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We present a new quantum chemical method for the calculation of the equilibrium geometry and the
harmonic vibrational frequencies of molecular systems in dense medium at high pressures (of the or-
der of GPa). The new computational method, named PCM-XP, is based on the polarizable continuum
model (PCM), amply used for the study of the solvent effects at standard condition of pressure, and it
is accompanied by a new method of analysis for the interpretation of the mechanisms underpinning
the effects of pressure on the molecular geometries and the harmonic vibrational frequencies. The
PCM-XP has been applied at the density functional theory level to diborane as a molecular system un-
der high pressure. The computed harmonic vibrational frequencies as a function of the pressure have
shown a satisfactory agreement with the corresponding experimental results, and the parallel applica-
tion of the method of analysis has reveled that the effects of the pressure on the equilibrium geometry
can be interpreted in terms of direct effects on the electronic charge distribution of the molecular so-
lutes, and that the effects on the harmonic vibrational frequencies can be described in terms of two
physically distinct effects of the pressure (curvature and relaxation) on the potential energy for the
motion of the nuclei. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4757285]

I. INTRODUCTION

In a previous paper of some of the present authors1 we
presented a quantum mechanical (QM) method to study the
properties of molecular systems within a medium at high pres-
sure regime (of the order of GPa). The method (called PCM-
XP) is based on an adaptation of the polarizable continuum
model (PCM), developed by our group2–6 for the study of
molecules in solution. PCM codes have been well tested and
amply used to study a large variety of properties at the stan-
dard conditions of pressure (p = 1 bar = 10−4 GPa) and tem-
perature. In this paper we present an extension of the PCM-
XP method to study the effect of the pressure on the harmonic
vibrational frequencies of molecular systems in dense phases.
This extension of the PCM-XP model is mainly motivated by
the interest toward applications to experimental observables,
which in dense material at high pressure are primarily of spec-
troscopic nature,7–10 and in particular of vibrational type.11–21

The physics underlying the PCM-XP model accounts for
the fact that the primary action of the pressure,22, 23 at high
regimes, consists in reducing the intermolecular distances be-
low to the van der Waals values, so allowing the penetration
into the region of intermolecular potentials dominated by the
Pauli repulsive interaction.24–27

The basic version of the PCM-XP model describes the ef-
fect of the high pressure molecular properties in the following
way. The environment is represented by a continuum medium

a)Author to whom correspondence should be addressed. Electronic mail:
roberto.cammi@unipr.it. Telephone: +39-0521-905442. Fax: +39-0521-
905557.

hosting a QM solute into a molecularly shaped cavity. The
medium is characterized in terms of its dielectric permittivity
and of its averaged electronic charge distribution. The elec-
tronic distribution of the medium is treated as an uniform con-
tinuum defined outside the cavity hosting the solute, and with
density equal to the valence electron distribution of the bulk
environment at the given pressure condition.

The Pauli repulsion between the molecule and the exter-
nal medium is described in terms of the overlap between the
charge distribution of the solute and the charge distribution of
the solvent in the region outside the molecular cavity. The an-
alytical form of this interaction exploits a generalization to the
PCM model of the expressions used within the framework of
the molecular interaction theory.28 The Pauli repulsion contri-
bution is inserted into a suitable basic energy functional to be
minimized in the QM procedure for the determination of the
electronic wavefunction of the molecular solute.28 The QM
basic energy functional also acts as source for the potential
energy surfaces ruling the nuclear motion within the Born-
Oppenheimer approximation.

The primary action of the pressure (i.e., the increase of
the Pauli repulsion) is modeled by shrinking the cavity vol-
ume with respect to its reference value corresponding to the
standard conditions of pressure (p = 1 bar). This shrinking
determines an increase of amount the electronic charge den-
sity that lies outside of the cavity and overlaps with the charge
distribution of the solvent, with a consequent corresponding
increase of the Pauli repulsion.

The pressure is then determined as the first derivative of
the QM basic energy functional with respect to the volume of
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the cavity, and other first order derivatives of the same QM
functional are exploited for the evaluation of the stationary
point of the PES corresponding to the equilibrium geometries,
and for the determination of the first-order properties of the
solute at the given condition of the pressure.

The extension of the basic PCM-XP model for the har-
monic vibrational frequencies at high pressure touches all
the key aspects of the corresponding PCM calculations at
the standard condition of pressure.29 In that case, the vibra-
tional harmonic frequencies and the corresponding normal
modes of the solvated molecules are computed from the sec-
ond derivatives of the basic free energy functional (only in-
cluding the electrostatic components of the solute-solvent in-
teraction) with respect to the Cartesian coordinates, computed
at the equilibrium geometry in solution. A nonequilibrium
solvation approach is adopted for the description of the vibra-
tional frequencies of solvated molecules. The nonequilibrium
solvation accounts for the dynamical aspects of the solvent
polarization, and in the common practice it is assumed that
the geometry of the molecular cavity does not follow the so-
lute vibrational motion.30 The second derivatives of the QM
free energy functional are determined by a suitable analytical
algorithm detailed in Ref. 31, which allows a computational
effort for the calculation of the vibrational properties in solu-
tion similar to that for the corresponding calculation in the gas
phase. However, in the current implementations the QM free-
energy functional is limited to the electrostatic components of
the solute solvent-interaction.

Passing to the study of harmonic vibrational frequencies
of molecules at high pressure, the new aspect to take into
account is the presence of the Pauli repulsion between the
molecular systems and the environment, which requires an
extension of the analytical second derivatives for QM free en-
ergy functional.

The purpose of this paper is not limited to present ef-
fective computational tools for the determination of the har-
monic vibrational frequencies of molecules at high-pressure.
In a systematic research effort regarding the calculation of
molecular observables in a dense phase,32 the elaboration of
a formal theoretical approach to follow, and its translation
into a computational code are only the initial steps of this ef-
fort. To these steps others must follow: (i) the selection of
an appropriate hierarchy of QM computational levels, (ii) the
collections of an adequate number of numerical results, and
(iii) the analysis of the numerical results paying particular at-
tention to the possible occurrence of phenomena not put in ev-
idence in preceding studies. For this methodological reason,
in this paper we also present an adequate theoretical scheme
for the analysis of the computational outcomes of the effects
of the pressure on the equilibrium geometry and on harmonic
vibrational frequencies.

The paper is organized as follows. In Sec. II we review
the basic aspects of the PCM-XP model, and we present the
theory of its first analytical second derivatives; in Sec. III we
detail the computational protocol to perform the PCM-XP cal-
culations; finally, in Sec. IV we present a numerical appli-
cation to the calculation and analysis of the harmonic vibra-
tional frequencies of diborane within the range of pressures
1–25 GPa.

II. THEORY

In this section, we review the basic theory of PCM-XP
model presented in Ref. 1, and we present the theory for the
analytical second derivatives required for the calculation of
the harmonic vibrational frequencies.

A. The basic PCM-XP: Hamiltonian, energy functional,
and pressure

The properties of molecules within a dense environment
at high pressure are determined by solving the Schrödinger
equation for the effective nonlinear Hamiltonian:

Ĥ = Ĥ o + V̂int (�), (1)

being Ho is the Hamiltonian of the isolated molecule and
V̂int (�) the molecule-environment interaction operator given
by

V̂int (�) = V̂e(�) + V̂r . (2)

Here V̂e(�) and V̂r are, respectively, the usual PCM electro-
static interaction term and the non-electrostatic Pauli repul-
sion contribution, and the argument of V̂e(�) denotes its de-
pendence on the wavefunction � > of the molecular solute.6

In the computational practice, V̂e(�) is represented in
terms of a set of polarization point charges located at the cav-
ity surface, and it may be written as

V̂e(�) = Q̄(�) · V̂, (3)

where Q̄(�) is a vector collecting the set of polarization
charges induced by the charge distribution of solute, V̂ is a
vector operator representing the electrostatic potential of the
solute at the boundary of the cavity, and the dot represents
an inner product. The solvent polarization charges Q̄(�) de-
pend on the wavefunction of the solute as expectation value
Q̄(�) = 〈�|Q̂|�〉 of a suitable apparent charge operator Q̂.33

There are several definitions of the Q̂ operator according to
the several variants of the PCM method.6 Here we refer to the
most general variant, the integral equation formalism version
(IEF-PCM).4, 35–39

The Pauli repulsion operator V̂r of Eq. (2) has the nature
of a repulsive step potential located at the boundary of the
cavity, and it has the structure of a pseudo-integral operator
with kernel:34

V̂r (r) = ρ̂(r)H (r), (4)

where ρ̂(r) = ∑N
i δ(r − ri) is the electron density operator

(over the N electrons of the molecular system), and H (r) is a
step barrier potential:

H (r) = V0�(r) �(r) =
{

1 r ⊆ C

0 r � C
, (5)

where �(r) is a Heaviside step function located at the bound-
ary of the cavity, and V0 is the height of the potential barrier,
given by

V0 = γ nS. (6)

The two quantities γ and nS appearing in the definition (6) of
the barrier height are, respectively, a semiempirical parameter
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and the numeral density of the valence electron of the external
medium, both depending on the given condition of pressure.
They will be better defined in the Sec. III.

The basic energy functional to be minimized during the
QM procedure has the thermodynamic status of a free-energy
for the whole molecule-environment system, and is defined as

Ge−r = 〈�|Ĥ o + 1

2
Q̄(�) · V̂ + V̂r |�〉 + Ṽnn, (7)

where Ṽnn is the nuclei-nuclei interaction contribution in the
presence of the external medium. The reference state for
Ge−r is given by a hypothetical state composed by the non-
interacting electron and nuclei of the solute, and by the unper-
turbed medium at the chosen thermodynamic conditions.40

The free energy functional Ge−r can be written in the
following matrix form:

Ge−r =
[
trPh + 1

2
trPG(P)

]

+ trPhe + 1

2
trPXe(P) + trPhr + Ṽnn, (8)

where the approximation of using a one-determinantal
description of the electronic wavefunction of the solute, with
a basis set expansion of the molecular orbitals, is assumed.
In Eq. (8), the P matrix describes, within the given basis
set, the one-electron distribution of the solute, and the terms
within the square brackets correspond to usual one-electron h
and two-electron G(P) contributions of the isolated molecule
energy. The matrices he and Xel(P) collect, respectively,
one- and two-electron integrals describing the electrostatic
interaction with the solvent, and the matrix hr collects the
one-electron integrals representing the repulsion operator V̂r

of Eq. (4). The elements of all the matrices are the sum of
integrals referring each to the representative point of a tessera
of the cavity surface. We refer to the quoted paper1 for more
details, we limit to consider the explicit expression for the
elements of matrix hr :

hr
μν = V0〈χμ|vr |χν〉, (9)

where vr is a one-electron integral operator with kernel
vr (r) = δ(r − r′)�(r). In computational practice, the matrix
elements hr

μν are evaluated exploiting the Gauss theorem41 of
classical electrostatics, to obtain the following expression:28

hr
μν = V0

(
Sμν − Sin

μν

)
, (10)

where Sμν is a matrix element of the overlap matrix over the
expansion basis set and Sin

μν is given by

Sin
μν = 1

4π

∑
k

akEμν(sk) · nk(sk), (11)

with the summation running over the tessera. The elements
ak, Eμν(sk), nk(sk) are, respectively, the area of the kth tessera,
a matrix element of the electric field integrals evaluated at
the representative point sk , and the unit vector normal to the
tessera at the same point.

The free-energy functional of Eq. (8) subjected to the sta-
tionarity conditions leads to the Fock matrix for the molecular

solute:

Fμν = ∂Ge−r

∂Pμν

= (
hμν + he

μν + hr
μν

) + Gμν(P) + Xe
μν(P).

(12)

The molecular orbitals (MOs) calculated from the Fock
matrix (12), and any other properties of the target molecules,
must be related to the pressure p.

The pressure is a macroscopic thermodynamic property
that can be connected by a suitable choice of a statistical
ensemble to QM methods addressing to the description of
a single molecule. Within the PCM-XP model, the choice
of a canonical ensemble approach42, 43 leads to the following
equation:44, 45

p = −
(

∂Ge−r

∂Vc

)
, (13)

where Vc is volume of the cavity hosting the molecule. We
remark that, with respect to the more simple QM models
based on impenetrable potential wall,47–54 the nature of QM
Pauli repulsion contribution to the PCM free-energy func-
tional Ge−r allows a confinement of the electronic charge dis-
tribution of the solute in a smooth way. See, on this point, the
concluding remarks of Le Sar and Herschbach in their semi-
nal paper.49

As already said in the Introduction, the first- and higher
order molecular properties of the molecular solute at a given
pressure p can be expressed as a suitable derivatives of the
corresponding free energy functional Ge−r.

B. The analytical gradients

The first derivative of the free-energy functional (8) with
respect to a given parameter α may be written as

Gα
e−r = trPhα + 1

2
trPGα(P) + trPhe,α + 1

2
trPXe,α(P)

+ trPhr,α − trSαW + Ṽ α
nn, (14)

where W = PFP is the energy-weighted density matrix, and
the upper script α denotes the first derivatives of the pertinent
entity (e.g., Sα is the first derivative of the overlap matrix). We
refer again to the quoted papers for more details on the deriva-
tives of electrostatic matrices he,α and Xe,α(P). The derivative
matrix of the QM Pauli repulsion term hr,α of Eq. (14) has
elements:

hr,α
μν = V0

(
Sα

μν − Sin,α
μν

)
, (15)

with the matrix elements Sin,α
μν given by

hr,α
μν = V0

[
Sα

μν + 1

4π

∑
k

[
Ek,μν · (

nα
k ak + nka

α
k

)

+ (
Eα

k,μν + sα
k · ∇Ek,μν

) · nkak

]]
, (16)

where Eα
k,μν is the derivative of the basis functions in the ma-

trix elements of the electric field operator, while nα
k and aα

k

are, respectively, the derivative of the unit normal vector and
of the area of the kth tessera, and ∇Ek,μν is the matrix of the



154112-4 Cammi et al. J. Chem. Phys. 137, 154112 (2012)

electric field gradient operator at the representative point sk

on the cavity surface.

C. Analytical second derivatives

In this section we present the analytical second deriva-
tives of the free energy functional required for the calculation
of the harmonic vibrational frequencies. As anticipated in the
Introduction, the geometrical derivatives will be considered
within a non-equilibrium solvation regime, which assumes a
fixed geometry for the cavity.

The direct differentiation of the analytical gradient (14)
leads to the analytical second derivative of the basic energy
functional (8) with respect to parameters α and β:

G
αβ
e−r = trPhαβ + 1

2
trPGαβ(P) + trPhe,αβ + 1

2
trPXe,αβ(P)

+ trPhr,αβ + trPαF[β](P) − trSαβW − trSαWβ,

(17)

where Pβ and Wβ are, respectively, the derivatives of the one-
particle density matrix and of the energy weighted density
matrix; F[β](P) collects the partial derivatives of the Fock ma-
trix:

F[β](P) = hβ + he,β + hr,β + Gβ(P) + Xe,β (P). (18)

The other terms of Eq. (17) involve first and second deriva-
tives of the AO matrix elements. The specific expression for
the second derivative of the Pauli repulsion contribution is
given by

hr,αβ
μν = V0

(
Sαβ

μν + 1

4π

∑
k

Eαβ

k,μν · nkak

)
(19)

where Eαβ

k,μν denotes a second derivative of the AO basis func-
tions in electric field integrals Ek,μν .

The first derivative of energy weighted density matrix
Wβ is

Wβ = PβFP + PFβP + PFPβ, (20)

where Fβ is the total derivative of the Fock matrix:

Fβ = F[β] + G(Pβ) + X(Pβ). (21)

The required first derivative of the density matrix Pβ is ob-
tained by exploiting the coupled-perturbed Hartree-Fock (or
Kohn-Sham) procedure within the PCM framework.55

We recall that when the parameters α and β correspond
to Cartesian coordinates of atomic nuclei, the second deriva-
tive of Eq. (17) determines the Hessian matrix from which
the harmonic vibrational frequencies and normal modes of
the molecules at the high pressure can be obtained. In par-
allel, when the couple α, β regards the combination of a
Cartesian coordinate with a static electric field component,
the second derivative (17) contributes to the determination of
the IR intensities associated to the vibrational fundamental
transitions.29

III. COMPUTATIONAL PROTOCOL

To compute the basic energy functional Ge−r of the PCM-
XP model and its derivatives we need to redefine some of the
physical parameters used in the standard PCM calculations:
the dimension of the cavity, the dielectric permittivity, ε, of
the medium, its numeral density, nS, and the amplitude, V0, of
the Pauli barrier step potential defined in Eq. (6).

A. The molecular cavity: The scaling factor f

The reduction of the volume of the cavity hosting the
molecular solute determines the increase of the pressure. The
cavity is build-up from a set of primary atomic spheres cen-
tered on the nuclei of the constituting atoms, and with radii R
equal to the corresponding atomic van der Waals radii times a
scaling factor f, i.e., Ri = RwdWf . The value f = 1.2 is usually
used for PCM calculations at the standard condition of pres-
sure, in absence of the Pauli repulsive interaction, and this
value is here used as an upper limit of the scaling factor f.
A lower value of the scaling factor f shrinks the cavity size,
determining an increase of the pressure. Numerical tests (see
Sec. IV A) show that the range of values f = 1.2–0.95 allows
to span the range of pressure 1–25 GPa.

A further point regards the finer aspects of the cavity
shape. Simple physical arguments suggest the use a solvent
excluding surface (SES) cavity topology6 which introduces
additional spheres to take into account the space not avail-
able to the solvent molecules. To determine the SES cavity, a
solvent molecular probe modelled as a hard sphere of given
radius (Rsolv) is used. In the PCM-XP protocol, the radius of
the probe is modified accordingly to the scaling factor f used
for the cavity

Rsolv = R0
solv · f/f0, (22)

where R0
solv is the probe radius of the external medium at stan-

dard condition of pressure, and f0 = 1.2 is the reference cavity
scaling factor.

B. The medium properties: Dielectric permittivity
and the numeral density

The medium properties as molecular radius Rsolv , nu-
meral density nS, and dielectric permittivity ε are assumed
as functions of the cavity scaling factor f. In fact, as shown in
Eq. (23), the scaling factor f is also applied to the molecu-
lar radius Rsolv of the medium, and therefore it corresponds
to a linear scaling of the total system (molecule-external
medium).56

The valence electron density nS = nS( f ) of the external
medium is given as a function of the scaling factor f as

nS(f ) = n0
S(f0/f )3, (23)

where n0
S is the numeral density of the external medium at

standard condition of pressure, f0 = 1.2 is the reference cavity
scaling factor, and f is the actual cavity scaling factor f < f0.

The dielectric permittivity ε( f ) is given by

ε(f ) = 1 + (ε0 − 1)(f0/f )3, (24)
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where ε0 is the dielectric permittivity of the medium at the
standard pressure condition. The functional form (24) can
be derived from the Onsager equation57, 58 for the dielectric
permittivity, by assuming the polarizability of the medium
molecules (for the sake of simplicity, we consider a non-polar
external medium) to be pressure independent.

C. The repulsive step potential: V0(N)

The barrier potential V0 of Eq. (6) depends on the
scaling factor through the numeral density nS( f ) and the
semi-empirical parameter γ . As discussed in the Appendix, a
convenient functional form for γ is

γN (f ) = γ0(f0/f )N, (25)

where γ 0 is constant (γ0 = 4π/0.7Eha
3
o) as detailed in

Ref. 28, and the exponent N can be estimated from the
pV experimental data of the external medium. Reasonable
choices of the parameter N are with the range N = 3–6.
Introducing Eq. (25) into Eq. (6) we obtain the following
explicit form for the barrier eight potential V0:

V0(N ) = γN (f )ns(f ), (26)

where the argument N denotes a parametrical dependence.
The higher is the parameter N, the harder is the Pauli barrier
potential of the medium.

D. The geometry optimization and the calculation
of the harmonic vibrational frequencies

The equilibrium geometries of the molecular solutes
have been optimized as a function of the pressure. All the
optimizations have been performed with the fixed cavity
approximation, which allows the relaxation of the nuclei
position but not that of the centers of the spheres. A step-by-
step procedure has been exploited. The first step consists in
the geometry optimization for the largest cavities (i.e., with
factor f0 = 1.2), performed starting from the equilibrium
geometry of the solute in the gas phase. The second step
is the analogous: geometry optimization within the cavity
with scaling factor f = 1.1 starting from the equilibrium
geometry at f0. The following steps exploit the same proce-
dure progressively reducing the value of f until the desired
value.

The harmonic vibrational frequencies have been deter-
mined still maintaining the fixed cavity approximation using
the Hessian matrix of second derivatives of Eq. (17) computed
at the optimized geometries. This procedure assures that the
harmonic frequencies are computed in correspondence to a
stationary point of the potential energy surface of the molec-
ular solute.

IV. NUMERICAL RESULTS AND ANALYSIS

Analytical first and second derivatives Gα
e−r and G

αβ
e−r

have been implemented into a local version of the GAUSSIAN

09 suite of programs,59 and, in this section, we present the
results of their application to the study of the pressure ef-
fects on the harmonic vibrational frequencies of diborane (see

FIG. 1. B2H6(D2h).

Fig. 1). The choice of diborane is related to the availability of
experimental IR/Raman spectra within the range of pressures
1–25 GPa,20, 21 which can be compared with numerical re-
sults obtained with our PCM-XP model. Moreover, diborane
is also an intriguing molecular system as being a molecule
whose structure cannot be rationalized in terms of two-center
electron pair bond model, and it has been subjected to many
theoretical investigations, both in the gas phase and in solu-
tion at the standard condition of pressure.60–74 At the best of
our knowledge, this work reports the first theoretical study of
electronic and vibrational properties of the diborane molecule
in a dense phase at high pressure.

PCM-XP calculations have been performed at the
DFT75–77 level using the M062X78 hybrid functional and
the 6-311++G(d,p) basis set.79 Atom labels of diborane
are shown in Fig. 1. The SES cavity hosting diborane was
defined in terms of atomic van der Waals sphere of radii:
RvdW (H ) = 1.2 Å,81 and RvdW (B) = 1.92 Å.82 Cyclohexane
has been used as external nonpolar medium (ε0 = 2.0165,
n0

S = 2.581 × 1023 cm−3, and R0
solv = 2.815 Å). To test the

dependence of the numerical results with respect to the choice
of the repulsive step potential V0(N ), we have performed
the calculations for two choices of the amplitude of the
repulsive step potential V0(3) (softer) and V0(6) (harder),
corresponding, respectively, to the use of the γ (3) and γ (6)
amplitudes in Eq. (26).

To make clearer the presentation of the numerical results
and of their analysis,80 this section will be split into three sub-
sections, focused (i) on the pressure as a function of the cavity
size, (ii) on the effects of pressure on the equilibrium geom-
etry, and (iii) on the effects of the pressure on the harmonic
vibrational frequencies.

A. Cavity size and pressure

As described in Sec. III A, the increase of the pressure, p,
is obtained by shrinking the volume Vc of the cavity hosting
the diborane molecule. In Fig. 2 we compare the pressure p
as a function of the cavity volume Vc, as obtained by using
two different choices of the Pauli barrier repulsion potential
(see Eq. (26)), namely, the soft repulsive potential V0(3),
and the hard repulsive potential V0(6). The dependence of
the pressure p on the cavity volume Vc is well fitted by a
Murnaghan type equation p = a[(V o

c /Vc)b − 1] + c: with V o
c

= 83.36 Å3, c = 0.98 GPa, and (a, b) = (0.7 GPa, 5.813) for
the barrier step V0(3), and with (a, b) = (1.10783 GPa, 6.553)
for the barrier step V0(6). As expected, the highest repulsive
barrier V0(6) leads to a more rapid increase of the pres-
sure. However, in both cases the values of the parameters
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FIG. 2. Pressure, p, (in GPa) as a function of the volume, Vc (in Å3)
of the cavity hosting diborane. The values refer to the PCM/M062X/6-
311++G(d,p) level for the Pauli step barriers V0(3) (�) and V0(6) (�) (see
text). The curves correspond to p = a[(V o

C/VC )b − 1] + c with V o
C = 83.36

and (a, b, c) = (1.1078 GPa, 6.553, 0.98 GPa) for the step barrier V0(6) and
(a, b, c) = (0.710 GPa, 5.813, 0.98 GPa) for the step barrier V0(3).

(a, b) are comparable with the characteristic values of the
corresponding parameters of the Murnaghan equation of state
for a dense medium at high pressure.16, 83, 84

B. Equilibrium geometries

In Table I, we report the equilibrium geometry of dib-
orane in gas phase and in a dense phase as a function of the
pressure. To test the stability of the results with respect to the
choice of repulsion barrier step V0(N ), we have performed
the geometry optimization using the softer V0(3) and the
harder V0(6) potentials.

Table I shows that the computed equilibrium geometries
in the gas phase are similar to those previously reported in the
literature (see Ref. 85 and references therein), and in agree-
ment with the available experimental data.86

As reported in Table I, all the boron-hydrogen (termi-
nal), boron-hydrogen (bridge), and boron-boron bond dis-
tances show significant pressure effects, with a shortening of
the bonds at the increase of the pressure. On the contrary,
BHB of the four member ring and the HBH bond angles
remain close to their gas phase values. This computational
evidence indicates a high rigidity of the shape of the dibo-
rane molecules, and is in agreement with recent experimental
indications.21

Figure 3 presents the plots of the boron-hydrogen bonds
distances as a function of the pressure, which exhibit a lin-
ear functional dependence. We also note that bond distances
computed with the two choices of repulsive potentials V0(3)
(softer) and V0(6) (harder) exhibit a very similar dependence
on the pressure. The finding that a given calculated pressure
induces a very similar response of the equilibrium geometry

TABLE I. Equilibrium geometry (see Fig. 1) of diborane as a function of
the pressure, p (in GPa): bond distances rBHt, rBHb, rBB are in Å and bond
angles HtBHt, HbBHb are in degrees. Results refer to the PCM/DFT/M062X/
6-311++G(d,p) level, and using the step barrier potentials V0(6) (harder) and
V0(3) (softer). Data at 0.0 GPa refer to the gas phase results.

p (GPa) rBHt rBHb rBB HtBHt HbBHb

0.0 1.1850 1.3134 1.7564 118.91 96.07
V0(6)

0.98 1.1832 1.3131 1.7527 118.92 96.26
1.87 1.1818 1.3122 1.7500 118.93 96.36
4.05 1.1793 1.3105 1.7456 118.94 96.48
5.30 1.1773 1.3087 1.7423 119.02 96.53
8.20 1.1747 1.3053 1.7360 119.02 96.64

12.68 1.1715 1.3027 1.7310 119.02 96.73
17.23 1.1671 1.2982 1.7228 119.05 96.86
25.57 1.1612 1.2926 1.7127 119.10 97.02
38.08 1.1536 1.2851 1.6993 119.15 97.23

V0(3)
0.98 1.1832 1.3131 1.7527 118.92 96.26
1.30 1.1822 1.3124 1.7503 118.94 96.35
2.49 1.1806 1.312 1.7470 118.95 96.46
2.86 1.1794 1.3102 1.7447 118.98 96.51
4.34 1.1781 1.3089 1.7418 118.99 96.58
6.48 1.1764 1.3075 1.7385 119.01 96.66
8.87 1.1741 1.3043 1.7319 119.05 96.80

11.21 1.1712 1.3027 1.7284 119.06 96.88
16.06 1.1677 1.2989 1.7209 119.098 97.027

demonstrates the stability of the PCM-XP results with respect
to the choice of the repulsive barrier V0(N ).

1. The bond distances shortening and the
electrostatic forces induced by the pressure

The shortening of the bond distances in diborane may be
analyzed in terms of pressure direct effects on the electronic
charge distribution.80

In Fig. 4, we show the deformations of the electron den-
sity of diborane in response to the pressure p, represented
as isovalue contours plots of the differential electron density
(�ρ(p) = ρ(p) − ρ(0)). The phenomenological effect of the
pressure is to push the electron distribution away from the pe-
ripheral regions corresponding to the hydrogen atoms toward
the internuclear bond regions between the terminal and bridge
hydrogens and the boron atoms. The cause of this effect is the
Pauli repulsive interaction with the external medium, which
touches the tails of the electronic charge distribution in the
peripheral regions26, 46 of diborane.

The consequences of the reorganization of the electronic
distribution ρ(p) may be analyzed by using the force con-
cept based on the Hellmann-Feynman (H-F) electrostatic
theorem.87–91 This force provides a perspective for the elec-
tronic origin of the nuclear rearrangement process on a
potential-energy surface, connecting the nuclear geometry
changes to the electronic distribution changes. The H-F elec-
trostatic forces, and fields, have been used to study the ge-
ometries of molecules in the presence of an external electric
field, and it can be straightforward generalized to the case of
a more general external agent as that we are considering here
(i.e., the pressure).
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FIG. 3. Boron-hydrogen (BH) equilibrium bond lengths (in Å) of diborane
as a function of the pressure (GPa), as computed at the PCM-XP/M062X/6-
311++G(d,p) level with the potential barriers V0(3) (�) and V0(6) (�).
Boron-hydrogen (bridge) bond lengths, rBHb, are shown on the bottom and
terminal boron-hydrogen, rBHt, are shown on the top. Regression lines rBHt

= a + b × p are (a, b) = (1.1835 Å, −0.00105 Å/GPa), with R2 = 0.977,
for the V0(3) potential, and (a, b) = (1.1838 Å, −0.00100 Å/GPa), with R2

= 0.983, for the V0(6) potential; regression lines rBHb = a′ + b′ × p are
(a, b) = (1.3135 Å, −0.00095 Å/GPa), with R2 = 0.988, for the V0(3) po-
tential, and (a, b) = (1.3137 Å, −0.00090 Å/GPa), with R2 = 0.992, for the
V0(6) potential.

The H-F electrostatic force F acting on a nucleus A, at
RA, is given by

�F(RA) = −ZA

∫
�ρ(r; p)

(r − RA)

|r − RA|3 dr,

where ZA is the nuclear charge of A, and �ρ(r : p) is the dif-
ferential electronic density induced by the pressure p. We re-
call that the H-F theorem is valid for exact and “stationary”
wavefunctions and is approximated with the use of the lin-
ear combination of atomic orbitals approximation where the
exact forces have to be calculated using the energy gradients.

In Figs. 5 and 6, we show the linear correlation of the H-
F electrostatic fields at the hydrogen atoms of diborane with
the corresponding energy gradient, G

RH

e−r , and with the rBH
bond distances, respectively. These correlations demonstrate
that, the pressure effects on the molecular geometry can be
interpreted in terms of the electrostatic forces on the nuclei,
in analogy with the semiclassical interpretation of several as-

FIG. 4. Isosurface plots of the differential electron density δρ(p) = ρ(p)
− ρ(0)(e−/a3

o ) of B2H6 at the PCM-XP/M062X/6-311++G(d,p) level using
the potential barriers V0(6). Isosurfaces refer to the case p = 0.98 GPa. Pur-
ple isovalues surface denote depletion of charges (�ρ = −8.0 × 10−5a3

o ),
and green isovalues curves denote concentration of charges (�ρ = 8.0
× 10−5a3

o ). Note that, no concentration of electronic charge occurs along the
boron-boron axis of the four members ring of diborane.

pects of structural chemistry as chemical substituent effects,
and external perturbation effects of various nature.92–96

2. The linear dependence on pressure
of the bond distances

The potential energy function for the nuclei motion,
Ge−r (Q, p), may be formally expressed as a function of the
external pressure, p, as

Ge−r (Q, p) = Ge−r (Q, 0) + p

T S∑
i

�iQi, (27)

where Ge−r (Q, 0) denotes the potential energy function for
the nuclei at p = 0 Q, that is, for the isolated molecules, being
Q the corresponding normal vibrational modes, and �i is a
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FIG. 5. Correlation between the nuclear gradients GH
e−r for the hydrogen atoms and the electric field, �FH, (in a.u.) induced by the pressure at the same atoms,

as computed at the PCM-XP/M062X/6-311++G(d,p) level and using the potential barriers V0(6). (Left) Terminal boron-hydrogen, �FHt (‖) vs Ge−rHt (‖) (R2

= 1.00). (Right) Bridge boron-hydrogen, �FHb
(‖) vs G

e−rHb (‖)(R
2 = 0.993). �FH(‖) and G

e−rHb (‖) denote the component parallel to the pertinent hydrogen-
to-boron bond direction of the electric field and of the nuclear gradients, respectively.

pressure coupling parameter defined as

�i =
(

∂2Ge−r

∂p∂Qi

)
Q=0

=
(

∂G
Qi

e−r

∂p

)
Q=0

. (28)

The coupling parameter �i corresponds to a mixed second
derivative of the basic PCM-XP energy, which has the physi-
cal meaning of a molecular response function describing the
response to the pressure of the component of energy gradients
along the normal mode coordinates, G

Qi

e−r . For symmetry rea-
sons, �i is different from zero only for totally symmetric (TS)
normal mode coordinates, and therefore the summation of
Eq. (27) runs only over these normal coordinates.

In the harmonic (i.e., second order) approximation, the
potential energy function for the isolated molecules is given

by

Ge−r (Q, 0) = Ge−r (0, 0) + 1

2

∑
i

kiQ
2
i , (29)

where Q = 0 denotes the equilibrium geometry in gas phase,
and the ki are the corresponding harmonic force constants.

In the presence of the pressure, the equilibrium geome-
try corresponds to a stationary point of the potential function
Gel−rep(Q, p). With respect to the gas phase geometry, the
totally symmetric normal coordinates Qi experience a shift of
their local minima which is determined by the condition:

∂Ge−r (Q, p)

∂Qi

= p�i + kiQ
eq

i = 0, (30)

FIG. 6. Correlation between the boron-hydrogen (BH) bond lengths Å of diborane and the electric field, �FH (in a.u.) induced by the pressure at the hydrogen
atoms, as computed at the PCM-XP/M062X/6-311++G(d,p) level and using the potential barriers V0(6). (Left) Terminal boron-hydrogen rBHt vs �FHt (‖)
(R2 = 1.00). (Right) Bridge boron-hydrogen rBHb vs �FHb

(‖) (R2 = 0.996). �FH(‖) denote the component of the electric field parallel to the pertinent
hydrogen-to-boron bond direction.
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TABLE II. Pressure coupling constant �i (Eh a−1
0 GPa−1), harmonic force

constants in gas phase ki (Eh a−2
0 ), ratio �i/ki (Å GPa−1), and pressure coef-

ficients dQi/dp (Å GPa−1)) of diborane (see text). The reported values refer
to the PCM/M062X/6-311++G(d,p) level of calculation, for the step bar-
rier potential V0(6), and regard the totally symmetric normal coordinates Q1

and Q2, as approximated by the boron-hydrogen bond distances rBHt and
rBHb, respectively (see Table III). The pressure coupling �i has been evalu-
ated from linear fitting of the nuclear gradients of diborane G

Qi
el−rep as a func-

tion of the pressure with the range 0–6 GPa, and at the equilibrium energy in
gas phase (see Table S1 of the supplementary material97). The pressure co-
efficients dQ

eq

i /dp (Å GPa−1)) have been evaluated by linear fitting of the
internal coordinates rBHt and rBHb, respectively, within the range 0–6 GPa
as reported in Table I.

�i ki −�i/ki dQ
eq

i /dp

i (Eh a−1
0 GPa−1) (Eha−2

0 ) (Å GPa−1) (Å GPa−1)

1 6.75 × 10−4 0.2837 −1.26 × 10−3 −1.39 × 10−3

2 2.20 × 10−4 0.1817 −0.58 × 10−3 −0.89 × 10−3

with new equilibrium values at

Qi(p)eq = −�i

ki

p i ⊆ TS. (31)

Equation (31) is the key equation in the analysis of the effects
of the pressure on the equilibrium geometry of molecular sys-
tems: it shows that the changes of the equilibrium geometry
of the molecule occur with shifts along the totally symmet-
ric normal coordinate Qi, the shifts linearly depending on the
external pressure p. When a normal coordinate Qi is domi-
nated by a single set of internal coordinates, Eq. (31) implies
a linear correlation between the pertinent internal coordinates
and the pressure. This conclusion is in agreement with the lin-
ear correlation between the boron-hydrogen bond distances of
diborane and the pressure shown in Fig. 2; in fact the stretch-
ing along the boron-hydrogen (terminal) and the stretching
along the boron-hydrogen (bridge) dominate the totally sym-
metric normal modes Q1 and Q2 of diborane, respectively, as
reported in Table III.

Equation (31) can be tested numerically. The pressure
coupling parameter �i of Eq. (28) can be estimated by
numerical differentiation with respect to the pressure of
the nuclear gradients (GQi

e−r ),97 evaluated at the equilibrium
geometry in the gas phase, and the force constant ki can be
determined from the calculation of the harmonic frequencies
of the isolated molecule (see Table S2 of the supplementary
material97). Table II shows the numerical values of �i and
ki for the totally symmetric normal coordinates Q1 and Q2

of diborane, and compares the ratio �i/ki with the pressure
coefficient dQ

eq

i /dp, as computed from the equilibrium
geometries of diborane as a function of the pressure (see
Table I and Fig. 3).

Finally, we note that by defining the new (i.e., shifted)
normal mode coordinates as

Q̃j = Qj + �j

kj

p, (32)

the potential energy function Ge−r (Q, p) can be rewritten as

Ge−r (Q, p) = G̃e−r (0, p) + 1

2

∑
i

kiQ̃
2
i , (33)

TABLE III. Symmetry properties and description of the vibrational nor-
mal modes of diborane. Diborane has a D2h molecular symmetry and the
irreducible representation spanned by the harmonic vibrational modes are:
�D2h

(B2H6) = 4Ag + 2B1g + 2B2g + 3B2u + 2B1u + B3g + 3B3u. Normal
modes are classified as ν, stretching; δ, bending; ρ, rocking; ω, wagging; t,
twisting; s, symmetric; a, asymmetric.105

Mode Symmetry Description

1 Ag νs BHt

2 Ag Ring stretching (BHb)
3 Ag δs HtBHt

4 Ag Ring deformation (HbBHb)
5 Au t BH2

6 B2g Ring stretching (BHb)
7 B2g ωs BH2

8 B2u νa BHt

9 B2u ρ BHt

10 B2u Ring puckering
11 B1g νa BHt

12 B1g ρs BH2

13 B1u Ring stretching (BHb)
14 B1u ωs BH2.
15 B3g t BH2

16 B3u νa BHt

17 B3u Ring stretching (BHb)
18 B3u δa HtBHt

where

G̃e−r (0, p) = Ge−r (0, 0) − 1

2

∑
i

�2
i

ki

p2. (34)

Equation (34) shows that the harmonic force constants are un-
affected by the pressure. To recover the effect of the pressure
on the harmonic force constant we must go beyond the dou-
ble harmonic approximation of Eqs. (27) and (29), as will be
discussed in Sec. IV C.

C. Harmonic vibrational frequencies

Table III shows the normal vibrational modes of the dib-
orane molecule classified according to the irreducible repre-
sentations of the D2h symmetry point group, and described in
terms of the dominant internal symmetry coordinates.

Table IV reports the computed harmonic vibrational fre-
quencies of diborane in the gas phase and as a function of the
pressure. As described in Sec. III, the harmonic vibrational
frequencies have been computed for each pressure value at the
corresponding equilibrium geometry. For the sake of simplic-
ity, the results reported in Table IV only refer to the hardest
repulsive potential V0(6). The corresponding results obtained
using the softest repulsive potential V0(3) are reported in Ta-
ble S3 of the supplementary material.97

The computed harmonic frequencies of diborane in the
gas phase of Table IV are in close agreement with the previ-
ous calculations reported in the literature85, 98–104 and with the
experiments.105

All the harmonic vibrational frequencies of diborane
increase as the pressure increases (Table IV). The dependence
of the harmonic vibrational frequencies on the pressure is
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TABLE IV. Harmonic vibrational frequencies (in cm−1) of diborane as a function of the pressure, p (GPa). Results refer to the PCM/DFT/M06/6-311++G(d,p)
level for the barrier potential V0(6). Data at 0.0 GPa refer to the gas phase. No scaling factors have been applied to the harmonic vibrational frequencies.

p (GPa)

Mode Symmetry 0.0 1.0 1.9 4.1 5.3 12.7 17.2 25.6 38.1

1 Ag 2667 2681 2692 2710 2725 2767 2800 2846 2911
2 Ag 2175 2180 2184 2192 2201 2233 2260 2294 2344
3 Ag 1202 1207 1211 1218 1225 1245 1260 1280 1308
4 Ag 815 821 825 833 840 861 878 899 927
5 Au 858 866 870 879 884 910 929 952 987
6 B2g 1874 1882 1886 1894 1901 1929 1951 1983 2025
7 B2g 893 901 905 911 916 935 950 967 992
8 B2u 2756 2770 2781 2801 2817 2863 2898 2947 3015
9 B2u 950 955 958 963 967 980 990 1005 1026

10 B2u 330 337 341 348 356 381 400 426 462
11 B1g 2743 2758 2769 2790 2806 2852 2888 2938 3006
12 B1g 928 930 933 937 942 957 969 984 1006
13 B1u 2011 2015 2023 2035 2047 2086 2117 2156 2213
14 B1u 999 1001 1004 1011 1014 1033 1048 1065 1091
15 B3g 1049 1054 1057 1062 1066 1080 1092 1108 1131
16 B3u 2652 2666 2677 2696 2711 2754 2788 2835 2901
17 B3u 1715 1704 1705 1709 1715 1737 1758 1786 1826
18 B3u 1190 1193 1196 1202 1208 1227 1241 1261 1288

described satisfactorily by a linear relationship, as shown in
Fig. 7 for the totally symmetric normal modes of the diborane
molecule.

In the following, we will present an interpretation of lin-
ear dependence of the harmonic vibrational frequencies on
the pressure, in the light of a theoretical scheme analogous to
that already introduced in Sec. IV B for the analysis of pres-
sure effects on the equilibrium geometry. The subsection will
be closed by a comparison with the available experimental
data of the pressure effects on the vibrational frequencies of
diborane.

1. The linear dependence of the harmonic
vibrational frequencies

Let us consider an extension up to the third order of above
introduced formalism to analyze the effect of the pressure on
the equilibrium geometry. The potential function for the nu-
clei motion is written as

Ge−r (Q, p) = Ge−r (Q, 0) + p
∑

i

�iQi

+p
∑

i

�iiQ
2
i + · · · , (35)

where we have introduced an additional contribution of first
order in the pressure p and of second order in the vibrational
normal modes, with the second-order pressure coupling pa-
rameter �ii defined as

�ii =
(

∂3Ge−r

∂p∂2Qi

)
Q=0

=
(

∂ki

∂p

)
Q=0

. (36)

The second-order coupling parameter �ii corresponds to a
mixed third derivative of the basic PCM-XP energy rep-

resenting the response to the pressure of the force con-
stant ki of the ith normal mode. �ii may be different from
zero for any vibrational normal mode. In the expansion
(35) we have neglected third order terms p�ijQiQj that de-
scribe the effects of the pressure on the mixing of normal
modes.

The third-order expansion for the potential energy func-
tion of the isolated molecule may be written as106

Ge−r (Q, 0) = Ge−r (0, 0) + 1

2

∑
i

kiQ
2
i

+ 1

2

NTS∑
i

TS∑
j

giijQ
2
i Qj

+ 1

2

TS∑
i

TS∑
j �=i

giijQ
2
i Qj + 1

6

TS∑
i

giiiQ
3
i ,

(37)

with NTS and TS denoting summations, respectively, over
the nontotally symmetric, and over the totally symmetric nor-
mal modes; giij denotes a cubic anharmonic coupling be-
tween the generic normal mode i and a totally symmetric nor-
mal mode j (giij = ∂3Ge−r/∂2Qi∂Qj). In the expansion (37)
we have neglected once again third order terms gijkQiQjQk

that describe effects of the pressure on the mixing of normal
modes.

Introducing the shifted normal coordinates Q̃i = Qi

+ �i/kip, the potential energy function (35) can be rewrit-
ten as

Ge−r (Q̃, p) = G̃e−r (0, p) + 1

2

∑
i

k̃i(p)Q̃2
i , (38)
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FIG. 7. Correlations between the harmonic vibrational frequencies and the pressure for the totally symmetric modes of diborane: ν1 (R2 = 0.988),
ν2 (R2 = 0.998), ν3 (R2 = 0.994), ν4 (R2 = 0.992). The values refer to the PCM-XP/M062X/6-311++G(d,p) level using the potential barriers V0(6).

where G̃e−r (0, p) is given by

G̃e−r (0, P ) = Ge−r (0, 0) − p2 1

2

T S∑
i

(
�i

ki

)2

−p3 1

2

T S∑
j �=k

gjjk

(
�j

kj

)2
�k

kk

+p3 1

6

T S∑
j

gjjj

(
�j

kj

)3

+ p3 1

2

T S∑
i

�ii

(
�i

ki

)2

(39)

and k̃i(p) is the harmonic force constant at the pressure p:

k̃i(p) = ki + p

⎛
⎝�ii −

T S∑
j

giij�j

kj

⎞
⎠ . (40)

Equation (40) is central in the analysis of the pressure effects,
as it shows that the harmonic force constants are linear func-

tions of the pressure, with coefficient:

k̃i

dp
≡

(
∂3Ge−r

∂p∂2Qi

)
Qeq

=
⎛
⎝�ii −

T S∑
j

gij�j

kj

⎞
⎠ . (41)

Equation (40) is also the starting point for the analysis
of pressure effects on the vibrational force constant in terms
of two contributions: the “curvature” and the “relaxation”
contributions.80, 107, 108 In fact, the pressure coefficients of Eq.
(40), dk̃i/dp may be rewritten as

dk̃i

dp
= dki

dp

∣∣∣∣
cur

+ dki

dp

∣∣∣∣
rel

, (42)

with

dki

dp

∣∣∣∣
cur

= �ii, (43)

and

dki

dp

∣∣∣∣
rel

= −
T S∑
j

gij�j

kj

. (44)
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FIG. 8. Pressure coefficients of the force constants, (dki/dp) (in blue) and their components curvature, (dki/dp)cur (in red) and relaxation, (dki/dp)rel (in yellow),
for the 18 normal modes of diborane. The data (in mdyn Å−1 GPa−1) refer to the PCM-XP/M062X/6-311++G(d,p) level using the potential barriers V0(6).

The meaning of the two contributions to the pressure coeffi-
cient dk̃i/dp is easy to understand. The term dki/dp|cur de-
scribes the effects of the pressure on the curvature of the
PES at the fixed equilibrium geometry in gas phase, and it
corresponds to the response function �ii defined in Eq. (36);
while the term dki/dp|rel of Eq. (44) describes the effects of
the pressure due to the relaxation of equilibrium geometry
along the totally symmetric normal modes {j}, and it depends
on the cubic anharmonic coupling constants giij between
modes i, j.

Equations (40)–(44) can be evaluated numerically. The
pressure coefficients dk̃i/dp can be determined from the lin-
ear regression between the force constant k̃i(p), computed at
the pressure p and at the corresponding equilibrium geometry,
and the pressure p itself (see Table S4 of the supplementary
material97). The pressure coefficients dki/dp|cur may be com-
puted in the similar way by considering the force constant
ki(p) computed at the pressure p and at the fixed equilibrium
geometry of diborane in the gas phase (see Table S5 of the
supplementary material97). Finally, the pressure coefficients
dki/dp|rel may be determined as a difference from Eq. (42).
Figure 8 shows the numerical results of curvature (dki/dp|cur

in red) and relaxation (dki/dp|rel in yellow) pressure coeffi-
cients for the 18 normal modes of diborane (the normal modes
are ordered from left to the right of Fig. 8 with increasing of
the harmonic vibrational frequency). The curvature effect of
the pressure on the harmonic force constant (i.e., dki/dp|cur)
of diborane is positive for almost all the normal modes, while
the relaxation effect (i.e., dki/dp|rel) may present both signs.
A positive sign of dki/dp|rel indicates that the relaxation of
equilibrium geometry determines an increase of the harmonic
force constant ki, while a negative sign of dki/dp|rel denotes
the opposite case, in which the relaxation of equilibrium ge-
ometry determines a decrease of the force constant ki.

As a further example of the potentialities of the present
analysis, we show in Fig. 9 the correlation between the relax-
ation pressure coefficient dki/dp|rel of the 18 normal modes
of diborane with the corresponding leading anharmonic cou-
pling contribution giij�j/kj (see Table S6 of the supplementary
material for the values of giij

97). The good linear correlation
(R2 = 0.975 ) is in agreement with the definition of dki/dp|rel

in Eq. (44).

The linear relationship (40) between the force constant
of the normal modes and the pressure implies a linear rela-
tionship between the vibrational harmonic frequencies and the
pressure:

ν̃i = νi + p

[
1

2

(
νi

ki

)
dk̃i

dp

]
, (45)

where ν i is the harmonic frequency of the unperturbed mode,
and dk̃i/dp is the pressure coefficient of the force constant.
The linear correlation between harmonic vibrational frequen-
cies and the pressure, as expressed by Eq. (45), is in agree-
ment with the numerical evidence reported in Table IV and in
Fig. 6.109

A further useful linear relationship, between the vibra-
tional frequencies ν̃i and the shifts of the totally symmetric
normal modes Q

eq

i , can be derived combining Eqs. (31) and
(45):

ν̃i = νi − 1

2

(
νi

�i

)
dk̃i

dp
Q

eq

i . (46)

Equation (46) may be considered as an expression of the Bad-
ger rule49 connecting the force constants and the equilibrium

FIG. 9. Correlation (R2 = 0.975) between the curvature pressure coefficient
(dki/dp)cur and the corresponding leading term giij�j/kj of Eq. (44). The data
(in mdyn Å−1 GPa−1) refer to selected normal modes of diborane, as com-
puted at the PCM-XP/M062X/6-311++G(d,p) level using the potential bar-
riers V0(6). See Table S5 of the supplementary materials for the values of the
cubic force constant giij for diborane in gas phase.97
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FIG. 10. Correlation between the harmonic vibrational frequencies (cm−1)
and the boron-hydrogen bond lengths (Å). (Top) The totally symmetric nor-
mal modes ν1 vs the terminal boron-hydrogen bond length (R2 = 1.00).
(Bottom) The totally symmetric normal modes ν2 vs the terminal boron-
hydrogen bond length (R2 = 1.00). Values refer to the PCM-XP/M062X/6-
311++G(d,p) level using the potential barriers V0(6).

geometry of molecular systems. When a normal coordinate Qi

is dominated by a single set of internal coordinate, Eq. (46)
implies a linear correlation between the vibrational frequen-
cies and the pertinent internal coordinates. Figure 10 shows
the linear correlation between the harmonic vibrational fre-
quencies of the totally symmetric normal modes ν1, ν2 and
the boron-hydrogen bond lengths rBHt and rBHb of diborane,
respectively.

2. Comparison with the experimental data

Finally, we compare the computed harmonic frequencies
of diborane as a function of the pressure with the available ex-
perimental data. High pressure Raman and IR spectroscopies
studies of diborane in its condensed phases have been recently
reported.20, 21 In these studies, the pressure dependences of
the several internal modes of diborane have been used to

TABLE V. Comparison between the computed pressure coefficients
(dν/dp)th of the harmonic vibrational frequencies of diborane and the avail-
able experimental data (dν/dp)exp from Refs. 20 and 21. The computed
pressure coefficients refer to the range of pressure 0–6 GPa, and at the
PCM/DFT/M062X/6-311++G(d,p) level using the step barriers V0(6) and
V0(3). The experimental pressure coefficients refer to the diborane in liquid
phase (0–4 GPa). All the values are in cm−1/GPa.

(dν/dp)th

Mode Symmetry V0(6) V0(3) (dν/dp)exp

1 Ag 10.4 9.6 12.9
2 Ag 4.8 4.6 7.9
3 Ag 4.1 4.0 2.6
4 Ag 4.4 4.7 8.6
5 Au 4.6 5.0 . . .
6 B2g 4.8 4.8 7.9
7 B2g 4.0 3.9 . . .
8 B2u 11.0 10.2 . . .
9 B2u 3.0 2.7 . . .

10 B2u 4.6 4.8 . . .
11 B1g 11.5 10.5 12.9
12 B1g 2.6 2.6 . . .
13 B1u 6.7 7.0 . . .
14 B1u 2.9 2.9 ∼3
15 B3g 2.9 2.6 −5.7
16 B3u 10.7 9.8 ∼7
17 B3u 2.5 2.3 ∼3
18 B3u 3.3 3.2 . . .

identify pressure dependent structure transformations of the
phases. Several structural transformations have been identi-
fied starting from a liquid-phase I transition around 4 GPa. In
Table V, we compare the pressure dependent data of the liq-
uid phase (0–4 GPa) with the computed pressure coefficients
(dν/dp)th of the harmonic vibrational frequencies. The com-
parison shows that the results of the PCM-XP model give a
reasonable description of the experimental pressure effect on
the vibrational frequencies of diborane.

V. SUMMARY

We have presented a new quantum chemical method
for the calculation of the equilibrium geometry and the har-
monic vibrational frequencies of molecular systems in dense
medium at high pressures (of the order of GPa). The new com-
putational method, named PCM-XP, is based on the polariz-
able continuum model, amply used for the study of the solvent
effects at standard condition of pressure, and it is accompa-
nied by a new theory for the analysis and the interpretation of
the mechanisms underpinning the effects of pressure on the
molecular geometries and the harmonic vibrational frequen-
cies. The PCM-XP has been applied at the density functional
theory level to diborane as a molecular system under high
pressure. The computed harmonic vibrational frequencies as
a function of the pressure have shown a satisfactory agree-
ment with the corresponding experimental results, and the
parallel application of the method of analysis has shown that
the effects of the pressure on the equilibrium geometry can be
interpreted in terms of direct effects on the electronic charge
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distribution of the molecular solutes, and that the effects on
the harmonic vibrational frequencies can be described in
terms of two physically distinct effects of the pressure (cur-
vature and relaxation) on the potential energy for the motion
of the nuclei. These results indicate, in our opinion, the po-
tentialities of PCM-XP method to open new perspectives for
the extension of quantum chemistry to the study of pressure
effects on the vibrational properties of molecular systems.
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APPENDIX: PAULI REPULSION BARRIER

The height V0 of the Pauli repulsion barrier of Eq. (26) is
determined by the parameter γ N( f ), depending on the cavity
scaling factor f. The functional dependence of γ N( f ) can be
estimated from the pV experimental data characterizing the
external medium, as described in the following.

Using a heuristic approach, we introduce a functional de-
pendence for γ ( f ) with the following form:

γ (f ) = (f0/f )N,

where f0 and f are, respectively, the reference and the actual
cavity scaling factors. The estimation of the exponential pa-
rameter N is performed by computing the pressure p from
Eq. (12) as a function of the volume Vc of the cavity, and
fitting the computed pV data in terms of an equation of state
of the Murnaghan type16, 83, 84

p = a
[(

V o
c /Vc

)b − 1
] + c,

where V o
c and Vc are, respectively, the cavity volume at the

standard condition of pressure and at the pressure p, and a,
b, c are empirical parameters. The best range values of pa-
rameters N can be estimated on the basis of the comparison
with the experimental pV Murnaghan equation of state for
the external medium p = a[(Vo/V )b − 1], where V o and V

are molar volumes of the medium (see Table VI). Numerical
tests show that the range N = 3–6 is a reasonable choice for
the exponential of functional form of the parameter γ (N).

As a historical note, we recall that this type of compar-
ison with the pV experimental data has been first suggested

TABLE VI. Murnaghan equations of state p = a[(Vo/V )b − 1] for
benzene,16 cyclohexane,83 and argon.84

Compound a (GPa) b

Benzene 1.0 6.5
Cyclohexane 4.8 5.0
Argon 2.0 3.9

by LeSar and Herschbach in a parenthetical observation of
their seminal papers on a rigid spheroidal box model for the
description of the electronic and vibrational properties of the
hydrogen molecule at high pressure.49
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