$$\tilde{c}(\theta) = \Phi(\theta, a(\theta)) = c(\theta) + a(\theta)N(\theta)$$

is of class C^1 but not of class C^2 .

This can be seen in very simple examples.

Example 3.29. Suppose that, for t near t = 0, we have

$$c(t) = \begin{cases} (t,0) & t < 0 \\ (t, t^3/3) & t \ge 0 \end{cases}$$

such a curve is C^2 but not C^3 ; then for $t \ge 0$

$$T(t) = \frac{1}{\sqrt{1+t^4}}(1,t^2) \quad , \quad N(t) = \frac{1}{\sqrt{1+t^4}}(-t^2,1) \quad , \quad \kappa = \frac{2t}{\left(1+t^4\right)^{3/2}}$$

(that can be easily computed using a standard formula for curvature of planar curves, see Sec. 1.7.1 in [21]).

Choose then $a \equiv 1$ so

$$\tilde{c}(t) = c(t) + N(t)$$

but then

$$\tilde{c}(t)'' = c(t)'' + N(t)''$$

and for t > 0

$$N''(t) = \left(\frac{2(5t^4 - 1)}{(t^4 + 1)^{5/2}}, \frac{6t^2(t^4 - 1)}{(t^4 + 1)^{5/2}}\right)$$

so

$$\lim_{t\to 0+} \tilde{c}(t)'' = (-2,0)$$

but $\tilde{c}(t)'' = 0$ for t < 0.

3.7.6 Neighborhoods of a curve

The above results encode two different but equivalent ways to define a topology on the "manifold of immersed curves". We specify them by describing the local bases of neighborhoods of a curve c.

• The "Banach way" in which a local base of open neighborhoods of a curve c is given by the sets

$$U=U_{c,\varepsilon_1}=\{\tilde{c}:S^1\to\mathbb{R}^2:\|c-\tilde{c}\|_{C^R}<\varepsilon_1\} \tag{3.26}$$

where $\varepsilon_1 > 0$ is small, and

$$\|c\|_{C^R} \stackrel{\text{\tiny def}}{=} \max_{\theta \in S^1} |c(\theta)| + |c'(\theta)| + \ldots + |c^{(R)}| \quad .$$

• The "geometric way" in which a neighborhood in the local base is defined, for $\varepsilon_2 > 0$ small, as the set $V = V_{c,\varepsilon_2}$ of all \tilde{c} that can be expressed as in (3.16), namely

$$\tilde{c}(\sigma) = \varPhi(\varphi(\sigma), a(\sigma)) = c(\varphi(\sigma)) + a(\sigma)N(\varphi(\sigma))$$

for all choices of $a: S^1 \to \mathbb{R}$ and $\phi \in \mathrm{Diff}(S^1)$ with

$$\|a\|_{C^R} < \varepsilon_2 \quad , \quad \|\varphi - \operatorname{Id}\|_{C^R} < \varepsilon_2 \quad ,$$

where

$$\|\varphi - \operatorname{Id}\|_{C^R} = \max_{\theta \in S^1} d_{S^1}(\varphi(\theta), \theta) + |\varphi'(\theta) - 1| + \ldots + |\varphi^{(R)}(\theta)|$$

(moreover derivatives of a may be computed in arc-parameter).

The above are "equivalent" in this sense. Assume that the curve c is C^{R+1} .

- For any ε_1 that defines neighborhood U of the first type, there is small enough ε_2 that defines a neighborhood V of the second type, so that $V \subseteq U$; this is easily proved (by using Leibnitz and Faa di Bruno formulas).
- Consider now a neighborhood V of the second type, for an $\varepsilon_2 > 0$ small; for ε_1 small enough the previous results 3.26 and 3.27 tells us that any curve $\tilde{c} \in U$ can be expressed in tubular coordinates; since tubular coordinates are a local diffeomorphism, similar arguments as above (plus 3.9) show that (for ε_1 even smaller) $U \subseteq V$.

(We skip details for sake of brevity.)

In all the above there is though an annoying condition: to prove equivalence of C^R neighborhoods we have to assume that the curve c is C^{R+1} . For this reason, this works well for defining topologies in the "manifold of smooth immersed curves"; in this case we will use neighborhoods of the first kind (or, respectively, of the second kind) for all $\varepsilon > 0$ and all R. This is the common approach, see [12].

3.7.7 Local injectivity

So far, we have considered *parametric curves*. We have seen in 3.26 that we can represent nearby curves in an unique way using tubular coordinates, *i.e.* the map Φ .

What happens when we consider *geometric curves*, that is, curves up to parameterization?

Lemma 3.30 (Local injectivity). Let c be a C^2 freely immersed planar curve. There exists a $r = r_c > 0$ such that, if

$$\tilde{c}(s) \stackrel{\text{\tiny def}}{=} c(s) + a(s)N(s)$$

and

$$\tilde{c}(\varphi(s)) = c(s) + b(s)N(s)$$

with

$$\|a\|_{\infty} \leq r \quad , \quad \|b\|_{\infty} \leq r \quad , \quad \left\|\frac{\partial a}{\partial c}\right\|_{\infty} \leq 1/2 \quad , \quad \left\|\frac{\partial b}{\partial c}\right\|_{\infty} \leq 1/2$$

where $\frac{\partial}{\partial c}$ is the arc derivation: then $a \equiv b$ and φ is the identity.

Proof. If rescale the curves c, \tilde{c} and the functions a, b by a constant $\lambda > 0$, and we rescale the constant r_c by the same constant λ , then all hypotheses and theses are unaffected. So we can assume with no loss of generality that c has length 2π .

If we reparameterize $\hat{c} = c \circ \psi$ then (cf the relation (3.19) in Remark 3.21) the functions a, b are reparameterized as well; having $\hat{a} = a \circ \psi$ then $\frac{\partial \hat{a}}{\partial \hat{c}} = \frac{\partial a}{\partial c} \circ \psi$; and similarly for b; again hypotheses and theses are unaffected.

So we can assume that c is parameterized by arc parameter with no loss of generality.

Suppose that

$$\tilde{c}(\theta) = c(s) + a(s)N(s)$$

with $|a| \le \tau_c$ and $|a'| \le 1/2$ then

$$\tilde{c}' = T(1 - \kappa a) + a'N$$

SO

$$1/2 \leq |\tilde{c}'| \leq \sqrt{\frac{9}{4} + \frac{1}{4}} \leq 2$$

Suppose moreover

$$\tilde{c}(\varphi(\theta)) = c(s) + b(s)N(s)$$

with $|b'| \leq 1/2$ then

$$1/2 \le |\tilde{c}'|\varphi' \le 2$$

and then

$$1/4 \le \varphi' \le 4$$

By contradiction we may write

$$\tilde{c}_n(\theta) = c(s) + a_n(s) N(s) \quad , \quad \tilde{c}_n(\varphi_n(s)) = c(s) + b_n(s) N(s)$$

with

$$\|a_n\|_{\infty} \leq 1/n \quad , \quad \|b_n\|_{\infty} \leq 1/n \quad , \quad \|a_n'\|_{\infty} \leq 1/2 \quad , \quad \|b_n'\|_{\infty} \leq 1/2$$

where φ_n is not the identity: then, when $1/n < \tau_c/4$, the uniqueness condition (3.18) is contradicted so there is a σ_n such that

$$\operatorname{len} c_{n_{\left[\sigma_{n},\varphi_{n}(\sigma_{n})\right]}} \ge \delta_{c} \tag{3.27}$$

so using Thm. 3.9

$$\liminf_{n\to\infty} d_{S^1}\big(\varphi_n^{-1}(\theta_n),\theta_n\big)>0 \quad .$$

Up to a subsequence we can assume that $\theta_n \to \tilde{\theta}$ and

$$\lim_{n\to\infty} d_{S^1}\big(\varphi_n^{-1}(\theta_n),\theta_n\big) = \tilde{d} > 0 \quad .$$

We know that

$$1/4 \le \varphi_n' \le 4$$
 :

up to a subsequence $\varphi_n \to \varphi$ uniformly and $\varphi_n^{-1} \to \varphi^{-1}$ uniformly, where φ is a bi-Lip homeomorphism. Then $\tilde{c}_n \to c$ uniformly, and passing to the limit

$$c = c \circ \varphi$$

so φ is a diffeomorphism. Moreover

$$d_{S^1}(\varphi^{-1}(\tilde{\theta}),\tilde{\theta})=\tilde{d}$$

so φ cannot be the identity, hence c is not freely immersed.

3.7.8 Auto representation⁹

The above result is very important, but the proof gives no hint on what is going on. To this end, we drop the requirement that the curve be freely immersed, and look at an easy question. Is it possible for a curve to represent itself locally?

Lemma 3.31. Let c be a C^2 immersed planar curve. There are only finitely many ways in which the curve can represent itself geometrically, that is, finitely many choices a, ϕ

$$c(s) + a(s)N(s) = c(\phi(s))$$

with $\phi \in \text{Diff}(S^1)$ and $a: S^1 \to \mathbb{R}$ continuous with $\|a\|_{\infty} \leq \tau_c/2$. In particular there is a $\rho_c > 0$ such that, if $\|a\|_{\infty} \leq \rho_c$ then $a \equiv 0$.

In particular if c is freely immersed then $||a||_{\infty} \leq \rho_c$ implies $a \equiv 0$ and $\phi \equiv \text{Id}$.

Proof. Define δ_c, τ_c as in 3.11 (see also Prop. 3.16). Let $\Phi(s,t) = c(s) + tN(s)$. Consider the family P of all the pairs a, φ with $||a||_{\infty} \leq \tau_c/2$ and $a \not\equiv 0$ and

$$\Phi(s,a(s)) = c(s) + a(s)N(s) = c(\varphi(s)) \tag{3.28}$$

we will prove that there are only finitely many such pairs.

Hence we will let r be smaller than the minimum of $||a||_{\infty}$ for all such pairs:

$$r = \frac{1}{2} \min_{(a,\varphi) \in P} \|a\|_{\infty} \quad .$$

In the example in Figure 10 on the next page there are 3 pairs in P.

We have some very strong properties.

• If $(a_1, \varphi_1), (a_2, \varphi_2) \in P$ and there is a $\tilde{s} \in S^1$ s.t. $\varphi_1(\tilde{s}) = \varphi_2(\tilde{s})$ then $\varphi_1 \equiv \varphi_2$ and $a_1 \equiv a_2$. Indeed there is a small interval J containing \tilde{s} where we can invert the map Φ and

$$(s,a_i(s))=\varPhi^{-1}(c(\varphi_i(s)))$$

that is, the first component of $\Phi^{-1} \circ c$ is φ_i^{-1} , so $\varphi_1 \equiv \varphi_2$ in J; so the set $\{s \in S^1 : \varphi_1(s) = \varphi_2(s)\}$ is both open and closed. The previous argument also proves that $a_1 \equiv a_2$.

• Figure 11 on the following page can be used as a visual guide in the following proof. Let $I_0 \subset S^1$ be an open interval such that the length of $c_{\mid I_0}$ is less than δ_c and more than $\delta_c/2$. Let U_0 be the image of Φ for $s \in I_0$ and $|t| < \tau_c$. Choose $(a_i, \varphi_i) \in P$ with $i \in 1, 2$, let

$$I_i = \varphi_i(I_0)$$

we will prove that either $I_1 \cap I_2 = \emptyset$, or $I_1 = I_2$, $\varphi_1 \equiv \varphi_2$, $a_1 \equiv a_2$. Assume that $\tilde{s} \in I_1 \cap I_2$, let $s_i = \varphi_i^{-1}(\tilde{s})$ then $s_1, s_2 \in I_0$ so

$$c(\varphi_i(s_i)) = c(\tilde{s})$$

using the relation (3.28)

$$\Phi(s_i, a_i(s_i)) = c(s_i) + a_i(s_i)N(s) = c(\varphi_i(s_i)) = c(\tilde{s}) \in U$$

and the fact that Φ is a diffeomorphism for $s \in I_0$, $|t| < \tau_c$ and $c(\tilde{s}) \in U$ we obtain that $s_1 = s_2 = \hat{s}$ so $\varphi_1(\hat{s}) = \varphi_2(\hat{s}) = \tilde{s}$ hence by the previous point $\varphi_1 \equiv \varphi_2$, $a_1 \equiv a_2$.

• The differential of Φ (computed using arc-length derivative) is

$$T(1-\kappa t)\,\mathrm{d} s + N\,\mathrm{d} t$$

so the smallest principal value is at least 1/2. We can estimate the length of c for $s \in I_i$ to be at least $\delta_c/4$. Hence there can be only finitely many such intervals.

⁹This section may be skipped on a first read, since it is not needed in the following.

 $^{^{10}\}mathrm{As}$ noted in 3.13, $\delta_c \leq \mathrm{len}(c)/2.$



Figure 10: Example of curve with 3 pairs in P.

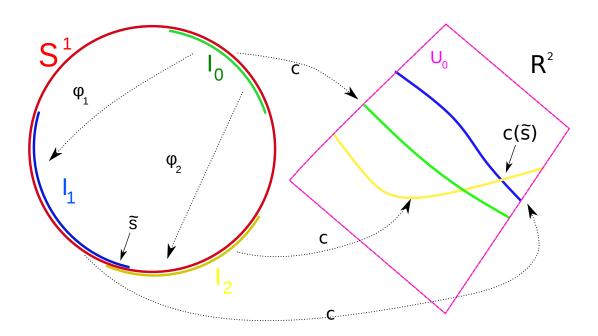


Figure 11: Helper scheme for proof of Lemma 3.31

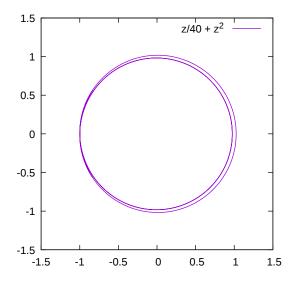


Figure 12: Curve in the Example 3.7.9.

3.7.9 Example

The constants ρ_c in Lemma 3.31 and r_c in Lemma 3.30 though cannot be estimated apriori by using differential quantities such as $\max |\kappa|$. These constants may arbitrarily smaller than the quantity τ_c (defined in 3.11) that provides the width of the tubular neighborhood (Prop. 3.16). They really depend on how the curve is drawn.

This is seen in simple examples such as this:

• $c(z) = \varepsilon z + z^2$ for $z \in S^1 \subset \mathbb{C}$, or equivalently $c(\theta) = (\varepsilon \cos(\theta) + \cos(2\theta)$, $\varepsilon \sin(\theta) + \sin(2\theta))$ for $\theta \in \mathbb{R}/(2\pi) \sim S^1$.

that is a small C^{∞} perturbations of the doubly traversed circle c_2 seen in Example 2.15; see Fig. 12. This curve is freely immersed, but it is quite near to the doubly traversed circle that is not freely immersed. For ε small the curvature κ_c of c is approximatively 1 so $\tau_c \sim 1/2$, and

$$|c_2(\theta) - c(\theta)| = \varepsilon$$

while

$$|c'| \sim 2 \pm \varepsilon \quad , \quad |c_2'(\theta) - c'(\theta)| = \varepsilon$$

hence

$$|c_2'(\theta)-c'(\theta)|\sim \frac{\varepsilon}{2}|c'(\theta)|$$

so we can use Thm. 3.26 to express

$$c_2(\theta) = c(\theta) + a(\theta)N(\theta)$$

using tubular coordinates when $\varepsilon < 1/8$, with $a \sim \varepsilon$: so $r_c \stackrel{\sim}{\leq} \varepsilon$; similarly we can represent $c(\theta + \pi)$ using c, so we have $\rho_c \stackrel{\sim}{\leq} \varepsilon$.

3.8 Free immersions are open

We have thus come to a fundamental result.

Theorem 3.32. Free immersions are an open subset of immersions.

We can detail and prove this fact in two ways.

- We can see it as a corollary of Lemma 3.30. Consider a neighborhoods V defined using the tubular coordinates; precisely, define V as in the second definition in Sec. 3.7.6, choosing $\varepsilon_2 < \min\{r_c, 1/2, \tau_c/4\}$ and R=2; knowing that $\tilde{c}(s) \equiv \tilde{c}(\varphi(s))$ we could choose $a \equiv b$ but then by Lemma 3.30 φ would be the identity. So each and any curve in V is freely immersed.
 - As discussed in Sec. 3.7.6, this proves the result in the manifold of smooth immersed curves, where the above neighborhoods define a topology.
- If we instead want to prove this for the standard Banach C^2 topology (first definition in Sec. 3.7.6) we can proceed as follows. Suppose that c_n is a sequence of immersed curves that are not free; and suppose that $c_n \to c$ in C^2 . We may rescale and reparametrize all the curves so that all have length 2π and $|c'_n| \equiv 1$, and still $c_n \to c$ in C^2 ; we skip the details ¹¹; these assumptions simplify the following arguments. Let ϕ_n be a sequence such that $c_n = c_n \circ \phi_n$ and ϕ_n is not the identity; as above we know that $\phi'_n \equiv 1$ and we may choose ϕ_n to be a generator of the isotropy group, so that $\phi_n(t) = t + (2\pi)/j_n$; we know that j_n is bounded by 4 times the curvature, so up to a subsequence j_n is constant, let's call it j, and then $\phi_n = \phi$ with $\phi(t) = t + (2\pi)/j$; and passing to the limits $c \circ \phi = c$ so c is not freely immersed.

Note that both proofs need a compactness argument; this seems unavoidable, since the size of the neighborhood cannot be estimated by using differentiable quantities, as explained in Sec. 3.7.9.

4 The manifold of free geometric curves

Definition 4.1 (Classes of Curves).

- Imm (S^1, \mathbb{R}^n) is the class of immersed curves c: curves such that $c' \neq 0$ at all points.
- $\operatorname{Imm}_f(S^1, \mathbb{R}^n)$ is the class of freely immersed curve, the immersed c such that, moreover, if $\phi: S^1 \to S^1$ is a diffeomorphism and $c(\phi(t)) = c(t)$ for all t, then $\phi = Id$.
- Emb (S^1, \mathbb{R}^n) are the embedded curves, maps c that are diffeomorphic onto their image $c(S^1)$; and the image is an embedded submanifold of \mathbb{R}^n of dimension 1.

Each class contains the one following it (this follows from the propositions seen in Sec. 2.3).

4.1 Proof of 2.29

Definition 4.2.

$$B_{i,f}(S^1,\mathbb{R}^2) = \operatorname{Imm}_f(S^1,\mathbb{R}^2) / \operatorname{Diff}(S^1) \tag{4.1}$$

is the quotient of $Imm_f(S^1, \mathbb{R}^2)$ (free immersions) by the diffeos $Diff(S^1)$ (reparameterization).

We now provide the complete proof of Theorem 2.29, namely that this $B_{i,f}$ is a manifold, for the case of smooth freely immersed planar curves; afterward we will show in Sec. 4.2 how and where the proof in [5] misses some key arguments.

The following proof is for immersed curves $c: S^1 \to \mathbb{R}^2$, in a forthcoming paper [15] we will explain how it can be generalized to the case of immersions $i: M \to N$.

4.1.1 Quotient topology

We discuss the topological aspect of theorem 2.29.

Let $\pi: \operatorname{Imm}_f \to B_{i,f}$ be the canonical projection of the quotient that defines $B_{i,f}$ in (4.1).

The definition of the $quotient\ topology$ is as follows. A set $\mathcal Z$ is open in $B_{i,f}$ when the union of its orbits

$$\pi^{-1}(\mathcal{Z}) = \{c \in \mathrm{Imm}_f : [c] \in \mathcal{Z}\} = \bigcup_{[c] \in \mathcal{Z}} [c]$$

 $^{^{11}\}mathrm{See}$ Theorem 7 in [20]

is open in Imm_f , that is, it is open in C^{∞} .

We endow Imm_f with the C^∞ topology described earlier, and $B_{i,f}$ with the induced quotient topology. Now we want to describe a specific family of open neighborhoods that will be quite useful. Fix c_1 smooth freely immersed. Let $\tau \leq \min\{r_{c_1}, \tau_{c_1}/4, 1/2\}$; where r_c was defined in 3.30.

Proposition 4.3. Consider the set

$$\mathcal{U}_{c_1} = \{ \tilde{c} \in Imm_f \ : \ |\tilde{c} - c_1| < \tau \ , \ |\tilde{c}' - c_1'| < |c_1'|/3 \} \eqno(4.2)$$

this set is open in $C^{\infty}(S^1 \to \mathbb{R}^2)$.

Proof. This is a simple case of the arguments of Sec. 3.7.6. Let $m = \min |c_1'|$, let $c_2 \in \mathcal{U}_{c_1}$ and

$$\alpha = \|c_2 - c_1\|_{\infty} \quad , \quad \beta = \left\| \frac{\partial}{\partial c_1} c_2 - \frac{\partial}{\partial c_1} c_1 \right\|_{\infty}$$

we know that $\alpha < \tau, \beta < 1/3;$ if c_3 is a smooth curve and satisfies

$$\|c_3-c_2\|_{\infty}<(\tau-\alpha)\quad,\quad \|c_3'-c_2'\|_{\infty}<(1/3-\beta)m$$

then by the results in the previous section $c_3 \in \mathcal{U}_{c_*}$

By Theorem 3.32 all curves in \mathcal{U}_{c_1} are freely immersed.

Now let us reparameterize all the curves in \mathcal{U}_{c_1} and define

$$\mathcal{W}_{c_1} \stackrel{\text{def}}{=} \{ \tilde{c} \circ \varphi : |\tilde{c} - c_1| < \tau , |\tilde{c}' - c_1'| < |c_1'|/3 , \varphi \in \text{Diff}^+ \}$$

$$\tag{4.3}$$

since the above conditions are reparameterization invariant, then

$$\mathcal{W}_{c_1} = \bigcup_{c_2 = c_1 \circ \varphi \ , \ \varphi \in \mathsf{Diff}^+} \mathcal{U}_{c_2}$$

that is an union of open sets, hence it is open in C^{∞} . Moreover it contains all the orbits of all of its curves: in the language of [5], we may say that " \mathcal{W}_{c_1} is saturated for the action of $\text{Diff}(S^1)$ ".

So we define

$$\widetilde{\mathcal{W}}_{c_1} = \pi \Big(\mathcal{W}_{c_1} \Big)$$

and we have

$$\mathcal{W}_{c_1} = \pi^{-1}(\widetilde{\mathcal{W}}_{c_1}) \quad ; \quad$$

hence $\widetilde{\mathcal{W}}_{c_1}$ is open in $B_{i,f}$.

4.1.2 Geometric representation

We discuss the representation aspect of Theorem 2.29. Consider again the set \mathcal{W}_{c_1} defined in (4.3). For any curve \tilde{c} in this set, by Theorem 3.26, we have a representation

$$\tilde{c} \circ \varphi = c + aN$$

with $|a| < \tau$.

Let $\hat{c} = \tilde{c} \circ \varphi$ for convenience; by the derepresentation result 3.28 (setting $\alpha = 1/8, \beta = 1/3$ in that proposition and noting $\sqrt{(1/64 + 1/9 < 1/2)}$ we have

$$|\hat{c}'(\theta) - c_1'(\theta)| < |c_1'(\theta)|^{1/2}$$

so there is an unique reparameterization of \tilde{c} that can be expressed in tubular coordinates around c, by Lemma 3.30: this means that φ is uniquely identified by \tilde{c} ; so we will concentrate on a.

Proposition 4.4. Let

$$\mathcal{Q}_{c_1} \stackrel{\text{\tiny def}}{=} \{a: S^1 \to \mathbb{R} \ : \ \exists \tilde{c} \in \mathcal{U}_{c_1} \ , \ \exists \varphi \in \textit{Diff}^+ \ , \ \tilde{c} \circ \varphi = c + aN \} \tag{4.4}$$

be the set of all such a. This set is open.

Proof. The map $(\varphi, a) \mapsto (c + aN) \circ \varphi^{-1}$ is smooth, and \mathcal{Q}_{c_1} is the projection on the second component of the counterimage of \mathcal{W}_{c_1} that is open.

All of the above can be stated in the language of [5] as follows: the set \mathcal{W}_{c_1} is an open neighborhood of c_1 in C^{∞} , it is composed only of freely immersed curves, it is saturated for the Diff(S^1)-action and the map

$$(\varphi,a)\mapsto (c+aN)\circ\varphi^{-1}$$

splits it smoothly as

$$\mathcal{W}_{c_1} \stackrel{\sim}{=} \mathcal{Q}_{c_1} \times \mathrm{Diff}(S^1)$$
.

4.1.3 Charts

Choose a curve c_1 ; consider the map¹²

$$\varPhi_{c_1}: \mathcal{Q}_{c_1} \to \mathcal{W}_{c_1} \quad , \quad \varPhi_{c_1}(a) \stackrel{\scriptscriptstyle \mathrm{def}}{=} c_1 + a N_1$$

we already proved in Lemma 3.30 that it is injective; Φ_{c_1} is also smooth as a map from C^{∞} to C^{∞} .

If we compose

$$\widetilde{\varPhi}_{c_1} = \pi \circ \varPhi_{c_1}$$

then the composition

$$\widetilde{\varPhi}_{c_1}:\mathcal{Q}_{c_1}\to\widetilde{\mathcal{W}}_{C_1}$$

is bijective: indeed if $C_1 \in \widetilde{\mathcal{W}}_{C_1}$ then we proved in the previous section that, picking a \tilde{c} in the equivalence class C_1 ,

$$\tilde{c} \in \mathcal{U}_{c_1 \circ \varphi}$$

for an unique φ , and then

$$\tilde{c} \circ \varphi^{-1} = c_1 + aN_1$$

for an unique a.

4.1.4 Atlas

To conclude, we discuss the atlas of charts needed for theorem 2.29. For i=1,2 consider now two equivalence classes $C_i \in B_{i,f}$ and choose a curve $c_i \in C_i$ in each; we consider the maps

$$\widetilde{\varPhi}_{c_i} = \pi \circ \varPhi_{c_i}$$
 .

We want to check that these are charts of an atlas for the manifold.

Suppose that

$$\widetilde{c} \in \widetilde{\mathcal{W}}_{c_1} \cap \widetilde{\mathcal{W}}_{c_2}$$

then

$$\tilde{c}(\varphi_1(\theta)) = c_1(\theta) + \tilde{a}_1(\theta) N_{c_1}(\theta) \quad , \quad \tilde{c}(\varphi_2(\theta)) = c_2(\theta) + \tilde{a}_2(\theta) N_{c_2}(\theta)$$

we need to check that

$$\widetilde{\varPhi}_{c_2}^{-1}\circ\widetilde{\varPhi}_{c_1}$$

is smooth in a neighborhood of \tilde{a}_1 . We can change variable in the previous one, that is, reparameterize c_1, c_2 , so that

$$\tilde{c}(\theta) = c_1(\theta) + \tilde{a}_1(\theta) N_{c_1}(\theta) \quad , \quad \tilde{c}(\theta) = c_2(\theta) + \tilde{a}_2(\theta) N_{c_2}(\theta)$$

but for a_1 near \tilde{a}_1 we know that

$$c_1(\theta) + a_1(\theta) N_{c_1}(\theta) \in \mathcal{U}_{c_2}$$

by Lemma 3.28 so by the representation theorem 3.26 there are φ and a_2 dependent on a_1 such that

$$c_1(\theta) + a_1(\theta) N_{c_1}(\theta) = c_2(\varphi(\theta)) + a_2(\varphi(\theta)) N_{c_2}(\varphi(\theta))$$

the representation theorem's proof shows that the dependency of a_2 on a_1 is smooth (it is given by the inverse of the tubular coordinates, as discussed in the nearby projection Lemma 3.19).

This concludes the desired proof of Theorem 2.29.

 $^{^{12}\}mathrm{It}$ is not the same maps \varPhi defined in 3.16.

4.2 Comparison with [5]

We endow N with a Riemannian metric such that scalar curvatures are bounded and convexity radius is bounded uniformly away from zero; see [7].

The proof in [5] is presented for generic immersions $i: M \to N$; we fix one such immersion.

We follow notations and definitions in [5], here copied for convenience of the user (parts copied from [5] will be in italic).

We choose connected open sets $(U_{\alpha})_{\alpha}$ and $(W_{\alpha})_{\alpha}$ such that $W_{\alpha} \subset \overline{W_{\alpha}} \subset U_{\alpha} \subset M$, $(W_{\alpha})_{\alpha}$ is an open cover of M, each $\overline{W_{\alpha}}$ is compact, $(U_{\alpha})_{\alpha}$ is a locally finite open cover of M, and such that $v_{|U_{\alpha}}$ is an embedding.

Let $p: \mathcal{N}(i) \to M$ be the normal bundle of i, defined in the following way: for $x \in M$ let

$$\mathcal{N}(\imath)_x \stackrel{\mathrm{\scriptscriptstyle def}}{=} \big(T_x \imath(T_x M)\big)^\perp$$

that is the orthogonal complement of tangent at i(x) of the immersed manifold in $T_{i(x)}N$. The following diagram

$$\begin{array}{ccc} \mathcal{N}(i) & \stackrel{\overline{\imath}}{\longrightarrow} TN \\ & \downarrow^p & & \downarrow^{\pi_N} \\ M & \stackrel{\imath}{\longrightarrow} N \end{array}$$

is a vector bundle homomorphism over i, which is fiberwise injective.

Let $\exp^N: TN \to N$ be the exponential map on N. Now there is a neighborhood U of the zero section in the previous bundle $\mathcal{N}(i)$ that is small enough so that

$$\exp^N \circ \bar{\imath}$$

when restricted to $U|U_{\alpha}$ is a diffeomorphism with its image. The restriction of $\exp^{N} \circ \bar{\imath}$ to U is called τ^{\imath} . It will serve us as a substitute for a tubular neighborhood of $\imath(M)$.

(The notation $U|U_{\alpha}$ is not described in [5], but by its usage it should be equivalent to $U \cap p^{-1}(U_{\alpha})$. Note also that, later on, the paper adds the superscript i to U_{α} and will write it as U_{α}^{i}).

Consider planar immersed curves $c:S^1\to\mathbb{R}^2$: normal vectors at $c(\theta)$ are a one dimensional space tN_c (where N_c is the normal vector to the curve c as defined in 2.22), hence the fibre of $\mathcal{N}(i)$ is one dimensional, so a point in the bundle $\mathcal{N}(i)$ can be represented by a pair $\theta\in S^1, t\in\mathbb{R}$, and the map τ^i becomes the map Φ defined in eqn. (3.10) in Prop. 3.16. Fix a $\tau>0$, small, as we will discuss later on. We cover S^1 by arcs $U_\alpha\subseteq S^1$ each shorter than ε , and $W_\alpha\subset U_\alpha$ subarcs that can be chosen so that they are an open cover; for small ε we can ensure that tubular coordinates can be perused. The open set U will include normal vectors tN_c with $|t|<\varepsilon$.

The statement of main Theorem 1.5 in [5] starts as follows:

«Let \imath be a free immersion $M \to N$. Then there is an open neighborhood $\mathcal{W}(\imath)$ in Imm(M,N) which is saturated for the Diff(M)-action and which splits smoothly as

$$W(i) = Q(i) \times Diff(M).$$

Here Q(i) is a smooth splitting submanifold of Imm(M,N), diffeomorphic to an open neighborhood of 0 in $C^{\infty}(N(i))$. In particular the space $Imm_f(M,N)$ is open in $C^{\infty}(M,N)$.

The proof covers also the case when M is not compact; we will assume that M is compact so that some arguments can be simplified.

The proof goes as follows.

Define

$$\mathcal{U}(\imath) \stackrel{\text{\tiny def}}{=} \{j \in \operatorname{Imm}(M,N) : j(W_{\alpha}) \subseteq \tau^i(U_{\imath}|U_{\alpha}^{\imath}) \forall \alpha\},$$

(the proof then goes on showing that this is an open set — we skip details).

For each $j \in U(i)$ we define

$$\varphi_i(j): M \to U^i \subseteq N(i),$$

$$\varphi_i(j)(x) \stackrel{\text{def}}{=} (\tau^i | (U^i | U_{\alpha}^i))^{-1}(j(x)) \quad \text{if} \quad x \in W_{\alpha}^i$$

Indeed we know that $\tau^i|(U^i|U^i_\alpha)$ is a diffeomorphism onto its image, and that $j(x) \in \tau^i(U^i|U^i_\alpha)$ when $x \in W^i_\alpha$, by definition of $\mathcal{U}(i)$.

Then $\varphi^{\imath}: U(i) \to C^{\infty}(M, \mathcal{N}(i))$ is a mapping which is bijective onto the open set

$$\mathcal{V}(i) \stackrel{\text{def}}{=} \{ h \in C^{\infty}(M, \mathcal{N}(i)) : h(W_{\alpha}) \subseteq U^{i} | U_{\alpha}^{i} \quad \forall \alpha \}$$
 (4.5)

in $C^{\infty}(M, \mathcal{N}(i))$. Its inverse is given by the smooth mapping

$$\tau^{\imath}_{*}: h \mapsto \tau^{\imath} \circ h$$
.

The proof then goes on showing that this φ is smooth (we skip details).

We now translate the above objects into the language of the Section 4.1. If $c = i : S^1 \to \mathbb{R}^2$ is a freely immersed curve, and $\tilde{c} = j$ is a curve such that

$$\tilde{c}(W_{\alpha}) \subset U_{\alpha}$$

then $\|\tilde{c} - c\| \leq 2\varepsilon$, so, for ε small, for each $\sigma \in S^1$ there are $\theta \in S^1$, $t \in \mathbb{R}$ such that

$$\tilde{c}(\sigma) = c(\theta) + aN_c(\theta) \quad ,$$

this pair $\theta \in S^1, t \in \mathbb{R}$, is exactly associated to correct point in the above bundle, that is, we can write

$$x = (\theta, tN_c(\theta)) \in \mathcal{N}(i)$$
 ,

and

$$\tilde{c}(\sigma) = \tau^{\imath}(x)$$
 .

Possibly reducing the width ε of the tubular neighborhoods we can also use Prop. 3.20 to ensure that the above representation is "unique". So Prop. 3.20 can be applied and this means that, for each σ , we can write

$$\tilde{c}(\sigma) = c(\varphi(\sigma)) + a(\sigma)N_c(\varphi(\sigma)) \quad ; \tag{4.6}$$

so in conclusion we can explicitely write the map h above defined as

$$h(\theta) = (\varphi(\theta), a(\theta)N_c(\varphi(\theta)))$$
 (4.7)

the first component in h encodes a position in the base space $M=S^1$ of the bundle $\mathcal{N}(i)$, the second encodes a normal vector aN_c to the curve c at $\varphi(\theta)$. Indeed the inverse τ^* is exactly the map (4.6).

The proof continues as follows.

We have $\tau_*^i(h \circ f) = \tau_*^i(h) \circ f$ for those $f \in Diff(M)$ which are near enough to the identity so that $h \circ f \in \mathcal{V}(i)$ (that was defined in (4.5)). We consider now the open set ¹³

$$\mathcal{Z} \stackrel{\text{\tiny def}}{=} \{ h \circ f : h \in \mathcal{V}(i), f \in \textit{Diff}(M) \} \subseteq C^{\infty}((M, \mathcal{U}^i)) \quad . \tag{4.8}$$

Obviously we have a smooth mapping from it into

$$C^{\infty}(U^{\imath}) \times Diff(M)$$

given by

$$h \mapsto (h \circ (p \circ h)^{-1}, p \circ h) \tag{4.9}$$

where $C^{\infty}(U^i)$ is the space of sections of $U^i \to M$.

Here though comes the first mistake in the original proof. Consider the example 3.22, where c=i is the blue curve and $j=\tilde{c}$ is the red curve. There is a choice of U_{α},W_{α} such that $j\in\mathcal{U}(i)$. We can express

$$\tilde{c}(\sigma) = c(\varphi(\sigma)) + a(\sigma)N(\varphi(\sigma))$$

 $^{^{13}\}mathrm{We}$ added the notation $\mathcal Z$ for ease of reference.

and then define h by (4.7); but when we apply the rule (4.9) to this h, we obtain that

$$p \circ h = \varphi$$

and φ is a map $\varphi:S^1\to S^1$ that is not a diffeomorphism.

The correct statement is that the map (4.9) achieves a splitting of the open set \mathcal{Z} described in (4.8) into

$$C^{\infty}(U^i) \times C^{\infty}(M \to M)$$
 .

Some condition must be added to the definition of \mathcal{Z} to make sure that φ is a diffeomorphism; as was done in eqn. (4.2) to define \mathcal{U} , by adding the condition $|\tilde{c}' - c_1'| < |c_1'|/3$: this condition is necessary to apply the representation theorem 3.26. No similar condition is present in the proof in [5].

The proof afterwords proceeds as follows.

So if we let 14

$$\mathcal{Q}(i) \stackrel{\mathrm{def}}{=} \tau^{\imath}_{\ast}(C^{\infty}(U^{\imath}) \cap V(\imath)) \subset \operatorname{Imm}(M,N)$$

we have

$$\mathcal{W}(i) \stackrel{def}{=} U(i) \circ Diff(M) \stackrel{\sim}{=} \mathcal{Q}(i) \times Diff(M) \stackrel{\sim}{=} (C^{\infty}(U^{i}) \cap \mathcal{V}(i)) \times Diff(M)$$

since the action of Diff(M) on i is free. Consequently Diff(M) acts freely on each immersion in W(i), so $Imm_f(M,N)$ is open in $C^{\infty}(M,N)$.

This is the second mistake in the proof.

Even if we restrict the open set described in (4.8) by adding a first order condition, so that the map (4.9) properly splits \mathcal{Q} , we have not guarantee that all curves in the associated neighborhood are freely immersed. This was shown in Sec. 3.7.9.

This is why in our proof we added the condition $\tau \leq r_c$ to the definition of \mathcal{U} .

We have shown that the proof in [5] does not prove the desired result.

Acknowledgements

The author thanks Prof. Kathryn Mann for her help on the properties of $\mathrm{Diff}^+(S^1)$; the author thanks the reviewer for suggestions and detailed corrections.

Contents

	Introduction						
	1.1	Plan o	of the paper				
_		Definitions					
	2.1	Topole	ogies				
			rsions				
		2.2.1	Free Immersion				
		2.2.2	Reparameterizations, Isotropy group				
	2.3		es				
		2.3.1	Length, tangent, curvatures				
		2.3.2	Arc parameter				
		2.3.3	Angle function, Rotation index				
	2.4	Shape					

¹⁴This $\mathcal{Q}(i)$ is not the same as the \mathcal{Q}_{c_1} defined in (4.4), but it has the same scope; the latter one is an open neighborhood of 0 in $C^{\infty}(\mathcal{N}(i))$.

3 Advanced properties of immersed curves						
	3.1	Examples				
		3.1.1 Trace and parameterization				
	3.2	Reparameterizations, Isotropy group				
	3.3	Local embedding	-			
		3.3.1 Length of curve arcs				
		3.3.2 Estimates				
		3.3.3 Local embedding of curves				
1001		Isotropy group is discrete				
		Tubular neighborhoods				
		3.5.1 Counterexample				
		3.5.2 Nearby points				
	3.6	Not a covering map				
	3.7	Neighborhoods				
		3.7.1 Nearby projection				
		3.7.2 Global lifting				
		3.7.3 Asymmetry				
		3.7.4 Vice versa				
		3.7.5 Loss of Regularity				
		3.7.6 Neighborhoods of a curve				
		3.7.7 Local injectivity	_			
		3.7.8 Auto representation				
		3.7.9 Example				
	3.8	Free immersions are open	5			
4	The	e manifold of free geometric curves	c			
4	4.1					
	4.1	Proof of 2.29 26 4.1.1 Quotient topology Quotient topology 26				
		4.1.1 Guotient topology				
		±				
		4.1.3 Charts				
	4.2					
	4.2	Comparison with [5]	J			

References

- M. Abate and F. Tovena. Curves and Surfaces. UNITEXT. Springer Milan, 2012. ISBN 9788847019416. DOI: 10.1007/978-88-470-1941-6. URL https://books.google.it/books?id=iwGjNhpkSeQC. 2.3.3, 3.5.1
- [2] A. Banyaga. The Structure of Classical Diffeomorphism Groups. Mathematics and Its Applications. Springer US, 2013. ISBN 9781475768008. URL https://books.google.it/books?id=ArEJCAAAQBAJ. 2.2.2
- [3] A. Blake and M. Isard. Active Contours. Springer Verlag, 1998. 1
- [4] V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active contours. In *Proceedings of the IEEE Int. Conf. on Computer Vision*, pages 694–699, Cambridge, MA, USA, June 1995. 1
- [5] Vicente Cervera, Francisca Mascaró, and Peter W. Michor. The action of the diffeomorphism group on the space of immersions. *Differential Geom. Appl.*, 1(4):391–401, 1991. ISSN 0926-2245. DOI: 10.1016/0926-2245(91)90015-2. URL http://www.sciencedirect.com/science/article/pii/0926224591900152. 1, 1.1, 2.7, 2.8, 2.16, 2.4, 5, 3.4, 4.1, 4.1.1, 4.1.2, 4.2, 4.2, 4.2
- [6] L. D. Cohen. On active contour models and ballons. Computer Vision, Graphics, and Image Processing: Image Processing, 53(2), 1991. 1
- [7] R. E. Greene. Complete metrics of bounded curvature on noncompact manifolds. *Archiv der Mathematik*, 31:89–95, 1979. DOI: 10.1007/BF01226419. 4.2

- [8] M.W. Hirsch. *Differential Topology*. Graduate Texts in Mathematics. Springer New York, 1997. ISBN 9780387901480. URL https://books.google.it/books?id=iSvnvOodWl8C. 2.1, 2.1, 2.1
- [9] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. International Journal of Computer Vision, 1:321–331, 1987. DOI: 10.1007/BF00133570. 1
- [10] John L. Kelley and Isaac Namioka. Linear topological spaces. Springer-Verlag, New York-Heidelberg, 1976. With the collaboration of W. F. Donoghue, Jr., Kenneth R. Lucas, B. J. Pettis, Ebbe Thue Poulsen, G. Baley Price, Wendy Robertson, W. R. Scott, and Kennan T. Smith, Second corrected printing, Graduate Texts in Mathematics, No. 36.
- [11] S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, and A. Yezzi. Gradient flows and geometric active contour models. In *Proceedings of the IEEE Int. Conf. on Computer Vision*, pages 810–815, 1995. 1
- [12] Andreas Kriegl and Peter W. Michor. *The convenient setting of global analysis*, volume 53 of *Mathematical Surveys and Monographs*. American Mathematical Society, Providence, RI, 1997. ISBN 0-8218-0780-3. 2.1, 3.7.6
- [13] Kathryn Mann. A short proof that $\mathrm{Diff}_c(M)$ is perfect. New York Journal of Mathematics, 22:49–55, 2016. URL https://math.berkeley.edu/~kpmann/perfectness2.pdf. 2.2.2
- [14] Carlo Mantegazza and Andrea Carlo Mennucci. Hamilton–Jacobi equations and distance functions on Riemannian manifolds. *Applied Math. and Optim.*, 47(1):1–25, 2003. ISSN 0095-4616. *DOI:* 10.1007/s00245-002-0736-4. eprint arXiv.org:math.AP/0201296. 3.18
- [15] A. C. G. Mennucci. Topologies and manifolds of immersions. https://cvgmt.sns.it/person/109/, 2021. 1, 3, 4.1
- [16] Peter W. Michor and David Mumford. Riemannian geometries on spaces of plane curves. J. Eur. Math. Soc. (JEMS), 8:1–48, 2006. DOI: 10.4171/JEMS/37. eprint arXiv:math.DG/0312384. 1
- [17] J.R. Munkres. *Topology*. Featured Titles for Topology. Prentice Hall, Incorporated, 2000. ISBN 9780131816299. URL https://books.google.it/books?id=XjoZAQAAIAAJ. 2.3.3, 3.6
- [18] Walter Rudin. Functional analysis. McGraw-Hill, 1973. 2.2
- [19] William Thurston. Foliations and groups of diffeomorphisms. Bulletin of the American Mathematical Society, 80(2):304–307, 1974. 2.2.2
- [20] Alice B. Tumpach and Stephen C. Preston. Quotient elastic metrics on the manifold of arc-length parameterized plane curves. *Journal of Geometric Mechanics*, 9(2):227-256, 2017. ISSN 1941-4889. DOI: 10.3934/jgm.2017010. URL http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=14088. 2.3.2, 11
- [21] L. Younes. Shapes and Diffeomorphisms. Applied Mathematical Sciences. Springer Berlin Heidelberg, 2019. ISBN 9783662584965. URL https://books.google.it/books?id=JwiZDwAAQBAJ. 2.3.1, 3.29