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ABSTRACT
Using a semi-analytical model developed by Choudhury & Ferrara we study the observational
constraints on reionization via a principal component analysis (PCA). Assuming that reion-
ization at z > 6 is primarily driven by stellar sources, we decompose the unknown function
N ion(z), representing the number of photons in the intergalactic medium per baryon in collapsed
objects, into its principal components and constrain the latter using the photoionization rate,
�PI, obtained from Lyα forest Gunn–Peterson optical depth, the 7 yr Wilkinson Microwave
Anisotropy Probe (WMAP7) electron scattering optical depth τ el and the redshift distribution
of Lyman-limit systems dNLL/dz at z ∼ 3.5. The main findings of our analysis are as follows.
(i) It is sufficient to model N ion(z) over the redshift range 2 < z < 14 using five parameters to
extract the maximum information contained within the data. (ii) All quantities related to reion-
ization can be severely constrained for z < 6 because of a large number of data points whereas
constraints at z > 6 are relatively loose. (iii) The weak constraints on N ion(z) at z > 6 do not
allow to disentangle different feedback models with present data. There is a clear indication
that N ion(z) must increase at z > 6, thus ruling out reionization by a single stellar population
with non-evolving initial mass function, and/or star-forming efficiency, and/or photon escape
fraction. The data allow for non-monotonic N ion(z) which may contain sharp features around
z ∼ 7. (iv) The PCA implies that reionization must be 99 per cent completed between 5.8 <

z < 10.3 (95 per cent confidence level) and is expected to be 50 per cent complete at z ≈
9.5–12. With future data sets, like those obtained by Planck, the z > 6 constraints will be
significantly improved.

Key words: intergalactic medium – cosmology: theory – dark ages, reionization, first stars –
large-scale structure of Universe.

1 IN T RO D U C T I O N

The importance of studying hydrogen reionization at high redshifts
lies in the fact that it is tightly coupled to properties of first luminous
sources and subsequent galaxy formation (for reviews, see Barkana
& Loeb 2001; Loeb & Barkana 2001; Choudhury & Ferrara 2006a;
Choudhury 2009). In recent years, studies in reionization have been
boosted by (i) the availability of a wide range of data sets and (ii)
the expectation that the volume of data would increase rapidly over
the next few years (for reviews, see Fan, Carilli & Keating 2006a;
Furlanetto, Oh & Briggs 2006). Given such a large amount of data,
it is important to develop theoretical and statistical methods so that
maximum information can be extracted.

Theoretically, reionization is modelled either semi-analytically
or by numerical simulations. Unfortunately, the physical processes
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relevant to reionization are so complex that neither of the two ap-
proaches can capture the overall picture entirely. The simulations
are indispensable for understanding detailed spatial distribution of
ionized regions and topology of reionization. However, if one is
interested in the evolution of globally averaged quantities, then
semi-analytical models prove to be very useful in providing in-
sights. The main reason for this is that these models can probe a
wide range of parameter space which can be quite large depending
on our ignorance of the different processes.

At present, our understanding of reionization is that it is primarily
driven by ultraviolet (UV) radiation from stellar sources forming
within galaxies. The major uncertainty in modelling reionization
is to model the star formation history and transfer of radiation
from the galaxies to the intergalactic medium (IGM) which is usu-
ally parametrized through N ion, the number of photons entering
the IGM per baryon in collapsed objects. This parameter, in prin-
ciple, has a dependence on z which can arise from evolution of
star-forming efficiency, fraction of photons escaping from the host
halo and chemical and radiative feedback processes. Note that this
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parameter remains uncertain even in numerical simulations, hence
the semi-analytical models can become handy in studying a wide
range of parameter values and the corresponding agreement with
data sets. In analytical studies, N ion(z) is either taken to be a piece-
wise constant function (Wyithe & Loeb 2003; Choudhury & Ferrara
2005) or parametrized using some known functions (Chiu, Fan &
Ostriker 2003; Pritchard, Loeb & Wyithe 2010) or modelled using
a physically motivated prescription (Choudhury & Ferrara 2006b).
In particular, a model involving metal-free and normal stars with
some prescription for radiative and chemical feedback can match a
wide range of observations (Choudhury & Ferrara 2006b; Gallerani,
Choudhury & Ferrara 2006) and possibly make prediction regarding
search for reionization sources by future experiments (Choudhury
& Ferrara 2007).

However, the fact remains that many of the physical processes
involved in modelling N ion are still uncertain. Given this, it is worth-
while doing a detailed probe of the parameter space and determines
the range of reionization histories that are allowed by the data. In
other words, rather than working out the uncertain physics, one can
ask the question as to what are the forms of N ion(z) implied by the
data itself. It is expected that in near future, with more data sets be-
coming available, the allowed range in the forms of N ion(z) would
be severely constrained, thus telling us exactly how reionization
occurred. Now, it is obvious that the constraints on N ion(z) will not
be same for all redshifts, points where there are more and better
data available, the constraint would be more tight. Similarly, since
we deal with a heterogeneous set of data, it is expected that the con-
straints would depend on the nature of data used. It is thus important
to know which aspects of reionization history can be constrained by
what kind of data sets. A method which is ideally suited to tackle
this problem is to use the principal component analysis (PCA); this
is a technique to compute the most meaningful basis to re-express
the unknown parameter set and the hope is that this new basis will
reveal hidden detailed statistical structure.

In this work, we make a preliminary attempt to constrain N ion(z)
using PCA and hence estimate the uncertainties in the reioniza-
tion history. The main objective of the work would be to find out
the widest possible range in reionization histories allowed by the
different data sets.

Throughout the paper, we assume a flat Universe with cosmolog-
ical parameters given by the 7 yr Wilkinson Microwave Anisotropy
Probe (WMAP7) best-fitting values: �m = 0.27, �� = 1 − �m, �b

h2 = 0.023 and h = 0.71. The parameters defining the linear
dark matter power spectrum we use are σ 8 = 0.8, ns = 0.96 and
dns/d ln k = 0 (Larson et al. 2011).

2 SE M I - A NA LY T I C A L M O D E L
O F R E I O N I Z AT I O N

2.1 Features of the model

The semi-analytical model used in this work is based on Choud-
hury & Ferrara (2005) and Choudhury & Ferrara (2006b). Let us
first summarize the main features of the model along with the mod-
ifications made in this work.

(i) The model accounts for IGM inhomogeneities by adopting a
lognormal distribution according to the method outlined in Miralda-
Escudé, Haehnelt & Rees (2000); reionization is said to be complete
once all the low-density regions (say, with overdensities 	 < 	crit ∼
60) are ionized. The mean free path of photons is thus determined

essentially by the distribution of high-density regions:

λmfp(z) = λ0

[1 − FV (z)]2/3
, (1)

where FV is the volume fraction of ionized regions and λ0 is a
normalization parameter. In our earlier works, the value of this
parameter was fixed by comparing with low-redshift observations
while in this work, we treat it as a free parameter. We follow the
ionization and thermal histories of neutral, H II and He III regions
simultaneously and self-consistently, treating the IGM as a multi-
phase medium.

(ii) The model assumes that reionization is driven by stellar
sources. The stellar sources can further be divided into two classes,
namely, (i) metal-free (i.e. Population III) stars having a Salpeter
initial mass function (IMF) in the mass range 1–100 M�: they
dominate the photoionization rate at high redshifts; (ii) Population
II stars with subsolar metallicities also having a Salpeter IMF in the
mass range 1–100 M�.

(iii) Reionization by UV sources is accompanied by photoheating
of the gas, which can result in a suppression of star formation
in low-mass haloes. We compute such (radiative) feedback self-
consistently from the evolution of the thermal properties of the
IGM.

(iv) Furthermore, the chemical feedback including Population
III→Population II transition is implemented using merger-tree-
based genetic approach (Schneider et al. 2006). Under this approach,
it is assumed that if a given star-forming halo has a progenitor which
formed Population III stars, then the halo under consideration is
enriched and cannot form Population III stars. In this work, we in-
troduce an analytical formula for the transition from Population III
to Population II phase using the conditional probability of Press–
Schechter mass function (Lacey & Cole 1993). The probability that
a halo of mass M at z never had a progenitor in the mass range
[Mmin(z), M + Mres] is given by

fIII(M, z) = 2

π
tan−1

[
σ (M + Mres) − σ (M)

σ (Mmin(z)) − σ (M + Mres)

]
, (2)

where Mmin is the minimum mass of haloes which are able to form
stars and Mres represents the minimum increase in mass (either by
accretion or by merger) of an object so that it may be identified as
a new halo. The fraction of collapsed haloes which are able to form
Population II and Population III stars at redshift z are given by the
following relations:

fcoll,II(z) = 1

ρ̄m

∫ ∞

Mmin(z)
dM [1 − fIII(M, z)]M

∂n(M, z)

∂M
,

fcoll,III(z) = 1

ρ̄m

∫ ∞

Mmin(z)
dM fIII(M, z)M

∂n(M, z)

∂M
,

(3)

with f coll,II(z) + f coll,III(z) = f coll(z). The quantity ρ̄m is the comoving
density of dark matter and ∂n/∂M is number density of collapsed
objects per unit comoving volume per unit mass range (Press &
Schechter 1974).

(v) Given the collapsed fraction, this model calculates the pro-
duction rate of ionizing photons in the IGM as

ṅph(z) = nb

[
Nion,II

dfcoll,II

dt
+ Nion,III

dfcoll,III

dt

]
, (4)

where nb is the total baryonic number density in the IGM and
N ion,II(N ion,III) is the number of photons from Population II (Popula-
tion III) stars entering the IGM per baryon in collapsed objects. The
parameter N ion can actually be written as a combination of various
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other parameters:

Nion ≡ ε∗fescmp

∫ ∞

νH I

dν

[
dNν

dM∗

]
≡ εmp

∫ ∞

νH I

dν

[
dNν

dM∗

]
, (5)

where ε∗ denotes the star-forming efficiency (fraction of baryons
within collapsed haloes going into stars), f esc is the fraction of
photons escaping into the IGM, [dNν/dM∗] gives the number of
photons emitted per frequency range per unit mass of stars (which
depends on the stellar IMF and the corresponding stellar spectrum)
and ε ≡ ε∗ f esc. For Population II stars with subsolar metallicities
having a Salpeter IMF in the mass range 1–100 M�, we get N ion,II ≈
3200 εII, while for Population III stars having a Salpeter IMF in the
mass range 1–100 M�, we get N ion,III ≈ 35000 εIII.

In this section, we take εII, εIII (or, equivalently N ion,II, N ion,III)
to be independent of z and M, which implies that the star-forming
efficiencies and the escape fractions do not depend on the mass of
the star-forming halo and also do not evolve. However, note that
the effective N ion (which is the appropriately weighted average of
N ion,II and N ion,III) evolves with z:

Nion(z) = Nion,II(dfcoll,II/dt) + Nion,III(dfcoll,III/dt)

(dfcoll,II/dt) + (dfcoll,III/dt)
. (6)

At high redshifts, we expect df coll,II/dt → 0, hence N ion(z) →
N ion,III, and similarly at low redshifts where chemical enrichment is
widespread, we have N ion(z) → N ion,II.

(vi) We also include the contribution of quasars based on their
observed luminosity function at z < 6 (Hopkins, Richards & Hern-
quist 2007); we assume that they have negligible effects on IGM at
higher redshifts. They are significant sources of photons at z � 4
and are particularly relevant for studying helium reionization.

(vii) The free parameters for this analysis would be εII, εIII (or,
equivalently N ion,II, N ion,III) and λ0, the normalization which deter-
mines the mean free path of photons.

(viii) Usually, the model is constrained by comparing with a va-
riety of observational data, namely, (1) redshift evolution of Lyman-
limit absorption systems (LLS), (2) IGM Lyα and Lyβ optical
depths, (3) electron scattering optical depth, (4) temperature of
the mean intergalactic gas and (5) cosmic star formation history.
However, most of the constraints on the model come from a subset
of the above data sets. In this work, we would like to carry out a
detailed likelihood analysis of the parameters. Hence to keep the
analysis simple, the likelihood analysis is done using only three
particular data sets which are discussed as follows.

(1) We use estimates for the photoionization rates �PI obtained
using Lyα forest Gunn–Peterson optical depth observations and a
large set of hydrodynamical simulations (Bolton & Haehnelt 2007).
The error bars in these data points take into account the uncertainties
in the thermal state of the IGM in addition to the observational errors
in the Lyα optical depth. The data points have a mild dependence on
the cosmological parameters which has been taken into account in
this work. We also find that although the error bars on �PI are highly
asymmetric, those on log(�PI) are relatively symmetric; hence we
use values of log(�PI) and the corresponding errors in our likelihood
analysis. The photoionization rate can be obtained in our model from
ṅph(z) using the relation

�PI(z) = (1 + z)3

∫ ∞

νH I

dν λmfp(z; ν)ṅph(z; ν)σH(ν), (7)

where ν the frequency of radiation, νH I is the threshold frequency
for photoionization of hydrogen and σ H(ν) is the photoionization
cross-section of hydrogen.

(2) The second set of observations we have used corresponds to
the WMAP7 data on electron scattering optical depth τ el (Larson

et al. 2011). The reported value of this quantity depends on the back-
ground cosmological model used. In this work, we restrict ourselves
to the flat cold dark matter (CDM) universe with a cosmological
constant and use the corresponding constraints on τ el. Furthermore,
the τ el constraint is treated as a single data point which should be
thought as a simplification because cosmic microwave background
(CMB) polarization observations are, in principle, sensitive to the
shape of the reionization history (Burigana et al. 2008). However,
we have checked and found that the range of reionization histo-
ries considered in this paper would hardly make any difference to
the currently observed large angular scale polarization anisotropies
other than the value of τ el. The quantity τ el can be obtained from
our model given the global reionization history, in particular the
comoving density of free electrons ne(z):

τel(z) = σTc

∫ z[t]

0
dt ne (1 + z)3, (8)

where σ T is the Thomson scattering cross-section.
(3) Finally, we use the redshift distribution of LLS dNLL/dz at

z ∼ 3.5 (Prochaska, O’Meara & Worseck 2010).1 The data points are
obtained using a large sample of quasi-stellar object (QSO) spectra
which results in extremely small statistical errors. However, there
are various systematic effects arising from effects like the incidence
of proximate LLS and uncertainties in the continuum. Usually, these
effects contribute to about 10–20 per cent uncertainty in the data
points. The quantity dNLL/dz can be calculated in our model from
the mean free path:

dNLL

dz
= c√

π λmfp(z)H (z)(1 + z)
. (9)

Note that inclusion of the Lyman-limit systems in the analysis is
crucial for constraining the parameter λ0.

The likelihood function used in our calculations is given by

L ∝ exp(−L), (10)

where L is the negative of the log-likelihood. It is estimated using
the relation

L = 1

2

nobs∑
α=1

[Gobs
α − G th

α

σα

]2

, (11)

where Gα represents the set of nobs observational data points de-
scribed above, i.e. Gα = {log(�PI), τel, dNLL/dz} and σα are the
corresponding observational error bars. We constrain the free pa-
rameters by maximizing the likelihood function. We impose a prior
such that reionization should be complete by z = 5.8, otherwise it
will not match that Lyα and Lyβ forest transmitted flux data.

2.2 Reionization constraints

The results of our likelihood analysis using the reionization model
described above are summarized in Table 1. The evolution of var-
ious quantities for models which are allowed within 95 per cent
confidence limit is shown in Fig. 1.

1 We did not include the more recent measurements of dNLL/dz by Songaila
& Cowie (2010) because the values are systematically larger than the ones
quoted in Prochaska et al. (2010) at z ∼ 3.5; inclusion of both the data sets
would lead to a bad fit for the model. The Songaila & Cowie (2010) set
has a data point at z ∼ 6 which is not present in other data sets, however,
the present error bar on that particular point is relatively large and hence
excluding it does not affect our constraints significantly.
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Table 1. The marginalized posterior probabilities with 95 per cent confi-
dence limits errors of all free parameters (top three parameters) and derived
parameters (from the fourth parameter down) for the reionization model
with Population II and Population III stars.

Parameters Mean value 95 per cent confidence limits

εII 0.003 [0.001, 0.005]
εIII 0.020 [0.000, 0.043]
λ0 5.310 [2.317, 9.474]

z(QH II = 0.5) 9.661 [7.894, 11.590]
z(QH II = 0.99) 6.762 [5.800, 7.819]

The top left-hand panel of the figure shows the evolution of the
effective N ion as given by equation (6). One can see that the quantity
attains a constant value ≈10 at z < 6 which is a consequence of the
fact that the photon emissivity at those epochs are purely determined
by Population II stars. However at higher redshifts, the value of N ion

increases with z because of the presence of Population III stars. It
is clear that the data cannot be fitted with Population II stars with
constant N ion,II alone, one requires a rise in N ion at higher redshifts.
For the kind of chemical feedback employed in the model, the rise
is rather smooth and gradual.

The mean values of parameters quoted in Table 1 are similar to
the best-fitting model described in Choudhury & Ferrara (2006b)
and hence the corresponding reionization history is similar to those
described in the same paper. This can be readily verified from
Fig. 1 where we see that reionization starts around z ≈ 15 driven by

Population III stars, and it is 90 per cent complete by z ≈ 7.5. After a
rapid initial phase, the growth of the volume filled by ionized regions
slows down at z � 10 due to the combined action of chemical and
radiative feedback, making reionization a considerably extended
process completing only at z ≈ 6. We refer the reader to our earlier
papers for a discussion of this model. Our likelihood analysis shows
that reionization is 50 (99) per cent complete between redshifts z =
7.9–11.6 (5.8–7.8) at 95 per cent confidence level. Hence, under
the assumptions made in the model, we find that completion of
reionization cannot occur earlier than z ≈ 8, essentially ruling out
models of very early reionization. The reason for this is that the
number of photons in the IGM at z = 6 is very low as implied by
the Lyα forest data. In order to take the data point into account,
the models typically cannot have too high an emissivity at z ∼ 6.
On the other hand, the constraints on τ el imply that reionization
must be initiated early enough. Thus the IGM has to go through
a gradual reionization phase. As we discussed above, the gradual
reionization is maintained by a combined action of radiative and
chemical feedback effects.

Interestingly, we find that a couple of data points for dNLL/dz lie
above the 2σ limits of our analysis. In models where these points
agree with the data, the photon mean free path λmfp, and hence
the photoionization rate �PI, are relatively smaller. These lead to
larger Gunn–Peterson optical depths which then violate the Lyα

forest constraints. This discrepancy can arise either (i) because of
some unaccounted systematics present in the data or (ii) from the
simplifying assumptions made in our models for calculating λmfp.
The actual reason needs to be investigated further.

Figure 1. The marginalized posterior distribution of various quantities related to reionization history for a model with chemical feedback (Choudhury &
Ferrara 2006b). The solid lines correspond to the model described by mean values of the parameters while the shaded regions correspond to 2σ limits. The
points with error bars denote the observational data points. Top-left: the evolution of the effective Nion(z); top-middle: the hydrogen photoionization rate �PI(z)
along with the constraints from Bolton & Haehnelt (2007); top-right: the LLS distribution dNLL/dz with data points from Prochaska et al. (2010); bottom-left:
the electron scattering optical depth τ el with the WMAP7 constraint (Larson et al. 2011); bottom-middle: the volume filling factor of H II regions QH II(z);
bottom-right: the global neutral hydrogen fraction xH I(z) with observational limits from QSO absorption lines (Fan et al. 2006a; filled square), Lyα emitter
luminosity function (Kashikawa et al. 2006; open triangle) and GRB spectrum analysis (Totani et al. 2006; open square). Also shown are the constraints using
dark gap statistics on QSO spectra (Gallerani et al. 2008a; open circles) and GRB spectra (Gallerani et al. 2008b; filled circle).
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3 PR I N C I PA L C O M P O N E N T A NA LY S I S

3.1 Motivation

It is most likely that the star-forming efficiencies and escape frac-
tions and hence N ion are functions of halo mass and redshift; how-
ever, since the dependencies are not well understood, they were
taken to be constant for each considered stellar population in the
previous section. The question one can ask is that how would the
constraints on reionization histories of the previous section change
when the evolution of N ion is taken into account. Ideally one would
like to do a rigorous likelihood analysis with N ion varying with
z and see the possible ranges of reionization histories consistent
with available data. One possible approach could be to parametrize
N ion(z) using some (known) function and constrain the parameters
of the function (Pritchard et al. 2010). However, it is possible that
the reionization constraints thus obtained could depend on the na-
ture of the function chosen. In addition, it is not clear as to how
many parameters should be used to parametrize the function.

An alternative approach is to assume N ion(z) to be completely
arbitrary and decompose it into principal components. These prin-
cipal components essentially filter out components of the model
which are most sensitive to the data. Obviously, these components
are the ones which can be constrained most accurately, while the
others cannot be done so. This PCA, thus, should give an idea as to
which aspects of N ion can be constrained with available data. This
implies that one should get a clear idea about the optimum number
of parameters required to model N ion to fit the data most accurately.

In order to carry out such analysis, we modify the model described
in the previous section in following respects.

(i) We take N ion to be a function of z. Unlike in the previous
section, we do not explicitly assume the presence of two population
of stars but rather we include only one stellar population; any change
in the characteristics of these stars over time would be accounted
for in the evolution of N ion.

(ii) Clearly, the chemical feedback prescription has to abandoned
in this model, as there are no two different populations of stars any-
more. The chemical feedback is rather taken into account indirectly
by the evolution of N ion. However, we retain radiative feedback in
the model given its weak dependence on the specific stellar popu-
lation properties.

In recent years there has been a wide use of this method in cos-
mological data analysis. The first set of works was mostly related
to CMB data where e.g. Efstathiou & Bond (1999) and Efstathiou
(2002) used PCA of CMB anisotropy measurements to investi-
gate degeneracies among cosmological parameters. Kadota et al.
(2005) applied PCA to study how accurately CMB observables can
constrain inflaton potential in a model-independent manner. Leach
(2006) used PCA techniques for measuring departures from scale
invariance in the primordial power spectrum of density perturba-
tions using CMB Cl data. Mortonson & Hu (2008) developed a
model-independent method to study the effects of reionization on
the large-scale E-mode polarization for any reionization history
with the help of PCA followed by the earlier work by Hu & Holder
(2003). In the context of weak lensing surveys, Munshi & Kilbinger
(2006) studied the degeneracies between cosmological parameters
and measurement errors from cosmic shear surveys using PCA. The
PCA has also been employed as an effective tool in the context of
Type Ia supernova observations to constrain the equation of state of
dark energy (Huterer & Starkman 2003; Huterer & Cooray 2005;
Crittenden, Pogosian & Zhao 2009; Clarkson & Zunckel 2010).

3.2 Basic theory of PCA

Consider a set of nobs observational data points labelled by Gα, α =
1, 2, . . . , nobs. Recall thatGα can represent combinations of different
data sets, e.g. in our case Gα = {log(�PI), τel, dNLL/dz}.

Now, let us assume that our model contains an unknown function
N ion(z), which we wish to constrain through observations. We can
divide our entire redshift interval [zmin, zmax] into (equal) bins of
width 	z and represent N ion(z) by a set of nbin discrete free param-
eters:

Nion(zi) ≡ Ni ; i = 1, 2, . . . , nbin, (12)

where

zi = zmin + (i − 1)	z, (13)

and the bin width is given by

	z = zmax − zmin

nbin − 1
. (14)

In other words, we have modelled reionization using the value of
N ion in each redshift bin. We can also include other free parameters
apart from N ion(zi) in the analysis, like the normalization of the
mean free path λ0, cosmological parameters etc. However, for the
moment let us assume that these parameters are fixed (known from
other observations) and concentrate on N ion(zi) only. We will address
the inclusion of other parameters later in this section.

The next step is to assume a fiducial model for N ion(zi), which
we denote by Nfid

ion (zi). The fiducial model should be chosen such
that it is close to the ‘true’ model. The departure from the fiducial
model is denoted by

δNion(zi) = Nion(zi) − Nfid
ion(zi) ≡ δNi. (15)

We can then construct the nbin × nbin Fisher matrix:

Fij =
nobs∑
α=1

1

σ 2
α

∂G th
α

∂Ni

∂G th
α

∂Nj

, (16)

where G th
α is theoretical value of Gα modelled using the Ni and σα is

the observational error on Gα . The derivatives in the above relation
are evaluated at the fiducial model Ni = Nfid

i .2

Once the Fisher matrix is constructed, we can determine its eigen-
values and corresponding eigenvectors. The principal value decom-
position is then given by the eigenvalue equation
nbin∑
j=1

FijSjk = λkSik, (17)

where λk are the eigenvalues and the eigenfunctions corresponding
to λk are the kth column of the matrix Sik, these are the principal
components of Ni. They can be thought of a function of z, i.e. Sik =
Sk(zi).

The eigenvalues λk are usually ordered such that λ1 ≥ λ2

≥ · · · ≥ λnbin , i.e. λ1 corresponds to the largest eigenvalue while
λnbin the smallest. The eigenfunctions are both orthonormal and
complete and hence we can expand any function of z as linear com-
binations of them. In particular we can expand the departure from
the fiducial model as

δNi =
nbin∑
k=1

mkSk(zi); mk =
nbin∑
i=1

δNion(zi)Sk(zi), (18)

2 It is worthwhile to mention that any analysis based on the Fisher matrix
Fij, in principle, depends on the fiducial model chosen. The PCA, which
essentially involves diagonalizing Fij, is thus dependent on the choice of
Nfid

i too. In this sense, the PCA is not completely model independent.
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where mk are the expansion coefficients with mk = 0 for the fiducial
model. We can now describe our model by the coefficients mk rather
than the original parameters δNi. The advantage is that, unlike Ni,
the coefficients mk are uncorrelated with variances given by the
inverse eigenvalue:

〈mi mj 〉 = 1

λi

δij . (19)

The accuracy with which we can determine δN ion at a particular zi

is determined by the Cramer–Rao bound:

〈
δN 2

ion(zi)
〉 ≥

nbin∑
k=1

S2
k (zi)

λk

. (20)

So, the largest eigenvalues correspond to minimum variance. The
eigenvalues which are smaller would essentially increase the un-
certainty in determining δN ion(zi). Hence, most of the information
relevant for the observed data points Gα is contained in the first few
modes with the largest eigenvalues. One may then attempt to recon-
struct the function δN ion(zi) using only the first M ≤ nbin modes:

δN
(M)
i =

M∑
k=1

mkSk(zi). (21)

However, in neglecting the last nbin − M terms, one introduces a bias
in determining δN ion(zi). One has to then use a carefully chosen M to
perform the analysis; the choice usually depends on the particular
problem in hand. We shall discuss our choice of M in the next
section.

In realistic situations, there will be other free parameters (apart
from mk or δNi) in the model; these could be e.g. the normalization
of the mean free path λ0, cosmological parameters etc. Let there be
next number of extra parameters other than mk; this means that we
are now dealing with a total of ntot = nbin + next parameters. In this
case, we can still form the Fisher matrix of ntot × ntot dimensions
which can be written as

F =
(

F B

BT F′

)
, (22)

where F is the nbin × nbin-dimensional Fisher matrix for the δNi, F′

is the next × next-dimensional Fisher matrix for the other parameters
and B is a nbin × next-dimensional matrix containing the cross-terms.
One can then invert the aboveF to obtain the corresponding Hessian
matrix T = F−1. Following that, one simply retains the sub-block
T corresponding to δNi whose principal components will be ‘or-
thogonalized’ to the effect of the other parameters. The resulting
‘degraded’ sub-block will be (Press et al. 1992)

F̃ = T−1 = F − BF′−1BT. (23)

In this work we keep the cosmological parameters fixed; however,
we still need to use the above formalism to marginalize over λ0. In
that case, obviously next = 1.

4 R ESULTS

The detailed results of our PCA are presented in this section.

4.1 Fiducial model

The first task is to make an assumption for the fiducial model Nfid
ion

(z). The model should match the �PI and dNLL/dz data points at z <

6 and also produce a τ el in the acceptable range. Unfortunately, the
simplest model with N ion being constant does not have these require-
ments (recall models with only Population II stars were disfavoured

in the previous section). We have found earlier that the effective
N ion should be higher at early epochs dominated by Population III
stars and should approach a lower value at z ∼ 6 determined by
Population II stars. In this work we take Nfid

ion to be the model given
by mean values of the free parameters in Section 2.2.

The choice of this Nfid
ion may seem somewhat arbitrary as there

could be many other forms of N ion which may match the data equally
well. We have chosen this to be our fiducial model because of the
following reasons: (i) it is obtained from a physically motivated
model of star formation which includes both metal-free and normal
stars; (ii) it is characterized by a higher N ion at higher redshifts and
hence produces a good match with different observations considered
in this work and (iii) the transition from higher to lower values is
smooth (i.e. there is no abrupt transition or sharp features). The
final conclusions of this work (to be presented later in the section)
would hold true for any fiducial model having these three properties
(though the actual functional form might be different). The match
with the data for our fiducial model is similar to fig. 2 of Choudhury
(2009).

We have run the reionization models over a redshift range [zmin :
zmax] = [0:30], with a bin width of 	z = 0.2. This gives nbin =
151. We have checked and found that our main conclusions are
unchanged if we vary the bin width between 0.1 and 0.5.

The Fisher matrix Fij defined in equation (16) is evaluated at
the fiducial model and is shown as a shaded plot in the z–z plane
in Fig. 2. First, the components of the matrix vanish for z < 2
because there are no data points considered at these redshifts. The
plot shows different characteristics for Fij at redshift intervals 2 <

z < 6 and z > 6. For z < 6, the values of Fij are considerably higher
because it is determined by the sensitivity of �PI and dNLL/dz on
N ion and it turns out that �PI is extremely sensitive to changes in
N ion. One can see a band-like structure in the information matrix
which essentially corresponds to the presence of data points. The
regions where data points are sparse (or non-existent, like between
z = 2 and 3), the value of Fij is relatively smaller, implying that one
cannot constrain N ion from the data in those redshift bins. On the
other hand, the information at z > 6 is determined by the sensitivity
of τ el on N ion. One can see that Fij → 0 at the highest redshifts
considered; this is expected because the collapsed fraction of haloes
is negligible at those redshifts and hence there exist no free electrons
to contribute to τ el. The precise redshift range at which Fij become
negligible depends on the (measured) value of τ el. For the WMAP7
measurements, we find that Fij is negligible for z > 14; if e.g. the
measured value of τ el were higher, Fij would be non-negligible

Figure 2. The Fisher matrix Fij in the z–z plane.

C© 2011 The Authors, MNRAS 413, 1569–1580
Monthly Notices of the Royal Astronomical Society C© 2011 RAS

 at Scuola N
orm

ale Superiore. B
iblioteca on February 10, 2014

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/
http://mnras.oxfordjournals.org/
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Figure 3. The inverse of the eigenvalues which essentially measures the
variance on the corresponding coefficient mi. For modes larger than five, the
eigenvalues are extremely small.

till relatively higher redshifts. We can thus conclude that it is not
possible to constrain any parameters related to star formation at
redshifts z > 14 using the data sets we have considered in this work.

Once we diagonalize the matrix Fij, we obtain its eigenvalues
and the corresponding eigenmodes. The inverse of the eigenvalues,
which are essentially the variances of the corresponding modes, is
plotted in Fig. 3. Since the eigenvalues λi are sorted in ascending
order, the variances are larger for higher modes. For modes i > 5, the
eigenvalues are almost zero and the variances are extremely large.
This implies that the errors on N ion would increase dramatically if
we include modes i > 5.

The first five eigenmodes which have the lowest variances are
shown in Fig. 4. Clearly, all these modes tend to vanish at z >

14, which is because of Fij being negligible at these redshifts. Also,
modes are identically zero at z < 2 because we have not used any data
points at these redshifts. The first four modes essentially trace the
sensitivity of �PI and dNLL/dz at z < 6 on the value of N ion. One can
see a number of spikes and troughs in these modes whose positions
correspond to the presence of data points and amplitudes correspond
to the error bars on these data points (smaller the error, larger the
amplitude). The shape of the fifth mode is vary much different from
the previous four. This mode essentially contains the behaviour of
N ion at z > 6 and hence it characterizes the sensitivity of τ el on N ion.
Since τ el is obtained by integrating the reionization history over the
whole redshift range, the sensitivity covers a wide range of redshifts
(which is unlike the sensitivity of �PI). The sensitivity is maximum
around z ≈ 8, which is determined by the nature of the fiducial
model. The sensitivity falls at z > 8 because there is a reduction in the
number of sources and free electrons. Interestingly the sensitivity
falls at z < 8 too which is due to the fact that reionization is mostly
complete at these redshifts xe → 1 and hence changing N ion does
not change the value of τ el significantly.

The modes with smaller eigenvalues have large variances and
hence introduce huge uncertainties in the determination of N ion.
The modes are characterized by sharp features at different redshifts
and they do not contain any significant information about the overall
reionization history.

Figure 4. The first five eigenmodes of the Fisher matrix, i.e. Sk(z); k =
1, . . . , 5.

4.2 Choice of the number of modes

The next step in our analysis is to decide on how many modes M
to use. In the case where M = nbin, all the eigenmodes are included
in the analysis and no information is thrown away. However, this
would mean that modes with very small eigenvalues (and hence
large uncertainties) are included and thus the errors in recovered
quantities would be large. Reducing M is accompanied by a reduc-
tion in the error, but an increased chance of getting the recovered
quantities wrong (which is known as bias).

It is thus natural to ask what could be the optimum value of M for
calculations. The most straightforward way, which is used often, is
to determine it by trial and error, i.e. more and more terms are added
till one gets some kind of convergence in the recovered quantities
(Mortonson & Hu 2008). Let us first work out the simplistic trial-
and-error approach to fix M and as we shall see that this would
be helpful in understanding recovery of various parameters using
PCA. We have already discussed that inclusion of modes >5 implies
drastic rise in the errors. Hence, it seems that M ≤ 5 would be a
good choice. The question is whether throwing away such a large
number of modes (nbin − M) would introduce large biases in the
recovered quantities.

In order to examine these issues in more detail, let us assume
that the underlying ‘true’ form of N ion is very different from the
fiducial model we have chosen and then try to estimate the errors
we make in recovering this underlying model using only the first
few modes. In order to put our method to test, it is then natural to
assume an underlying model which is noticeably different from the
fiducial one and study its recovery using only the first few modes.
Recall that the fiducial model represents a smoothly varying N ion, so
we assume the underlying input model to be one having an abrupt
transition e.g. a step function:

N inp
ion (z) = 10 for z < 7

= 40 for z ≥ 7. (24)
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Figure 5. Recovery of various quantities related to reionization when the input underlying model of Nion(z) is assumed to be a step function (shown by solid
lines). The extent of recovery is shown when the first three (short-dashed lines), five (long-dashed lines) and seven (short-long-dashed lines) PCA modes are
included in the analysis.

The parameters in the model are adjusted so that it matches with
observations of �PI and dNLL/dz at z < 6 and also gives the correct
observed value of τ el. The idea would be to check whether we are
able to recover quantities of interest with reasonable accuracy with
M = 5. The model chosen above is similar to the abrupt-transition
model considered in Choudhury & Ferrara (2005).

The results of our analysis are shown in Fig. 5 and in Table 2. In
the figure, we have plotted, as functions of redshifts, the six quanti-
ties relevant to reionization which we would like to recover, namely,
N ion (top left-hand panel), the photoionization rate �PI (top middle
panel), redshift distribution of Lyman-limit systems dNLL/dz (top
right-hand panel), electron scattering optical depth τ el (bottom left-
hand panel), the volume filling factor of ionized regions QH II (bottom
middle panel) and the globally averaged neutral hydrogen fraction
xH I (bottom right-hand panel). Different curves represent the input
step model (solid) and the recovered quantities for three values of
M = 3, 5 and 7 (short-dashed, long-dashed and short-long-dashed,
respectively). We have not shown results for intermediate values of
M (i.e. M = 4 and 6) because the difference between successive
plots is too small to be noticed. It is clear from the top left-hand
panel that the recovered N ion is excellent for z < 6 because the
fiducial and input models agree at these redshifts, which is a man-
ifestation of the fact that the value of N ion is highly constrained by
good quality data points at these redshifts. On the other hand, the

Table 2. The recovered quantities for a input model where Nion is repre-
sented by a step function when only the first M PCA modes are included in
the analysis.

Parameters Input value Recovered values
M = 3 M = 5 M = 7

z(QH II = 0.5) 9.817 9.722 10.004 9.728
z(QH II = 0.99) 8.337 6.311 7.875 8.037

recovery is quite poor for z > 6. This is because the evolution at
z > 6 is only weakly constrained by τ el. In particular at z > 14, the
modes are essentially zero and hence all models tend to the fiducial
one implying that it is impossible to recover N ion at z > 14 with the
first few modes.

The top middle and top right-hand panels show the corresponding
plots for the photoionization rate �PI and the redshift distribution
of Lyman-limit systems dNLL/dz, respectively. The input model
has a sharp feature around z ≈ 7 in both the quantities arising
mainly from the abrupt step in N ion. The reionization is complete
(QH II = 1) at z ≈ 8 after which the photoionization rate rises sharply
because of overlap of ionized regions and consequent rise in mean
free path (which manifests itself as a sharp drop in the number of
LLS). This rise in �PI is suddenly halted at z = 7 where we see
a sharp decline because of the corresponding step decline in N ion.
Following that, �PI settles to a smaller value (corresponding to a
smaller value of N ion) and subsequently shows a gradual rise arising
again from the rise in mean free path. Interestingly, this feature is
completely missing in the recovered model for M = 3 (and also
for M = 4, not shown in the figure). The feature shows up when
M is increased to 5, though the exact nature of this feature is not
identical to the input one. Increasing M to 7 introduces other sharp
features at z ∼ 10 which are not present in the input model. Of
course, the recovery at z > 14 is poor as most of the eigenmodes
hardly contain any information at these redshifts and the recovered
models simply follow the fiducial model. Hence, the recovery of
the photoionization rate and the LLS distribution is probably not
satisfactory overall, however, we can recover it with reasonable
accuracy for z < 12 by considering the first M = 5 modes.

The recovery of τ el is shown in the bottom left-hand panel. It
is clear that the recovery is good for all values of M. In most
reionization studies, the quantities of main interest are the QH II and
xH I, which are plotted in the bottom middle and bottom right-hand
panels, respectively. One can easily see from both the panels that
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that the agreement between the M = 3 case and the input model
is quite poor (which is the case for M = 4 as well). In particular,
reionization is complete at z ≈ 8.5 for the input model, while it
completes only at z ≈ 6 for M = 3 case (see Table 2). However, the
moment M is increased to 5, one has a remarkable match with the
input model, e.g. the difference in QH II is < 0.1 for z < 12 while
the difference is <10 per cent for z < 10. Unfortunately, we cannot
recover the sharp feature in xH I around z = 7 for the input model
(which corresponds to a similar feature in �PI, discussed above) for
the M = 5 case, however, the overall agreement with the input model
is still quite good. The agreement is further improved as we increase
M (to 7 in the plot) but that comes at the cost of increasing errors.
As far as recovering the basic reionization history (i.e. evolution of
QH II and xH I) is concerned, M = 5 seems to be the optimum choice.

It is important to point out that the recovery of various quan-
tities related to reionization is good (or excellent, in some cases)
even when the recovered value of N ion is incorrect. This may seems
surprising as it is the value of N ion that acts as a source for reion-
ization. To understand this apparent paradox, note that the recovery
of N ion is poor mostly at z > 12. At these redshifts the collapsed
fraction df coll/dt is typically small, hence the source emissivity
N iondf coll/dt → 0 at these epochs. Hence even if we change the
value of N ion, the absolute change in the emissivity is negligible and
hence the reionization process remains relatively unaffected. There
is another way of looking at it: the extent of recovery of various
quantities at z > 6 is determined by the behaviour of PCA modes
at z > 6 which, in turn, is determined by the data set related to τ el.
Now τ el is most sensitive to the ionized fraction QH II(z) at z > 6.
Hence, it is not surprising that QH II(z) would be nicely recovered at
these redshifts. Such arguments can be extended for other quantities
too. This also brings out the fact that in order to recover N ion(z) (and
thus star formation, escape fraction and chemical feedback) reli-
ably, one requires data points at z > 12 related to quantities which
are sensitive to N ion, like say, hypothetically, a good constraint on
�PI at z ∼ 12 can constrain N ion at those redshifts.

To summarize our results on recovering the input step model, the
recovery of all the quantities is excellent for z < 6. We find that
recovery of N ion at z > 6 is not satisfactory. The recovery of �PI at
z < 12 is quite reasonable by considering the first M = 5 modes.
Fortunately, the recovery of QH II and xH I turns out to be excellent
for M = 5. Hence we can use the coefficients mi of these five best-
constrained eigenmodes as our model parameters instead of N ion(zi)
without significant loss of information.

We should mention that the above analysis depends on the choice
of the input model which is taken to be the step function. In fact, the
recovery is better if the input N ion is a smoother function (provided
it satisfies the observational constraints, of course). In particular, all
models which are bracketed by the fiducial model and the step model
would end up giving good agreements for �PI, dNLL/dz, τ el, QH II

and xH I. Of course, if the input models have sharp features at some
particular redshift(s) z > 6, those features may not be recovered
satisfactorily by including only first few terms.

A slightly more formal approach is to estimate M by minimizing
the quantity risk, which is defined as (Wasserman et al. 2001)

R =
nbin∑
i=1

(
δN

(M)
i

)2
+

nbin∑
i=1

〈(
δN

(M)
i

)2
〉

. (25)

The first term in the right-hand side (RHS) is the bias contribution
which arises from neglecting the higher order terms, and the second
term is the uncertainty given by Cramer–Rao bound which rises as
higher order terms (i.e. those corresponding to smaller eigenvalues)

Figure 6. Dependence of risk, error and bias as defined in equation (25) on
the number of modes M. The blow-up of a region around M = 5 is shown
in the inset which shows that there is a clear minimum in the risk at M = 5.

are included

〈(
δN

(M)
i

)2
〉

≥
M∑

k=1

S2
k (zi)

λk

. (26)

However, the calculation of risk, as defined above, involves assump-
tion of an ‘underlying model’, hence the determination of M using
this method would be model dependent. Let us assume the underly-
ing model to be the same as equation (24). Then the dependence of
the risk on the number of modes M is shown in Fig. 6. In addition,
we also show the plots of bias (first term of the RHS in equation 25)
and the error (second term of the RHS in equation 25). It is clear
that the value of error is small for lower M which is a direct con-
sequence of small eigenvalues. The error shoots up drastically for
M > 5 which is what we discussed in the previous section. On the
other hand, the bias is higher for small M and decreases gradually
as more and more terms in the summation are included. The risk,
which is the sum of these two quantities, has a clear minimum at
M = 5 (which is more clear from the inset in Fig. 6). Hence we
conclude that M = 5 is the optimum value to be used.

The main conclusion of this section is that one needs five param-
eters to describe the reionization history which can be constrained
with the data considered in this paper. Out of these five, four param-
eters are required to describe the emissivity at z < 6 where most of
the data points exist; these parameters are the best-constrained ones.
The fifth parameter characterizes the evolution of N ion at z > 6 and
is essentially determined by the WMAP constraints of τ el. Inclusion
of more parameters would lead to overfitting of the data and hence
the constraints on the parameters would be highly uncertain.

4.3 Constraints on reionization history

The constraints on reionization are obtained by performing a Monte
Carlo Markov Chain (MCMC) analysis over the parameter space of
PCA amplitudes {m1, . . ., m5} and λ0. The cosmological parameters
are kept fixed to the WMAP7 best-fitting values. In order to carry
out the analysis, we have developed a code based on the publicly
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Table 3. The marginalized posterior probabilities with 95 per cent confi-
dence limits errors of all free parameters (top six parameters) and derived
parameters (from the seventh parameter down) for the reionization model
with PCA.

Parameters Mean value 95 per cent confidence limits

m1 0.002 [−0.002, 0.018]
m2 0.007 [−0.001, 0.032]
m3 −0.003 [−0.012, 0.004]
m4 0.003 [−0.003, 0.015]
m5 −0.065 [−0.276, 0.003]
λ0 4.450 [3.245, 5.906]

z(QH II = 0.5) 10.349 [9.528, 11.585]
z(QH II = 0.99) 8.357 [5.800, 10.270]

available COSMOMC3 (Lewis & Bridle 2002) (which is widely used
for running MCMC on CMB and other cosmological data sets).
To get accurate results from MCMC, we ensure that the parame-
ter chains contain enough independent samples over a sufficiently
large volume of parameter space so that the density of the samples
converges to the actual posterior probability distribution. We run
a number of separate chains (varying between 5 and 10) until the
Gelman and Rubin convergence statistics, R, corresponding to the
ratio of the variance of parameters between chains to the variance
within each chain, satisfies R − 1 < 0.01.

The mean values and the 95 per cent confidence limits on our
parameters obtained from our analysis are shown in Table 3. Our
fiducial model m1 = m2 = m3 = m4 = m5 = 0 is included within
the 95 per cent confidence limits of the parameters correspond-
ing to the eigenmode amplitudes, however, the mean values show
clear departures from the fiducial model. This implies that the
model characterized by the mean values of parameters, loosely men-
tioned as the ‘mean model’ hereafter, is different from the fiducial
one.

In order to see how different it is, we show the evolution of various
quantities related to reionization is shown in Fig. 7. The solid lines
represent the mean model while the shaded region corresponds to
95 per cent confidence limits. For comparison, we have also plotted
the fiducial model (short-dashed) and the step model (long-dashed)
which was introduced in Section 4.2. We find that the fiducial model
is within the 95 per cent confidence limits for the whole redshift
range, while the step model is within the 95 per cent confidence
limits for z < 10. Also note that the fiducial model is actually near
the edge of the shaded region, implying that there is a wide range
of models allowed by the data which are characteristically different
from the fiducial model.

The next point to note is that all the quantities are highly con-
strained at z < 6, which is expected as most of the observational
information related to reionization exists only at those redshifts.
The errors also decrease at z > 12 as there is practically no infor-
mation in the PCA modes and hence all models converge towards
the fiducial one. This implies that early stages of reionization are
almost similar independent of the N ion chosen. The most interesting
information regarding reionization is concentrated within a redshift
range 6 < z < 12.

It is very clear from the plot of N ion(z) (top left-hand panel) that
such quantity must necessarily increase from its constant value at
z < 6. This rules out the possibility of reionization with a single
stellar population having non-evolving IMF and/or star-forming

3 http://cosmologist.info/cosmomc/

efficiency and/or escape fraction. The value of N ion can be almost
40 times larger than its value at z < 6. Also note that N ion need not
be a monotonic function of z. For example, the mean model, which
is constant for z < 6, shows an increase for z > 6 followed by a
decrease at z ≈ 7. The plot shows a subsequent increase around z ≈
11, however, one should remember that the information contained
within eigenmodes are severely limited at these epochs.

From the plot of �PI(z) (top middle panel), we find that the mean
model is consistent with the observational data at z < 6, as expected.
The errors corresponding to 95 per cent confidence limits are also
smaller at z < 6 for reasons discussed above. The photoionization
rate for the fiducial model shows a smooth rise at z > 6 with a
peak around z ≈ 10, however, model described by the mean values
of the parameters shows a much sharper rise and much prominent
peak. The location of the peak is around z ∼ 6.5. The highest
value of �PI allowed by the data can be as high as 10−10 s−1 (95
per cent confidence level), which is about 100 times the values
typically observed at z < 6. The prominent peak-like structure is
also present in the dNLL/dz (top right-hand panel). Interestingly,
the high-�PI models predict that dNLL/dz ≈ 0 at z ∼ 6.5, hence any
sighting of LLS at these epochs would put more constraints on the
models.

The limits on τ el (bottom left-hand panel) are, as expected, similar
to the WMAP7 constraints. We find that the mean τ el is slightly
higher than the best-fitting WMAP7 value because a wide range of
models with early reionization is allowed by the data.

The constraints on the reionization history can be seen from the
plot of QH II(z) (bottom middle panel). The growth of QH II for the
fiducial model is somewhat gradual. On the other hand, the mean
model, which is characterized by sharp peak structures in N ion and
�PI at z > 6, shows a much faster rise in QH II at initial stages,
though the completion of reionization takes place only at z ≈ 6.
The shaded regions show that reionization can be complete as early
as z ≈ 10.5 (95 per cent confidence level). These models of early
reionization are essentially characterized by high N ion at 6.5 < z <

10 (so that enough contribution to τ el is achieved to match the
WMAP7 constraints) followed by a sharp decrease at z < 6.5 so that
the emissivity becomes low enough to match the photoionization
rate obtained from Lyα forest data.

Similar conclusions can be obtained from the plot of xH I(z) (bot-
tom right-hand panel). In general, the models allowed by the 95 per
cent confidence limits are consistent with the available data points
(shown by points with error bars). Models of very early reionization
(i.e. those with high N ion at 6.5 < z < 10) show sharp decrease in
xH I at z ≈ 10 and it can become as low as 10−6 at z ≈ 6.5. How-
ever, the neutral fraction has to increase sharply again at z < 6.5
(corresponding to sharp decrease in N ion) so as to match the Lyα

forest constraints. Thus the evolution of xH I is not monotonic for
these models. On the other hand, models with relatively smoothly
evolving N ion (ones similar to the fiducial model) show gradual de-
crease in xH I between 6 < z < 10 and it smoothly matches the Lyα

forest data. The evolution of the neutral fraction is thus monotonic
in such models with smoothly evolving N ion.

If we now go back to the lower portion of Table 3, we find
that reionization is 50 per cent complete between redshifts 9.6 and
12.0 (95 per cent confidence level), while it is almost (99 per cent)
complete between redshifts 5.8 and 10.6 (95 per cent confidence
level). Note that the lower limit on the redshift of reionization (5.8)
is imposed as a prior on the parameters.

Thus, the PCA shows that a wide range of reionization histories
is still allowed by the data. Reionization can be quite early or can
be gradual and late, depending on the behaviour of N ion(z). Hence,
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Figure 7. The marginalized posterior distribution of various quantities related to reionization history obtained from the PCA. The different quantities in the
panels are identical to those in Fig. 1. The solid lines correspond to the model described by mean values of the parameters while the shaded regions correspond
to 2σ limits. In addition, we show the properties of the fiducial model (short-dashed lines) and the step model used in Section 4.2 (long-dashed lines). The
points with error bars denote the observational data points which are identical to those in Fig. 1.

if one considers only the data we have used, it is practically impos-
sible to put any sensible constraints on chemical feedback and/or
the evolution of star-forming efficiencies and/or escape fractions.
While this might seem somewhat disappointing at the moment, one
can hope for much better constraints in near future when the magni-
tude of data sets are going to rise manifold. In fact, in order to keep
the analysis simple, we have not used all the data sets available.
For example, the constraints on the Lyα and Lyβ transmitted fluxes
now extend beyond z = 6 and possibly could constrain the models
much more. However, our numerical code takes significantly more
time while calculating the transmitted fluxes and also there remain
uncertainties in the theoretical modelling of the IGM at such red-
shifts (like the distribution of baryonic matter and the scatter in the
temperature–density relation); hence we have worked simply with
the constraints on �PI. Similarly the distribution of LLS at z > 6
could also be important in ruling out some of the allowed models. At
present, there exists a data point at z ≈ 6 which put limits dNLL/dz =
8.91 ± 3.49. On the other hand, very high emissivity models predict
dNLL/dz ≈ 0 at z ∼ 6.5. Hence constraints on LLS distribution at
z ∼ 6.5 can be helpful in shrinking the allowed parameter space
significantly.

We should also mention that the constraints obtained through the
PCA are widely different from those obtained using the chemical
feedback model of Section 2 involving Population II and Popula-
tion III stars. The model in Section 2 uses a particular prescription
for chemical feedback and assumes constant N ion,II, N ion,III, which
results in an effective N ion(z) which is smoothly evolving and mono-
tonically increasing with z. On the other hand, the models allowed
by the PCA do not have any physical constraint regarding how N ion

should evolve. It turns out that in absence of any physical moti-
vation, current data do allow for non-monotonic N ion which may
contain sharp features. Hence it is not surprising that the shapes of

the allowed models are quite different from the chemical feedback
models.

5 D I SCUSSI ON AND SUMMARY

In this work, we have used a semi-analytical model (Choudhury &
Ferrara 2005; Choudhury & Ferrara 2006b) to study the observa-
tional constraints on reionization. Assuming that reionization at z >

6 is primarily driven by stellar sources, we have developed a for-
malism based on PCA to model the unknown function N ion(z), the
number of photons in the IGM per baryon in collapsed objects. We
have used three different sets of data points, namely, the photoion-
ization rates �PI obtained from Lyα forest Gunn–Peterson optical
depth, WMAP7 data on electron scattering optical depth τ el and the
redshift distribution of Lyman-limit systems dNLL/dz at z ∼ 3.5.

The main findings of our analysis are as follows.

(i) The elements of the Fisher information matrix have larger
values for z < 6 where most of the data points are. There is hardly
any information at z > 14, implying that no information on star for-
mation and/or chemical feedback can be obtained at these redshifts
using the available three data sets.

(ii) To model N ion(z) over the range 2 < z < 14 it is necessary to
include five modes. Using a larger number of modes improves the
agreement but at the cost of increasing errors.

(iii) One may not be able to recover the actual form of N ion(z)
using only these five modes, however, the recovery of �PI and
dNLL/dz at z < 10 is quite satisfactory and that of QH II, xH I is
excellent.

(iv) It is not possible to match available reionization data with
a constant N ion over the whole redshift range, i.e. N ion must in-
crease at z > 6. This is a signature of either of a changing IMF
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induced by chemical feedback and/or evolution in the star-forming
efficiency and/or photon escape fraction of galaxies. The data allow
for non-monotonic N ion(z) (and consequently of xH I). In particular,
reionization histories could show sharp features around z ≈ 7.

(v) The PCA implies that reionization must be 99 per cent com-
pleted between 5.8 < z < 10.3 (95 per cent confidence level) and is
expected to be 50 per cent complete at z ≈ 9.5–12.

Our analysis provides the widest possible range in reionization
histories (shown in Fig. 7) allowed by available data sets. It is,
in some sense, unfortunate that there still exists a wide range of
reionization scenarios that are allowed by the data. While the con-
straints at z < 6 are quite tight, one requires additional data points
at z > 6 to improve constraints on models of feedback and reioniza-
tion. The most obvious addition would, of course, be observation
of Gunn–Peterson trough in more QSOs at higher redshifts. In par-
allel, it is expected that observations of gamma-ray bursts (GRBs)
and Lyα emitters could constrain xH I at z > 6, which again would
result in improved constraints. Finally, observations of large-scale
EE polarization signal by future CMB probes, like Planck,4 would
be extremely important in probing the evolution of N ion at z > 6.
Since the constraints obtained from the data are still unsatisfactory,
there remains ample scope for developing physically motivated the-
oretical models which can match a wide variety of available data.
This, in turn, requires significant improvement in our understand-
ing of processes like chemical feedback and also the evolution of
star-forming efficiencies and escape fraction.
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