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Abstract

We investigate the existence of a maximiser among open, bounded, convex sets in Rd, d ≥ 3
for the product of torsional rigidity and Newtonian capacity (or logarithmic capacity if d =
2), with constraints involving Lebesgue measure or a combination of Lebesgue measure and
perimeter.
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1 Introduction

The classic treatise of G. Pólya, G. Szegö, [17], displays a wealth of isoperimetric inequalities
involving quantities such as the principal eigenvalue of the Dirichlet Laplacian, moment of inertia,
capacity, perimeter etc. Many of the inequalities involve just two quantities like torsional rigidity
and measure (de Saint Venant’s inequality, (10) below), principal Dirichlet eigenvalue and measure
(Rayleigh Faber Krahn inequality), torsional rigidity and principal Dirichlet eigenvalue (Kohler-
Jobin inequality). In each of these inequalities the ball is optimal, and their stability has been
investigated in depth. See for example [5], and the references therein. Examples of inequalities
involving three quantities are numerous too. In this case it is convenient to display the various
inequalities in a Blaschke-Santalò diagram. See for example [2] and [16] for torsional rigidity,
principal Dirichlet eigenvalue and measure, and [12] for perimeter, principal Dirichlet eigenvalue,
and measure.

For example an inequality going back to Pólya (5.4 in [17] for the planar case) asserts that for
any open set with finite measure the product of torsional rigidity and principal Dirichlet eigenvalue
is bounded by the Lebesgue measure. In [3] it was shown that this inequality is sharp but that no
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optimal set exists. A more general functional was studied in [2]. There the principal eigenvalue
with the q-’th power of the torsional rigidity was studied among open sets with fixed Lebesgue
measure. For 0 < q < 2/(d + 2) the principal eigenvalue dominates the behaviour, and the ball
is the minimiser. On the other hand for q > 1 the torsional rigidity dominates the behaviour,
and the functional has a maximiser in the class of open, bounded, convex sets. Recently func-
tionals involving powers of the perimeter and torsional rigidity have been studied under a fixed
measure constraint, [6] and [7]. In order to guarantee well-posedness of the problem it suffices
to consider the collection of non-empty, open, bounded and convex sets. If d = 2 then the con-
vexity constraint could be relaxed by considering non-empty, open, bounded Lipschitz sets with a
topological constraint instead, [7].

A second example involves Newtonian capacity (or logarithmic capacity if d = 2), torsional
rigidity and measure. Unlike measure or torsional rigidity, capacity is not additive on disjoint
closed sets. In order to obtain well-posed and/or non-trivial examples, the class of admissible sets
is the collection of open, non-empty, bounded, convex sets in Rd.

The torsion function for a non-empty open set Ω ⊂ Rd with finite Lebesgue measure |Ω| is the
solution of

−∆u = 1, u ∈ H1
0 (Ω),

and is denoted by uΩ. The torsional rigidity of Ω, or torsion for short, is denoted by

T (Ω) = ∥uΩ∥1,

where ∥ · ∥p, 1 ≤ p ≤ ∞ denotes the usual Lp norm. The torsion satisfies the scaling property

T (tΩ) = td+2T (Ω), t > 0, (1)

where for any set A ⊂ Rd, tA = {tx : x ∈ A} is the homethety (scaling) of A by a factor t.
Let cap (K) denote the Newtonian capacity of a compact set K ⊂ Rd if d > 2 or the logarithmic

capacity if d = 2. It follows directly from its definition (see [15]) that for d > 2,

cap (tK) = td−2cap (K), t > 0. (2)

Let

G(Ω) =
T (Ω)cap (Ω)

|Ω|2
, (3)

where A denotes the closure of A. By (1) and (2) we obtain that G(Ω) is scaling invariant. It is
easily seen that G(Ω) is not bounded from above on the class of non-empty open sets with finite
measure. See Theorem 2 (i) in [1]. On the other hand it was shown in Theorem 2(iii) of [1] that
the variational problem

sup{G(Ω) : Ω non-empty, open, bounded and convex} (4)

has a maximiser for d = 3, and that any such maximiser, denoted by Ω+, satisfies

diam(Ω+)

r(Ω+)
≤ 2 · 38e3

7

, (5)

where diam(·) denotes diameter, and r(·) denotes inradius.
The proof of this result rests on the fact that if d = 3 then limn→∞G(Ωn) = 0 for a sequence

(Ωn) of elongated ellipsoids.

Below we outline our contribution to these and related problems.

Section 2 mainly concerns the analysis of the variational problem in (4). In Theorem 1 below
we obtain some characterisation in higher dimensions for elements of a maximising sequence. In
particular if d = 4 we show that there is at most one direction of elongation direction for such
sequences, and that the other three directions have comparable lengths. This however, is not
sufficient to prove existence of a maximiser of (4) for d = 4.
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In Theorem 2 we show that if we maximise G(Ω) over the collection of ellipsoids then (4) has
the ball as the unique maximiser. We use this to improve the upper bound for G(Ω) obtained in
Theorem 2(ii) in [1]. We also obtain an expression for G(Ω) in terms of its eccentricity in case Ω
is an ellipsoid. This in turn is used to prove that G(Ω) has a maximiser if the class of admissible
sets is well approximated by an ellipse containing Ω (Theorem 3).

Section 3 concerns the analysis of variational problems involving collections of planar sets
Ω ⊂ R2 with corresponding logarithmic capacity cap (Ω).

It was shown in [1] that if d = 2 and if q ≥ 1
2 , then the supremum for T (Ω)qcap (Ω) among

all open, planar, convex sets with fixed measure is finite (Theorem 4(i) in [1]). If q > 1
2 then the

supremum is achieved for some open convex set with the same measure. In Theorems 4 and 5 we
present results for the critical case q = 1

2 corresponding to Theorems 2 and 3 respectively. For
d = 2 we let

H(Ω) =
T (Ω)1/2cap (Ω)

|Ω|3/2
. (6)

Since logarithmic capacity scales as

cap (tΩ) = tcap (Ω), t > 0,

we see that H(Ω) is scaling invariant.

Finally, Section 4 concerns modifications of the functionals (3) and (6) involving the perimeter.
It is a well known fact that many variational problems with a perimeter constraint are easier to
handle than those with a measure constraint. See for example [10]. If we maximise G(Ω) or
H(Ω) over all open, convex sets with a fixed perimeter, then compactness in the Hausdorff metric
establishes the existence of a corresponding maximiser. In Theorems 6 and 7 we obtain results
which interpolate between the extremes of measure and perimeter constraints. It is shown that an
arbitrary small (positive) power of the perimeter in the denominators of (3) and (6) is sufficient
to establish the existence of maximisers. An estimate for the ratio of diameter and inradius is
obtained in terms of that power. That ratio diverges as the power decreases to 0.

Below we recall some basic facts about torsional rigidity and Newtonian capacity. It is con-
venient to extend uΩ to all of Rd by defining uΩ = 0 on Rd \ Ω. It is well known that uΩ is
non-negative, bounded, and monotone increasing with respect to Ω. That is if Ω1 is open and
non-empty, Ω2 is open with finite Lebesgue measure, then

Ω1 ⊂ Ω2 ⇒ uΩ1 ≤ uΩ2 .

It follows that
Ω1 ⊂ Ω2 ⇒ T (Ω1) ≤ T (Ω2). (7)

If E(a), with a = (a1, a2, . . . , ad) ∈ Rd
+, is the ellipsoid

E(a) =

{
x ∈ Rd :

d∑
i=1

x2i
a2i

< 1

}
,

then

uE(a)(x) =
1

2

( d∑
i=1

1

a2i

)−1(
1−

d∑
i=1

x2i
a2i

)
,

and

T (E(a)) =
ωd

d+ 2

( d∏
i=1

ai

)( d∑
i=1

1

a2i

)−1

, (8)

where

ωd =
πd/2

Γ((d+ 2)/2)
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is the Lebesgue measure of a ball B1 with radius 1 in Rd. We put

τd = T (B1) =
ωd

d(d+ 2)
. (9)

The de Saint-Venant inequality (see [17]) asserts that

T (Ω) ≤ T (Ω∗), (10)

where Ω∗ is any ball with |Ω| = |Ω∗|. It follows by scaling that

T (Ω)

|Ω|(d+2)/2
≤ τd

ω
(d+2)/d
d

=
1

d(d+ 2)ω
2/d
d

.

For various equivalent definitions of the Newtonian capacity of a compact set in Rd, d > 2, we
refer to [15]. If K1 ̸= ∅ and K2 are compact sets, then

K1 ⊂ K2 ⇒ cap (K1) ≤ cap (K2). (11)

It was reported in [13] p.260 that the Newtonian capacity of an ellipsoid was computed in volume
8, p.30 in [9]. The formula there is for a three-dimensional ellipsoid, and is given in terms of an
elliptic integral. It extends to all d ≥ 3, and reads

cap
(
E(a)

)
=

κd
d
2 − 1

e(a)−1, (12)

with

e(a) =

∫ ∞

0

dt

( d∏
i=1

(
a2i + t

))−1/2

, (13)

and where

κd = cap (B1) =
4πd/2

Γ((d− 2)/2)
. (14)

For further references and applications of (12)-(13) see [19] and [11].
The isoperimetric inequality for Newtonian capacity (see [17]) asserts that for all non-empty

compact sets K ⊂ Rd, d ≥ 3,
cap (K) ≥ cap (K∗),

where K∗ is any closed ball with |K| = |K∗|. It follows by scaling that

cap (K)

|K|(d−2)/d
≥ κd

ω
(d−2)/d
d

= d(d− 2)ω
2/d
d .

A measure of the asymmetry of an open, bounded, convex set in Rd can be given via the John’s
ellipsoid. John’s theorem [14], asserts the existence of a unique, open, convex ellipsoid E(d−1a)
with semi-axes d−1a1, ..., d

−1ad such that

E(d−1a) ⊂ Ω ⊂ E(a), (15)

and that among all ellipsoids in Ω, E(d−1a) has maximal measure. See also pp.13–18 in [4].

We remark that without the convexity constraint in (4) we have for d ≥ 3,

sup{G(Ω) : Ω non-empty, open and bounded} = +∞. (16)

To see this we let for k ∈ N,
Ωk = ∪k

j=1Brj (xj),

rj = j−β , j ∈ {1, 2, ..., k},
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and where the xj are such that |xi − xj | ≥ (10k)!, i ̸= j, (i, j) ∈ {1, 2, ..., k}2. Then, for β ∈
(d−1, (d− 2)−1), |Ωk| ≤ ωdζ(βd) < ∞. By (7) and definition (9), T (Ωk) ≥ T (B1) = τd. Since the
balls in Ωk are increasingly well separated as k becomes large, the Newtonian capacity of this finite
union is approximately additive, and approximately equal to the sum of the capacities of the balls
in Ωk. Hence by (2) and (14),

cap (Ωk) ≥
k∑

j=1

κdj
−β(d−2)

(
1− o(1)

)
, k → ∞.

Combining the inequalities above we obtain by (3),

sup{G(Ω) : Ω non-empty, open and bounded}
≥ G(Ωk)

≥ G(B1)ζ(βd)
−2

k∑
j=1

κdj
−β(d−2)

(
1− o(1)

)
,

which tends to +∞ for k → ∞. This implies (16).
A similar construction works for the functional H, and also for the functionals Gα, Hα (with

appropriate choices of β) considered in Sections 3 and 4 respectively.

2 Measure constraint

Theorem 1 below reduces the geometrical complexity of elements in a maximising sequence for G
with a measure constraint.

Theorem 1. Let Ω be an element of a maximising sequence of the variational expression defined
in (4), with G(Ω) ≥ G(B1), and with John’s ellipsoid E(d−1a). Let πΩ(a) = (b1, ..., bd) be a
permutation of a ∈ Rd

+ such that b1 ≥ b2 ≥ ... ≥ bd. If d ≥ 3, then

bd−2

bd
≤ e2

(d−2)/2d2d+1/(d−2). (17)

Proof. By (8)

T (Ω) ≤ T (E(a)) ≤ dτd

(∏
i≤d

bi

)
b2d, (18)

and by (15)

|Ω| ≥ |E(d−1a)| = d−dωd

∏
i≤d

bi. (19)

Throughout we let ci = b−2
i , i = 1, ..., d. By (13),

e(a) =

(∏
i≤d

bi

)−1 ∫ ∞

0

dt
∏
i≤d

(1 + cit)
−1/2

≥
(∏

i≤d

bi

)−1 ∫ ∞

0

dt (1 + cdt)
−1

∏
i≤d−2

(1 + cit)
−1/2

≥
(∏

i≤d

bi

)−1 ∫ ∞

0

dt (1 + cdt)
−1(1 + cd−2t)

(2−d)/2

=

(∏
i≤d

bi

)−1

b2d−2

∫ ∞

0

dt

(
1 +

cd
cd−2

t

)−1

(1 + t)(2−d)/2

(20)
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≥
(∏

i≤d

bi

)−1

b2d−2

∫ 1

0

dt

(
1 +

cd
cd−2

t

)−1

(1 + t)(2−d)/2

≥ 2(2−d)/2

(∏
i≤d

bi

)−1

b2d−2

∫ 1

0

dt

(
1 +

cd
cd−2

t

)−1

= 2(2−d)/2

(∏
i≤d

bi

)−1

b2d log

(
1 +

b2d−2

b2d

)
. (21)

By (12), (18), (19) and (20),

G(Ω) ≤ 2d/2d2d+1

d− 2

τdκd
ω2
d

(
log

(
1 +

b2d−2

b2d

))−1

. (22)

By hypothesis

G(Ω) ≥ G(B1) =
κdτd
ω2
d

. (23)

By (22) and (23),

1 ≤ 2d/2d2d+1

d− 2

(
log

(
1 +

b2d−2

b2d

))−1

.

This implies
b2d−2

b2d
≤ e2

d/2d2d+1/(d−2),

which in turn implies (17).

In the statement and proof of Theorem 2 below it is convenient to denote the eccentricity for
an ellipse E(a) ⊂ Rd by

C(a) =
1

d− 1

d∑
i=2

b21
b2i
. (24)

We note that C(a) ≥ 1, with equality if and only if E(a) is a ball. Furthermore we have

C(a) ≥ b21
(d− 1)b2d

.

Theorem 2. Let Ed denote the collection of open ellipsoids in Rd.

(i) If d ≥ 3, then
sup{G(Ω) : Ω ∈ Ed} = G(B1), (25)

and the supremum in the left-hand side of (25) is achieved if and only if Ω is a ball.

(ii) If d ≥ 3, then

sup{G(Ω) : Ω non-empty, open, bounded and convex} ≤ d2dG(B1). (26)

(iii) If d ≥ 4, then

G(E(a)) ≤ G(B1)
d(d− 3)

(d− 1)(d− 2)

(
1− 1

1 + C(a)1/2

)−1

. (27)

Proof. (i) By (12) and (13),

cap (E(a)) =
κd

∏
i≤d bi

d
2 − 1

(∫ ∞

0

dt
∏
i≤d

(
1 +

t

b2i

)−1/2
)−1

. (28)
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By (8) and (28),

G(E(a)) =
κdτd
ω2
d

2d

d− 2

(∫ ∞

0

dt
c1 + ...+ cd

((1 + c1t)...(1 + cdt))1/2

)−1

. (29)

By the geometric-arithmetic mean inequality,

((1 + c1t)...(1 + cdt))
1/2 ≤

(
1

d

d∑
i=1

(1 + cit)

)d/2

=

(
1 +

c1 + ...+ cd
d

t

)d/2

. (30)

The change of variable

θ =
c1 + ...+ cd

d
t, (31)

yields by (29), (30) and (31),

G(E(a)) ≤ κdτd
ω2
d

2

d− 2

(∫ ∞

0

dθ (1 + θ)−d/2

)−1

= G(B1).

By scaling invariance G(B1) = G(Br), r > 0. Since Br ∈ Ed, Br is a maximiser. To prove the if
and only if part of the assertion we note that we have equality in (32) if and only if all ci’s are
equal. That is if and only if Ω is a ball.

(ii) By (15) and monotonicity of |Ω|, T (Ω) and cap (Ω), we obtain

G(Ω) ≤ T (E(a))cap (E(a))

|E(d−1a)|2

= d2d
T (E(a))cap (E(a))

|E(a)|2

≤ d2dG(B1),

where we have used (i) in the final inequality.
(iii) By the geometric-arithmetic mean inequality

((1 + c2t)...(1 + cdt))
1/2 ≤

(
1

d− 1

d∑
i=2

(1 + cit)

)(d−1)/2

=

(
1 +

c2 + ...+ cd
d− 1

t

)(d−1)/2

. (32)

By (29), (32), and the change of variables θ = c1C(a)t,

G(E(a)) ≤ G(B1)
2dC(a)

(d− 2)(1 + (d− 1)C(a))

×
(∫ ∞

0

dθ
(
1 + C(a)−1θ

)−1/2
(1 + θ)(1−d)/2

)−1

≤ G(B1)
2d

(d− 1)(d− 2)

(∫ ∞

0

dθ
(
1 + C(a)−1θ

)−1/2
(1 + θ)(1−d)/2

)−1

. (33)
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An integration by parts yields∫ ∞

0

dθ
(
1 + C(a)−1θ

)−1/2
(1 + θ)(1−d)/2

=
2

d− 3

(
1−

∫ ∞

0

dθ

2C(a)
(1 + θ)(3−d)/2

(
1 + C(a)−1θ

)−3/2
)

≥ 2

d− 3

(
1−

∫ ∞

0

dθ

2C(a)
(1 + θ)−1/2

(
1 + C(a)−1θ

)−3/2
)

=
2

d− 3

(
1− 1

2

∫ ∞

0

dθ (1 + C(a)θ)−1/2
(
1 + θ

)−3/2
)

=
2

d− 3

(
1− 1

1 + C(a)1/2

)
, (34)

where the final integral in the right-hand side of (37) has been evaluated using the change of
variables 1 + θ = ψ−2. Theorem 2(iii) follows by (33) and (34).

It is easily seen, by considering the ellipsoid E(a) with a = (b1, 1, ..., 1) and by letting b1 → ∞,

that the factor d(d−3)
(d−1)(d−2) in the right-hand side of (27) is sharp.

Below we shall state and prove the existence of a maximiser for G on a suitable class of open,
convex sets with fixed measure ωd. Let ε > 0, and let

Ed(ε) = {Ω ⊂ Rd open, convex : |Ω| = ωd,
(
∃E ∈ Ed, |E| ≤ ωd(1 + ε), Ω ⊂ E

)
}, (35)

be the collection of all open, convex sets in Rd with fixed measure ωd which are contained in an
ellipsoid of measure at most ωd(1+ ε). As we have the existence of a convex maximiser for the full
variational problem (4) if d = 3, we subsequently only consider the case d ≥ 4. Our main existence
result, stated below, is for small ε.

Theorem 3. If d ≥ 4, and if

ε <

(
(d− 1)(d− 2)

d(d− 3)

)1/2

− 1, (36)

then the variational problem
gd(ε) := sup{G(Ω) : Ω ∈ Ed(ε)} (37)

has an open, convex maximiser Ωε with measure ωd, and with

diam(Ωε)

r(Ωε)
≤ 2d

(
d(d− 1)d(d− 2)

d− 3

)1/2(
1− d(d− 3)

(d− 1)(d− 2)
(1 + ε)2

)1−d

. (38)

We see that the upper bound in (38) diverges as ε increases to the critical value in the right-hand
side of (36).

Proof. By (26),
gd(ε) ≤ d2dG(B1).

If gd(ε) = G(B1), then B1 ∈ Ed(ε) is a maximiser which satisfies (38), and there is nothing to prove.
If gd(ε) > G(B1), then let (Ωn) be a maximising sequence with Ωn ∈ Ed(ε), n ∈ N. We may assume
that G(Ωn) > G(B1), n ∈ N, and that (G(Ωn)) is increasing. Let Ωn ∈ Ed(ε), Ωn ⊂ E(a(n)), with
|E(a(n))| ≤ ωd(1 + ε). By monotonicity of both torsion and Newtonian capacity,

G(Ωn) =
cap (Ωn)T (Ωn)

|Ωn|2

≤ cap (E(a(n)))T (E(a(n)))

|Ωn|2

≤ cap (E(a(n)))T (E(a(n))

|E(a(n))|2
(1 + ε)2

= G(E(a(n)))(1 + ε)2. (39)
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We denote the eccentricity for E(a(n)), defined in (24), by C(a(n)).
We have the following dichotomy: (i) limn→∞ C(a(n)) = +∞ or C(a(n)) has a convergent

subsequence, again denoted by C(a(n)), with limn→∞ C(a(n)) = c, where c ∈ [1,∞). This in turn
implies that, for a suitable subsequence, each of the quotients defining C(a(n)) converges. We write

limn→∞ C(a(n)) = C(a) = 1
d−1

∑d
i=2 limn→∞

(
b
(n)
1 /b

(n)
i

)2
. We now consider the two cases of the

dichotomy.
(i) By Theorem 2,

lim
n→∞

G(Ωn) ≤ G(B1)
d(d− 3)

(d− 1)(d− 2)
(1 + ε)2 lim sup

n→∞

(
1− 1

1 + C(a(n))1/2

)−1

= G(B1)
d(d− 3)

(d− 1)(d− 2)
(1 + ε)2

< G(B1),

by the hypothesis (36) on ε. This contradicts the assumption that G(Ωn) > G(B1), n ∈ N, and
that (G(Ωn)) is increasing.

(ii) By Theorem 2, (39) and the hypothesis on C(a(n)),

lim
n→∞

G(Ωn) ≤ G(B1)
d(d− 3)

(d− 1)(d− 2)
(1 + ε)2

(
1− 1

1 + C(a)1/2

)−1

. (40)

The left-hand side of (40) is strictly greater than G(B1). This gives

C(a) ≤
(
1− d(d− 3)

(d− 1)(d− 2)
(1 + ε)2

)−2

.

We have, using (24),

lim
n→∞

b
(n)
1

b
(n)
i

≤ (d− 1)1/2
(
1− d(d− 3)

(d− 1)(d− 2)
(1 + ε)2

)−1

, i = 2, ..., d. (41)

Denote the constant in the right-hand side of (41) by c. Since

1 + ε ≥
d∏

i=1

b
(n)
i = (b

(n)
1 )d

d∏
i=1

b
(n)
i

b
(n)
1

, n ∈ N, (42)

we have by (41) and (42)

1 + ε ≥ c1−d lim sup
n→∞

(b
(n)
1 )d.

By extracting a further subsequence and relabeling limn→∞ b
(n)
1 = b1. Since all quotients converge,

limn→∞ b
(n)
i = bi, i = 1, ..., d. Hence

lim sup
n→∞

diam(Ωn) = lim sup
n→∞

diam(Ωn)

≤ 2b1

≤ 2c(d−1)/d(1 + ε)1/d

≤ 2

(
(d− 1)(d− 2)

d(d− 3)

)1/(2d)

c(d−1)/d. (43)

The right-hand side of (43) depends on d and on ε only. So there exists a subsequence of possible
translates of (Ωn) which converges both in the Hausdorff metric and the complementary Hausdorff
metric to some compact convex set Ωε. Since measure and diameter are continuous |Ωε| = |Ωε| =
ωd, and

diam(Ωε) ≤ 2

(
(d− 1)(d− 2)

d(d− 3)

)1/(2d)

c(d−1)/d. (44)
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Moreover since both capacity and torsional rigidity are continuous set functions in these metrics on
the class of bounded convex sets (see for example Chapter 4 in [8]) we have that Ωε is a maximiser
possibly dependent upon ε.

For an open set Ω ⊂ Rd we denote its perimeter by P (Ω). By Proposition 2.4.3 (iii) and (i) in
[8] we have for an open, bounded and convex Ω,

|Ω| ≤ r(Ω)P (Ω)

≤ r(Ω)P (Bdiam(Ω))

= dωdr(Ω)diam(Ω)d−1, (45)

where we have used that Ω is contained in a ball of radius diam(Ω). Applying (45) to the convex
set Ωε with |Ωε| = ωd yields

diam(Ωε)

r(Ωε)
≤ ddiam(Ωε)d. (46)

This implies (38) by (44), (45) and the definition of c.

The right-hand side of (38) diverges as ε increases to the right-hand side of (36). Note that
ε 7→ G(Ωε) is non-decreasing. It would be interesting to show that the map is constant on [0, δ) for
some possibly small δ > 0. This, together with Theorem 2(i), would support the conjecture that
B1 ⊂ Rd is a maximiser of the right-hand side of (3) on the collection of open, bounded, convex
sets in Rd, d ≥ 3.

We obtain very similar results if we change the ωd’s in the right-hand side of (35) by some fixed

constant v, v > 0. The convex maximiser Ωε,v then has measure v, and diam(Ωε,v)
r(Ωε,v) is bounded from

above by the right-hand side of (38).

3 Logarithmic capacity

In this section we denote by cap (·) the logarithmic capacity, defined on the class of compact sets
in R2, and recall its definition below. Let µ be a probability measure supported on K, and let

I(µ) =

∫∫
K×K

log
( 1

|x− y|

)
µ(dx)µ(dy).

Furthermore let
V (K) = inf

{
I(µ) : µ a probability measure on K

}
.

The logarithmic capacity of K is denoted by cap (K), and is the non-negative real number

cap (K) = e−V (K).

The logarithmic capacity is an increasing set function, and satisfies (11) for compact sets K1

and K2. For an ellipsoid with semi-axes a1 and a2,

cap (E(a)) =
1

2
(a1 + a2). (47)

See [15].
The results forH, defined in (6), below are the planar versions of Theorems 2 and 3 respectively.

Theorem 4. Let E2 denote the collection of open ellipses in R2. Then

(i)
sup{H(Ω) : Ω ∈ E2} = H(B1), (48)

and the supremum in the left-hand side of (48) is achieved if and only if Ω is a ball.

(ii)
sup{H(Ω) : Ω non-empty, open, bounded, planar and convex} ≤ 8H(B1). (49)
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(iii) If b1 ≥ b2, then

H(E(b1, b2)) ≤ 2−1/2H(B1)

(
1 +

b2
b1

)
.

Proof. (i) By (8), (47) and Ω = E(b1, b2),

H(E(b1, b2)) =
b1 + b2

4π(b21 + b22)
1/2

≤ 2−3/2π−1 = H(B1). (50)

By scaling invariance H(B1) = H(Br), r > 0. Since Br ∈ E2, Br is a maximiser. To prove the if
and only if part of the assertion we note that we have equality in (50) if and only if b1 = b2. That
is if and only if E is a ball.

(ii) By (48) and monotonicity of |Ω|, T (Ω) and cap (Ω), we obtain

H(Ω) ≤ T (E(a))1/2cap (E(a))

|E(2−1a)|3/2

= 8
T (E(a))1/2cap (E(a))

|E(a)|3/2

≤ 8H(B1),

where we have used (i) in the final inequality.
(iii) By (50)

H(E(b1, b2)) =
1 + b2

b1

4π

(
1 +

b22
b21

)1/2

≤ (4π)−1

(
1 +

b2
b1

)
= 2−1/2H(B1)

(
1 +

b2
b1

)
.

Theorem 5. If
ε < 21/3 − 1 (51)

then the variational problem
h(ε) := sup{H(E) : E ∈ E2(ε)} (52)

has an open, convex maximiser Ωε with measure ω2, and with

diam(Ωε)

r(Ωε)
≤ 211/3

21/3 − 1− ε
. (53)

The strategy of the proof is along similar lines to the proof of Theorem 3. The computations
are as follows.

Proof. By (49),
h(ε) ≤ 8H(B1).

By domain monotonicity of both T and cap on the class of convex sets, we have for Ω ∈ E2(ε) by
Theorem 4,

H(Ω) ≤ T (E(a))1/2cap (E(a))

|Ω|3/2

≤ T (E(a))1/2cap (E(a))

|E(a)|3/2
(1 + ε)3/2

= 2−1/2H(B1)

(
1 +

b2
b1

)
(1 + ε)3/2.

11



If h(ε) = H(B1), then B1 ∈ E2(ε) is a maximiser of (52) which satisfies (53), and there is nothing to
prove. If h(ε) > H(B1), then let (Ωn) be a maximising sequence with Ωn ∈ E(ε), n ∈ N. We may
assume that H(Ωn) > H(B1), n ∈ N, and that (H(Ωn)) is increasing. Let E(a(n)) ∈ E2(ε), Ωn ⊂
E(a(n)), and let

b(n) =
b
(n)
2

b
(n)
1

, n ∈ N.

We have the following dichotomy. (i) lim infn→∞ b(n) = 0. (ii) lim infn→∞ b(n) = b > 0.
(i) By choosing a further subsequence we may assume that limn→∞ b(n) = 0. By (53) and (51),

H(B1) < lim
n→∞

H(Ωn)

≤ lim
n→∞

2−1/2H(B1)
(
1 + b(n)

)
(1 + ε)3/2

= 2−1/2H(B1)(1 + ε)3/2

< H(B1),

which is impossible.
(ii) By choosing a further subsequence we may assume that limn→∞ b(n) = b > 0. By Theorem

4(ii)

H(B1) < lim
n→∞

H(Ωn)

≤ 2−1/2H(B1)
(
1 + b

)
(1 + ε)3/2.

This gives
b > 21/2(1 + ε)−3/2 − 1. (54)

We obtain by (54),

1 + ε ≥ lim sup
n→∞

b
(n)
1 b

(n)
2

≥
(
21/2(1 + ε)−3/2 − 1

)
lim sup
n→∞

(b
(n)
1 )2. (55)

Hence the sequence (b
(n)
1 ) is bounded from above, and there exists a convergent subsequence, again

denoted by (b
(n)
1 ), with limn→∞ b

(n)
1 = b1. Existence of a maximiser follows the lines below (43).

Since limn→∞ b(n) = b > 0 we have b2 = bb1. By (55), the first two lines in (43) and (46), we have

diam(Ωε)

r(Ωε)
≤ 8b21 ≤ 8(1 + ε)

21/2(1 + ε)−3/2 − 1
,

which implies (53) by (51).

The right-hand side of (53) diverges as ε increases to the right-hand side of (51).

4 Perimeter and measure constraints

In this section we investigate the maximisation of

Gα(Ω) =
T (Ω)cap (Ω)

|Ω|αP (Ω)d(2−α)/(d−1)
, (56)

where d ≥ 3 and 0 ≤ α ≤ 2. Recall that P scales as

P (tΩ) = td−1P (Ω), t > 0. (57)

By (1), (2) and (57), we see that Gα is scaling invariant. The functional interpolates between the
two cases α = 2 (which was investigated in Section 2), and α = 0. We see from the results below
that the presence of a perimeter term in Gα guarantees the existence of a maximiser.

12



Theorem 6. (i) Let Ed denote the collection of open ellipsoids in Rd. If d ≥ 3 and 0 ≤ α ≤ 2,
then

sup{Gα(Ω) : Ω ∈ Ed} = Gα(B1), (58)

and the supremum in the left-hand side of (58) is achieved if and only if Ω is a ball.

(ii) If d ≥ 3 and 0 ≤ α ≤ 2, then

sup{Gα(Ω) : Ω non-empty, open, bounded and convex} ≤ d2dGα(B1). (59)

(iii) If 0 ≤ α < 2, then the variational problem in the left-hand side of (59) has a maximiser. If
Ωα is such a maximiser, then

diam(Ωα)

r(Ωα)
≤ 2d(2d

2+2d−2dα+2−α)/(2−α). (60)

Proof. (i) By the isoperimetric inequality

P (Ω) ≥
( |Ω|
|B1|

)(d−1)/d

P (B1), (61)

(56), and (25),

sup{Gα(Ω) : Ω ∈ Ed} ≤
(
|B1|(d−1)/d

P (B1)

)d(2−α)/(d−1)

sup{G(Ω) : Ω ∈ Ed}

=

(
|B1|(d−1)/d

P (B1)

)d(2−α)/(d−1)

G(B1)

=

(
|B1|(d−1)/d

P (B1)

)d(2−α)/(d−1)
κdτd
|B1|2

= Gα(B1). (62)

By scaling invariance Gα(B1) = Gα(Br), r > 0. Since Br ∈ Ed, Br is a maximiser. To prove the
if and only if part of the assertion we note that by the assertion of Theorem 2(i) we have equality
in (62) if and only if we have equality both in (61). That is if and only if Ω is a ball.

(ii) By (26) and (61),

Gα(Ω) = G(Ω)|Ω|2−αP (Ω)d(α−2)/(d−1)

≤ d2dG(B1)|Ω|2−αP (Ω)d(α−2)/(d−1)

≤ d2dG(B1)|B1|2−αP (B1)
d(α−2)/(d−1)

= d2dGα(B1). (63)

This implies the assertion.
(iii) To prove the existence of a maximiser, we observe that if the left-hand side of (59) equals

Gα(B1), then B1 is a maximiser which satisfies (60). If the left-hand side of (59) is greater than
Gα(B1), we let Ω be non-empty, bounded, open, and convex, and such that

Gα(Ω) ≥ Gα(B1). (64)

By the first inequality in (45) and (63),

Gα(Ω) ≤ d2dG(B1)

(
r(Ω)d

|Ω|

)(2−α)/(d−1)

. (65)

By (65) and (64), (
|Ω|
r(Ω)d

)(2−α)/(d−1)

≤ d2d
G(B1)

Gα(B1)

= d2d
(
ddωd

)(2−α)/(d−1)
. (66)
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Since E(d−1a) ⊂ Ω ⊂ E(a), we have

|Ω| ≥ d−d|E(a)| = ωdd
−d

∏
i≤d

bi ≥ ωdd
−dbd−1

d b1, (67)

and
r(Ω) ≤ bd. (68)

By (66), (67) and (68), we find
b1
bd

≤ d2d(d+1−α)/(2−α).

Since diam(Ω) ≤ 2b1 and r(Ω) ≥ d−1bd, we arrive at

diam(Ω)

r(Ω)
≤ 2d(2d

2+2d−2dα+2−α)/(2−α). (69)

Hence an element Ω of a maximising sequence satisfies (68), and so does Ω. Without loss of
generality we may fix r(Ω) = 1. Hence translates of elements of a maximising sequence with fixed
inradius 1 are contained in a large closed ball with a radius dependent on d and on α. We now
have the standard compactness result of the Hausdorff metric on the compact sets to arrive at the
conclusion of the third part of Theorem 6.

Let d = 2, 0 ≤ α ≤ 3
2 , and let

Hα(Ω) =
T (Ω)1/2cap (Ω)

|Ω|αP (Ω)3−2α
, (70)

where cap denotes logarithmic capacity. We investigate the maximisation problem of (70). In
Theorem 5 we saw that a maximiser exists for α = 3

2 , and the constraint Ω ∈ E2(ε). Theorem 7
below interpolates between α = 3

2 and α = 0.

Theorem 7. Let d = 2.

(i) Let E2 denote the collection of open ellipses in R2. If 0 ≤ α ≤ 2, then

sup{Hα(Ω) : Ω ∈ E2} = Hα(B1), (71)

and the supremum in the left-hand side of (71) is achieved if and only if Ω is a ball.

(ii) If 0 ≤ α ≤ 3
2 , then

sup{Hα(Ω) : Ω non-empty, open, bounded, planar and convex} ≤ 22απ3−2αHα(B1). (72)

(iii) If 0 ≤ α < 3
2 , then the variational problem in the left-hand side of (72) has a maximiser. If

Ωα is any such maximiser, then

diam(Ωα)

r(Ωα)
≤ 2(3+2α)/(3−2α)π2. (73)

(iv) If α = 0, then the variational problem

sup
{
H0(Ω) : Ω open, planar, connected, 0 < |Ω| <∞

}
,

has a maximiser. Any such maximiser is also a maximiser of (72) for α = 0, and henceforth
satisfies (73).
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Proof. (i) Following (62) we have, by (48), (61) and (70),

sup{Hα(Ω) : Ω ∈ E2} ≤
(
|B1|1/2

P (B1)

)3−2α

sup{H(Ω) : Ω ∈ E2}

=

(
|B1|1/2

P (B1)

)3−2α

H(B1)

= Hα(B1).

(ii) By the isoperimetric inequality (61) with d = 2, John’s theorem with E(a/2) ⊂ Ω ⊂ E(a),
b1 ≥ b2, and (47), we have cap (Ω) ≤ cap (E(a)) ≤ 1

2 (b1 + b2). Furthermore |Ω| ≥ |E(2−1a)| ≥
πb1b2/4. Since the ellipse E(2−1a) contains a rhombus with axes of length b1 and b2 respectively,
we have

P (Ω) ≥ P (E(2−1a)) ≥ 2(b21 + b22)
1/2. (74)

So by (8) for d = 2,

T (Ω)1/2 ≤
(

πb31b
3
2

4(b21 + b22)

)1/2

≤
(

π(b1b2)
3

2(b1 + b2)2

)1/2

. (75)

By (70), (75) and the inequalities preceding (75),

Hα(Ω) ≤ 2(8α−9)/2π(1−2α)/2

(
b2
b1

)(3−2α)/2

.

This, together with the fact that

Hα(B1) = 2(4α−9)/2π(2α−5)/2, (76)

yields

Hα(Ω) ≤ 22απ3−2αHα(B1)

(
b2
b1

)(3−2α)/2

.

This implies (72).
(iii) If the supremum in (72) equals Hα(B1), then B1 is a maximiser, which satisfies (73).

Otherwise let (Ωn) be a maximising sequence with (Hα(Ωn)) increasing and Hα(Ωn) > Hα(B1).
If Ω is an element of that maximising sequence, then its John’s ellipsoid satisfies

b1
b2

≤ 24α/(3−2α)π2. (77)

Hence by (77)
diam(Ω)

r(Ω)
≤ diam(E(a))

r(E(2−1a))
≤ 2b1

b2
≤ 2 · 24α/(3−2α)π2,

which gives (73). Existence of a convex maximiser follows the same lines as for example those of
Theorems 3 and 6.

(iv) Since convex sets are connected,

sup
{
H0(Ω) : Ω open, convex, 0 < |Ω| <∞

}
≤ sup

{
H0(Ω) : Ω open, planar, connected, 0 < |Ω| <∞

}
.

To prove the converse we let Ω be open, connected and bounded in R2 with 0 < P (Ω) < ∞. Let
Ω∗ be the interior of the convex envelope of Ω. Then

T (Ω) ≤ T (Ω∗), cap (Ω) ≤ cap (Ω∗), P (Ω) ≥ P (Ω∗),

and Ω∗ is open, bounded and convex. Hence

H0(Ω) ≤ H0(Ω
∗) ≤ sup

{
H0(Ω

∗) : Ω open, convex in R2 with |Ω∗| <∞
}
. (78)

Taking the supremum over all Ω in the left-hand side of (78) which are open, connected and
bounded in R2 gives the required inequality. If Ω0 is a maximiser of H0, then it is open, bounded
and connected. The assertion follows since both suprema of both variational expressions are
equal.
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