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We study CP asymmetries in rare B decays within supersymmetry with a U(2)3

flavour symmetry, motivated by the SUSY flavour and CP problems, the hierar-
chies in the Yukawa couplings and the absence so far of any direct evidence for
SUSY. Even in the absence of flavour-blind phases, we find potentially sizable CP
violating contributions to b → s decay amplitudes. The effects in the mixing-
induced CP asymmetries in B → φKS and B → η′KS , angular CP asymmetries
in B → K∗µ+µ− and the direct CP asymmetry in B → Xsγ can be in the region
to be probed by LHCb and next generation B factories. At the same time, these
effects in B decays are compatible with CP violating contributions to meson mixing,
including a non-standard Bs mixing phase hinted by current tensions in the CKM
fit mostly between SψKS

, εK and ∆MBs/∆MBd
.

1. Introduction

Weak scale supersymmetry has long been the leading candidate for physics beyond the
Standard Model (SM), but it is increasingly challenged by the lack of any clear experi-
mental evidence in its favour. Arguably, the most important challenges to be explained
are the success of the CKM description of flavour violation, the tight bounds on flavour-
blind CP violation from electric dipole moment (EDM) searches and the tightening
sparticle mass bounds from LHC.

A promising approach to address these three problems is to make use of the fact that
the third generation of quarks is special, since it has sizable Yukawa couplings and is
weakly mixed with the first two generations. If the first two generations of quarks and
squarks form doublets under a U(2) flavour symmetry commuting with the gauge group,
the flavour problem is ameliorated while at the same time the hierarchies in the Yukawa
couplings can be (at least partially) understood [1, 2]. Furthermore, a flavour symmetry
for the light quark generations fits well to a hierarchy in the spectrum of squarks, with the
third generation partners being light and the first two generation ones in the multi-TeV
region [3, 4, 5, 6]. This has two virtues, in addition to further ameliorating the flavour
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problem: First, it solves the CP problem, decoupling the contributions of flavour-blind
phases to the observable EDMs, which involve first generation fermions [7]. Second, it
evades the strongest sparticle direct search bounds. While the lower bounds on first two
generation squark masses from LHC are approaching a TeV, third generation squarks
can still be in the few-hundred GeV region for gluino masses above about 600 GeV,
depending on the gluino decay branching ratios and on the lightest neutralino mass.1

Motivated by these facts, a U(2)3 symmetry has been considered in [10] together with
a hierarchical squark spectrum and has been shown to solve, in addition to the above-
mentioned problems, tensions present in the fits of the CKM matrix by contributing
to CP violation in meson mixing. In this way, a non-standard Bs mixing phase was
predicted, as currently hinted by Tevatron data [11, 12].

The purpose of this article is to extend the analysis in [10] to ∆F = 1 processes,
i.e. rare decays, studying in particular possible signatures of CP violation correlated
with the predicted CP violation in meson mixing (∆F = 2). Contrary to the ∆F = 2
sector, where the pattern of deviations from the SM identified in [10] is unambiguously
dictated by the U(2)3 symmetry, the predictions of ∆F = 1 observables are more model
dependent. In this analysis we concentrate on a framework with moderate values of
tanβ and, in order to establish a link between ∆F = 2 and ∆F = 1 CP-violating
observables, we take small flavour-blind phases and assume the dominance of gluino-
mediated flavour-changing amplitudes.

2. Setup

We briefly review the U(2)3 framework, referring to [10] for details and derivations. We
consider a global flavour symmetry

GF = U(2)Q × U(2)u × U(2)d (1)

broken minimally by three spurions, transforming as ∆Yu = (2, 2̄, 1), ∆Yd = (2, 1, 2̄) and
V = (2, 1, 1), respectively. This breaking pattern leads to non-minimal flavour violation
in the down quark-squark-gluino vertex,

(d̄L,RW
d
L,Rd̃L,R)g̃. (2)

which can be approximately written as

W d
L =

 cd κ∗ −κ∗sLeiγL
−κ cd −cdsLeiγL
0 sLe

−iγL 1

 , W d
R = 1 , (3)

where κ = cdVtd/Vts and cd is fixed by the CKM matrix, which in these conventions
reads

VCKM =

 1− λ2/2 λ suse
−iδ

−λ 1− λ2/2 cus

−sds ei(φ+δ) −scd 1

 , (4)

1For a first LHC analysis with about 1 fb−1 of integrated luminosity, see [8, 9].
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where sucd−cusde−iφ = λeiδ. A direct fit of this parametrization to tree-level observables
results in

su = 0.086± 0.003 , sd = −0.22± 0.01 , (5)

s = 0.0411± 0.0005 , φ = (−97± 9)◦ . (6)

The mixing sL and the phase2 γL in (3), on the other hand, are free parameters. Defining

ξL =
cdsL
|Vts|

eiγL , (7)

the mixing amplitudes in the K, Bd and Bs meson systems are modified as follows,

MK
12 =

(
MK

12

)(tt)
SM

(
1 + |ξL|4F0

)
+
(
MK

12

)(tc+cc)
SM

, (8)

M
Bd,s

12 =
(
M

Bd,s

12

)
SM

(
1 + ξ2

LF0

)
, (9)

where F0 > 0 is a loop function, predicting a universal shift in the Bd and Bs mixing
phases. The mixing induced CP asymmetries in B → ψKS and Bs → ψφ are thus

SψKS
= sin (2β + φ∆) , Sψφ = sin (2|βs| − φ∆) , (10)

where φ∆ = arg
(
1 + ξ2

LF0

)
.

The current tensions in the CKM fit arising mostly between SψKS
, |εK | and ∆Ms/∆Md

can be accommodated by the shifts in SψKS
and |εK |. Assuming this to be the case,

a global fit of the CKM matrix to ∆F = 2 observables including the supersymmetric
contributions leads to the following predictions at the 90% C.L.,

0.8 < |ξL| < 2.1 , (11)

−9◦ < φ∆ < −1◦ , (12)

−86◦ < γL < −25◦ or 94◦ < γL < 155◦ , (13)

0.05 < Sψφ < 0.20, . (14)

with gluino and left-handed sbottom masses necessarily below 1÷1.5 TeV. The ambiguity
in γL stems from the fact that the ∆F = 2 observables are only sensitive to the phase
of ξ2

L, and thus to 2γL.
The presence of the phase γL leads to contributions to CP asymmetries in B physics.

Additional contributions can arise from flavour-blind phases, such as the phase of the µ
term or the trilinear couplings. With hierarchical sfermions, such phases are not required
to be small to meet the EDM constraints [7]. Still, to concentrate on the genuine U(2)3

effects, we will take flavour blind phases to be absent in the following and thus focus on
B physics.

2Our phase γL is equivalent to the phase γ in [10].

3



3. ∆B = 1 effective Hamiltonian

The part of the b→ s effective Hamiltonian sensitive to NP in our setup reads

Heff =
4GF√

2
V ∗tsVtb

10∑
i=3

CiOi + h.c. , (15)

O3 = (s̄PLb)
∑

q(q̄PLq) O4 = (s̄αPLbβ)
∑

q(q̄βPLqα)

O5 = (s̄PLb)
∑

q(q̄PRq) O6 = (s̄αPLbβ)
∑

q(q̄βPRqα)

O7 =
e

16π2
mb(s̄σµνPRb)Fµν O8 =

gs
16π2

mb(s̄σµνPRb)Gµν

O9 =
e2

16π2
(s̄γµPLb)(l̄γµl) O10 =

e2

16π2
(s̄γµPLb)(l̄γµγ5l)

The QCD penguin operators O3...6 are relevant for the CP asymmetries in b → ss̄s
penguin decays to be discussed below. In the case of hierarchical sfermions, the box
contributions are mass-suppressed and we only have to consider gluon penguins, which
contribute in a universal way as

C3 = C5 = −1
3C4 = −1

3C6 ≡ CG . (16)

The analogous photon penguin can be neglected in non-leptonic decays since it is sup-
pressed by αem/αs, but it can contribute to C9. There is no effect in C10, which remains
SM-like.

In the MSSM, the ∆F = 1 effective Hamiltonian receives contributions from loops
involving charginos, neutralinos, charged Higgs bosons or gluinos. In the following, we
will concentrate for simplicity on gluino contributions, which are always proportional to
the complex ξL in U(2)3. Among the remaining contributions, some are proportional
to ξL while some are real in the absence of flavour blind phases. Their omission does
not qualitatively change our predictions for CP asymmetries, but we stress that the real
contributions can have an impact in particular on the branching ratios to be considered
below.

The gluino contributions to CG and C9 are

CG = −ξL
αs
α2

αs
4π

m2
W

m2
b̃

13

108
fG(xg̃) , C9 = ξL

αs
α2

m2
W

m2
b̃

2

27
fγ(xg̃) , (17)

where here and throughout, xg̃ = m2
g̃/m

2
b̃

and all the loop functions are defined such
that fi(1) = 1 with the exact form given in appendix A.

The main difference concerning the magnetic and chromomagnetic Wilson coefficients
C7 and C8 is that here b̃L-b̃R mass insertion contributions are important, while for the
other Wilson coefficients they were chirality-suppressed. The gluino contributions read

C7 = −ξL
αs
α2

m2
W

m2
b̃

1

27

[
f7(xg̃) + 2

µ tanβ −Ab
mg̃

g7(xg̃)

]
, (18)

C8 = −ξL
αs
α2

m2
W

m2
b̃

5

36

[
f8(xg̃) + 2

µ tanβ −Ab
mg̃

g8(xg̃)

]
. (19)
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Observable SM prediction Experiment Future sensitivity

BR(B → Xsγ) (3.15± 0.23)× 10−4 [14] (3.52± 0.25)× 10−4 ±0.15× 10−4

ACP(b→ sγ) (−0.6÷ 2.8)% [15] (−1.2± 2.8)% ±0.5%

BR(B → Xdγ) (1.54+0.26
−0.31)× 10−5 [16] (1.41± 0.49)× 10−5

SφKS
0.68± 0.04 [17, 18] 0.56+0.16

−0.18 ±0.02

Sη′KS
0.66± 0.03 [17, 18] 0.59± 0.07 ±0.01

〈A7〉 (3.4± 0.5)× 10−3 [19] –

〈A8〉 (−2.6± 0.4)× 10−3 [19] –

Table 1: SM predictions, current experimental world averages [20] and experimental sen-
sitivity at planned experiments [21, 22] for the B physics observables. < A7,8 >
are suitable angular CPV asymmetries in B → K∗µ+µ−.

For mg̃ = mb̃ ≡ m̃, we thus find at the scale mW

CG = −1.1× 10−4

(
500 GeV

m̃

)2

ξL , (20)

Cγ = 9× 10−3

(
500 GeV

m̃

)2

ξL , (21)

C7 = −3.4× 10−3

(
500 GeV

m̃

)2

ξL

[
1 + 2

µ tanβ −Ab
m̃

]
, (22)

C8 = −1.3× 10−2

(
500 GeV

m̃

)2

ξL

[
1 + 2

µ tanβ −Ab
m̃

]
. (23)

A model-independent consequence of the U(2)3 symmetry is that the modification of
b → s and b → d ∆F = 1 amplitudes is universal, i.e. only distinguished by the same
CKM factors as in the SM (exactly as in the U(3)3, or MFV case [13]). Therefore, all
the expressions for the b→ s Wilson coefficients derived in this section are also valid for
b→ d processes.

4. B physics observables

4.1. BR(B → Xqγ)

The branching ratio of B → Xsγ is one of the most important flavour constraints in the
MSSM in view of the good agreement between theory and experiment. Experimentally,
the quantities

Rbqγ =
BR(B → Xqγ)

BR(B → Xqγ)SM
(24)
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are constrained to be

Rbsγ = 1.13± 0.11 , Rbdγ = 0.92± 0.40 , (25)

using the numbers in table 1. In U(2)3, one has Rbsγ ≈ Rbdγ just as in MFV, so the
b→ sγ constraint is more important and we will concentrate on it in the following.

Beyond the SM (but in the absence of right-handed currents), the branching ratio can
be written as

BR(B → Xsγ) = R

[∣∣∣CSM,eff
7 + CNP,eff

7

∣∣∣2 +N(Eγ)

]
, (26)

where R = 2.47 × 10−3 and N(Eγ) = (3.6 ± 0.6) × 10−3 for a photon energy cut-off
Eγ = 1.6 GeV [23].

Considering only gluino contributions and setting mg̃ = mb̃ ≡ m̃, we find

Rbsγ = 1 + 2.2× 10−2

(
500 GeV

m̃

)2

|ξL| cos γL

(
1 + 2

µ tanβ −Ab
m̃

)
. (27)

As stressed in section 3, there are additional real contributions to the Wilson coefficient
C7,8 that can modify the branching ratio. In particular, there is a tanβ enhanced
chargino contribution proportional to the stop trilinear coupling, which can interfere
constructively or destructively with the SM. Thus, with a certain degree of fine-tuning,
the constraints in 25 can always be fulfilled. In our numerical analysis, we will require
the branching ratio including only SM and gluino contributions to be within 3σ of the
experimental measurement.

4.2. ACP(B → Xsγ)

The direct CP asymmetry in B → Xsγ

ACP(B → Xsγ) =
Γ(B̄ → Xsγ)− Γ(B → Xs̄γ)

Γ(B̄ → Xsγ) + Γ(B → Xs̄γ)
, (28)

already constrained by the B factories as shown in table 1, will be measured by next
generation experiments to a precision of 0.5%. On the theory side, the recent inclusion
of “resolved photon” contributions reduced the attainable sensitivity to NP in view of
the large non-perturbative SM contribution leading to [15]

− 0.6% < ACP(B → Xsγ)SM < 2.8% (29)

compared to an earlier estimate of the short-distance part [24]

ACP(B → Xsγ)SD
SM = (0.44+0.24

−0.14)% . (30)

The new physics contribution can be written as

ACP(B → Xsγ)NP ×Rbsγ = −0.29Im(CNP
7 ) + 0.30Im(CNP

8 )− 0.99Im(CNP∗
7 CNP

8 ), (31)
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valid for Eγ = 1.85 GeV.
Setting mg̃ = mb̃ ≡ m̃ and Rbsγ = 1, the gluino contributions to the CP asymmetry

are

ACP(B → Xsγ)NP = −1.74× 10−3

(
500 GeV

m̃

)2

|ξL| sin γL
(

1 + 2
µ tanβ −Ab

m̃

)
(32)

we note that the CP asymmetry can have either sign due to the two solutions for γL
allowed by ∆F = 2, see (13).

4.3. B → K∗µ+µ−

Angular CP asymmetries in B → K∗µ+µ− are sensitive probes of non-standard CP
violation and will be measured soon at the LHCb experiment. In our framework, where
right-handed currents are absent, the relevant observables are the T-odd CP asymmetries
A7 and A8 as defined in [19].

For these observables, integrated in the low dilepton invariant mass region, we obtain
the simple dependence on the Wilson coefficients, as usual to be evaluated at the scale
mb,

〈A7〉 ×RBR ≈ −0.71 Im(CNP
7 ) , (33)

〈A8〉 ×RBR ≈ 0.40 Im(CNP
7 ) + 0.03 Im(CNP

9 ) , (34)

where RBR is the ratio between the full result for the CP-averaged branching ratio and
the SM one [7], RBR ≈ 1 in our framework. Although Im(CNP

7 ) and Im(CNP
9 ) can be of

the same order, the contribution from CNP
9 is numerically suppressed and one will thus

still have approximately
〈A8〉 ' −0.56〈A7〉 . (35)

Setting mg̃ = mb̃ ≡ m̃ and RBR = 1, the gluino contributions to 〈A7〉 read

〈A7〉 = 2.5× 10−3

(
500 GeV

m̃

)2

|ξL| sin γL
(

1 + 2
µ tanβ −Ab

m̃

)
. (36)

4.4. SφKS
and Sη′KS

The expression for the mixing-induced CP asymmetries in Bd decays to final CP eigen-
states f is

Sf = sin (2β + φ∆ + δf ) , (37)

where φ∆ is the new phase in Bd,s mixing defined in (10). For the tree-level decay
f = ψKS , δf = 0, while for the penguin-induced modes B → φ(η′)KS , the contribution
from the decay amplitude can be written as [17]

δf = 2arg

(
1 + aufe

iδ +
∑
i≥3

bci,fC
NP
i

)
(38)
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Figure 1: Correlation between SφKS
− SψKS

and Sη′KS
− SψKS

for positive µ (left) and
negative µ (right), showing points with γL > 0 (blue) and γL < 0 (green). The
shaded region shows the 1σ experimental ranges.

where δ = γCKM = φ3 is the usual CKM angle and the auf and bci,f can be found in [17].
For the gluino contributions, setting mg̃ = mb̃ ≡ m̃, we obtain

6∑
i=3

bci,φKS
CNP
i = −0.73× 10−2

(
500 GeV

m̃

)2

|ξL|eiγL , (39)

6∑
i=3

bci,η′KS
CNP
i = −1.10× 10−2

(
500 GeV

m̃

)2

|ξL|eiγL , (40)

bc8,φKS
CNP

8 = −1.82× 10−2

(
500 GeV

m̃

)2

|ξL|eiγL
(

1 + 2
µ tanβ −Ab

m̃

)
, (41)

bc8,η′KS
CNP

8 = −1.10× 10−2

(
500 GeV

m̃

)2

|ξL|eiγL
(

1 + 2
µ tanβ −Ab

m̃

)
. (42)

The effects of the QCD and chromomagnetic penguins in the above expressions are
comparable, with the exception of the left-right mixing piece only present for the chro-
momagnetic ones.

4.5. Numerical analysis

In figures 1 and 2 we show the correlations between the CP asymmetries, scanning the
gluino mass between 0.5 and 1 TeV, the sbottom mass, the µ term and Ab between 0.2
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Figure 2: Correlation between 〈A7(B → K∗µ+µ−)〉 and the difference Sη′KS
− SψKS

for
positive µ (left) and negative µ (right), showing points with γL > 0 (blue) and
γL < 0 (green). The shaded region is the 1σ experimental range.

Figure 3: Correlation between 〈A7(B → K∗µ+µ−)〉 and the new physics contributions
to the CP asymmetry in B → Xsγ for positive µ (left) and negative µ (right),
showing points with γL > 0 (blue) and γL < 0 (green). The shaded region is the
1σ experimental range for ACP(B → Xsγ), valid for vanishing SM contribution
(and otherwise subject to an appropriate shift).
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and 0.5 TeV and tanβ between 2 and 10. We require the ∆F = 2 observables to be in
the region where the CKM tensions are reduced (cf. (11–13)). The maximum size of
the effects is mostly limited by the BR(B → Xsγ) constraint, which we require to be
fulfilled at the 3σ level including SM and gluino contributions only (cf. the discussion
at the end of sec. 4.1).

Figure 1 shows the correlation between the mixing-induced CP asymmetries SφKS
and

Sη′KS
in relation to SψKS

, effectively subtracting the contribution due to the modified
Bd mixing phase. The experimental 1σ ranges corresponding to the average in table 1
are shown as shaded regions. Due to the tanβ enhanced terms in (41, 42), large effects
are easily possible. A negative value for these differences, as currently indicated by the
central values of the measurements, can be obtained for γL > 0 (γL < 0) if µ > 0 (µ < 0).
For a given sign of the µ term, the sign of the ∆B = 1 CP asymmetries can thus serve
to distinguish between the two solutions for the phase γL in (13) allowed by the ∆F = 2
analysis.

Figure 2 shows the correlation between Sη′KS
and the CP asymmetry 〈A7〉 in B →

K∗µ+µ−. Values up to ±10% would be attainable for 〈A7〉, while the current measure-
ment of Sη′KS

implies, at the 1σ level, 0 < 〈A7〉 < 5%.
Finally, figure 3 shows the correlation between the CP asymmetry in B → Xsγ and

the new physics contribution to 〈A7〉. ACP(B → Xsγ)NP attains values up to ±5%. Im-
posing the 1σ experimental range allowed for Sη′KS

, this decreases to −2% < ACP(B →
Xsγ)NP < 0%. In the plots, we also show the 1σ experimental range for ACP(B → Xsγ)
(cf. table 1), assuming a vanishing SM contribution. If the SM contribution is sizable
due to long-distance effects (see section 4.2), the experimental constraints has to be
shifted accordingly.

5. Discussion and conclusions

We have studied CP asymmetries in B decays in supersymmetry with a U(2)3 flavour
symmetry suggested in [10] as an alternative to Minimal Flavour Violation, addressing
the SUSY flavour and CP problems, partially explaining the hierarchies in the Yukawa
couplings and solving tensions in the CKM fit related to CP violation in meson mixing.

Even in the absence of flavour-blind phases, we find potentially sizable CP violating
contributions to ∆B = 1 decay amplitudes. We identify the dominant contributions
to arise in the magnetic and chromomagnetic dipole operators due to their sensitivity
to chirality violation, with subleading contributions in semi-leptonic and QCD penguin
operators. The most promising observables are the mixing-induced CP asymmetries
in non-leptonic penguin decays like B → φKS or B → η′KS , angular CP asymme-
tries in B → K∗µ+µ−, and the direct CP asymmetry in B → Xsγ (barring potential
uncertainties in controlling the SM predictions in the radiative [15] and non-leptonic
modes [17, 18]).

Due to the different dependence on the sparticle masses, we cannot predict a clear-
cut correlation between CP violating ∆F = 1 and ∆F = 2 observables. However, we
have demonstrated that observable effects in ∆F = 1 CP asymmetries are certainly
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compatible with the pattern of deviations from the SM suggested by ∆F = 2 observ-
ables, if interpreted in terms of this supersymmetric framework. Interestingly, while
we considered a setup without flavour-blind phases, the correlations between ∆F = 1
observables turn out to be very similar to those in MFV [25, 26] or in effective MFV
[7] with flavour-blind phases. The main difference between the two cases are the CP
violating effects in K and B mixing, which occur in U(2)3, but not in (effective) MFV.
We view this as an interesting example of the usefulness of correlated studies of ∆F = 1
and ∆F = 2 observables as a handle to distinguish between models. Such studies would
become extremely interesting in presence of direct evidences of a hierarchical sparticle
spectrum from the LHC.
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A. Loop functions

fG(x) =
2(73− 134x+ 37x2)

39(x− 1)3
− 2(18− 27x+ x3)

13(x− 1)4
lnx fG(1) = 1

fγ(x) = −2(2− 7x+ 11x2)

3(x− 1)3
+

4x3

(x− 1)4
lnx fγ(1) = 1

f7(x) =
2(−1 + 5x+ 2x2)

(x− 1)3
− 12x2

(x− 1)4
lnx f7(1) = 1

g7(x) = −6x(1 + 5x)

(x− 1)3
+

12x2(2 + x)

(x− 1)4
lnx g7(1) = 1

f8(x) =
−19− 40x+ 11x2

5(x− 1)3
− 6x(−9 + x)

5(x− 1)4
lnx f8(1) = 1

g8(x) =
12x(11 + x)

5(x− 1)3
+

6x(−9− 16x+ x2)

5(x− 1)4
lnx g8(1) = 1
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