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Hierarchical networks are attracting a renewal interest for modelling the organization of a number
of biological systems and for tackling the complexity of statistical mechanical models beyond mean-
field limitations. Here we consider the Dyson hierarchical construction for ferromagnets, neural
networks and spin-glasses, recently analyzed from a statistical-mechanics perspective, and we focus
on the topological properties of the underlying structures. In particular, we find that such structures
are weighted graphs that exhibit high degree of clustering and of modularity, with small spectral gap;
the robustness of such features with respect to the presence of thermal noise is also studied. These
outcomes are then discussed and related to the statistical mechanics scenario in full consistency.
Lastly, we look at these weighted graphs as Markov chains and we show that in the limit of infinite
size, the emergence of ergodicity breakdown for the stochastic process mirrors the emergence of
meta-stabilities in the corresponding statistical mechanical analysis.

PACS numbers:

I. INTRODUCTION

When dealing with statistical-mechanics models (e.g.
spin systems), overcoming the mean-field approximation
is extremely challenging. Basically, the mean-field ap-
proximation lies in the assumption that each spin Si
(i = 1, ..., N) in an embedding space does interact with
all the other N−1 spins with the same strength, notwith-
standing their mutual distance, as if spins occupied the N
vertices of an hyper-tetrahedron. As a notion of distance
is introduced and couplings among spins are accordingly
rescaled, the exact solution is, in most cases, out of reach.

In the 60’s, a hierarchical model for ferromagnetic sys-
tems was introduced to describe non-mean-field spin sys-
tems [14], and it is known as the Hierarchical Ferro-
magnet. More recently, also the Sherrington-Kirkpatrick
model for spin-glasses [9, 11, 12] and the Hopfield model
for neural networks [1–3] defined on such a hierarchical
topology have been investigated.

The hierarchical network exploited in all these cases
is endowed with a metric and it is explicitly not-mean-
field since the coupling between two nodes at a distance
d scales as ∼ 4−σd, where σ is a proper tuneable parame-
ter. As a result, the spins can be thought of as placed on
the vertices of a fully-connected weighted graph, where
the coupling pattern mirrors the mutual distance among
spins. This graph exhibits peculiar features (e.g., high
degree of modularity), which play a crucial role in the
statistical-mechanics treatability as well as in the emer-
gent behavior of the above mentioned models. Also, the
knowledge of the specific architecture considered allows
to figure out the class of real-world systems where the-

oretical results can properly be applied. However, only
marginal attention has been devoted to such topological
properties in the past and in this work we just aim to
deepen these aspects.

In the following we first provide a streamlined and gen-
eral introduction to the statistical-mechanics models con-
sidered (i.e., the hierarchical ferromagnet, the hierarchi-
cal neural network and the hierarchical spin glass), then
we move to the analysis of the underlying network by
studying the degree of clustering, the modularity, the er-
godicity and the spectral properties. Finally, a section
with outlooks and conclusions closes the paper.

II. DEFINITION OF MODELS AND RELATED
HAMILTONIANS

The three statistical-mechanics models which we
adapt to live on a hierarchical network are the Curie-
Weiss model, the Hopfield model and the Sherrington-
Kirkpatrick model, which are the prototypes for ferro-
magnetism, associative neural networks and spin-glasses,
respectively.

Before providing the Hamiltonians of these models
when defined in a hierarchical structure, we outline how
they can be built up recursively. One starts from a set
of two spins properly coupled (the kind of coupling de-
pending on the particular model considered). Then, one
takes two of such dimers and makes two operations: up-
date the existing links and introduce new links to couple
spins belonging to different dimers. This constitutes the
system at the first iteration. At the next iteration, one
takes two replicas of such a system and, again, updates
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FIG. 1: (Color online) Schematic representation of the hierarchical topology that underlies the system under study: spots
represent nodes where spins/neurons live, while different colors and thickness for the links mimic different intensities in their
mutual interactions: the brighter and thinner the link, the smaller the related coupling.

the existing links and introduces new connections among
spins from different replica and so on up to the k-th iter-
ation. In this way one can immediately see that a notion
of distance emerges straightforwardly as two spins can be
considered at a distance d if they are first connected at
the d-th iteration (see Figs. 1 and 2).

More formally, the hierarchical ferromagnet (HFM)
with K levels of iterations is described by the Hamil-
tonian HHFM

K , defined recursively as

HHFM
K ({S}|σ) = HHFM

K−1 ({S1}|σ) +HHFM
K−1 ({S2}|σ)

− 1

22σK

2K∑
i<j

SiSj , (1)

where {S} is the set of N = 2K spins making up the
system, each labeled as i = 1, ..., N , while {S1} and {S2}
are the sets of spins related to the two smaller copies of
sizes 2K−1 that are merged up. Spins are binary and can
take values +1 or −1. The parameter σ is bounded as
σ ∈ (1/2, 1]: for σ > 1 the interaction energy goes to
zero in the thermodynamic limit, while for σ < 1/2 the
interaction energy diverges in the same limit. Also, no-
tice that the coupling among spins is positive due to the
ferromagnetic nature of the model which makes neigh-
boring spins to “imitate” each other.

Next, the Hopfield model requires for its definition the
set of N quenched vectors {ξi}, i = 1, ..., N , of length P
and whose entries are drawn from the distribution

P (ξµi ) =
1

2
δ(ξµi − 1) +

1

2
δ(ξµi + 1), (2)

being µ = 1, ..., P . By applying the Mattis gauge Si →
−Siξµi , and summing over the P patterns, the Hamilto-
nian HHNN

K for the hierarchical neural network (HNN),
at the K-th level of iteration, reads as

HHNN
K ({S}|ξ, σ) = HHNN

K−1 ({S1}|ξ, σ) +HHNN
K−1 ({S2}|ξ, σ)

− 1

2

1

22σK

P∑
µ=1

2K∑
i,j=1

ξµi ξ
µ
j SiSj , (3)

with HHNN
0 ≡ 0 and σ still within the previous bounds,

i.e. σ ∈ ( 1
2 , 1].

Finally, the hierarchical spin-glass (HSG) requires for
its definition the set of N(N−1)/2 quenched variables χij

drawn from a standard centered Gaussian distribution
N [0, 1] such that the related Hamiltonian HHSG

K , at the
K-th level of iteration, reads as

HHSG
K ({S}|χ, σ) = HHSG

K−1({S1}|χ, σ) +HHSG
K−1({S2}|χ, σ)

− 1

22σK

2K∑
i<j

χijSiSj , (4)

All these models (i.e., HFM, HNN, HSG) can be
thought of as spin systems embedded on a weighted
graph G = (V,E), where V is the set of nodes labeled
as i = 1, · · · , 2K and E is the set of links whose cardi-
nality is |E| = 2K−1(2K − 1). Each spin Si occupies the
vertex i ∈ V and each link (i, j) ∈ E is associated to a
weight Jij capturing the effective coupling among spins.
Then, in general, the Hamiltonians in (1), (3), and (4)
can all be written in the compact form

H
(model)
K ({S}|σ) =

∑
ij

J
(model)
ij SiSj . (5)

III. GRAPH GENERATION IN THE
HIERARCHICAL FERROMAGNET

In this section we focus on the generation of
the weighted graph G underlying the Hamiltonian
HHFM
K ({S}|J, σ) and in the next subsections we will an-

alyze its properties.

The iterative construction outlined in the previous sec-
tion can be adopted to build up G (see Fig. 2): we start
from a couple of nodes i and j, connected by a link car-
rying a weight Jij = J1(1) = 4−σ, and we refer to this
graph as G1. Then, we take two replicas of G1 and we
connect nodes belonging to different replicas with links
carrying a weight J2(2) = 4−2σ, while existing links are
updated as J2(1) = J2(1) + J2(2) = 4−σ + 4−2σ. The
graph G2 therefore counts 22 nodes. We proceed itera-
tively in such a way that at the K-th iteration new links
connecting nodes belonging to different replicas are asso-
ciated to a weight JK(K) = 4−Kσ, while existing links
in each replica GK−1 are all increased by the same value
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K = 1 K = 2 K = 3

FIG. 2: (Color online) Iterative construction of the hierarchical structure up to generation K = 3, corresponding to N = 23

vertices. Links display different thickness according to their weight.

JK(K), in such a way that

JK(d) =

K∑
l=d

JK(l) =

K∑
l=d

4−lσ =
4σ(1−d) − 4−Kσ

4σ − 1
. (6)

The resulting graph GK (simply referred to as G to lighten
the notation), is undirected and fully connected. Its
nodes make up a set V of size N = 2K and are labeled as
i = 1, ..., N . Also, the set of links E contains all possible(
N
2

)
connections as the graph is fully connected, and each

link (i, j) ∈ E is associated to a weight Jij which can be
defined in terms of the distance between nodes i and j,
once a proper metric has been introduced.

In fact, the procedure described above provides a no-
tion of distance d which we recall here: two nodes are
said to be at distance d if they are first connected at the
d-th iteration. For completeness, we also fix G0 as the
graph consisting in a single node.

As a result, this metric is intrinsically ultrametric as,
for any pair i, j ∈ V , we have

-dij ≥ 0;
-dij = 0 iff i = j;
-dij = dji, that is, the metric is symmetric;
-dij ≤ max(diz, dzj) (this is the so-called ultrametric

inequality).
Beyond the definition of distance dij based on recur-

sivity, we can straightforwardly adopt the p-adic metric
[27], and measure the p-adic distance ρij between nodes
i and j, as (here p is set equal to 2)

ρij = ||i− j||2 = 2−ord2(i−j), (7)

being ord2(i − j) the exponent of the largest power of
2 that divides (i − j) [28]. Notice that ρ is connected
with d by dij = K − ord2(i − j). As a result, ρij ∈
{2−K+1, 2−K+2, ..., 2, 1}. Then, using the 2-adic metric,
one can see that the coupling strength turns out to decay
algebraically with the (2-adic) distance, as typical for
long-range interactions, that is

Jij =
A

ρ2σij
+B. (8)

In fact, by posing A = 4−σ(K−1)

4σ−1 and B = −4−σA, we

recover the definition in (6). Moreover, we can rearrange
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N
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y ∼ J − 1
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FIG. 3: (Color online) Distribution nk(J) for K = 12 and
σ = 0.6, σ = 0.8, and σ = 1.0, as reported by the legend.
Straight lines correspond to y = J−1/(2σ)/(2N), see Eq. 13.

Eq. 6 and, in the limit of large size, we get

Jij =
2−2σK

4σ − 1

[(
2

ρij

)2σ

− 1

]
∼ 1

(Nρij)2σ
. (9)

The two extrema for σ, i.e. σ = 1/2 and σ = 1, therefore
correspond to a coupling strength scaling linearly and
quadratically, respectively, with the (2-adic) distance be-
tween nodes.

As anticipated, the hierarchical ferromagnet in (1), is
obtained by pasting on each vertex i a spin Si and letting
spins interact with a coupling Jij .

The formalization just described can be properly ex-
tended to allow for a degree of stochasticity, e.g. the set
of labels can be extracted from a suitable distribution,
and/or p can be varied hence generating structures based
on p-plets rather than on couples, that is, ultimately hi-
erarchical p-spin models [10] or their p→∞ limit known
as hierarchical random energy model [11]. Here we focus
on the deterministic case depicted in Fig. 2, which holds
for pairwise interactions only.

We proceed the investigation by deriving the number
nK(J) of links carrying weight J , which provides a pic-
ture of how weights are distributed in between the two
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extrema

Jmax = J(1) =
1− 4−Kσ

4σ − 1
, (10)

Jmin = J(K) = 4−Kσ. (11)

To this aim it is convenient to count the number n(d) of
couples (i, j) such that dij = d and which are therefore
connected by a link with weight Jij = J(dij) = J(d). In
fact, we have

nK(d) = 2d−1
N

2
= 2K+d−2, (12)

and, of course,
∑K
d=1 n(d)/

(
N
2

)
= 2K−1(2K−1)/

(
N
2

)
= 1.

Moreover, by inverting the formula in Eq. 6, i.e. d =
−1/(2σ) log2[(2N)−2σ+J(1−2)−2σ], we can express n(d)
in terms of J , namely

nK(J) =
N2

2

[
1 + JN2σ(22σ − 1)

]− 1
2σ ≈ N

2
J−

1
2σ ,

(13)
where the last approximation holds for N large and high-
lights that the distribution is power-law (although with
cut-offs given by Eqs. 10 and 11). Otherwise stated, this
model can be looked at as a “scale-free Curie-Weiss”.
The distribution nK(J) is depicted in Fig. 3, where dif-
ferent choices of σ are as well compared, while in Fig. 4
the overall pattern of weights J is shown.

Another observable, closely related to the coupling ma-
trix J is the weighted degree w [6]. Differently from the
(bare) degree z, which simply counts the number of links
stemming from a node, the weighted degree also accounts
for the weights associated to stemming links. More pre-
cisely, the weighted degree wi of node i is defined as

wi =

N∑
j=1,j 6=i

Jij ; (14)

of course, since there is perfect homogeneity within this
system wi ≡ w,∀i. From a statistical mechanics perspec-
tive, wi (respectively −wi) represents the field acting on
the i-th spins when all the remaining spins are pointing
upwards (respectively downwards). Recalling Eqs. 6 and
12, we get

wK(σ) =

K∑
d=1

2d−1J(d) =

=
1

2(4σ − 1)

[
4σ

K∑
d=1

2d(1−2σ) − 4−Kσ
K∑
d=1

2d

]
(15)

=
1

2(1− 4−σ)

[
1− (22σ−1)−K

22σ−1 − 1
− (2K − 1)

22σ(K+1)

]
=

4σ

2(4σ − 1)

[
(2N)2σ −N(3× 22σ−1 − 1) + 22σ − 1

(2N)2σ(22σ−1 − 1)

]
,

(16)

FIG. 4: (Color online) The pattern of weights Jij for K = 8 is
represented in a logarithmic scale. Notice that these patterns
mirror the ultrametric structure of the graph.

where in the first line 2d−1 is the number of neighbors at
distance d. When σ > 1/2, in the thermodynamic limit,
we get

wK(σ > 1/2)
K�1−−−→ 4σ

(4σ − 1)(4σ − 2)
. (17)

It is worth stressing that, in the thermodynamic limit,
the weighted degree wK(σ > 1/2) remains finite, al-
though the bare degree of any node goes to infinity. On
the other hand, when σ = 1/2, using (15), the first term
in square brackets converges to K − 1, while the second
term converges to 1/2, whence we have

wK(σ = 1/2) =

[
K − 1− N − 2

2N

]
∼ K, (18)

that is, in the thermodynamic limit, the weighted degree
has a logarithmical divergence with N (we recall that
N = 2K); coherently, the case σ = 1/2 is excluded from
the statistical-mechanics investigations [2, 3].

The last part of this section is devoted to the study
of the network modularity and clustering. Of course,
when looking at the bare topology of the hierarchical net-
work we have a fully-connected graph with no commu-
nity structure and a trivial, unitary clustering coefficient.
However, when weights on links are also taken into ac-
count one can highlight the emergence of a high degree of
modularity and of clustering by properly extending the
formula meant for unweighted networks. In particular,
modularity can be quantified in terms of the generalized
topological overlap matrix O [19], whose entry Oij mea-
sures the degree of similarity displayed by the couple of
nodes (i, j) in terms of the number of shared neighbours,
namely

Oij =
|N(i) ∩N(j)|+Aij

min{|N(i)|, |N(j)|} −Aij + 1
, (19)

where N(i) and N(j) are the sets of nearest neighbors of
i and j, respectively, |N(i)∩N(j)| represents the number
of common neighbours that nodes i and j share, and A
is the adjacency matrix. Now, the presence of weights
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FIG. 5: (Color online) Modularity of the graph G with K = 5, σ = 0.9, represented by means of the overlap matrix O (left
panel). Its regular structure mirrors the deterministic modularity of the network. The dissimilarity of the graph is depicted
through a dendrogram (right panel), where nodes at distance dij = 1 (see for instance node i = 1 and j = 2, at the lower level
of the dendrogram) have higher values of overlap (hence have lower values of dissimilarity) with respect to those at distance
dij = 2 (second level from the bottom of the dendrogram), up to the maximum distance dij = 5 (first level on the top),
underlying again the ultrametric structure of the network.

can be accounted for by modifying Eq. 19 as proposed in
[20]

Oij =
1

Jmax

∑N
k=1 JikJkj + JijJmax

min{wi, wj} − Jij + Jmax
. (20)

Of course, Eq. 20 recovers Eq. 19 as long as we replace the
adjacency matrix with the normalized coupling matrix
(0 ≤ Jij/Jmax ≤ 1). The generalized topological overlap
matrix for the graph under study is shown in the left
panel of Fig. 5, where one can see that O mirrors the
ultrametric structure of the graph.

Moreover, we can compute the degree of dissimilarity
as

Oij = 1−Oij , (21)

which is shown through a dendrogram plot in the right
panel of Fig. 5. Again, the ultrametric structure of the
graph emerges markedly. Further details on modularity
can be found in Appendix A.

As for the clustering coefficient, several definitions of
weighted clustering coefficient cw have appeared in the
literature, as summarised and compared in [25]. Since
there is not any ultimate formulation, we consider two
definitions, introduced in [8] and in [26], respectively,
which can be seen as limiting cases. According to the
formula given in [8], we get

cw
(1)
i =

1

wi(zi − 1)

∑
j,h∈Ti

Jij + Jih
2

, (22)

where Ti is the number of triangles including node i, wi
is the weighted degree of node i, zi is the number of
nearest-neighbors of i (i.e., its bare degree), and the nor-

malization factor wi(zi − 1) ensures that 0 ≤ cw
(1)
i ≤ 1.

This definition of weighted clustering coefficient consid-
ers only weights of edges adjacent to node i, but not the
weights of edges between the neighbors of the node i (i.e.
Jjh in the previous formula).

Of course, the formula (22) recovers the standard def-
inition of clustering coefficient ci for unweighted graphs,

namely cw
(1)
i → ci as long as Jij → 1. Also, for the

hierarchical graph considered here, due to homogeneity,

cw
(1)
i is node independent and can be simplified as

cw(1) =
1

w(N − 2)

[ K∑
d=1

K∑
d′=1
d′ 6=d

J(d) + J(d′)
2

2d−12d
′−1

+ 2

K∑
d=1

J(d)

(
2d−1

2

)]
= 1. (23)

The result in eq. (23) derives from the fact that the hi-
erarchical graph is fully connected, thus, as only weights
of adjacent links are counted, the summation simply re-
turns the weighted degree times the number of triangles
including a given edge.

According to the definition given in [26], we have

cw
(2)
i =

1

(N − 1)(N − 2)

1

Jmax

∑
j,h

(JijJihJjh)
1/3

, (24)

which is again normalized, i.e., 0 ≤ cw
(2)
i ≤ 1, but, dif-

ferent from Eq. 22, takes into account the weights of all
edges making up a triangle and is invariant to weight
permutation for one triangle. As already noticed, due to
the homogeneity of the graph under study, the clustering
is node independent and hereafter we shall simply refer
to cw(2), dropping the index i.

With some algebra, we can rewrite the previous for-
mula in terms of distances between nodes as

cw(2) =
2

(N − 1)(N − 2)

1

JK(1)

K−1∑
d=1

3× 2d−3[JK(d)]
1
3 ×

×
K∑

d′=d+1

2d
′
JK(d′)

2
3 ,

where 3× 2d+d
′−3 is the number of triangles having two

nodes at distance d′ from a fixed node, and being them-
selves at distance d each other. Sobstituting JK(d) and
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JK(d′) with their exact values given by (6) and then as-
suming K � 1

(J(d)J(d′)2)
1
3 =

[4σ(1−d) − 4−Kσ

4σ − 1

] 1
3
[4σ(1−d

′) − 4−Kσ

4σ − 1

] 2
3 ≈

≈ 1

4σ − 1

[
4σ(1−d)42σ(1−d

′)
] 1

3

,

we arrive to the following approximation of the clustering
coefficient cw(2)

cw(2) ≈ c̃w(2)
=

3

4(N − 1)(N − 2)

4σ

(4σ − 1)JK(1)
×

×
K−1∑
d=1

K∑
d′=d+1

2d(1−
2
3σ)2d

′(1− 4
3σ) = (25)

=
3(2N)2σ[2

2σ
3 +1 − 4 + 2

2σ
3 N2(1−σ)(2

4σ
3 − 2)]

(2
2σ
3 − 2)(2

4σ
3 − 2)(2− 3N +N2)(22σ − 4)(N2σ − 1)

+

− 3N
2
3σ+122σ(22σ − 4)

(2
2σ
3 − 2)(2

4σ
3 − 2)(2− 3N +N2)(22σ − 4)(N2σ − 1)

.

This approximation provides the leading behavior for
cw(2) in the limit of large size. It is worth noticing that,
differently from the previous definition (22), here cw(2)

is always close to zero, due to presence in the graph of a
high number of triangles constituted by distant nodes.

The dependence on σ of cw(2) and the goodness of

the approximation provided by c̃w
(2)

are visualised in
Fig. 6. In particular, cw(2) is relatively low and decreas-
ing with σ. In fact, the definition (23) takes into account
the weights of all the links making up a triangle and the
number of links between distant nodes (i.e., nodes loosely
connected) is much larger than the number of links be-
tween close nodes (i.e., nodes tightly connected). More-
over, any weight is decreasing in σ and, as a result, the
overall clustering coefficient cw(2) is also decreasing in σ.

A. The Hierarchical Ferromagnet with noise:
deterministic dilution

We can allow for the presence of noise within the sys-
tem by assuming that links, whose weight is smaller than
the noise level T , are ineffective (this mimics e.g., the fail
or the unreliability of the link itself). Therefore, despite
the network we are considering is fully connected, when
noise is present weaker weights, with Jij < T , basically
do not play any longer, as if they were missing [7]. Since
in the statistical mechanical analysis the noise level can
be tuned arbitrarily [2, 3], it is crucial to understand how
the overall network connection and clustering are accord-
ingly modified.

The analysis described in the previous section can be
generalized in these terms. For instance, the distribution
nK(J) will exhibit a lower cutoff, being nK(J) = 0 for
any J < T . As for the weighted degree, wK(σ) (see
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)
i

 

 

K = 6
K = 7
K = 8
K = 9

6 8 10
1.1

1.2

1.3

1.4

K

c̃w
(2

) /
cw

(2
)

 

 

 

 

σ = 0.5001
σ = 1

FIG. 6: (Color online) Main plot: clustering cw(2) as a func-
tion of σ and for different choices of K, as explained in the
legend. The value of cw(2) is monotonically decreasing with
K and with σ. Inset: ratio between the approximated value

c̃w(2) (calculated via Eq. 25) and the exact values cw(2) (cal-

culated numerically). More precisely, c̃w(2) provides an upper

bound for cw(2) and the approximation is better for large σ.

Eq. 15) can be extended to wK(σ, k) reading as

wK(σ, k) =

k∑
d=1

2d−1J(d) = (26)

=
1

4σ − 1

[
4σ

k∑
d=1

2d(1−2σ) − 4−kσ
k∑
d=1

2d

]
=

=
4−σkΓ(22σ−1, k)

(22σ−1 − 1)(22σ − 1)
,

where k = k(T ) = 1− 1
2σ log2[T (4σ− 1) + 4−Kσ], namely

k = mini∈[1,K]{J(i) < T}, and Γ(t, j) = 2j − 1 + t −
2j+1t + 2jtj+1, j ∈ [1,K]. Of course, by definition,
wK(σ,K) ≡ wK(σ). These results are summarized in
Fig. 7, where the behaviour of the weight of nodes is
computed, as the level of noise T and the parameter σ
are varied.

As for the clustering coefficient, we are interested in
understanding whether, as the level of noise is increased,
the giant component breaks into structure-less parts or
it retains a large degree of clustering. The expression
for the weighted clustering coefficients can be general-
ized into cw(1,2)(k) to account for the presence of some
noise that impairs weak links. When k(T ) = K − 1, the
n(k) = N2/4 weakest links are neglected and the graph
breaks down in two equal components of size N/2 which
are a rescaled version of the original graph. Hence, for
any node of each component cw(1)(k = K − 1) is still
unitary. As noise is raised each component of the graph
is further split and the resulting components all form
weighted cliques. Analogous arguments also hold for the
degree of modularity.

On the other hand cw(2)(k), is quantitatively affected
by the level of noise which further reduce its value.
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FIG. 7: (Color online) Weighted degree wK(σ, k) of nodes for
the hierarchical graph where the presence of noise is mim-
icked by neglecting links displaying a weight smaller than
J(d), namely links connecting nodes at a distance larger than
d. In this case K = 12, σ ∈ (0.5, 1] and T is taken varying
in the interval [7, 11] (that means to neglet links such that
J(d) < T ). Notice that the higher values of w are obtained
in correspondence of low σ and d; when d = K = 12 all links
are neglected.

Therefore, even in the presence of noise, we can look
at G as a clustered structure with a large degree of re-
dundancy.

B. The Hierarchical Ferromagnet as a Markov
chain

The graph modeling the hierarchical ferromagnet dis-
plays a countable set of nodes and finite weights, i.e.
Jmin ≤ Jij ≤ Jmax, for any couple (i, j). Given such
properties, upon proper normalization of weights Jij →
Wij = Jij/wi, the graph G(V,E) describes a Markov
chain, where V is the state space (each node i represents
a state) and W is the transition matrix (see e.g., [18]).

We now focus on the pattern of couplings and check
the stationary states, without any (direct) concern about
spin dynamics: we will see, however, that the latter share
several properties with those of this Markov chain [2].

Due to the symmetry among rows and columns (the
summation over the rows equals 1 as the summation over
the columns) that the graph implicitly has, W is not only
stochastic, but even doubly stochastic. We also introduce
a distribution [29] p = (pi : i ∈ V ) on V in such a way
that the probability to find the random process in a state
i is given by pi. The evolution of the stochastic process
is then provided by the following master equation

p(t+ 1) = Wp(t)→ ṗ(t) = Wp(t)− p(t). (27)

Therefore, the stationary distribution, referred to as π,
satisfies π = Wπ, that is, π coincides with the eigenvec-
tor φλ0

of W corresponding to eigenvalue λ0 = 1. Due

to the stochasticity of W, λ0 = 1 is just the Perron-
Frobenius eigenvalue of W and π = e/

√
N , where all the

N entries of the vector e are equal to 1.

The particular symmetry of W allows to see that the
states

φλ1
= (1, 1, . . . , 1︸ ︷︷ ︸

N/2

,−1,−1, . . . ,−1︸ ︷︷ ︸
N/2

)/
√
N,

φλ2
= (1, . . . , 1︸ ︷︷ ︸

N/4

,−1, . . . ,−1︸ ︷︷ ︸
N/4

, 1, . . . , 1︸ ︷︷ ︸
N/4

,−1, . . . ,−1︸ ︷︷ ︸
N/4

)/
√
N,

φλ3
= (1, . . . , 1︸ ︷︷ ︸

N/8

, . . . ,−1, . . . ,−1︸ ︷︷ ︸
N/8

)/
√
N,

(and so on), are also eigenstates of W and the related
eigenvalues are

λ1 =

N/2∑
j=1

W1j −
N

2
W1N =

1

w

N/2∑
j=1

J1j −
N

2
J1N


= 1− N(22σ − 2)(22σ − 1)

(2N)2σ − 2N(2σ − 1) + 22σ − 2
≈ 1− 24σ

N2σ−1 ,(28)

λ2 =

N/4∑
j=1

W1j −
N/2∑

j=N/4+1

W1j =
1

w

N/4∑
j=1

J1j −
N/2∑

j=N/4+1

J1j


= 1− N(22σ − 1)(22σ−1 − 1)(22σ + 2)

(2N)2σ − 2N(2σ − 1) + 22σ − 2
≈ 1− 26σ−1

N2σ−1(29)

λ3 =

N/8∑
j=1

W1j −
N/4∑

j=N/8+1

W1j =
1

w

N/8∑
j=1

J1j −
N/4∑

j=N/8+1

J1j


= 1− N(22σ − 1)(26σ−2 − 2)

(2N)2σ − 2N(22σ − 1) + 22σ − 1
≈ 1− 28σ−2

N2σ−1 .(30)

where the approximation in the last passages holds in
the thermodynamic limit and we adopted the convention
1 = λ0 ≥ λ1 ≥ λ2 ≥ · · · ≥ λN . In general, one can see
that λl ≈ 1− 22σ(l+1)−(l−1)/N2σ−1.

Incidentally, we notice that λ1 is exactly the difference
between the external fields acting on spins when their
state is fixed as Si = 1,∀i and as Si = 1,∀i ≤ N/2∧Si =
−1,∀i > N/2, respectively (as clearly the field acting on a
node i is hi =

∑
j JijSj). More generally, λl corresponds

to the field acting on spins in the l-th metastable state
of the model [1, 2].

Moreover, as one can see from Eq. 28, λ1 converges
to 1 in the thermodynamic limit and this suggests an
ergodicity breaking for the stochastic process (which, in
turn, mirrors ergodicity breaking in statistical mechanics
too and hides the presence of several metastable states in
the model thermodynamics [1, 2]). In fact, φλ0

and φλ1

generate a subspace such that any vector in this subspace
(hence writable as a linear combination of φλ0

and φλ1
)

is an eigenvector of W of the same eigenvalue λ = 1. In
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particular,

φλ0
+ φλ1

= (1, 1, . . . , 1︸ ︷︷ ︸
N/2

, 0, 0, . . . , 0︸ ︷︷ ︸
N/2

)
√

2/N, (31)

φλ0 − φλ1 = (0, 0, . . . , 0︸ ︷︷ ︸
N/2

, 1, 1, . . . , 1︸ ︷︷ ︸
N/2

)
√

2/N, (32)

corresponds to a stationary state localized on the left and
on the right branches of the graph, respectively.
Actually, it is easy to see that even λ2 and λ3 converge to
1 in the thermodynamic limit, although with slower rate.
The degenerate eigenstate therefore allows for stationary
distributions localized on smaller portions of the struc-
ture. Indeed, this can be proved to hold iteratively by
including eigenstates of higher and higher order which al-
low eigenstates localized in smaller and smaller portions
of the graph, provided that the hierarchical symmetry is
fulfilled (thus this decomposition can not be pushed up
indefinitely so to reach the lowest structures as dimers,
because it would be unstable [2, 3]).

This means that if we initialize the stochastic process
in any node i, as long as K is finite, the distribution
describing the state of the graph will reach a stationary
state broadened over the whole set of states V with equal
probability, that is, the dynamic process on G is ergodic.
But, as K →∞ the system tends to be localized only on
the subset of nodes V1 = {1, 2, ..., N/2} if i ≤ N/2 or on
the subset V2 = V \ V1 if i > N/2. More precisely, if the
system is initially prepared according to the distribution
φλ0 +φλ1 , in the thermodynamic limit it will never reach
any node j > N/2, hence ergodicity is broken (and, cor-
respondingly in statistical mechanics, metastable states
become stable [1, 2]). If we simply assume that K � 1,
then any localized state belonging to, say, the portion
V1, displays a characteristic time scale before broadening
over the whole structure. The larger the subspace and
the longer the time-scale; the larger K and the longer
the time-scales. In the thermodynamic limit timescale
diverges, conferring even to this (non-mean-field) ferro-
magnet a glassy flavour.

C. The spectral gap of the Hierarchical
Ferromagnet

A close way to see the breakdown of ergodicity is to
look at the spectral gap of the related Laplacian matrix.
We already observed that the coupling matrix J is a block
matrix, and every element Jij represents the weight of the
link connecting the nodes i and j. We can now introduce
the Laplacian matrix, defined as L = Z − J, where Z is
a diagonal connectivity matrix such that Zii = w, ∀i ∈
[1, N ] . The eigenvalues µi of L satisfy

0 = µ0 ≤ µ1︸︷︷︸
1

≤ µ2 = µ3︸ ︷︷ ︸
2

≤ µ4 = µ5 = µ6 = µ7︸ ︷︷ ︸
4

≤

≤ µ8 = ... = µ15︸ ︷︷ ︸
8

≤ ... ≤ ...︸︷︷︸
N/2

≤ 2w,

and we call spectral gap µ of L the smallest non triv-
ial eigenvalue of L [13]. In particular, the smaller µ and
the lower the number of links we need to cut so that the
graph is divided in two independent blocks. In the hier-
archical ferromagnet, we expect that this value tends to
zero when the size of the system increases, obtaining the
division of the network in two independent subgraphs,
not interconnected. As depicted in Fig. 8, µ goes to zero
exponentially with K according to f(K) = e−aσK . By
fitting numerical data we find that the rate aσ decreases
with σ meaning that the higher the value of σ and the
lower the cost to fragment the graph.
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FIG. 8: (Color online) Spectral gap µ as a function of K
(varying in [7, 12]) and of σ (with values 0.8, 0.9, 1). As ex-
pected, the spectral gap decreases with the system size and
with σ. Data from numerical calculations (symbols) are fitted
(solid lines) via the function y = exp(−aσx). The dependence
on σ of the parameter aσ, obtained from fitting procedures,
is shown in the inset where the monotonic behaviour is high-
lighted.

We close with a remark. Once the size of the network
fixed, the degree of modularity grows with µ. Accord-
ingly, we expect that the mean time for the Markov pro-
cess (e.g. a random walker) to get broadened over the
whole system grows with µ. Therefore, consistently with
[15], we find that modularity has a role in slowing down
the transport process on a network.

IV. GRAPH GENERATION IN THE
HIERARCHICAL NEURAL NETWORK

Let us consider the hierarchical weighted graph G and
let us generalize its coupling matrix J in order to ac-
count for the Hebbian prescription. This can be done
following the so-called attribute approach: each node
i ∈ V is endowed with a set of attributes ξi encoded
by a vector of length P whose entries are dichotomic
and defined stochastically (see Eq. 2). The coupling
Xij , arising by comparing ξi and ξj , is meant to mimic
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a learning process hence correlating/uncorrelating (i.e.
strongly/poorly connecting).

The coupling matrix X is then used to modulate the
former J in such a way that the final coupling matrix Q
is given by the element-wise product

Qij = XijJij , (33)

for any couple (i, j). More precisely, recalling Eq. 3, we
have

Xij =

P∑
µ=1

ξµi ξ
µ
j , (34)

which is also known as Hebbian rule in the neural-
network context [16]. In this way, even close (according
to the ultrametric distance) couples may possible exhibit
an overall null coupling if it occurs that the related entry
in X is null. Basically, J favors couples which are close
according to the ultrametric distance (defined on the set
{i}), while X favors couples which are close according to
the Hamming distance (defined on the set {ξ}) [4].

Notice that Xij is a stochastic variable fulfilling a bino-
mial distribution peaked at zero and with variance scaling
linearly with P [30]. As both Xij and Jij are bounded
we have

Qmax = JmaxXmax = J(1)× P =
P (1− 4−Kσ)

4σ − 1
,(35)

Qmin = −Qmax, (36)

|Q|min = Jmin|X|min = 0. (37)

where the third line derives from the fact that Q is sym-
metrically distributed around 0.

Moreover, as long as P is large enough, we can write
the following distribution for the coupling Qij

PK,P (Qij = q;σ) = PK,P (Xij = q/Jij ;σ)

=
1√
2πP

exp

{
− q2(4σ − 1)

2P [4σ(1−dij) − 4−Kσ]

}
, (38)

where, exploiting the central limit theorem, we replaced
the binomial distribution with a Gaussian distribution
[31].
The formalization just described can be properly ex-
tended to allow for correlation among string entries (e.g.,
see [3]) and for dilution in string entries (e.g. [5]).

Here we focus on the simplest case (following Eqs. 2
and 34) and we start the investigation by looking at
how the distribution of weights n(Q) is affected by the
modulation induced by X. Results for several choices of
the parameters σ and P are shown in Fig. 9 (actually,
due the symmetry of the distribution we can focus just
on positive weights). With respect to the case analyzed
in Sec. III and corresponding to the graph generated by
the ultrametric contribution J only, here the set of pos-
sible values for weights Qij is 2P + 1 or 2P times larger,

according to the parity of P :

Jij ∈ {J1, J2, . . . , JK} → Qij ∈ {0,±2J1,±4J1, . . . ,±PJ1,
± 2J2, . . . ,±PJK} if P even

Jij ∈ {J1, J2, . . . , JK} → Qij ∈ {±J1,±3J1, . . . ,±PJ1,
± J2, . . . ,±PJK} if P odd.

As a result, focusing on P odd to fix ideas, n(Q) is en-
veloped by the power law Q−1/(2σ), which matches the
values J1, J2, ..., JK , and such values are also accompa-
nied by other P − 1 values whose occurrence follows a
binomial distribution.

Notice that a large P implies a broader distribution;
similarly, a small σ implies a larger support. Therefore,
we expect that the pattern of Q is still reminiscent of the
hierarchical underlying structure, yet it is perturbed and
the extent of such perturbation is more evident when P
is large (Fig. 10).
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FIG. 9: (Color online) Distribution nK(|Q|) for K = 9 and
different choice of the parameters σ and P as specified. Bul-
lets represent data points for the graph generated by Q (see
Eq. 33), squares represent the distribution one would obtain
from the ultrametric contribution J only (see Eq. 38), and

straight lines correspond to y = J−1/(2σ)/(2N) (see Eq. 13).

We now calculate the weighted degree of node i defined
as

wi =

N∑
j=1

Qij =

N∑
j=1

JijXij . (39)

Differently from the hierarchical ferromagnet model, here
the strict homogeneity among nodes is lost and, in gen-
eral, wi is site dependent. We can therefore estimate the
distribution n(w) of weighted degrees: recalling Eq. 15
and that Xij is normally (at least as long as P is suffi-
ciently large) distributed with variance P , we expect that

v = wi/w (with w =
N∑
i=1

Jij) is normally distributed with

variance scaling with P . This is indeed checked numeri-
cally as shown in Fig. 11.
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FIG. 10: (Color online) Patterns of weights Qij for K = 9 and different choices of σ and P as reported; each pattern refers to a
different colorbar. Notice that for a better visibility we plotted log(|Qij |), and that, for a given σ, by increasing P the pattern
gets more noisy; moreover, small values of σ imply a larger support. This figure mirrors Fig. 9.
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FIG. 11: (Color online) Left panel: in the main plot we show
the distribution of weighted degrees P (v) for a system with
K = 12, P = 2K and σ = 1. The distributions pertaining
to different choices of parameters K and P were fitted with
a central normal distribution with standard deviation µ̂. The
best-fit values for σ are shown versus P in the inset where
the solid line represents the function y ∼

√
x. Right panel:

distribution P (v, k) of generalized degree q in a network with
K = 12, P = 2K, σ = 1 and different level of noise k. In
particular, the set of noise is such that links corresponding
to weights Qij smaller than a given threshold are cut; the
threshold considered are represented with different symbols
as explained by the legend.

In this case, since wi is a random variable, we are in-
terested in its mean and variance with respect to the
random variables ξ. Recalling that

wi =
∑
i 6=j

JijXij , with JijXij = J(dij)

P∑
µ=1

ξµi ξ
µ
j , (40)

one can see that the expected (according to the distribu-
tion in Eq. 2) value of wi is E(wi) = 0 and, computing
the variance of wi, we obtain

Var(wi) =
∑
i6=j

J(dij) Var

[
P∑
µ=1

ξµi ξ
µ
j

]
=
∑
i6=j

P × J(dij) =

=
P

2(4σ − 1)

[
(2N)2σ −N(3× 22σ−1 − 1) + 22σ − 1

N2σ(22σ−1 − 1)

]
,

where P is the variance of Xij .
The next step is to evaluate the degree of modular-

ity. Differently from the hierarchical ferromagnet, where

there is a perfect homogeneity in the weight of nodes,
here we expect the regular ultrametric structure to be
perturbed by the stochastic factor X. The generalised
overlap matrix O (see Eq. 20 for its extended formula)
is computed and shown in Fig. 12, along with a dendro-
gram plot capturing the dissimilarity (see Eq. 21) be-
tween nodes. For the realization considered the highest
values of overlap are still obtained for dimers, yet the re-
sulting structure is not fully regular as previously found
for the hierarchical ferromagnet and two nodes at dis-
tance 1 may in principle exhibit a relatively large dissim-
ilarity.

We conclude this section stressing that, in the Hop-
field network, the presence of P random vectors ξµi , µ =
1, ..., P peaked at zero implies that it is no longer possible
to establish that Q(dij) > Q(dhk) when dij > dhk and
this is the cause of the loss of a regular structure in the
overlap measure shown in Fig. 12.

V. GRAPH GENERATION IN THE
HIERARCHICAL SPIN GLASS

This section is devoted to the study of the generation of
the weighted graph G in the case of hierarchical spin glass.
As introduced in Sec. II, in this case the couplings among
spins are defined as quenched variables drawn from a
standard centered Gaussian distribution N [0, 1]. This
means that we can write

Qij = χijJij = χij
4σ(1−dij) − 4−Kσ

4σ − 1
, (41)

where χij are independent, centered Gaussian variables.
Due to the contribution of χij in the definition (41), the
weight of nodes is site dependent. More precisely, we
have that the expected value of wi is Eχij [wi] = 0 and
its variance reads as

Varχij [wi] = Varχij

∑
i 6=j

χijJij

 =

=
(N − 1)

2(4σ − 1)

[
(2N)2σ −N(3× 22σ−1 − 1) + 22σ − 1

N2σ(22σ−1 − 1)

]
,
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FIG. 12: (Color online) Representation of modularity between nodes using the topological overlap matrix O for fixed K = 5,
and σ = 0.9. Left panel: Matricial representation of overlaps obtained via Eq. 20. Different colours represent different values
of overlap, as explained by the colorbar on the right. Due to the presence of random variables in the construction the coupling
matrix Q, we can see partial loss of regularity in the structure of the matrix. Right panel: dendrogram showing the dissimilarity
between nodes in the graph: nodes at distance dij = 1 (e.g., node i = 3 and j = 4) typically display high overlap (hence have
low dissimilarity) with respect to those at distance dij = 2 (e.g., i = 13 and j = 15), up to the maximum distance dij = 5
(e.g., i = 1 and j = 24), underlying the ultrametric structure of the network. However, differently from the case of hierarchical
ferromagnet, this case is irregular and overlaps, especially between nodes at close distance, are broadly distributed.

where we used that a linear combination of random
Gaussian independent variables is still a Gaussian vari-
able, with variance equal to the sum of variances of
the variables. Numerical results for the average value

Eχij [w] = Eχij [
∑N
i=1 wi
N ] are shown in Fig. 13.
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FIG. 13: (Color online) Plot of Eχij [w] = Eχij [
∑N
i=1 wi
N

] as a

function of the system size (N = 2K) and of σ (as explained
in the legend). To realize it, 200 realization of χij were pro-
duced, and, for each, we obtained wi, ∀i ∈ [1, N ]. Then, the
algebraic mean value over the realizations was computed, with
fixed K. As expected, the largest values of w are obtained for
the highest values of K and for the lowest values of σ.

We also checked the modularity of this networks
by exploiting again the generalised topological overlap
matrix [19] given by Eq. 20. In this case we obtain a
more regular structure with respect to the hierarchical
neural network, due to the presence of random quenched
Gaussian variables. This perfectly matches with the
definition of the model: the presence of the random
variables χij , that contribute to construct the coupling
matrix, introduces a random component that affects
the overlap between dimers, squares, octagons ect., as
depicted in Fig 14.

The remarks highlighted for the neural network model

(see the conclusion of the previous section) remain valid
for the hierarchical spin-glass model as well: the presence
of weights on links depending on random variables leads
to a loss of symmetry in the structure of the network:
the links favoured by the ultrametric distance are not
necessarily the same favoured by the random coupling
χij .

VI. CONCLUSIONS AND OUTLOOKS

In the last decade hierarchical networks have been
found to play a crucial and widespread role in natural
phenomena [21, 22], particularly in biological systems
[23, 24]. Furthermore, these structures turn out to be also
quasi-tractable in statistical mechanics [14], even when
glassiness is present [1, 2, 9–12, 14], hence triggering fur-
ther studies of their properties.
In this work we discuss the topological features of three
hierarchical models, each describing a different rule for
generating couplings among nodes: Herarchical Ferro-
magnet (HFM), Hierarchical Neural Network (HNN) and
Hierarchical Spin Glass (HSG). In particular, we show
that the subtle metastabilities exhibited by HFM (see
e.g. [1, 2]) can also be evidenced in terms of ergodictiy
breakdown for Markov processes defined on the hierar-
chical weighted graph embedding the spin system.

More precisely, the graph could be considered as a
Markov chain, where the state space is the set of nodes,
and entries in the transition matrix are constituted by
the distances between nodes, upon a proper normaliza-
tion: the breakdown of ergodicity is thus depicted by
the divergence of the mixing time, mirroring the results
obtained via the statistical mechanical route.

Further, these structures also exhibit high clustering
(at least according to the definition (23)) and modular-
ity which are two important properties well-evidenced in
many real systems [8, 17].
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FIG. 14: (Color online) Representation of modularity between nodes using topological overlapping measure when K = 5,
σ = 0.9. Left panel: Matricial representation of overlaps using obtained via Eq. 20. Different colors represent different values
of overlap, as explained by the colourbar on the right. Due to the presence of Gaussian random variables in the construction
the coupling matrix, we can see again its random behavior, but the network anyway results more regular than the hierarchical
neural network. Right panel: dendrogram showing the dissimilarity between nodes in the graphs: nodes at distance dij = 1
(see for instance node i = 1 and j = 2, at the lower level of the dendrogram) have higher values of overlap (hence have lower
values of dissimilarity) with respect to those at distance dij = 2 (second level from the bottom of the dendrogram), up to the
maximum distance dij = 5 (first level on the top). As shown for the hierarchical neural network, also the hierarchical spin-glass
partially loose the symmetric structure for the presence of random variables that contribute to tune the elements of adjacency
matrix.

Analogous analyses were carried out for HNN and
HSG. As expected (because now quenched disorder is in-
troduced in the system), differences were shown to exist
between the two of them and the HFM: the most impor-
tant is the loss of the symmetric hierarchical structure of
weights of the links, due to the presence of random vari-
ables that contribute to create the coupling matrix. For
the HNN, the Hebbian rule leads to a binomial distribu-
tion for the weighted degree of nodes, that is peaked at
zero and with variance scaling with P . For the HSG, the
Gaussian term leads to a weighted degree peaked at zero
and with variance scaling with N . In general, the Heb-
bian contribute induces a smaller broadness but a larger
noise.

These investigations deepen the strong connection be-
tween the thermodynamic behaviour of a statistical me-
chanics model and the topological properties of the un-
derlying structure. The ultimate goal is to contribute to
the description of non-mean-field systems.

Appendix A: Notes about modularity

In this section we deepen the analysis of the network
modularity introduced in Sec. III for the hierarchical fer-
romagnet.

In order to figure out which is the most effective par-
tition, we can apply the formula introduced in [17] (suit-
able for weighted graphs as well) which measures the de-
gree of modularity M for a given modular subdivision,
chosen a priori, where each node i is associated to a mod-
ule mi out of m̄, i.e. ci = 1, ..., m̄. More precisely,

M =
1

m

∑
ij

[
Jij −

wiwj
m

]
δ(ci, cj), (A1)

where m =
∑
i wi. In particular, exploiting the homo-

geneity of the hierarchical graph we can write Eq. (A1)

5 10 15 20 25 300
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0.8

1

l

M
(σ

,l
)

FIG. 15: (Color online) Degree of modularity M(σ, l) for
K = 30 and different values of σ. Curves in different col-
ors correspond to different values of σ: as σ is varied from 0.5
to 1.0 the peak moves from right to left; see Eq. A3.

in a simpler form as

M(σ, l) =
1

Nw

∑
i<j

[
Jij −

w

N

]
δ(ci, cj). (A2)

According to the different modular subdivision, we can
calculate the resulting M , and, in general, with commu-
nities made of 2l nodes we have

M(σ, l) =
1

Nw

l∑
d=1

[
J(d)− w

N

]
2l+d−1 (A3)

=
2l

2K

( wl(σ)

wK(σ)
+

2l − 1

2K

)
=

=
tK

tl
Γ(t, l)

Γ(t,K)
+

2l(2l − 1)

22K
,
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where we posed t = 22σ−1 and where

wl(σ) =

l∑
d=1

2d−1J(d);

Γ(t, j) = 2j − 1 + t− 2j+1t+ 2jtj+1, j ∈ [1,K].

As shown in Fig. 15, the function M(σ, l) exhibits a peak
at a value l approaching k/2 as σ → 1. This means
that the most effective modular partition (according to
Eq. A1) is the one where the graph is divided in a rela-
tively small number of clusters, but for large σ (namely
where the hierarchy is less important, see Eq. 8) this
number gets smaller.

Finally, we introduce an alternative formulation for ex-
tending the formula introduced in [19] and reported in
Eq. 19. In fact, exploiting the discreteness of the entries
of the coupling matrix J we can write

O′ij =

∑K
l=1 |Nl(i) ∩Nl(j)|J(l)

min{wi, wj}
, (A4)

where Nl(i) is the number of links with coupling J(l)
stemming from node i. In particular, the expression in
Eq. A4 can be applied to the hierarchical ferromagnet,
obtaining the following

O′ij =
(2N)2σ2d(1−2σ) + 2N(1− 22σ) + 2d(22σ − 1)

(2N)2σ − 2N(22σ − 1) + 22σ − 2
,

(A5)
where to ligthen the notation we posed d = dij . In the

thermodynamic limit O′ij ∼ 2−d(2σ−1), namely the sim-
ilarity between two nodes decreases exponentially with
their distance.
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