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1 Introduction

The discovery of a Higgs-like particle of 125GeV mass [1, 2] brings new focus on the

longstanding issue of electroweak symmetry breaking (EWSB). Here we are concerned with

the implications of this discovery for the view that tries to explain a natural Fermi scale in

terms of the Higgs particle as a composite pseudo-Goldstone boson [3–6]. More precisely,

we shall concentrate our attention on the compatibility of such interpretation of the newly

found particle with constraints from flavour and electroweak precision tests (EWPT).

The common features emerging from the modelling of the strong dynamics responsible

for the existence of the composite pseudo-Goldstone Higgs boson are:

i) a breaking scale of the global symmetry group, f , somewhat larger than the EWSB

scale v ≈ 246GeV;

ii) a set of ρ-like vector resonances of typical mass mρ = gρf ;

iii) a set of spin-12 resonances, vector-like under the Standard Model (SM) gauge group,

of typical mass mψ = Y f ;

iv) bilinear mass-mixing terms between the composite and the elementary fermions, ulti-

mately responsible for the masses of the elementary fermions themselves [7].

These same mass mixings are crucial in explicitly breaking the global symmetry of the

strong dynamics, i.e. in triggering EWSB, with a resulting Higgs boson mass

mh = C

√
Nc

π
mtY, (1.1)

where Nc = 3 is the number of colors, mt is the top mass and C is a model dependent co-

efficient of O(1), barring unnatural fine-tunings [8–13]. This very equation makes manifest

that the measured mass of 125GeV calls for a semi-perturbative coupling Y of the fermion

resonances and, in turn, for their relative lightness, if one wants to insist on a breaking

scale f not too distant from v itself. For a reference value of f = 500–700GeV, which in

PNGB Higgs models is enough to bring all the Higgs signal strengths in agreement with

the currently measured values [14], one expects fermion resonances with typical mass not

exceeding about 1TeV, of crucial importance for their direct searches at the LHC. These

searches are currently sensitive to masses in the 500–700GeV range, depending on the

charge of the spin-12 resonance and on the decay channel [15–18]. In this work we aim to

investigate the compatibility of this feature with flavour and EWPT.

To address this question, we consider a number of different options for the trans-

formation properties of the spin-12 resonances under the global symmetries of the strong

dynamics, motivated by the need to be consistent with the constraints from the EWPT,

as well as different options for the flavour structure/symmetries, motivated by the many

significant flavour bounds. To make the paper readable, after defining the setup for the

various cases in section 2, we analyze in succession the different options for the flavour

structures/symmetries: Anarchy in section 4, U(3)3 in section 5, U(2)3 in section 6. Sec-

tion 3 describes the constraints from EWPT that apply generally to all flavour models.

The summary and the conclusions are contained in section 7.
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2 Setup

To keep the discussion simple and possibly not too model dependent, we follow the par-

tial compositeness approach of ref. [19]. The vector resonances transform in the adjoint

representation of a global symmetry respected by the strong sector, which contains the

SM gauge group. To protect the T parameter from tree-level contributions, we take this

symmetry to be Gc = SU(3)c×SU(2)L×SU(2)R×U(1)X . We assume all vector resonances

to have mass mρ and coupling gρ. For the explicit form of their effective Lagrangian we

refer to [19].

The choice of the fermion representations has important implications for the elec-

troweak precision constraints. We will consider three cases, as customary in the literature.

1. The elementary SU(2)L quark doublets, qL, mix with composite vector-like SU(2)L
doublets, Q, one per generation. The elementary quark singlets, uR and dR, couple

both to an SU(2)R doublet R. We will call this the doublet model.

2. The elementary SU(2)L quark doublets mix with a composite L=(2, 2)2/3 of SU(2)L×
SU(2)R×U(1)X , and the elementary quark singlets couple both to a composite triplet

R = (1, 3)2/3. The model also contains a (3, 1)2/3 to preserve LR symmetry. We will

call this the triplet model.

3. The elementary SU(2)L quark doublets mix with a LU = (2, 2)2/3 and a LD =

(2, 2)−1/3 of SU(2)L × SU(2)R ×U(1)X , the former giving masses to up-type quarks,

the latter to down-type quarks. The elementary up and down quark singlets couple

to a (1, 1)2/3 and a (1, 1)−1/3 respectively. We will call this the bidoublet model.

For concreteness, the part of the Lagrangian involving fermions reads

• In the doublet model

Ldoublet
s = −Q̄imi

QQ
i − R̄imi

RR
i +
(

Y ijtr[Q̄iLHRjR] + h.c
)

, (2.1)

Ldoublet
mix = mj

Qλ
ij
L q̄

i
LQ

j
R +mi

Rλ
ij
RuŪ

i
Lu

j
R +mi

Rλ
ij
RdD̄

i
Ld

j
R . (2.2)

where H = (iσ2H
∗, H) and R = (U D)T is an SU(2)R doublet;

• In the triplet model

Ltriplet
s = −tr[L̄imi

LL
i]− tr[R̄imi

RR
i]− tr[R̄′ imi

RR
′ i]

+Y ijtr[L̄iLHRjR] + Y ijtr[H L̄iLR
′ j
R ] + h.c , (2.3)

Ltriplet
mix = mj

Lλ
ij
L q̄

i
LQ

j
R +mi

Rλ
ij
RuŪ

i
Lu

j
R +mi

Rλ
ij
RdD̄

i
Ld

j
R . (2.4)

where Q is the T3R = −1
2 SU(2)L doublet contained in L and U,D are the elements

in the triplet R with charge 2/3 and -1/3 respectively;

• In the bidoublet model

Lbidoublet
s =−tr[L̄iUm

i
Qu
LiU ]− Ū imi

UU
i+
(

Y ij
U tr[L̄iUH]LU

j
R + h.c

)

+(U→D) , (2.5)

Lbidoublet
mix =mj

Qu
λijLuq̄

i
LQ

j
Ru +mi

Uλ
ij
RuŪ

i
Lu

j
R + (U, u→ D, d) , (2.6)
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model SU(3)c SU(2)L SU(2)R U(1)X

doublet
Q 3 2 1 1

6

R 3 1 2 1
6

triplet

L 3 2 2 2
3

R 3 1 3 2
3

R′ 3 3 1 2
3

bidoublet

LU 3 2 2 2
3

LD 3 2 2 −1
3

U 3 1 1 2
3

D 3 1 1 −1
3

Table 1. Quantum numbers of the fermionic resonances in the three models considered. All

composite fields come in vector-like pairs. The X charge is related to the standard hypercharge as

Y = T3R +X.

where again Qu and Qd are the doublets in LU and LD which have the same gauge

quantum numbers of the SM left-handed quark doublet.

Everywhere i, j are flavour indices. The field content in all three cases is summarized

in table 1.1

We avoid an explicit discussion of the relation between the above simple effective

Lagrangians and more basic models which include the Higgs particle as a pseudo-Goldstone

boson. Here it suffices to say that the above Lagrangians are suitable to catch the main

phenomenological properties of more fundamental models. For this to be the case, the

truly basic assumption is that the lowest elements of towers of resonances, either of spin-12
or of spin 1, normally occurring in more complete models, are enough to describe the main

phenomenological consequences, at least in as much as tree-level effects are considered.

For simplicity we also assume the composite fermions to have all the same mass. To set

the correspondence between the partial compositeness Lagrangians that we use and models

with the Higgs as a pseudo-Goldstone boson, one can take the composite Yukawa couplings

Y ij in (2.1), (2.3) and (2.5) to be proportional to the parameter Y in (1.1), and identify

the common fermion mass with mψ = Y f , up to a model dependent factor of O(1).

2.1 Flavour structure

Quark masses and mixings are generated after electroweak symmetry breaking from the

composite-elementary mixing. The states with vanishing mass at v = 0 obtain the standard

Yukawa couplings, in matrix notation,

ŷu ≈ sLu · ULu · YU · U †
Ru · sRu (2.7)

1Note that we have omitted “wrong-chirality” Yukawa couplings like Ỹ ijtr[Q̄i
RHR

j

L] for simplicity. They

are not relevant for the tree-level electroweak and flavour constraints and do not add qualitatively new effects

to the loop contributions to the T parameter.

– 4 –
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where

λLu = diag(λLu1, λLu2, λLu3) · ULu , (2.8)

λRu = U †
Ru · diag(λRu1, λRu2, λRu3) , (2.9)

siiX = λXi/
√

1 + (λXi)2, X = L,R , (2.10)

and similarly for ŷd. Here and in the following, the left-handed mixings are different for

u and d quarks, sLu 6= sLd, only in the bidoublet model. At the same time, in the v = 0

limit, the remaining states have mass mψ or mψ/
√

1 + (λX)2, respectively if they mix or

do not mix with the elementary fermions.

While the effective Yukawa couplings ŷu,d must have the known hierarchical form, the

Yukawa couplings in the strong sector, YU,D, could be structureless anarchic matrices (see

e.g. [20–27]). However, to ameliorate flavour problems, one can also impose global flavour

symmetries on the strong sector. We discuss three cases in the following.

Anarchy. In the anarchic model, the YU,D are anarchic matrices, with all entries of

similar order, and the Yukawa hierarchies are generated by hierarchical mixings λ. From

a low energy effective theory point of view, the requirement to reproduce the observed

quark masses and mixings fixes the relative size of the mixing parameters up to — a

priori unknown — functions of the elements in YU,D. We follow the common approach

to replace functions of Yukawa couplings by appropriate powers of “average” Yukawas

YU∗,D∗, keeping in mind that this introduces O(1) uncertainties in all observables. In this

convention, assuming λX3 ≫ λX2 ≫ λX1, the quark Yukawas are given by

yu = YU∗sLu1sRu1 , yc = YU∗sLu2sRu2 , yt = YU∗sLu3sRu3 . (2.11)

and similarly for the Q = −1/3 quarks. In the doublet and triplet models, the entries of

the CKM matrix are approximately given by

Vij ∼
sLi
sLj

, (2.12)

where i < j. Using eqs. (2.11) and (2.12), one can trade all but one of the sL,R for known

quark masses and mixings. We choose the free parameter as

xt ≡ sL3/sRu3. (2.13)

In the bidoublet model, instead of (2.12) one has in general two different contributions

to Vij

Vij ∼
sLdi
sLdj

± sLui
sLuj

. (2.14)

Given the values of all quark masses and mixings, the hierarchy λX3 ≫ λX2 ≫ λX1 is only

compatible with sLui/sLuj being at most comparable to sLdi/sLdj . In view of this, the two

important parameters are

xt ≡ sLt/sRt , z ≡ sLt/sLb . (2.15)

– 5 –
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The requirement to reproduce the large top quark Yukawa (mt =
yt√
2
v)

yt = sLtYU∗sRt, (2.16)

restricts xt to a limited range around one,2

yt
YU∗

< xt <
YU∗
yt

, (2.17)

while we take z throughout to be greater than or equal to 1.

From now on we identify YU∗ and YD∗ with the parameter Y of (1.1).

U(3)3. In the U(3)3 models [28–30] one tries to ameliorate the flavour problem of the an-

archic model by imposing a global flavour symmetry, at the price of giving up the potential

explanation of the generation of flavour hierarchies. Concretely, one assumes the strong

sector to be invariant under the diagonal group U(3)Q+U+D or U(3)Qu+U×U(3)Qd+D. The

composite-elementary mixings are the only sources of breaking of the flavour symmetry of

the composite sector and of the U(3)q×U(3)u×U(3)d flavour symmetry of the elementary

sector. We consider two choices.

1. In left-compositeness, to be called U(3)3
LC

in short, the left mixings are pro-

portional to the identity, thus linking q to Q (Qu, Qd) into U(3)Q+U+D+q (or

U(3)Qu+Qd+U+D+q), and the right mixings λRu, λRd are the only source of

U(3)3 breaking.

2. In right-compositeness, to be called U(3)3
RC

in short, the right mixings link u to U

and d to D into U(3)Qu+U+u ×U(3)Qd+D+d, while the left mixings λLu, λLd are the

only source of U(3)3 breaking.

All the composite-elementary mixings are then fixed by the known quark masses and CKM

angles, up to the parameters xt (and, in the bidoublet model, z), which are defined as

in (2.13), (2.15). Compared to the anarchic case, one now expects the presence of resonances

related to the global symmetry U(3)Q+U+D or U(3)Qu+U×U(3)Qd+D, which in the following

will be called flavour gauge bosons3 and assumed to have the same masses mρ and gρ as

the gauge resonances. Note that left-compositeness can be meaningfully defined for any

of the three cases for the fermion representations, whereas right-compositeness allows to

describe flavour violations only in the bidoublet model.

U(2)3. In U(2)3 models one considers a U(2)q×U(2)u×U(2)d symmetry, under which the

first two generations of quarks transform as doublets and the third generation as singlets,

broken in specific directions dictated by minimality [31, 32]. Compared to U(3)3, one has

a larger number of free parameters, but can break the flavour symmetry weakly, since the

large top Yukawa is invariant under U(2)3.

Analogously to the U(3)3 case, in the strong sector the flavour groups are U(2)Q+U+D

(or U(2)Qu+U ×U(2)Qd+D) and:

2In our numerical analysis, we will take yt = 0.78, which is the running MS coupling at 3TeV.
3We will only allow flavour gauge bosons related to the SU(3) subgroups of the U(3) factors.

– 6 –
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1. In left-compositeness, to be called U(2)3
LC

, the left mixings are diagonal with the

first two entries equal to each other and the only sources of U(2)3 breaking reside in

the right-handed mixings.

2. In right-compositenss, to be called U(2)3
RC

, the right mixings are diagonal with the

first two entries equal to each other and the only sources of U(2)3 breaking reside in

the left-handed mixings.

Again we expect the presence of flavour gauge bosons associated with the global symmetries

of the strong sector. As before right-compositeness can be meaningfully defined only in the

bidoublet model.

3 General electroweak precision constraints

In this section we discuss electroweak precision constraints that hold independently of the

flavour structure. Among the models considered, only U(3)3LC is subject to additional

electroweak constraints, to be discussed in section 5.1.

3.1 Oblique corrections

As well known, the S parameter receives a tree-level contribution, which for degenerate

composite vectors reads [19]

S =
8πv2

m2
ρ

, (3.1)

independently of the choice of fermion representations. It is also well known that S and T

both get at one loop model-independent “infrared-log” contributions [33]

Ŝ =

(

v

f

)2 g2

96π2
log

mρ

mh
, T̂ = −

(

v

f

)2 3g2t2w
32π2

log
mρ

mh
. (3.2)

where Ŝ = αem/(4s
2
w)S and T̂ = αemT .

Experimentally, a recent global electroweak fit after the discovery of the Higgs bo-

son [34] finds S − SSM = 0.03± 0.10 and T − TSM = 0.05± 0.12. Requiring 2σ consistency

with these results of the tree level correction to S, eq. (3.1), which largely exceeds the

infrared logarithmic contribution of (3.2) and has the same sign, gives the bound

mρ > 2.6TeV . (3.3)

The one loop correction to the T parameter instead strongly depends on the choice of

the fermion representations. We present here simplified formulae valid in the three models

for a common fermion resonance mass mψ and developed to first nonvanishing order in

λLt, λRt, as such only valid for small sLt, sRt.

In the doublet model the leading contribution to T̂ , proportional to λ4Rt, reads

T̂ =
71

140

Nc

16π2
m2
t

m2
ψ

Y 2

x2t
. (3.4)
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Observable Bounds on mψ [TeV]

doublet triplet bidoublet

T 0.28 Y/xt 0.51
√

Y 3/xt, 0.60 xtY 0.25 xtYU

Rb (g
L
Zbb) 5.6

√
xtY 6.5 YD

√

xt/YU/z

B → Xsγ (gRWtb) 0.44
√

Y/xt 0.44
√

Y/xt 0.61

Table 2. Lower bounds on the fermion resonance massmψ = Y f in TeV from electroweak precision

observables. A blank space means no significant bound.

In the bidoublet model one obtains from a leading λ4Lt term

T̂ = −107

420

Nc

16π2
m2
t

m2
ψ

x2tY
2
U . (3.5)

In the triplet model the leading contributions are

T̂ =
(

log
Λ2

m2
ψ

− 1

2

) Nc

16π2
m2
t

m2
ψ

Y 3

ytxt
, and T̂ =

197

84

Nc

16π2
m2
t

m2
ψ

x2tY
2 , (3.6)

where the first comes from λ2Rt and the second from λ4Lt. Note the logarithmically diver-

gent contribution to the λ2Rt term that is related to the explicit breaking of the SU(2)R
symmetry in the elementary-composite fermion mixing and would have to be cured in a

more complete model.

Imposing the experimental bound at 2σ, eqs. (3.4), (3.5), (3.6) give rise to the bounds

on the first line in table 2 (where we set log (Λ/mψ) = 1). Here however there are two

caveats. First, as mentioned, eqs. (3.4), (3.5), (3.6) are only valid for small mixing an-

gles. Furthermore, for moderate values of f , a cancellation could take place between the

fermionic contributions and the infrared logs of the bosonic contribution to T . As we shall

see, the bounds from S and T are anyhow not the strongest ones that we will encounter:

they are compatible with mψ . 1TeV for Y = 1 to 2 and gρ = 3 to 5. Note that here and

in the following mψ represents the mass of the composite fermions that mix with the ele-

mentary ones, whereas, as already noticed, the “custodians” have mass mψ/
√

1 + (λX)2.

3.2 Modified Z couplings

In all three models for the electroweak structure, fields with different SU(2)L quantum

numbers mix after electroweak symmetry breaking, leading to modifications in Z couplings

which have been precisely measured at LEP. Independently of the flavour structure, an

important constraint comes from the Z partial width into b quarks, which deviates by 2.5σ

from its best-fit SM value [34]

Rexp
b = 0.21629(66) , RSM

b = 0.21474(3) . (3.7)

– 8 –
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Writing the left- and right-handed Z couplings as

g

cw
b̄γµ

[(

−1

2
+

1

3
s2w + δgLZbb

)

PL +

(

1

3
s2w + δgRZbb

)

PR

]

bZµ , (3.8)

one gets

δgLZbb =
v2Y 2

D

2m2
D

xyt
YU

a+
g2ρv

2

4m2
ρ

xyt
YU

b , δgRZbb =
v2Y 2

D

2m2
D

y2bYU
xtytY 2

D

c+
g2ρv

2

4m2
ρ

y2bYU
xtytY 2

D

d , (3.9)

with the coefficients

doublet triplet bidoublet

a 1/2 0 1/(2z2)

b 1/2 0 1/z2

doublet triplet bidoublet

c −1/2 −1/2 0

d −1/2 −1 0

The vanishing of some entries in (3.9) can be simply understood by the symmetry consider-

ations of ref. [35]. As manifest from their explicit expressions the contributions proportional

to a and c come from mixings between elementary and composite fermions with different

SU(2)×U(1) properties, whereas the contributions proportional to b and d come from ρ-Z

mixing. Taking YU = YD = Y , mD = Y f and mρ = gρf , all these contributions scale

however in the same way as 1/(f2Y ).

It is important to note that δgLZbb is always positive or 0, while δg
R
Zbb is always negative

or 0, while the sign of the SM couplings is opposite. As a consequence, in all 3 models

considered, the tension in eq. (3.7) is always increased. Allowing the discrepancy to be at

most 3σ, we obtain the numerical bounds in the second row of table 2. The bound onmψ in

the doublet model is highly significant since xtY > 1, whereas it is irrelevant in the triplet

model and can be kept under control in the bidoublet model for large enough z (but see

below). In the triplet model, there is a bound from the modification of the right-handed

coupling, which is however insignificant.

3.3 Right-handed W couplings

Analogously to the modified Z couplings, also the W couplings are modified after EWSB.

Most importantly, a right-handed coupling of the W to quarks is generated. The most

relevant experimental constraint on such coupling is the branching ratio of B → Xsγ,

because a right-handed Wtb coupling lifts the helicity suppression present in this loop-

induced decay in the SM [36]. Writing this coupling as

g√
2
δgRWtb(t̄γ

µPRb)W
+
µ , (3.10)

one gets

δgRWtb =
v2YUYD
2mQmU

yb
xtYU

a+
g2ρv

2

4m2
ρ

yb
xtYU

b , (3.11)

with the coefficients

– 9 –
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doublet triplet bidoublet

a 1 1 −2xtyt/Y

b 1 1 0

The coefficients in the bidoublet model vanish at quadratic order in the elementary-

composite mixings as a consequence of a discrete symmetry [35]. The nonzero value for a

in the table is due to the violation of that symmetry at quartic order [36]. The contribution

to the Wilson coefficient C7,8, defined as in [37], reads

C7,8 =
mt

mb

δgRWtb

Vtb
A7,8(m

2
t /m

2
W ) (3.12)

where A7(m
2
t /m

2
W ) ≈ −0.80 and A8(m

2
t /m

2
W ) ≈ −0.36.

Since the B → Xsγ decay receives also UV contributions involving composite dynam-

ics, we impose the conservative bound that the SM plus the IR contributions above do not

exceed the experimental branching ratio by more than 3σ. In this way we find the bound

in the last row of table 2.

4 Constraints on the anarchic model

We now discuss constraints that are specific to the anarchic model, as defined above, and

hold in addition to the bounds described in the previous section.

4.1 Tree-level ∆F = 2 FCNCs

In the anarchic model exchanges of gauge resonances give rise to ∆F = 2 operators at tree

level. Up to corrections of order v2/f2, the Wilson coefficients of the operators

QdLLV = (d̄iLγ
µdjL)(d̄

i
Lγ

µdjL) , QdRRV = (d̄iRγ
µdjR)(d̄

i
Rγ

µdjR) , (4.1)

QdLRV = (d̄iLγ
µdjL)(d̄

i
Rγ

µdjR) , QdLRS = (d̄iRd
j
L)(d̄

i
Ld

j
R) , (4.2)

can be written as

CdABD =
g2ρ
m2
ρ

gijAdg
ij
Bdc

dAB
D , A,B = L,R, D = V, S, (4.3)

and with the obvious replacements for up-type quarks, relevant for D-D̄ mixing.

The couplings gijqA with i 6= j contain two powers of elementary-composite mixings. In

the doublet and triplet models, one can use eqs. (2.11)–(2.13) to write them as (ξij = VtjV
∗
ti)

gijL ∼ sLdisLdj ∼ ξij
xtyt
Y

, (4.4)

gijRu ∼ sRuisRuj ∼
yuiyuj

Y ytxtξij
, (4.5)

gijRd ∼ sRdisRdj ∼
ydiydj

Y ytxtξij
. (4.6)
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Observable Bounds on mψ [TeV]

doublet triplet bidoublet

ǫK (QLRS ) 14 14 14 z

ǫK (QLLV ) 2.7 xt 3.9 xt 3.9 xt

Bd-B̄d (QLRS ) 0.7 0.7 0.7

Bd-B̄d (QLLV ) 2.3 xt 3.4 xt 3.4 xt

Bs-B̄s (Q
LR
S ) 0.6 0.6 0.6

Bs-B̄s (Q
LL
V ) 2.3 xt 3.4 xt 3.4 xt

D-D̄ (QLRS ) 0.5 0.5 0.5

D-D̄ (QLLV ) 0.4 xt 0.6 xt 0.6 xt

KL → µµ (f–ψ) 0.56
√

Y/xt 0.56
√

Y/xt

KL → µµ (Z–ρ) 0.39
√

Y/xt 0.56
√

Y/xt

Table 3. Flavour bounds on the fermion resonance mass mψ in TeV in the anarchic model.

In the bidoublet model, one has

gijLd ∼ gijLu ∼ ξij
xtyt
YU

, gijRd ∼ z2
YU
Y 2
D

ydiydj

ytxtξij
. gijRu ∼ yuiyuj

YUytxtξij
. (4.7)

The coefficients cABD are discussed in appendix A.

The experimental bounds on the real and imaginary parts of the Wilson coefficients

have been given in [38, 39]. Since the phases of the coefficients can be of order one and

are uncorrelated, we derive the bounds assuming the phase to be maximal. We obtain the

bounds in the first eight rows of table 3. As is well known, by far the strongest bound,

shown in the first row, comes from the scalar left-right operator in the kaon system which

is enhanced by RG evolution and a chiral factor. Note in particular the growth with z of

the bound in the bidoublet case, which counteracts the 1/z behaviour of the bound from

Rb. But also the left-left vector operators in the kaon, Bd and Bs systems lead to bounds

which are relevant in some regions of parameter space. The bounds from the D system

are subleading.

4.2 Flavour-changing Z couplings

Similarly to the modified flavour-conserving Z couplings discussed in section 3.2, also

flavour-changing Z couplings are generated in the anarchic model. In the triplet and

doublet models, as well as in the bidoublet model, since the down-type contributions to

the CKM matrix are not smaller than the up-type contributions in (2.14), one has

δgLZdidj ∼ sLdisLdj
s2Lb

δgLZbb ∼ ξij δg
L
Zbb , (4.8)

δgRZdidj ∼ sRdisRdj
s2Rb

δgRZbb ∼
ydiydj

y2b ξij
δgRZbb . (4.9)

– 11 –
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In the b → s case, a global analysis of inclusive and exclusive b → sℓ+ℓ− decays [37]

finds |δgL,RZbs | . 8 × 10−5, while in the s → d case, one finds |δgL,RZsd| . 6 × 10−7 from

the KL → µ+µ− decay [40].4 Using (4.8) one finds that the resulting constraints on the

left-handed coupling are comparable for b → s and s → d. Since they are about a factor

of 3 weaker than the corresponding bound from Z → bb̄, we refrain from listing them

in table 3, but their presence shows that the strong bound from Rb cannot simply be

circumvented by a fortuitous cancellation. In the case of the right-handed coupling, one

finds that the constraint from KL → µ+µ− is an order of magnitude stronger than the

one from b→ sℓ+ℓ−, and also much stronger than the bound on the right-handed coupling

coming from Z → bb̄. The numerical bounds we obtain are shown in the last two rows

of table 3 from the contributions with fermion or gauge boson mixing separately since, in

constrast to Z → bb̄, the two terms are multiplied by different O(1) parameters in the

flavour-violating case.

4.3 Loop-induced chirality-breaking effects

Every flavour changing effect discussed so far originates from tree-level chirality-conserving

interactions of the vector bosons, either the elementaryWµ and Zµ or the composite ρµ. At

loop level, chirality-breaking interactions occur as well, most notably with the photon and

the gluon, which give rise in general to significant ∆F = 1 flavour-changing effects (b→ sγ,

ǫ′K , ∆ACP (D → PP )), as well as to electric dipole moments of the light quarks. In the

weak mixing limit between the elementary and the composite fermions, explicit calculations

of some of the ∆F = 1 effects have been made in [36, 41, 42], obtaining bounds in the

range mψ > (0.5–1.5)Y TeV. For large CP-violating phases the generated EDMs for the

light quarks can be estimated consistent with the current limit on the neutron EDM only

if mψ > (3–5)Y TeV, where the limit is obtained from the analysis of [43].

4.4 Direct bounds on vector resonances

Direct production of vector resonances and subsequent decay to light quarks can lead to

a peak in the invariant mass distribution of pp → jj events at the LHC. In the anarchic

model, due to the small degree of compositeness of first generation quarks, the coupling of

vector resonances to a first generation quark-antiquark pair is dominated by mixing with

the SM gauge bosons and thus suppressed by g2el/gρ. For a 3TeV gluon resonance at the

LHC with
√
s = 8TeV, following the discussion in appendix C we expect

σ(pp→ G∗) =
2π

9s

g43
g2ρ

[

Luū(s,m2
ρ) + Ldd̄(s,m2

ρ)
]

≈ 5 fb

g2ρ
. (4.10)

The ATLAS collaboration has set an upper bound of 7 fb on the cross section times branch-

ing ratio to two jets times the acceptance [44], and a similar bound has been obtained by

CMS [45]. Given that the gluon resonance will decay dominantly to top quarks, we conclude

that the bound is currently not relevant, even for small gρ.

4The decay K+ → π+νν̄ leads to a bound |δgL,R

Zsd | . 3× 10−6 at 95% C.L. and is thus currently weaker

than KL → µ+µ−, even though it is theoretically much cleaner.

– 12 –
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A similar argument holds in the case of the dijet angular distribution, which can be

used to constrain local four-quark operators mediated by vector resonances. Following the

discussion in appendix B, we obtain the bound

mρ >
4.5 TeV

gρ
(4.11)

which, in combination with the bound on mρ from the S parameter, is irrelevant

for gρ & 1.5.

4.5 Partial summary and prospects on anarchy

If the bound coming from the QLRS contribution to ǫK is taken at face value, the fermion

resonances should be far too heavy to be consistent with a naturally light Higgs boson and

certainly unobservable, either directly or indirectly. Note in particular the growth of this

bound with z in the bidoublet model.

In view of the fact that this bound carries an O(1) uncertainty, one might however

speculate on what happens if this constraint is ignored. As visible from table 3, with

the exception of the first line, all the strongest bounds on mψ in the bidoublet or in the

triplet models can be reduced down to about 1TeV by taking xt =
1
3 to 1

4 . This however

correspondingly requires Y = 3 to 4 (and maximal right-handed mixing) which pushes up

the bounds from KL → µ+µ− and is not consistent with mψ = Y f and f & 0.5TeV.

The loop-induced chirality-breaking effects on ǫ′ and ∆ACP in D → PP decays would also

come into play. Altogether, even neglecting the bound from ǫK(QLRS ), fermion resonances

below about 1.5TeV seem hard to conceive.

5 Constraints on U(3)3

We now discuss the constraints specific to U(3)3. In U(3)3LC the sizable degree of composite-

ness of light left-handed quarks leads to additional contributions to electroweak precision

observables; in U(3)3RC FCNCs arise at the tree level. In both cases collider bounds on

the compositeness of light quarks place important constraints. Our analysis follows and

extends the analysis in [30].

5.1 Electroweak precision constraints specific to U(3)3

The bounds from Rb as well as the S and T parameters discussed in section 3 are also

valid in U(3)3
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In U(3)3LC the modified left-handed Z couplings of up and down quarks are equal to

the ones of the t and b respectively, while the same is true in U(3)3RC for the right-handed

modified couplings. Analogously to the discussion in section 3.2, one can write the modified

Z coupling of the top as

g

cw
t̄γµ

[(

1

2
− 2

3
s2w + δgLZtt

)

PL +

(

−2

3
s2w + δgRZtt

)

PR

]

tZµ , (5.2)

and one has

δgLZtt =
v2Y 2

U

2m2
U

xtyt
YU

a+
g2ρv

2

4m2
ρ

xtyt
YU

b , δgRZtt =
v2Y 2

U

2m2
U

yt
xtYU

c+
g2ρv

2

4m2
ρ

yt
xtYU

d , (5.3)

with

doublet triplet bidoublet

a −1/2 −1 −1/2

b −1/2 −1 −1

doublet triplet bidoublet

c 1/2 0 0

d 1/2 0 0

Since the right-handed Z coupling to b and t receives no contribution in the bidoublet

model, there is no additional bound from Rh in U(3)3RC. In U(3)3LCwe find the numerical

bounds shown in table 4.

In U(3)3LC an additional bound arises from violations of quark-lepton universality.

Writing the W couplings as

g√
2
(1 + δgLW )ū Vuiγ

µPLdiW
+
µ , (5.4)

we find

δgLW =
Y 2
Uv

2

2m2
U

xtyt
YU

au +
Y 2
Dv

2

2m2
D

xtyt
YU

ad +
g2ρv

2

4m2
ρ

xtyt
YU

b , (5.5)

with

doublet triplet bidoublet

au −1/2 −1/2 −1/2

ad −1/2 −1/2 −1/(2z2)

b −1 −1 −1

The usual experimental constraint on the strength of the Wūdi couplings, normalized to

the leptonic ones, is expressed by (1 + δgLW )2
∑

i |Vui|2 − 1 = (−1± 6)× 10−4, which, from

the unitarity of the Vij matrix, becomes 2δgLW = (−1 ± 6) × 10−4. By requiring it to be

fulfilled within 2σ, we find the numerical bounds in table 4.

Finally we note that, in contrast to the anarchic case, there are no flavour-changing Z

couplings neither in U(3)3LC nor in U(3)3RC. In the former case this is a general property of

chirality-conserving bilinears, while in the latter it is a consequence of the fact that only

the down-type mixings λLd affect the Z vertex, which thus becomes flavour-diagonal in the

mass basis.

– 14 –
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Observable Bounds on mψ [TeV]

doublet triplet bidoublet

Rh 7.2
√
xtY 6.0

√
xtY 4.9

√
xtYU

VCKM 7.4
√
xtY 7.4

√
xtY 6.0

√
xtYU

pp→ jj ang. dist. 3.4 xt 4.2 xt 4.2 xt

Table 4. Lower bounds on the fermion resonance mass mψ in TeV in U(3)3LC.

Observable Bounds on mψ [TeV]

ǫK(Q
LL
V ) 3.7 xt

Bd-B̄d 3.2 xt

Bs-B̄s 3.6 xt

pp→ jj ang. dist. 3.0/xt

Table 5. Lower bounds on the fermion resonance mass mψ in TeV in U(3)3RC (bidoublet model).

5.2 Tree-level ∆F = 2 FCNCs

While in U(3)3LC there are no tree-level FCNCs at all [30], minimally flavour violating tree-

level FCNCs are generated in U(3)3RC [32, 46] (see appendix D). The Wilson coefficients of

∆F = 2 operators are given by (4.3), with the coefficients cqABD listed in appendix A and

the couplings

gijLd = ξij
xtyt
YU

, gijRd ≈ 0 . (5.6)

We obtain the bounds shown in table 5. The bound from D-D̄ mixing turns out to be

numerically irrelevant.

We stress that, in contrast to the anarchic case, there is no O(1) uncertainty in these

bounds since the composite Yukawas are proportional to the identity. Furthermore, since

the model is minimally flavour violating, there is no contribution to the meson mixing

phases and the new physics effects in the K, Bd and Bs systems are prefectly correlated.

5.3 Loop-induced chirality-breaking effects

Flavour-changing chirality-breaking effects in U(3)3 occur when elementary-composite mix-

ings are included inside the loops. At least for moderate mixings, the bounds are of the

form mψ > (0.5–1.5)
√

Y/xtTeV in the U(3)3LC case, or mψ > (0.5–1.5)
√
Y xtTeV in the

U(3)3RC case. The stronger bounds from quark EDMs, similar to the ones of the anarchic

case, disappear if the strong sector conserves CP. This is automatically realized, in our

effective Lagrangian description, if the “wrong chirality” Yukawas vanish or are aligned in

phase with the Y ’s. On the contrary, in the anarchic case this condition is in general not

sufficient to avoid large EDMs.

– 15 –
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5.4 Compositeness constraints

Since one chirality of first-generation quarks has a sizable degree of compositeness in the

U(3)3 models, a significant constraint arises from the angular distribution of dijet events

at LHC, which is modified by local four-quark operators obtained after integrating out the

heavy vector resonances related to the global SU(3)c × SU(2)L × SU(2)R × U(1)X as well

as the flavour symmetry in the strong sector, U(3) in the case of U(3)3LC and U(3)×U(3)

in the case of U(3)3RC.

In general, there are ten four-quark operators relevant in the dijet angular distribu-

tion [47]. Following the discussion in appendix B, the relevant operators in U(3)3LC are

O(1,8)
qq . Their Wilson coefficients read

C(1)
qq = − a

36

g2ρ
m2
ρ

(

xtyt
YU

)2

, C(8)
qq = −

g2ρ
m2
ρ

(

xtyt
YU

)2

, (5.7)

where a = 5 in the doublet model and a = 17 in the triplet and bidoublet models. Using

the updated version of [47], we obtain the bound in the last row of table 4. In U(3)3RC the

operators with right-handed quarks are relevant, i.e. O(1)
uu,dd,ud and O(8)

ud . Numerically, we

find the bound on O(1)
uu to give the most significant constraint on the model parameters.

Its Wilson coefficient reads

C(1)
uu = −5

9

g2ρ
m2
ρ

(

yt
xtYU

)2

. (5.8)

and the resulting numerical constraint is shown in the last row of table 5.

5.5 Direct bounds on vector resonances

As discussed in section 4.4, direct bounds on mρ are obtained from searches for peaks in

the invariant mass of dijets at LHC. In U(3)3 the production cross sections can be larger

than in the anarchic case due to the sizable degree of compositeness of first-generation

quarks. Neglecting the contribution due to mixing of the vector resonances with the gauge

bosons, the production cross section of a gluon resonance reads (see appendix C)

σ(pp→ G∗) =
2π

9s
g2ρ
[

s4L,RuLuū(s,m2
ρ) + s4L,RdLdd̄(s,m2

ρ)
]

, (5.9)

where the L is valid in U(3)3LC and the R in U(3)3RC. In U(3)3LC the branching ratio to two

jets reads approximately

BR(G∗ → jj) =
2s4Lu + 3s4Ld + s4Rb

3s4Lu + s4Rt + 3s4Ld + s4Rb
, (5.10)

and is typically larger than in the anarchic case. Similarly, in U(3)3RC one has

BR(G∗ → jj) =
2s4Ru + s4Lb + 3s4Rd

s4Lt + 3s4Ru + s4Lb + 3s4Rd
. (5.11)

To judge if the most recent experimental bounds by ATLAS [44] and CMS [45] have

already started to probe the U(3)3 parameter space, we evaluate the cross section for

– 16 –



J
H
E
P
0
5
(
2
0
1
3
)
0
6
9

maximal mixing, i.e. xt = Y/yt in U(3)3LC and xt = yt/Y in U(3)3RC, for a 3TeV gluon

resonance, i.e. only marginally heavier than allowed by the S parameter (cf. table 2). For

U(3)3LC we obtain

σ(pp→ G∗) ≈ 13g2ρ fb , BR(G∗ → jj) ≈ 58% (83%) for Y = 1 (4π) , (5.12)

and for U(3)3RC

σ(pp→ G∗) ≈ 30g2ρ fb , BR(G∗ → jj) ≈ 69% (67%) for Y = 1 (4π) . (5.13)

This is to be compared to the ATLAS bound σ×BR×A < 7 fb, where A is the acceptance.

We conclude that, assuming an acceptance of the order of 60% [44], maximal mixing is

on the border of exclusion in U(3)3LC and already excluded in U(3)3RC for a 3TeV gluon

resonance. We note however that maximal mixing is already disfavoured by the indirect

bounds discussed above.

5.6 Partial summary on U(3)3

As apparent from tables 4 and 5, a fermion resonance at about 1TeV is disfavoured. In

U(3)3LC the crucial constrains come from the EWPT due to the large mixing of the first

generations quarks in their left component. Note that xtY cannot go below yt ∼ 1. In

U(3)3RC there is a clash between the tree-level ∆F = 2 FCNC effects, which decrease with

xt, and the bound from the pp → jj angular distributions due to the composite nature of

the light quarks in their right component, which goes like 1/xt. We stress again that these

conclusions are more robust than in the anarchic case, since there is no uncertainty related

to the composite Yukawas, which are flavour universal in the U(3)3 case.

6 Constraints on U(2)3

In U(2)3LC and U(2)3RC the first and second generation elementary-composite mixings are

expected to be significantly smaller than the third generation ones, so that the electroweak

precision constraints and the collider phenomenology are virtually identical to the anarchic

case and the most serious problems plaguing the U(3)3 models are absent. The most

important difference concerns the flavour constraints.

6.1 Tree-level ∆F = 2 FCNCs

As shown in appendix E, the Wilson coefficients of ∆F = 2 operators generated in U(2)3LC
and U(2)3RC are again given by (4.3). The flavour-changing couplings in U(2)3LC read

gi3Ld = ξi3 rb
xtyt
YU

, g12Ld = ξ12 |rb|2
xtyt
YU

, gijRd ≈ 0 , (6.1)

where rb is a free complex parameter defined in (E.16). As a consequence there is a new,

universal phase in Bd and Bs mixing, while the K-K̄ amplitude is aligned in phase with

the SM. We find the bounds in table 6. If the parameter |rb| is somewhat less than 1, these

bounds can be in agreement with experiment even for light fermion resonances. We note

– 17 –
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Observable Bounds on mψ [TeV]

doublet triplet bidoublet

ǫK(Q
LL
V ) 2.3 xt|rb|2 3.3 xt|rb|2 3.3 xt|rb|2

Bd-B̄d 2.3 xt|rb| 3.4 xt|rb| 3.4 xt|rb|
Bs-B̄s 2.3 xt|rb| 3.4 xt|rb| 3.4 xt|rb|

KL → µµ 3.8
√
xtY |rb| 3.8 YD|rb|

√

xt/YU/z

b→ sℓℓ 3.5
√

xtY |rb| 3.5 YD
√

xt|rb|/YU/z

Table 6. Lower bounds on the fermion resonance mass mψ in TeV in U(2)3LC.

Observable Bounds on mψ [TeV]

ǫK(Q
LL
V ) 3.3 xt

Bd-B̄d 2.8 xt

Bs-B̄s 3.1 xt

Table 7. Lower bounds on the fermion resonance mass mψ in TeV in U(2)3RC (bidoublet model).

that the contribution to the ∆C = 2 operator is proportional to |1− rb|2, so it cannot be

reduced simultaneously. However, it turns out that it is numerically insignificant. Since

furthermore the contribution is real — a general prediction of the U(2)3 symmetry for

1 ↔ 2 transitions — the expected improvement of the bound on CP violation in D-D̄

mixing will have no impact.

In U(2)3RC the flavour-changing couplings are the same as in U(3)3RC,

gi3Ld = ξi3
xtyt
YU

, g12Ld = ξ12
xtyt
YU

, gijRd ≈ 0 . (6.2)

Thus, as in U(3)3RC, there is no new phase in meson-antimeson mixing and the NP effects

in the K, Bd and Bs systems are perfectly correlated. The resulting bounds are shown

in table 7.

6.2 Loop-induced chirality-breaking effects

One expects in general flavour-changing chirality-breaking effects in U(2)3 with bounds

on the fermion resonances similar to the one of the anarchic case, mψ > (0.5–1.5)Y TeV.

With CP conservation in the strong sector, however, the contributions to the quarks EDMs

would arise only at higher orders in the U(2)3 breaking terms (see appendix E), so that

they would not be significant for the current limit on the neutron EDM.

6.3 Flavour-changing Z couplings

In U(2)3RC flavour-changing Z couplings are absent at tree level. In U(2)3LC the left-handed

couplings do arise, while the right-handed couplings are strongly suppressed. Similarly to

– 18 –
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the anarchic case, one can write them as

δgLZbdi ∼ ξi3 rb δg
L
Zbb , δgLZsd ∼ ξ12 |rb|2 δgLZbb . (6.3)

One obtains the bounds in the last two lines of table 6, which are weaker than the analogous

bounds from Rb unless |rb| > 1. An important difference with respect to the anarchic case

is the absence of sizable flavour-changing right-handed Z couplings, which can be probed

e.g. in certain angular observables in B → K∗µ+µ− decays [48].

6.4 Partial summary on U(2)3

Two important differences distinguish the U(2)3 case from the U(3)3 one: i) both for the

bidoublet (at large enough z) and for the triplet models, the bounds from the EWPT or

from compositeness become irrelevant; ii) a single complex parameter correlates the various

observables, rb in the U(2)3LC case. As apparent from table 6, values of xt and rb somewhat

smaller than one can reduce the bounds on the fermion resonance mass at or even below the

1TeV level. This is also formally possible in U(2)3RC, where rb = 1, but requires xt . 0.3,

i.e. Y & 3, not consistent with mψ = Y f and f & 0.5TeV.

7 Summary and conclusions

After about two years of operation of the LHC and the remarkable discovery of a Higgs-like

particle of 125GeV mass, the view of a natural Fermi scale is still under scrutiny, with three

different lines of investigation: the more precise measurements of the properties of the same

Higgs-like boson, the direct searches of new particles that are expected to accompany the

Higgs boson and several measurements in flavour physics. One way to implement a natural

Fermi scale is to make the Higgs particle, one or more, a pseudo-Goldstone boson of a new

strong interaction in the few TeV range. A meaningful question is then if and how a Higgs

boson of 125GeV mass fits into this picture, which requires spin-12 resonances, partners of

the top, with a semi-perturbative coupling to the strong sector and a mass not exceeding

about 1TeV.

Not the least difficulty in addressing this question is the variety of possible specific

implementations of the Higgs-as-pseudo-Goldstone-boson picture, especially with regard

to the different representations of the spin-12 resonances and the various ways to describe

flavour. A further problem is represented by the limited calculability of key observables in

potentially complete models, due to their strongly interacting nature.

To circumvent these difficulties, we have adopted some simple partial-compositeness

Lagrangians and assumed that they catch the basic phenomenological properties of the

theories under consideration. This allows us to consider a grid of various possibilities,

represented, although at the risk of being too simplistic, in table 8, which tries to summarize

all in one go the content of the more detailed tables 2 to 7 discussed throughout the paper,

taking into account all constraints from flavour and EWPT. For any given case, this table

estimates a lowest possible value for the mass of the composite fermions that mix with the

elementary ones and which are heavier than the “custodians” by a factor of
√

1 + (λX)2.

In the case of anarchy we are neglecting the constraint coming from ǫK (first line of table 3,
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doublet triplet bidoublet

ª 4.9 1.7 1.2∗
U(3)3LC 6.5 6.5 5.3

U(3)3RC - - 3.3

U(2)3LC 4.9 0.6 0.6

U(2)3RC - - 1.1∗

Table 8. Minimal fermion resonance mass mψ in TeV compatible with all the bounds (except for

the QLRS contribution to ǫK in the anarchic model), fixing O(1) parameters in anarchy to 1 and

assuming the parameter |rb| in U(2)3LC to be ∼ 0.2. The bounds with a ∗ are obtained for a value

of Y ≈ 2.5, that minimizes the flavour and EWPT constraints consistently with mψ = Y f and

f & 0.5TeV.

particularly problematic for the bidoublet model, maybe accidentally suppressed) and the

various O(1) factors that plague most of the other flavour observables in table 3. In every

case we also neglect the constraint coming from one-loop chirality-breaking operators,

relevant to direct CP violation both in the K and in the D systems, as well as to the quark

electric dipole moments. This is a subject that deserves further detailed study.

We also note that measurements of Higgs boson properties, which have not been con-

sidered here, amount to lower bounds on the decay constant f in the case of PNGB Higgs

models, and are currently probing values of 500–700GeV. Once these bounds improve, ta-

bles 2 to 7 allow a straightforward qualitative understanding of their impact on flavour and

electroweak observables. Since our predictions are based on a simple partial compositeness

Lagrangian, they are in fact independent of the details of the Higgs sector and can even

be applied to other theories, like 4D duals of Randall-Sundrum models.

The general message that emerges from table 8, taken at face value, is pretty clear. To

accommodate top partners at or below 1TeV is often not possible and requires a judicious

choice of the underlying model: an approximate U(2)3 flavour symmetry appears favorite,

if not necessary. Note that the bounds with a ∗ (bidoublet model with anarchic or U(2)3RC

flavour structure) are obtained for a value of Y ≈ 2.5, that minimizes the flavour and

EWPT constraints consistently with mψ = Y f and f & 0.5TeV. There are two simple

reasons for the emergence of U(2)3: i) in common with U(3)3, the suppression of flavour

changing effects in four-fermion operators with both left- and right-handed currents, present

in the anarchic case; ii) contrary to U(3)3 but as in anarchy, the disentanglement of the

properties (their degree of compositeness) of the first and third generation of quarks.

The source of the constraint that plays the dominant role in the various cases is diverse.

Sometimes more than one observable gives comparable constraints. This is reflected in

table 9, which summarizes where possible new physics effects could show up5 (for some

5The observables are, from top to to bottom: the direct CP violating parameter in K-K̄ mixing and

the Bd and Bs mass differences (as well as their ratio), the mixing phases φd, φs in the Bd and Bs systems

(as well as their difference), the Wilson coefficient of the axial vector semi-leptonic operator relevant for

b → sℓ+ℓ− transitions C10 and its chirality-flipped counterpart C′

10, the angular distribution of dijet events

at LHC as discussed above and the direct production of fermion resonances at LHC.
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ª U(3)3LC U(3)3RC U(2)3LC U(2)3RC

ǫK , ∆Md,s ⋆ ◦ ⋆ ⋆ ⋆

∆Ms/∆Md ⋆ ◦ ◦ ◦ ◦
φd,s ⋆ ◦ ◦ ⋆ ◦

φs − φd ⋆ ◦ ◦ ◦ ◦
C10 ⋆ ◦ ◦ ⋆ ◦
C ′
10 ⋆ ◦ ◦ ◦ ◦

pp→ jj ◦ ⋆ ⋆ ◦ ◦
pp→ q′q′ ⋆ ◦ ◦ ⋆ ⋆

Table 9. Observables where NP effects could show up with realistic experimental and/or lattice

improvements in the most favourable cases.

observables with more experimental data, for others if lattice parameters and/or other

theoretical inputs are improved). We keep in this table every possible case even though

some of them, according to table 8, would have to live with a fine tuned Higgs boson

squared mass and, as such, appear less motivated.

The attempt to include many different possibilities, though motivated, is also a limit of

the analysis presented in this work. A next step might consist in selecting a few emerging

cases to analyze them in more detail, perhaps going beyond the partial-compositeness

effective description. For this we think that table 8 offers a useful criterion. It is in any

event important and a priori non trivial that some models with a suitable structure emerge

that look capable of accommodating a 125GeV Higgs boson without too much fine tuning,

i.e. with top partners in an interesting mass range for discovery at the LHC.
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A Tree-level ∆F = 2 FCNCs

In a model with flavour anarchy in the strong sector, the coefficients defined in eq. (4.3)

can be written as

cdLLV = −1

6
− 1

2

[

X(Q)2 + T3L(Q)2 + T3R(Q)2
]

, (A.1)

cdRRV = −1

6
− 1

2

[

X(D)2 + T3L(D)2 + T3R(D)2
]

, (A.2)

cdLRV =
1

6
− [X(Q)X(D) + T3L(Q)T3L(D) + T3R(Q)T3R(D)] , (A.3)

cdLRS = 1 , (A.4)
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doublet triplet bidoublet

cdLLV −11
36 −23

36 −23
36

cdRRV −11
36 −8

9 −2
9

cdLRV
5
36 −7

9
7
18

cdLRS 1 1 1

Table 10. Coefficients relevant for ∆F = 2 operators in anarchy and U(2)3.

where the first terms come from heavy gluon exchange and the terms in brackets from

neutral heavy gauge boson exchange. Q refers to the charge −1/3 fermion mixing with q

and D to the charge −1/3 fermion mixing with dR. In the bidoublet model, we consider

only the contribution from Qu for simplicity, which is enhanced if z > 1. The numerical

coefficients relevant for the models discussed above are collected in table 10.

In U(3)3 there is an additional contribution from flavour gauge bosons. However the

only relevant ∆F = 2 operator is QdLLV in U(3)3RC, for which one obtains cdLLV = −29/36

instead of the value reported in the table.

In U(2)3, since all the flavour effects are generated by mixing with third generation

partners, which are not charged under any of the U(2) flavour groups, there is no relevant

additional effect coming from flavour gauge bosons, and the coefficients of table 10 are valid.

B Compositeness constraints from the dijet angular distribution

Exchanges of gauge resonances and flavour gauge bosons give rise to four-fermion operators

involving only the first generation which contribute to the angular distribution of high-mass

dijets at LHC. As shown in [47], only ten operators have to be considered, which we list

here for convenience

O(1)
uu = (ūRγ

µuR)(ūRγµuR) , O(1)
dd = (d̄Rγ

µdR)(d̄RγµdR) ,

O(1)
ud = (ūRγ

µuR)(d̄RγµdR) , O(8)
ud = (ūRγ

µTAuR)(d̄RγµT
AdR) ,

O(1)
qq = (q̄Lγ

µqL)(q̄LγµqL) , O(8)
qq = (q̄Lγ

µTAqL)(q̄LγµT
AqL) ,

O(1)
qu = (q̄Lγ

µqL)(ūRγµuR) , O(8)
qu = (q̄Lγ

µTAqL)(ūRγµT
AuR) ,

O(1)
qd = (q̄Lγ

µqL)(d̄RγµdR) , O(8)
qd = (q̄Lγ

µTAqL)(d̄RγµT
AdR) . (B.1)

The coupling of a first generation quark mass eigenstate to a heavy vector resonance receives

contributions from fermion composite-elementary mixing as well as vector boson composite-

elementary mixing. For example, the coupling of the up quark to the gluon resonance reads

ūγµT a
(

gρs
2
LuPL + gρs

2
RuPR +

g23
gρ

)

uG∗
µ . (B.2)
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c
(1)
uu c

(1)
dd c

(1)
ud c

(8)
ud c

(1)
qq c

(8)
qq c

(1)
qu c

(8)
qu c

(1)
qd c

(8)
qd

doublet U(3)3LC −17
36 −17

36 −1
9 −1 − 5

36 −1 −13
36 −1 −13

36 −1

triplet U(3)3LC −5
9 −19

18 −7
9 −1 −17

36 −1 −7
9 −1 −7

9 −1

bidoublet U(3)3LC −5
9 − 7

18 −1
9 −1 −17

36 −1 −7
9 −1 −1

9 −1

bidoublet U(3)3RC −5
9 − 7

18
2
9 −1 −17

36 −1 −7
9 −1 2

9 −1

d
(1)
uu d

(1)
dd d

(1)
ud d

(8)
ud d

(1)
qq d

(8)
qq d

(1)
qu d

(8)
qu d

(1)
qd d

(8)
qd

all models −1
6 −1

6 0 −1 0 −1
2 0 −1 0 −1

Table 11. Coefficients c
(1,8)
ab relevant for dijet bounds in the doublet, triplet and bidoublet models

as well as the coefficients d
(1,8)
ab , which are independent of the flavour and electroweak groups.

Neglecting electroweak gauge couplings, one can then write the Wilson coefficients of the

above operators as

C
(1,8)
ab =

g2ρ
m2
ρ

[

s2as
2
bc

(1,8)
ab +

(

g43
g4ρ

− (s2a + s2b)
g23
g2ρ

)

d
(1,8)
ab

]

, (B.3)

where (a, b) = (q, u, d) and s2u,d ≡ s2Ru,d, s
2
q ≡ s2L (in the bidoublet model, for simplicity we

will neglect terms with s2Ld over terms with s2Lu). The numerical coefficients c
(1,8)
ab depend

on the electroweak structure and on the flavour group and are collected in table 11 together

with the d
(1,8)
ab .

C Production and decay of vector resonances

The production cross section of a gluon resonance in pp collisions reads

σ(pp→ G∗) =
2π

9s

[

(|guL|2 + |guR|2)Luū(s,m2
ρ) + (|gdL|2 + |gdR|2)Ldd̄(s,m2

ρ)
]

, (C.1)

where

Lqq̄(s, ŝ) =
∫ 1

ŝ/s

dx

x
fq(x, µ)fq̄

(

ŝ

xs
, µ

)

(C.2)

is the parton-parton luminosity function at partonic (hadronic) center of mass energy
√
ŝ

(
√
s) and the couplings gu,dL,R are defined as L ⊃ ūLγ

µT aguLuLG
∗
µ and can be read off

eq. (B.2). Again, there is a contribution due to fermion mixing, which is only relevant in

U(3)3 models due to the potentially sizable compositeness of the first generation, while the

contribution due to vector mixing is always present. The total width reads

Γ(G∗ → qq̄) =
∑

q=u,d

3
∑

i=1

mρ

48π

(

|gqiL |2 + |gqiR |2
)

(C.3)
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while the branching ratio to dijets is simply the width without the top contribution divided

by the total width.6

D Chirality-conserving flavour-changing interactions in U(3)3

In U(3)3RC the effective Yukawa couplings have the form

q̄LŝLuYUsRuuR (D.1)

(and similarly for the down quarks) where ŝLu is a generic 3 × 3 mixing matrix and YU ,

sRu are both proportional to the unit matrix. In U(3)3LC the role of the mixings is reversed

and the Yukawa couplings take the form

q̄LsLuYU ŝRuuR. (D.2)

At the same time, before going to the physical basis, the relevant interactions with the

composite resonances have the form in U(3)3RC

ρµ(q̄LŝLuγµŝ
†
LuqL) (D.3)

and in U(3)3LC
ρµ(q̄LsLuγµs

∗
LuqL). (D.4)

In U(3)3RC the physical bases for up and down quarks are reached by proper 3× 3 unitary

transformations that diagonalize ŝLu and ŝLd

UuL ŝLuU
u†
R = ŝdiagLu UdLŝLdU

d†
R = ŝdiagLd , (D.5)

so that the CKM matrix is V = UuLU
d†
L . In the same physical basis the interaction (D.3)

in the down sector becomes

ρµ(d̄LV
†ŝdiagLu γµ(ŝ

diag
Lu )∗V dL) ≈ ρµs

2
Ltξij(d̄LiγµdLj), ξij = V ∗

tiVtj , (D.6)

which explains (5.6). Note that the ratio of the third to the second entry in ŝdiagLu equals

yt/yc. On the other hand a similar procedure for U(3)3LC leaves (D.4) unaltered since sLu
is proportional to the identity matrix.

E U(2)3 in composite models

For ease of the reader we recall the setup of U(2)3. The strong sector can be taken invariant

under a U(2)Q+U+D flavour symmetry acting on the first two generations of composite

quarks. In right-compositeness — meaningful only in the bidoublet model — in order to

generate the CKM matrix one has to consider a larger U(2)Qu+U × U(2)Qd+D symmetry.

Let us define

Qu =

(

Qu

Qu3

)

, U =

(

U

T

)

, qL =

(

qL

q3L

)

, uR =

(

uR

tR

)

, (E.1)

6Neglecting the top quark mass in the kinematics, which is a good approximation for multi-TeV reso-

nances still allowed by the constraints.
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where the first two generation doublets are written in boldface, and the same for down-type

quarks. The mixing Lagrangians in the cases of left-compositeness and right-compositeness

are respectively7

LU(2)3
LC

mix =mU3λLu3 q̄3LQ
u
3R +mU2λLu2 q̄LQ

u

R
+mU3λRu3 T̄LtR

+mU2 du (ŪLV )tR +mU2 ŪL∆uuR + h.c. + (u, U, t, T → d,D, b, B) (E.2)

and

LU(2)3
RC

mix =mU3λRu3 T̄LtR +mU2λRu2 ŪLuR +mU3λL(u)3 q̄3LQ
u
3R

+mU3 du (q̄LV )Qu3R +mU2 q̄L∆uQ
u

R
+ h.c. + (u, U, t, T → d,D, b, B). (E.3)

The mixings in the first line of (E.2) and (E.3) break the symmetry of the strong sector

down to U(2)q×U(2)u×U(2)d. This symmetry is in turn broken minimally by the spurions

V ∼ (2,1,1), ∆u ∼ (2,2,1), ∆d ∼ (2,1,2). (E.4)

Using U(2)3 transformations of the quarks they can be put in the simple form

V =

(

0

ǫL

)

, ∆u =

(

cu sue
iαu

−sue−iαu cu

)(

λXu1 0

0 λXu2

)

, (u↔ d), (E.5)

where X = R,L in left- and right-compositeness, respectively. Here we do not discuss the

case of generic U(2)3 breaking introduced in [43].

The SM Yukawa couplings (2.7) can be written in terms of the spurions as

ŷu =

(

au∆u bte
iφtV

0 yt

)

, ŷd =

(

ad∆d bbe
iφbV

0 yb

)

, (E.6)

where

yt = YU3sLu3sRu3, (E.7)

au = YU2sLu2, bt = YU2sLu2 du, in left-compositeness, (E.8)

au = YU2sRu2, bt = YU3sRu3 du, in right-compositeness, (E.9)

sXi = λXi/
√

1 + (λXi)2, and similarly for ad, bb and yb. Here and in the following we

consider all the parameters real, factoring out the phases everywhere as in (E.6). The ŷu,d
are diagonalized to a sufficient level of approximation by pure unitary transformations of

the left-handed quarks [32]

Uu ≃




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where

st = YU2sLu2
duǫL
yt

, sb = YD2sLd2
ddǫL
yb

, in left-compositeness, (E.11)

st = YU3sRu3
duǫL
yt

, sb = YD3sRd3
ddǫL
yb

, in right-compositeness. (E.12)

The CKM matrix is V = UuU
†
d and, after a suitable redefinition of quark phases, takes

the form

V ≃







1− λ2/2 λ suse
−iδ

−λ 1− λ2/2 cus

−sds ei(φ+δ) −scd 1






, (E.13)

where

sucd − cusde
−iφ ≡ λeiδ, sbe

iφb − ste
iφt ≡ seiχ. (E.14)

Chirality-conserving flavour-changing interactions. Equations (D.3), (D.4) remain

formally true in U(2)3 as well, with the following qualifications. YU , sRu, sLu are no longer

proportional to the identity but are still diagonal with only the first two entries equal to

each other. At the same time minimal breaking of U(2)3 leads to a special form of the

matrices ŝLu, ŝRu that allows to diagonalize approximately the Yukawa couplings by pure

left unitary transformations of the form (E.10).

In U(2)3RC these transformations lead to exactly the same equation as (D.6), whereas

in the U(2)3LC case equation (D.4) in the down sector goes into

ρµ(d̄LUdsLuγµs
∗
LuU

†
ddL) ≈ ρµs

2
Ltχij(d̄LiγµdLj), χij = Udi3U

d∗
j3 , (E.15)

Remember that, contrary to the U(3)3RC case, sLu, although still diagonal, is not propor-

tional to the unit matrix. Hence a flavour violation survives as in (6.1) with

rb =
sb
s
ei(χ−φb). (E.16)

Note that in U(2)3LC, for YU2 ∼ YD2 ∼ O(1) and du, dd . O(1), (E.11) leads to two

possibilities:

1. st ≪ sb, i.e. |rb| ≈ 1;

2. st ∼ sb ∼ |Vcb|, which allows |rb| to deviate from 1 but requires at the same time

sLu2ǫL ∼ |Vcb|.

In the first case one would have mψ & 1–1.5TeV from the flavour bounds of table 6, while

in the second case one can obtain a minimal value of mψ ≃ 0.6TeV, as in table 8, for

|rb| ∼ 0.25 and Y ∼ 1. However, to avoid a too large U(2)3-breaking — i.e. a large ǫL —

the mixing angle of the first generations quarks sLu2 cannot be too small. This in turn

has to be confronted with the lower bounds on mψ from Rh, VCKM and the dijet angular

distribution shown in table 12: to make them consistent with mψ ≃ 0.6TeV, it must be

ǫL & 0.3. Note anyhow that we are not treating ǫL as an expansion parameter.
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Observable Bounds on mψ [TeV]

doublet triplet bidoublet

Rh 7.2 sL2Y2 6.8 sL2Y2 5.6 sLu2YU2

VCKM 8.4 sL2Y2 6.8 sL2Y2 6.8 sLu2YU2

pp→ jj ang. dist. 4.3 s2L2Y2 5.3 s2L2Y2 5.3 s2Lu2YU2

Table 12. Lower bounds on the fermion resonance mass mψ in TeV in U(2)3LC from left-handed

1st and 2nd generation quarks mixed with the composite resonances by an angle sLu2.

In the bidoublet model, in addition to (E.15) there are also the terms coming from the

mixing with the Q̄dγµQ
d current, which are suppressed as 1/z2. In the up-quark sector

with right-compositeness only this suppressed contribution from Qd gives rise to flavour

violation, while in left-compositeness the analog of (E.15) holds, with Ud replaced by Uu.

Flavour violation from chirality-conserving right-handed quark bilinears is instead sup-

pressed, a general property of the Minimal U(2)3 framework [31, 32].
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