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This paper discusses the quantum mechanics of closed-timelike curves (CTCs) and of other potential

methods for time travel. We analyze a specific proposal for such quantum time travel, the quantum

description of CTCs based on post-selected teleportation (P-CTCs). We compare the theory of P-CTCs to

previously proposed quantum theories of time travel: the theory is inequivalent to Deutsch’s theory of

CTCs, but it is consistent with path-integral approaches (which are the best suited for analyzing quantum-

field theory in curved space-time). We derive the dynamical equations that a chronology-respecting

system interacting with a CTC will experience. We discuss the possibility of time travel in the absence of

general-relativistic closed-timelike curves, and investigate the implications of P-CTCs for enhancing the

power of computation.
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Einstein’s theory of general relativity allows the exis-
tence of closed-timelike curves, paths through space-time
that, if followed, allow a time traveler—whether human
being or elementary particle—to interact with her former
self. The possibility of such closed-timelike curves
(CTCs) was pointed out by Kurt Gödel [1], and a variety
of spacetimes containing closed-timelike curves have
been proposed [2,3]. As in all versions of time travel,
closed-timelike curves embody apparent paradoxes, such
as the grandfather paradox, in which the time traveller
inadvertently or on purpose performs an action that causes
her future self not to exist. Einstein (a good friend of
Gödel) was himself seriously disturbed by the discovery
of CTCs [4].

Reconciling closed-timelike curves with quantum me-
chanics is a difficult problem that has been addressed
repeatedly, for example, using path-integral techniques
[5–10]. This paper explores a particular version of
closed-timelike curves based on combining quantum tele-
portation with post-selection. The resulting post-selected
closed-timelike curves (P-CTCs) provide a self-consistent
picture of the quantum mechanics of time travel. P-CTCs
offer a theory of closed-timelike curves that is inequivalent
to other Hilbert-space based theories, e.g., that of Deutsch
[11]. Because the theory of P-CTCs rely on post-selection,
they provide self-consistent resolutions to such paradoxes:
anything that happens in a P-CTC can also happen in
conventional quantum mechanics with some probability.
Similarly, the post-selected nature of P-CTCs allows the
predictions and retrodictions of the theory to be tested
experimentally, even in the absence of an actual general-
relativistic closed-timelike curve.

To provide our unifying description of closed-timelike
curves in quantum mechanics, we start from the
prescription that time travel effectively represents a

communication channel from the future to the past.
Quantum time travel, then, should be described by a quan-
tum communication channel to the past. A well-known
quantum communication channel is given by quantum
teleportation, in which shared entanglement combined
with quantum measurement and classical communication
allows quantum states to be transported between the sender
and the receiver. We show that if quantum teleportation is
combined with post-selection, then the result is a quantum
channel to the past. The entanglement occurs between the
forward- and backward-going parts of the curve, and post-
selection replaces the quantum measurement and obviates
the need for classical communication, allowing time travel
to take place. The resulting theory allows a possible de-
scription of the quantum mechanics of general-relativistic
closed-timelike curves.
The two basic types of paradoxes that arise in time travel

to the past are the grandfather paradox, in which the time
traveller, accidentally or on purpose, kills her grandfather
as young man before he as had any children. So, she does
not exist; so, she cannot go to the past and kill her grand-
father, etc. Phrased in physical terms, the grandfather para-
dox is essentially an issue of the self-consistency of
dynamics in the presence of closed-timelike curves. The
second type of paradox is based on the unproved theorem
paradox, in which the time traveller reads an elegant proof
of a theorem in a book. Going back in time, she shows the
proof to a mathematician, who decides to include the proof
in his book. The book, of course, is the same book in which
she read the theorem in the first place. Phrased in terms of
physical law, the unproved theorem paradox raises issues
of indeterminacy. Space-times that possess closed-timelike
curves typically do not possess Cauchy surfaces: the be-
havior of particles and fields cannot be obtained simply by
specifying initial conditions and integrating the equations
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of motion over time. Both the grandfather paradox and the
unproved theorem paradox give rise to physical issues
which must be resolved in a quantum theory of CTCs.

Although Einstein’s theory of general relativity implic-
itly allows travel to the past, it took several decades before
Gödel proposed an explicit space-time geometry contain-
ing CTCs. The Gödel universe consists of a cloud of
swirling dust, of sufficient gravitational power to support
closed-timelike curves. Later, it was realized that closed-
timelike curves are a generic feature of highly curved,
rotating spacetimes: the Kerr solution for a rotating black
hole contains closed-timelike curves within the black hole
horizon; and massive rapidly rotating cylinders typically
are associated with closed-timelike curves [2,9,12]. The
topic of closed-timelike curves in general relativity con-
tinues to inspire debate: Hawking’s chronology protection
postulate, for example, suggests that the conditions needed
to create closed-timelike curves cannot arise in any physi-
cally realizable space-time [13]. For example, while Gott
showed that cosmic string geometries can contain closed-
timelike curves [3], Deser et al. showed that physical
cosmic strings cannot create CTCs from scratch [14,15].

At the bottom, the behavior of matter is governed by the
laws of quantum mechanics. Considerable effort has gone
into constructing quantum mechanical theories for closed-
timelike curves. The initial efforts to construct such theories
involved path-integral formulations of quantummechanics.
Hartle and Politzer pointed out that in the presence of
closed-timelike curves, the ordinary correspondence be-
tween the path-integral formulation of quantum mechanics
and the formulation in terms of unitary evolution of states in
Hilbert space breaks down [6,8]. Morris et al. explored the
quantum prescriptions needed to construct closed-timelike
curves in the presence of wormholes, bits of space-time
geometry that, like the handle of a coffee cup, ‘‘break off’’
from the main body of the Universe and rejoin it in the past
[5]. Meanwhile, Deutsch formulated a theory of closed-
timelike curves in the context of Hilbert space, by postulat-
ing self-consistency conditions for the states that enter and
exit the closed-timelike curve [11].

General-relativistic closed-timelike curves provide one
potential mechanism for time travel, but they need not
provide the only one. For example, even in the context of
special relativity, faster-than-light communication is
known to generate temporal paradoxes and causal loops
(e.g., see [16] for a recent review). Nonetheless, quantum
mechanics supports a variety of counter-intuitive phe-
nomena which might allow time travel even in the absence
of a closed-timelike curve in the geometry of space-time.
One of the best-known versions of non-general-relativistic
quantum versions of time travel comes from Wheeler, as
described by Feynman in his Nobel Prize lecture [17]. As
we will see, post-selected closed-timelike curves make up
a precise physical theory, which instantiates Wheeler’s
whimsical idea.

As described in previous work [18], the notion that
entanglement and projection can give rise to closed-
timelike curves has arisen independently in a variety of
contexts. This combination lies at the heart of the
Horowitz-Maldacena model for information to escape
from black holes [19–22], and Gottesman and Preskill
note in passing that this mechanism might be used for
time travel [21]. Pegg explored the use of a related mecha-
nism for ‘‘probabilistic time machines’’ [23]. Bennett and
Schumacher have explored similar notions in unpublished
work [24]. Laforest, Baugh, and Laflamme analyzed their
proposal, its consistency with the tensor product structure,
and a proof-of-principle experiment that tests the symme-
try of information flow and of apparent causality breaking
[25]. Coecke [26] studies the symmetry of information
flow using entanglement as mediation, and interpreting
entanglement as sending information back in time in
such a way that the information sent back in time is altered
depending on the outcome of a (future) Bell measurement.
Ralph suggests using teleportation for time traveling,
although in a different setting, namely, displacing the en-
tangled resource in time [27]. Svetlichny describes experi-
mental techniques for investigating quantum travel based
on entanglement and projection [28]. Chiribella et al. con-
sider this mechanism while analyzing extensions to the
quantum computational model [29]. Brukner et al. have
analyzed probabilistic teleportation (where only the cases
in which the Bell measurement yields the desired result are
retained) as a computational resource in [30]. Greenberger
and Svozil [31] show how the grandfather paradox can be
solved using quantum interference when feedback back-
ward in time is allowed using unitary couplings similar to
beam splitters: one can set up the quantum interference in
this interferometer analogue such that self-contradictory
events cannot happen. In [32], it is shown that the existence
of time-travel paradoxes would lead to violations in the
probability rules in a simple finite-state model.
The outline of the paper follows. In Sec. I, we describe

P-CTCs and Deutsch’s mechanism in detail, emphasizing
the differences between the two approaches. Then, in
Sec. II, we relate P-CTCs to the path-integral formulation
of quantum mechanics. This formulation is particularly
suited for the description of quantum-field theory in
curved space-time [33], and has been used before to
provide quantum descriptions of closed-timelike curves
[6–8,10,34–37]. Our proposal is consistent with these
path-integral approaches. In particular, the path-integral
description of fermions using Grassmann fields given by
Politzer [6] yields a dynamical description which coincides
with ours for systems of quantum bits. Other descriptions,
such as Hartle’s [8], are more difficult to compare as they
do not provide an explicit prescription to calculate the
details of the dynamics of the interaction with systems
inside closed-timelike curves. In any case, their general
framework is consistent with our derivations. By contrast,
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Deutsch’s CTCs are not compatible with the Politzer path-
integral approach, and are analyzed by him on a different
footing [6]. Indeed, suppose that the path integral is
performed over classical paths which agree both at the
entrance to—and at the exit from—the CTC, so that x-in,
p-in are the same as x-out, p-out. Similarly, in the
Grassmann case, suppose that spin-up along the z axis at
the entrance emerges as spin-up along the z axis at the exit.
Then, the quantum version of the CTC must exhibit the
same perfect correlation between input and output. But, as
the grandfather-paradox experiment [18] shows, Deutsch’s
CTCs need not exhibit such correlations: spin-up in is
mapped to spin-down out (although the overall quantum
state remains the same). By contrast, P-CTCs exhibit per-
fect correlation between in and out versions of all varia-
bles. Note that a quantum-field theoretical justification of
Deutsch’s solution is proposed in [38,39] and is based on
introducing additional Hilbert subspaces for particles and
fields along the geodesic: observables at different points
along the geodesic commute because they act on different
Hilbert spaces.

The path-integral formulation also shows that using
P-CTCs it is impossible to assign a well defined state to
the system in the CTC. This is a natural requirement (or, at
least, a desirable property), given the cyclicity of time
there. In contrast, Deutsch’s consistency condition (2) is
explicitly built to provide a prescription for a definite
quantum state �CTC of the system in the CTC.

In Sec. III, we go beyond the path-integral formulation
and provide the dynamical evolution formulas in the con-
text of generic quantum mechanics (the Hilbert-space for-
mulation). Namely, we treat the CTC as a generic quantum
transformation, where the transformed system emerges at a
previous time ‘‘after’’ eventually interacting with some
chronology-respecting systems that are external to the
CTC. In this framework, we obtain the explicit prescription
of how to calculate the nonlinear evolution of the state of
the system in the chronology-respecting part of the space-
time. This nonlinearity is exactly of the form that previous
investigations (e.g., Hartle’s [8]) have predicted.

In Sec. IV, we consider time-travel situations that are
independent from general-relativistic CTCs. We then con-
clude in Sec. V with considerations on the computational
power of the different models of CTCs.

I. P-CTCS AND DEUTSCH’S CTCS

Any quantum theory of gravity will have to propose a
prescription to deal with the unavoidable [8] nonlinearities
that plague CTCs. This requires some sort of modification
of the dynamical equations of motions of quantum me-
chanics that are always linear. Deutsch in his seminal paper
[11] proposed one such prescription, based on a self-
consistency condition referred to the state of the systems
inside the CTC. Deutsch’s theory has recently been cri-
tiqued by several authors as exhibiting self-contradictory

features [38–41]. By contrast, although any quantum the-
ory of time-travel quantum mechanics is likely to yield
strange and counterintuitive results, P-CTCs appear to be
less pathological [18]. They are based on a different self-
consistent condition that states that self-contradictory
events do not happen (Novikov principle [34]). Pegg points
out that this can arise because of destructive interference of
self-contradictory histories [23]. Here we further compare
Deutsch’s and post-selected closed-timelike curves, and
give an in-depth analysis of the latter, showing how they
can be naturally obtained in the path-integral formulation
of quantum theory and deriving the equations of motions
that describe the interactions with CTCs. As noted, in
addition to general-relativistic CTCs, our proposed theory
can also be seen as a theoretical elaboration of Wheeler’s
assertion to Feynman that ‘‘an electron is a positron mov-
ing backward in time’’ [17]. In particular, any quantum
theory which allows the nonlinear process of post-selection
supports time travel even in the absence of general-
relativistic closed-timelike curves.
The mechanism of P-CTCs [18] can be summarized by

saying that they behave exactly as if the initial state of the
system in the P-CTC were in a maximal entangled state
(entangled with an external purification space) and the final
state were post-selected to be in the same entangled state.
When the probability amplitude for the transition between
these two states is null, we postulate that the related event
does not happen (so that the Novikov principle [34] is
enforced). As we will show in the following, this is equiva-
lent to requiring that the time evolution of the system
external to the CTC is given by

N ½�� / CA�CA
y; (1)

where CA ¼ TrE½UAE� is the partial trace, over the Hilbert
space E of the system in the CTC, of the unitary evolution
UAE that couples it to the external system. To enforce the
Novikov principle, we also have to suppose that the evo-
lution described in (1) will not take place if the right-hand
side is null [42]. A formulation equivalent to Eq. (1)
consists in requesting that a pure state jc i evolves to
jc 0i / CAjc i (when this in not a null vector). This will
be derived below also using the path-integral formulation
of quantum theory, by showing that the transition ampli-
tude from an initial state jc i to an arbitrary final state jFi is
proportional to hFjTrE½UAE�jc i.
By contrast, Deutsch’s CTCs are based on imposing the

consistency condition

�CTC ¼ TrA½Uð�A � �CTCÞUy�; (2)

where �CTC is the state of the system inside the closed-
timelike curve, �A is the state of the system outside (i.e., of
the chronology-respecting part of space-time), U is the
unitary transformation that is responsible for eventual in-
teractions among the two systems, and where the trace
is performed over the chronology-respecting system.
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The existence of a state � that satisfies (2) is ensured by the
fact that any completely-positive map of the form L½�� ¼
TrA½Uð�A � �ÞUy� always has at least one fixed point �
(or, equivalently, one eigenvector � with eigenvalue one).
If more than one state �CTC satisfies the consistency con-
dition (2), Deutsch separately postulates a ‘‘maximum
entropy rule,’’ requesting that the maximum entropy one
must be chosen. Note that Deutsch’s formulation assumes
that the state exiting the CTC in the past is factorized with
the chronology-preserving variables (the properties per-
taining to systems that are external to all CTCs) at that
time: the time traveler’s ‘‘memories’’ of events in the
future are no longer valid.

The primary conceptual difference between Deutsch’s
CTCs and P-CTCs lies in the self-consistency condition
imposed. Consider a measurement that can be made either
on the state of the system as it enters the CTC, or on the
state as it emerges from the CTC. Deutsch demands that
these two measurements yield the same statistics for the
CTC state alone: that is, the density matrix of the system as
it enters the CTC is the same as the density matrix of the
system as it exits the CTC. By contrast, we demand that
these two measurements yield the same statistics for the
CTC state together with its correlations with any
chronology-preserving variables. It is this demand that
closed-timelike curves respect both statistics for the time-
traveling state together with its correlations with other
variables that distinguishes P-CTCs from Deutsch’s
CTCs. The fact that P-CTCs respect correlations effec-
tively enforces the Novikov principle [34], and, as will
be seen below, makes P-CTCs consistent with path-integral
approaches to CTCs.

The connection between P-CTCs and teleportation [43]
is illustrated (see Fig. 1) with the following simple example
that employs qubits (extensions to higher dimensional
systems are straightforward). Suppose that the initial Bell

state is j�ð�Þi ¼ ðj01i � j10iÞ= ffiffiffi

2
p

(but any maximally en-
tangled Bell state will equivalently work), and suppose that
the initial state of the system entering the CTC is jc i. Then
the joint state of the three systems (system 1 entering the
CTC, system 2 emerging from the CTC, and system 3, its

purification) is given by jc i1j�ð�Þi23. These three systems
are denoted by the three vertical lines of Fig. 1(b). It is
immediate to see that this state can be also written as

ð�j�ð�Þi13jc i2 � j�ðþÞi13�zjc i2 þ j�ð�Þi13�xjc i2
þ ij�ðþÞi13�yjc i2Þ=2; (3)

where j�ð�Þi ¼ ðj01i � j10iÞ= ffiffiffi

2
p

and j�ð�Þi ¼ ðj00i�
j11iÞ= ffiffiffi

2
p

are the four states in a Bell basis for qubit systems
and��s are the three Pauli matrices. Equation (3) is equiva-
lent to Eq. (5) of Ref. [43], where the extension to higher
dimensional systems is presented (the extension to infinite-
dimensional systems is presented in [44]). It is immediate to
see that, if the system 1 entering the CTC together with the

purification system3 are post-selected to be in the sameBell

state j�ð�Þi13 as the initial one, then only the first term of
Eq. (3) survives. Apart from an inconsequential minus sign,
this implies that the system 2 emerging from the CTC is in
the state jc i2, which is exactly the same state of the system
that has entered (rather, will enter) the CTC.
It seems that, based on what is currently known on these

two approaches, we cannot conclusively choose P-CTCs
over Deutsch’s, or vice versa. Both arise from reasonable
physical assumptions and both are consistent with differ-
ent approaches to reconciling quantum mechanics with
closed-timelike curves in general relativity. A final deci-
sion on which of the two is ‘‘actually the case’’ may have
to be postponed to when a full quantum theory of gravity
is derived (which would allow one to calculate from first
principles what happens in a CTC) or when a CTC is
discovered that can be tested experimentally. However,
because of the huge recent interest on CTCs in physics
and in computer science (e.g., see [40,41,45–49]), it is
important to point out that there are reasonable alterna-
tives to the leading theory in the field. We also point out
that our post-selection based description of CTCs seems to
be less pathological than Deutsch’s: for example, P-CTCs
have less computational power and do not require to
separately postulate a maximum entropy rule [18].
Therefore, they are in some sense preferable, at least
from an Occam’s razor perspective. Independent of such
questions of aesthetic preference, as we will now show,
P-CTCs are consistent with previous path-integral formu-
lations of closed-timelike curves, whereas Deutsch’s
CTCs are not.

t

|ψ>

|ψ>

b)

|ψ>
Alice

Bob

a)

V
M

|ψ>
1 3

1

3

2

2

FIG. 1. Description of closed-timelike curves through telepor-
tation. a) Conventional teleportation: Alice and Bob start from a
maximally entangled state shared among them represented by
‘‘
S

’’. Alice performs a Bell measurement M on her half of the
shared state and on the unknown state jc i she wants to transmit.
This measurement tells her which entangled state the two
systems are in. She then communicates (dotted line) the mea-
surement result to Bob who performs a unitary V on his half of
the entangled state, obtaining the initial unknown state jc i. The
numbers refer to the systems as indicated by the subscripts in
Eq. (3). b) Post-selected teleportation: the system in state jc i
and half of the Bell state ‘‘

S

’’ are projected onto the same Bell
state ‘‘

T

.’’ This means that the other half of the Bell state is
projected into the initial state of the system jc i even before this
state is available.
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II. P-CTCS AND PATH INTEGRALS

Path integrals [50,51] allow one to calculate the transi-
tion amplitude for going from an initial state jIi to a final
state jFi as an integral over paths of the action, i.e.,

hFj exp
�

� i

ℏ
H�

�

jIi ¼
Z þ1

�1
dxdyIðxÞF�ðyÞ

�
Z y

x
DxðtÞ exp

�

i

ℏ
S

�

;

where S ¼
Z �

0
dtLðx; _xÞ; (4)

and where L is the Lagrangian,H the Hamiltonian, S is the
action, IðxÞ and FðxÞ are the position representations of jIi
and jFi, respectively (i.e., jIi ¼ R

dxIðxÞjxi), and the paths
in the integration over paths—indicated by

R

DxðtÞ—all

start in x and end in y. Of course, in this form it is suited
only to describing the dynamics of a particle in space (or a
collection of particles). It will be extended to other systems
in the next section.

In order to add a CTC, we first divide the space-time into
two parts,

hFjChF0j exp
�

� i

ℏ
H�

�

jIijI0iC

¼
Z þ1

�1
dxdxCdydyCIðxÞI0ðxCÞF�ðyÞF0�ðyCÞ

�
Z y;yC

x;xC

DxðtÞ exp
�

i

ℏ
S

�

; (5)

where the first part will represent the chronology-
respecting system outside the CTC, and the second part
(indicated with the subscript C) will represent the system
in the CTC, once appropriate conditions are enforced. The
‘‘conventional’’ strategy to deal with CTCs using path
integrals is to send the system C to a prior time unchanged
(i.e., with the same values of x, _x), while the other system
(the chronology-respecting one) evolves normally. This is
enforced by imposing periodic boundary conditions on the
CTC boundaries. Namely, the probability amplitude for the
chronology-respecting system is

hFjexp
�

� i

ℏ
H�

�

jIi/
Z þ1

�1
dxdxCdydyCIðxÞF�ðyÞ�ðxC�yCÞ

�
Z y;yC

x;xC

DxðtÞexp
�

i

ℏ
S

�

; (6)

where the �-function ensures that the initial and final
boundary conditions in the CTC system are the same.
Note that we have removed I0ðxCÞ and F0ðyCÞ, but we are
coherently adding all possible initial and final conditions
(through the xC and yC integrals). This implies that it is not
possible to assign a definite state to the system inside aCTC:
one could consistently assign to the system any possible
state that is compatible with the (periodic) boundary con-
ditions. Note also that the boundary conditions of Eq. (6)

have previously appeared in the literature (e.g., see [10] and,
in the classical context, in the seminal paper [52]).
To show that Eq. (6) is the same formula that one obtains

using post-selected teleportation, we have to calculate
hFjh�j expð� i

ℏH�Þ � 1jIij�i, where j�i is a maximally

entangled state in position and where the Hamiltonian acts
only on the system and on the first of the two Hilbert spaces
of j�i. As a maximally entangled state in position, we use
the EPR [53] state j�i / R

dxjxxi. Since this state is non-
normalizable, a rigorous treatment requires a regulariza-
tion and will be given in the Appendix. Here we employ the
non-normalizable EPR state j�i just to provide the idea
behind the proof. We use Eq. (5) for the system and for the
first Hilbert space of j�i to obtain

hFjh�j exp
�

� i

ℏ
H�

�

� 1jIij�i

/
Z þ1

�1
dxdx0dydy0dzdz0IðxÞF�ðyÞ�ðx0 � zÞ

� �ðy0 � z0Þhzj1jz0i
Z y;y0

x;x0
DxðtÞ exp½ i

ℏ
S�

¼
Z 1

�1
dxdx0dydy0IðxÞF�ðyÞ�ðx0 � y0Þ

�
Z y;y0

x;x0
DxðtÞ exp

�

i

ℏ
S

�

; (7)

where we have used the position representation

h�j /
Z

dx0dz�ðx0 � zÞhx0jhzj and

j�i /
Z

dy0dz0�ðy0 � z0Þjy0ijz0i;

with hzjz0i ¼ �ðz� z0Þ. Note that this result is independent
of the particular form of the EPR state j�i as long as it
is maximally entangled in position (and hence in
momentum).
All of the above discussion holds for initial and final

pure states. However, the extension to mixed states in the
path-integral formulation is straightforward: one only
needs to employ appropriate purification spaces [54,55].
The formulas then reduce to the previous ones.
Here we briefly comment on the two-state vector for-

malism of quantum mechanics [56,57]. It is based on
post-selection of the final state and on renormalizing the
resulting transition amplitudes: it is a time-symmetrical
formulation of quantum mechanics in which not only the
initial state, but also the final state is specified. As such, it
shares many properties with our post-selection based
treatment of CTCs. In particular, in both theories it is
impossible to assign a definite quantum state at each time:
in the two-state formalism, the unitary evolution forward
in time from the initial state might give a different mid-
time state with respect to the unitary evolution backward
in time from the final state. Analogously, in a P-CTC, it is
impossible to assign a definite state to the CTC system at
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any time, given the cyclicity of time there. This is evident,
for example, from Eq. (6): in the CTC system no state is
assigned, only periodic boundary conditions. Another
aspect that the two-state formalism and P-CTCs share is
the nonlinear renormalization of the states and probabil-
ities. In both cases, this arises because of the post-
selection. In addition to the two-state formalism, our
approach can also be related to weak values [56,58], since
we might be performing measurements between when the
system emerges from the CTC and when it reenters it.
Considerations analogous to the ones presented above
apply. It would be a mistake, however, to think that the
theory of post-selected closed-timelike curves in some
sense requires or even singles out the weak-value theory.
Although the two are compatible with each other, the
theory of P-CTCs is essentially a ‘‘free-standing’’ theory
that does not give preference to one interpretation of
quantum mechanics over another.

III. GENERAL SYSTEMS

The formula (6) was derived in the path-integral formu-
lation of quantum mechanics, but it can be easily extended
to generic quantum evolution.

We start by recalling the usual Kraus decomposition of a
generic quantum evolution (that can describe the evolution
of both isolated and open systems). It is given by

L ½�� ¼ TrE½Uð� � jeihejÞUy� ¼ X

i

Bi�B
y
i ; (8)

where jei is the initial state of the environment (or, equiv-
alently, of a putative abstract purification space), U is the
unitary operator governing the interaction between system
initially in the state � and environment, and Bi � hijUjei is
the Kraus operator (fjiig being an arbitrary basis for the
Hilbert space of the environment). In contrast, the evolu-
tion of our post-selected teleportation scheme is given by

�A ! TrEE0 ½ðUAE � 1E0 Þð�A � j�iEE0 h�jÞ
� ðUy

AE � 1E0 Þð1A � j�iEE0 h�jÞ�
¼ X

lE;l
0
E

hlEjUAEjlEi�Ahl0EjUy
AEjl0Ei ¼ CA�AC

y
A; (9)

where CA � TrE½UAE�, fjlEig is a set of basis states, and
j�iEE0 / P

ljliEjliE0 (or any other maximally entangled
state, which would give the same result). In Eq. (9), the
subscript A refers to the Hilbert space of the external
system, and E and E0 refer to the Hilbert spaces of the
forward- and backward-propagating parts of the CTC.
Note that CA is equal to one of the Kraus operators Bi of
the system, as can be immediately seen by choosing a basis
fjiig of the EE0 Hilbert space that contains the state j�i as
one of its elements. The evolution in (9) does not preserve
the state’s normalization because of the post-selection en-
tailed by the projection onto the final state j�iEE0 . Then,
we need to renormalize the final state, introducing a

nonlinearity: according to our approach, a chronology-
respecting system in a state � that interacts with a
CTC using a unitary U will undergo the nonlinear trans-
formation

N ½�� ¼ CA�C
y
A=Tr½CA�C

y
A�; (10)

where we suppose that this evolution is impossible when-

ever TrA½CA�C
y
A� ¼ 0. More specifically, all evolutions

that would lead to a vanishing denominator in Eq. (10)
are forbidden: they cannot happen (e.g., see also [23]). An
equivalent condition is to request that the evolution is

possible if and only if Cy
ACA is a strictly positive operator.

The comparison with (8) is instructive: there the non-
unitarity comes from the inaccessibility of the environ-
ment. Analogously, in (10) the nonunitarity comes from
the fact that, after the CTC is closed, for the chronology-
respecting system it will be forever inaccessible. The
nonlinearity of (10) is more difficult to interpret, but is
connected with the periodic boundary conditions in the
CTC. Note that this general evolution equation (10) is
consistent with previous derivations based on path inte-
grals. For example, it is equivalent to Eq. (4.6) of Ref. [8]
by Hartle. However, in contrast to here, the actual form of
the evolution operatorsC is not provided there. As a further
example, consider Ref. [6], where Politzer derives a path-
integral approach of CTCs for qubits, using Grassmann
fields. His Eq. (5) is compatible with Eq. (9). He also
derives a nonunitary evolution that is consistent with
Eq. (10) in the case in which the initial state is pure. In
particular, this implies that, also in the general qubit case,
our post-selected teleportation approach gives the same
result one would obtain from a specific path-integral for-
mulation. In addition, it has been pointed out many times
before (e.g., see [35,59]) that when quantum fields inside a
CTC interact with external fields, linearity and unitarity is
lost. It is also worth to notice that there have been various
proposals to restore unitarity by modifying the structure of
quantum mechanics itself or by postulating an inaccessible
purification space that is added to uphold unitarity [60,61].
The evolution (10) coming from our approach is to be

compared with Deutsch’s evolution,

D ½�� ¼ TrE½Uð� � �CTCÞUy�; (11)

where

�CTC ¼ TrA½Uð� � �CTCÞUy� (12)

satisfies the consistency condition and where the trace in
(11) refers to the degrees of freedom inside the CTC. The
direct comparison of Eqs. (10) and (12) highlights the
differences in the general prescription for the dynamics
of CTCs of these two approaches.
Even though the results presented in this section are di-

rectly applicable only to general finite-dimensional systems,
the extension to systems living in infinite-dimensional

SETH LLOYD et al. PHYSICAL REVIEW D 84, 025007 (2011)

025007-6



separable Hilbert spaces seems conceptually straightfor-
ward, although mathematically involved.

In his path-integral formulation of CTCs, Hartle notes
that CTCs might necessitate abandoning not only unitarity
and linearity, but even the familiar Hilbert-space formula-
tion of quantummechanics [8]. Indeed, the fact that the state
of a system at a given time can be written, as the tensor
product states of subsystems relies crucially on the fact that
operators corresponding to spacelike separated regions of
space-time commute with each other. When CTCs are in-
troduced, the notion of ‘‘spacelike’’ separation becomes
muddied. The formulation of closed-timelike curves in
terms of P-CTCs shows, however, that the Hilbert-space
structure of quantum mechanics can be retained.

IV. TIME TRAVEL IN THE ABSENCE OF
GENERAL-RELATIVISTIC CTCS

Although the theory of P-CTCs was developed to ad-
dress the question of quantum mechanics in general-
relativistic closed-timelike curves, it also allows us to
address the possibility of time travel in other contexts.
Essentially, any quantum theory that allows the nonlinear
process of projection onto some particular state, such as the
entangled states of P-CTCs, allows time travel even when
no space-time closed-timelike curve exists. Indeed,
the mechanism for such time travel closely follows
Wheeler’s famous telephone call above. Non-general-
relativistic P-CTCs can be implemented by the creation
of and projection onto entangled particle-antiparticle pairs.
Such a mechanism is just what is used in our experimental
tests of P-CTCs [18]: although projection is a nonlinear
process that cannot be implemented deterministically in
ordinary quantum mechanics, it can easily be implemented
in a probabilistic fashion. Consequently, the effect of
P-CTCs can be tested simply by performing quantum tele-
portation experiments, and by post-selecting only the re-
sults that correspond to the desired entangled-state output.

If it turns out that the linearity of quantum mechanics is
only approximate, and that projection onto particular states
does in fact occur—for example, at the singularities of
black holes [19–22]—then it might be possible to imple-
ment time travel even in the absence of a general-
relativistic closed-timelike curve. The formalism of
P-CTCs shows that such quantum time travel can be
thought of as a kind of quantum tunneling backwards in
time, which can take place even in the absence of a
classical path from future to past.

V. COMPUTATIONAL POWER OF CTCS

It has been long known that nonlinear quantum mechan-
ics potentially allows the rapid solution of hard problems
such as NP-complete problems [62]. The nonlinearities in
the quantum mechanics of closed-timelike curves is no
exception [47–49]. Aaronson and Watrous have shown

quantum computation with Deutsch’s closed-timelike
curves allows the solution of any problem in PSPACE,
the set of problems that can be solved using polynomial
space resources [47]. Similarly, Aaronson has shown that
quantum computation combined with post-selection allows
the solution of any problem in the computational class
probabilistic polynomial time (PP) (where a probabilistic
polynomial Turing machine accepts with probability 1

2 if

and only if the answer is ‘‘yes’’). Quantum computation
with post-selection explicitly allows P-CTCs, and P-CTCs
in turn allow the performance of any desired post-selected
quantum computation. Accordingly, quantum computation
with P-CTCs can solve any problem in PP, including NP-
complete problems. Since the class PP is thought to be
strictly contained in PSPACE, quantum computation with
P-CTCs is apparently strictly less powerful than quantum
computation with Deutsch’s CTCs.
In the case of quantum computing with Deutschian

CTCs, Bennett et al. [40] have questioned whether the
notion of programming a quantum computer even makes
sense. Reference [40] notes that in Deutsch’s closed-
timelike curves, the nonlinearity introduces ambiguities
in the definition of state preparation: as is well known in
nonlinear quantum theories, the result of sending either the
state jc i through a closed-timelike curve or the state j�i
is no longer equivalent to sending the mixed state
ð1=2Þðjc ihc j þ j�ih�jÞ through the curve. The problem
with computation arises because, as is clear from our
grandfather-paradox circuit [18], Deutsch’s closed-
timelike curves typically break the correlation between
chronology-preserving variables and the components of a
mixed state that enters the curve: the component that enters
the CTC as j0i can exit the curve as j1i, even if the overall
mixed state exiting the curve is the same as the one that
enters. Consequently, Bennett et al. argue, the programmer
who is using a Deutschian closed-timelike curve as part of
her quantum computer typically finds the output of the
curve is completely decorrelated from the problem she
would like to solve: the curve emits random states.
In contrast, because P-CTCs are formulated explicitly to

retain correlations with chronology-preserving curves,
quantum computation using P-CTCs do not suffer from
state-preparation ambiguity. That is not to say that P-CTCs
are computationally innocuous: their nonlinear nature typi-
cally renormalizes the probability of states in an input
superposition, yielding to strange and counterintuitive ef-
fects. For example, any CTC can be used to compress any
computation to depth one, as shown in Fig. 2. Indeed, it is
exactly the ability of nonlinear quantum mechanics to
renormalize probabilities from their conventional values
that gives rise to the amplification of small components of
quantum superpositions that allows the solution of hard
problems. Not the least of the counterintuitive effects of
P-CTCs is that they could still solve hard computational
problems with ease. The ‘‘excessive’’ computational power
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of P-CTCs is effectively an argument for why the types of
nonlinearities that give rise to P-CTCs, if they exist, should
only be found under highly exceptional circumstances such
as general-relativistic closed-timelike curves or black-hole
singularities.

VI. CONCLUSIONS

This paper reviewed quantum mechanical theories for
time travel, focusing on the theory of P-CTCs [18]. Our
purpose in presenting this work is to make precise the
similarities and differences between varying quantum
theories of time travel. We summarize our findings here.

We have extensively argued that P-CTCs are inequiva-
lent to Deutsch’s CTCs. In Sec. II, we showed that
P-CTCs are compatible with the path-integral formulation
of quantum mechanics. This formulation is at the basis of
most of the previous analysis of quantum descriptions of
closed timelike curves, since it is particularly suited to
calculations of quantum mechanics in curved space-time.
P-CTCs are reminiscent of, and consistent with, the two-
state vector and weak-value formulation of quantum me-
chanics. It is important to note, however, that P-CTCs do
not in any sense require such a formulation. Then, in
Sec. III, we extended our analysis to general systems
where the path-integral formulation may not always be
possible and derived a simple prescription for the calcu-
lation of the CTC dynamics, namely, Eq. (10). In this way,
we have performed a complete characterization of P-CTC
in the most commonly employed frameworks for quantum
mechanics, with the exception of algebraic methods
(e.g., see [63]).

In Sec. IV, we have argued that, as Wheeler’s picture of
positrons as electrons moving backwards in time suggests,
P-CTCs might also allow time travel in space-times with-
out general-relativistic closed-timelike curves. If nature
somehow provides the nonlinear dynamics afforded by
final-state projection, then it is possible for particles (and,
in principle, people) to tunnel from the future to the past.

Finally, in Sec. V, we have seen that P-CTCs are com-
putationally very powerful, though less powerful than the
Aaronson-Watrous theory of Deutsch’s CTCs.

Our hope in elaborating the theory of P-CTCs is that this
theory may prove useful in formulating a quantum theory
of gravity, by providing new insight on one of the most
perplexing consequences of general relativity, i.e., the
possibility of time travel.
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APPENDIX: REGULARIZATION OF MAXIMALLY
ENTANGLED STATES IN POSITION

In this section, we prove the result presented in Eq. (7)
using two different normalizable states, j�ai and j��i (the
first allows simple calculations, whereas the second is
more physically motivated). To avoid technicalities,
Eq. (7) was presented above using the un-normalizable
EPR state j�i / R

dxjxxi.

1. First regularization

Consider the normalized state

j�ai �
ffiffiffiffi

2

�

s

Z

dxdye�a2x2e�ðx�yÞ2=a2 jxijyi: (A1)

In the limit a� 0, this state tends to the EPR state, as

j�ai ¼
ffiffiffiffi

2

�

s

Z

dxe�a2x2
Z

dy0e�y02=a2 jxijx� y0i

’ ffiffiffi

2
p

a
Z

dx
Z

dy0�ðy0Þjxijx� y0i

¼ ffiffiffi

2
p

a
Z

dxjxijxi;

where we have used y0 � x� y and the fact that �ðyÞ ¼
lima!0e

�y2=a2=ða ffiffiffiffi

�
p Þ. Replacing j�i with j�ai in Eq. (7),

and taking a� 0, we reobtain the same result, apart from
the inconsequential proportionality factor 2a2 that, as we
will now show, can be removed by calculating the condi-
tional probability amplitude.
The path integral is a transition amplitude between an

initial state jii and a final state jfi. As such, it can always
be written as [50],

hfj exp
�

� i

ℏ
H�

�

jii ¼ hfjUjii; (A2)

where H is the Hamiltonian and U the unitary evolution of
the system. To derive (7), we consider three systems: the
system A external to the CTC, which starts in the system
jIiA and ends in the system jFiA; the system E in the CTC
and an ancillary system E0, which are initially in a joint
state j�aiEE0 and are (post-selected) in the same final state
j�aiEE0 . If UAE is the unitary describing the interaction
between the systems external and internal to the CTC, the
path integral for these three systems is then

t

FIG. 2. Closed-timelike loops can collapse the time depth of
any circuit to one, allowing to compute any problem not merely
efficiently, but instantaneously.
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AhFjEE0 h�ajUAE � 1E0 jIiAj�aiEE0

¼ 2

�

Z

dx dx0dy e�a2ðx2þx02Þ�ðx�yÞ2=a2�ðx0�yÞ2=a2

� AhFjEhxjUAEjIiAjx0iE (A3)

¼
ffiffiffiffi

2

�

s

a
Z

dxdx0e�a2ðx2þx02Þ�ðx�x0Þ2=a2
AhFjEhxjUAEjIiAjx0iE:

(A4)

The square modulus of this quantity gives the joint proba-
bility pðjFi; j�aiÞ that final state of system A is jFi and
that the final state of systems E and E0 is j�ai. However,
our proposal is based on post-selecting the cases in which
the latter event happens. To calculate the conditional
probability pðjFijpsÞ that the final state of A is jFi given

that the post-selection happened, we can use pðjFijpsÞ ¼
pðjFi; j�aiÞ=pðpsÞ, where pðpsÞ is the probability that the
post-selection succeeds independently of the final state. It
can be simply calculated as

pðpsÞ ¼
Z

dFjAhFjEE0 h�ajUAE � 1E0 jIiAj�aiEE0 j2; (A5)

where the integral runs over a basis of possible final states
jFi. (Note that one could also enforce a similar condition
on the initial state.)
Hence, we see that the quantity in Eq. (A3) [and also the

quantities in Eqs. (6) and (7)] are only proportional to the
conditional probability amplitude we are interested in,

where the proportionality constant is given by 1=
ffiffiffiffiffiffiffiffiffiffiffiffi

pðpsÞp

.
From (A3), we see that the conditional probability ampli-
tude is given by

AhFjEE0 h�ajUAE � 1E0 jIiAj�aiEE0
ffiffiffiffiffiffiffiffiffiffiffiffi

pðpsÞp ¼
R

dx dx0e�a2ðx2þx02Þ�ðx�x0Þ2=a2
AhFjEhxjUAEjIiAjx0iE

ðR dFjR dx dx0e�a2ðx2þx02Þ�ðx�x0Þ2=a2
AhFjEhxjUAEjIiAjx0iEj2Þ1=2

: (A6)

We can now take the limit a ! 0, using again the property
�ðyÞ ¼ lima!0e

�y2=a2=ða ffiffiffiffi

�
p Þ. The quantity in (A6) then

becomes

R

dx AhFjEhxjUAEjIiAjxiE
ðR dFjAhFjEhxjUAEjIiAjxiEj2Þ1=2

(A7)

¼ AhFjCAjIiA
ðTr½CAjIiAhIjCA

y�Þ1=2 ; (A8)

where CA � TrE½UAE�. Note that the proportionality factor
2a2 that appears in the numerator when taking the limit
a ! 0 is canceled by the same constant in the denominator.
Recalling that the path integral can be written in the form
(A2), it is simple to see that the numerator of Eq. (A7)
written in the position representation will coincide with the
last term of Eq. (7) (but was here obtained from a careful
regularization):

Z

dxAhFjEhxjUAEjIiAjxiE

¼
Z 1

�1
dxdydy0IðyÞF�ðy0Þ

Z y0;x

y;x
DxðtÞ exp

�

i

ℏ
S

�

; (A9)

where we used the position representation jIi ¼
R

dxIðxÞjxi and jFi ¼ R

dxFðxÞjxi, and where the path
integral is used to relate the initial jxAi i, jxEi i and final
jxEf i, jxEf i position states of the systems A and E as

hxAf jhxEf jUAEjxAi ijxEi i ¼
Z xA

f
;xE

f

xAi ;x
E
i

DxðtÞeði=ℏÞS: (A10)

2. Second regularization

As a more physically-motivated alternative to the state
in Eq. (A1), consider the two-mode squeezed state of two
optical modes

j��i � ð1� �2Þ X
1

n¼0

�njnijni: (A11)

We can write this state in the ‘‘position representation’’
using an eigenbasis jxi of the quadrature operator as

j��i ¼ ð1� �2Þ X
1

n¼0

�n
Z

dxdyjxihxjnijyihyjni

¼ ð1� �2Þ
Z

dxdy

�

X

1

n¼0

�n

ffiffiffiffi

2

�

s

1

2nn!

�Hnð
ffiffiffi

2
p

xÞHnð
ffiffiffi

2
p

yÞe�x2�y2
�

jxijyi; (A12)

where we have used the relation

hxjni ¼
�

2

�

�

1=4 1
ffiffiffiffiffiffiffiffiffiffi

2nn!
p Hnð

ffiffiffi

2
p

xÞe�x2 ; (A13)

with Hn the Hermite polynomial. We use the �-function
normalization of the quadrature basis to see that j��i tends
to the state

R

dxjxijxi in the limit � ! 1:

�ðx� yÞ ¼ hyjxi ¼ X

1

n¼0

hyjnihnjxi

¼ X

1

n¼0

ffiffiffiffi

2

�

s

1

2nn!
Hnð

ffiffiffi

2
p

xÞHnð
ffiffiffi

2
p

yÞe�x2�y2 ; (A14)
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whence it is clear that the term in square parentheses in
Eq. (A12) tends to �ðx� yÞ for � ! 1. Again, replacing
j�iwith j��i in Eq. (7), and taking �� 1, we reobtain the

same result apart from an inconsequential multiplication
factor ð1� �2Þ2.

Since the parameter� is connected to the average energy of
the state (A11), it is clear that the maximally entangled state
R

dxjxijxi obtained from j��i with � ! 1 requires infinite

energy, and is unphysical. However, it is possible to approach
it arbitrarily closely devoting sufficient energy to the task.
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