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We present a newly developed and implemented methodology to perturbatively evaluate anharmonic
vibrational frequencies and infrared (IR) intensities of solvated systems described by means of the
polarizable continuum model (PCM). The essential aspects of the theoretical model and of the im-
plementation are described and some numerical tests are shown, with special emphasis towards the
evaluation of IR intensities, for which the quality of the present method is compared to other method-
ologies widely used in the literature. Proper account of an incomplete solvation regime in the treat-
ment of the molecular vibration is also considered, as well as inclusion of the coupling between the
solvent and the probing field (cavity field effects). In order to assess the quality of our approach,
comparison with experimental findings is reported for selected cases. © 2011 American Institute of
Physics. [doi:10.1063/1.3630920]

I. INTRODUCTION

Effective in silico simulation of IR and Raman spectra
for large systems in their natural environment is among the
most significant tasks of contemporary theoretical and com-
putational chemistry in view of the increasing reliability of
the results coupled to the quite straightforward disentangle-
ment of the role of different effects. However, the production
of calculated spectroscopic data directly comparable to their
experimental counterparts is particularly tricky in the case
of solvated systems, that being mainly due to two reasons.
First, the extraction of absolute data, especially intensity val-
ues, from spectra of solvated systems is far from being trivial,
so that raw experimental values are often treated by means
of some kind of theoretical assumptions (usually relying on
classical theories) in order to extract from them the molecu-
lar property. Various examples exist in this context, especially
in the field of nonlinear optical properties1 and vibrational
spectroscopies.2–8 As a result, experimental data reported in
the literature require careful analysis, i.e., any approximation
and treatment of the data has to be taken into account if a
direct comparison with absolute values is to be achieved. Sec-
ond, from the purely theoretical and computational point of
view, in order to obtain calculated values directly comparable
to experiments, the models to be used should reliably repre-
sent the experimental sample, i.e., the physical model should
be as realistic as possible, which in practice means that all
the physical interactions in the sample and between the sam-
ple and the probing field have to be taken into account in the
model.

a)Author to whom correspondence should be addressed. Electronic mail:
chiara@dcci.unipi.it.

The first implication of the previous statement is that a
reliable description of the molecular system is needed. In the
field of computational molecular spectroscopy, this almost al-
ways implies the use of quantum-mechanical (QM) methods
to describe the system, since the electronic contribution is
usually dominating. Of course, in case of solvated systems
even the use of the most accurate QM method is meaning-
less if the role of the surrounding environment is neglected.
Among the possible strategies which can be exploited to ac-
count for solvent effects on molecular properties and spectro-
scopies, a relevant role is played by continuum solvation mod-
els (CSM),9 due to their well documented accuracy coupled
to the relatively low computational cost, and the possibility
to be coupled with different kinds of QM methodologies.10–12

However, by even limiting ourselves to CSM, in order to get
a reliable and quantitative description of the spectral features,
the basic formulations which are generally exploited to model
the energetics and the structural properties of molecular sys-
tems, have to be extended to treat effects which go beyond
the direct solvent effect on the molecular wavefunction and
its indirect effects on the molecular structure (the so-called re-
action field effects).13–15 Also, whether required on the basis
of the chemical nature of the solute-solvent couple, combined
discrete-continuum models, in which a few solvent molecules
strongly and specifically interacting with the solute are treated
explicitly leading to a sort of supermolecule embedded in a
polarizable continuum, can be successfully employed.16–19

In the particular case of vibrational properties and spec-
troscopies, the harmonic oscillator/rigid rotor model has be-
come a routine tool assisting in a very effective and gen-
eral way the interpretation of spectroscopic experiments for
isolated molecules, and is becoming a standard also in the
case of solvated systems treated within CSMs, due to the
development of analytical algorithms for the evaluation of
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energy second derivatives, which have proven to yield rea-
sonably accurate results at reproducing the main features of
vibrational spectra of systems in solution.15, 20 However, a
purely harmonic description of the spectra poses serious accu-
racy issues in the reproduction of vibrational frequencies and
intensities, as anharmonicity and vibro-rotational couplings
come into play. Anharmonic effects also prevent the descrip-
tion of the whole vibrational spectrum since some spectral
regions can be dominated by overtone transitions and combi-
nation bands. Methods for evaluating anharmonic effects on
vibrational frequencies of solvated systems are still in their
infancy, being to date limited to very few attempts reported
in the literature,21, 22 including a recent paper by some of the
present authors,22 reporting on promising results, which re-
tain both the accuracy and the scaling characteristics of the
corresponding computations in vacuum. To the best of our
knowledge, the QM evaluation of anharmonic IR intensities
for solvated systems has never been treated before in the
literature.

The evaluation of anharmonic terms by means of state-of-
the-art electronic computations followed by converged varia-
tional solutions of the vibro-rotational problem provide nowa-
days very accurate results for small molecules (up to 5–
6 atoms) in the gas phase. However, by even limiting the
discussion to isolated systems, the extension of the anhar-
monic treatments to larger systems faces two major scaling
problems. The first aspect concerns the building of the under-
lying potential energy surface (PES) and is being solved by
linear scaling approaches23 and, at least for localized enough
vibrations, by multi-layer methods (e.g., ONIOM (Ref. 24))
in which different parts of the systems are treated at decreas-
ing sophistication levels depending on the distance from the
region to be described in detail. The PES is then expressed
as a low-order (usually fourth) polynomial involving direct
coupling of at most three independent coordinates. While
this scheme presents several well-known limitations, espe-
cially when dealing with large amplitude low-frequency vi-
brations, it is computationally very effective and well sound
for semi-rigid systems characterized by quite stiff and well
separated energy minima. Starting from this point, perturba-
tive and/or variational procedures can be used to solve the
vibrational problem. Here we will be concerned with vibra-
tional second order perturbation theory (VPT2),25 which re-
mains very attractive except for the presence of resonances
which plague nearly all but the smallest systems. However,
several studies are showing that, at least for low vibrational
quantum numbers, resonances can be effectively treated ei-
ther by small variational treatments of deperturbed polyads, or
by more general perturbative developments.25–27 When such
models are coupled to electronic computations performed
by hybrid (especially B3LYP)28 or double hybrid (especially
B2PLYP)29 functionals and purposely tailored basis sets (e.g.,
N07D),30 remarkably accurate vibrational frequencies and in-
tensities can be obtained, which can be further improved by
computing the harmonic part of the PES at a more advanced
level.31, 32

For the evaluation of anharmonic infrared (IR) intensi-
ties, after the pioneering work of Handy and co-workers,33

a less cumbersome and simpler formula was proposed by

Stanton and Vázquez,34, 35 who exploited the conventional
Rayleigh-Schrödinger perturbation theory to take into ac-
count both electrical and mechanical anharmonicities. Re-
cently, a fully automated implementation of VPT2 IR inten-
sities has been proposed by some of the present authors36

and a resonance-free version has been already implemented.
On these grounds, we will report in the present contribution
on the implementation and the first results of anharmonic
computations of IR intensities in solution describing the re-
sponse of the solvent by the polarizable continuum model
(PCM).9, 37 This extension is by no means trivial since dif-
ferent time scales are involved in these computations, which
require proper nonequilibrium models; at the same time, the
“local field” acting on the solute is not the external field ap-
plied to the system, as it is the case for an isolated molecule.

In fact, from the conceptual point of view, in the case
of a molecule surrounded by a dielectric, the probing radi-
ation electric field acting on the molecule within a cavity
immersed in the dielectric does not formally coincide with
the field acting in the bulk of the dielectric (the so-called
Maxwell field). There exists, therefore, a formal difference
between the macroscopic spectroscopic response of the solu-
tion sample, which is defined in terms of the Maxwell field,
and the response of the molecule in the cavity within a dielec-
tric medium, which depends instead on the field locally acting
on the molecule in the cavity. However, as already pointed out
in the literature,13–15, 38–44 in order to gain a reliable connec-
tion between the microscopic properties of the molecule and
the macroscopic response, it is compulsory to account for the
difference between the Maxwell and the cavity fields.

In addition, due to the fact that spectroscopic properties
are by definition time-dependent phenomena (due to the oscil-
latory nature of the radiation field), a time dependence is also
to be accounted for in the definition of the solvation model.
Here, formal differences exist depending on the nature of the
spectroscopy under investigation; by limiting ourselves to IR
spectroscopy, the time dependence of the radiation field is to
be considered in the formulation of the cavity field, which is
reflected in a proper definition of a the dielectric permittiv-
ity (vide infra). However, another implication is to be con-
sidered. In the case of an oscillatory motion caused by an
external electric field on a molecule surrounded by a dielec-
tric medium, the definition of the solvent response is differ-
ent if it is assumed the solvent nuclear and electronic distri-
butions to instantaneously rearrange to follow the oscillating
molecule (vibrational equilibrium solvation regime), or if it
is possible that there exists some dephasing between the so-
lute and the solvent motions (vibrational nonequilibrum sol-
vation regime), so that the solvent distribution is only partly
equilibrated to the oscillating molecule. Such a problem has
been previously discussed in the literature39, 45, 46 for the PCM
and will be re-considered here in the framework of anhar-
monic solute oscillations within the newest formalism pro-
posed by Scalmani and Frisch47 for the PCM. Note that the
extension of the PCM to treat anharmonic IR frequencies
has already been proposed by some of the present authors22

within a purely equilibrium framework. The extension to a
vibrational nonequilibrium solvation regime will be treated in
Secs. II–III.
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The paper is organized as follows. In Secs. II–III, the de-
tails on how to treat reaction field effects within the vibra-
tional nonequilibrium solvation regime and cavity field ef-
fects for IR intensities will be given. After the derivation of
the model to introduce such effects on a anharmonic descrip-
tion of IR intensities, application to a few small-sized selected
model systems will be treated, so to separately evaluate the
various sources of solvent effects on IR spectra. The focus
will then be shifted to furan and phenol, for which a com-
parison of calculated and experimental results will also be re-
ported. Some concluding remarks end the presentation.

II. VIBRATIONAL FREQUENCIES AND IR
INTENSITIES: REACTION FIELD EFFECTS WITHIN
THE VIBRATIONAL NONEQUILIBRIUM SOLVATION
REGIME

The starting point for defining a solute-solvent system
under the vibrational nonequilibrium solvation regime is the
definition of the solvent polarization under nonequilibrium
conditions. As it has already been amply reported in the
literature,9, 48 the concept of a solute-solvent nonequilibrium
system involves many different aspects, related to the real na-
ture of the solvent polarization, which can formally be decom-
posed into different contributions, each related to the various
degrees of freedom of the solvent molecules. On the other
hand, each degree of freedom involves a different time scale.
In the usual practice such contributions are grouped in two
terms, the first one accounting for all the motions which are
slower than those involved in the physical phenomenon under
examination, and the second one defining the so-called fast
contributions. By assuming only the latter to instantaneously
equilibrate to the oscillating molecular charge distribution, the
vibrational nonequilibrium solvation regime is defined as fol-
lows: the slow term accounts for the motions of the solvent
molecules as a whole, i.e., translations and rotations, whereas
the fast term takes into account the internal molecular mo-
tions, i.e., the electronic and vibrational solvent degrees of
freedom. Following a shift from a previously reached equi-
librium solute-solvent system, the fast polarization (which in
the following will be defined through the dynamical (d) con-
tributions to the polarization) is still in equilibrium with the
new solute charge distribution but the slow polarization re-
mains fixed at the value corresponding to the initial state so-
lute charge distribution.

Within the PCM framework such a partition of the sol-
vent polarization is done by formally defining two sets of po-
larization charges (or weights), the inertial charges, which re-
main fixed, and the dynamic (d) charges, which account for
the time-dependent part of the solvent response and are de-
fined through PCM equations depending on the dynamic di-
electric constant. In the case of the vibrational nonequilibrium
regime, in principle the dielectric constant at the vibrational
frequency of interest should be used. However, when the sol-
vent does not absorb at this frequency, it seems reasonable
to approximate such a dielectric constant with the dielectric
permittivity at optical frequencies, εopt .

As a further assumption, we will consider that the ge-
ometry of the molecular cavity does not follow the solute vi-

brational motion, which is consistent with the model we are
exploiting, in which the solvent molecules are considered to
be unable to rapidly rearrange their position and orientation
around the perturbed solute.

More precisely, and by going into more details and using
the notation introduced by Scalmani and Frisch,47 the solva-
tion regime just outlined implies to define a nonequilibrium
free energy for the molecule in solution as45, 46

Gneq = Gvac + 1

2
V[ρ]qd + V[ρ]qin − 1

2
V[ρ0]qin, (1)

where ρ is the total density of charge (which takes into ac-
count both the nuclei and the electrons) of the solute at a
given nuclear configuration and is in general different from
the equilibrium one ρ0. V is the electrostatic potential due to
the solute at the surface points i (N is the number of atoms):

Vi =
N∑

A=1

ZA〈i|A〉 −
∑
μν

Pμμ〈i|μν〉. (2)

The two sets of polarization charges in Eq. (1) are

qd = −U(ε∞)V,

qin = q − qd,

where

q = −U(ε)V,

are the equilibrium polarization charges. The U(ε) matrix is
the PCM response matrix, whose mathematical definition de-
pends on the particular PCM version chosen,9 and is defined
in terms of the solvent dielectric permittivity, which, as al-
ready commented above, is set to the optical value to calculate
the dynamic d charges.

As reported in the original paper,45 the gradient of the
nonequilibrium free energy at the equilibrium geometry is
equal to the fixed-cavity equilibrium free energy gradient at
the same geometry, so that further geometry optimization is
not required.

Moving to nonequilibrium free energy second derivative,
by keeping the formalism of Refs. 49 and 50, we obtain (more
details are reported in the Appendix):

G[ρ]xy
neq = Gxy

neq[ρ0] + trPxF̃y[ρ0] − trSxyW̃ − trSxWy,

(3)

S is the overlap matrix, W̃ = RF̃R (with R being the den-
sity matrix) and the derivatives of the energy evaluated at the
equilibrium density are

Gxy
neq[ρ0] = 1

2
Vxyq + 1

2
Vqxy + Vxq

y

d = Vxyq + Vxq
y

d ,

(4)
In Eq. (4) the charges might be replaced by polarization
weights, depending on the PCM fashion adopted.51, 52 If we
assume the cavity to be fixed at the equilibrium geometry, the
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derivatives of the charges are obtained as

qx = −UVx.

The Fock operator derivative in Eq. (3) is

F̃y(ρ) = F̃y(ρ0) + G̃(Py), (5)

where G̃(Py) is the bielectronic component of the PCM-Fock
operator. The nonequilibrium PCM contribution to the ex-
plicit derivative of the Fock matrix is

Xy
μν = Vy

μνq + Vμνq
y

d . (6)

The modified Fock operator derivative in Eq. (5) is also used
to obtain the nonequilibrium density matrix derivatives Py

through the solution of the proper Coupled-Perturbed Hatree-
Fock (or Kohn-Sham) CPHF (CPKS) set of equations for the
solvated system.53 Note that, as it has already been pointed
out in a previous work of some of the present authors,22 in
order to be able to reliably compute anharmonic vibrational
frequencies and intensities in solution via further numer-
ical differentiation of analytical geometric second deriva-
tives, a formulation of PCM in a continuous surface charge
formalism47 is required.

A. Vibrational intensities: Cavity field effects

By following Ref. 13, IR intensities for solvated systems
taking into account both reaction and cavity field effects (and
possibly vibrational nonequilibrium) can be calculated by ex-
ploiting the usual formula, i.e.,

I sol
v = πNA

3c2ns

νvgv

∑
α

|〈0 | μ̄α | v〉|2 (N0 − Nv), (7)

where NA is the Avogadro number, ns the refractive index of
the solution and gv and Nv are the degeneration and the Boltz-
mann population of the vibrational state |v〉, respectively. In
the following, however, the population of the excited states
will be considered negligible.

μ̄ is the so-called “effective” dipole moment for
the solvated system defined according to the previous
literature:13–15, 38–43, 54, 55

μ̄ = μ + μ̃, (8)

where μ is the electric dipole operator and μ̃ is the opera-
tor which accounts for the differences between the cavity and
Maxwell fields, and which in the PCM is expressed in terms
of the apparent charges produced by the Maxwell field on the
cavity, i.e.,

μ̃ =
∑

l

V (sl)
∂qex

l

∂EM
. (9)

The potential terms V (sl) come from the molecular electronic
potential evaluated at cavity representative points and the so-
called external surface charges qex

l describe the dielectric po-
larization in response to the external field E. In particular,

qex = −D−1eM
n , (10)

where D−1 is a dielectric PCM-type solvent response matrix
which describes the solvent polarization with respect to a per-
turbing electric field, and eM

n is a vector collecting the normal

components of the Maxwell field EM at the center of each
representative point (l) of the cavity.

Notice that, as already pointed out in Ref. 13, the depen-
dence of I sol

v in Eq. (7) on the refractive index ns of the so-
lution under study follows from the relation between the in-
tensity I of the radiation and the Maxwell electric field FM in
solution,56 namely:

I = εsc

2πns

(FM )2 ≈ nsc

2π
(FM )2, (11)

where it is assumed that the dielectric constant of the solu-
tion εs is equal to square of the refractive index n2

s . This cor-
responds to the assumption that the magnetic permittivity of
the medium is roughly equal to 1. Note that in the following,
infinitely dilute solutions will be considered, so that the re-
fractive index will be set to that of the pure solvent. We recall
here that in the calculation of the PCM matrix (Eq. (10)) and
in Eq. (7), the dielectric permittivity and refractive index at
the frequency of interest should be used. In this work, as al-
ready done in other previous studies13, 14, 39, 40, 44, 49 the optical
values are used. Also, the use of a non-zero field dielectric
permittivity takes into account the oscillatory nature of the
external probing field.

III. ANHARMONIC IR INTENSITIES IN SOLUTION:
SECOND-ORDER PERTURBATIVE EXPRESSION FOR
VIBRATIONAL TRANSITION DIPOLES

In this section, we will extend the treatment outlined
above to the calculation of anharmonic IR intensities. The
formulation of anharmonic frequencies within the vibrational
nonequilibrium solvation regime will not be explicitly treated.
In fact, the numerical evaluation of anharmonic contributions
in the perturbative formalism27, 57 requires the numerical dif-
ferentiation of the nonequilibrium free energy derivatives in
Eq. (3) with respect to nonequilibrium normal modes obtained
through the diagonalization of the Hessian matrix obtained by
means of the same quantities, similarly to what has already
been reported in the literature.22 It is worth spending, instead
some more words regarding the formulation of anharmonic
IR intensities in the nonequilibrium solvation regime with the
further account of local field effects.

We keep exactly the same formalism used in Ref. 36 to
represent the nth derivative of the “effective” dipole moment
μ̄ for the solvated systems (μ̄ijk... ) and of the potential energy
V sol in solution (�sol

ijk...) with respect to the normal modes
qsol

i , qsol
j , qsol

k , . . . calculated at the equilibrium geometry e.
Within the PCM formalism, they are ({qsol

1 . . . qsol
N } is the set

of the N dimensionless reduced normal coordinates of the
system calculated in solution, by accounting of reaction field
effects in the vibrational nonequilibrium regime):

μ̄ijk... =
(

∂nμ̄

∂qsol
i ∂qsol

j ∂qsol
k ...

)
e

, (12)

�sol
ijk... =

(
∂nV sol

∂qsol
i ∂qsol

j ∂qsol
k ...

)
e

. (13)

In the following, μ̄α and μ̄α
ijk... refer to any Cartesian compo-

nent α of the vectors μ̄ and μ̄ijk...; B
γ
e is the diagonal inertia
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tensor of the molecule at the equilibrium geometry and ζ
γ

ij are
the Coriolis zeta constants coupling the modes i and j along
the rotation axis Iγ . The potential energy, the frequencies and
the inertia tensor components are expressed in cm−1 and the

dipole moment in Debye. With that notation, the transition
dipole relative to the fundamental bands for the solvated sys-
tems, with the account of reaction field, cavity field and vibra-
tional nonequilibrium effects reads:

〈μ̄α〉0i = 1√
2
μ̄α

i + 1

4
√

2

∑
j

μ̄α
ijj − 1

8
√

2

∑
jk

[(
1

ωi + ωj + ωk

− 1

ωi − ωj − ωk

)
�sol

ijkμ̄
α
jk + 2

ωk

�sol
kjj μ̄

α
ik

]

+ 1

16
√

2

∑
jkl

{
�sol

ikl �
sol
jklμ̄

α
j

[
4ωj (ωl + ωk)(1 − δij )(1 − δik)(1 − δil)(

ω2
i − ω2

j

)[
ω2

i − (ωl + ωk)2
] − (ωl + ωk)

[
3ω2

i − (ωl + ωk)2
]
δij (1 + δik)(1 − δil)

ωi

[
ω2

i − (ωl + ωk)2
]

− 4ωj

(
7ωiωk + 3ωkωj + 3ω2

k + 4ωiωj + 4ω2
i

)
(1 − δij )(1 − δik)δil

ωk(2ωi + ωk)
(
ω2

i − ω2
j

)
(ωi + ωj + ωk)

]
+ �sol

ijk�
sol
llk μ̄α

j

[
δij

ωiωk

(
1 + 2

9
δikδil

)

− 4ωj (1 − δij )(1 − δik)(1 − δil)

ωk

(
ω2

i − ω2
j

) − 4ωjδik(1 − δij )

ωi

(
ω2

i − ω2
j

) (
1 + 2

3
δil

)]}
− 1

8
√

2

∑
jk

�sol
ijkkμ̄

α
j

(
1

ωi + ωj

− 1 − δij

ωi − ωj

)

+ 1

2
√

2

∑
jk �=i

{ ∑
τ=x,y,z

Bτ
e ζ τ

ij ζ
τ
jk

[√
ωiωk

ωj

(
1

ωi + ωk

+ 1 − δik

ωi − ωk

)
− ωj√

ωiωk

(
1

ωi + ωk

− 1 − δik

ωi − ωk

)]
μ̄α

k

}
. (14)

In the previous equation, all the ω values are to be considered
for the solvated system, i.e., they account for both reaction
field and nonequilibrium effects. The B term is diagonal, i.e.,∑

τ,α=x,y,z

Bτα
e ζ τ

ij ζ
α
jk =

∑
τ=x,y,z

Bτ
e ζ τ

ij ζ
τ
jk.

In the case of overtones up to two quanta (〈 0 | μ̄α |
0 + 2vi 〉) and combination bands of two singly excited modes
(〈0 | μ̄α | 0 + vi + vj 〉), we have

〈μ̄α〉0,i(1+δij )+j (1−δij )

=
(

1 + (1 − √
2)δij√

2

)(
1

2
μ̄α

ij + 1

4

∑
k

�sol
ijkμ̄

α
k

×
(

1

ωi + ωj − ωk

− 1

ωi + ωj + ωk

))
, (15)

The first derivatives of μ̄ with respect to the nuclear co-
ordinates, μ̄i , are obtained analytically as

μ̄α
i = ∂μ̄α

∂qi

= −tr
[
Pim̄α + Pm̄α

i

] + μ̄
N,α
i . (16)

P and Pi are the density matrix and density matrix deriva-
tives with respect to qi , respectively. The latter accounts for
vibrational nonequilibrium effects, being obtained by exploit-
ing the nonequilibrium Fock operator derivative (see Eq. (5)).
m̄α

i is the derivative of the “effective” dipole matrix m̄α with
respect to qi , and thus accounts for cavity field effects (see
Sec. II A). Its expression, which can be found in Ref. 13, can
be written as a sum of two contributions: the first one arises
from the dependence of the basis functions on the nuclear po-
sitions and the other is due to the dependence of the cavity
geometry on the nuclear geometry, which is discarded in the

present case, following our model for vibrational nonequilib-
rium effects. Finally, μ̄

N,α
i is the nuclear term.

The μ̄ij and μ̄ijj terms in Eq. (14), which correspond
to the first and second derivatives of Eq. (16), are obtained
through numerical first and second differentiation. The �sol

jkl

and �sol
ijkk are obtained as well by numerical differentiation of

the nonequilibrium free energy second derivatives in Eq. (4),
from which also the ω values are calculated.

We remark that the previous treatment of anharmonic in-
tensities strictly implies the absence of any frequency reso-
nance. In case of resonance, in fact, divergence occurs due to
the presence of frequency differences in the demonimators of
Eq. (14). Extension of the treatment to resonances is possible
and is currently under development at our laboratory. Further
details will be presented in a following communication.

IV. NUMERICAL RESULTS

A. Computational details

The calculation of anharmonic frequencies and intensi-
ties in the nonequilibrium solvation regime was implemented
in a locally modified version of the GAUSSIAN 09 (G09)
(Ref. 58) suite of programs, by extending to the IEF version59

of the PCM the existing code to calculate frequencies and
force constants at the same level of theory27 for isolated
systems. According to Ref. 36, the calculations for H2O,
C2H2, CH2F2, SiH2Cl2, H2O2, F2NO, and the vinyl radical
were performed at the B3LYP/aug-cc-pVTZ level, whereas
the B3LYP/N07Ddiff (Ref. 60) level was used for furan and
phenol. Pruned grids (75, 302) and (50, 194) were exploited
for the evaluation of energies and energy derivatives, and in
the CPKS, respectively. In the case of phenol, most of the
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calculations were performed by treating anharmonically only
the O–H stretching normal coordinate in the perturbative
framework, that in order to decrease the computational cost.
Note that this does not mean to consider only one-dimensional
anharmonicity along the OH normal mode, since the Hes-
sian numerical differentiation provides all the couplings be-
tween OH and all normal modes except for some usually
small contributions.61 In the numerical differentiation, a step-
size of 0.025 Å was exploited, which was chosen according
to previous studies.27 In the lack of resonances, the stepsize
is the only adjustable parameter used to set up anharmonic
calculations.

The IEF-PCM calculations in cyclohexane and acetone
for H2O, C2H2, CH2F2, SiH2Cl2, H2O2, F2NO, the vinyl rad-
ical, and furan were done by using G09 default settings to
define the solvent dielectric constants and refractive index,
as well as the cavity shape and size. In particular, for each
molecule, the cavity is defined as the results of the inter-
locking of one sphere centered on each atom, each having
the following radii (the α = 1.1 scaling factor is already in-
cluded in the values): C:2.1175 Å; H: 1.5873Å; O: 1.925 Å;
F: 1.8502 Å; Si: 2.3628 Å; Cl: 2.1714 Å; N: 2.013 Å. The fol-
lowing values were used for the dielectric parameters: cyclo-
hexane: ε = 2.0165 and n2 = 2.035188; acetone ε = 20.493
and n2 = 1.846337.

The calculations for phenol were performed by set-
ting the dielectric constants of cyclopentane, CCl2, tetra-
chloroethylene and CS2 to G09 default settings (i.e., ε

= 1.9608 for cyclopentane, ε = 2.228 for CCl2, ε

= 2.268 for tetrachloroethylene and ε = 2.6105 for CS2). For
2,2-dimethylbutane ε = 1.843 was used, according to the
value reported in Ref. 62 for 2-methylbutane. The refractive
indexes of all the previously mentioned solvents were set ac-
cording to Ref. 63 and used to calculate the PCM matrices
involved in the definition of the “effective” properties and in
the calculation of the second derivatives within the nonequi-
librium regime. The cavity size for phenol was varied in or-
der to evaluate the differences in the description arising from
the cavity definition. Besides the use of G09 default settings,
a user-defined cavity constituted by 8 spheres was also con-
sidered, by setting the following radii values: CH = 2.0 Å,
O = 1.52 Å, H = 1.2 Å. The sphere on hydrogen was mul-
tiplied by a varying α scaling factor (see tables), whereas
α = 1.2 was set for all the other spheres. In all cases, no added
spheres were considered in the definition of the molecular
cavity, as proposed in Refs. 47 and 64. The solute geometry
was optimized with each cavity.

The spectra reported in Figs. 5 and 7 were obtained
by broadening each calculated transition by means of a
Lorentzian lineshape function with 10 cm−1 width at half
maximum.

B. Solvent effects on vibrational anharmonic IR
intensities of model molecules: Benchmarking with
respect to classical theories

A traditional way to rationalize solvent effects on vibra-
tional intensities is to resort to classical solvation theories for
expressing the ratio between the band intensity of the solvated

system Isol and the corresponding one for the isolated system,
Isol/Ivac. Among such a class of theories, the most exploited
method is probably the one proposed by Polo and Wilson:2(

Isol

Ivac

)
PW

= 1

n

(
n2 + 2

3

)2

. (17)

Such an equation is rigorously applicable to pure liquids,
but can easily be extended to solutions, giving origin to the
Mallard-Straley3 and Person4 equation; however, in the limit
of infinitely dilute solutions, the two equations coincide.13

Other formulations of the Isol/Ivac ratio exist, such as the
one proposed by Hirota:5(

Isol

Ivac

)
H

=
[(

n2 + 2
)

(2ε + 1)

3
(
n2 + 2ε

)
]2

,

or by Buckingham:6(
Isol

Ivac

)
B

=
[

9εopt

(εopt +2)(2εopt +1)

]2 [
(n2 + 2)(2ε + 1)

3(n2 + 2ε)

]2

.

The previous equations are generally rooted into the
Onsager’s theory of dielectric polarization65, 66 and assume
a continuous description of the environment and a classical
picture of the molecular system, which is assimilated to a
polarizable point dipole in a large spherical cavity in the
dielectric.

The comparison between PCM harmonic IR intensi-
ties and the classical theories has been previously shown in
Ref. 13. Here, we will carry out the same comparison for an-
harmonic values obtained through Eq. (7) by exploiting the
transition dipoles defined in Eqs. (14) and (15). The results
are pictorially shown in Fig. 1 for the seven model molecules
investigated here and immersed in a non-polar solvent (cy-
clohexane) and in a polar one (acetone). Note that the calcu-
lated values in solution were obtained by exploiting the full
nonequilibrium + cavity field model.

In most cases the classical equations only roughly ap-
proximate the calculated ratios, and the overall quality of
the three different classical approaches is almost the same.
More notably, calculated PCM ratios depend on the normal
mode under investigation, i.e., depend on the nature of the
molecule and how its geometrical and electronic properties
change upon vibration. In the classical theories, however, no
dependence on the molecule exists, so that the ratio only de-
pends on the dielectric properties of the solvent and for a
given solvent stays the same irrespective of the nature and
shape of the molecular system, which is simply seen as an
oscillating point dipole. The Isol/Ivac ratio, which by defini-
tion accounts for both reaction and cavity field contributions,
strongly depends on the level of approximation which is used
to model both effects, and the final comparison between the
classical and QM methodologies is a balance of the different
levels of approximation exploited.

In the case of PCM solutes, the molecule is a quan-
tum system and its structure and vibrational properties (vi-
brational transition moments) are obtained with quantum-
mechanical techniques. The level of treatment of reaction
field effects is not easy to be extracted in the classical
theories. In fact, in the case of continuum solvation
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FIG. 1. Calculated PCM local field factors for the various systems investi-
gated here as a function of the frequency of the band. Harmonic (left) and
anharmonic (right), computed in cyclohexane and acetone. The solid lines
give the values obtained through the classical theories (see text).

theories such effects, which are still present in the case of
the non-vibrating molecular system immersed in the medium,
are modeled in terms of the solvent static dielectric permit-
tivity ε. Among the three classical theories mentioned above,
those devised by Hirota and Buckingham explicitly account
for reaction field effects through the ε parameter, whereas the
Polo-Wilson approach is only focused on the screening of the
external oscillating electric field due to the presence of the
solvent (such effects are also considered in both Hirota and
Buckingham approaches). Despite such a fundamental differ-
ence, the quality of the reproduction of the PCM data is al-
most the same, this being reasonably due to the fact that the
actual shape of the molecular cavity in the case of PCM is
generally far from being approximable by a single sphere, so
that the consideration of reaction field effects for a spherical
cavity badly describes the effects when the cavity consider-
ably deviates from a sphere. Figure 2 illustrates such concepts
in more details, by focusing the comparison on two specific
cases, i.e., NOF2 and furan, whose PCM molecular cavities
are the most similar (NOF2) and the most different (furan)
from a single sphere. For NOF2, the scattering of the values
around the classical values is less pronounced than for furan.
Also, the approximation of the QM data with the classical data
seems to be more reasonable for the nonpolar solvent (cyclo-

hexane), whereas in acetone the deviation is larger, even in
the case of NOF2, this being presumably due to the fact that
the solvent effect in cyclohexane is less pronounced than in
acetone, so that the rough classical approximation works bet-
ter in the first case. Note that all PCM data reported here were
obtained by also considering nonequilibrium effects, which in
the classical approaches appear to be considered by the Buck-
ingham approach only, at least to some extent, due to the de-
pendence of the equation on the εopt parameter.

Another level of analysis consists in focusing on cavity
field effects only, i.e., to extract from the calculated data the
ratio between intensity values obtained by discarding or in-
cluding the cavity field correction (see Sec. II A). By extend-
ing the Onsager-Lorentz theory to IR intensities, the following
quantity is obtained:13

f CF
Ons =

(
3εopt

2εopt + 1

)2

. (18)

The comparison between PCM data and the classical
equation is shown in Fig. 3 for the same set of molecules as
above. The quality of the comparison is basically the same as
already commented for the whole “local field” effect. Also in
this case a strong dependence upon the shape of the molecular
cavity is observed, which is illustrated by the plots reported in
Fig. 4.

C. The IR anharmonic spectrum of furan in acetone:
Equilibrium vs nonequilibrium

In this section, the attention will be focused on the evalu-
ation of the effects arising from the assumption of a nonequi-
librium regime. In Fig. 5 calculated harmonic and anharmonic
IR spectra of furan in acetone are reported, within both equi-
librium and nonequilibrium solvation regimes.

Generally, the shift in the peak maxima between the two
approaches is more marked in the case of anharmonic spectra,
but it also strongly depends not only on the specific system but
especially on the normal mode. Therefore, the findings previ-
ously reported in the literature45 regarding the small effect of
vibrational nonequilibrium on harmonic vibrational frequen-
cies in the case of the carbonyl stretching mode of a series of
ketones does not seem to generally occur.

Regarding the relative intensities of the peaks, the differ-
ences between equilibrium and nonequilibrium observed here
are in line with previous findings,45 with more pronounced ef-
fects in the anharmonic case. However, a general trend cannot
be evidenced, due to the normal mode specific behavior iden-
tified from the observation of Fig. 5. The effects mentioned
here are stronger for anharmonicity, because of not only the
presence of overtone and combination bands but also a varia-
tion of fundamental band intensities as a result of the anhar-
monic treatment of IR intensities. Such a behavior can be rel-
evant especially in case calculated spectra are to be exploited
for peak assignment.

In order to compare calculated and experimental data, the
experimental IR spectrum of pure liquid furan is also reported
in Fig. 5. As expected anharmonic calculated spectra are over-
all more similar to the experiment, this being mainly due to
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FIG. 2. Calculated PCM local field factors for NOF2 and furan as a function of the frequency of the band. Data refer to anharmonic values, in cyclohexane
(cyc) and acetone. The solid lines give the values obtained through the classical theories (see text).

the appearance of overtones and combination bands in the re-
gion between 2000 and 2700 cm−1. A clear assessment of the
quality of the two approaches at reproducing the experiments
is not easy to make in this case, both being very good at repro-
ducing fundamental bands. In fact, as far as the reproduction
of experimental frequencies is concerned, they perform very
similarly (see Fig. 6). However, a frequency shift between the
two approaches is visible, and as already pointed out before,
this can be an issue if calculations are to be exploited for ex-
perimental band assignment. Also, larger differences are no-
ticed for peak relative intensities, which cause the whole spec-
trum to change its appearance as a function of the solvation
regime employed.

D. The O–H stretching mode of phenol: Solvent
effects on band intensities

In this section, we will focus more specifically on the
ability of our full anharmonic nonequilibrium + local field
approach to reproduce solvent effects on band intensities. To

this end, a strongly anharmonic vibration was selected, i.e.,
the O–H stretching mode of phenol. The combined effects of
pressure and solvents on the O–H stretching mode of phe-
nol have been investigated by Isogai et al.,63 who have also
studied quantitatively the effects of the solvent on absorp-
tion intensities. They also further tested the results against
the Polo-Wilson approach, obtaining unsatisfactory results, so
that the present case appears to be ideal to test our refined
model.

Before commenting on O–H stretching mode intensities,
we will discuss the overall performance of our methodology
to reproduce the entire IR spectrum. In Fig. 7, the calculated
anharmonic IR spectrum of phenol in carbon disulfide is re-
ported. To assist the comparison, the experimental IR spec-
trum of phenol is also reported. Notice that experiments were
performed on a 10% solution in CCl2 (3800–1300 cm−1 and
650–250 cm−1) and in CS2 (1300–650 cm−1). Although our
calculations were performed on CS2 over the entire range, the
dielectric properties of the two solvents used in the experi-
ment are sufficiently similar (CCl2: ε = 2.2280, n2 = 2.1319;
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FIG. 3. Calculated PCM cavity field factors for the various systems here investigated as a function of the frequency of the band. Harmonic (left) and anharmonic
(right), computed in cyclohexane and acetone. The classical values of the factors are represented by the solid red lines.

CS2: ε = 2.6105, n2 = 2.6631) to justify the qualitative com-
parability between the calculations and the experimental find-
ings. The sample was also, as declared by experimentalists,
contaminated by water. Overall, the reproduction of the spec-
tral patterns is very good, both in terms of frequency values
and peaks relative intensities.

Going into more details, anharmonic frequencies and IR
intensities of the O–H stretching mode of Phenol in vari-
ous solvents are reported and compared with experimental
findings63 (Tables I and II). The corresponding data obtained

within the double harmonic approximation are given as sup-
plementary material.69

As far as solvation is concerned, equilibrium (eq) and
nonequilibrium (neq) solvation are compared. All intensity
values account for cavity field effects. Also, since the only re-
ally adjustable parameter in PCM calculations besides the set-
ting of the solvent dielectric parameters are the cavity shape
and size, in order to evaluate the range of variability of our re-
sults as a function of such parameters, in the columns labeled
with the α values, we report the data obtained by keeping
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FIG. 4. Calculated PCM cavity field factors as a function of the frequency of the band for NOF2 and furan.

fixed the geometrical definition of the cavity (i.e., the num-
ber of spheres) but by varying the dimension of the hydrogen
sphere, as obtained by multiplying the radius (set to 1.2 Å)
by a variable α parameter. The “default” column refers to
GAUSSIAN 09 default settings cavity, which in the present
case is made by 13 spheres (one on each atom), with the
following radii values: C = 1.926 Å; H = 1.443 Å; and O
= 1.75 Å, all multiplied by α = 1.1. The usefulness of the
reported data stays in the fact that a careful analysis of the
dependence of the results on the cavity size should be recom-
mended whenever a comparison with experimental absolute
values is to be achieved.

As shown in Table I, frequencies calculated at the an-
harmonic level show noticeable discrepancies with respect to
their harmonic counterparts (see supplementary material69),
with shifts of about 150–230 cm−1. In particular, the O–H
stretching frequencies in vacuo vary from 3831 (harmonic)
to 3641 (anharmonic) at the same QM level, so that the
anharmonic shift is 190 cm−1. Therefore, the effect of the
solvent cannot be seen as a simple scaling factor with re-
spect to vacuum. Furthermore, we can see that the anhar-
monic shift depends not only on the solvent, but on the

cavity size, shape, and on the model exploited (i.e., eq vs
neq).

In general, the anharmonic shift is larger for nonequi-
librium calculations, with the exception of the case of the
α = 1.2 column, where the equilibrium shift is larger. Such a
case is also the only one showing eq absolute values smaller
than the corresponding neq ones. In fact, in general neq ab-
solute values are smaller than the corresponding eq ones. In
such a case, however, the difference between the eq and neq

approaches is also the smallest in the series, being of a few
cm−1, whereas effects as large as 50 cm−1 are observed in the
other cases, which roughly means one third of the anharmonic
shift.

In order to assess how well calculations reproduce ex-
perimental absolute values, anharmonic frequencies obtained
with the various combinations of solvation regimes and cavity
shapes/sizes are reported in Fig. 8 as a function of the abso-
lute experimental values. The quality of the reproduction of
the experiments is basically independent of the solvent. Ex-
cept in the case α = 1.0, nonequilibrium values go towards
the experiment. Also in the case α = 1.0, however, the trend
as a function of the solvating environment is well reproduced.
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FIG. 5. Calculated equilibrium vs nonequilibrium harmonic (top) and anhar-
monic (bottom) IR spectrum of furan in acetone. The experimental spectrum
of liquid furan is also shown in the bottom panel. Experiments are taken from
the Spectral Database for Organic Compounds, SDBS, National Institute of
Advanced Industrial Science and Technology (AIST), Japan (see Ref. 67)
and were rescaled in order to facilitate the comparison with the calculated
data.

FIG. 6. Calculated (acetone) vs experimental (pure liquid) anharmonic fre-
quencies of furan.

FIG. 7. Calculated (anharmonic) IR spectrum of phenol in CS2. Experimen-
tal spectrum taken from NIST Standard Reference Database 69: NIST Chem-
istry WebBook (see Ref. 68) is also reported for comparison as inset. The ex-
perimental spectrum is obtained as a 10% solution in CCl2 (3800–1300 cm−1

and 650–250 cm−1) and in CS2 (1300–650 cm−1). The experimental sample
was contaminated by water.

On average, the “best” fitting of the experimental values is
obtained with default neq and α = 1.2 neq (or eq, due to
the very small eq − neq differences in this case), followed
by α = 1.1 neq. The largest deviations are reported, instead,
for default eq and α = 1.1 eq. Remarkably, default eq also
fails at reproducing the trend which is observed by increasing
the solvent polarity.

Moving to intensities, in Table II O–H stretching inten-
sity ratios with respect to 2,2-dimethylbutane are reported. In
this case, the eq approach is generally worse than the neq

one, regardless of the cavity shape and size chosen, as far as
both absolute values and general trends are concerned. Over-
all, the values approach the experiments decreasing the radius
of the hydrogen sphere. The “best” choice with respect to
experiments seems, in this case, to use α = 1.0, which is
different from frequencies. Such a finding can be partly re-
lated to the fact that we are treating low-polarity solvents, and
that we are only including electrostatic effects. Therefore, the
use of a small cavity enhances the electrostatic solute-solvent
interaction potentially compensating (at least partially) the
lack of non-electrostatic interactions in the computational
model. On the basis of the reported comparison, such effects
should go in the same direction as the electrostatic term. How-
ever, such a behavior is not guaranteed for any molecular sys-
tem, so that a possible compensation by means of a modula-
tion of the cavity size has to be carefully evaluated in each
case. However, in principle the “best” cavity size is expected
to be related to the specific property, so that a universal choice
seems not viable.

The role of the different polarity of the solvent in de-
termining intensity values is more clearly shown by calcula-
tions in acetonitrile (Table II). In such a case, where the static
and frequency-dependent dielectric constants are very differ-
ent (ε = 35.688, n2 = 1.8067), the difference between eq and
neq values is much larger, and interestingly equilibrium val-
ues are always larger than nonequilibrium ones, contrarily to
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TABLE I. B3LYP/N07Ddiff calculated anharmonic frequencies (cm−1) of the OH stretching of phenol in vari-
ous solvents. Experimental values are taken from Ref. 63.

Default α = 1.2 α = 1.1 α = 1.0

νeq νneq νeq νneq νeq νneq νeq νneq νexp

2,2-dimethylbutane 3664.1 3623.8 3600.5 3615.7 3662.7 3601.7 3630.1 3584.7 3623.1
Cyclopentane 3666.8 3614.4 3606.9 3609.2 3661.3 3596.8 3629.2 3578.0 3618.2
CCl2 3669.3 3621.6 3600.0 3604.3 3659.7 3591.9 3616.6 3567.9 3611.3
Tetrachloroethene 3669.8 3617.5 3599.1 3606.4 3659.3 3588.2 3614.8 3565.9 3609.2
CS2 3670.8 3613.3 3590.4 3597.5 3659.5 3578.4 3577.4 3550.5 3592.7
CH3CN 3677.2 3597.1 3538.7 3574.8 3617.4 3547.3 3451.5 3509.6 ...

what was observed with the low-polarity solvents, where the
effects come from a subtle interplay of terms calculated by
two dielectric constants very similar to each other. In the lat-
ter case, also, a crucial role can be attributed to the assumption
of a fixed cavity.

We also note that all values refer to 2,2-dimethylbutane:
therefore any inaccuracy in treating the solvation in such an
environment would reflect on the quality of the data in the
other media. Due to the low polarity of such an environment,
in this case non-electrostatic effects can be relevant. Our ap-
proach implicitly assumes such contributions to be constant
moving from a solvent to another, which in principle is not
guaranteed.

Finally, as far as “cavity field” effects are concerned, they
are very relevant to correctly reproduce intensity values. In
fact, if for instance default eq is considered, the following val-
ues are obtained: 0.983 (cyclopentane), 0.998 (CCl2), 0.976
(tetrachloroethene), and 0.942 (CS2). Therefore, the inclusion
of cavity field effects not only brings calculated values to-
wards experimental values but also strongly affects the trend
as a function of the solvent polarity. Also, if harmonic data are
considered (see supplementary material69) the role of anhar-
monicity in calculating intensities is evident, always bringing
values towards the experiment.

V. SUMMARY AND CONCLUSIONS

In this paper, we have presented a newly developed and
implemented methodology to perturbatively evaluate anhar-
monic vibrational frequencies and IR intensities of solvated
systems described by means of the PCM. The model proposed
is able to couple an anharmonic description with a complete
continuum solvation model. Such a model is able to account

for the direct effect of the solvent on the property via reac-
tion field effects on the molecular wavefunction, and for the
indirect solvent effects due to the change of the molecular ge-
ometry induced by the presence of the solvating environment.
Also, as concerns the interaction with the radiation field, the
possibility of an incomplete solvent response to the molec-
ular vibration is taken into account (nonequilibrium effects),
as well as the coupling between the solvent and the probing
field (cavity field effects). As far as the latter effect is con-
cerned, the comparison between our QM intensity values and
the findings arising from the application of classical theories
for the “local field,” shows substantial differences in the two
approaches, and notably a solvent effect not uniformly act-
ing on the different normal modes: therefore, the use of the
widely used classical equations to correct experimental data
appears to be quite a strong approximation.

The reported comparison between calculated and exper-
imental data for furan and phenol shows a substantial agree-
ment, thus assessing the quality of our computational model.
Also, the detailed investigation of subtle effects due to a
change in the solvating environment of phenol shows the ca-
pability of our model to correctly reproduce the trends ob-
served as varying the solvent polarity, and even the absolute
intensity ratios if a proper choice of the molecular cavity size
is adopted. In this context we should also point out that, due to
the limitation of the experimental data to a set of non-polar (or
medium polarity) solvents, we were forced to focus our cal-
culations on the same set. However, for such cases, nonequi-
librium effects, which are nonetheless still noticeable, should
reasonably have a minor role if compared to the same inves-
tigation performed in high polarity environments. The dis-
cussion of our calculations for phenol in acetonitrile should
clearly show this point.

TABLE II. B3LYP/N07Ddiff calculated anharmonic intensity ratios with respect to 2,2-dimethylbutane of the
OH stretching of phenol in various solvents. Experimental values are taken from Ref. 63.

Default α = 1.2 α = 1.1 α = 1.0

Ieq Ineq Ieq Ineq Ieq Ineq Ieq Ineq Iexp

Cyclopentane 0.993 1.015 0.990 1.014 0.993 1.025 0.998 1.035 1.020
CCl2 1.026 1.051 1.024 1.061 1.034 1.085 1.052 1.109 1.204
Tetrachloroethene 1.013 1.051 1.013 1.088 1.019 1.098 1.041 1.129 1.200
CS2 1.005 1.089 1.015 1.139 1.019 1.160 1.059 1.212 1.344
CH3CN 1.497 1.417 1.763 1.504 1.881 1.618 2.034 1.752 ...
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FIG. 8. Calculated (anharmonic) vs experimental IR frequencies of phenol
in various solvents.

Still in the same context, non-electrostatic solvent effects
should also play a relevant role, especially as far as the defi-
nition of a comprehensive model is concerned. Such a topic,
which has received so far only very little attention in the lit-
erature, should instead deserve some more accurate investiga-
tion, which in the present case would involve the extension of
the currently available methodologies towards the evaluation
of geometric first and second derivatives.

As final concluding remark, we would like pointing out
that the main relevance of this work is to present an advanced
and self-comprehensive methodology for the evaluation of IR
spectra of solvated systems, more than to apply it to specific
molecules. In fact, the reported applications can be seen as
test cases of our method and are therefore far from being de-
cisive for the final assessment of the accuracy of the method-
ology. Broader testing of the methodology is surely required
to assess the relevance of each of the various effects we have
introduced in the physical model. Obviously, internal testing
is viable, but the final testing on the accuracy of the model
calls for an extended comparison with experiments, which
would generally mean to have access to numerous experimen-
tal data. If vibrational frequencies are nowadays available for
a huge number of solvated systems, absolute (or even rela-
tive) IR intensities are not, so that the testing on intensities
would be much more difficult. Another implication of our
work regards the setting of PCM cavity parameters, which
however also require the availability of benchmark data to be
optimized. As already pointed out, the cavity size (and shape)
is the only really adjustable parameter in PCM calculations.
To give a feeling of the variability of the results as changing
such parameters is always beneficial, and helps at evaluating
the real performances of the method. On the other hand, one
could exactly reproduce a given experimental value by choos-
ing specifically fitted values for the radii of the spheres gen-
erating the cavity. The testing which has been done so far on
PCM for molecular properties and spectroscopies is far from
being exhaustive, and too limited to give a definitive answer
on whether the “best” cavity size is expected to be. For sure,
such a “best” value seems reasonably to be related to the spe-

cific property under investigation, so that a universal choice
seems not viable for any property and any solvent. This mat-
ter certainly calls for more specific investigations and research
in this field would surely help at shading light on this very de-
bated topic.

APPENDIX: NONEQUILIBRIUM FREE ENERGY
DERIVATIVES

According to Ref. 59, the integral equation for the In-
tegral Equation Formalism PCM (IEFPCM, hereafter simply
called “PCM”) reads(

ε − 1

ε + 1
Î − 1

2π
D̂

)
Ŝσ (s) = −

(
Î − 1

2π
D̂

)
� (s) ,

(A1)
where � (r) is the solute electrostatic potential, Î is the iden-
tity operator, whereas Ŝ and D̂ (together with its adjoint D̂�)
are components of the so-called Calderon projector , whose
expressions can be found in Ref. 59.

An analytical solution of Eq. (A1) only exists for very
simple cavities (e.g., spherical): for a general cavity, a numer-
ical approach is mandatory. In the GAUSSIAN 0958 implemen-
tation, Eq. (A1) is represented by expanding the ASC in terms
of spherical gaussians, i.e.,

σ (r) =
∑

i

qi

ai

φi(r; si , ζi), (A2)

where

φi(r; si , ζi) =
(

ζ 2
i

π

) 3
2

e−ζ 2
i |r−si |2 ,

and si ∈ �. The expansion coefficients qi correspond to the
PCM charges. The exponents ζi and the self-potential and
self-field fi, gi are parameters (see Ref. 47 for details). The
discretized PCM equation thus reads

Tεq = −RV, (A3)

where we have introduce the matrices

Tε =
(

ε + 1

ε − 1
1 − 1

2π
DA

)
S, (A4)

R = 1 − 1

2π
DA. (A5)

The potential vector represents the interaction of a basis func-
tion with the molecular density of charge, and is therefore the
sum of a nuclear and an electronic term:

Vi = Vn + Ve =
N∑

A=1

〈i|A〉 −
∑
μν

〈i|μν〉Pμν, (A6)

where the A sum runs over the nuclei and the μν sum over
the pairs of solute basis functions. The nuclear integral 〈i|A〉
represents the Coulomb interaction of a nuclear (point) charge
with the basis function i:

〈i|A〉 =
∫
R3

dr
∫
R3

dr′ φi(r; si , ζi)ZAδ(r′ − Ra)

|r − r′| . (A7)
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The second term represents the interaction between a basis
function i and a pair of solute basis functions χμ, χν :

〈i|μν〉 = Vi,μν =
∫
R3

dr
∫
R3

dr′ φi(r; si , ζi)χμ(r′)χν(r′)
|r − r′| .

(A8)
The original integral equation is thus converted in a lin-
ear system of equations, which can be solved with standard
techniques:

q = −T−1
ε RV = −U(ε)V. (A9)

We point out that the matrix T should be symmetric and pos-
itive definite; on the other hand, because of discretization is-
sues, this does not hold in reality. This leads to the definition
of the so-called polarization weights, which are the solution
of the symmetrized PCM linear system:

w = −U + U†

2
V. (A10)

The weights are used in the calculation of the PCM derivatives
(see Ref. 47 for details). The PCM (equilibrium) free energy
becomes

G = 1

2
q†V = 1

2

∑
i

qi(Vn,i + Ve,i)

= 1

2

∑
i

qi(Vn,i + trPμνVi,μν), (A11)

and thus the PCM contribution to the Fock operator, which
can formally be written as the derivative of the PCM free en-
ergy with respect to the density matrix, is

Xμν = ∂G
∂Pμν

=
∑

i

qiVi,μν = q†Vμν. (A12)

Using the formalism of Ref. 47, the nonequilibrium free
energy, originally formulated in Ref. 45 becomes

Gneq[ρ] = 1

2
q†

dV[ρ] + q†
inV[ρ] − 1

2
q†

inV[ρ0]. (A13)

Notice that, as q = qin + qd , the equilibrium free energy is
recovered when ρ = ρ0:

Gneq[ρ0] = 1

2
q†

dV[ρ0] + 1

2
q†

inV[ρ0] = 1

2
q†V[ρ0]. (A14)

Note that, with the definition of potential given in Eq. (A6),
the separation of electronic and nuclear contributions, which
often results in cumbersome formulae, is not necessary. The
nonequilibrium contribution to the Fock operator is

Xμν = ∂Gneq

∂Pμν

= Vμν(qd + 2qin − qin) = Vμν(qd + qin).

(A15)
The gradient of the PCM nonequilibrium free energy can be
written as the derivative of Eq. (A13). If calculated at the equi-
librium geometry, it reads:

Gx,neq [ρ0] = 1

2

(
q†

dVx[ρ0] + qx,†
d V[ρ0]

)
+ 1

2
(q†

inVx[ρ0] + qx,†
in V[ρ0]), (A16)

where

V†qx = −V†(UV)x = −V†UVx = q†Vx, (A17)

as we are working with a fixed cavity and thus no contribu-
tion arises from the derivative of the U matrix. Being the only
quantity depending on the dielectric constant the U matrix,
the equilibrium and nonequilibrium gradient coincide at the
equilibrium geometry:

Gx,neq [ρ0] = (
qx,†

d + q†
in

)
V = q†V, (A18)

as it was already shown in the original paper.45 The
further differentiation of the Eqs. (A15) and (A18) yields
Eqs. (4) and (6).
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