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I. INTRODUCTION

Since the first prediction1 of real solutions to the Dirac
equation, known as Majorana fermions, there have been
many attempts to demonstrate their occurrence in nature,2

but clear evidence is still lacking. Besides the natural search
for these elusive particles in high-energy physics, it has
been recently suggested that Majorana fermions can exist
as exotic excitations in certain condensed-matter systems.3,4

Such solid-state realizations include fractional quantum Hall
states at filling factor ν = 5/25, p-wave superconductors
and superfluids,6,7 three-dimensional topological insulators in
proximity to s-wave superconductors,8 as well as spin-orbit
coupled semiconductors in a magnetic field with proximity-
induced s-wave superconducting pairing.9–14 The importance
of finding Majorana fermions in condensed-matter systems is
not only related to their fundamental interests. It is also rooted
in the non-Abelian braiding statistics of these particles, which
could be exploited as a basis for decoherence-free topological
quantum computation.15

In this paper we focus on a specific proposal realized with
spin-orbit-coupled semiconducting nanowires in proximity
to an s-wave superconductor (S) and subjected to an in-
plane magnetic field12–14 (a system that, for the sake of
simplicity, is henceforth termed “S-nanowire”). This wire
can support Majorana-fermion bound states at its ends when
parameters such as chemical potential, magnetic field, and
superconducting pairing are properly tuned.16 The S-nanowire
is said to be in the topological phase when Majorana bound
states are present, while it is topologically trivial otherwise.

In order to assess the presence of Majorana fermions
in such solid-state systems, it is of primary importance
to predict clear signatures of the topological phase, which
could be then used to guide experiments. A very relevant
quantity is the local density of states (LDOS), which can
be accessed in scanning tunneling microscopy. LDOS cal-
culations have already been carried out in Refs. 17 and
18, but were restricted to finite-size S-nanowires in which
superconductivity is uniform along the wire. The influence

of normal segments inside a one-dimensional S-nanowire
was investigated in Ref. 19. In this work we exploit the
recursive Green’s function technique to study the LDOS of
both finite and semi-infinite multiband S-nanowires in the
presence of normal electrodes (NS junctions), as well as
supercoductor-normal metal-superconductor (SNS) junctions.
In this manner we have been able to (i) reproduce previous
results,17–19 (ii) generalize them to account for the coupling
to normal electrodes and/or for a finite width of the wire, and
(iii) consider more complicated structures like SNS junctions.

The paper is organized as follows. In Sec. II we describe the
model and we introduce the corresponding Hamiltonian. The
phase diagram is presented and new analytical expressions for
the phase boundaries are reported. Section III is devoted to
the discussion of our numerical results for the LDOS. We
start in Sec. III A with the case of a finite-size multiband
S-nanowire.17 We then consider a single NS junction between
semi-infinite leads in Sec. III B. This situation can arise for
instance when the nanowire is only partially in proximity
to a bulk superconductor so that part of the nanowire is in
the normal state. Here we also study the evolution of the
LDOS across the topologically trivial/topologically nontrivial
phase transition. In Sec. III C we turn our attention to a SNS
junction, illustrating numerical results for the LDOS and for
the Andreev-bound-state spectrum. Finally, in Sec. IV we draw
our main conclusions.

II. MODEL HAMILTONIAN

Our calculation of the LDOS is based on a recursive
Green’s function method especially designed for tight-binding
Hamiltonians. In order to apply this method to the present
case, we describe the semiconducting nanowire as a square
lattice with a finite width W in the direction perpendicular
to the axis of the wire (the ŷ direction) and lattice constant
a. Assuming the presence of Rashba-type spin-orbit (SO)
coupling, of strength α, and a Zeeman field V along the
wire (x̂ direction), the lattice discretization of the usual
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continuum-model Hamiltonian13,14,20 reads16

ĤRZ =
∑
i,j

[hRZ(i,j )]σσ ′ ĉ
†
i,σ ĉj,σ ′

= −t
∑

〈i,j〉,σ
ĉ
†
i,σ ĉj,σ + (ε0 − μ)

∑
i,σ

ĉ
†
i,σ ĉi,σ

+ iα
∑

〈i,j〉,σ,σ ′

(
ν ′

ij σ
x
σσ ′ − νijσ

y

σσ ′
)
ĉ
†
i,σ ĉj,σ ′

+V
∑
i,σ,σ ′

σx
σσ ′ ĉ

†
i,σ ĉi,σ ′ . (1)

Here ε0 = 4t is a uniform on-site energy which sets the zero
of energy, σ i are spin- 1

2 Pauli matrices, νij = x̂ · d̂ij and ν ′
ij =

ŷ · d̂ij , with d̂ij = (r i − rj )/|r i − rj | being the unit vector
connecting site j to site i.

If we now allow sections of the nanowire to be in contact
with a bulk s-wave superconductor, the proximity effect
induces a nonvanishing superconducting pairing in these
sections so that the complete Hamiltonian becomes

Ĥ = ĤRZ + ĤS, (2)

where

ĤS =
∑

i

[�(i)ĉ†i,↑ĉ
†
i,↓ + H.c.]. (3)

For simplicity we assume �(i) to be piecewise constant, with
|�(i)| = � in the regions in contact with the superconductor
and �(i) = 0 otherwise. Moreover, we assume that a barrier is
present at the boundary between proximized and nonprox-
imized sections, leading to a decrease of the value of the
hopping energy t and of the SO coupling α by the same factor
γ .21

Finally, it is convenient to introduce the Nambu spinors
�̂i = (ĉi,↑,ĉi,↓,ĉ

†
i,↓, − ĉ

†
i,↑)T and rewrite the Hamiltonian (2)

in the form

Ĥ = 1

2

∑
i,j

�̂
†
i HBdG(i,j )�̂j , (4)

where

HBdG(i,j ) =
(

hRZ(i,j ) �(i)δij

�(i)δij −σyh∗
RZ(i,j )σy

)
(5)

is the Bogoliubov-de Gennes (BdG) Hamiltonian.22

The tight-binding Hamiltonian (5) will be the starting point
of our analysis.

A. Phase diagram

Before proceeding with the study of the LDOS we need
to know in which regions of parameter space we should
expect Majorana fermions. This problem has been addressed in
Refs. 13 and 14 in the strictly one-dimensional case and in the
continuum limit (a → 0): The S-nanowire is in the topological
phase when |V | >

√
μ2 + �2, while it is in the trivial phase

otherwise. Thus, the phase boundary occurs along the line
implicitly defined by

V 2 = μ2 + �2. (6)
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FIG. 1. (Color online) Phase diagram of an infinite superconduct-
ing wire as a function of the chemical potential μ and the Zeeman
field V . White regions correspond to a trivial system (Q = +1), while
dark regions identify the topologically nontrivial phase (Q = −1).
Red thick lines illustrate the prediction in Eq. (8) for the phase
boundaries. These results refer to the following set of parameters:
W/a = 10, α/t = 0.1, and �/t = 0.1.

The phase diagram of multiband (W/a 	= 1) nanowires has
been investigated numerically in Refs. 17 and 20. The phase
of a uniform system can be determined, for instance, from
the evaluation of the following Pfaffian formula23 for the
topological invariant

Q = sign{Pf[HBdG(0)σyτ y]Pf[HBdG(π/a)σyτ y]}, (7)

where HBdG(kx) is the Fourier transform of the BdG Hamil-
tonian in Eq. (5), while τ i are Pauli matrices acting on
the particle-hole degrees of freedom. In Fig. 1 we report
numerical results for a given system (W/a = 10, α/t = 0.1,
and �/t = 0.1) as a function of the chemical potential μ

and Zeeman field V , obtained using an algorithm developed
by Wimmer.24 The topologically trivial phase corresponds to
Q = +1 (white regions), while the nontrivial one is signaled
by Q = −1 (dark regions). The phase boundaries in this figure
(red thick lines) have been derived analytically and are given
by the following result:

(μ − ε0 − ελ ± 2t)2 + �2 = V 2. (8)

Here ε0 + ελ ∓ 2t are the eigenenergies of HBdG(k) for k =
0,π/a, respectively, when V = � = μ = 0. The following
expression holds for the energies ελ

ελ = −2
√

t2 + α2 cos

(
λπ

n + 1

)
; λ = 1, . . . ,n = W/a.

(9)

A thorough derivation of Eqs. (8) and (9) is given in
Appendix A.

III. LDOS: NUMERICAL RESULTS

As we mentioned in the Introduction, the LDOS can be
accessed in experiments using scanning tunneling microscopy
(STM). The STM experimental setup is sketched in Fig. 2.
When the metallic tip of the STM is moved close to the
nanowire a tunneling current can flow. By locally measuring
this current I as a function of the tip-sample bias voltage V , the
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FIG. 2. (Color online) Experimental setup adopted in measure-
ments of the LDOS of a nanowire (in this case comprising a normal
electrode and a superconducting segment separated by a barrier). The
differential conductance obtained from the current between the tip
of the scanning tunneling microscope (STM) and the nanowire is
proportional to the LDOS of the nanowire according to Eq. (10).

LDOS at a given position r and energy E can be reconstructed
from the differential conductance at eV = E:25,26

dI

dV
(r,eV ) ∝ N (r,E = eV ). (10)

As a consequence, it is particularly interesting to investigate
the LDOS theoretically and make predictions that can be tested
in experiments.

In what follows the LDOS is computed through the standard
relation

N (r,E) = − 1

2π
�m{Tr[G(r,E)]}, (11)

where G(r,E) is the Green’s function and the factor 2 in
the denominator is introduced to avoid a double counting of
particle and hole degrees-of-freedom intrinsic in the BdG
formalism. We have computed G(r,E) using a recursive
Green’s function technique similar to the one adopted in
Ref. 17, suitably generalized to include the effects of semi-
infinite leads.27 For simplicity, in the following we fix the
width W = 10a, the SO coupling strength α = 0.1t , and the
superconducting pairing � = 0.1t .

A. Isolated S-nanowire

Let us first consider an isolated S-nanowire of finite length
(L = 100a). This situation has been addressed before17,18 and
it is considered here for the sake of reference. We consider
two cases: (i) μ = 0 and V/t = 0.2 (with one open channel
in the absence of superconducting pairing) and (ii) μ = 0 and
V/t = 0.6 (with two open channels). According to Fig. 1,
in case (i) the wire is topologically nontrivial, while in case
(ii) the wire is topologically trivial. For case (i), Fig. 3(a) shows
that the LDOS at an energy close to the chemical potential is
characterized by the presence of bound states at both ends
of the wire. The presence of Majorana bound states appears
as a sharp peak at zero energy in the LDOS as a function of
energy at a given position in space [see Fig. 3(b)]. According
to Fig. 3(c), these Majorana bound states have oscillating wave
functions which decay exponentially inside the bulk of the S-
nanowire with a typical length scale (effective superconducting
coherence length) ξ ≈ 10a.

(a)

(b) (c)

FIG. 3. (Color online) (a) LDOS of an isolated superconducting
nanowire in the topologically nontrivial phase (μ/t = 0, V/t = 0.2)
at an energy very close to the chemical potential (E � 0). Bound
states at both ends of the wire are apparent. (b) LDOS at a given
position (x/a = 4, y/a = 5) as a function of energy. A sharp peak
corresponding to a Majorana bound state is present at E = 0.
(c) LDOS at E � 0 as a function of x along the middle of the wire
(y/a = 5).

On the contrary, in case (ii) where the wire is topologically
trivial (and presents two transverse channels in the absence of
superconducting pairing) the LDOS at the chemical-potential
energy is almost zero throughout the wire, while it shows
spatial features only at finite energies [see Fig. 4(a) for E/t �
±0.002, where E is measured from the chemical potential].
In particular, as shown in Fig. 4(c), the LDOS oscillates and
decreases moving toward the center of the wire, the length
scale of the exponential drop, ξ ≈ 30a, being much larger
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than for case (i). Now, if the two channels were decoupled, two
Majorana modes would have appeared at each end of the wire,
one for each open channel. However, since the two transverse
channels are actually coupled in the wire, a single fermion
at each end appears at a finite energy,17 as though coming
from the hybridization of the two Majorana modes. Figure
4(b) shows one pair of peaks at E/t � ±0.002 and another
pair (with smaller amplitude) at E/t � ±0.007. The presence
of two pairs of peaks is due to the long coherence length
which allows the two localized fermions at the ends of the
wire to strongly hybridize, lifting the parity degeneracy of the
system. We have checked that for a longer wire (L/a = 400)
the overlap between the fermions vanishes and the two peaks
at E/t � 0.002 and E/t � 0.007 merge into a single double-
degenerate peak at energy E/t � 0.001. The latter energy
depends on the width of the nanowire.28

B. S-nanowire attached to a normal electrode

In this section we analyze the impact of a normal lead
attached to the S-nanowire. This situation can arise, for
instance, when the nanowire is only partially in proximity
to a bulk superconductor so that part of the nanowire is in the
normal state (as shown in Fig. 2). In order to get rid of finite-
size effects, we consider a semi-infinite S-nanowire coupled to
a normal lead. The case of a finite-length S-nanowire coupled
to two normal leads at both ends does not yield additional
significant information.

In Fig. 5 we plot the LDOS, at different positions, as a
function of energy for several values of the barrier strength

FIG. 5. LDOS of a superconducting nanowire coupled to a normal
lead as a function of energy, at fixed positions in space, in the
nontrivial [μ/t = 0 and V/t = 0.2, panels (a) and (c)], and trivial
[μ/t = 0, V/t = 0.6, panels (b) and (d)] phase. Panels (a) and (b)
refer to a position just inside the superconducting part (x/a = 51),
while panels (c) and (d) refer to a position just inside the normal part
of the junction (x/a = 50). The interface is at x/a = 50.5.

FIG. 6. (Color online) Fitted values [through Eq. (12)] of the half
width at half maximum �/2 (blue circles) and height at zero energy
N (red triangles) of the peak in the LDOS at a position just inside
the superconducting nanowire in the nontrivial phase. Solid lines are
just guides for the eye.

γ . The two plots on the left [(a) and (c)] are for a nontrivial
nanowire with μ/t = 0 and V/t = 0.2, while the two plots on
the right [(b) and (d)] refer to a topologically trivial nanowire
with μ/t = 0 and V/t = 0.6. Moreover, the top panels [(a)
and (b)] refer to a position close to the interface in the S-
nanowire, while the bottom panels [(c) and (d)] to a position
close to the interface in the normal lead. When γ is small the
LDOS in the S-nanowire presents a finite gap Eg which is
just a fraction of the superconducting pairing � owing to the
presence of the Zeeman field. Namely, Eg � 0.03t = 0.3�

for the nontrivial nanowire and Eg � 0.018t = 0.18� for the
trivial case. Within the gap, Fig. 5(a) shows a sharp Majorana
peak at zero energy which broadens as γ increases29,30 and
eventually disappears when γ → 1. Such a peak can be fitted
with the following Lorentzian function:

N (r,E) � N (�/2)2

E2 + (�/2)2 , (12)

where �/2 is the half width at half maximum and N is the
height at zero energy. The result of the fit is reported in Fig. 6:
�/2 and N are plotted as functions of γ . Remarkably, �/2
depends only very weakly on the position in the S-nanowire
where the LDOS is calculated.

Interestingly, the Majorana peak is present also in the LDOS
of the normal lead [Fig. 5(c)] as long as γ is not exactly
zero: The peak is still clearly distinguishable up to γ � 0.6.
Moreover, singularities develop at energies corresponding to
±Eg as γ tends to 1.

In the trivial phase, the LDOS in the S-nanowire at a
position close to the interface [Fig. 5(b)] presents a single
pair of peaks at γ = 0 (as compared to Fig. 4), since, being
semi-infinite, the ends of the S-nanowire are sufficiently far
away to be decoupled. Such peaks quickly broaden as γ

increases and eventually merge into a single peak at γ � 0.3
(a further increase of γ leads to the disappearing of the peak).
As a result, as long as the coupling between the S-nanowire
and the normal lead is not too strong, nontrivial and trivial
phases can be distinguished from a measurement of the LDOS
in the S-nanowire given a sufficiently large energy resolution
(in the present case higher than 1% of the pairing �). On the
contrary, only a very weak double-peak structure is visible in
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the LDOS in the normal lead at a position close to the interface
and for small values of γ [see Figs. 5(d)].

We mention that important clues on the topological phase
of a S-nanowire coupled to a normal electrode can be also
retrieved using a different transport setup with respect to the
one depicted in Fig. 2. Indeed, instead of considering the
current from the STM tip to the sample, it would, in principle,
be possible to study directly transport through the NS junction
present in the nanowire. Even though a theoretical analysis of
this configuration is beyond the scope of the present work, in
Appendix B we report on the low-bias conductance of the NS
junction. We find that, in the tunneling limit, the approximate
quantization of the conductance can be exploited to identify the
topological phase of the nanowire.29,31,32 We also remark that,
even for transparent barriers, clear signatures of the presence
of Majorana fermions can be extracted from the transport
properties of the NS junction provided that a quantum point
contact is present close to the interface.33

Let us now analyze how the LDOS changes when the
S-nanowire is driven through a topological phase transition.34

In Fig. 7(a) we plot the topological invariant Q [calculated
using Eq. (7)] and the number of open channels (Noc) as
functions of the chemical potential μ for a fixed Zeeman field
V = 0.3t . The S-nanowire goes through a transition, from
the nontrivial (Q = −1) to the trivial (Q = +1) phase, at
μ � 0.026t . Interestingly, the number of channels increases
from 1 to 2 at a much smaller value of the chemical potential

(a)

(b)

FIG. 7. (Color online) (a) Topological invariant Q (red solid line)
and number of open transverse channels Noc (blue dash-dotted line) as
functions of the chemical potential μ for a system with V/t = 0.3. A
phase transition occurs at μ/t � 0.026. (b) LDOS at a position inside
a semi-infinite superconducting nanowire for different values of the
chemical potential μ keeping V/t = 0.3 fixed. Results have been
offset vertically for clarity, with an increasing value of the chemical
potential from bottom (μ/t = 0) to top (μ/t = 0.05).

μ � 0.01t such that the nontrivial phase persists even in
the presence of two open channels. This observation is in
apparent contradiction with the intuitive picture adopted in
the literature to explain the phase diagram of superconducting
nanowires, that is, that a pair of Majorana fermions at the
ends of the wire is associated with each open channel and that
pairs of Majorana fermions on the same end can couple and
form complex (Dirac) fermions. Accordingly, there should
be a single isolated Majorana fermion at each end of the
nanowire whenever the number of open channels is odd. On the
other hand, this intuitive picture should be treated with care,
simply because one concept (presence of Majorana fermions)
is related to a superconducting wire while the other (number
of open channels) to a normal one. Indeed, already in Ref. 17
it was noticed that the system can be in the topologically
trivial phase even when Noc is odd. Here, we are observing
the complementary situation in which the topological phase
persists when Noc is even. We believe that the underlying
explanation is the same for both cases: the failure of the
intuitive picture reported above to explain the whole phase
diagram. As a consequence, we remark that the topological
invariant is not necessarily in a one-to-one correspondence
with the parity of the number of open channels. In Fig. 7(b)
the LDOS as a function of energy is shown at a position inside
the S-nanowire (x = 50a, measured from the interface, and
y = W/2 = 5a) when γ is close to zero. Different curves
correspond to different values of the chemical potential, with
a vertical offset proportional to μ. The Majorana peak splits
into two Dirac-fermion peaks at finite energy as the chemical
potential moves through the phase transition. Besides, we
also observe that the effective gap Eg initially decreases
for increasing μ, then vanishes at the phase transition, and
thereafter increases again. Similar results (concerning the
differential tunneling conductance at one end of a nanowire)
have been recently presented in Ref. 18.

C. SNS structure

Let us now consider two semi-infinite S-nanowires con-
nected through a normal nanowire (N nanowire). For simplic-
ity we assume transparent barriers at the interfaces and we set

�(i) ≡ �(x/a) =

⎧⎪⎨
⎪⎩

�eiϕL x < −L/2,

0 |x| � L/2,

�eiϕR x > L/2;

(13)

that is, we allow for a finite phase difference �ϕ = ϕR −
ϕL between the superconducting paring in the right and
left S-nanowires, L being the length of the N nanowire.
Independently of the topological phase of the system, Andreev
bound states (ABSs) appear as sharp peaks in the LDOS (see
Fig. 8) and the ABS spectrum can thus be reconstructed from
the energies at which such peaks occur. As we discuss at
length below, what differs between topologically trivial and
nontrivial phases is the parity of the number of zero-energy
crossings in the ABS spectrum, which is related to the presence
or absence of such a crossing at �ϕ = π (protected by fermion
parity). This result is in agreement with similar calculations
performed for a strictly one-dimensional system,13,35 for a
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FIG. 8. LDOS as a function of energy at a given position close
to the interface inside the left superconducting nanowire. Sharp
peaks corresponding to Andreev bound states appear both within
the effective gap Eg (� 0.007t) and inside the continuum. These
results refer to the following set of parameters: �ϕ = 2.0, μ/t = 0,
V/t = 0.8, and L/a = 0.

two-dimensional SNS junction,36 and for a quantum spin-Hall
insulator sandwiched between superconducting leads.37

We start by considering the short-junction limit, L � ξ

(where ξ ∝ ta/Eg is the effective superconducting coherence
length), in which we have a single ABS for each open channel.
L = 0 is a particular case in which the N nanowire is absent
and we have a steplike jump from ϕL to ϕR in the phase of a
S-nanowire. In Fig. 9 we show, for L = 0, the ABS energies
as a function of �ϕ for a topologically nontrivial [panel (a)
for μ/t = 0 and V/t = 0.2] and trivial [panel (b) for μ/t =
0.15 and V/t = 0.1] S-nanowires. In both cases we have a
single ABS (with its opposite energy counterpart). The main
difference between the two cases is that the number of zero-
energy crossings is odd in the nontrivial phase while it is even
in the trivial case, in agreement with Ref. 13. Furthermore,
even though the overall periodicity of the ABS spectrum is 2π

in both cases, the periodicity of a single branch of the ABS
spectrum is 4π only for the nontrivial situation. In particular,
the change of �ϕ by 2π at a fixed energy leads to the swapping
of an ABS with its charge-conjugate state which has opposite
fermion parity. In terms of Josephson current this leads to
the fractional Josephson effect9 and can be interpreted either
as a 4π periodicity or as a two-valuedness of the Josephson
current. For simplicity in the following we will address the
topologically nontrivial ABS spectrum as 4π periodic.

It is now interesting to compare the plot in Fig. 9(a)
with the ABS spectrum relative to a short, one-dimensional,
SNS Josephson junction with px + ipy superconducting order
parameter. An expression for the latter has been obtained,
under the Andreev approximation (which assumes an order
parameter much smaller than the Fermi energy), in Ref. 38:

Eabs = ±�abs

√
T cos (�ϕ/2) , (14)

where T is the transmission probability of the N region
and �abs is an effective order parameter for the ABS. The
solid line in Fig. 9(a) shows the result of a best fit, with
respect to �abs, once T is set to 1. The agreement between
the numerical results (red open circles) and the fit is quite
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FIG. 9. (Color online) (a) Andreev bound-state energies (red open
circles) as a function of the phase difference �ϕ for topologically
nontrivial superconducting nanowires (μ/t = 0, V/t = 0.2, and γ =
1). The solid line is a best fit using the expression in Eq. (14). (Inset)
Same as in the main panel but for a nontransparent barrier between
the superconducting nanowires (γ = 0.1). (b) Same as in panel (a)
but for topologically trivial superconducting nanowires (μ/t = 0.15
and V/t = 0.1). Both panels refer to a SNS junction with L/a = 0.

good, despite the fact that the S-nanowire behaves effectively
as a (px + ipy)-wave superconductor only in the limit of
large Zeeman fields, with respect to � (in the present case
V = 0.2t and � = 0.1t).39 In the inset we show that, contrary
to a nontopological SNS junction,40 the zero-energy crossing
survives even when the barrier between the superconductors
is not transparent (γ = 0.1). In accordance with Eq. (14), the
only effect of a transparency T < 1 is to reduce the bandwidth
of the ABS spectrum preserving the crossing at �ϕ = π .
Indeed, with respect to the nontopological case discussed, for
instance, in Ref. 40, here the ABSs have different fermion
parity; that is, they correspond to states with an even or odd
number of fermions, respectively. Since fermion parity is a
conserved quantity in this case, the two ABSs cannot couple
(giving rise to the opening of a gap) even when the transparency
of the system is lowered.

Let us now address the case of larger Zeeman fields, where,
however, the situation is complicated by the fact that by
increasing V also the number of open channels increases. In
Fig. 10(a) the ABS spectrum, as a function of �ϕ, is shown
for a topologically nontrivial S-nanowire with μ = 0 and
V = 0.8t , where three transverse open channels are allowed
in the absence of superconducting pairing. The spectrum
presents three ABS branches and an odd (three) number
of crossings at zero energy, as expected for the nontrivial
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FIG. 11. (Color online) (a) Andreev bound-state energies (red
open circles) as a function of the phase difference �ϕ for
topologically nontrivial superconducting nanowires (V/t = 0.2 and
μ/t = 0). (b) Same as in panel (a) but for topologically trivial
superconducting nanowires (V/t = 0.05 and μ/t = 0). Both panels
refer to the long-junction limit (L/a = 50).

No fitting with Eq. (14) is now possible. This is due to the
fact that now the effective px + ipy description no longer
holds since ABSs with both chiralities are present,11 so that
an interband s-wave pairing amplitude can mix them. In this
case, one of the ABS branches has periodicity 4π while the
remaining two have periodicity 2π . We still expect a fractional
Josephson effect.

If we increase the length of the N nanowire toward the
long-junction limit (L � ξ ), the number of ABSs increases but
the topological phase of the S-nanowire can still be detected
from the number of zero-energy crossings in the interval
�ϕ ∈ [0,2π ].13,37 This is shown in Fig. 11, where the ABS
spectrum is plotted for L/a = 50 (long-junction limit) when
the S-nanowires are in the nontrivial phase [panel (a) for
V/t = 0.2 and μ/t = 0] and in the trivial phase [panel (b)
for V/t = 0.05 and μ/t = 0]. As in the short-junction limit,
the periodicity of at least one branch of the ABS spectrum is
4π only in the nontrivial case.

IV. CONCLUSIONS

In this paper we have considered a multiband semiconduct-
ing nanowire subjected to spin-orbit coupling, superconduct-
ing pairing, and a longitudinal Zeeman field. Depending on the
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values of such parameters, the nanowire presents a nontrivial
topological phase in which a pair of Majorana modes, at an
energy equal to the chemical potential, are localized at its
ends. We have first derived an analytic expression for the phase
boundaries of an infinitely long multiband nanowire. We have
then numerically calculated and analyzed the local density of
states of such nanowires in the case when they are coupled
to normal regions (such as electrodes or links) and we have
compared the topologically nontrivial and trivial phases in
different situations. When the nanowire is coupled to a normal
electrode we have found that the peak in the local density of
states at zero energy (with respect to the chemical potential),
corresponding to the Majorana mode, broadens with increasing
coupling strength to the electrode, eventually disappearing for
a transparent interface. Interestingly, for finite coupling the
peak is also present in the normal electrode, though being
of smaller amplitude and broadening more rapidly with the
strength of the coupling. In the trivial phase, and when the
nanowire possesses two open channels in the absence of
superconducting pairing, a pair of peaks at finite energies
appears as due to the hybridization of the two Majorana modes
that would exist if the two channels of the nanowire were
not coupled. Such peaks broaden with increasing coupling
strength to the normal electrode, eventually merging for
sufficiently large coupling. In the normal electrode only weak
features survive. From the analysis of the topological phase
transition, driven by varying the chemical potential at fixed
Zeeman field, we have found that the nanowire remains in the
topologically nontrivial phase even after the number of open
channels goes from one to two. This suggests that, contrary
to the intuitive picture often referred to in the literature, the
one-to-one correspondence between the topological invariant
and the parity of the number of open channels is only
approximate and should be treated with care. We have then
considered the situation in which two semi-infinite nanowires
(kept at different superconducting phases) are connected
through a normal link of length L. Independently of the
topological phase the density of states presents peaks due
to Andreev bound states whose position in energy depends
on the superconducting phase difference �ϕ. While in the
trivial phase the number of zero-energy crossings is even, in
the topologically nontrivial phase this number is odd owing
to the presence of a fermion-parity-protected crossing at
�ϕ = π . This difference in the parity of the number of
zero-energy crossings reflects the presence of at least one
branch of Andreev-bound-state energy which is 4π periodic
(instead of the usual 2π periodicity), leading to the so-called
fractional Josephson effect. This anomalous 4π periodicity of
the Josephson current has been usually introduced in strictly
one-dimensional systems while we have checked that it sur-
vives also in a multiband nanowire, in agreement with Ref. 41.
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APPENDIX A: DERIVATION OF THE PHASE DIAGRAM

We first need to determine the eigenvalues and eigenvectors
of HBdG(kx) for kx = 0 and π/a, when V = � = 0. The
difference between kx = 0,π/a is just a shift ±2t in the
chemical potential; that is,

HBdG(kx = 0,π/a) = H0 + [ε0 − (μ ± 2t)]τz. (A1)

Moreover, we are assuming � = 0, so that

H0 =
(Hp 0

0 −σyH∗
pσ

y

)
. (A2)

Thus, it suffices to consider the particle Hamiltonian Hp. For a
wire of width W/a = n the characteristic polynomial Ln(ε; α)
of Hp can be defined recursively as

Ln(ε; α) = εLn−1(ε; α) − (t2 + α2)Ln−2(ε; α), (A3)

with L0(ε; α) = 1 and L1(ε; α) = ε. A formal solution to the
recursive relation (A3)
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is not diagonal, it is still useful to introduce it. Indeed, we can
then write

HBdG(kx)σyτ y = UBdGD(kx)(σyτ yUBdG)† (A11)

and, since by particle-hole symmetry we have that

σyτ yUBdG = U ∗
BdGτ x, (A12)

the Pfaffian can be written as

Pf[HBdG(kx)σyτ y] = Pf
[
UBdGD(kx)τ xUT

BdG

]
= det(UBdG)Pf[D(kx)τ x]

= (−1)nPf[D(kx)τ x]. (A13)

The product inside the Pfaffian reads

D(kx)τ x =
(

E(kx) i�U †σyU ∗

−i�UT σyU −E(kx)

) (
0 1

1 0

)

=
(

i�U †σyU ∗ E(kx)

−E(kx) −i�UT σyU

)
, (A14)

where E(kx) is a diagonal matrix with entries given by
{ελ + λV + ε0 − μ ∓ 2t}, λ = ±1. This matrix is indeed
antisymmetric. One can easily see that, upon a reordering
of the rows and columns described by a real unitary matrix
V , the matrix D(kx)τ x can be put into a block diagonal form,
where each block is a 4 × 4 matrix involving the particle states
with eigenvalues differing only by the sign of V and their hole
counterparts. Namely, each block has the form⎛

⎜⎜⎜⎝
0 −� ε + V 0

� 0 0 ε − V

−ε − V 0 0 �

0 −ε + V −� 0

⎞
⎟⎟⎟⎠ , (A15)

where ε = ελ + ε0 − μ ∓ 2t . Thus, this means that

Pf[HBdG(kx)σyτ y]

= (−1)nPf[D(kx)τ x]

= (−1)n det(V)
∏
λ

[V 2 − �2 − (μ − ελ − ε0 ± 2t)2],

(A16)

where the upper and lower signs refer to kx = 0 and kx = π/a,
respectively, and the matrixV is the same for both kx = 0,π/a.
Thus, we finally have

Q = sgn{Pf[HBdG(0)σyτ y]Pf[HBdG(π/a)σyτ y]}
=

∏
λ,η=±1

sgn[�2 + (μ − ελ − ε0 + η2t)2 − V 2] (A17)

and consequently the phase boundaries are given by Eq. (8).
We finally mention that analogous results have been found
in Ref. 42 in the case of spinless fermions in a p-wave
superconducting nanowire.

APPENDIX B: TRANSPORT ACROSS A NS JUNCYION

In this Appendix we investigate another important tool
to assess the topological phase of an S-nanowire coupled
to a normal electrode: the low-bias conductance across a
NS junction in the tunneling limit. In the limit of low

bias, transmission through the superconductor is completely
suppressed and the conductance of the NS junction can be
expressed in terms of the Andreev reflection matrix rhe (at the
chemical potential)

G = 2e2

h
Tr[r†herhe] = 2e2

h

Noc∑
m=1

Rm. (B1)

Here Rm are the eigenvalues of the Hermitian matrix r
†
herhe and

Noc is the number of open channels in the normal electrode.
Owing to particle-hole symmetry, the Rm’s are either twofold
degenerate or equal to 0 or 1.33,43 The presence of a fully
Andreev-reflected mode (giving a quantized contribution to the
conductance) is a signature of the existence of an uncoupled
Majorana fermion at the Fermi energy.31,32 As a consequence,
it is possible to write the conductance in the following form:33

G = 2e2

h

(
1 − Q + 4

∑
m

′
Rm

)
, (B2)

where the primed sum is restricted to the degenerate Andreev
reflection eigenvalues and Q is the topological invariant in
Eq. (7). In the limit of poorly transparent barriers (γ � 1),
we expect that almost all modes are fully reflected (Rm ≈ 0,
though never exactly zero)33,43 and thus

G ≈ 2e2

h
(1 − Q). (B3)

As a consequence the low-bias conductance of the NS junction
in the tunneling limit gives an important information on the
topological phase of the S-nanowire.29,31,32 This result can be
extended to almost transparent barriers if we include a ballistic
quantum point contact close to the NS interface.33 In Fig. 12
we show the conductance G (in units of 2e2/h) as a function
the parameter γ controlling the transparency of the barrier. In
the tunneling limit (γ � 1), we notice that the conductance
approaches 0 for a topologically trivial S-nanowire (red dashed
line, V/t = 0.2 and μ/t = 1.5) or 2e2/h for a topologically
nontrivial S-nanowire (blue solid line, V/t = 0.2 and μ/t =
1.1), in agreement with Eq. (B3).

0.0 0.2 0.4 0.6 0.8 1.0
γ

0

1

2

3

4

5

6

7

8

G
[2

e2
/h

]

FIG. 12. (Color online) Conductance (in units of 2e2/h) of the NS
junction as a function of the parameter γ controlling the transparency
of the barrier. The (blue) solid line refers to a S-nanowire in the
topologically nontrivial phase (V/t = 0.2 and μ/t = 1.1), while the
(red) dashed line refers to a S-nanowire in the topologically trivial
phase (V/t = 0.2 and μ/t = 1.5).
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