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Abstract. We consider a functional, proposed by Blake and Zisserman for computer vision
problems, which depends on free discontinuities, free gradient discontinuities, and second order
derivatives. We show how this functional can be approximated by elliptic functionals defined on
Sobolev spaces. The approximation takes place in a variational sense, the De Giorgi Γ-convergence,
and extends to this second order model an approximation of the Mumford–Shah functional obtained
by Ambrosio and Tortorelli. For the purpose of illustration an algorithm based on the Γ-convergent
approximation is applied to the problem of computing depth from stereo images and some numerical
examples are presented.
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1. Introduction. In recent years, variational principles with a free discontinuity
set have been introduced to solve reconstruction problems in computer vision theory
(see, for instance, [4, 26, 31]). The variational approach to the image segmentation
problem proposed by Mumford and Shah [27] consists of minimizing the functional

E(u,K) =

∫
Ω\K

(|∇u|2 + µ|u− g|2) dx + αHn−1(K ∩ Ω) ,(1.1)

where Ω ⊂ Rn is a bounded open set, Hn−1 is the Hausdorff (n − 1)-dimensional
measure, g ∈ L∞(Ω), and α, µ > 0 are fixed positive parameters. The functional has
to be minimized over all closed sets K ⊂ Ω and all u ∈ C1(Ω\K). In the case n = 2
the function g represents the image to be segmented. By minimizing the functional
one tries to detect the discontinuities of g due to the edges of the objects in the
image, and to cancel the discontinuities due to noise and small irregularities. The
set K contains the jump points of u and represents the edges of the objects. The
functional penalizes large sets K, and outside K the function u is required to be close
to g and C1.

The Mumford and Shah variational principle can be extended to several recon-
struction problems of computer vision [25]: stereo reconstruction [32], computation
of optical flow [28], shape from shading [33]. Variational problems involving func-
tionals of this form are usually called free discontinuity problems, after a terminology
introduced by De Giorgi [18].
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1172 LUIGI AMBROSIO, LORIS FAINA, AND RICCARDO MARCH

The Mumford and Shah model has some drawbacks: it is unable to reconstruct
crease discontinuities and yields the over-segmentation of steep gradients (the so-
called ramp effect). To overcome these defects of the first order model, Blake and
Zisserman [9] introduced a second order functional which can be written in the form

F (u,K0,K1) =

∫
Ω\(K0∪K1)

(|∇2u|2 + Φ(x, u)
)
dx

+ αHn−1(K0 ∩ Ω) + βHn−1((K1\K0) ∩ Ω) ,(1.2)

with α, β > 0 positive parameters. The functional has to be minimized over the
unknown sets K0, K1, with K0 ∪K1 closed and u ∈ C2(Ω\(K0 ∪K1)) approximately
continuous on Ω\K0. If Φ(x, u) = µ|u − g|2 and n = 2, the functional (1.2) is just
that one introduced in [9] (the thin plate surface under tension). In the second order
model, K0 represents the set of jump points for u, and K1\K0 is the set of crease
points. Since the reconstruction of crease discontinuities is particularly relevant in
those computer vision problems which require the reconstruction of visible surfaces
from two-dimensional images, we have then introduced in (1.2) the function Φ(x, u).
A suitable choice of this function will allow us to apply this variational method to
computer vision problems as, for instance, the computation of depth from pairs of
stereo images (see [25]).

If the conditions (see [9])

β ≤ α ≤ 2β(1.3)

are satisfied, the existence of minimizers for the functional F (u,K0,K1) has been
proved, in the case n = 2 and Φ(x, u) = µ|u− g|2, by Carriero, Leaci, and Tomarelli
[13] (notice that (1.3) are necessary and sufficient for the lower semicontinuity of F
with respect to the L1 convergence). The proof is based on a weak formulation of the
problem by setting

F (u) =

∫
Ω

(|∇2u|2 + Φ(x, u)
)
dx + αHn−1(Su) + βHn−1(S∇u\Su) ,(1.4)

where ∇u denotes an approximate differential, Su is the discontinuity set of u in an
approximate sense, and S∇u is the discontinuity set of ∇u. In [12] the existence of
minimizers for the functional F over the space{

u : Ω → R : u ∈ L2(Ω), u ∈ GSBV (Ω), ∇u ∈ [GSBV (Ω)]n
}

,(1.5)

has been proved in any space dimension n, GSBV (Ω) being the space of generalized
special functions of bounded variation introduced in [17]. A regularity theorem in
[13] then shows that, for n = 2, any weak minimizer actually provides a minimizing
triplet (u,K0,K1) of F by taking a suitable representative of the function and the
closure of Su and S∇u.

Ambrosio and Tortorelli [5, 6] approximated the Mumford and Shah functional
(1.1) by a family of elliptic functionals defined on Sobolev spaces. The approximation
takes place in a variational sense, the De Giorgi Γ-convergence. The approximating
elliptic functionals proposed in [6] are defined by

Eε(u, s) =

∫
Ω

(s2 + λε)|∇u|2 dx + µ

∫
Ω

|u− g|2 dx + αGε(s) ,(1.6)
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APPROXIMATION OF A FREE DISCONTINUITY PROBLEM 1173

where the approximation takes place as ε→ 0+, λε → 0+, and

Gε(s) =

∫
Ω

[
ε|∇s|2 +

(s− 1)2

4ε

]
dx .(1.7)

The variable s ∈ [0, 1] is related to the set of jumps K. The minimizing sε are near to 0
in a neighborhood of the set K, and far from the neighborhood they are close to 1. The
neighborhood shrinks as ε → 0. The Ambrosio and Tortorelli approximation can be
used to find an effective algorithm for computing the minimizers of E [25, 29, 30]. The
approximation has been applied to several computer vision problems in [28, 32, 33],
and further improvements have been proposed and experimented in [34].

In the present paper we consider the following family of functionals:

Fε(u, s, σ) =

∫
Ω

(σ2 + κε)|∇2u|2 dx +

∫
Ω

Φ(x, u) dx + (α− β)Gε(s)

+ βGε(σ) + ξε

∫
Ω

(s2 + ζε)|∇u|γ dx(1.8)

for suitable infinitesimals κε, ξε, ζε, and γ ≥ 2. A slight variant of these functionals
has been proposed by Bellettini and Coscia [7] in the case n = 1 and in that case the
Γ-convergence of Fε to F has been proved (see also the discussion in the beginning
of section 6). We extend their Γ-convergence result in the following way: we prove
the lower inequality of Γ-convergence in any space dimension n, and we prove the
upper inequality when u is bounded and |∇u| ∈ Lγ(Ω), under a very mild regularity
assumption on the sets Su and S∇u, which is fulfilled in computer vision applications.
In the particular case when α = β and n = 2, we obtain a full Γ-convergence theorem.

The extension of the Ambrosio and Tortorelli approximation to the second order
problem presents several difficulties. The lower inequality cannot be obtained by
means of the slicing technique and consequent reduction to a one-dimensional problem
used in [5, 6]. Such a reduction yields the operator norm of the Hessian matrix in the
Γ-limit instead of the euclidean norm. The second derivatives are then estimated by
adapting a global technique proposed by Ambrosio in [3] and relying on a compactness
theorem in the space (1.5) due to Carriero, Leaci, and Tomarelli [12]. Conversely, the
jump part of the functional is estimated by using a slicing argument, taking into
account that the space GSBV is a vector space under a suitable energy condition
(Proposition 4.3).

The major difficulty in the proof of the upper inequality consists in obtaining a
suitable estimate on

∫ |∇u|γdx from the finiteness of (1.4). Such an estimate would
permit us to adapt the constructive part of Ambrosio and Tortorelli’s proof [6] to the
second order problem. In the case α = β, n = γ = 2, an estimate which yields a full
Γ-convergence result is obtained by means of a suitable interpolation inequality in
W 2,2 (Proposition 4.6). If α �= β, we obtain only a partial result, proving the upper
inequality under some mild regularity assumptions on u.

The discretization of the functional (1.2) is not straightforward and it is difficult
to apply gradient descent with respect to the unknown sets K0 and K1. Conversely,
the Γ-convergent approximation yields a sequence of functionals (1.8) which are nu-
merically much more tractable, so that discretization and gradient descent may be
applied in a straightforward way. In particular, a simple discretization method, com-
monly used for computer vision problems [35], may be applied to the functionals (1.8).
We then apply the Γ-convergence result to the problem of computation of depth from
stereo images, and we present some computer experiments on synthetic images to
illustrate the feasibility of the approximation.
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1174 LUIGI AMBROSIO, LORIS FAINA, AND RICCARDO MARCH

2. Notations and preliminary results. Let Ω ⊂ Rn be a bounded open set.
We denote by B(Ω) the σ-algebra of all the Borel subsets of Ω; for any C ∈ B(Ω)
we denote by meas(C) the Lebesgue n-dimensional measure of C and by Hn−1(C)
the Hausdorff (n − 1)-dimensional measure of C. We denote by Bρ(x) the open ball
{y ∈ Rn : |y−x| < ρ}. We denote by Mn×n the space of n×n matrices endowed with
the euclidean norm. We introduce the following notations: s ∧ t = min{s, t}, s ∨ t =
max{s, t} for every s, t ∈ R; given two vectors a, b, we set 〈a, b〉 = a · b =

∑
i aibi and

(a⊗ b)ij = aibj .
For any Borel function u : Ω → R we define the approximate upper and lower

limits u+(x), u−(x) by

u+(x) = inf

{
t ∈ [−∞,+∞] : lim

ρ→0+

meas({y ∈ Bρ(x) : u(y) > t})
ρn

= 0

}
,

u−(x) = sup

{
t ∈ [−∞,+∞] : lim

ρ→0+

meas({y ∈ Bρ(x) : u(y) < t})
ρn

= 0

}
.

The set

Su = {x ∈ Ω : u−(x) < u+(x)}
is the discontinuity set of u in an approximate sense and it is negligible with respect
to Lebesgue measure (see [20, section 2.9.13]). Suppose z = u+(x) = u−(x) ∈ R; we
say that ∇u(x) ∈ Rn is the approximate differential of u at x if v+(x) = 0, where

v(y) =
|u(y)− z − 〈∇u(x), y − x〉|

|y − x| ∀y ∈ Ω \ {x} .

If u is differentiable at x, then ∇u(x) is the classical gradient. In the one-dimensional
case we shall use the notation u′ in place of ∇u. An important property of the
approximate differential is the fact that

∇u(x) = 0 almost everywhere (a.e.) on {y ∈ Ω : u(y) = c} ∀c ∈ R .(2.1)

We denote by BV (Ω) the space of functions of bounded variation in Ω, i.e., the
functions u ∈ L1(Ω) such that the distributional derivative of u is representable by
means of a vector measure Du = (D1u, . . . ,Dnu) with finite total variation. We
denote by |Du| the measure total variation of Du. If u ∈ BV (Ω), then ∇u exists
a.e. in Ω and coincides a.e. with the Radon–Nikodym derivative of Du with respect
to the Lebesgue measure [11]. Moreover, the set Su is countably (n − 1)-rectifiable,
i.e., representable as a disjoint union ∪∞

i=1Ki ∪ N , where Hn−1(N) = 0 and Ki are
compact sets, each contained in a C1 hypersurface Γi ⊂ Rn [16].

Let E ⊂ B(Ω); we define

P (E,Ω) = sup

{∫
E

div φdx : φ ∈ C1
0 (Ω;Rn), |φ| ≤ 1

}
.

We say that E is a set of finite perimeter in Ω if P (E,Ω) < +∞. By Riesz’s theorem
(see [21]), E is a set of finite perimeter if and only if 1E ∈ BV (Ω), and P (E,Ω) =
|D1E |(Ω).

The following Fleming–Rishel coarea formula (see [21]) establishes an important
connection between BV functions and sets of finite perimeter:

|Du|(Ω) =

∫ +∞

−∞
P ({x ∈ Ω : u(x) > t},Ω) dt.(2.2)
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APPROXIMATION OF A FREE DISCONTINUITY PROBLEM 1175

We say that u ∈ BV (Ω) belongs to the space of special functions of bounded variation
SBV (Ω) if

|Du|(Ω) =

∫
Ω

|∇u| dx +

∫
Su

|u+ − u−| dHn−1 .

Functions like the Cantor–Vitali function, whose derivative is concentrated on Can-
tor’s middle third set, are then excluded by SBV (Ω) (see [1, 17]).

Given a Borel function u : Ω → R we say that u ∈ GSBV (Ω) if (see [2, 17])

−N ∨ u ∧N ∈ SBVloc(Ω) ∀N ∈ N.(2.3)

The jump set of u is given by

Su =

∞⋃
N=1

S−N∨u∧N .

Furthermore, if u ∈ GSBV (Ω), then Su is countably (n−1)-rectifiable, ∇u exists a.e.
in Ω and is given by (see [2])

∇u = ∇(−N ∨ u ∧N) a.e. on {x ∈ Ω : |u| ≤ N} ∀N ∈ N.

We also set

GSBV 2(Ω) = {u ∈ GSBV (Ω) : ∇u ∈ [GSBV (Ω)]n} .

Given u ∈ GSBV 2(Ω), we use the notation ∇2
i,ju = ∇j(∇iu) and, in the one-

dimensional case, u′′ = (u′)′. Moreover we set

S∇u =

n⋃
i=1

S∇iu.

The following compactness result has been proved by Carriero, Leaci, and Tomarelli
in [12].

Theorem 2.1. Let (uh) ⊂ GSBV 2(Ω) be a sequence such that

‖uh‖L2 , Hn−1(Suh
∪ S∇uh

) ,

∫
Ω

|∇2uh|2 dx

are uniformly bounded in h. Then there exist a subsequence (uhk
) and u ∈ GSBV 2(Ω)∩

L2(Ω) such that, as k → +∞,
uhk

→ u strongly in L1(Ω),

∇uhk
→ ∇u a.e. in Ω,

∇2uhk
⇀ ∇2u weakly in L2(Ω;Mn×n) .

Finally, we recall the following lemma (see [10]).
Lemma 2.2. Let µ : B(Ω) → [0,+∞] be a σ-finite measure, and let (fi) ⊂ L1(Ω)

be a sequence of nonnegative functions. Then,∫
Ω

sup
i∈N

fi(x) dµ(x)

= sup

{
k∑

i=1

∫
Ai

fi(x) dµ(x) : Ai ⊂ Ω open and mutually disjoint, k ∈ N

}
.
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1176 LUIGI AMBROSIO, LORIS FAINA, AND RICCARDO MARCH

We now recall the definition and some properties of Γ-convergence (see [15]). Let
X be a metric space and let fε : X → [0,+∞] be a family of functions indexed by
ε > 0. We say that fε Γ-converge as ε→ 0+ to f : X → [0,+∞] if the following two
conditions

∀xε → x lim inf
ε→0+

fε(xε) ≥ f(x)(2.4)

and

∃xε → x lim sup
ε→0+

fε(xε) ≤ f(x)(2.5)

are fulfilled for every x ∈ X. The Γ-limit, if it exists, is unique and lower semicon-
tinuous. The Γ-convergence is stable under continuous perturbations, that is, fε + g
Γ-converge to f + g if fε Γ-converge to f and g is continuous. The most important
property of Γ-convergence is the following: if (xε) is asymptotically minimizing, i.e.,

lim
ε→0+

(
fε(xε)− inf

X
fε

)
= 0,(2.6)

and if xεh converge to x for some sequence εh → 0, then x minimizes f .

3. Statement of main results. Let Φ(x, u) = µ|u − g|2, µ > 0, and 0 < β ≤
α ≤ 2β. For every u ∈ GSBV 2(Ω) ∩ L2(Ω) and every g ∈ L∞(Ω), we write (1.4) as

F (u) =

∫
Ω

(|∇2u|2 + µ|u− g|2) dx + (α− β)Hn−1(Su) + βHn−1(Su ∪ S∇u).

In [12], using Theorem 2.1 and a suitable lower semicontinuity theorem in GSBV 2(Ω),
Carriero, Leaci, and Tomarelli proved that the problem

(P) min
{
F (u) : u ∈ GSBV 2(Ω) ∩ L2(Ω)

}
has at least one solution.

For every ε > 0 and any function v ∈W 1,2(Ω; [0, 1]), let us define

Gε(v) =

∫
Ω

(
ε|∇v|2 +

(v − 1)2

4ε

)
dx.

Our aim is to approximate F , in the sense of Γ-convergence, by a family of elliptic
functionals Fε which are formally defined by

Fε(u, s, σ) =

∫
Ω

(σ2 + κε)|∇2u|2 dx + µ

∫
Ω

|u− g|2 dx + (α− β)Gε(s)

+ βGε(σ) + ξε

∫
Ω

(s2 + ζε)|∇u|γ dx(3.1)

for suitable nonnegative infinitesimals κε, ξε, ζε (in some cases they are allowed to
vanish; see the statements below). This formula makes sense if u ∈ W 2,2(Ω) and
s, σ ∈W 1,2(Ω); however, in the case κε = 0, because of the coefficient σ2 multiplying
the second derivatives, the functionals Fε are not coercive in these spaces. In section 5
we identify a domain D(Ω) of the functionals Fε such that the problem
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APPROXIMATION OF A FREE DISCONTINUITY PROBLEM 1177

(Pε) min {Fε(u, s, σ) : (u, s, σ) ∈ D(Ω)}
has at least one solution, provided γ > 2 and κε + ζε > 0.

We define

X(Ω) = L2(Ω)× L∞(Ω; [0, 1])× L∞(Ω; [0, 1]) ⊃ D(Ω)

and we denote by F : X(Ω) → [0,+∞] the functional defined by

F(u, s, σ) =

{
F (u) if u ∈ GSBV 2(Ω), s ≡ 1, σ ≡ 1,
+∞ otherwise.

Analogously, we denote by Fε : X(Ω) → [0,+∞] the functional defined by

Fε(u, s, σ) =

{
Fε(u, s, σ) if (u, s, σ) ∈ D(Ω),
+∞ otherwise.

We first prove the lower inequality of Γ-convergence.
Theorem 3.1. Assume that γ ≥ 2, that

lim
ε→0+

ξε
εγ−1

= +∞,(3.2)

and that either κε > 0 for ε small enough or ζε > 0 for ε small enough. Then, for
every triple (u, s, σ) ∈ X(Ω) and for every family (uε, sε, σε) ∈ D(Ω) converging to
(u, s, σ) in [L1(Ω)]3 as ε→ 0+, we have

lim inf
ε→0+

Fε(uε, sε, σε) ≥ F(u, s, σ) .

Moreover, (3.2) can be replaced by the condition ξε ≥ 0 in the case α = β.
Then we prove the equicoercivity of the family (Fε) under the same assumptions

on γ and on the infinitesimals κε, ξε, ζε made in Theorem 3.1.
Theorem 3.2. Let (uε, sε, σε) ∈ D(Ω) be such that

sup
ε>0

Fε(uε, sε, σε) < +∞.

Then the family (uε, sε, σε) is relatively compact in the [L1(Ω)]3 topology as ε → 0+

and any limit point is of the form (u, 1, 1) with u ∈ GSBV 2(Ω) ∩ L2(Ω).
We now consider the upper inequality of Γ-convergence. We first state our full

Γ-convergence result in the special case when n = 2, γ = 2 and α = β. We recall that
a domain Ω is strictly star-shaped if there exists x0 ∈ Ω such that t(Ω−x0)+x0 ⊂⊂ Ω
for any t ∈ [0, 1).

Theorem 3.3. Assume that n = γ = 2, α = β, and Ω is strictly star-shaped.
Assume that κε > 0 and κε = o(ε4), while ξε = ζε = 0. Then the family (Fε)
Γ-converges to F in the [L1(Ω)]3 topology as ε→ 0+.

Then from the properties of Γ-convergence and Theorem 3.2, if (ūε, s̄ε, σ̄ε) mini-
mizes Fε, then the family (ūε, s̄ε, σ̄ε) is relatively compact in [L1(Ω)]3 as ε→ 0+ and
any limit point corresponds to a triple (u, 1, 1) with u minimizer of F .

Notice that in the case α = β, ξε = 0, the functionals Fε do not depend on s;
hence we can write them in the much simpler form

Fε(u, σ) =

∫
Ω

(σ2 + κε)|∇2u|2 dx + µ

∫
Ω

|u− g|2 dx + βGε(σ) .
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1178 LUIGI AMBROSIO, LORIS FAINA, AND RICCARDO MARCH

Now we consider a more general situation. For every set A ⊂ Rn and every positive
real number ρ, we denote by (A)ρ the open tubular neighborhood of A with radius
ρ, that is, (A)ρ = {x ∈ Rn : dist(x,A) < ρ}. We define the Minkowski (n − 1)-
dimensional upper and lower content of the set A, respectively, by

M∗(A) = lim sup
ρ→0+

meas((A)ρ)

2ρ
, M∗(A) = lim inf

ρ→0+

meas((A)ρ)

2ρ
.

It can be shown (see [20, section 3.2.39]) that meas((A)ρ)/ρ converges to 2Hn−1(A)
as ρ → 0+ for any compact subset A of a C1 hypersurface. In particular, by inner
approximation this implies

M∗(A) ≥ Hn−1(A)

for any u ∈ BV (Ω) and any Borel set A ⊂ Su, because Hn−1-almost all of Su can be
covered by C1 hypersurfaces. The inequality M∗(A) ≤ Hn−1(A), which implies

lim
ρ→0+

meas((A)ρ)

2ρ
= Hn−1(A) ,

holds under very mild regularity assumptions on the set A [5].
We are able to prove the upper inequality of Γ-convergence under the assumption

that u ∈ L∞(Ω), |∇u| ∈ Lγ(Ω) and that, for the sets Su and Su ∪ S∇u, Hausdorff
measure and Minkowski content coincide.

Theorem 3.4. Assume that γ ≥ 2, κε = 0, ζε > 0, ξε satisfies (3.2) and ξεζε =
o(εγ−1). Then, for every triple (u, s, σ) ∈ X(Ω) such that u ∈ L∞(Ω), |∇u| ∈ Lγ(Ω),
and

M∗(Su) ≤ Hn−1(Su) , M∗(Su ∪ S∇u) ≤ Hn−1(Su ∪ S∇u) ,

there exist (uε, sε, σε) ∈ D(Ω) converging to (u, s, σ) in [L1(Ω)]3 as ε→ 0+ such that

lim sup
ε→0+

Fε(uε, sε, σε) ≤ F(u, s, σ).(3.3)

Remark 3.5. The Γ-convergence result still holds if the term µ|u − g|2 in the
functional F is replaced by Φ(x, u) in such a way that the functional u→ ∫

Ω
Φ(x, u) dx

is lower semicontinuous with respect to the strong L1(Ω) topology and continuous
with respect to the strong L2(Ω) topology (see section 7). Let Φ be a Carathéodory
function on Ω×R, i.e., Φ(·, p) is measurable for any p ∈ R and Φ(x, ·) is continuous
for almost every x ∈ Ω. Then a sufficient condition for Γ-convergence is the following
[19]: {

Φ : Ω×R→ R is Carathéodory ,
0 ≤ Φ(x, u) ≤ a(x) + b|u|2 ,

with a ∈ L1(Ω) and b ≥ 0.

4. Basic properties of GSBV 2 functions. In this section we give some tech-
nical results concerning the one-dimensional sections of functions u ∈ GSBV (Ω). Let
ν ∈ Sn−1 = {x ∈ Rn : |x| = 1} be a fixed direction. We set

Πν = {x ∈ Rn : 〈x, ν〉 = 0},
Ωx = {t ∈ R : x + tν ∈ Ω} (x ∈ Πν),

Ων = {x ∈ Πν : Ωx �= ∅}.
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APPROXIMATION OF A FREE DISCONTINUITY PROBLEM 1179

The sets Ωx are the 1-dimensional slices of Ω indexed by x ∈ Πν , and Ων is the
projection of Ω on Πν . Given u ∈ GSBV (Ω), we define for Hn−1-a.e. x ∈ Ων the
restriction

ux(t) = u(x + tν) for a.e. t ∈ Ωx.

The following slicing result can be obtained from [1, Theorem 3.3] and [2, section 1].
Lemma 4.1. Let u : Ω → R be a measurable function. Then u ∈ GSBV (Ω) if

and only if, for any ν ∈ Sn−1, ux ∈ GSBV (Ωx) for Hn−1-a.e. x ∈ Ων and∫
Aν

|D(−N ∨ ux ∧N)|(Ax) dHn−1 < +∞(4.1)

for any open set A ⊂⊂ Ω and any N ∈ N.
Moreover, if u ∈ GSBV (Ω) and ν ∈ Sn−1, then for Hn−1-a.e. x ∈ Ων we have
(a) u′

x(t) = 〈∇u(x + tν), ν〉 for a.e. t ∈ Ωx;
(b) Sux = (Su)x.
The proof of the following lemma can be found in Federer [20, section 3.2.22].
Lemma 4.2. For every countably Hn−1-rectifiable set E ⊂ Rn there exists a Borel

function νE : E → Sn−1 such that∫
E

|〈ν, νE(x)〉| dHn−1(x) =

∫
Eν

H0(Ex) dHn−1(x) ∀ν ∈ Sn−1.

The function νE(x) is a normal unit vector to E at x in an approximate sense (see
[20, section 3.2.16]).

Although GSBV (Ω) is not a vector space, we can prove that the natural energy
spaces for our problems do have a vector structure.

Proposition 4.3. The set

Y =

{
u ∈ GSBV (Ω) :

∫
Ω

|∇u| dx +Hn−1(Su) < +∞
}

is a vector space.
Proof. Let u1, u2 ∈ Y , and ν ∈ Sn−1 be fixed. By Lemma 4.1(a), (b) and

Lemma 4.2 we have∫
Ωx

|u′
ix| dt +H0(Suix) < +∞ for i = 1, 2

for Hn−1-a.e. x ∈ Ων , because∫
Ων

[∫
Ωx

|u′
ix| dt +H0(Suix

)

]
dHn−1 ≤

∫
Ω

|∇ui| dx +Hn−1(Sui
) < +∞.

In particular, uix ∈ L∞
loc(Ωx), and since SBVloc(Ωx) is a vector space u1x+u2x belongs

to SBVloc(Ωx) for Hn−1-a.e. x ∈ Ων . Since the condition (4.1) is easily verified the
conclusion follows by using Lemma 4.1.

Finally, we show how in GSBV 2(Ω) second order derivatives and jump set of the
derivative can be recovered as well by a slicing method.

Lemma 4.4. Let u ∈ GSBV 2(Ω) be such that∫
Ω

|∇2u| dx +Hn−1(S∇u) < +∞.
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1180 LUIGI AMBROSIO, LORIS FAINA, AND RICCARDO MARCH

Then, for any ν ∈ Sn−1 the function 〈∇u, ν〉 belongs to GSBV (Ω) and for Hn−1-a.e.
x ∈ Ων we have

(a) u′
x ∈ GSBV (Ωx);

(b) u′′
x(t) = 〈∇〈∇u, ν〉(x + tν), ν〉 for a.e. t ∈ Ωx;

(c) Su′
x

= (S∇u·ν)x.
Proof. By Proposition 4.3 it follows that 〈∇u, ν〉 ∈ GSBV (Ω) whenever ∇iu ∈

GSBV (Ω) for i = 1, . . . , n. By Lemma 4.1(a) it follows that u′
x = 〈∇u, ν〉x a.e. in Ωx

for Hn−1-a.e. x ∈ Ων ; in particular, u′
x ∈ GSBV (Ωx) for Hn−1-a.e. x ∈ Ων . Then,

statements (b), (c) follow by applying Lemma 4.1(a,b) to 〈∇u, ν〉.
Corollary 4.5. The set{

u ∈ GSBV 2(Ω) :

∫
Ω

|∇2u| dx +Hn−1(Su ∪ S∇u) < +∞
}

is a vector space.
Proof. The proof is the same as for Proposition 4.3 using Lemma 4.4 instead of

Lemma 4.1.
We conclude this section with an interpolation inequality in W 2,2 which provides

a mild estimate of
∫ |∇u|2 dx with the Blake–Zisserman energy (see also [12]).

Proposition 4.6. Let A, B ⊂ Rn be open sets with (A)2r ⊂⊂ B. Then

∫
A

|∇u|2 dx ≤ 16n

[
r−2

∫
B

u2 dx + 2r2

∫
B

|∇2u|2 dx
]

∀u ∈W 2,2
loc (B) .(4.2)

Proof. We prove the inequality only in the case n = 1; the general case can be
achieved by a slicing argument, taking into account Lemma 4.4(b).

Let x be such that the interval [x−2r, x+2r] ⊂ B and choose x1 ∈ [x+r, x+2r],
x2 ∈ [x− 2r, x− r] such that

ru(x1) =

∫ x+2r

x+r

u(s) ds, ru(x2) =

∫ x−r

x−2r

u(s) ds

and x3 ∈ [x2, x1] such that u′(x3) = [u(x1) − u(x2)]/(x1 − x2). Then, for any y ∈
[x− 2r, x + 2r], using twice Hölder inequality we estimate

|u′(y)|2 ≤ 2|u′(x3)|2 + 2

(∫ y

x3

u′′(s) ds
)2

≤ 4(u2(x1) + u2(x2))

r2
+ 2|x3 − y|

∣∣∣∣
∫ y

x3

|u′′(s)|2 ds
∣∣∣∣

≤ 4

r3

∫ x+2r

x−2r

u2(s) ds + 8r

∫ x+2r

x−2r

|u′′(s)|2 ds.

By integration we obtain

∫ x+2r

x−2r

|u′|2 dy ≤ 16

r2

∫ x+2r

x−2r

u2 dy + 32r2

∫ x+2r

x−2r

|u′′|2 dy .

Covering A by a finite number of intervals of length 4r contained in B the conclusion
follows.
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APPROXIMATION OF A FREE DISCONTINUITY PROBLEM 1181

5. The approximation framework. In this section we find a domain suitable
for coercivity and lower semicontinuity of the functionals Fε formally defined by (3.1).

We often set w = (u, s, σ) and we always assume that 0 ≤ s ≤ 1, 0 ≤ σ ≤ 1
almost everywhere. If κε = 0, we define p = 2γ/(γ + 2) and

D(Ω) =
{

(u, s, σ) ∈ X(Ω) : u, s, σ ∈W 1,2(Ω), σ∇u ∈W 1,p(Ω;Rn)
}
,

if κε > 0 we define

D(Ω) = W 2,2
loc (Ω)×W 1,2(Ω; [0, 1])×W 1,2(Ω; [0, 1]) .

If u ∈ D(Ω) and κε = 0, the approximate differentiability of u and of σ∇u imply that
∇2u exists a.e. in {σ > 0} and is given by

∇2u =
∇(σ∇u)−∇σ ⊗∇u

σ
.(5.1)

We also set ∇2u = 0 in {σ = 0}.
In the following we do not need to consider the function s in the case α = β. We

now prove a compactness theorem for the sublevels of Fε.
Theorem 5.1. Assume that γ > 2, κε+ζε > 0 and let (wh) = (uh, sh, σh) ⊂ D(Ω)

be a sequence such that

sup
h

Fε(wh) < +∞.

Then there exist a subsequence (whk
) and w = (u, s, σ) ∈ D(Ω) such that (whk

)
converge in [L1(Ω)]3 to w and (∇uhk

) converge a.e. to ∇u in {σ > 0}.
Proof. From (4.2), in the case κε > 0, we have that (uh) is bounded in W 2,2(A)

for any open set A ⊂⊂ Ω. The statement then follows from Rellich theorem. Hence,
in the following we consider the more delicate case when κε = 0 and ζε > 0.

From the definition of Fε the sequences (sh) and (σh) are bounded in W 1,2(Ω).
Moreover, since (|∇uh|) is bounded in Lγ(Ω) and

∇(σh∇uh) = σh∇2uh +∇σh ⊗∇uh,

vh = σh∇uh are also bounded in W 1,p(Ω;Rn). Hence, possibly extracting a further
subsequence we can assume that (vhk

) is converging a.e. in Ω. It easily follows that
∇uhk

= vhk
/σhk

converge a.e. to ∇u in {σ > 0}.
In order to prove that σ∇u ∈ W 1,p(Ω;Rn) (hence w ∈ D(Ω)), we notice that by

Hölder inequality, we have

lim
h→+∞

∫
{σ=0}

|σh∇uh| dx = 0

hence (possibly extracting a subsequence) σh∇uh converge a.e. to σ∇u in the whole of
Ω. Since (σh∇uh) is also bounded in W 1,p(Ω;Rn), it follows that σ∇u ∈W 1,p(Ω;Rn)
and that σhk

∇uhk
weakly converge in W 1,p(Ω;Rn) to σ∇u.

Now we prove the lower semicontinuity of Fε.
Theorem 5.2. Assume that γ > 2, κε+ζε > 0 and let (wh) = (uh, sh, σh) ⊂ D(Ω)

be converging in [L1(Ω)]3 to w = (u, s, σ) ∈ D(Ω). Then

lim inf
h→+∞

Fε(wh) ≥ Fε(w) .
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1182 LUIGI AMBROSIO, LORIS FAINA, AND RICCARDO MARCH

Proof. In this case we also consider only the more difficult case when κε = 0 and
ζε > 0. It is not restrictive to assume that (Fε(wh)) is converging to a finite limit and,
by Theorem 5.1 and its proof, we can also assume that ∇uh converge to ∇u a.e. in
{σ > 0} and σh∇uh weakly converge in W 1,p(Ω;Rn) to σ∇u.

Since the sequences (sh) and (σh) are bounded in W 1,2(Ω), they weakly converge,
respectively, to s, σ and therefore the terms Gε(s) and Gε(σ) are lower semicontinu-
ous. The lower semicontinuity of

∫
Ω

(s2 + ζε)|∇u|γ dx directly follows by Ioffe lower
semicontinuity theorem (see [10, Theorem 4.1.1]).

Finally, the identity

∇(σh∇uh) = σh∇2uh +∇σh ⊗∇uh

and the weak convergence of ∇(σh∇uh) to ∇(σ∇u) easily imply that ∇2uh weakly
converge to ∇2u in L2(K;Mn×n) on any compact set K ⊂ Ω on which (σh) uniformly
converges to σ, (∇uh) uniformly converges to ∇u, and infK σ > 0. Then, Ioffe lower
semicontinuity theorem again gives∫

K

σ2|∇2u|2 dx ≤ lim inf
h→+∞

∫
K

σ2
h|∇2uh|2 dx.

Let δ > 0; by Egorov theorem we can cover almost all of {σ ≥ δ} by an increasing
sequence of compact sets on which (σh) and (∇uh) are uniformly converging. As a
consequence, the inequality above holds with {σ ≥ δ} in place of K, and letting δ ↓ 0
we obtain the lower semicontinuity of the term

∫
Ω
σ2|∇2u|2 dx.

From the compactness and the lower semicontinuity properties of the functional
Fε it follows that for any ε > 0 the problem

(Pε) min {Fε(u, s, σ) : (u, s, σ) ∈ D(Ω)}
has at least one solution, provided γ > 2 and κε + ζε > 0. Finally, if κε > 0, the
problem (Pε) has a solution also in the case γ = 2.

6. The lower inequality. In this section we prove the lower inequality of Γ-
convergence (2.4) and the equicoercivity of the family (Fε). In the following it will
be convenient also to consider functionals depending on the domain of integration.

The following lower bound for the jump terms in the one-dimensional case has
been shown by Bellettini and Coscia in [7, Theorem 3.1].

Lemma 6.1. Assume that κε, ξε, ζε are as in Theorem 3.1 and γ ≥ 2. Let I ⊂ R
be a bounded open set and εh → 0+. Then, for every sequence (wh) converging to w
in [L1(I)]3 as h→ +∞ such that Fεh(wh) is bounded, we have

lim inf
h→+∞

[(α− β)Gεh(sh, I) + βGεh(σh, I)] ≥ (α− β)H0(Su ∩ I)

+ βH0 ((Su ∪ Su′) ∩ I) .(6.1)

The condition (3.2) on ξε can be dropped in the case α = β.
Since our functionals are slightly different from those in [7], some remarks are

necessary. Indeed, the functionals in [7] are given by

Fε(u, s, σ) =

∫
Ω

(σ2 + κε)|∇2u|2 dx + µ

∫
Ω

|u− g|2 dx + (α− β)Gε(s)

+ βGε(σ) + ξε

∫
Ω

s2|∇u|2 dx ,
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APPROXIMATION OF A FREE DISCONTINUITY PROBLEM 1183

hence the differences with respect to ours are two: first they assume that ζε = 0 and
γ = 2 and then they prove the lower bound only in the case when κε > 0 (hence
uh ∈W 2,2(I)). The assumption that ζε = 0 is not a problem, since smaller function-
als are considered, and also a general exponent γ can be considered, provided (3.2)
holds. However, for technical reasons related to the proof of the Γ-limsup inequality,
in particular, the difficulty in estimating the second derivatives of uε = ψεu in the
proof of Theorem 3.4 (this can be avoided in the case n = 1 using suitable interpo-
lating cubic polynomials), we have preferred a different formulation of the energy in
the larger class D(Ω), which still provides compactness of minimizing sequences and
lower semicontinuity of the energy. Moreover, the proof of the Γ-liminf inequality
of Bellettini and Coscia works, essentially with no modification, also for our more
general functionals. Notice also that our full Γ-convergence result Theorem 3.3 fits
exactly in the Bellettini and Coscia framework.

The reason why no condition on ξε (besides ξε ≥ 0) is necessary in the case α = β
is that the term ξε

∫
s2|∇u|γ dx has been added to the energy to force σh to tend to

zero at least twice (paying asymptotically at least 2β ≥ α) close to jumps of u if sh
is far away from 0 (if this does not happen and (3.2) holds, then the additional term
diverges; see Lemma 3.2(i) of [7]); in the case when α = β it is not necessary to force
this behavior of σh, since σh is already forced by the other terms of Fε to tend to zero
at least once (paying asymptotically at least β) close to jumps of u or of u′, regardless
of the values of sh.

Finally, we notice that we can restate (6.1) as follows:

lim inf
h→+∞

[tFεh(wh) + (α− β)Gεh(sh, I) + βGεh(σh, I)]

≥ (α− β)H0(Su ∩ I) + βH0 ((Su ∪ Su′) ∩ I) ∀t > 0 .(6.2)

The advantage of this new formulation is that the a priori assumption that Fεh(wh)
is bounded can be dropped.

6.1. Proof of Theorem 3.1. Let (wε) ∈ D(Ω), w ∈ X(Ω), be such that wε → w
in [L1(Ω)]3 as ε→ 0+. We assume that

+∞ > L = lim inf
ε→0

Fε(wε,Ω) = lim
h→+∞

Fεh(wεh ,Ω) ,(6.3)

otherwise the result is trivial. For notational simplicity we set wεh = (uh, sh, σh) and
we assume that wεh converge a.e. to (u, s, σ) as h→ +∞.

We also assume that (wh) converges to w fast enough, i.e.,
∑

h ‖wh−w‖L1 < +∞.
This assumption and Fubini theorem imply (with the notation of section 4)

lim
h→∞

whx = wx a.e. in Ωx for Hn−1-a.e. x ∈ Ων

for any direction ν ∈ Sn−1, and this will be useful in what follows.
If either s or σ were not identically equal to 1, then by the Fatou’s lemma we

would get

L ≥ lim inf
h→+∞

[
(α− β)

∫
{s �=1}

(sh − 1)2

4εh
dx + β

∫
{σ �=1}

(σh − 1)2

4εh
dx

]
≥ +∞,

which contradicts the assumption that L < +∞. Therefore, we will assume that s ≡ 1
and σ ≡ 1. As before we do not need to consider the function s in the case α = β.
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1184 LUIGI AMBROSIO, LORIS FAINA, AND RICCARDO MARCH

The proof now follows by proving separately the following inequalities:

lim inf
h→+∞

∫
Ω

σh
2|∇2uh|2 dx ≥

∫
Ω

|∇2u|2 dx ,(6.4)

lim inf
h→+∞

[(α− β)Gεh(sh,Ω) + βGεh(σh,Ω)] ≥ (α− β)Hn−1(Su)

+ βHn−1(Su ∪ S∇u) .(6.5)

The lower semicontinuity of the term
∫ |u − g|2 dx with respect to the strong L1(Ω)

topology then completes the proof.
Possibly extracting a subsequence (this is allowed, since we are assuming that

Fεh(wεh) is converging) we can assume that both lim inf in (6.4) and (6.5) are finite
limits, denoted by L1 and L2, respectively.

We first prove (6.4). Let ψ(t) =
∫ t

0
(1− τ) dτ ; using (6.3) we have∫

Ω

|∇ψ(σh)| dx =

∫
Ω

|∇σh|(1− σh) dx ≤
∫

Ω

[
εh|∇σh|2 +

(1− σh)2

4εh

]
dx ≤ L + 1

β

for h large enough. Then, by the coarea formula (2.2), we have∫ ψ(1)

0

P ({ψ(σh) > t},Ω) dt =

∫
Ω

|∇ψ(σh)| dx ≤ L + 1

β

for h large enough. By the Fatou lemma we then get∫ ψ(1)

ψ(a)

lim inf
h→+∞

P ({ψ(σh) > t},Ω) dt ≤ lim inf
h→+∞

∫
Ω

|∇ψ(σh)| dx ≤ L + 1

β

for any a ∈ (0, 1). Therefore there exists t0 = ψ(θ) ∈ (ψ(a), ψ(1)) for some θ ∈ (a, 1)
such that

lim inf
h→+∞

P ({ψ(σh) > t0},Ω) ≤ l < +∞(6.6)

with l = (L + 1)/[β(ψ(1)− ψ(a))].
Then, if we set Eh = {σh > θ}, by (6.6) we get P (Eh,Ω) ≤ l + 1 for infinitely

many h; for notational simplicity we will assume in the following that the inequality
is true for any h (in the general case a further subsequence must be extracted). By
the L1 convergence of (σh) to 1 we obtain

meas(Ω \ Eh) ≤ 1

1− θ

∫
Ω

(1− σh) dx→ 0 .

Then we define

vh = uh1Eh
.(6.7)

By the locality property (2.1) we get

∇vh = 1Eh
∇uh , ∇2vh = 1Eh

∇2uh

for a.e. x ∈ Ω. Since

−N ∨ vh ∧N = 1Eh
[−N ∨ uh ∧N ] ∀N ∈ N ,
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APPROXIMATION OF A FREE DISCONTINUITY PROBLEM 1185

and taking into account that Eh has finite perimeter, from [36, Chapter 4, section
6.4] it follows that vh ∈ GSBV (Ω). Analogously,

−N ∨ (∇ivh) ∧N = 1Eh
[−N ∨ (∇iuh) ∧N ] ∈ SBVloc(Ω)

for any N ∈ N and any i = 1, . . . , n. Then vh ∈ GSBV 2(Ω) and we have

Hn−1(Svh ∪ S∇vh) ≤ P (Eh,Ω) ≤ l + 1 for every h ∈ N .

Then, since σh ≥ θ on Eh, the sequence (vh) satisfies all the assumptions of
the compactness Theorem 2.1, hence we can assume (again, possibly passing to a
subsequence) that (vh) converges in L1(Ω) to some function v ∈ GSBV 2(Ω) with
∇vh → ∇v a.e. in Ω and ∇2vh weakly converging to ∇2v in L2(Ω;Mn×n). Since
(uh) converges to u in L1(Ω) and meas(Ω \ Eh) → 0, we obtain that u = v ∈
GSBV 2(Ω); moreover, by the lower semicontinuity of quadratic forms with respect
to weak convergence in L2 we get

L1 ≥ lim inf
h→+∞

∫
Eh

θ2|∇2uh|2 dx = lim inf
h→+∞

∫
Ω

θ2|∇2vh|2 dx ≥
∫

Ω

θ2|∇2u|2 dx .

By letting a ↑ 1 (hence θ → 1) we obtain (6.4).
The relation (6.5) will be proved using (6.2) and a slicing argument. Let A ⊂ Ω

be open and ν ∈ Sn−1 be fixed. By using the notation of section 4 we have

Gεh(sh, A) ≥
∫
A

(
εh|〈∇sh, ν〉|2 +

(sh − 1)2

4εh

)
dx

=

∫
Aν

dHn−1(x)

∫
Ax

(
εh|s′hx|2 +

(shx − 1)2

4εh

)
dt

=

∫
Aν

Gεh(shx, Ax) dHn−1(x) .

An analogous relation holds for Gεh(σh, A) and, taking into account Lemma 4.4, for
Fεh(wh, A).

Since whx converge to wx in [L1(Ωx)]3 for Hn−1-almost every x ∈ Ων , by using
Fatou’s lemma, (6.2), Lemmas 4.1 and 4.4, and eventually Lemma 4.2, we get

lim inf
h→+∞

[tFεh(wh) + (α− β)Gεh(sh, A) + βGεh(σh, A)]

≥
∫
Aν

lim inf
h→+∞

[tFεh(whx) + (α− β)Gεh(shx, Ax) + βGεh(σhx, Ax)] dHn−1(x)

≥ (α− β)

∫
Aν

H0(Sux ∩Ax) dHn−1(x) + β

∫
Aν

H0((Sux ∪ Su′
x
) ∩Ax) dHn−1(x)

= (α− β)

∫
Aν

H0((Su ∩A)x) dHn−1(x) + β

∫
Aν

H0(((Su ∪ S∇u·ν) ∩A)x) dHn−1(x)

= α

∫
Su∩A

|〈ν, νu(x)〉| dHn−1(x) + β

∫
(S∇u·ν\Su)∩A

|〈ν, ν∇u(x)〉| dHn−1(x)

for any t > 0, where νu(x) and ν∇u(x) are approximate unit normals to Su and S∇u,
respectively. Since Fεh(wεh ,Ω) converges to L, then by letting t ↓ 0 we obtain

lim inf
h→+∞

[(α− β)Gεh(sh, A) + βGεh(σh, A)](6.8)

≥ α

∫
Su∩A

|〈ν, νu(x)〉| dHn−1(x) + β

∫
(S∇u·ν\Su)∩A

|〈ν, ν∇u(x)〉| dHn−1(x) .
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1186 LUIGI AMBROSIO, LORIS FAINA, AND RICCARDO MARCH

We now apply Lemma 2.2 in the following framework:
• fν(x) = α|〈ν, νu(x)〉|1Su + β|〈ν, ν∇u(x)〉|1S∇u·ν\Su

,
• µ = Hn−1'(Su ∪ S∇u) ,

with ν varying in a countable dense subset D of Sn−1. Since supν∈D fν = α1Su +
β1S∇u\Su

(because any x ∈ S∇u belongs to S∇u·ν provided 〈ν,∇+u(x)−∇−u(x)〉 �= 0),
by Lemma 2.2 we have that

(α− β)Hn−1(Su) + βHn−1(Su ∪ S∇u)

is equal to the supremum of

k∑
i=1

{
α

∫
Su∩Ai

|〈νi, νu(x)〉| dHn−1(x) + β

∫
(S∇u·νi\Su)∩Ai

|〈νi, ν∇u(x)〉| dHn−1(x)

}

among all finite families (Ai, νi) with νi ∈ D and Ai ⊂ Ω open and pairwise disjoint.
By (6.8) and the superadditivity of the lim inf operator, any of these sums is less than
L2, whence the inequality (6.5) follows (see also [5]).

6.2. Proof of Theorem 3.2. By the equiboundedness of Fε(wε) it follows as
before that (sε, σε) → (1, 1) in [L1(Ω)]2 as ε→ 0+.

Reasoning as in the proof of (6.4) of Theorem 3.1 we can find a sequence εh → 0+

and measurable sets Eh such that meas(Ω \ Eh) → 0 and vεh = uεh1Eh
converge in

L1(Ω) to u ∈ GSBV 2(Ω) ∩ L2(Ω). Since (uε) is equibounded in L2(Ω), by Hölder
inequality ‖uεh − vεh‖L1 → 0 as h→ +∞, hence uεh → u in L1(Ω).

7. The upper inequality.

7.1. Proof of Theorem 3.3. We can assume without losing generality that
u ∈ GSBV 2(Ω) ∩ L2(Ω), |∇2u| ∈ L2(Ω), and σ ≡ 1. Since we are assuming that
α = β we simply set sε ≡ 1 for any ε > 0. We construct a family uε converging to
u in L2(Ω), so that we can neglect the term µ

∫ |u− g|2 dx, which is continuous with
respect to the strong L2(Ω) topology, and we then assume µ = 0.

Assuming that Ω is star-shaped with respect to the origin, we set Ωt = tΩ with
t ∈ (0, 1) and construct a family wε = (uε, sε, σε) ∈ D(Ωt) such that (as in the previous
section we emphasize the dependence on the domain of integration)

lim sup
ε→0+

Fε(wε,Ωt) ≤ F(w,Ω) .(7.1)

Then, the functions wε,t(x) = wε(tx) belong to D(Ω) and satisfy

lim sup
ε→0+

Fε(wε,t,Ω) ≤ t−nF(w,Ω) ,

hence the desired family of the Γ-limsup inequality can be constructed by a diagonal
argument by letting t ↑ 1.

In order to construct the family (wε) satisfying (7.1) we follow the outline of [6],
assuming first that

M∗ ((Su ∪ S∇u) ∩K) = Hn−1 ((Su ∪ S∇u) ∩K) for any K ⊂ Ω compact .(7.2)

We restrict our choice to the functions uε and σε that, outside a tubular neighborhood
of Su ∪ S∇u, with radius depending on ε, are, respectively, equal to u and 1.
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APPROXIMATION OF A FREE DISCONTINUITY PROBLEM 1187

Setting S̃u = Su ∪ S∇u and τ(x) = dist(x, S̃u), by the interpolation inequality
(4.2) we obtain a constant C depending only on u such that∫

Ωt\(S̃u)r

|∇u|2 dx ≤ Cr−2(7.3)

for any r sufficiently small. In view of our assumption on κε, we can find an infinites-

imal bε faster than ε such that κε = o(b4ε) (for instance, bε = (εκ
1/4
ε )1/2), and an

infinitesimal ηε faster than
√
ε such that aε = −2ε ln ηε is infinitesimal (for instance,

ηε = ε).
With this choice of infinitesimals, we then define

σε(x) =

{
0 if x ∈ (S̃u)bε ,

1− ηε if x ∈ Ωt \ (S̃u)aε+bε .

Let now yε be the solution of the Cauchy problem

ẏ(t) =
1− y

2ε
, y(bε) = 0,

that is, yε(t) = 1− exp [(bε − t)/(2ε)]. We complete the definition of σε by setting

σε(x) = yε ◦ τ(x) if x ∈ (S̃u)aε+bε \ (S̃u)bε .

Now we turn to the choice of uε. To this aim, we build a smooth function ψε :
Ω → [0, 1] such that ψε = 0 in {τ ≤ bε/2}, ψε = 1 in {τ ≥ bε}, and |∇ψε| = O(1/bε),
|∇2ψε| = O(1/b2ε). Taking into account that |∇τ | = 1 a.e., a function ψε with the
required properties can be built as (χ ◦ τ) ∗ ρ, where ρ is a convolution kernel with
diameter bε/3 and χ(s) = [0 ∨ (6s/bε − 4) ∧ 1]. The assumptions on u and the
interpolation inequality (4.2) yield

u ∈W 2,2
loc (Ω \ S̃u) ,

so that, if we set uε = uψε, we have uε ∈W 2,2(Ωt).
With these choices, we get

Fε(wε,Ωt) =

∫
Ωt

(σ2
ε + κε)|∇2uε|2 dx(7.4)

+βGε(σε,Ωt ∩ ((S̃u)aε+bε \ (S̃u)bε))(7.5)

+β
meas(Ωt ∩ (S̃u)bε)

4ε
(7.6)

+β
η2
ε

4ε
meas(Ωt \ (S̃u)aε+bε) .(7.7)

Since uε ≡ u on {σε > 0} (because ψε ≡ 1 on {τ ≥ bε} ⊃ {σε > 0}), the upper
limit of the term in (7.4) does not exceed∫

Ω

|∇2u|2 dx + lim sup
ε→0+

κε

∫
Ωt∩{bε/2≤τ≤bε}

|∇2uε|2 dx .

Taking into account (7.3), the identity
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1188 LUIGI AMBROSIO, LORIS FAINA, AND RICCARDO MARCH

∇2uε = ψε∇2u + 2∇ψε ⊗∇u + u∇2ψε ,

and our choice of bε we obtain that the lim sup above is zero.
Concerning the term in (7.5), from the proof of Theorem 3.1 of [6] it follows that

its upper limit does not exceed βM∗(S̃u∩Ωt); by (7.2) we obtain that the upper limit
is less than βHn−1(S̃u).

The term in (7.6) is infinitesimal because the Minkowski content is finite and
bε = o(ε), and similarly the term in (7.7) is infinitesimal because η2

ε = o(ε).
This proves, under the additional assumption (7.2), the existence of a family (wε)

satisfying (7.1). The assumption can be removed as follows. Consider for any λ > 0
the penalized problem

min

{∫
Ω

(|∇2v|2 + λ|v − u|2) dx + βHn−1 (Sv ∪ S∇v) : v ∈ GSBV 2(Ω) ∩ L2(Ω)

}
,

and let uλ be a minimizer (see [12]). Notice that F (uλ) ≤ F (u) < +∞, hence uλ → u
as λ→ +∞. Then, it has been proved in [14] that any function uλ fulfills (7.2), and
therefore a family (wε) satisfying (7.1) for (u, 1, 1) can be obtained from those already
constructed for (uλ, 1, 1) by a diagonal argument.

7.2. Proof of Theorem 3.4. Since the proof is similar to that of Theorem
3.3 we sketch only the relevant differences. The function σε is defined in the same
way and sε is constructed analogously in a tubular neighborhood of Su. Let τ1(x) =
dist(x, Su). In order to construct uε we fix some smooth function ψε such that ψε = 0
in {τ1 ≤ bε/2}, ψε = 1 in {τ1 ≥ bε}, and |∇ψε| = O(1/bε). The assumptions on
u yield u ∈ W 1,γ(Ω \ Su), so that setting uε = uψε we have uε ∈ W 1,γ(Ω) and
σε∇uε ∈W 1,p(Ω;Rn).

The cut-off function ψε is built only in the tubular neighborhood of Su, otherwise
the term ξε

∫
(s2

ε + ζε)|∇uε|γdx cannot be controlled in the neighborhood of S∇u \Su.
Then we must set κε = 0 otherwise Fε(wε) is not finite.

With these choices the estimates proceed in the same way as in the proof of
Theorem 3.3 taking into account that the upper limit of the term ξε

∫
(s2

ε+ζε)|∇uε|γdx
does not exceed

ξε

∫
Ω

|∇u|γ dx + lim sup
ε→0+

ξεζε

∫
Ω∩{bε/2≤τ1≤bε}

|∇uε|γ dx .

In view of the assumption on ξεζε, we can find an infinitesimal bε faster than ε such

that ξεζε = o(bγ−1
ε ), for instance, bε = (ε(ξεζε)

1
γ−1 )1/2, so that the lim sup above is

zero.

8. An application to the computation of depth from stereo images. The
Γ-convergent approximation has been experimented on the problem of computation
of depth from a pair of stereo images for the purpose of illustration. In the following
Ω denotes the open set (0, 1)× (0, 1) of R2, and x = (x1, x2). In the case of parallel
camera geometry [22] we choose the expression of the function Φ(x, u) used in [23, 24,
25]:

Φ(x, u) = µ [L(x1, x2)−R(x1 + u, x2)]
2
,

where u is the disparity function, µ > 0 is a parameter, and R, L are bounded
continuous functions corresponding to the right and left image intensities. Depth is
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APPROXIMATION OF A FREE DISCONTINUITY PROBLEM 1189

inversely proportional to disparity. The Γ-convergence theorem may be applied if the
functions R and L satisfy the conditions of the Remark 3.5, which can be fulfilled,
for instance, by means of a convolution of the image intensities with a smooth kernel
having a suitably small diameter. For the purpose of illustration we set γ = 2.

A simple discretization method, commonly used for computer vision problems
[35], may be applied to the functionals Fε in a straightforward way. Discrete versions
of u, s, and σ are defined on a square lattice of coordinates (ih, jh), where h =
1/(N − 1), 0 ≤ i ≤ N − 1, 0 ≤ j ≤ N − 1. We denote by uhi,j , shi,j , and σhi,j ,
an approximation of u(ih, jh), s(ih, jh), and σ(ih, jh), respectively. We denote by

uh, sh, σh ∈ RN2

the vectors of the discrete variables. Then we set κε = 0, ζε > 0,
and we discretize

F1
ε (u, s, σ) =

∫
Ω

σ2|∇2u|2 dx + ξε

∫
Ω

(s2 + ζε)|∇u|2 dx

by

F1
ε,h(uh, sh, σh) =

∑
i,j

{
(σhi,j)

2 1

h2

[
(uhi+1,j − 2uhi,j + uhi−1,j)

2

+ 2(uhi+1,j+1 − uhi,j+1 − uhi+1,j + uhi,j)
2

+ (uhi,j+1 − 2uhi,j + uhi,j−1)2
]

+ ξε((s
h
i,j)

2 + ζε)
[
(uhi+1,j − uhi,j)

2 + (uhi,j+1 − uhi,j)
2
]}

.(8.1)

We set

F2
ε (s, σ) = (α− β)Gε(s) + βGε(σ) ,

and we discretize Gε(s) by

Gε,h(sh) =
∑
i,j

{
ε
[
(shi+1,j − shi,j)

2 + (shi,j+1 − shi,j)
2
]

+
h2

4ε
(shi,j − 1)2

}
,(8.2)

and analogously for Gε(σ). Then we set

F3(u) = µ

∫
Ω

[L(x1, x2)−R(x1 + u(x1, x2), x2)]
2
dx ,

which is discretized by

F3
h(uh) = µ

∑
i,j

h2
(
Lh
i,j −Rh

i+uh
i,j

,j

)2

,(8.3)

where Rh
i,j , Lh

i,j denote an approximation of R(ih, jh), L(ih, jh) and, since uhi,j is
generally not an integer, the discretization of R is computed by means of a linear
interpolation. We set

Fε,h(uh, sh, σh) = F1
ε,h(uh, sh, σh) + F2

ε,h(sh, σh) + F3
h(uh) .

In order to recover a stable solution, the grid must resolve the width of the
transition region of the functions s and σ. Then the discretization step should be
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1190 LUIGI AMBROSIO, LORIS FAINA, AND RICCARDO MARCH

at least h = o(ε) as it has been shown in [8] for the discretization of the Ambrosio
and Tortorelli approximating functionals. A global solution of the discrete nonconvex
variational problem could be computed by means of a stochastic optimization method.
However, we use a faster deterministic continuation procedure in which α and β are
considered as continuation variables [35]. The functional F1

ε +F2
ε becomes increasingly

convex for larger values of these variables. Then a solution of the system of equations

∇Fε,h(uh, sh, σh) = 0

is computed by using a nonlinear Gauss–Seidel iterative method, with α and β ini-
tially set to high values, then gradually lowered. The continuation procedure yields
experimental good, although not globally optimal, solutions. The parameters α and
β are lowered according to the rule

α(k) = α0(c)k, β(k) = β0(c)k,(8.4)

where α0, β0 are the initial values, c < 1 is a real positive number, and each step k of
the continuation procedure consists of 32 nonlinear Gauss–Seidel iterations.

The Γ-convergence theorem and the continuation algorithm have been experi-
mented on synthetic stereo pairs of images corresponding to simple patterns. The
images are discretized with N=256. The brightness patterns of all the surfaces rep-
resented in the synthetic images are linear combinations of spatially orthogonal si-
nusoids. The spatial frequency of the sinusoids is chosen to give a reasonably strong
brightness gradient such as that usually required for binocular stereo matching (see
also March [23, 24, 25]). The range of brightness values for L, R is [0,255]. Depth
has to be recovered from the local geometrical distortion of the brightness pattern in
the left image relative to the one in the right image. The periodicity of the brightness
pattern causes further difficulties to the problem of recovering disparity because of
the presence of many ambiguous corresponding points in the two images.

The algorithm was started with an initial estimate of the disparity function u
equal to a constant value, and setting the functions σ, s equal to 1 everywhere. The
values of the parameters in the functional were chosen on the basis of the results of a
number of experiments.

Figures 1(a) and 1(b) show the two images L and R of a stereo pair representing an
object shaped as a revolution surface and portrayed against a plane background. The
value of disparity ranges from 14 to 32 pixels (14h ≤ u ≤ 32h). The stereo disparity u
in the images of Figures 1(a) and 1(b) is discontinuous along the occluding boundary
between the curved surface and the plane background. The function u has no creases
in this example.

We set
√
µ = 26 and c = 0.8 in (8.4). The continuation procedure is iterated for

43 steps (1376 total Gauss–Seidel iterations) and the final values of the parameters
are α = 37, β = 32.7. Figure 2(a) shows the function σ computed with ε = 2 · 10−2,
and Figure 2(b) shows the same function computed with ε = 1.3 · 10−2. Figure 3(a)
shows the function σ computed with ε = 6.5 · 10−3: in this case σ reaches values of
order 10−5 along the discontinuity set of u. In the figures representing the functions
σ and s by means of grey values, white corresponds to 0 and black corresponds to
1. The figures show the convergence of the functions σε towards the discontinuity set
of the disparity u as ε decreases, thus illustrating the behavior of Γ-convergence in
this specific example. Figure 3(b) shows the function s computed with ε = 6.5 · 10−3.
Because of the presence of the factor ξε converging to zero, the values of the func-
tions sε might approach zero more slowly than the functions σε as ε tends to zero.
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APPROXIMATION OF A FREE DISCONTINUITY PROBLEM 1191

(a) L image of a synthetic stereo pair (only
jumps).

(b) R image of a synthetic stereo pair (only
jumps).

Fig. 1.

(a) The function σ computed with ε = 2.0 ·
10−2.

(b) The function σ computed with ε = 1.3 ·
10−2.

Fig. 2.
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(a) The function σ computed with ε = 6.5 ·
10−3.

(b) The function s computed with ε = 6.5 ·
10−3.

Fig. 3.

Fig. 4. Surfaces with jumps recovered from the stereo pair 1(a), (b).
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APPROXIMATION OF A FREE DISCONTINUITY PROBLEM 1193

(a) L image of a synthetic stereo pair (only
creases).

(b) R image of a synthetic stereo pair (only
creases).

Fig. 5.

(a) The function σ computed with ε = 8.0 ·
10−3.

(b) The function σ computed with ε = 2.0 ·
10−3.

Fig. 6.
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1194 LUIGI AMBROSIO, LORIS FAINA, AND RICCARDO MARCH

Fig. 7. Surface with creases recovered from the stereo pair 5(a), (b).

(a) L image of a synthetic stereo pair
(jumps+creases).

(b) R image of a synthetic stereo pair
(jumps+creases).

Fig. 8.
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APPROXIMATION OF A FREE DISCONTINUITY PROBLEM 1195

(a) The function σ computed with ε = 2.0 ·
10−3.

(b) The function s computed with ε = 2.0 ·
10−3.

Fig. 9.

Fig. 10. Surface with jumps and creases recovered from the stereo pair 8(a), (b).
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For instance, in the present example s reaches the value of 6 · 10−2, but takes values
between 0.3 and 0.7 along some portions of the discontinuity contour. Finally, Figure
4 shows the surfaces corresponding to the disparity map recovered from the stereo
pair. The discontinuity set is correctly reconstructed along the occluding contour.

Figures 5(a) and 5(b) show the images L, R of a stereo pair representing a trun-
cated pyramid laid upon a plane background. Disparity ranges from 12 to 24 pixels
(12h ≤ u ≤ 24h) and, in this example, the function u has creases and no jumps.

We set
√
µ = 47 and c = 0.76. The continuation procedure consists of 45 steps

(1440 total Gauss–Seidel iterations) and the final values of the parameters are α =
14.6, β = 7.3. Figure 6(a) shows the function σ computed with ε = 8 · 10−3. Figure
6(b) shows σ computed with ε = 2 · 10−3: in this case σ reaches values of order
either 10−3 or 10−2 along the set of creases of u. The figures show the capability of
Γ-convergence in the localization of the creases.

Figure 7 shows the surface recovered from the stereo pair with the creases correctly
reconstructed.

Figures 8(a) and 8(b) show the last stereo pair used in the computer experiments
which is obtained from the previous one by introducing a jump between the truncated
pyramid and the plane background. Disparity ranges from 8 to 24 pixels (8h ≤ u ≤
24h). In this example the function u has both creases and jumps.

We set
√
µ = 47 and c = 0.76. The continuation procedure consists of 43 steps

(1376 Gauss–Seidel iterations) and the final values of the parameters are α = 14.3,
β = 12.6. Figures 9(a) and 9(b) show, respectively, the functions σ and s computed
with ε = 2 · 10−3. The function σ reaches values of order 10−5 along the jumps, and
of order 10−2 along the creases, while s is about 0.3 along the jumps. Finally, Figure
10 shows the surfaces corresponding to the disparity map recovered from the stereo
pair. Both discontinuities and gradient discontinuities are reconstructed.
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[13] M. Carriero, A. Leaci, and F. Tomarelli, Strong minimizers of Blake & Zisserman func-
tional, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 25 (1997), pp. 257–285.

[14] M. Carriero, A. Leaci, and F. Tomarelli, Density estimates and further properties of
Blake & Zisserman functional, in From Convexity to Non Convexity, G. Gilbert, P. D.
Panagiotopoulos, and P. Pardalos, eds., Kluwer, Dordrecht, The Netherlands, 2000.

[15] G. Dal Maso, An Introduction to Γ-Convergence, Progr. Nonlinear Differential Equations
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