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Abstract

We present some fine properties of immersions ¢ : M — N between manifolds; with particular
attention to the case of immersed curves c : S* — R". We present new results, as well as known results
but with quantitative statements (that may be useful in numerical applications) regarding: tubular
coordinates, neighborhoods of immersed and freely immersed curve, local unique representations of
nearby such curves, possibly “up to reparameterization”. We present examples and counter-examples
to support the significance of these results. Eventually we provide a complete and detailed proof
of a result first stated in a 1991 paper by Cervera, Mascaré and Michor: the quotient of the freely
immersed curves by the action of reparameterization is a smooth (infinite dimensional) manifold.

1 Introduction

In general, let M and N be smooth finite dimensional connected Hausdorff paracompact manifolds
without boundary, with dim(M) < dim(NV).

This paper studies properties of immersions 2 : M — N, that are C! maps such that T, is full rank
at each .

A particular but very interesting case are closed immersed curves ¢ : S — R”, that are C' maps
with ¢/(0) # 0 at all § € S!; where ST = {x € R? : |z| = 1} be the circle in the plane. They will be called
planar when n = 2.

This paper is mostly devoted to this case. !

Immersed planar curves ¢ : S — R? have been used in Computer Vision for decades; indeed the
boundary of an object in an image can be modeled as a closed embedded curve, by the Jordan Theorem.
Possibly the first occurrence was active contours, introduced by [9] and used for the segmentation prob-
lem: the idea is to minimize an energy, defined on contours or curves, that contains an image based edge
attraction term and a smoothness term, which becomes large when the curve is irregular. An evolution
is derived to minimize the energy based on principles from the calculus of variations. There have been
many variations to original model of [9]; for example [6], and a survey in [3].

An unjustified feature of the model of [9] was that the evolution is dependent on the way the contour is
parameterized. Thereafter, [11] [4] considered minimizing a geometric energy, which is a generalization of
Euclidean arclength, defined on curves for the edge-detection problem. The authors derived the gradient
descent flow in order to minimize the geometric energy.

This lead to a principle: all operations related to curves should be independent of the choice of
parameterizations.

Operations on the space of curves are best described and studied if the whole space of curves is
endowed with a differential structure, so that it becomes a smooth manifold.

The above two remarks lead to the following question. If I is the space of curves that we are interested
in, and D is the action of reparameterization, then the quotient
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is the space of curves up to parameterization (also called geometric curves in the following): when (and
how) can we say that this quotient B is a smooth manifold?

This was discussed in [16], using a result from [5].

A purpose of this paper is to revisit the key result in [5]: indeed the proof in that paper is missing
two key steps.

1.1 Plan of the paper

In Section 2 we will define the needed topologies on the space of functions; we will present well known
definitions and notations for curves, such as: derivation and integration in arc parameter, length, normal
vectors, curvature, etc; we will classify immersed and freely immersed curves and present results and
examples.

In Section 3 we will present advanced results for immersed curves; we will discuss representation
of nearby curves in tubular coordinates; we will show how the open neighborhood of a curve c¢ in the
space of curves can be defined using tubular coordinates, so that if ¢ is immersed (respectively, freely
immersed) then all curves in the neighborhood are immersed (respectively, freely immersed); we will
show with examples what goes wrong when hypotheses are not met.

In Section 4 we will present the proof of this theorem: the quotient of the freely immersed curves by
the action of reparameterization is a smooth (infinite dimensional) manifold. We will then explain, in a
step by step analysis, why the original proof in [5] was incorrect.

A supplemental file contains Wolfram Mathematica code to generate some of the figures.

2 Definitions

In this section we will present well known definitions and results regarding immersions, with particular
attention to immersed curves.

2.1 Topologies

Definition 2.1. We denote by C"(M,N) the space of all maps f: M — N that are of class C". Here
re{0,1,2...,00}.

There are classically two types of topologies for this space.

o The weak topology, as defined in Ch. 1 Sec. 1 in [8], that coincides with the compact-open C"-
topology as defined in 41.9 in [12]; if N = R", then the “weak topology” is the topology of the
Fréchet space of local uniform convergence of functions and their derivatives up to order 7.

o The strong topology as defined Ch. 1 Sec. 1 in [8], that coincides with the Whitney C"-topology as
defined in 41.10 in [12].

If M is compact, then the two above coincide; if moreover N = R™ and r < co then C"(M,R™) is the
usual Banach space.

Remark 2.2. If N = R™ but M is not compact, then “strong topology” does not make C"(M,R"™) a
topological vector space, since it has uncountably many connected components; but the connected compo-
nent containing f = 0 contains only compactly supported functions, and it has the topology CT(M,R™)
(as defined in 6.9 in Rudin [18]) that is the strict inductive limit * of the immersions

Vi = CH(M,R™)

where, for each K C M compact, Vi is the space of f : M — N that are zero outside of K, with a
standard Banach (or Fréchet, for r = co) structure.

Proposition 2.3. The sets of immersions, submersions, embeddings, are open in C"(M,N) with the
strong topology, for r > 1.

2For the definition of strict inductive limit and its properties, we refer to 17G at page 148 in [10].



Proofs are in Ch. 1 Sec. 1 in [8].

Definition 2.4. Forr € {1,...,00}, let Diff (M) be the family of diffeomorphisms of M: all the maps
¢: M — M that are C" and invertible, and the inverse ¢~ is CT. It is a group, the group operation
being “composition of functions”’.

Proposition 2.5. Diff (M) is open in C"(M, M) with the strong topology.

See Thm. 1.7 in Ch. 1 Sec. 1 in [8].
We will omit the superscript “r” from Diff" (M) in the following, for ease of notation.

2.2 Immersions
2.2.1 Free Immersion

Definition 2.6. An immersion 1+: M — N is called “free” if 1 =10 ¢ for ¢ € Diff(M) implies that ¢ is
the identity.

Proposition 2.7 ([5] Lemma 1.3). If2 is immersed and 1(¢(t)) = o(t) for allt and ¢(t) =t for a t, then
¢ =Id.
Proof. Indeed it is easily seen that

{teM:¢(t) =t}

is closed; and it is also open, since an immersion is also a local diffeomorphism with its image. O

As a corollary, if 1o ¢ =2 and 109 =1 and ¢(t) = ¢(¢) for a ¢, then ¢ = 1. Another corollary states
that:

Corollary 2.8 ([5] Lemma 1.4). If 2 is an immersion and there is a x € R™ s.t. 1(t) = x for one and
only one t, then 1 is a free immersion.

This implies that, when dim(M) < dim(N), the free immersions are a dense subset of all immersions
(for all the topologies considered in this paper).

2.2.2 Reparameterizations, Isotropy group

We first consider the general case of immersions ¢ : M — N.
Definition 2.9. The isotropy group® G, is the set of all ¢ € Diff(M) such that 1 = 10 ¢; it is a subgroup
of Diff(M).

Obviously 7 is freely immersed if and only if G, contains only the identity.

We will prove that G, is discrete, and finite when M is compact.

Remark 2.10. If we reparameterize 1 =10 p then G, changes by conjugation
$€G, © FlogeBel;

Remark 2.11. If M is orientable then Diff(M) has a subgroup Dzﬁ+(M) of orientation preserving
diffeomorphisms; for the case of curves then we obtain that Diff(S') has two connected components

Diff" (8') = Diff (S') U Diff (S1)
where
e Diff" (S1) is the family of diffeomorphisms with ¢’ > 0, and is a normal subgroup;
o Diff (S') is the family of diffeomorphisms with ¢ < 0.

Consider a curve ¢ and let G, be its isotropy group: we will prove in 3.5 that if ¢ € G_. then
¢ € Diff " (S1).

We will mostly use Diff (S') in the following.

Note that Diff " (S?) is a perfect group [19] (see [13] for a self contained presentation); it is also a

simple group: see the discussion in Sec. 2 in [2] for further references .

3a.k.a. “stabilizer subgroup” or “little group”.
4The author thanks Prof. Kathryn Mann for her help on these subjects.



2.3 Curves

Remember that S' = {x € R? : |z| = 1} is the circle in the plane. We will often associate R? = C, for
convenience. In this case we will associate St = {e't,t € R} C C.

Definition 2.12. A closed curve is a map ¢ : S* = R™. We will always assume that the curve is of
class C1 (at least). The image of the curve, or trace of the curve, is c(S').

When convenient, we will (equivalently) view S as R/(2n7) (that is R modulus 27 translations), and
consequently a closed curve will be a map ¢ : R — R" that is 27-periodic.

In particular this will be the correct interpretation when we will write the operation 6, + 0, for
0,,0, € S

Remark 2.13. The “distance” of points in S' will be the intrinsic distance; this distance will be
represented by the notation

dsl (917 92)

for 0,,0, € S, and it is the length of the shortest arc in S' connecting the two points 0,,0,. Note that
if we identify S* to R/(2m), and pick two points 6,,05 € R/(2m) and represent them as real numbers, it
may happen that

|0y —05] > dsi(0,,6,) -

Definition 2.14 (basepoint). We will select a distinguished point 0, in the circle S*: for St C R?, it
will be 0, = (1,0); for S* C C, it will be 6, = 1; for S = R/(2), it will be 6, = 0.
Given a curve as above, we will call ¢(6,) the basepoint for the curve.

Example 2.15 (of a non-freely immersed curve).
The doubly traversed circle, defined as

o cy(2) = 22 for z € St when we consider S* C C, or equivalently
o c5(0) = (cos(20),sin(20)) for 6 € R/(27) that we identify with S*.
Setting ¢(t) =t + m, we have that co = ¢y o0 @, 50 ¢y is not freely immersed.

Example 2.16 (Taken from [5]). Note that there are free immersions without a point with only one
preimage: consider a figure eight which consists of two touching circles. Now we may map the circle to
the figure eight by going first three times around the upper circle, then twice around the lower one. This
immersion c : S — R? is free.

We provide a simple example 3.2 that shows how such curve can be made smooth.

2.3.1 Length, tangent, curvatures
In the following let ¢ : S' — R” be an immersed curve.

Definition 2.17. If the curve c¢ is immersed, we can define the derivation with respect to the arc
parameter

o _ 10
s |c’| o8 "

We will write % instead of % when we are dealing with multiple curves, and we will want to specify
which curve is used.

Definition 2.18. We define the tangent vector

Definition 2.19. The length of the curve c is

len(c) = /S ROIES (2.1)



Definition 2.20. We define the integration by arc-parameter of a function g : S' — R™ along the curve
c by

/69(8) ds dzf/s g(0)|¢'(0)| b .

There are two different definitions of curvature of an immersed curve: mean curvature H and signed
curvature r, which is defined when c¢ is valued in R2.
H and k are extrinsic curvatures, they are properties of the embedding of ¢ into R™.

Definition 2.21 (H). If ¢ is C? reqular and immersed, we can define the (mean) curvature H of ¢ as

0 0 0
H=5:9:°" s

It is easy to prove that H | T.

Definition 2.22 (N). When the curve c is planar we can define a normal vector N to the curve, by
requiring that |[N| =1, N L T and N is rotated w/2 degree anticlockwise with respect to T .

Definition 2.23 (k). If ¢ is in R? and C?, then we can define a signed scalar curvature x = (H, N), so
that

1o} 0
%T_HN_H and &N——/{T .

There is a choice of sign in the above two definitions; this choice agrees with the choice in [21].
When we will be dealing with multiple curves, we will specify the curve as a subscript, e.g. T, ., IV,
will be the tangent, curvature and normal to the curve c.

Remark 2.24. Note that T,x,N,H are geometrical quantities. If ¢ € Diﬁ(Sl) and ¢ = co, then
TEZTCOw, H5=KCO¢, NEZNCO¢ andHE:HCO'L/).

2.3.2 Arc parameter

Let ¢ be an immersed planar curve. We recall this important transformation.

Lemma 2.25 (Constant speed reparameterization). A curve ¢ € C1 can be reparameterized to ¢ = co
using a @ € Diff (8') so that |&'| = ¢ where ¢ =len(c)/(2n) is constant.

Proof. For simplicity we assume that S' = [0,2n]. Let L = len(c), let 9(t) = 2% fot |c¢’(6)]df. Then
¥+ [0,27] — [0, 27] is a diffeomorphism, let ¢ = 1. O

Reparameterization to constant speed is a smooth operation in the space of curves, see Theorem 7
in [20].

When |¢’| = 1 we will say that the curve is by arc parameter. A curve can be reparameterized to arc
parameter without changing its domain (as done above) iff len(c) = 27, (If this is not the case, we will
rescale the curve to make it so.)

2.3.3 Angle function, Rotation index

Proposition 2.26 (Angle function, rotation index). Ifc € C* is planar and is immersed, then T = ¢’ /|c
is continuous and |T| =1, so there exists a continuous function o : R — R satisfying

T(s) = (cos(a(s)), sin(a(s))) (2.2)

and «(s) is unique, up to adding the constant k2w with k € Z.
« is called the angle function.

Moreover a(s+ 2m) — a(s) = 2nl, where I is an integer, known as rotation index of ¢. This number
is unaltered if ¢ is deformed by a smooth homothopy.

'l

(See 2.1.4 in [1] or Thm. 53.1 in [17], and following).
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Figure 1: Examples of curves of different rotation index

Remark 2.27. We can use the angle function to compute the scalar curvature k, that was defined in
2.23 by 0,T = kN, indeed deriving (2.2) and combining this with

N(s) = (—sin(a(s)), cos(a(s))) (2.3)
we obtain ,
K= Ii’l =d.a . (2.4)
2.4 Shapes

Shapes are usually considered to be geometric objects. Representing a curve using ¢ : S* — R” forces a
choice of parameterization, that is not really part of the concept of “shape”.
Suppose that I is a space of immersed curves c : S* — R”.

Definition 2.28 (Geometric curves). The quotient space B = I /Diff(S1) is the space of curves up to
reparameterization, also called geometric curves in the following. Two parametric curves ci,cq € M
such that ¢, = cy 0 ¢ for a ¢ € Diff(S') are the same geometric curve inside B.

B is mathematically defined as the set B = {[c]} of all equivalence classes [c] of curves that are equal
but for reparameterization,

[c] = {co¢ for ¢ € Diff(S")}.

We may also consider the quotient w.r.t Diﬂ+(51). The quotient space I/Diff+(5’1) is the space of
geometric oriented curves.

Unfortunately, the quotient of immersed curves by reparameterizations is not a manifold; but the
quotient of freely immersed curve is.

Theorem 2.29. Suppose that I is the space of the freely immersed curves; and that I and Diff(S*)
have the topology of the Fréchet space of C* functions, then the quotient B = I/Dz’ﬁ‘+(51) is a smooth
manifold modeled on C°.

One aim of this paper will be to give a complete proof of this result, first presented in [5]; ® the proof
is in Sec. 4.1. Indeed, as we will discuss in section 4.2, the proof in [5] misses some key arguments.

3 Advanced properties of immersed curves

In this section we will present results regarding immersed curves that are either new, or presented in
more precise form than usually found in the literature.

Most of the results are presented, for sake of simplicity, for planar curves ¢ : S' — R2, but can
be extended to the case of curves ¢ : S! — N taking values in a manifold IV, up to some nuisance in
notations.

The general case of immersions 2 : M — N requires instead some arguments that will be discussed
in a future paper [15].

5We remark that the theorem in [5] was presented for the case of immersions 2 : M — N.



3.1 Examples

Definition 3.1. We start with some classical examples of C*° functions of compact support. Let

4 1 1
ay Jer"u T uw € |0,
i R—R , nolu) 2 il (3.1)
0 elsewhere
and L
af | 4Q2u—m)e v 7w w e |0,
miRoR g 2G0T (0, (3.2)
0 elsewhere

(see figures 2 on the following page)
We will use these to build some following examples.

Example 3.2. We present here a simple smooth formula for example 2.16
Mo (w) usT
Mo (u — 7) u <21

c:[0,57] 5 R2 | c(u) < (sin(2u) , cy(u)) , cy(u) —ng(u—27) u<3n (3.3)

—no(u—3m) u<A4r
—no(u—4m) u <57

this is a C'*° function depicted at figure 3 on the next page.

3.1.1 Trace and parameterization
If a curve is embedded then the curve is identified by its image, in these senses.

e Ifc,é: S' — R™ are embedded and have the same image, then there is an unique reparameterization
¢ such that ¢ =co ¢

o Suppose that ¢y : ST — R™ is embedded and A = ¢(S?!) is the trace; suppose that ¢, is parameterized
by constant speed parameter; let us fix a candidate basepoint v € A in the trace.
We can state that A, v characterize the embedded curve up to a choice of direction: precisely, there
are exactly two different ¢;,c, : St — R™, parameterized by constant speed parameter, such that
¢1(6p) = ¢5(6y) = v, and they satisfy
c1(0) =co(@+a) , c(0) =co(b—10) ,
for unique choices of a,b € S' (dependant on v).

In particular, if the rotation index of ¢, is r, then the latter curves have rotation indexes +7.

Since the definition of freely immersed curve says that the curve identifies an unique parameterization,
then we may be induced to think that the above two properties extend to freely immersed curves: but
this is not the case.

Example 3.3. The following two curves have the same trace, are freely immersed, are smooth, but have
rotation indexes 0 and 1.

1. This immersed closed curve c : [0,27] — R? with components

N PC B (L)
e (w) = sin(2u) , e >—{m(2u_m) P (34
2. This immersed closed curve ¢ : [0,27] — R? with components
. _ Jm2u) u € [0,m/2]
co(u) = sin(2u) , cy(u) = {—771(2U —22) weln/2n] (3.5)

See figure 4 on the following page.
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Figure 2: Graph of 7, as defined in (3.1); graph of 7, as defined in (3.2)

Figure 3: x and y coordinates of curve defined in 2.16; trace of curve defined in 2.16
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Figure 4: Trace of the two curves and parameterization defined in Example 3.3; with color scheme used
for the parameter



3.2 Reparameterizations, Isotropy group

Lemma 3.4. If ¢ € Diff (S') then ¢ has two fized points.

Proof. We represent ¢ as a map ¢ : [0,27] — R that is continuous, strictly decreasing and such that

¢(0) € [2m,dm) ,  ¢(2m) = ¢(0) =27

then
o(27) € [0, 2m)

so the graph y = ¢(x) must intersect both the graph y = z and the graph y = = 4 27 for two different
points x, z, € [0, 27), that are the two fixed points. O

Lemma 3.5. If ¢ is immersed and ¢ € G, then ¢ € Diﬁ+(5’1).
Proof. Suppose that 1 € Diff (S), let u € S! be a fixed point (by 3.4). By deriving

¢/ (0) = ¢ (¥(0))y'(0)
setting 0 = u
¢ (u) = ¢/ (w)y(u)

and this is impossible since ¢’ (u) < 0. O

3.3 Local embedding

3.3.1 Length of curve arcs

Definition 3.6. Suppose ¢ : S! — R™ is C'. Let 0,6 € S'. When o #+ & there are two arcs in S*
connecting o to o. By

len cha (3.6)

5]
we will mean the minimum of the lengths of ¢ when restricted to one of the two arcs connecting o to .

If ¢ is periodically extended to ¢ : R — R™ and 0,5 € R, then there is an unique k € Z such that
o< o+k2nr<o+2m

and then, letting
o+k2m o+2m
L= [ e b= [ o)
o o+k2m

we define
len Vo] = min{l;, {5}

In particular when c¢ is parameterized at constant speed (i.e. |¢’| = £) then we will (covertly) assume
that o, are chosen (up to adding k27) so that |0 — 5| = dg1(0,5) < 7w and then

leng _ =/{|o—7] (3.7

[0,5]

Remark 3.7. When c is not parameterized by constant velocity, the above may lead to some confusion.
The interval [, 5] in the notation (3.6) implicitly refers to the choice of arc in St that provides the above
minimum. Note that this may not be the shortest arc connecting o to & in S*. This may happen if the
parameterization of ¢ has regions of fast and slow velocity, as in this example.
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Figure 5: Plot of function ¢ in Eqn. 3.8 in Example 3.8

Example 3.8. Let ¢(6) = (cos(0),sin(0)) be the standard circle, and

K 0<0<7/3
¢(0){§(x+37r) /3 <6< 2m (3:8)

(see plot in Figure 5) then smooth out the corners of ¢ so that it becomes a diffeomorphism of S*; let
C = 6 o ¢)

let 6, = 0,0, = /3 in S* ~ R/(2m); then dg:(0y,0,) = 7/3, and is given by the arc moving counter-
clockwise from 0 to 0, while

1enc‘[ =2m/3

70,01]

is given by the arc moving clockwise from 6, to 0,.
This never happens for small distances/lengths, though.

Theorem 3.9. Fiz an immersed curve ¢ : ST — R"; let

M =max|¢’| , m=minlc

‘|

o for any 6,,0, in S* such that
dg1(0y,0,) < 270,

the shortest arc connecting them in S' is also the arc where
lenc
60.0.]

is computed

e for any 6,,0, in S* such that
lenc < o,len(c)
[O¥N

the arc where
lenc
166.0,]

is computed is also the shortest arc connecting them in S, whose length is
dgi(0y,61)
e in any of the above cases

mdg(05.6,) <lenq, | < Mdgi(60.6,) . (3.9)

90791]
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3.3.2 Estimates
We begin with this estimate.

Proposition 3.10. Let a(s) be the angle function, for s € J = [0,2x]. The fact that the curve is closed
imposes lower bounds on max ;|a/|.

o If the rotation index I of the curve is not zero, then |a(2m)—a(0)| = 27|I| so necessarily max ; || >
1]
o If the rotation index of the curve is zero, then necessarily max;|o’| > 1/2.

Indeed we can prove that
maxo —mina > T
J J

otherwise, let
max; o + minj; o

A= 2

taking v = (cos 8,sin 3), we would have

v-c'(0) =|c’(0)|cos(f —a(f)) >0
for all 8, hence the curve would not be closed.

Definition 3.11. Givenc: S' — R2, a C? immersed closed curve, we recall that k is the scalar curvature
of ¢; we define ©

def def

0, =7n/(Bmax|k|) , 7, =1/(2max]|k|)

c

Note that 6, = TC%” but we define two quantities since this simplifies the notation in the following.
We have 27, < §, but 37, > 4,.

Remark 3.12. Note that if we rescale the curve ¢ by a factor X\ then 6,7, and lenc are multiplied

[0,5]

by A as well. If we rotate or translate c¢ then d.,7, and len cha are unaffected. If we reparameterize

5]

then 0,7, are unchanged, whereas if 1 € Diff(S') and ¢ = c o) we have

1en 8 oy wien — €09

[0:5]

In all 7 following definitions, propositions and theorems, the formulas are built to be “geometrical”:
this means if the curves are reparameterized, rescaled, translated or rotated, then the formulas change in
predictable ways (as explained above).

This simplifies the proofs: in the proofs we can assume, with no loss of generality, that the curve is
parameterized by arc parameter.

Remark 3.13. Note that 6, < len(c)/3 for curves of index zero, and 6, < len(c)/(6|I|) for curves of
index I # 0.

Proof. We use 3.10. The formula in the thesis is invariant for reparameterizations and scaling; we
rescale the curve so that len(c) = 27 and reparameterize by arc parameter so that |¢/| = 1. For
curves of index zero the thesis 7/(3max; |k|) < len(c)/3 that is 7 < max; |k|len(c); since |¢'| = 1
by (2.4) this last becomes 1/2 < max |a/|, that was proved above. For curves of index I the thesis
m/(3max; |k|) < len(c)/(6|I|) that is 27|I| < max |%|len(c) then becomes |I| < max;|a’|, that was
proved above. O

For I # 0 the above is sharp, as in the case of ¢(0) = (cos(16),sin(I6)).

SNote that, since the curve is closed, then x cannot be identically zero.
"With the exception of relation (3.23) in Lemma 3.25.
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3.3.3 Local embedding of curves

It is well known that a C' immersion 2 : M — N is a local embedding. For curves of class C?, we can
provide a simple quantitative statement.

Proposition 3.14 (Local embedding). Let ¢ : S1 — R? a C? immersed curve. Define 8, as in 3.11.

For any a,b € S* let L d:Eflenc[G ) assume that L < 26, then |c(b) —c(a)| = L/2; so ¢ is embedded.

Proof. For simplicity we assume that c is periodically extended to ¢ : R — R2; then we identify the interval
in R that is associated to the arc of the curve where the length len oy is computed; for simplicity, we

call this interval [a, b] again. (If the arc is short enough, then by Thm. 3.9 no ambiguity is possible).
Using 2.25 and 3.12 assume that |¢/| = ¢ = len(c)/(27); then 0, = 10,, so T = ¢ /¢ and

leng = L(b—a)
As noted in (2.4)
k] =10, T| = T"|/t = || /¢

so §, = ¢r/(3max|a’|). Let m = (a + b)/2 be the middle point. Let «a(t) be the angle function (2.2).
Up to rotation suppose ¢’(m) = (¢,0),T(m) = (1,0) so we can assume a(m) = 0. Let L = len oy =
(b —a) < 20,. For any 6 € [a,b] we have £]0 —m| < §, hence |§ —m| < w/(3max|a’|) hence for all
a < 0 < b we have

a(8)] < 16— m|max|o/| <

hence cos(a(f)) > 1/2; hence for a < 6; < 6, < b for the abscissa we can write

0y
e1(8) — c1(6,) = £ / cos(a(0)) 80 > (0, — ;)

1

3.4 Isotropy group is discrete

Given an immersion ¢ : M — N, it is possible to prove that the isotropy group is discrete (when M is
paracompact) and even finite (when M is compact; this latter result appears in [5]). When considering
curves, we can obtain the same results (and even more) in a more direct and geometric way.

Lemma 3.15. Let c: S* — R be immersed.
o G. is finite.
o Ifcoy=cog and (a) = ¢(a) for an a € St then ¢ = ¢.

o If c is parameterized by constant speed (see Lemma 2.25), then there is a k € N,k > 1s.t. G, is
the set of all ¢p(t) =1+ 2—;” forj=0,..,k—1.38

Proof. o We prove the third point. Indeed deriving ¢ = ¢ o ¢ and noting that |¢’| = ¢ we obtain
¢ =1so ¢(t) =t+ P hence ¢’ (t) =t + j8 € G, for all j; if §/x is irrational then j8 would be
dense in S' = R/(2), and this is denied by Prop. 3.14. Moreover if ¢(t) =t + 2% and ¢ = co ¢
then ¢(0) = ¢(27/k) but by Prop. 3.14 (27)/(3max |k|) < 2776 that is k¥ < 3¢max |x|. So there is an
unique k such that any ¢ € G, can be written as ¢(t) =t + 2%

e The above characterization shows that if ¢’ =1 =1’ and ¢(a) = 1(a) then ¢ = 1p. By 2.10 this is
valid for any curve (even when it is not parameterized by constant speed). This proves the second
point.

e The first point follows again from 2.10.

8The proof of this is a special case of the 2nd step of the proof of 3.31
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3.5 Tubular neighborhoods

Existence of tubular neighborhood is well known; we provide a quantitative result for C? planar immersed
curves.

c*

Proposition 3.16 (tubular neighborhood). Define 8,7, as in 3.11. Fiz a,b € S* with len oy = 26
Let

@ :a,b] X [-7,,7.] = R: | D(s,t) =c(s) +tN(s) (3.10)
then @ is a diffeomorphism with its image. Moreover if the arc [sq, s,] is contained in the arc [a,b)
identified above, then

1
|¢(31,t1) - ¢(327t2)| > Zlen Cl[sl,SQ] ?

whereas (obviously)
|D(s,t1) — P(s, ty)| = [ty — 1]

Proof. Assume that the curve has length 27, is parameterized in arc parameter; with no loss of generality
(recalling 3.12); let a be the angle function (2.2).

Extend c to a periodic function ¢ : R — R? and identify the interval in R that is associated to the arc
of the curve where the length len oy is computed. For simplicity, we call this interval [a, b] again. (If
the arc is short enough, then by Thm. 3.9 no ambiguity is possible).

The Jacobian of @ is

9]
0
o’ =N

so its determinant is (1 — kt) > 1/2 by the hypothesis |t| < 7.

We will then prove that @ is injective so it will be an homeomorphism with its image, and since it is
a local diffeomorphism, it will be a diffeomorphism.

Choose (s1,t;) and (8q,t5) with a < 7 < s, < b and [t;| < 7, |t5] < 7.

We set m = (sy + s1)/2. Up to rotation we assume that T'(m) = e; = (1,0) and a(m) = 0, so that
N (m) is perpendicular to the x axis. As in 3.14 we can prove that cos(a(s)) > 1/2 for all s; < s < s5.

We write

D(s,t) = c(s) +tN(s) = c(m) + / T(s)df+tN(s)

and then for the abscissa

S

D(s,t); = e(m), —|—/ cos(a(0)) df + tsin(a(s))

m

note that &(m,t); = ¢(m),. Deriving we obtain

%Qj(sat)l = cos(a(s))(1 —ta'(s)) >

NG

We then obtain that
D(89,t5); — P(m,ty)q

Y

~(s5—m)
while 1

D(m,ty)y — P(sy, 1)) = i(m —s1)
and recalling that &(m,t,); = ®(m,t,); = ¢(m); and summing we obtain

D(s9,19)1 — D(81,t1)1 > ~ (59— 59)

e

We will call tubular coordinates around ¢ the formula (3.10)
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3.5.1 Counterexample

The hypothesis “c € C?” in the previous proposition may be broadened to “c € C1'!”; but the results
fails if we only assume that “c € C1*” with « € (0, 1), as seen in this example (adapted from [1])

Example 3.17. Let 0 < a < 1 and c(0) = (6, |6]**%); then for 6 >0

ala+1)6% a .
Vie+ 1202 117 /(e +1)262> + 1

c(0) + aN(0) = (9 -

and this meets the y azxes for
- 91704 (CM + 1)202& +1
a+1

so, by symmetry,
c(0) +a(@)N(0) = c(—0) + a(—0)N(—0)
and at the same time

élir(l] a@) =0

3.5.2 Nearby points

Suppose ¢ : S — R? is a C? immersed curve. Let 0 < 7 < 7, and V, = S! x [—7,7]. and
@:V. - R? | &(s,t) =c(s) +tN(s)

and U, = &(V)).

Proposition 3.18. U, is also the set of points at distance at most T from the trace c(S*).

Proof. Let K = ¢(S') be the trace of the curve (it is a compact subset of R?). We use the distance
function dj : R2 — R defined as
dg(z) = inf |z —y| (3.11)
yeK

(for an introduction to this object, see [14] and references therein).
Let x € U_, there is a 6,t € V_ such that

z=c(0)+tN(6)

SO
le—c@O) <[] <7

then let f be a minimum for
|z —c(8)]
so clearly
dic(x) = e —c(B)| < 7

Vice versa if dy(z) < 7 let 6 be a minimum as above, then geometrical considerations tell that the

~

segment from z to ¢(6) is orthogonal to the tangent T'(0) at 0(5) O

As a corollary of 3.16, for any such neighborhood of the image of ¢, the “projection to ¢” is a C!
multi valued map (with finitely many projections in S*).

14



Figure 6: Figure for example in Sec. 3.6; the curve ¢ is blue and the curve ¢ is red.

3.6 Not a covering map

By looking at the previous Prop. 3.16 we may think that @ is the universal covering map of U = @(V)
(see [17] for the definition). This would be very convenient, indeed we could use the lifting lemma to
ease some of the following proofs.

Suppose ¢, ¢ : ST — R? are C? immersed curves. Consider this statement, that is usually called lifting
lemma:
«if the trace of ¢ is contained in U_ then there is a choice of continuous ¢ : R = R, a : R — [—7, 7] such
that

VO, &0) = B(p(0), a(6)) = c(p(0)) + alO)N(2(6)) > (3.12)

Unfortunately this is not the case, as seen in this example in Figure 6, where the curve c is blue and
the curve ¢ is red. The trace of the curve ¢ is all contained in the open set U, but the representation
(3.12) cannot hold. We can though prove a version of the lifting lemma useful in the following.

3.7 Neighborhoods
3.7.1 Nearby projection
Lemma 3.19 (Nearby projection). Fir a CT immersed curve ¢, with R > 2.

1. Ifr €R? and 5 € S* and

def

d =

x—c(7)] <d,/4
then there is an a € R with |a| < d and a o € S* with

lenc

< 4d (3.13)

[o:5]

such that
x =c(o)+aN(o)

(Note also that a is uniquely identified by o).
2. They are unique in the family of o,a such that |a| < 7. and

len Y5 <4, (3.14)

so we can see o,a as functions of x, as follows.

3. Consider & € R? and & € S for which

def

d:

F—c@)<mp

let € > 0 small such that d +¢ < 9 /1 and let B = B(Z,¢) < {x € R? : |z —Z| < &} for convenience.
There is a choice of function a,p : B — R of class C1 such that

z = P(p(x),a(x)) = c(p(z)) + alz)N(p(z)) . (3.15)

for all x € B, and they are unique as specified above.
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(Note that 7e/2 < bc/a < T,).

Proof. Suppose ¢ is by arc parameter (with no loss of generality as explained in 3.12); so we write
(recalling (3.7)) |a — b| instead of lenc[a o

« Choose z,5 as in the statement and let J; = [5 —d,,5 4 6,] then consider any minimum point 8 of

e — o
min |z —c(0)]

note that the minimum value has to be less than d: so
e(5) — ()] < |e(5) — x| + o — c(f)] < 2d

but at the same time (since & and 6 are at arc distance at most d.) by the previous Lemma 3.14

so combining the two ~
4d > 16 — 5|

but 4d < 6, so 6 is not at extremes. Then any 6 providing the minimum must be internal in the

interval J;: by geometrical reasoning the segment from x to ¢(6) is orthogonal to the curve so there
is a a such that
a=o(0,a)

« Recall that §,/4 < 7,; the map @ is injective for 6 € J; and |a| < 7, so 0, a are unique.

e For any z € B we have
e —e(@)| <d+e

and since d + € < §,./4 then there is an unique o € J; and @ with |a| < 7, such that
x=c(oc)+aN(o)
and we denote them by 0 = p(x),a = a(z). Moreover we can invert the function
@:J, x [-7.,7.] = R?

and write

for z € B. This proves that p,a € C1(B).

3.7.2 Global lifting

Proposition 3.20 (Global Lifting). Suppose ¢ : S — R? is a C® immersed curve and ¢ : S' — R? is
CE-Y: with R > 2. Fiz 0 <1 < §,/4. Suppose that we have |¢(0) — c(0)| < T for all 0. There exists
choice of a: S* — R and ¢ : S' — S such that

Voe St &o)=P(p(0),a(0) = c(p(o)) +a(o)N.(p(0)) - (3.16)

wlth |a((7)| < U and
e < T . l

holding for all 0. And they are unique in the class of CT~1 functions such that |a| < 7, and

< .
len UYop(o)] = J, (3.18)

(Note also that a is uniquely identified by ¢).
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Figure 7: Curves in Example 3.22; the curve ¢ is blue and the curve ¢ is red.

Proof. We just substitute © = ¢(o0) in the previous Lemma. By the second point we can define functions
©(0), a(f) uniquely as prescribed. By the third point they are C*. O

Remark 3.21. Suppose we are given two curves ¢;, ¢y and we know that there exists a choice (a, ) such
that
Vo e St (o) =ci(p(0)) + a(o)N,, (¢(0))

as in equation (3.16). If we rotate or translate the two curves, then the above relation will hold, with the
same (a, ). If we rescale the two curves by X\ > 0 then the relation will hold with (Aa, ¥).
If we choose ) € Diﬁ+(51) and we reparameterize all curves at the same time by ¢; = c; o, then

Vs €St G(s) =6 ((s) +als)Ng, (8(s))

holds for
a:aow s ¢:¢7lo(po¢ . (319)

This follows from direct computation and Remark 2.24.

Example 3.22. So far so good ... but ¢ may fail to be a diffeomorphism, as in this simple example in
Figure 7, where the curve ¢ is blue and the curve ¢ is red.

But some simple Lemmas can help.

Lemma 3.23. Let 0 < a < 1. If we have w,v € R™ such that
w— 1] < alol
then the angle B between v and w satisfies || < arcsin(«) and moreover
(1=l <v-w<A+a)] , (1-a)fo] <fw] < (1+a)vl

See Figure 8 on the next page.

Remark 3.24. Let o > 0. Suppose c;,cy,c5: ST — R? are C' maps and
|c5(0) — c5(0)] < aler (0)] (3.20)
ifye Dif(Sl) and we reparameterize all curves at the same time by ¢; = ¢; o1, then
|65(0) — &5(0)] < ale5(0)]
Similarly if we rescale, rotate, or translate all curves at the same time.
So (3.20) is a geometric estimate, indeed we may rewrite it as

‘86162(9) - 80103(9” <a . (321)
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Figure 8: Scheme for Lemma 3.23 on the preceding page.

Lemma 3.25. Assume all hypotheses in 3.20. Assume moreover that 7 < 7./4, and assume that
~ ’ 1 ’ 1
|¢" (o) — ¢ (0)] < §|c (0)] Voes (3.22)

then € is immersed, ¢ is a diffeomorphism. Moreover when c is parameterized at constant speed, we can
state that

<p' <4 . (3.23)

(S

Proof. We rescale and reparameterize ¢ to arc parameter using a reparameterization v, and at the same
time we rescale and reparameterize ¢ using the same rescaling and ¢ (note that ¢ is not necessarily by
arc parameter); with no loss in generality, as explained in 3.24 and 3.21.

Let § be the angle between ¢’ (o) and ¢’(0): by Lemma 3.23 5 = arcsin(«) so it is at most 7/6. Let
0 = (o) we know that |0 — 6] < 47 < 7,; the angle v between ¢’(0) and ¢’(0) is at most |0 — | max |k|
so v < 1/2: so the angle S + 7 between ¢’(0) and & (p(0)) is at most 1/2 4+ /6, and this is less than
/2.

Deriving in ¢ and assuming that c is by arc parameter

& (o) =Ty (0)(1 —ka)+ad' N
where T', N, k are evaluated at (¢(o)); then
& T=¢(0)(1l—ka)

now if |a| < 7, then (1 — ka) > 1/2; moreover by the above reasoning ¢ - T > 0 so ¢’ (o) > 0. Moreover
we note that 1/2 < |¢’| <3/2,1/2 < (1—ka) < 3/2 and cos(1/2+7/6) < 6/10 to prove (3.23). Relation
(3.19) tells then that ¢ will always be a diffeomorphism, for any curve satisfying the hypotheses. O

We summarize all the above: we show sufficient hypothesis such that ¢ may be represented in tubular
coordinates around c.

Theorem 3.26 (Representation Theorem). Suppose ¢ : S' — R? is a CT immersed curve and ¢ : St —
R? is CB~1; with R > 2. Define 6,7, asin 3.11. Fiz 0 < 1 < 7,/4. Suppose that we have |¢(0)—c(0)| < T
and

E(0) — ' (0)] < |c"(0)]/2

for all 6.
Then, & is immersed, there are ¢ € Diff (S') and a : S* — [—7,7] of class CT1 such that

Vo , c(e(8)) =D(0,a(0)) = c(0) + a(0)N(6)
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Figure 9: Curves for the example in Sec. 3.7.3; the curve c is blue and the curve ¢ is red.

with |a(o)] < 7 and
< 1
len Uoipton] = 4T ((3.17))
holding for all .
They are unique in the class of C* functions such that |a| < 7. and

len c‘[

((3.18))

<94
0,0(0)] = ¢
(Note also that a is uniquely identified by ¢).

Proof. We can rescale and reparameterize ¢ to arc parameter, and we rescale and reparameterize ¢ at
the same time ( ¢ will not be by arc parameter in general); as discussed in Remarks 3.12, 3.21 and 3.24,
the hypotheses and theses are unaffected by this action. Then we apply all previous results. Just note
that

max |6 — ¢(#)| = max |0 — 1 (0

max |6 — p(6)] = max |0 — o (6)

for any diffeomorphism. O

Remark 3.27. Actually, rerunning on the above proofs with some patience, we can improve the above
thesis a bit. We add to the previous theorem these hypotheses: fix 0 < a < 1/2 and then 0 < 7 < at,_/2
and suppose that we have |¢(0) — c(0)] < T and

E°(0) = ¢'(0)] < ac’(8)]/2 (3.24)

for all 6.
Then all above thesis hold, moreover there are two continuous functions f, g : [0,00] = R (independent
on a,7) with f(0) = g(0) = 1, such that

fla) < ¢ <gla) . (3.25)

3.7.3 Asymmetry

Warning. The previous theorem seems symmetric, but it is not. The caveat is in the constants 7,,6,:

cr-c’

it may be the case that they are quite different from 75, ;. In the Figure 9, we see a piece of the two

curves: the curve ¢ is blue and is flat; the curve ¢ is red, and it has two inflections points A, B where
the tangents are at an angle 8 which is as small as we would like; but then the inflection points can also
be so close that the normals will cross before reaching the curve c¢. So, while there is an easy way of
representing ¢ using tubular coordinates around c, there is no way to find % € Diff(S'), @ so as to write

c(ip(0)) = &0) +a(0)N (0)

3.7.4 Vice versa

We have also a sort of vice versa of the previous theorem 3.26.

Proposition 3.28 (Derepresentation). Suppose ¢ : S — R? is a C? immersed curve and ¢y, cy : ST — R?
are given by tubular coordinates

¢;(0) = (0, a,(0)) = ¢(6) + a;(0)N(0)
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where i = 1,2 and ay,a, : S* — R are of class C'; define

9 9
dc “ Oc

def def
a = lay — apfmax|s| , B =

ay
oo

(where k is the curvature of ¢). Then
|c1(0) — c5(0)] < | (0)|V/ (o + 5?)
and (obviously) |c; — ¢5| o = 2a,., for all 6.

Proof. We rescale and reparameterize ¢ by arc parameter, and we rescale and reparameterize c;, ¢, along
with ¢, as explained in 3.24; this operation is justified by Remarks 3.12, 3.21; in particular, note that
a, 3 are scale invariant; then

c¢; =T(1—ka;) +a;N

S0
¢) — ¢y = —Tr(ay —ay) + (a) —az)N

le1 — el < Va4 52

hence

3.7.5 Loss of Regularity

Unfortunately the representation discussed above suffers from a loss of regularity. Indeed, if ¢ : ST — R?
is C%? and a : S' — R is C*°, it may be the case that

&(0) = B(0,a(0)) = ¢(0) + a(O)N(9)

is of class C'! but not of class C2.
This can be seen in very simple examples.

Example 3.29. Suppose that, for t near t =0, we have

_J(t,0) t<0
C(t) - {(t,tS/B) t>0

such a curve is C? but not C3; then fort >0

. , 1 ) 2t
TO= ) VU=t v

(that can be easily computed using a standard formula for curvature of planar curves, see Sec. 1.7.1 in

[21]).
Choose then a =1 so
é(t) = c(t) + N(t)

but then
E(t)// — C(t)” +N(t)//
and fort >0
, 2 (5t —1) 6t%(t* —1)
N"(t) = 4 520, 4 5/2
(t*+1) (t*+1)
s0

lim &(t)” = (=2
Jm &(t)" = (=2,0)

but é(t)” =0 fort < 0.
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3.7.6 Neighborhoods of a curve

The above results encode two different but equivalent ways to define a topology on the “manifold of
immersed curves”. We specify them by describing the local bases of neighborhoods of a curve c.

e The “Banach way” in which a local base of open neighborhoods of a curve c is given by the sets
U=U.., =1{¢:8" 5 R*:|c—¢lor <&} (3.26)
where €; > 0 is small, and

lelor = max |c(0)] + ¢/ ()] + ... + [
6c St

o The “geometric way” in which a neighborhood in the local base is defined, for £, > 0 small, as the
set V.=V, ofall ¢ that can be expressed as in (3.16), namely

(o) = @(p(0),a(0)) = c(p(0)) + alo)N(p(a))
for all choices of a : ST — R and ¢ € Diff(S!) with
laler <&l —1Idlor <eo

where
e —Id|cr = gg%dy(w(@)ﬁ) + 19" (0) = 1| + ... + [ B)(0)]|

(moreover derivatives of a may be computed in arc-parameter).

The above are “equivalent” in this sense. Assume that the curve ¢ is CE+1.

e For any e, that defines neighborhood U of the first type, there is small enough €, that defines a
neighborhood V of the second type, so that V' C U; this is easily proved (by using Leibnitz and
Faa di Bruno formulas).

o Consider now a neighborhood V of the second type, for an €, > 0 small; for €; small enough the
previous results 3.26 and 3.27 tells us that any curve ¢ € U can be expressed in tubular coordinates;
since tubular coordinates are a local diffeomorphism, similar arguments as above (plus 3.9) show
that (for £, even smaller) U C V.

(We skip details for sake of brevity.)

In all the above there is though an annoying condition: to prove equivalence of C* neighborhoods
we have to assume that the curve ¢ is Cf*1. For this reason, this works well for defining topologies in
the “manifold of smooth immersed curves”; in this case we will use neighborhoods of the first kind (or,
respectively, of the second kind) for all € > 0 and all R. This is the common approach, see [12].

3.7.7 Local injectivity

So far, we have considered parametric curves. We have seen in 3.26 that we can represent nearby curves
in an unique way using tubular coordinates, i.e. the map ®.
What happens when we consider geometric curves, that is, curves up to parameterization?

Lemma 3.30 (Local injectivity). Let ¢ be a C? freely immersed planar curve. There exists ar =1, >0
such that, if
&(s) Ze(s) + a(s)N(s)
and
c(p(s)) = c(s) +b(s)N(s)
with 5 o
a
ol <7 Bl |G| <2 5] <

where % is the arc derivation: then a = b and ¢ is the identity.
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Proof. If rescale the curves ¢, ¢ and the functions a,b by a constant A > 0, and we rescale the constant
r. by the same constant A, then all hypotheses and theses are unaffected. So we can assume with no loss
of generality that ¢ has length 2.

If we reparameterize ¢ = c o ¢ then (cf the relation (3.19) in Remark 3.21) the functions a,b are
reparameterized as well; having @ = a o 1) then g—‘;i = % o 1; and similarly for b; again hypotheses and
theses are unaffected.

So we can assume that ¢ is parameterized by arc parameter with no loss of generality.

Suppose that

é(0) = c(s) +a(s)N(s)
with |a] <7, and |a’| < 1/2 then

¢ =T(1—ka)+a'N
S0
+

1/2< 7| < <2

| ©
A~ =

Suppose moreover
c(p(0)) = c(s) +b(s)N(s)

with |b’| < 1/2 then
1/2< &g’ <2

and then
1/4< ¢’ <4

By contradiction we may write

Ep(0) = c(s) +a,(s)N(s) , E,(pn(s)) = c(s) +b,(s)N(s)

with
<ln , |bple<1/n , la

oo <172 bplloe < 1/2

||OO

lanlo

where ¢,, is not the identity: then, when 1/n < 7,/4, the uniqueness condition (3.18) is contradicted so
there is a o,, such that
)

lenc >0,

(3.27)

o0 (00)]
so using Thm. 3.9
liminfdgi (¢;,%(6,),0,) >0

rvn
n—00

Up to a subsequence we can assume that 6,, — 0 and

~

lim dgi(¢,%(0,,),0,) =d >0

rYn
n—00

We know that
1/4 <), <4

up to a subsequence ¢, — ¢ uniformly and ¢, * — ¢~ uniformly, where ¢ is a bi-Lip homeomorphism.
Then ¢,, — ¢ uniformly, and passing to the limit

c=coyp

so ¢ is a diffeomorphism. Moreover
dgi (¢7(0),0) = d

S0  cannot be the identity, hence c¢ is not freely immersed. O
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3.7.8 Auto representation’

The above result is very important, but the proof gives no hint on what is going on. To this end, we
drop the requirement that the curve be freely immersed, and look at an easy question. Is it possible for
a curve to represent itself locally?

Lemma 3.31. Let ¢ be a C? immersed planar curve. There are only finitely many ways in which the
curve can represent itself geometrically, that is, finitely many choices a, ¢

c(s) +a(s)N(s) = c(4(s))

with ¢ € Diff(S*) and a : S* — R continuous with |a|, < 7./2. In particular there is a p, > 0 such
that, if |al|l < p.. then a =0.

In particular if ¢ is freely immersed then |a| < p. implies a = 0 and ¢ =Id.

Proof. Define ¢, 7, as in 3.11 (see also Prop. 3.16). Let &(s,t) = c(s) +tN(s). Consider the family P of

cr'c

all the pairs a, ¢ with |a|l,, < 7./2 and a # 0 and
P(s,a(s)) = c(s) +a(s)N(s) = c(p(s)) (3.28)
we will prove that there are only finitely many such pairs.

Hence we will let r be smaller than the minimum of |al|,, for all such pairs:

1.
r=—- mmn a
5 min ol

In the example in Figure 10 on the next page there are 3 pairs in P.
We have some very strong properties.

o If (aj, 1), (ag, ) € P and thereis a 5§ € St s.t. p;(5) = ¢o(5) then ¢, = ¢, and a; = a,. Indeed
there is a small interval J containing § where we can invert the map @ and

(s,a,(s)) = 27 (c(gi(s)))

that is, the first component of @1 ocis p; 1, s0 o = ¢, in J; so the set {s € St : ¢,(s) = p,(s)}
is both open and closed. The previous argument also proves that a; = a,.

e Figure 11 on the following page can be used as a visual guide in the following proof.
Let I, C S! be an open interval such that the length of ¢, 1s less than §. and more than §,,/2. °
0
Let U, be the image of @ for s € I, and |t| < 7.. Choose (a;,¢,;) € P with i € 1,2, let

I; = ¢;i(1y)
we will prove that either I, NI, = 0, or I; = I, ¢; = ¢,, a; = a,. Assume that § € I; N1, let
s; = ©; 1(5) then sy, 85 € I, s0
(o,(5)) = ()
using the relation (3.28)
D(s;,a;(s;)) = c(s;) + a;(s;))N(s) = c(p;(s;)) = c(5) €U

and the fact that @ is a diffeomorphism for s € I, |t| < 7, and ¢(5) € U we obtain that s; = s, = 3§
50 ¢1(8) = v4(8) = § hence by the previous point ¢, = s, a; = as.

o The differential of ¢ (computed using arc-length derivative) is
T(1— kt)ds + N dt

so the smallest principal value is at least 1/2. We can estimate the length of ¢ for s € I, to be at
least ¢,./4. Hence there can be only finitely many such intervals.

O

9This section may be skipped on a first read, since it is not needed in the following.
10As noted in 3.13, §, < len(c)/2.
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1.5 T T

T T
2/20 + z%/8 + z*

Figure 10: Example of curve with 3 pairs in P.

Figure 11: Helper scheme for proof of Lemma 3.31
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1.5 T T T

T T
2/40 + 72

Figure 12: Curve in the Example 3.7.9.

3.7.9 Example

The constants p, in Lemma 3.31 and 7, in Lemma 3.30 though cannot be estimated apriori by using
differential quantities such as max |k|. These constants may arbitrarily smaller than the quantity 7,
(defined in 3.11) that provides the width of the tubular neighborhood (Prop. 3.16). They really depend
on how the curve is drawn.

This is seen in simple examples such as this:

o c(z) = ez+ 22 for z € St C C, or equivalently c(f) = (ccos(f) + cos(20) , esin(f) + sin(20)) for
0 eR/(2m) ~ St

that is a small C'*° perturbations of the doubly traversed circle ¢, seen in Example 2.15; see Fig. 12. This
curve is freely immersed, but it is quite near to the doubly traversed circle that is not freely immersed.
For e small the curvature &, of ¢ is approximatively 1 so 7, ~ 1/2, and

ea(6) — c(6)] =

while
| ~2xe , [e5(0) —c'(0)=¢

hence R
|c2(8) — " (0)] ~ 51c"(0)]

so we can use Thm. 3.26 to express

ey (0) = c(0) + a(O)N(6)

using tubular coordinates when e < 1/8, with a ~ e: so r, < ¢; similarly we can represent c(6 4+ 7) using

¢, so we have p, < e.

3.8 Free immersions are open
We have thus come to a fundamental result.

Theorem 3.32. Free immersions are an open subset of immersions.
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We can detail and prove this fact in two ways.

e« We can see it as a corollary of Lemma 3.30. Consider a neighborhoods V' defined using the
tubular coordinates; precisely, define V' as in the second definition in Sec. 3.7.6, choosing ¢, <
min{r.,1/2,7,/4} and R = 2; knowing that ¢(s) = é(¢(s)) we could choose a = b but then by
Lemma 3.30 ¢ would be the identity. So each and any curve in V is freely immersed.

As discussed in Sec. 3.7.6, this proves the result in the manifold of smooth immersed curves, where
the above neighborhoods define a topology.

o If we instead want to prove this for the standard Banach C? topology (first definition in Sec. 3.7.6)
we can proceed as follows. Suppose that ¢, is a sequence of immersed curves that are not free;
and suppose that ¢, — ¢ in C2. We may rescale and reparametrize all the curves so that all have
length 27 and |c,| = 1, and still ¢,, — ¢ in C?; we skip the details '!; these assumptions simplify
the following arguments. Let ¢,, be a sequence such that ¢, = ¢, ° ¢,, and ¢,, is not the identity; as
above we know that ¢, = 1 and we may choose ¢,, to be a generator of the isotropy group, so that
¢, (t) =t+ (27m)/j,; we know that j,, is bounded by 4 times the curvature, so up to a subsequence
J,, is constant, let’s call it j, and then ¢,, = ¢ with ¢(t) = ¢t + (27)/4; and passing to the limits
co ¢ = c so cis not freely immersed.

Note that both proofs need a compactness argument; this seems unavoidable, since the size of the
neighborhood cannot be estimated by using differentiable quantities, as explained in Sec. 3.7.9.

4 The manifold of free geometric curves
Definition 4.1 (Classes of Curves).

o Imm(St, R™) is the class of immersed curves c: curves such that ¢’ # 0 at all points.

. Immf(Sl,[R") is the class of freely immersed curve, the immersed ¢ such that, moreover, if ¢ :
St — St is a diffeomorphism and c¢(¢(t)) = c(t) for allt, then ¢ =Id.

o Emb(S!, R™) are the embedded curves, maps c that are diffeomorphic onto their image c(S*); and
the image is an embedded submanifold of R™ of dimension 1.

Each class contains the one following it (this follows from the propositions seen in Sec. 2.3).

4.1 Proof of 2.29

Definition 4.2.
Bmc(Sl,[RZ) = Immf(Sl,[RQ)/Diﬁ(Sl) (4.1)

is the quotient of Imm(S*,R?) (free immersions) by the diffeos Diff(S*) (reparameterization).

We now provide the complete proof of Theorem 2.29, namely that this B,  is a manifold, for the case
of smooth freely immersed planar curves; afterward we will show in Sec. 4.2 how and where the proof in
[5] misses some key arguments.

The following proof is for immersed curves ¢ : S! — R?, in a forthcoming paper [15] we will explain
how it can be generalized to the case of immersions ¢ : M — N.

4.1.1 Quotient topology

We discuss the topological aspect of theorem 2.29.
Let 7 : Imm; — B; ; be the canonical projection of the quotient that defines B, ; in (4.1).
The definition of the quotient topology is as follows. A set Z is open in B, ; when the union of its

orbits
7 1(2) = {ceImm;: [c] € 2} = U [c]
[clez

1See Theorem 7 in [20]
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is open in Immy, that is, it is open in C'*°.
We endow Imm ; with the C'° topology described earlier, and B; ; with the induced quotient topology.
Now we want to describe a specific family of open neighborhoods that will be quite useful. Fix ¢;
smooth freely immersed. Let 7 < min{r,. , 7. /4,1/2}; where 7. was defined in 3.30.

Proposition 4.3. Consider the set

2[61:{56 Immg : [C—cy| <7, |¢" —ci| <|ey|/3} (4.2)
this set is open in C*° (St — R?).
Proof. This is a simple case of the arguments of Sec. 3.7.6. Let m = min [c]], let ¢, € U and

0 0

a=leg—cle » B= 870102*87610100

we know that o < 7,8 < 1/3; if ¢5 is a smooth curve and satisfies
les —ealloe < (T—a) s =l < (V3= B)m
then by the results in the previous section ¢3 € U, 0

By Theorem 3.32 all curves in U, are freely immersed.
Now let us reparameterize all the curves in &/, and define

def

W, E{eep:[—c| <7, |& —ci| <leil/3, » € Diff"} (4.3)

since the above conditions are reparameterization invariant, then

Wcl = U ucz

Co=cCy0p , eDiff"

that is an union of open sets, hence it is open in C°°. Moreover it contains all the orbits of all of its
curves: in the language of [5], we may say that “W. s saturated for the action of Diff(S by
So we define

Wcl =7 (WCI)

and we have

~

_ 1 .
W, =r"W,) ;

51

—
hence W, is open in B, ;.

4.1.2 Geometric representation

We discuss the representation aspect of Theorem 2.29. Consider again the set W, defined in (4.3). For
any curve ¢ in this set, by Theorem 3.26, we have a representation

Cop=c+aN

with |a] < 7.
Let ¢ = ¢ o ¢ for convenience; by the derepresentation result 3.28 (setting o = 1/8,8 = 1/3 in that

proposition and noting 1/(1/64 + 1/9 < 1/2) we have
1€/(0) = c1(0)] < [er(0)]1/2

so there is an unique reparameterization of ¢ that can be expressed in tubular coordinates around ¢, by
Lemma 3.30: this means that ¢ is uniquely identified by ¢; so we will concentrate on a.

Proposition 4.4. Let
Q d——ef{a'Sl—>R : deel EIngDiﬁ cop=c+aN 4.4
cy : : cy 0 ’ ° c } ( . )

be the set of all such a. This set is open.
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Proof. The map (¢, a) (¢ +alN) o ™! is smooth, and Q. is the projection on the second component
of the counterimage of W, that is open. O

All of the above can be stated in the language of [5] as follows: the set W, is an open neighborhood
of ¢; in C, it is composed only of freely immersed curves, it is saturated for the Diff(S!)-action and
the map

(p,a) = (c+aN)op™
splits it smoothly as
w.. = 9, X Diff(S1)

C

4.1.3 Charts

Choose a curve c;; consider the map!?

def

Q. 0. -W. , & (a) =c tal;

C

we already proved in Lemma 3.30 that it is injective; @, is also smooth as a map from C* to €.
If we compose _
e, =To D,
then the composition
P, L ch — WCI

(&

is bijective: indeed if C; € Wcl then we proved in the previous section that, picking a ¢ in the equivalence
class C,
cel, .,
for an unique ¢, and then
copl=c +alN,

for an unique a.

4.1.4 Atlas

To conclude, we discuss the atlas of charts needed for theorem 2.29. For i = 1,2 consider now two
equivalence classes C; € B; ¢ and choose a curve ¢; € C; in each; we consider the maps
3

Cq :’/Toqjcq‘,

We want to check that these are charts of an atlas for the manifold.
Suppose that
ceW, nW,,
then
c(1(0)) = 1(0) +ay (O)N, (0) . c(p2(0)) = cy(0) + az(0) N, (0)

we need to check that

is smooth in a neighborhood of @,;. We can change variable in the previous one, that is, reparameterize
€1, Cq, 8O that
c(0) = cy(0) +a, ()N, (8) , c(0) = cp(0) + ay(0)N,., ()
but for a; near a; we know that
¢ (0) +a, (O)N,, (0) € U,

by Lemma 3.28 so by the representation theorem 3.26 there are ¢ and a, dependent on a; such that

c1(0) + ar (0)N,, (0) = c5((0)) + az(p(0)) N, ((0))

the representation theorem’s proof shows that the dependency of a, on a is smooth (it is given by the
inverse of the tubular coordinates, as discussed in the nearby projection Lemma 3.19).
This concludes the desired proof of Theorem 2.29.

121t is not the same maps @ defined in 3.16.
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4.2 Comparison with [5]

We endow N with a Riemannian metric such that scalar curvatures are bounded and convexity radius
is bounded uniformly away from zero; see [7].

The proof in [5] is presented for generic immersions ¢ : M — N; we fix one such immersion.

We follow notations and definitions in [5], here copied for convenience of the user (parts copied from
[5] will be in italic).

We choose connected open sets (U,),, and (W,),, such that W, Cc W, c U, C M, (W), is an open
cover of M, each W, is compact, (U,),, is a locally finite open cover of M, and such that 1 is an

@

embedding.
Let p: N (1) = M be the normal bundle of 1, defined in the following way: for x € M let

that is the orthogonal complement of tangent at 1(x) of the immersed manifold in TN
The following diagram

N() —— TN

|2 le

M —— N

s a vector bundle homomorphism over 1 , which is fiberwise injective.
Let exp” : TN — N be the exponential map on N. Now there is a neighboorhood U of the zero
section in the previous bundle N (2) that is small enough so that

exp? o1

when restricted to U|U,, is a diffeomorphism with its image. The restriction of exp™ o7 to U is called T°.
It will serve us as a substitute for a tubular neighborhood of 1(M).

(The notation U|U,, is not described in [5], but by its usage it should be equivalent to U N p~1(U,,).
Note also that, later on, the paper adds the superscript z to U, and will write it as U}).

Consider planar immersed curves ¢ : S — R?: normal vectors at ¢(f) are a one dimensional space
tN, (where N, is the normal vector to the curve ¢ as defined in 2.22), hence the fibre of N (z) is one
dimensional, so a point in the bundle 2V(2) can be represented by a pair # € S',¢ € R, and the map 7
becomes the map @ defined in eqn. (3.10) in Prop. 3.16. Fix a 7 > 0, small, as we will discuss later on.
We cover St by arcs U, C S each shorter than ¢, and W, C U, subarcs that can be chosen so that
they are an open cover; for small € we can ensure that tubular coordinates can be perused. The open
set U will include normal vectors tN, with || < e.

The statement of main Theorem 1.5 in [5] starts as follows:
«Let 1 be a free immersion M — N . Then there is an open neighborhood W (1) in Imm(M, N) which
is saturated for the Diff(M)-action and which splits smoothly as

W(i) = Q(i) x Diff(M).

Here Q(1) is a smooth splitting submanifold of Imm(M, N), diffeomorphic to an open neighborhood of 0
in C*(N(2)). In particular the space Immy(M, N) is open in C*(M,N).»

The proof covers also the case when M is not compact; we will assume that M is compact so that
some arguments can be simplified.

The proof goes as follows.
Define
U(r) = {j € Tmm(M, N) : j(W,,) C 7'(U,|Uz) Vo,
(the proof then goes on showing that this is an open set — we skip details).
For each j € U(i) we define
pi(j): M = U C N(),

29



pi(d)(x) = (U U)) (i(x)) if e WS
Indeed we know that 7*|(U*|U}) is a diffeomorphism onto its image, and that j(x) € 7*(U*|UZ) when
x € W, by definition of U (1).
Then @' : U(r) = C*°(M, N (1)) is a mapping which is bijective onto the open set

def

V() ={he C®(M,N({)): h(W,) CU U, Va} (4.5)
in C®(M,N(1)). Its inverse is given by the smooth mapping

Tt hi= T'oh

The proof then goes on showing that this ¢ is smooth (we skip details).

We now translate the above objects into the language of the Section 4.1. If ¢ =2 : S — R? is a freely
immersed curve, and ¢ = j is a curve such that

éw,) Cc U,
then |[¢ — ¢| < 2¢, so, for e small, for each o € S* there are § € S, € R such that
&(o) = c(0) +aN.(0)
this pair # € S',t € R, is exactly associated to correct point in the above bundle, that is, we can write
2= (0,IN,(0)) € N(1)

and
(o) =7'(x)

Possibly reducing the width e of the tubular neighborhoods we can also use Prop. 3.20 to ensure that
the above representation is “unique”. So Prop. 3.20 can be applied and this means that, for each o, we
can write

c(o) = c(p(0)) + a(o)N.(p(0)) (4.6)
so in conclusion we can explicitely write the map h above defined as
h(0) = ( (0) , al0)N.(¢(0)) ) (4.7)

the first component in h encodes a position in the base space M = S! of the bundle MV (2), the second
encodes a normal vector aN, to the curve c at ¢(6). Indeed the inverse 7* is exactly the map (4.6).

The proof continues as follows.
We have ti(hof) = 7i(h)of for those f € Diff(M) which are near enough to the identity so that
hof € V(i) (that was defined in (4.5)). We consider now the open set '3

2 Z{hof : h € V(i), f € Diff (M)} C C®((M,U")) . (4.8)
Obviously we have a smooth mapping from it into
C>(U") x Diff(M)
given by
h + (ho(poh)~t, poh) (4.9)

where C°(U") is the space of sections of U* — M.

Here though comes the first mistake in the original proof. Consider the example 3.22, where ¢ = 1
is the blue curve and j = ¢ is the red curve. There is a choice of U, W, such that j € U(z). We can
express

&(o) = c(p(0)) + a(a)N(p(0))

13We added the notation 2 for ease of reference.
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and then define h by (4.7); but when we apply the rule (4.9) to this h, we obtain that

poh = ¢

and ¢ is a map ¢ : S' — S' that is not a diffeomorphism.
The correct statement is that the map (4.9) achieves a splitting of the open set < described in (4.8)
into
Co(U") x C*(M — M)

Some condition must be added to the definition of Z to make sure that ¢ is a diffeomorphism; as was
done in eqn. (4.2) to define U, by adding the condition |¢" — ¢j| < |c}|/3: this condition is necessary to
apply the representation theorem 3.26. No similar condition is present in the proof in [5].

The proof afterwords proceeds as follows.

So if we let'*
def

0(i)  r1(C=(U") NV (1)) € Imm(M, N)

we have
W) Z U@0)oDif(M) = Q() x Dif( M) = (C®(U") NV (1)) x Diff(M)

since the action of Diff(M) on @ is free. Consequently Diff(M) acts freely on each immersion in W (1),
so Immy(M, N) is open in C>°(M, N).

This is the second mistake in the proof.

Even if we restrict the open set described in (4.8) by adding a first order condition, so that the map
(4.9) properly splits O, we have not guarantee that all curves in the associated neighborhood are freely
immersed. This was shown in Sec. 3.7.9.

This is why in our proof we added the condition 7 < r, to the definition of U.

We have shown that the proof in [5] does not prove the desired result.
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