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Abstract. A complete degradability analysis of one-mode bosonic Gaussian
channels is presented. We show that apart from the class of channels which are
unitarily equivalent to the channels with additive classical noise, these maps can
be characterized in terms of weak- and/or anti-degradability. Furthermore a new
set of channels which have null quantum capacity is identified. This is done by
exploiting the composition rules of one-mode Gaussian maps and the fact that
anti-degradable channels cannot be used to transfer quantum information.
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Within the context of quantum information theory [1] bosonic Gaussian channels [2]–[4] play
a fundamental role. They include all the physical transformations which preserve the ‘Gaussian
character’of the transmitted signals and can be seen are the quantum counterpart of the Gaussian
channels in the classical information theory [5]. Bosonic Gaussian channels describe most of
the noise sources which are routinely encountered in optics, including those responsible for
the attenuation and/or the amplification of signals along optical fibres. Moreover, due to their
relatively simple structure, these channels provide an ideal theoretical playground for the study
of continuous variable [6] quantum communication protocols.

Not surprisingly in recent years an impressive effort has been put forward to characterize
the properties of bosonic Gaussian channels. Most of the efforts focused on the evaluation of the
optimal transmission rates of these maps under the constraint on the input average energy both
in the multi-mode scenario (where the channel acts on a collection of many input bosonic mode)
and in the one-mode scenario (where, instead, it operates on a single input bosonic mode). In a
few cases [7]–[10], the exact values of the communication capacities [11]–[13] of the channels
have been computed. In the general case, however only certain bounds are available (see [3, 10],
[14]–[16]). Finally various additivity issues have been analysed in [17, 18].

Recently the notions of anti-degradability and weak-degradability were proposed as a useful
tool for studying the quantum capacity properties of one-mode Gaussian channels [19]. This
suggested the possibility of classifying these maps in terms of a simple canonical form which
was achieved in [20]. Moreover, proceeding along similar lines, the exact solution of the quantum
capacity of an important subset of those channels was obtained in [21].
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In this paper, we provide a complete degradability classification of one-mode Gaussian
channels and exhibit a new set of channels which have null quantum capacity extending
a previous result in [3].

The definition of weak- and anti-degradability of a quantum channel is similar to
the definition of degradability introduced by Devetak and Shor in [22]. It is based on
replacing the Stinespring dilation [23] of the channel with a representation where the
ancillary system (environment) is not necessarily in a pure state [2, 24]. This yields a
generalization of the notion of complementary channel from [22, 25, 26] which is named
weakly complementary [19]. In this context weakly degradable are those channels where the
modified state of the ancillary system—described by the action of the weakly complementary
channel—can be recovered from the output state of the channel through the action of a third
channel. Vice versa, anti-degradable channels obey the opposite rule (i.e. the output state of
the channel can be obtained from the modified state of the ancilla through the action of
another suitable channel). Exploiting the canonical form [20] one can show that, apart from
the class B2 consisting of the maps which are unitarily equivalent to the channels with
additive classical Gaussian noise [3], all one-mode bosonic Gaussian channels are either weakly
degradable or anti-degradable. As discussed in [19] the anti-degradability property allows
one to simplify the analysis of the quantum capacity [13] of these channels. Indeed those
maps which are anti-degradable can be shown to have null quantum capacity. On the other
hand, those channels which are weakly degradable with pure ancillas (i.e. those which are
degradable in the sense of [22]) have quantum capacity which can be expressed in terms of
a single-letter expression. Here, we will focus mostly on the anti-degradability property and,
additionally, we will show that by exploiting the composition rules of one-mode bosonic Gaussian
channels, one can extend the set of maps with null quantum capacity well beyond the set of
anti-degradable maps.

The paper is organized as follows. In section 1, we introduce the notion of weak-
complementarity and weak-degradability in a rather general context. In section 2, we give a
detailed description of the canonical decomposition of one-mode bosonic Gaussian channels.
In section 3, we discuss the weak-degradability properties of one-mode channels. Finally, in
section 4, we determine the new set of channels with null quantum capacity.

1. Weakly complementary and weakly degradable channels

In quantum mechanics, quantum channels describe the evolution of an open system A interacting
with external degrees of freedom. In the Schrödinger picture these transformations are described
by completely positive trace preserving (CPT) linear maps � acting on the set D(Ha) of the
density matrices ρa of the system. It is a well known (see e.g. [2, 24]) that � can be described
by a unitary coupling between the system A in input state ρa with an external ancillary system
B (describing the environment) prepared in some fixed pure state. This follows from Stinespring
dilation [23] of the map which is unique up to a partial isometry. More generally, one can describe
� as a coupling with the environment prepared in some mixed state ρb, i.e.

�(ρa) = Trb[Uab(ρa ⊗ ρb)U
†
ab], (1.1)

where Trb[ . . . ] is the partial trace over the environment B, Uab is a unitary operator in the
composite Hilbert space Ha ⊗ Hb. We call equation (1.1) a ‘physical representation’ of �
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to distinguish it from the Stinespring dilation, and to stress its connection with the physical
picture of the noisy evolution represented by �. Any Stinespring dilation gives rise to a physical
representation. Moreover from any physical representation (1.1) one can construct a Stinespring
dilation by purifying ρb with an external ancillary system C, and by replacing Uab with the unitary
coupling Uabc = Uab ⊗ 11c.

Equation (1.1) motivates the following [19]

Definition 1. For any physical representation (1.1) of the quantum channel � we define its
weakly complementary as the map �̃ : D(Ha) → D(Hb) which takes the input state ρa into the
state of the environment B after the interaction with A, i.e.

�̃(ρa) = Tra[Uab(ρa ⊗ ρb)U
†
ab]. (1.2)

The transformation (1.2) is CPT, and it describes a quantum channel connecting systems A

and B. It is a generalization of the complementary (conjugate) channel �com defined in [22]–[26].
In particular, if equation (1.1) arises from a Stinespring dilation (i.e. if ρb of equation (1.2) is
pure) the map �̃ coincides with �com. Hence the latter is a particular instance of a weakly
complementary channel of �. On the other hand, by using the above purification procedure, we
can always represent a weakly complementary map as a composition

�̃ = T ◦ �com, (1.3)

where T is the partial trace over the purifying system (here ‘◦’ denotes the composition of
channels). As we will see, the properties of weakly complementary and complementary maps in
general differ.

Definition 2. Let �, �̃ be a pair of mutually (weakly) complementary channels such that

(� ◦ �)(ρa) = �̃(ρa), (1.4)

for some channel � : D(Ha) → D(Hb) and all density matrix ρa ∈ D(Ha). Then � is called
(weakly) degradable while �̃ is called anti-degradable (cf [19]).

Similarly if

(� ◦ �̃)(ρa) = �(ρa) , (1.5)

for some channel � : D(Hb) → D(Ha) and all density matrix ρa ∈ D(Ha), then � is anti-
degradable while �̃ is (weakly) degradable.

In [22], the channel � is called degradable if in equation (1.4) we replace �̃ with a
complementary map �com of �. Clearly any degradable channel [22] is weakly degradable but
the opposite is not necessarily true. Notice, however, that due to equation (1.3), in the definition of
the anti-degradable channel we can always replace weakly complementary with complementary
(for this reason there is no point in introducing the notion of a weakly anti-degradable channel).
This allows us to verify that if � is anti-degradable (1.5) then its complementary channel
�com is degradable [22] and vice versa. It is also worth pointing out that channels which are
unitarily equivalent to a channel � which is weakly degradable (anti-degradable) are also weakly
degradable (anti-degradable).

Finally an important property of anti-degradable channels is the fact that their quantum
capacity [13] is null. As discussed in [19], this is a consequence of the no-cloning theorem [27]
(more precisely, of the impossibility of cloning with arbitrary high fidelity [28]).
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It is useful also to reformulate our definitions in the Heisenberg picture. Here, the states
of the system are kept fixed and the transformation induced on the system by the channel is
described by means of a linear map �H acting on the algebra B(Ha) of all bounded operators of
A so that

Tra[�(ρa) �a] = Tra[ρa �H(�a)], (1.6)

for all ρa ∈ D(Ha) and for all �a ∈ B(Ha). From this it follows that the Heisenberg picture
counterpart of the physical representation (1.1) is given by the unital channel

�H(�a) = Trb[U†
ab (�a ⊗ 11b) Uab (11a ⊗ ρb)]. (1.7)

Similarly, from (1.2) it follows that in the Heisenberg picture the weakly complementary of the
channel is described by the completely positive unital map

�̃H(�b) = Trb [U†
ab(11a ⊗ �b) Uab (11a ⊗ ρb)], (1.8)

which takes bounded operators in Hb into bounded operators in Ha.
Within this framework, the weak-degradability property (1.4) of the channel �H requires

the existence of a channel �H taking bounded operators of Hb into bounded operators of Ha,
such that

(�H ◦ �H)(�b) = �̃H(�b), (1.9)

for all �b ∈ B(Hb). Similarly, we say that a quantum channel �H is anti-degradable, if there
exists a channel �H from B(Ha) to B(Hb), such that

(�̃H ◦ �H)(�a) = �H(�a), (1.10)

for all �a ∈ B(Ha).

2. One-mode bosonic Gaussian channels

Gaussian channels arise from linear dynamics of open bosonic system interacting with a Gaussian
environment via quadratic Hamiltonians. Loosely speaking, they can be characterized as CPT
maps that transform Gaussian states into Gaussian states [3, 4, 29]. Here we focus on one-mode
bosonic Gaussian channels which act on the density matrices of single bosonic mode A. A
classification of such maps obtained recently in the paper [20] allows us to simplify the analysis
of the weak-degradability property. In the following we start by reviewing the result of [20],
clarifying the connection with the analysis of [19] (cf also [18]). Then we pass to the weak-
degradability analysis of these channels, showing that with some important exceptions, they are
either weakly degradable or anti-degradable.

2.1. General properties

Consider a single bosonic mode characterized by canonical observables Qa, Pa obeying the
canonical commutation relation [Qa, Pa] = i. A consistent description of the system can be
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given in terms of the unitary Weyl operators Va(z) = exp [i(Qa, Pa) · z], with z = (x, y)T being
a column vector of R2. In this framework, the canonical commutation relation is written as

Va(z) Va(z
′) = exp

[
i

2
�(z, z′)

]
Va(z + z′),

where �(z, z′) is the symplectic form

�(z, z′) = −i zT · σ2 · z′ = x′y − xy′, (2.1)

with σ2 being the second Pauli matrix. Moreover the density operators ρa of the system can be
expressed in terms of an integral over z of the Va(z)’s, i.e.

ρa =
∫

d2z

2π
φ(ρa; z) Va(−z), (2.2)

with

φ(ρa; z) = Tra[ρa Va(z)], (2.3)

being the characteristic function of ρa.4 Consequently a complete description of a quantum
channel on A is obtained by specifying its action on the operators Va(z), or, equivalently, by
specifying how to construct the characteristic function φ(�(ρa); z) of the evolved states. In the
case of Gaussian channels � this is done by assigning a mapping of the Weyl operators

�H(Va(z)) = Va(K · z) exp [− 1
2 zT · α · z + i mT · z], (2.4)

in the Heisenberg picture, or the transformation of the characteristic functions

φ(�(ρa); z) = φ(ρa; K · z) exp [− 1
2 zT · α · z + i mT · z], (2.5)

in the Schrödinger picture. Here m is a vector, while K and α are real matrices (the latter
being symmetric and positive). Equation (2.5) guarantees that any input Gaussian characteristic
function will remain Gaussian under the action of the map.A useful property of Gaussian channels
is the fact that the composition of two of them (say �′ and �′′) is still a Gaussian channel. Indeed
one can easily verify that the composite map �′′ ◦ �′ is of the form (2.5) with m, K and α given
by

m = (K′′)T · m′ + m′′, K = K′ K′′, α = (K′′)T α′ K′′ + α′′. (2.6)

Here m′, K′ and α′ belongs to �′ while m′′, K′′ and α′′ belongs to �′′.
Not all possible choices of K, α correspond to transformations � which are completely

positive. A necessary and sufficient condition for this last property (adapted to the case of
one mode) is provided by the non-negative definiteness of the following 2 × 2 Hermitian
matrix [3, 20]

2α − σ2 + KT σ2 K. (2.7)

This matrix reduces to 2α + (Det[K] − 1) σ2 and its non-negative definiteness to the inequality

Det[α] �
(

Det[K] − 1

2

)2

. (2.8)

Within the limit imposed by equation (2.8), we can use equation (2.5) to describe the whole set
of the one-mode Gaussian channels.
4 In effect an analogous decomposition (2.2) holds also for all trace class operators of A [30].
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2.2. Channels with single-mode physical representation

An important subset of one-mode Gaussian channels is given by the maps � which possess a
physical representation (1.1) with ρb being a Gaussian state of a single external Bosonic mode
B and with Uab being a canonical transformation of Qa, Pa, Qb and Pb (the latter being the
canonical observables of the mode B). In particular let ρb be a thermal state of average photon
number N, i.e.

φ(ρb; z) = Trb[ρb Vb(z)] = exp [−(N + 1/2)|z|2/2], (2.9)

and let Uab be such that

U
†
ab (Qa, Pa, Qb, Pb) Uab = (Qa, Pa, Qb, Pb) · M, (2.10)

with M being a 4 × 4 symplectic matrix of block form

M ≡
(

m11 | m21

m12 | m22

)
. (2.11)

This yields the following evolution for the characteristic function φ(ρa; z),

φ(�(ρa); z) = Tra[�(ρa) Va(z)] = Tra[ρa �H(Va(z))]

= Trab[U†
ab (Va(z) ⊗ 11)Uab (ρa ⊗ ρb)]

= Trab[(Va(m11 · z) ⊗ Vb(m12 · z)) (ρa ⊗ ρb)]

= φ(ρa; m11 · z) exp [−(N + 1/2)|m12 · z|2/2], (2.12)

which is of the form (2.5) by choosing m = 0, K = m11 and α = (N + 1/2) mT
12 · m12. It is worth

stressing that in the case of equation (2.12) the inequality (2.8) is guaranteed by the symplectic
nature of the matrix M, i.e. by the fact that equation (2.10) preserves the commutation relations
among the canonical operators. Indeed we have

Det[α] = (N + 1/2)2 Det[m12]2 = (N + 1/2)2 (Det[m11] − 1)2 � (Det[K] − 1)2/4, (2.13)

where in the second identity the condition (2.21) was used.
As we shall see, with certain important exception one-mode Gaussian channels (2.4) are

unitarily equivalent to transformations which admit physical representation with ρb and Uab as
in equations (2.9) and (2.10).

2.3. Canonical form

Following [20] any Gaussian channel (2.5) can be transformed (through unitarily equivalence)
into a simple canonical form. Namely, given a channel � characterized by the vector m and the
matrices K, α of equation (2.5), one can find unitary operators Ua and Wa such that the channel
defined by the mapping

ρa −→ �(can)(ρa) = Wa �(Ua ρa U†
a ) W†

a for all ρa, (2.14)
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Table 1. Canonical form for one-mode Gaussian bosonic channels. In the first
columns the properties of K and α of the map � are reported. In last two columns
instead we give the matrices Kcan and αcan of the canonical form �(can) associated
with �—see equations (2.14) and (2.15). In these expressions σ3 is the third
Pauli matrix, N0 is a non-negative constant and κ is a positive constant. Notice
that the constraint (2.8) is always satisfied. In B1 the free parameter Nc has been
set equal to 1/2—see the discussion below equation (2.17).

Channel � Canonical form �(can)

Det[K] Class Kcan αcan

0 rank[K] = 0 A1 0 (N0 + 1/2) 11
0 rank[K] = 1 A2 (11 + σ3)/2 (N0 + 1/2) 11
1 rank[α] = 1 B1 11 (11 − σ3)/4
1 rank[α] �= 1 B2 11 N0 11
κ2 (κ �= 0, 1) C κ 11 |κ2 − 1|(N0 + 1/2) 11
−κ2 (κ �= 0) D κ σ3 (κ2 + 1)(N0 + 1/2) 11

is of the form (2.5) with m = 0 and with K, α replaced, respectively, by the matrices Kcan, αcan

of table 1, i.e.

φ(�(can)(ρa); z) = φ(ρa; Kcan · z) exp [− 1
2 zT · αcan · z]. (2.15)

An important consequence of equation (2.15) is that to analyse the weak-degradability properties
of a one-mode Gaussian channel it is sufficient to focus on the canonical map �(can) which is
unitarily equivalent to it (see remark at the end of section 1). Here we will not enter into the
details of the derivation of equations (2.14) and (2.15), see [20].

The dependence on the matrix Kcan of �(can) upon the parameters of � can be summarized
as follows,

Kcan =




{√
Det[K] 11 Det[K] � 0√|Det[K]| σ3 Det[K] < 0

rank[K] �= 1,

(11 + σ3)/2 rank[K] = 1,

(2.16)

with σ3 being the third Pauli matrix. Analogously for αcan we have

αcan =



√
Det[α] 11 rank[α] �= 1,

Nc (11 − σ3)/2 rank[α] = 1.

(2.17)

The quantity Nc is a free parameter which can set to any positive value upon properly calibrating
the unitaries Ua and Wa of equation (2.14). Following [20] we will assume Nc = 1/2. Notice
also that from equation (2.8), rank[α] = 1 is only possible for Det[K] = 1.
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1
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0 1/2
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Figure 1. Pictorial representation of the classification in terms of canonical forms
of table 1. Depending on the values of Det[K], rank[K] and rank[α] any one-
mode Gaussian channel can be transformed to one of the channels of the scheme
through unitary transformations as in equation (2.14). The points on the thick
oriented line for Det[K] < 0 represent the maps of D, those with Det[K] > 0 and
Det[K] �= 1 represent C. The classes A1,2 and B1,2 are represented by the four
coloured points of the graph. Notice that the channel B2 and A1 can be obtained as
limiting cases of D and C. The dotted arrows connect channels which are weakly
complementary (1.2) of each other with respect to the physical representations
introduced in section 2.4. For instance the weakly complementary of B1 is channel
of the class A2 (and vice versa)—see subsection 3.1 and table 2 for details. Notice
that the weakly complementary channel of A1 belongs to B2. However, not all
the channels of B2 have weakly complementary channels which are in A1—see
section 2.5.

Equations (2.16) and (2.17) show that only the determinant and the rank of K and α are
relevant for defining Kcan and αcan. Indeed one can verify that Kcan and αcan maintain the same
determinant and rank of the original matrices K and α, respectively. This is a consequence of
the fact the � and �(can) are connected through a symplectic transformation for which Det[K],
Det[α], rank[K], and rank[α] are invariant quantities. (In particular Det[K] is directly related
with the invariant quantity q analysed in [19].)

The six inequivalent canonical forms of table 1 follow by parametrizing the value of
√

Det[α]
to account for the constraints imposed by the inequality (2.8). It should be noticed that to
determine which class a certain channel belongs to, it is only necessary to know if Det[K]
is null, equal to 1, negative or positive (�=1). If Det[K] = 0 the class is determined by the rank of
the matrix. If Det[K] = 1 the class is determined by the rank of α (see figure 1). Within the various
classes, the specific expression of the canonical form depends then upon the effective values of
Det[K] and Det[α]. We observe also that the class A1 can be obtained as a limiting case (for
κ → 0) of the maps of class C or D.Analogously the class B2 can be obtained as a limiting case of
the maps of class C. Indeed consider the channel with Kcan = κ11 and αcan = |κ2 − 1|(N ′

0 + 1/2)11
with N ′

0 = N0/(|κ2 − 1|) − 1/2, with N0 and κ positive (κ �= 0, 1). For κ sufficiently close to 1,
N ′

0 is positive and the maps belongs to the class C of table 1. Moreover in the limit of κ → 1
this channel yields the map B2.
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Finally it is interesting to study how the canonical forms of table 1 compose under the
product (2.6). A simple calculation shows that the following rules apply:

◦ A1 A2 B1 B2 C D

A1 A1 A1 A1 A1 A1 A1

A2 A1 A2 A2 A2 A2 A2

B1 A1 A2 B1 B1/B2 C D

B2 A1 A2 B1/B2 B2 C D

C A1 A2 C C B2/C D

D A1 A2 D D D C

(2.18)

In this table, for instance, the element on row 2 and column 3 represents the class (i.e. A2)
associated to the product �′′ ◦ �′ between a channel �′ of B1 and a channel �′′ of A2. Notice
that the canonical form of the products B1 ◦ B2, B2 ◦ B1 and C ◦ C is not uniquely defined. In the
first case, in fact, even though the determinant of the matrix K of equation (2.6) is one, the rank
of the corresponding α might be one or different from one depending on the parameters of the
two ‘factor’ channels: consequently the B1 ◦ B2 and B2 ◦ B1 might belong either to B1 or to B2.
In the case of C ◦ C instead it is possible that the resulting channel will have Det[K] = 1 making
it a B2 map. Typically however C ◦ C will be a map of C. Composition rules analogous to those
reported here have been extensively analysed in [16, 17, 19].

2.4. Single-mode physical representation of the canonical forms

Apart from the case B2, which will be treated separately (see next section), all canonical
transformations of table 1 can be expressed as in equation (2.12), i.e. through a physical
representation (1.1) with ρb being a thermal state (2.9) of a single external Bosonic mode B

and Uab being a linear transformation (2.10).5 To show this it is sufficient to verify that, for each
of the classes of table 1 but B2, there exists a non-negative number N and a symplectic matrix
M such that equation (2.12) gives the mapping (2.15). This yields the conditions

m11 = Kcan, (2.19)

m12 = O

√
αcan

N + 1/2
, (2.20)

with OT = O−1 being an orthogonal 2 × 2 matrix to be determined through the symplectic
condition

Det[m11] + Det[m12] = 1, (2.21)

which guarantees that U
†
abQaUab and U

†
abPaUab satisfy canonical commutation relations. It is

worth noticing that once m11 and m12 are determined within the constraint (2.21) the remaining
blocks (i.e. m21 and m22) can always be found in order to satisfy the remaining symplectic
conditions of M. An explicit example will be provided in few paragraphs. For the classes A1,
A2, B1, D and C with κ < 1, equations (2.20) and (2.21) can be solved by choosing O = 11

5 The exceptional role of B2 corresponds to the fact that any one-mode bosonic Gaussian channel can be represented
as a unitary coupling with a single-mode environment plus an additive classical noise (see next section and [4]).
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and N = N0. Indeed for B1 the latter setting is not necessary. Any non-negative number will do
the job: thus we choose N = 0 making the density matrix ρb of equation (2.9) the vacuum of
the B. For C with κ > 1 instead a solution is obtained by choosing O = σ3 and again N = N0.
The corresponding transformations (2.10) for Qa and Pa (together with the choice for N) are
summarized below.

Class ρb U
†
ab Qa Uab U

†
ab Pa Uab

A1 Thermal(N = N0) Qb Pb

A2 Thermal(N = N0) Qa + Qb Pb

B1 Vacuum(N = 0) Qa Pa + Pb

C κ < 1 Thermal(N = N0) κ Qa +
√

1 − κ2 Qb κ Pa +
√

1 − κ2 Pb

C κ > 1 Thermal(N = N0) κ Qa +
√

κ2 − 1 Qb κ Pa − √
κ2 − 1 Pb

D Thermal(N = N0) κ Qa +
√

κ2 + 1 Qb −κ Pa +
√

κ2 + 1 Pb.

To complete the definition of the unitary operators Uab we need to provide also the transformations
ofQb andPb.This corresponds to fixing the blocksm21 andm22 ofM and cannot be done uniquely:
one possible choice is presented in the following table:

Class U
†
ab Qb Uab U

†
ab Pb Uab

A1 Qa Pa

A2 Qa Pa − Pb

B1 Qa − Qb −Pb

C κ < 1
√

1 − κ2 Qa − κ Qb

√
1 − κ2 Pa − κ Pb

C κ > 1
√

κ2 − 1 Qa + κ Qb −√
κ2 − 1 Pa + κ Pb

D
√

κ2 + 1 Qa + κ Qb

√
κ2 + 1 Pa − κ Pb .

The above definitions make explicit the fact that the canonical form C represents attenuator
(κ < 1) and amplifier (κ > 1) channel [3]. We will see in the following sections that the class D

is formed by the weakly complementary of the amplifier channels of the class C. For the sake
of clarity the explicit expression for the matrices M of the various classes has been reported in
appendix.

Finally it is important to notice that the above physical representations are equivalent to
Stinespring representations only when the average photon number N of ρb nullifies. In this
case the environment B is represented by a pure input state (i.e. the vacuum). According to our
definitions this is always the case for the canonical form B1 while for the canonical forms A1,
A2, C and D it happens for N0 = 0.

2.5. The class B2: additive classical noise channel

As mentioned in the previous section the class B2 of table 1 must be treated separately. The map
B2 corresponds6 to the additive classical noise channel [3] defined by

�(ρa) =
∫

d2z p(z) Va(z) ρa Va(−z), (2.22)

6 This can be seen for instance by evaluating the characteristic function of the state (2.22) and comparing it with
equation (2.15).
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with p(z) = (2πN0)
−1 exp [−|z|2/(2N0)] which, in the Heisenberg picture, can be seen as a

random shift of the annihilation operator a.
These channels admit a natural physical representation which involve two environmental

modes in a pure state (see [20] for details) but do not have a physical representations (1.1)
involving a single environmental mode. This can be verified by noticing that in this case, from
equations (2.19) and (2.20) we get

m11 = 11, (2.23)

m12 =
√

N0/(N + 1/2) O, (2.24)

which yields

Det[m11] + Det[m12] = 1 ± N0/(N + 1/2) , (2.25)

independently of the choice of the orthogonal matrix O.7 Therefore, apart from the trivial case
N0 = 0, the only solution to the constraint (2.21) is by taking the limit N → ∞. This would
correspond to representing the channelB2 in terms of a linear coupling with a single-mode thermal
state ρb of ‘infinite’ temperature. Unfortunately this is not a well-defined object. However, we can
use the ‘asymptotic’representation described at the end of subsection 2.3 where it was shown how
to obtain B2 as limiting case of C class maps, to claim at least that there exists a one-parameter
family of one-mode Gaussian channels which admits single-mode physical representation and
which converges to B2.

3. Weak-degradability of one-mode Gaussian channels

In the previous section, we have seen that all one-mode Gaussian channels are unitarily equivalent
to one of the canonical forms of table 1. Moreover we verified that, with the exception of the
class B2, all the canonical forms admits a physical representation (1.1) with ρb being a thermal
state of a single environmental mode and Uab being a linear coupling. Here we will use such
representations to construct the weakly complementary (1.2) of these channels and to study their
weak-degradability properties.

3.1. Weakly complementary channels

In this section we construct the weakly complementary channels �̃ of the class A1, A2, B1, C

and D starting from their single-mode physical representations (1.1) of subsection 2.4. Because
of the linearity of Uab and the fact that ρb is Gaussian, the channels �̃ are Gaussian. This can be
seen for instance by computing the characteristic function (2.3) of the output state �̃(ρa)

φ(�̃(ρa); z) = Trb[�̃(ρa) Vb(z)] = Trb[ρa �̃H(Vb(z))]

= φ(ρa; m21 · z) exp [− 1
2(N + 1/2) |m22 · z|2], (3.1)

7 This follows from the fact that Det[O] = ±1 since OT = O−1.
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Table 2. Description of the weakly complementary (1.2) of the canonical forms
A1, A2, B1, C and D of table 1 constructed from the physical representations (1.1)
given in subsection 2.4. The first column indicates the class of �. In the central
columns instead is given a description of �̃ in terms of the representation (2.5).
Finally the last column reports the canonical form corresponding to the map �̃.
In all cases the identification is immediate: for instance the canonical form of the
map �̃A1 belongs to the class B2, while the canonical form of the map �̃D is the
class C with Det[Kcan] > 1. In the case of �̃A2 the identification with the class B1

was done by exploiting the possibility freely varying Nc of equation (2.17)—see
[20]. A pictorial representation of the above weak-degradability connections is
given in figure 1.

Weak complementary channel �̃

Class of � K α Class of �̃

A1 11 0 B2

A2 11 (N0 + 1/2) (11 − σ3)/2 B1

B1 (11 + σ3)/2 11/2 A2

C κ < 1
√

1 − κ2 11 k2(N0 + 1/2)11 C (κ < 1)

C κ > 1
√

κ2 − 1 σ3 κ2(N0 + 1/2) 11 D

D
√

κ2 + 1 11 κ2(N0 + 1/2) 11 C(κ > 1)

where m21, m22 are the blocks elements of the matrix M of equation (2.1) associated with the
transformations Uab, and with N being the average photon number of ρb (the values of these
quantities are given in the tables of subsection 2.4—see also the appendix). By setting m = 0,
K = m21 and α = (N + 1/2) mT

22 m22, equation (3.1) has the same structure (2.5) of the one-
mode Gaussian channel of A. Therefore by cascading �̃ with an isometry which exchanges A

with B (see [19, 31]) we can then treat �̃ as an one-mode Gaussian channel operating on A

(this is possible because both A and B are bosonic one-mode systems). With the help of table 1
we can then determine which classes can be associated with the transformation (3.1). This is
summarized in table 2.

3.2. Weak-degradability properties

Using the composition rules of equations (2.6) and (2.18) it is easy to verify that the canonical
forms A1, A2, D and C with κ � √

1/2 are anti-degradable (1.10). Vice versa, one can verify
that the canonical forms B1 and C with κ � √

1/2 are weakly degradable (1.9)—for C, D and
A1 these results have been proved in [19]. Through unitary equivalence this can be summarized
by saying that all one-mode Gaussian channels (2.5) having Det[K] � 1/2 are anti-degradable,
while the others (with the exception of the channels belonging to B2) are weakly degradable (see
figure 2).

In the following we verify the above relations by explicitly constructing the connecting
channels � and � of equations (1.9) and (1.10) for each of the mentioned canonical forms.
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2A1

A2

WEAKDEGRADABLE MAPS

B

B CD

ANTIDEGRADABLE MAPS

1

10 1/2

C

Figure 2. Pictorial representation of the weakly degradability regions for one-
mode Gaussian channels. All canonical forms with Det[K] � 1/2 are anti-
degradable: this includes the classes A1, A2, D and part of the C. The remaining
(with the exception of B2) are instead weakly degradable. Moreover B1 is also
degradable in the sense of [22]. The same holds for channels of canonical form
C with N0 = 0: the exact expression for the quantum capacity of these channels
has been given in [21].

Indeed one has:

• For a channel � of standard form A1 or A2, anti-degradability can be shown by simply
taking � of equation (1.10) coincident with the channel �. The result immediately follows
from the composition rule (2.6).

• For a channel � of B1, weak-degradability comes by assuming the map � to be equal
to the weakly complementary channel �̃ of � (see table 2). As pointed out in [20], this
also implies the degradability of � in the sense of [22]. Let us remind that for B1 the
physical representation given in subsection 2.4 was constructed with an environmental
state ρb initially prepared in the vacuum state, which is pure. Therefore in this case our
representation gives rise to a Stinespring dilation.

• For a channel � of the class C with Kcan = κ 11 and αcan = |κ2 − 1|(N0 + 1/2)11 we have
the following three possibilities:

– If κ � √
1/2 the channel is anti-degradable and the connecting map � is a channel

of C characterized by Kcan = κ′ 11 and αcan = (1 − (κ′)2)(N0 + 1/2)11 with κ′ =
κ/

√
1 − κ2 < 1.

– If κ ∈ [
√

1/2, 1[ the channel is weakly degradable and the connecting map � is again a
channel of C defined as in the previous case but with κ′ = √

1 − κ2/κ < 1. For N0 = 0
the channel is also degradable [22] since our physical representation is equivalent to a
Stinespring representation.

– If κ > 1 the channel is weakly degradable and the connecting map � is a channel of D

with Kcan = κ′ 11 and αcan = ((κ′)2 − 1)(N0 + 1/2)11 with κ′ = √
k2 − 1/k. As in the

previous case, for N0 = 0 the channel is also degradable [22].

• For a channel � of D with Kcan = κ σ3 and αcan = (κ2 + 1)(N0 + 1/2)11 (κ > 0 and N0 � 0)
we can prove anti-degradability by choosing � of equation (1.10) to be yet another maps
of D with Kcan = κ′ σ3 and αcan = ((κ′)2 + 1)(N0 + 1/2)11 where κ′ = κ/

√
κ2 + 1. From

equation (2.6) and table 2 it then follows that � ◦ �̃ is indeed equal to �.
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Concerning the case B2 it was shown in [20] that the channel is neither anti-degradable
nor degradable in the sense of [22] (apart from the trivial case N0 = 0 which corresponds to
the identity map). On the other hand one can use the continuity argument given in subsection
2.5 to claim that the channel B2 can be arbitrarily approximated with maps which are weakly
degradable (those belonging to C for instance).

4. One-mode Gaussian channels with Det[K ] > 1/2 and having null quantum capacity

In the previous section, we saw that all channels (2.5) with Det[K] � 1/2 are anti-degradable.
Consequently these channel must have null quantum capacity [19, 31]. Here we go a little further
showing that the set of the maps (2.5) which can be proved to have null quantum capacity include
also some maps with Det[K] > 1/2. To do this we will use the following simple fact:

Let be �1 a quantum channel with null quantum capacity and let be �2 some quantum
channel. Then the composite channels �1 ◦ �2 and �2 ◦ �1 have null quantum capacity.

The proof of this property follows by interpreting �2 as a quantum operation performed
either at the decoding or at encoding stage of the channel �1. This shows that the quantum
capacities of �1 ◦ �2 and �2 ◦ �1 cannot be greater than the capacity of �1 (which is null).
In the following we will present two cases where the above property turns out to provide some
nontrivial results.

4.1. Composition of two class D channels

We observe that according to composition rule (2.18) the combination of any two channels
�1 and �2 of D produces a map �21 ≡ �2 ◦ �1 which is in the class C. Since the class D

is anti-degradable the resulting channel must have null quantum capacity. Let then κjσ3 and
(κ2

j + 1)(Nj + 1/2)11 be the matrices Kcan and αcan of the channels �j, for j = 1, 2. From equation
(2.6) one can then verify that �21 has the canonical form C with parameters

κ = κ1κ2, (4.1)

N0 = (κ2
2 + 1)N2 + κ2

2(κ
2
1 + 1)N1

|κ2
1κ

2
2 − 1| +

1

2

(
κ2

1κ
2
2 + 2κ2

2 + 1

|κ2
1κ

2
2 − 1| − 1

)
. (4.2)

Equation (4.1) shows that by varying κj, κ can take any positive values: in particular it can be
greater than

√
1/2 transforming �21 into a channel which does not belong to the anti-degradable

area of figure 2. On the other hand, by varying the Nj and κ2, but keeping the product κ1κ2 fixed,
the parameter N0 can assume any value satisfying the inequality

N0 � 1

2

(
κ2 + 1

|κ2 − 1| − 1

)
. (4.3)

We can therefore conclude that all channels C with κ and N0 as in equation (4.3) have null
quantum capacity—see figure 3. A similar bound was found in a completely different way in [3].
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Figure 3. The dark-grey area of the plot is the region of the parameters N0 and
Det[K] = κ2 where a channel with canonical form C cannot have null quantum
capacity. For Det[K] < 1/2 the channel is anti-degradable. In the remaining
white area the quantum capacity is null since these maps can be obtained by
a composition of channels, one of which being anti-degradable. The curve in
black refers to the bound of equation (4.3). The contour of the dark-grey area is
instead given by equation (4.6).

4.2. Composition of two class C channels

Consider now the composition of two class C channels, i.e. �1 and �2, with one of them (say
�2) being anti-degradable.

Here, the canonical form of �1 and �2 have matrices Kcan and αcan given by Ki = κj11 and
αj = |κ2

j − 1|(Nj + 1/2)11, where for j = 1, 2, Nj and κj are positive numbers, with κ1 �= 0, 1
and with κ2 ∈ 0,

√
1/2 (to ensure anti-degradability). From equation (2.6) follows then that the

composite map �21 = �2 ◦ �1 has still a C canonical form with parameters

κ = κ1κ2, (4.4)

N0 = |κ2
2 − 1|N2 + κ2

2|κ2
1 − 1|N1

|κ2
1κ

2
2 − 1| +

1

2

(
κ2

2|κ2
1 − 1| + |κ2

2 − 1|
|κ2

1κ
2
2 − 1| − 1

)
. (4.5)

As in the previous example, κ can assume any positive value. Vice-versa keeping κ fixed, and
varying κ1 > 1 and N1,2 it follows that N0 can take any values which satisfy the inequality

N0 � 1

2

(
κ2

|κ2 − 1| − 1

)
. (4.6)

We can then conclude that all maps C with κ and N0 as above must possess null quantum capacity.
The result has been plotted in figure 3. Notice that the constraint (4.6) is an improvement with
respect to the constraint of equation (4.3).
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5. Conclusion

In this paper, we provide a full weak-degradability classification of one-mode Gaussian channels
by exploiting the canonical form decomposition of [20]. Within this context we identify those
channels which are anti-degradable. By exploiting composition rules of Gaussian maps, this
allows us to strengthen the bound for one-mode Gaussian channels which do not have null
quantum capacity.
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Appendix A. The matrix M

Here, we give the explicit expressions of the matrix M of equation (2.11) associated with
the physical representations of the classes A1, A2, B1, C and D, discussed in subsection 2.4.
They are,

MA1 ≡




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


 , MA2 ≡




1 0 1 0
0 0 0 1
1 0 0 0
0 1 0 −1


 , MB1 ≡




1 0 1 0
0 1 0 0
0 0 −1 0
0 1 0 −1


 ,

MC ≡




k 0
√

1 − k2 0
0 k 0

√
1 − k2√

1 − k2 0 −k 0
0

√
1 − k2 0 −k


 (for κ < 1),

MC ≡




k 0
√

k2 − 1 0
0 k 0 −√

k2 − 1√
k2 − 1 0 k 0

0 −√
k2 − 1 0 k


 (for κ > 1),

MD ≡




k 0
√

k2 + 1 0
0 −k 0

√
k2 + 1√

k2 + 1 0 k 0
0

√
k2 + 1 0 −k


 .
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