Eur. Phys. J. C (2021) 81:314
https://doi.org/10.1140/epjc/s10052-020-08790-2

THE EUROPEAN ®
PHYSICAL JOURNAL C e

updates

Regular Article - Experimental Physics

Measurement of the branching fraction of the B'— D}~ decay

LHCDb Collaboration*
CERN, 1211 Geneva 23, Switzerland

Received: 26 October 2020 / Accepted: 19 December 2020 / Published online: 12 April 2021
© CERN for the benefit of the LHCb collaboration 2021, corrected publication 2021

Abstract A branching fraction measurement of the
B— D}~ decay is presented using proton—proton colli-
sion data collected with the LHCb experiment, correspond-
ing to an integrated luminosity of 5.0fb~!'. The branch-
ing fraction is found to be B(B"—=D}n~) = (19.4+
1.8 £13 +12) x 107, where the first uncertainty is
statistical, the second systematic and the third is due to
the uncertainty on the B—>D~ 7+, Df - K*K~7+ and
D™ — K7~ 7~ branching fractions. This is the most pre-
cise single measurement of this quantity to date. As this
decay proceeds through a single amplitude involving a
b—u charged-current transition, the result provides infor-
mation on non-factorisable strong interaction effects and the
magnitude of the Cabibbo—Kobayashi—-Maskawa matrix ele-
ment V,;. Additionally, the collision energy dependence of
the hadronisation-fraction ratio f;/fy is measured through
B> D7~ and B> D 7+ decays.

1 Introduction

To test the Cabibbo—Kobayashi—-Maskawa (CKM) sector
of the Standard Model (SM), it is crucial to perform
accurate measurements of the quark-mixing matrix ele-
ments. Any discrepancy among the numerous measure-
ments of CKM matrix elements could reveal effects from
new particles or forces beyond the SM. The knowledge
of the magnitude of the matrix element V,; governing
the strength of b—u transitions is key in the consistency
checks of the SM and its naturally motivated extensions
[1,2].

*e-mail: jordy.butter@cern.ch

The hadronic B’— D}~ decay' proceeds in the SM
through the b— u transition as shown in Fig. 1. Its branching
fraction is proportional to |V, |2,

B(B—Dfn™) = ®Vup Ve PIF (B> I fp s lanel?. (1)

where @ is a phase-space factor, F (B®—7x7) is a form fac-
tor, fp+ is the D} decay constant, V,, is the CKM matrix
element representing c— s transitions, and |ang| encapsu-
lates non-factorisable effects. The form factor and the decay
constant can be obtained from light-cone sum rules [3,4] and
lattice QCD calculations [5,6], and since |V, | is known to
be close to unity, the B*— D7~ branching fraction can be
used to probe the product |V, ||ang|. The assumption of fac-
torisation is expected to hold, i.e. |ang| is close to unity, for
B meson decays into a heavy and a light meson, where the W
emission of the decay corresponds to the light meson and the
spectator quark forms part of the heavy meson. This is not the
case for the BY— Dj‘n_ decay, as shown in Fig 1, and con-
sequently |ang| may be significantly different from unity [7].

The measurement of the B’— D} 7~ branching fraction
can also be used to estimate the ratio of the amplitudes of the
Cabibbo-suppressed B — D%~ and the Cabibbo-favoured
B— D~ nt decays,

AB'—>DTx)

AB—D )| @

an:’

which is necessary for the measurement of charge-parity
(CP) asymmetries in B"— D¥ 7+ decays [8—13]. Assuming
SU(3) flavour symmetry, Eq. (2) can be written as [14,15]

fo+ [B(B"—>Din~)
—tang 20 [220 TEN T D 3
o = ey S\ BB D nh) )

where 6, is the Cabibbo angle and fp+ is the decay con-
stant of the DT meson. SU(3) symmetry breaking is caused
by different non-factorisable effects in in BY— D}~ and
BY— D7~ decays.

I Inclusion of charge-conjugate modes is implied unless explicitly
stated.
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Fig. 1 Tree diagram of the B"— D7~ decay, in which a B meson
decays through the weak interaction to a D]} meson and a charged pion.
This diagram represents the only (leading order) process contributing
to this decay. Strong interaction between the D™ meson and the pion
lead to a non-factorisable contribution to the decay amplitude

This article presents measurements of 53 (B%— Djn )
and rpy using proton—proton (pp) collision data collected
with the LHCb detector at centre-of-mass energies of
7,8 and 13 TeV corresponding to an integrated luminosity of
5fb~!. The data samples recorded in the years 2011 and 2012
(2015 and 2016) at 7 and 8 (13) TeV will be referred to as
Run 1 (Run 2). The B— D} 7~ branching ratio is measured
relative to the B®— D~ 7 normalisation channel, which is
well measured and experimentally similar to the B’— D;f 7~
decay. The B'— D} 7w~ (B~ D~ 7 ") candidates are recon-
structed via the Df —>K+tK "7t (D™= K*n~77) decay.
The branching fraction of the B’— D~ decay is deter-
mined by

BY—Dfn— €0, p—n+

N
B(BO—>D;*'71_) = BB >D 7t
Npo_, p-x+ €B0 D n-
B(D~—=KTn—n7)
X )
B(Df—>K+K-7+)

“

where Nx denotes the selected candidate yield and ex the
related efficiency for the decay mode X. In this measure-
ment, extended maximum-likelihood fits to unbinned invari-
ant mass distributions are performed in order to obtain the
yields, while the efficiencies are obtained from simulated
events and using calibration data samples.

The relative production of B? and B® mesons, described
by the ratio f;/f; where f; and f; are the BA? and B? hadro-
nisation fractions, is shown to slightly depend on the pp
collision energy [16]. The efficiency-corrected yield ratio R,

N

R —Din~ €go_, p-p+ - ﬁ (5)

9
Npo_, p—n+ EE(Y’»D;WT_ Ja

@ Springer

is proportional to the relative production ratio and its depen-
dence on the centre-of-mass energy is also reported here. This
is measured using BY— D7~ and B>D 7" decays.
Accurate knowledge of f;/f4 is a crucial input for every BSO
branching fraction measurement, e.g. 3 (B?—> w ), since
it dominates in most cases the systematic uncertainty [17].
Following the method described in Ref. [18], the value of
fs/fa4 can be calculated as

fs R B(D™—=KTn~n™)

Is .98t

fd TB; NQNFNE B(D;'_)K-kK_n_’_)! (6)

where R is defined in Eq. (5), the numerical factor takes
phase-space effects into account, N, describes non-
factorisable SU(3) breaking effects, N is the ratio of the
form factors, Nz takes into account the contribution of
the W-exchange diagram in the B’—D~m* decay, and
tp, (tp,) is the B® (BY) lifetime.

2 Detector and simulation

The LHCD detector [19,20] is a single-arm forward spec-
trometer covering the pseudorapidity range 2 < n < 5,
designed for the study of particles containing b or ¢ quarks.
The detector includes a high-precision tracking system con-
sisting of a silicon-strip vertex detector surrounding the pp
interaction region [21], a large-area silicon-strip detector
located upstream of a dipole magnet with a bending power
of about 4 Tm, and three stations of silicon-strip detectors
and straw drift tubes [22,23] placed downstream of the mag-
net. The tracking system provides a measurement of the
momentum, p, of charged particles with a relative uncer-
tainty that varies from about 0.5% below 20 GeV/c to 1.0%
at 200 GeV/c. The minimum distance of a track to a primary
vertex (PV), the impact parameter (IP), is measured with a
resolution of (15+29/ pt) wm, where pr is the component of
the momentum transverse to the beam, in GeV/c. Different
types of charged hadrons are distinguished using information
from two ring-imaging Cherenkov (RICH) detectors [24].
Hadrons are identified by a calorimeter system consisting
of scintillating-pad and preshower detectors, an electromag-
netic and a hadronic calorimeter. Muons are identified by a
system composed of alternating layers of iron and multiwire
proportional chambers [25].

The online event selection is performed by a trigger [26],
which consists of a hardware stage, based on information
from the calorimeter and muon systems, followed by a soft-
ware stage, which applies a full event reconstruction.

Simulation is required to calculate geometrical, recon-
struction and selection efficiencies, and to determine shapes
of invariant mass distributions. In the simulation, pp colli-
sions are generated using PYTHIA [27] with a specific LHCb
configuration [28]. Decays of unstable particles are described
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by EVTGEN [29], in which final-state radiation is generated
using PHOTOS [30]. The interaction of the generated particles
with the detector, and its response, are implemented using the
GEANT4 toolkit [31,32] as described in Ref. [33].

3 Selection

The B> D}n~ (B~ D~n") decays are reconstructed
by forminga Df - K"K~ 7" (D™ — K7~ 7 ) candidate
and combining it with an additional pion of opposite charge,
referred to as the companion. The same reconstruction and
selection procedure is applied to the BY— D7~ decay. For
the B— D~ decay, the invariant mass of the KK~
pair is required to be within 20 MeV/c? of the ¢ (1020) mass
to select only the D —¢(1020)7 " decays, which signif-
icantly improves the signal-to-background ratio compared
to other decays with a K™K~ 7+ combination in the final
state. Selecting D" —¢(1020)7 ™ decays has an efficiency
of about 40%.

At the hardware trigger stage, events are required to have
a muon with high pr or a hadron, photon or electron with
high transverse energy in the calorimeters. For hadrons, the
transverse-energy threshold varied between 3 and 4 Ge V
between 2011 and 2016. The software trigger requires a two-,
three- or four-track secondary vertex with significant dis-
placement from any primary pp interaction vertex (PV). At
least one charged particle must have transverse momentum
pt > 1.6GeV/c and be inconsistent with originating from
a PV. A multivariate algorithm [34] is used for the identifi-
cation of secondary vertices consistent with the decay of a b
hadron.

After the trigger selection, a preselection is applied to the
reconstructed candidates to ensure good quality for the ver-
tex of the b-hadron and c-hadron candidates comprising of
tracks with large total and transverse momentum. Combi-
natorial background is suppressed using a gradient boosted
decision tree (BDTG) algorithm [35,36], trained on Run 1
BY— D7~ data. A set of 15 variables is used to train the
BDTG classifier, the ones with highest importance in the
training being the transverse momentum of the companion
pion, the radial flight distance of the B? and of the D candi-
dates, the minimum transverse momentum of the Dj’ decay
products and the minimum XI2P of the companion and the
E? candidates, where X12P is defined as the difference in the
vertex-fit x2 of a given PV reconstructed with and without
the particle under consideration. The correlation among the
input variables has been studied and was found to be small.
The BDTG classifier used in this measurement is described
in Ref. [37].

To improve the BY and E? invariant mass resolutions, the
D} and D~ invariant masses are constrained to their known
values [38]. All D7~ (D~ ) candidates are required

to have their invariant masses, m(Dy7~) (m(D~w™)),
within the range 5150-5800 (5000-5800) MeV/c2 and the
KYK~nt (K*m~n™) invariant mass within 1930-2065
(1830-1920) MeV/c?. The range of the KK~z invari-
ant mass includes a large upper sideband to model prop-
erly the combinatorial background shape, as described in
Sect. 4.

To reduce the background due to misidentified final-state
particles, particle identification (PID) information from the
RICH detectors is used. The companion pion is required
to pass a strict PID requirement to reduce the number of
(BA?—>D;“K_ (B"— D~ K*) decays where the kaon com-
panion is misidentified as a pion. For D;f —¢(1020)7*
candidates, loose PID requirements are applied to both
kaons and the pion, which imply a signal efficiency of
about 96%. In the case of the pion, the PID requirement
is used primarily to remove protons originating from the
AT — ¢p decay. Further PID requirements are applied to veto
A Af(—>pK~nH)n~ and B'>DH (K ntat)n™
and A)—>A_ (—»pK 7 )t and BO>D; (K Ktn)x ™t
events, which are misidentified as the final-state particles
of D (- KTK~nM)n~ and D™ (— K+ n 7)™ decays,
respectively. These vetoes are applied if candidates are con-
sistent with the above mentioned decays when a mass hypoth-
esis is changed. The PID requirements result in 75% effi-
ciency for BO— D}~ signal decays, which is dominated
by the strict PID requirement on the companion pion, while

the retention is about 9% for the b?—) D} K~ misidentified
background contribution.

The event selection efficiencies are calculated from sim-
ulation with the exception of the efficiency of the PID
requirements which is determined using calibration data
samples.

4 Signal and background parametrisation

After the full event selection, unbinned maximum-likelihood
fits are performed to obtain the yields of the signal
B— D~ and the normalisation B®— D=7+ candidates.
A two-dimensional fit to the D7~ and the K™K 7™
invariant mass distributions is performed to determine the
BO— D}~ signal yield, while the yield of the normalisa-
tion channel is obtained from afit to the D~ 7+ invariant mass
distribution. Due to the D] mass constraint, the correlation
between m(Df 7 ~) and m(K K~ x") is found to be small,
thus the two variables are factorised in the fit model [39].
The two-dimensional fit is performed in order to constrain
the combinatorial background (see further in this Section for
details).

The B'— D}~ decay is Cabibbo-suppressed and is
therefore considerably less abundant than the Cabibbo-
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favoured BY— D}~ decay, which produces the same final-
state particles. The m(D{7~) and m(D~x™) shapes for
B%— Df7n~ and B~ D~ n* candidates, respectively, are
described by the sum of a double-sided Hypatia function
[40] and a Johnson Sy function [41]. The left tail of the
BY— D7~ invariant mass distribution overlaps with the
BY'— D}~ signal peak and therefore special attention is
given to the description of the lower mass range of the
E?—> D}~ peak, shaped by the combination of detector
resolution and radiative effects. The B®— D} 7~ signal is
described with the same model as the BY— D7~ decay,
shifted by the known BO—B? mass difference [38]. The left
tail of this distribution is described by two parameters, a; and
n1, which are found to be correlated and therefore the param-
eter n is fixed to the value obtained from simulation, whereas
ay is obtained from simulated BY— D7~ and B~ D~ n+
events, as well as from B’— D~ 7" data. In the invariant
mass fit to B— D~ 7t candidates the common mean of
the double-sided Hypatia and the Johnson Sy functions, the
widths and the left-tail parameter a; are left free in the fit,
while this parameter is constrained in the D 7~ invariant
mass distribution, as the background does not allow to deter-
mine the shape of the radiative tail reliably. All other param-
eters are fixed from simulation. In the KT K ~7 T invariant
mass fit a sum of two Crystal Ball functions with a com-
mon mean is used. The common mean and a scale factor for
the widths are left free, while the other shape parameters are
fixed from simulation.

The combinatorial background in B— D 7~ candidates
is split in two components, referred to as random—D;r and
true-D;f. The random-D;" combinatorial background con-
sists of random combinations of tracks that do not peak in the
KK~ mt invariant mass, while the true-D;" combinatorial
background consists of events with a true D" meson, com-
bined with a random companion track. The upper mass range
of the KK ~nT candidate sample is used to account accu-
rately for the random-D;" component, modelled with a sin-
gle exponential distribution, while the true-D; background
is described by the signal shape. In the D;f 7~ invariant mass
fit, the random-D; background is described by an exponen-
tial distribution and the true- D" background is described by
the sum of an exponential and a constant function. The expo-
nential parameters are left free in both invariant mass fits.

The combinatorial background in the m (D~ x ™) fit of the
normalisation channel is described by the sum of an expo-
nential and a constant function, with the relative weight of
the two functions and exponential parameter left free.

@ Springer

Decays where one or more final-state particles are not
reconstructed are referred to as partially reconstructed back-
grounds. In the D 7~ and D~ x " invariant mass fits these
background contributions are described by an upward-open
parabola or a parabola exhibiting a maximum, whose ranges
are defined by the kinematic endpoints of the decay, which
are convolved with Gaussian resolution functions, and which
are known to describe decays involving a missing neutral
pion or a missing photon, as defined in Ref. [42]. In the fit
to the K+ K ~m T invariant mass, the partially reconstructed
background contributions are described by the signal mass
shape.

The m(D} ™) fit requires two partially reconstructed
background components from BY— Di*(— D}y /7%~
and E?—) Dfp~(—>= ~ %) decays. The fit model describing
the D~z invariant mass accounts analogously for two par-
tially reconstructed background contributions:
B’ D* (=D 7%zt and B> D~ pt(—=xt7?).In the
case of the B'— D**7~ background the previously men-
tioned upward-open parabola together with a parabola
exhibiting a maximum is used to parameterise the compo-
nents with D*— Dy and Di*— D} ¥ decays, respec-
tively. The B%— D p~ background is described by the
upward-open parabola, to take into account the missing neu-
tral pion. The B®—D* 7+t decay uses an upward-open
parabola function and exhibits a double-peaked shape. Most
parameters are obtained from simulated events and fixed,
aside from the relevant invariant mass shifts and widths. For
the B— D~ p* background a single upward-open parabola
function is taken, with a floating width and a floating mass
shift parameter that is shared with the B®— D*~ 7+ contri-
bution. The widths of the partially reconstructed background
contributions in the m(Dj‘rr_) fits are fixed to the values
obtained from B®— D~ candidates in data, corrected for
differences between the m(D 7 ~) and m(D~ 7 ™) distribu-
tions, as obtained from simulation.

The B’— D~ n " candidate sample is contaminated by the
B~ Dt A)— A nt and B> D~ K decays, result-
ing from the misidentification of one or two of the final-state
particles. Analogously, the ‘B§—> D}K™, A2—> Afm~ and
B— DT~ decays are misidentified background contribu-
tions of the B— D}~ candidate sample. Their shapes are
determined from simulation using a non-parametric kernel
estimation method [43]. The yields of the misidentified back-
ground contributions are estimated by using known branch-
ing fractions [38] and efficiencies that are determined from
simulated background decays. Each yield of a misidentified
background in the fit model is constrained to be close to its
estimated value and is allowed to vary within the correspond-
ing uncertainty.
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Fig. 2 The invariant mass distributions of normalisation B%— D~ 7t candidates, for (left) Run 1 and (right) Run 2 data samples. Overlaid are the

fit projections along with the signal and background contributions
5 Signal yields

The m(D~n™) data distributions, with overlaid fit projec-
tions for the total, the B°— D~ 7+ signal and the background
components, are shown in Fig. 2. The resulting signal yields
are (4.971 £ 0.013) x 10° and (6.294 £ 0.016) x 10° for
Run 1 and Run 2 samples, respectively. The fit results are
also used to constrain the left tail of the signal shape and
the widths of the partially reconstructed backgrounds to the
invariant mass distribution of B®— D~ candidates.

The two-dimensional fit to B®— D 7~ candidates is per-
formed in the D;f7~ and K™K~ 7" invariant mass distri-
butions. The B®— D7~ branching fraction is determined
using the yields of the signal and normalisation modes,
their selection efficiencies and the known B°—D~r™,
D™ —K*tn ™ and D}— KK 7" branching fractions
[38]. The two-dimensional fit is performed simultaneously
for Run 1 and Run 2 data samples in which the B(B°— Dj‘n )
and left-tail parameter are shared. The fit results in B®— D7~
signal yields of (8.94:0.8) x 10% and (1.1240.11) x 103 and
BY— D~ yields of (3.370 + 0.023) x 10* and (4.647 +
0.027) x 10* for Run 1 and Run 2 samples, respectively. Fig-
ure 3 shows the D 7~ invariant mass distributions together
with the fit projections and background contributions over-
laid. Additionally, the invariant mass fits to B~ Dt
and B'— D}~ candidates are performed simultaneously
to 2011, 2012 and Run 2 data in order to study the collision
energy dependence of f/f4, as is described in Sect. 7.

6 Systematic uncertainties

Systematic uncertainties on the B(B"— D}w™) measure-
ment arise from choices in the fit model and the determination
of trigger, BDT and PID efficiencies. Many possible sources
of systematic uncertainty cancel in the ratio of either the
yields or the efficiencies of B’ D} 7~ and B> D~ n+

events. A summary of all the systematic uncertainties is
shown in Table 1. The precision of the measurement relies
mostly on the accurate modelling of the signal shape and of
the partially reconstructed backgrounds.

The most critical aspect of the signal shape is the descrip-
tion of the left tail of the B’— D7~ signal, affecting the
composition of signal and background around the BY mass.
The shape of the left tail was determined from B'— D~ 7+
candidates, taking into account differences between the final
states, as obtained from simulation, and was Gaussian con-
strained in the fit. A systematic uncertainty is assigned for
the assumption of the signal shape. This is done by repeat-
ing the signal fit with a different parametrisation, i.e. the
sum of a double-sided Hypatia function and a Gaussian
function, which leads to a systematic uncertainty of 5.1%.
This parametrisation was found to be the only alternative
parametrisation that satisfactorily described simulated signal
candidates. Furthermore, a systematic uncertainty is assigned
by fixing the mean of the B'— D}~ signal shape to the
result of the B'—D~nt fit, rather than shifting by the
known BO—B? mass difference. Moreover, the width of the
BO— D7~ signal shape is scaled by the ratio of the known
BY and B? masses. The widths of the partially reconstructed
backgrounds is varied by £1 MeV/c?, in order to cover the
differences between data and simulation as well as the dif-
ferences between the D;f7~ and D™ x" invariant mass dis-
tributions. The resulting difference between the signal yields
is assigned as a systematic uncertainty.

The simulated samples are corrected for an imperfect
modelling of the response of the particle identification algo-
rithms as a function of the kinematical properties of the par-
ticle, using samples of D** calibration data. A systematic
uncertainty associated with the PID efficiency evaluation is
assigned by varying the corrections within their uncertain-
ties. Proton misidentification is the most difficult to control
accurately from data calibration samples, as relatively little
calibration data is available in the kinematic region that over-
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Fig. 3 The (top) Djn* and (bottom) KK~z T invariant mass distributions of signal BY— Dfn* candidates, for (left) Run 1 and (right) Run 2
data samples. Overlaid are the fit projections along with the signal and background contributions

laps with the B decay products. In addition, the Cherenkov
angles of photons emitted by protons and kaons are more sim-
ilar than those of kaons and pions. Thus, a systematic uncer-
tainty is estimated from the difference between the nominal
signal yields and a fit where the misidentified background
A2—> AF 7™ decay yield is left free to vary.

The systematic uncertainty assigned to the hardware trig-
ger efficiency takes into account a difference in detection
efficiency between kaons and pions. This mostly cancels in
the ratio of B~ D~ 7+ and B®— D~ efficiencies, but
the difference of one final-state particle is sensitive to this
detection asymmetry. Moreover, an uncertainty related to the
reconstruction efficiency of charged particles is taken into
account, which mainly arises from the uncertainty on the
LHCb material and the different interaction cross-section of
pions and kaons with the material [44]. Additionally, a sys-
tematic uncertainty is determined on the BDT efficiency due
to the difference between simulation and data. This is deter-
mined by weighting all the BDT input variables in the simu-
lated signal sample to the signal distributions in data, which
are obtained using signal weights for each candidate using
the sPlot technique [45].

@ Springer

Table1 Relative systematic uncertainty o on the B®— D;"n_ branch-
ing fraction measurement

Source o (B(B"— D)) [%]
Fit model
Signal shape parametrisation 5.1
BY— D}~ signal width 1.5
BO— D;Ln* mean 0.2
Partially reconstructed backgrounds 4.2
Misidentified backgrounds 0.6
Efficiencies
Hardware trigger efficiency 0.3
Reconstruction efficiency 0.5
BDT efficiency 0.7
PID efficiency 1.1
Total 6.9

The systematic uncertainties on the collision energy
dependence of the efficiency-corrected BY— D} 7~ and
B%— D=7 yield ratios are shown in Table 2. The sources
of these systematic uncertainties are the same as for the
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Table2 Relative systematic uncertainty o on the ratio of the efficiency-
corrected BY—DFw~ and B°—D~x* yield ratios. The ratios
Ri13Tev/R71ev and Ri3Tev/RgTev are reported together as the dif-
ference of the systematic uncertainty for 7 and 8 TeV is negligible

R7,8Tev 7TevV

R R
Source o (ﬂ)[%] o (ﬁ) [%]

Fit model
Signal shape parametrisation 0.2 -
Misidentified backgrounds 0.2 -

Efficiencies
Hardware trigger efficiency 0.4 0.4
BDT efficiency 1.1 1.3
PID efficiency 1.4 1.4
Total 1.9 2.0

Table 3 Results of B'— D7~ and B’ D~ n* signal efficiencies
and yields, as well as the branching fractions used as input for this
measurement [38]

Run 1 Run 2

0.1412 £ 0.0010
0.3485 £ 0.0016

0.1922 +0.0012
0.4536 +0.0016

€po_, D;rrr‘ (%)

€0, p—n+ (%)

Npo_sp-nt (4.971 +£0.013) x 10° (6.294 £ 0.016) x 10°
Ngo_, pin- (8.9+0.8) x 102 (1.1240.11) x 103
B(B'—>D—n™) (2.5240.13) x 1073

B(D-—Ktr—n~) (9.38+0.16) x 1072
B(Df—K+*K~nt) (5.3940.15) x 1072

B%— D}~ branching fraction. Exceptions are the uncer-
tainties on the B'— D}~ signal and the partially recon-
structed backgrounds, which are found to be negligible, and
the uncertainty on the charged-particle reconstruction effi-
ciency, which cancels out in the double ratio of efficiencies.

7 Results

Table 3 gathers all measurements and inputs to determine the
branching fraction according to Eq. (4). The branching frac-
tion ratio of B~ D7~ and B'— D~ decays is found
to be

BB~ Dfrn™)

22 s (774074+05+0.3) x 1073,
B(BY—D—nt) ( )X

where the first uncertainty is statistical, the second systematic
and the third stems from knowledge of the D™ — K T~ 7~
and Dy — K~ K7~ branching fractions.

Using the known value of B(B—>D~7T) [38], the
BY— D7~ branching fraction is found to be

BB >Din)=(194+1.8+13412) x 107,

where the first uncertainty is statistical, the second systematic
and the third refers to the uncertainty due to the branching
fractions listed in Table 3. This result represents the most
precise single measurement of B(B"— D7) to date.

The BY— D7~ branching fraction depends on both
lang| and | V,,p|. Using the measurement of B(B%— Dfn™),
the product

|Vubllang] = (3.14 £0.20 £ 0.25) x 1073

is obtained, where the first uncertainty is from the

B> D}x~ branching fraction measurement and the

second from the CKM and QCD parameters. The form fac-

tor F(BO—>7T_)|q2:mz L= 0.327 £ 0.025 is obtained using
D

light-cone sum rules [33,4] and lattice QCD calculations are
used for the decay constant f by = 0.2499 4+ 0.0005 Ge V
[5,6]. A phase-space factor ® = 296.2+0.8 Ge V=2 is used
in order to relate the branching fraction to |V, ||ang|. Addi-
tionally, the CKM matrix element | V.| is well measured and
used as an input [38]. The determination of |V, ||ang| can be
compared to the known inclusive and exclusive determina-
tions of | V| to provide a constraint on the |ang| parameter
as displayed in Fig. 4.

The branching fraction ratio of B%—D}7~ and
B%— D7 decays can be used to determine the parameter
rpr, as shown in Eq. (3). Inserting the measured branching
fraction ratio B(B— D} 7w ~)/B(B°— D~x*), the tangent
of 0. [38] and the fraction between the decay constants f’ D
and fp+ [5,6] into Eq. (3) gives

rpr = 0.0163 = 0.0007 £ 0.0007 £ 0.0033,

where the first uncertainty is statistical, the second systematic
and the third arises from possible non-factorisable SU(3)-
breaking effects, estimated to be 20% according to Ref. [12].
SU(3)-breaking effects of about 20% are consistent with the
measured |ang| in this analysis, see Fig. 4.

Finally, the potential dependence of the hadronisation
fraction f;/fg on collision energy is probed using the
B%— D~ " and B'— D} 7~ signal yields obtained in the
invariant mass fits, using Eq. (5). To determine these, the fit
to Run 1 data is split based on collision energy into 2011
(7TeV) and 2012 (8 TeV), sharing the shape parameters. The
measured double ratios for the different collision energies
are

Ri131ev/R7Tev = 1.020 £0.013 £ 0.021,
Ri131ev/ReTev = 1.035 £0.011 £ 0.021,
Rg1ev/R7Tev = 0.986 £ 0.013 £ 0.021,

where the first uncertainty is statistical and the second
systematic. The average transverse momentum of the B
meson after full event selection is found to be 10.4, 10.6
and 10.9 GeV/c for pp collision centre-of-mass energies of
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Fig. 4 Result of the determination of |V, ||lang|. The blue line rep-
resents the result of this measurement, the vertical bands are the
known exclusive and inclusive measurements of |V,;|, which are
(3.70 £ 0.16) x 1073 and (4.49 & 0.28) x 1073, respectively [38].
The horizontal dashed line at |[ang| = 1.0 represents exact factorisa-
tion. The error bands represent an uncertainty of one standard deviation

7TeV, 8TeV and 13 TeV, respectively. The separate values
of R at the three collision energies are

Ri71ev = 0.1631 £ 0.0018 £ 0.0025 £+ 0.0014,
Rgtev = 0.1609 £+ 0.0013 £ 0.0024 £+ 0.0014,
Ri3Tev = 0.1665 £ 0.0011 £ 0.0023 £ 0.0012,

where the first uncertainty is statistical and the follow-
ing are the uncorrelated and correlated systematic uncer-
tainties, respectively. The value of R at 7TeV shows
good agreement with the previous hadronic f/f; measure-
ment at 7 TeV, which was performed using BY— D} 7,
B’— D 7t and B— D~ K decays [46]. A visualisation
of the dependence of R on the centre-of-mass energy is
given in Fig. 5. The resulting centre-of-mass energy depen-
dence is obtained from a linear fit using the statistical and
uncorrelated systematic uncertainties and is found to be
R = 0.156(6) + 0.0008(6)+/s, where /s is in TeV. The
observed trend is in agreement with the LHCb measurement
of the f;/f, dependence upon the pp collision energy [16].
The values for R will be used in a future work and can be used
to obtain f;/fy by correcting R for the relative D branching
fractions, the ratio of B lifetimes, the form factor ratio, the
contribution from non-factorisable SU(3)-breaking effects
and the contribution from the exchange diagram, as given

by Eq. (6).
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Fig. 5 Visualisation of the pp collision energy dependence of the
efficiency-corrected yield ratio of E?—) D~ and B'—D n*t
decays, which scales with f;/f;. The inner error bars indicate the sta-
tistical uncertainty only, whereas the outer indicate the uncorrelated,
including statistical, uncertainties. The correlated systematic uncer-
tainty is not shown. The red dotted line represents a linear fit through the
three values of R with uncorrelated, including statistical, uncertainties

8 Summary

A branching fraction measurement of the B"— D}~ decay
is performed using pp collision data taken between 2011 and
2016, leading to

BB >Din™)=(194+1.8+13+12) x 107°,

where the first uncertainty is statistical, the second systematic
and the third is due the branching fractions used as normal-
isation inputs. This is the most precise single measurement
of B(B"— D7) to date, and is in agreement with the cur-
rent world average [38]. Using this branching fraction, the
product of |V,;| and the non-factorisation constant |anF| is
determined to be

|Vusllang| = (3.14 £ 0.20 £ 0.25) x 1073,

Comparison with independently measured values of V,,; [38]
indicate that |ang| may deviate from unity by around 20%,
indicating significant non-factorisable corrections.

The measurement of the ratio of the B~ D7~ and
B°— D~ branching fractions is used to determine the
rpx parameter,

rpr = 0.0163 = 0.0007 £ 0.0007 £ 0.0033,

where the first uncertainty is statistical, the second systematic
and the third arises from possible non-factorisable SU(3)-
breaking effects, estimated to be 20% [12]. Knowledge of
this parameter is essential to interpret the CP asymmetries
in B'— DT+ decays.
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Finally, the efficiency-corrected yield ratio of
BY—>Dfn~ and B~ D~ decays, R, is used to probe
the collision energy dependence of the hadronisation fraction
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