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Abstract
We review the main results of our investigations motivated by the tadpole potentials of ten–dimensional
strings with broken supersymmetry. While these are at best partial indications, it is hard to resist the feel-
ing that they do capture some lessons of String Theory. For example, these very tadpole potentials lead to
weak-string-coupling cosmologies that appear to provide clues on the onset of the inflation from an initial
fast roll. The transition, if accessible to us, would offer a natural explanation for the lack of power mani-
fested by the CMB at large angular scales. In addition, the same tadpole potentials can drive spontaneous
compactifications to lower–dimensional Minkowski spaces at corresponding length scales. Furthermore,
the cosmological solutions exhibit an intriguing “instability of isotropy” that, if taken at face value, would
point to an accidental origin of compactification. Finally, symmetric static AdS× S solutions driven by the
tadpole potentials also exist, but they are unstable due to mixings induced by their internal fluxes. On
the other hand, the original Dudas–Mourad solution is perturbatively stable, and we have gathered some
detailed evidence that instabilities induced by internal fluxes can be held under control in a similar class
of weak–coupling type–I IB compactifications to Minkowski space.
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1. INTRODUCTION
The highest achievement of the long and widespread effort de-
voted, over a few decades by now, to String Theory [1], is ar-
guably the 10D–11D duality hexagon of fig. 1. This links to one
another the five ten–dimensional superstrings (of types I IA,
I IB, HE, HO and I), whose low–energy limits are captured by
the three types of ten–dimensional supergravity [2, 3, 4, 5, 6],
thus granting some unprecedented clues that all of String The-
ory, despite the elusive nature of its foundations, stems some-
how from a unique underlying principle. The first supergrav-
ity is the I IA theory (whose fields are the non–chiral combina-
tion eA

M, ψM,L, ψM,R, λL, λR, φ, AM, BMN and CMNP), where
φ is the dilaton, the spinors are Majorana–Weyl and he sub-
script indicates their chirality. The second is the I IB theory
(whose fields are the chiral combination eA

M, ψM,L, λR, φ, a,
BMN and D+

MNPQ), where a is an axion, the spinors are Weyl,
the two-form is complex and the four-form has a self–dual
field strength. Finally, the third supergravity is the type-I the-
ory, which rests on a reducible combination of the N = 1 su-
pergravity multiplet (whose fields are the chiral combination
eA

M, ψM,L, λR, φ, BMN), where the spinors are again Majorana–
Weyl, and super-Yang–Mills multiplets (with vector bosons Aa

M
and Majorana–Weyl spinors χa

L). The nature of these multiplets
grants the cancellation of gauge and gravitational anomalies
via the Green–Schwarz mechanism [6], compatibly with their
origin in String Theory. The heterotic HO and HE have thus

SO(32) and E8 × E8 gauge groups [7], while only the former
option is available for the type-I theory, due to the restriction
in [8]. Several people contributed to all this [9, 10, 11, 12], but
Witten [13] was arguably the driving force behind this mon-
umental achievement, via a sapient combination of lessons
drawn from String Theory and from the low–energy super-
gravity.

FIGURE 1: The duality hexagon for ten–dimensional supersymmetric
superstrings.

As is often the case, the highest achievements bring along
the seeds of crisis, and this is strikingly true here. The five ten–
dimensional superstrings are indeed connected, via the remain-
ing side of the hexagon, to the eleven–dimensional supergrav-
ity of Cremmer, Julia and Scherk [14], which was also, arguably,
the highest point reached by supergravity in its development.
While the additional links to this field theory were remarkable
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achievements, from a conceptual standpoint they led String
Theory into a deep crisis, casting more than a doubt on the na-
ture of its actual constituents. Surely enough, the dashed links
in fig. 1 rest heavily, one way or another, on the existence of ex-
tended objects, branes, but these are, after all, generalizations of
the solitons that had surfaced long before in Field Theory. On
the other hand, the eleven–dimensional theory, which rests on
an eleven–dimensional vielbein eA

M, a Majorana gravitino ΨM
and a three-form gauge field AMNP, lacks the two typical sig-
natures of strings: the dilaton φ, which builds the string cou-
pling gs = e〈φ〉, and a two-form gauge field. As a result, in this
picture eleven–dimensional membranes [15] replace somehow
strings, since they couple naturally to a three–form potential,
while the latter emerge merely from their wrapping around the
eleventh dimension. These findings are usually summarized
appealing to an unknown theory that will eventually encom-
pass all different cases, different as they are, as special limits,
but the very foundations of String Theory were thus invested
by a high–intensity quake.

FIGURE 2: The larger duality diagram including the ten–dimensional
non–supersymmetric superstrings. The green lines identify orientifold
projections, most of which were first considered in the Phys. Lett. B
paper with M. Bianchi in [10]. The blue boxes identity the three non–
tachyonic models: HE2 stands for the SO(16)× SO(16) model of [18],
0′B for the U(32) model of [19] and BSB for Sugimoto’s model in [20].

What is less widely appreciated is perhaps that the famous
picture in fig. 1 collects at most a fraction of the available op-
tions. If one insists on the world–sheet consistency rules of
String Theory, there are in fact many more solutions in ten
dimensions, which are indicated in fig. 2. The additional op-
tions [16, 17, 18, 10, 19, 20] lack space–time supersymmetry,
and are thus a unique laboratory to gather some information
on what String Theory tells us, at the most fundamental level,
on the key issue of supersymmetry breaking. Surely enough,
any attempt to connect String Theory with the Standard Model
of Particle Physics is confronted with a bottom–up approach
to supersymmetry breaking, but here String Theory itself is
calling for an understanding of the phenomenon from a top–
down perspective. The vast majority of the new options con-
tain tachyons in their spectra, and following the fate of their
vacua, while possible in principle, appears to date prohibitively
difficult. For example, important progress was made in the
early 2000’s in connection with the tachyon of the open bosonic
string [21], but the corresponding closed–string tachyon is still
fraught with mysteries. Hence, it appears reasonable to concen-
trate on the three new options, identified by blue boxes, where

supersymmetry is broken, or is present but non–linearly real-
ized, and yet the low–lying spectra contain no tachyons [24].
There are two models of the first kind, the SO(16) × SO(16)
heterotic string [16, 18], whose massless spectrum contains
states corresponding to (eA

M, BMN , φ), together with adjoint
vectors, left–handed fermions in the (128, 1) + (1, 128) and
right–handed fermions in the (16, 16), and the U(32) 0′B ori-
entifold [19], whose massless spectrum contains bosonic states
corresponding to (eA

M, φ, a, BMN , D+
MNPQ), together with ad-

joint vectors and left–handed fermions in the 496 +496. The
third string model is Sugimoto’s USp(32) string [20], whose
massless spectrum combines the states of type-I supergravity
with massless vectors in the adjoint of USp(32) and Majorana–
Weyl fermions in the corresponding (reducible) antisymmetric
representation. The presence of a singlet spinor is no coinci-
dence in this case: it is the goldstino that ought to be eaten
by the gravitino in a spontaneous breaking of supersymmetry.
Local supersymmetry in indeed present in this case, in a non–
linear phase [22], and yet one cannot even write a mass term
for the gravitino, which is a Majorana–Weyl spinor–vector! Su-
persymmetry is broken by the simultaneous presence, in the
vacuum, of branes and orientifolds preserving complementary
portions of supersymmetry, and the non–dynamical nature of
the latter grants the absence of tachyonic modes. We have of-
ten referred to this type of phenomenon as “brane supersym-
metry breaking”, after identifying its first manifestation in six
dimensions in [20], which resolved an old puzzle reviewed
in [23]. The lack of a mass term does not contradict any well-
ascertained notion: all three models, and in this one in particu-
lar, are not defined around ten–dimensional Minkowski space,
since the breaking of supersymmetry induces an important
back-reaction. This is signalled by the emergence of a runaway
(“tadpole”) potential for the dilaton, which takes the form

∆S = −T
∫ √

−g d10x eγ φ (1.1)

in the Einstein frame. Here γ = 3
2 in the two orientifold mod-

els, the 0′B with gauge group U(32) and Sugimoto’s USp(32)
model that hosts, as we have seen, the intriguing phenomenon
of “brane supersymmetry breaking”. In both, the specific value
of γ reflects the origin of T from the residual tension of D-
branes and orientifolds. On the other hand γ = 5

2 for the
SO(16)× SO(16) string, where the back-reaction first manifests
itself in the torus amplitude. The reader is kindly asked to take
notice of these specific values, since they will play a role in the
ensuing discussion.

One should also meditate on another conundrum brought
up by fig. 2. The very presence of a fundamental string model in
ten dimensions where supersymmetry is non–linearly realized
should be regarded, in our opinion, as a puzzle that adds to the
surprising link to eleven dimensions, since after all we are used
to think of non–linear realizations as limiting forms of linear
ones that emerge in singular limits, when one or more members
of a multiplet disappear somehow from the spectrum. Are we
missing something here?

After motivating the interest in the three non–tachyonic
models, if need there be, the real issue is the line of attack for
addressing the key questions posed by them. The problem is
both technical and conceptual in its nature: one has in mind the
full–fledged String Theory, but the low–energy effective field
theory is the only tool effectively at our disposal today. Extract-
ing information from it about String Theory proper is not an

2



Letters in High Energy Physics , ,

easy task, since the two are connected by a double expansion,
in powers of gs and in powers of the curvature in units set by
the string scale 1√

α′
. When both couplings are small, the low–

energy effective field theory is expected to yield reliable indica-
tions but, as we are about to see, this ideal setting can be at best
approached.

With this proviso, we shall now review the information that
has been gathered, so far, on the behavior of the three ten–
dimensional string models with broken supersymmetry and
yet no tachyonic modes. It concerns the two distinct contexts of
cosmological solutions and static compactifications, to which
we devote the next two sections.

2. COSMOLOGICAL SOLUTIONS
The study of cosmological solutions in the presence of the tad-
pole potential (1.1) started with the exact solution

eφ = eφ0

∣∣∣α t2
∣∣∣ 1

3 e−
3
4 αt2

, α ∼ T , (2.1)

ds2 =
∣∣∣α t2

∣∣∣ 1
18 e α t2

8 ηµνdxµdxν − e−
3
2 φ0

∣∣∣α t2
∣∣∣− 1

2 e
9
8 α t2

dt2,

built in [25], which was then generalized to arbitrary values of
γ in [26]. The key lesson of this set of cosmologies was exposed
in [27]: it is the presence of a sharp transition between two types
of behavior as γ overcomes the critical value γ = 3

2 . For brevity,
here we have only displayed the simplest expressions for the
three models of interest, which correspond to γ = 3

2 and apply
to the two orientifolds. One can see clearly that, as the variable t
grows, eφ grows, reaches a finite maximum and then decreases,
which justifies the pictorial name “climbing scalar”. The range
of values attained by the string coupling gs in these cosmolo-
gies is thus bounded from above.

Referring to fig. 3, we kindly ask the reader to pretend, ini-
tially, that the exponential be a horizontal line. For γ = 0 the
scalar field ought then to afford two distinct options: it should
be able to proceed from large to small values, or alternatively
from small to large ones, while loosing some of its energy due
to cosmological friction. In the presence of a mild exponential
potential, with a small positive value of γ, one could well as-
sociate to these two options the names of “descending” and
“climbing” dynamics, although clearly in the latter case the
scalar would climb up to a point to then revert its motion and
start a descent. In String Theory, however, the two options en-
tail a big difference: the string coupling is unbounded for a “de-
scending” scalar and is bounded for a “climbing” scalar. The lat-
ter scenario can thus unfold entirely within the weak coupling
region, providing information that is more reliable for String
Theory as a whole.

FIGURE 3: The two widely distinct scenarios of a climbing and a de-
scending scalar.

The key result is that only the climbing behavior is pos-
sible for γ ≥ 3

2 , and the transition point lies precisely at
the value pertaining to the non–tachyonic U(32) and USp(32)
ten–dimensional orientifolds! As a result, in all three ten–
dimensional models of [16, 18, 19, 20] only the climbing dy-
namics is possible. It is then natural to wonder whether this
dynamics might have left some tangible signs in the Universe.
This led to think about inflation, which is usually considered
in its steady state, but could have received its initial impulse
by this mechanism. Of course, these top–down considerations
would need be complemented by other information, capable of
producing a mild potential capable of slowing down the de-
scent. Even a simple combination

V = T eγ φ + T′ eγ′ φ , (2.2)

with a small enough γ′, which could be induced by other
branes or otherwise, could grant a slow–roll phase [28] in the
eventual descent. The same dynamics obtains if one combines
the potential of eq. (1.1) with other milder contributions, and
for instance with the celebrated Starobinsky potential [29]: in
all cases the fast–roll injection of inflation would induce a de-
pression in the power spectrum of scalar (and tensor) pertur-
bations 1. With a short–enough inflation these scenarios could
account for the lack of power in the low–` CMB angular power
spectrum, and the mechanism also entails a definite prediction:
in this scenario the tensor–to–scalar ratio would grow, even by
one order of magnitude [28, 30], in the transition region to the
usual power–like behavior of [31], whose behavior can be cap-
tured by the simple formula

P(k) = P0
k3

[k2 + ∆2]
2− ns

2
. (2.3)

A further piece of the puzzle emerged from the (in)stability
analysis of [32]. It has to do with a surprise concerning ten-
sor perturbations: while spatially varying tensor perturbations
are stable like all scalar ones, in the sense that they decay in
the course of the cosmological evolution, homogeneous tensor
perturbations behave differently, and experience a logarithmic
growth within the early ascent,

h′′ij +
1
η

h′ij + k2 hij = 0 ,

hij ∼ Aij J0(kη) + Bij Y0(kη) (k 6= 0) ,

hij ∼ Aij + Bij log
(

η

η0

)
(k = 0) . (2.4)

The growth for k = 0 signals an instability of isotropy. In this re-
spect, the compactification of extra dimensions needed to con-
nect String Theory to Nature might have resulted from a mere
accident!

More recently, we have analyzed a wider class of solutions,
which rest on metrics of the form

ds2 = − e2B(t)dt2 + e2A(t)dx2 + e2C(t)dy2 . (2.5)

1The reversal of the scalar motion at the end of its ascent would leave another
distinct signature in primordial power spectra, a small peak, which seems how-
ever beyond reach for CMB experiments.

3



Letters in High Energy Physics , ,

FIGURE 4: eA (dashed), eC (dash–dotted) and eφ (solid) for a “crit-
ical” anisotropic climbing scalar cosmology with γ = γc, where the
space–time x–coordinates undergo a bounce (left panel), and for an
anisotropic climbing scalar cosmology with γ > γc where the internal
directions undergo a contraction (right panel).

These can describe extensions of the original setting of [25, 26],
or even further compactifications thereof, if the yi are identi-
fied periodically. Two interesting options that this adds to the
preceding picture are displayed in fig. 4. Concentrating on the
more interesting case of climbing scalars, the cosmological ex-
pansion can be accompanied by bounces of the additional di-
mensions or, for large enough values of γ (the critical value
grows with the anisotropy and is larger than 3

2 ), or by addi-
tional dimensions undergoing a contraction. Therefore, addi-
tional toroidal dimensions have the option of compactifying
dynamically.

A word of caution is needed before concluding this section.
Truly enough, the climbing scenario grants a bounded string
coupling, but high curvatures remain present close to the ini-
tial singularity. A systematic account of higher–derivative cor-
rections might help with them, but the information gathered so
far, which did solve some amusing puzzles with the climbing
scenario, has not given positive indications in this respect [33].

3. STATIC SOLUTIONS
The lessons encoded in [25] are also a natural starting point to
search for static compactifications in the presence of the tadpole
term of eq. (1.1). There is a second surprise, which is however
accompanied, as is usually the case, by corresponding difficul-
ties. Let us begin by exposing the former. To this end, it will suf-
fice to consider the analytic continuation of eq. (2.1), obtained
letting t→ ir,

eφ = eφ0

∣∣∣α r2
∣∣∣ 1

3 e
3
4 αr2

, α ∼ T , (3.1)

ds2 =
∣∣∣α r2

∣∣∣ 1
18 e− α r2

8 ηµνdxµdxν + e−
3
2 φ0

∣∣∣α r2
∣∣∣− 1

2e−
9
8 α r2

dr2 .

In this fashion the time–like t becomes the spatial variable r >
0, and this simple operation brings along two striking effects
that the reader can readily appreciate:

• the string coupling becomes unbounded as r → ∞;

• the length of the internal interval parametrized by r be-
comes finite.

Remarkably, the tadpole potential (1.1) drives a sponta-
neous compactification down to an interval of size proportional
to 1√

T
! Notice that this setting is vastly different from the stan-

dard Kaluza–Klein circle reduction, where the size of the inter-
nal space would be a modulus. Yet, the theory maintains a gen-
uine nine–dimensional interpretation, and gravity and gauge

interactions survive in the resulting nine–dimensional space-
time with finite couplings, as shown in [25].

The curvature and the string coupling are both unbounded,
however, so that there are two reasons to pause when attempt-
ing to ascribe these striking findings to String Theory proper,
but there is a second surprise, which comes from the analysis
of perturbations.

Briefly stated, perturbations can be classified, as is well
known, according to the their behavior under the residual sym-
metry group, and can be studied accordingly. The analysis is
aimed at determining the sign of m2 for the available modes
in the resulting Minkowski spacetime, and in this case tensor
perturbations are simply stable. However, there are potentially
dangerous scalar perturbations A, which affect the conformal–
gauge metric according to

ds2 = e2Ω(z)
[
(1 + A) dxµ dxµ + (1− 7A) dz2

]
. (3.2)

A satisfies a complicated differential equation in r,

A′′ + A′
(

24 Ω′ − 2
φ′

e2Ω Vφ

)
(3.3)

+ A
(

m2 − 7
4

e2Ω V − 14 e2Ω Ω′
Vφ

φ′

)
= 0 ,

but one can make nonetheless definite statements on the sign
of m2, resorting to a very useful trick. This recurs, in various
forms, in Physics and in Mathematics, and consists in recasting
the equation in the form,

m2 Ψ =
(

b + A†A
)

Ψ , (3.4)

with suitable choices of A and A†. In this case

A =
d
dr
− α(r) , A† = − d

dr
− α(r) , (3.5)

where α is proportional to the coefficient of A′ above, and

b =
7
2

e2Ω V
1

1 + 9
4 αO y2

> 0 . (3.6)

When applied in this context, these steps yield a definite predic-
tion for the sign of m2. Up to a proper choice of boundary conditions,
the product A†A is indeed a positive operator, and the stabil-
ity of the model follows since b turns out to be a positive func-
tion. In this fashion, one can conclude that the Dudas–Mourad
vacuum for the orientifold models is perturbatively stable, and
similar steps lead to the same conclusion for its counterpart for
the heterotic SO(16)× SO(16) string!

The preceding result was not at all guaranteed. It can be
contrasted with the fate of another class of vacua, which were
first considered in [34] and were rediscovered and extended
in [35]. Let me focus again, for brevity, on the solution corre-
sponding to γ = 3

2 , which is an AdS3 × S7 vacuum described
by a metric of the form

ds 2 = R2
AdS λµν dxµ dxν + R2 γij dyi dyj . (3.7)

Here the H3-flux is required by the dilaton equation, which
would select, in a similar fashion, an H7-flux and thus an
AdS7 × S3 vacuum, for the heterotic SO(16)× SO(16) model.
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The crucial property here is that the AdS and S radii are proportional.
The background equations can be cast in the form

R2
AdS V0 = 12

(
σ3 −

4
3

)
, (3.8)

σ3 =
R2

AdS
2 β

V
′
0 = 1 + 3

R2
AdS
R2 , τ3 = R2

AdS V
′′
0 ,

where V0, V′0 and V′′0 denote the values attained by the tadpole
potential and its first two derivatives at the equilibrium value
for φ determined by the flux. We have kept the system in this
form for a reason that will soon become apparent, although the
actual values of the two parameters σ3 and τ3 are easily derived
from the complete set of equations, and are

σ3 =
3
2

, τ3 =
9
2

. (3.9)

Let us stress that this class of symmetric vacua would have, in
principle, all it takes to expect that its indications be significant
for the full–fledged String Theory: the flux can be adjusted at
will, in such a way that curvature and string coupling be both
small.

One can study again the behavior of perturbations in this
setting, which is complicated by the mixing of different fields.
However, the analysis boils down to tracking the squared
masses of the different perturbations, without the need to ad-
dress directly operator spectra, since they are explicitly deter-
mined by well–known properties of the Laplace operator on
the internal sphere. Everything works nicely for internal zero
modes, but the Kaluza–Klein excitations bring along additional
modes, which mix with the original ones complicating matters.
Due to a well–known subtlety, which goes under the name of
Breitenlohner–Freedman bounds [36], the transition to instabil-
ity does not occur when m2 changes sign, but when it falls be-
low some well–defined negative values that depend on the na-
ture of the fields involved. At any rate, the resulting eigenval-
ues reveal the emergence of unstable scalar modes. A similar
behavior was found in [37] for the AdS4 vacuum of eleven–
dimensional supergravity. We have not managed to eliminate
the unstable modes by a sensible internal projection for the
orientifolds, while one can simply do it for the heterotic solu-
tion invoking an r → −r identification in the internal space.
This opens up another issue, related to the non–perturbative
instabilities of these types of vacua, which were addressed
in [38, 39]. Still, it is amusing to note that the actual values of
the two parameters σ3 and τ3 in eq. (3.9), which identify the po-
sition of the cone in fig. 5, lie somehow close to the border be-
yond which the compactification would be stable. One might
wonder whether quantum corrections to the potential could be
of help here.

We can now review our recent work in [40], which explores
in some detail vacua described by metrics of the form

ds2 = e2A(r)dx2 + e2B(r)dr2 + e2C(r)dy2 , (3.10)

while also allowing for internal fluxes respecting their symme-
tries, or the tadpole potential of eq. (1.1), or both. The main
lessons that we thus gathered are the following:

• the presence of internal fluxes can allow, by itself, solu-
tions with r–intervals of finite length, and the string cou-
pling can be bounded in some of these examples, while the
curvature remains singular;

FIGURE 5: A comparison between the lowest eigenvalue of R2
AdSM2,

which obtains for the internal angular momentum quantum number
` = 3, and the BF bound, which is -1 in this case. There are regions of
stability for values of σ3 close to 1, which correspond to R2

R2
AdS

> 9 and

negative values of V0. . The small cone identifies the point correspond-
ing to the actual tree–level values σ3 = 3

2 , τ3 = 9
2 .

• at one end of the interval, these solutions approach the
behavior of corresponding solutions where supersym-
metry is only partly broken, which are approached glob-
ally as the length of the interval tends to infinity;

• when the tadpole potential is present, even in combina-
tion with internal fluxes, a finite length of the r-interval
becomes inevitable, since the effects of T dominate as
r → ∞, but the string coupling diverges in the asymp-
totic region. These systems are difficult to analyze in gen-
eral, but we have managed to find an exact solution in
the presence of T, for the value γ = 3

2 that pertains to
orientifolds, and also in the presence of an H7 flux. The
resulting equations read

ds2 = e −
T e2 x2 r2

8 α′ − χ1 r
6

(
dx · dx[

h ρ sinh
(

r
ρ

)] 1
4

+

[
h ρ sinh

(
r
ρ

)] 3
4

dy · dy

)
(3.11)

+ e −
9 T e2 x2 r2

8 α′ − 3(χ1 r + χ2)
2 + 2 x2

[
h ρ sinh

(
r
ρ

)] 3
4

dr2 ,

eφ =
e

3 T e2 x2 r2
4 α′ + χ1 r + χ2[

h ρ sinh
(

r
ρ

)] 1
2

,H7 = h
ε6 dr[

h ρ sinh
(

r
ρ

)]2 ,

where 0 < r < ∞, and clearly exhibit the inevitable dom-
inance of the tadpole term for large values of r, together
with a power–like behavior as r → 0. As one could see
taking a closer look at it, this behavior corresponds in-
deed to a supersymmetric limit.

In [41] we have studied in detail a special type of compact-
ification driven by an H5 flux. It rests on the direct product of
an internal torus and a finite internal interval, where the string
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coupling is constant, and is described by

ds2 =

[ |H5|√
2

ρ sinh
(

r
ρ

)]− 1
2

dx2 (3.12)

+

[ |H5|√
2

ρ sinh
(

r
ρ

)] 1
2
(

e
− 5 r

ρ
√

10 dr2 + e
− r

ρ
√

10 dy 2
)

,

H(0)
5 =

H5
2

 dx0 ∧ ...∧ dx3 ∧ dr[ |H5|√
2

ρ sinh
(

r
ρ

)]2 + dy1 ∧ ...∧ dy5

 .

Even in this case, one can show that the lower–dimensional
Planck mass is finite, so that gravity remains at work in the
resulting four–dimensional Minkowski spacetime. One is thus
improving on the Dudas–Mourad setting, albeit within a dif-
ferent context: these non–supersymmetric vacua concern a su-
persymmetric theory, the type–I IB string, where the tadpole is
absent and supersymmetry breaking is induced via the H5 flux.
As ρ → ∞, one half of the ten–dimensional supersymmetry is
recovered but the theory becomes five dimensional.

The detailed analysis of field perturbations is quite compli-
cated, even after splitting them according to the residual sym-
metries of the background. Part of the complications originate
from the unfamiliar fluctuations of the self–dual five-form field
strength, which satisfies the first–order equation [4] H = ? H.

One can work conveniently in a radial gauge for the four–
form potential, setting to zero all components BrMNP that point
in the radial direction. In order to convey a flavor of the nature
of the problem, we can display the detailed form of the tensor
equation,

∂[µ b(2)ν]
lm +

1
2

εlmnpq ∂n bµνpq = − e−4A−4C

2
εµνρσ ∂rbρσlm ,

∂r b(2)µ
lm = e2A+6C

(
∂[l bµ

m] +
1
2

εαβγ
µ ∂α bβγ

lm
)

,

∂µ bm − ∂n b(2)µ
mn = e−2C

[
H5
2

hµ
m − e−6A ∂r bµ

m
]

,

∂r bm = e−2C
[

H5
2

hr
m − e10C (∂m b − ∂µ bµm)] , (3.13)

∂p bp =
H5
4

(
−e−2A hα

α − e−2B hrr + e−2C hi
i
)
+ e−8A ∂r b ,

whose components look somewhat unfriendly even after the
simplifications introduced by gauge fixing. At any rate, mak-
ing a long story short, all individual sectors of the spectrum
can be related, via a sequence of field transformations, to
Schrödinger–like equations as in eq. (3.6), but where the op-
erators are generally matrix-valued.

The are no instabilities in the sectors carrying a vanishing
momentum k in the internal torus, but as soon as one allows
nonzero values of k new modes appear and, with them, mix-
ings and potential instabilities. In this respect, the pattern is
along the lines of what we saw in AdS× S vacua. We shall con-
tent ourselves, here, with a special example,

M Z = m2 Z , α =
C− A

2
, β = − 5A + 3C

2
(3.14)

M =

(
K2 + (− ∂ + α)z (∂ + α)z

kH5√
2

e2(A−3C)

kH5√
2

e2(A−3C) K2 + (−∂ + β)z (∂ + β)z

)
,

which can convey the general lesson. Notice that the diagonal
terms, where K2 = k2e2(A−C) and k = |k|, contain manifestly
positive contributions like those in eqs. (3.4) and (3.6). The dif-
ficulty is due to the off–diagonal terms, which are linear in k
and can be associated to the σ1 Pauli matrix. As such, they can
add or subtract to the diagonal contributions, which are man-
ifestly positive, and this is the origin of the tachyon problem.
Notice also that, for large internal momenta k, the diagonal
terms dominate, so that the problem ought to concern a lim-
ited range of internal momenta.

FIGURE 6: Variational estimates of m2 as a function of |n|, where k =
n
R and n 6= 0 in this sector, in units of m2

0 =
( √

2
H5 ρ3

)
. The two figures

refer to R
ρ = 10−1 (left panel) and to R

ρ = 2× 10−3 (right panel, where
we have also compressed the vertical units by a factor 10). With the
second choice all tachyonic modes disappear.

The actual effects of the off–diagonal terms depend cru-
cially on the ratio between two scales, the length of the r-
interval and the linear size, say R, of the internal torus, which
can be chosen independently in this setting, in sharp contrast to
what we saw for AdS × S vacua. The low–energy analysis al-
lows one to explore these regimes, insofar as both length scales
lie well above the Planck and string scales. Consequently, there
is some room to eliminate tachyonic modes here, if the torus size is suf-
ficiently small compared to the size of the interval. This is illustrated
in fig. 6.

Let us conclude this section with a technical note. The
Schrödinger–like systems at stake are very complicated, so that
it is already amusing to see how their zero modes, if present,
can be obtained in closed form. However, if one is looking
for bounds on m2, the evident analogies with non–relativistic
Quantum Mechanics put at one’s disposal what is perhaps its
most powerful tool, the variational principle. Estimates of the
ground–state energy for a Hermitian Schrödinger–like opera-
tor M̃ obtained via a generic test function Ψ lie above the actual
ground–state energy,

m2
Ψ =

〈Ψ|M̃|Ψ〉
〈Ψ|Ψ〉 ≥ m2

0 , (3.15)

so that lower estimates are better ones. The method can be
amazingly accurate and lies at the heart of wide portions of
Chemistry and Statistical Physics. There is first catch, however,
in our case. All this is true provided the Ψ functions satisfy
proper boundary conditions at the ends of the r-interval. These
were instrumental in selecting the test functions leading to the
estimates in fig. 6, and the setup to choose them is the subject
of the next section.

4. BOUNDARY CONDITIONS
Let us consider a manifoldMwith a boundary ∂M, while also
referring directly to Fermi fields, whose formulation entails a

6
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richer structure. Our starting point is the variation of a matter
action,

δ Sm =
∫
M

dDx e
[
δeM

A T M
A + δωM

AB YM
AB

]
, (4.1)

which defines a (generally non symmetric) energy–momentum
tensor T M

A and an additional tensor YM
AB, which will play a

central role in the ensuing discussion. The vielbein will be co-
variantly constant, but a torsion tensor SP

MN will be generally
present:

DM eN
A ≡ ∂M eN

A + ωM
AB eNB − ΓP

MN eP
A = 0 ,

SP
MN = ΓP

MN − ΓP
NM .

The invariance of the action under local Lorentz transforma-
tions, which act on vielbein and spin connection according to

δ eM
A = εAB eMB , δ ωM

AB = − DM εAB , (4.2)

yields a first Bianchi identity,

DM YM
AB − SP

PM YM
AB =

1
2
(TAB − TBA) , (4.3)

which links the antisymmetric part of T M
A to YM

AB. In addi-
tion, diffeomorphisms act on vielbein and spin connection ac-
cording to

δ eM
A = DM ξA − SA

MN ξN ,

δ ωM
AB = − RMN

AB ξN , (4.4)

and yield a second Bianchi identity,

DM T M
N + SP

MN T M
P − SP

PM T M
N

= − RMN
AB YM

AB , (4.5)

which links the Riemann tensor and YM
AB to the covariant di-

vergence of the energy–momentum tensor. Notice that the tor-
sion tensor accompanies all covariant divergences present in
these equations. This is due to a subtlety related to total deriva-
tives, whose link to covariant divergences is affected by torsion,
and reads

DM VM = SM
MN VN +

1
e

∂M

(
e VM

)
. (4.6)

Retracing these arguments for the Einstein–Hilbert action

SEH =
1

2 k2

∫
M

dDx e eM
A eN

B RMN
AB (4.7)

leads to

δ SEH = − 1
k2

∫
M

dDx e
[
δ ωN

AB ΘN
AB + δ eM

A GM
A

]
,

(4.8)
where

GM
A =

(
eM

C eP
A −

1
2

eM
A eP

C

)
eQ

D RCD
PQ (4.9)

is a generally non–symmetric Einstein tensor, and

ΘN
AB = − 1

2

(
SP

PA eN
B − SP

PB eN
A

)
− 1

2
SN

AB . (4.10)

The counterparts of the preceding Bianchi identities,

DM ΘM
AB − SP

PM ΘM
AB =

1
2
(GAB − GBA) ,

DM GM
N + SP

MN GM
P − SP

PM GM
N

= − ΘM
AB RMN

AB , (4.11)

guarantee the consistency of the Einstein equations

GM
A = 2 k2 T M

A , ΘM
AB = 2 k2 YM

AB . (4.12)

We can now elaborate on how the well–known link be-
tween Killing vectors, energy–momentum tensor and con-
served currents is affected by the presence of torsion. Retracing
familiar steps leads to define the Killing vectors ζM and a new
tensor, θAB, and global symmetries are identified demanding
that their contributions conspire to leave both the vielbein and
the spin connection unaffected:

δ eM
A ≡ DM ζ A − SA

MN ζN + θAB eNB = 0 ,

δ ωM
AB ≡ − RMN

AB ζN − DM θAB = 0 . (4.13)

The first condition can be turned into

θAB = DA ζB − SBA
C ζC , (4.14)

while the antisymmetry of θAB translates into the modified
Killing equation

DM ζN + DN ζM =
(

SMN
P + SNM

P
)

ζP . (4.15)

Notice also that, using eq. (4.14), the second of eqs. (4.13) can
be cast in the form

DM DA ζB =
(

DM SBA
N
)

ζN + SBA
N DM ζN − RMNAB ζN ,

(4.16)
which generalizes the familiar result for the second derivatives
of Killing vectors.

Noether currents should now satisfy the modified conserva-
tion laws

DM J M − SM
MN J N = 0 , (4.17)

a subtlety whose origin we already highlighted in eq. (4.6).
Given a Killing vector ζA solving eq. (4.15), one can verify that
the combinations

J M = T M
N ζN − YM

AB θAB , (4.18)

with θAB given by eq. (4.14), are the Noether currents we are
after, and satisfy eq. (4.18).

When M has a boundary ∂M, the time dependence of a
Noether charge depends crucially on the boundary conditions,
since

d Q(t)
dt

=
∫

∂M
dD−1x δ(x0 − t)

√
−g J r , (4.19)

and therefore the condition√
−g J r|∂M = 0 , (4.20)

is needed to prevent the charge from flowing across the bound-
ary. This crucial condition underlies the analysis sketched in

7
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the preceding section, and translates into the independent sets
of conditions√
−g T r

N ζN
∣∣∣
∂M

= 0 ,
√
−g Y r

AB θAB
∣∣∣
∂M

= 0 . (4.21)

Notice that, in contrast with what we did in [42], here we kept
the factor

√−g in the final form of these conditions. This factor
plays indeed an important role in the examples at stake, due to
the singularities present at the ends of the r-interval.

In the backgrounds of interest, which rest on the class of
metrics in eq. (3.10), one is to insist on translational symmetries
in spacetime and in the internal torus, which are granted for
Bose fields by the two sets of conditions√

−g T r
µ

∣∣
∂M = 0 ,

√
−g T r

i|∂M = 0 , (4.22)

and on Lorentz symmetries in spacetime. For the bosonic per-
turbations of the background of eqs. (3.12), once an A†A form
is reached within a sector of the spectrum, these conditions
translate into the demand that

ΦAΦ|∂M = 0 , (4.23)

and boundary conditions of this type grant the positivity of the
mass spectrum.

Fermi fields require an additional effort, aimed at enforcing
the second of eqs. (4.21). This grants the Lorentz symmetry in
the resulting Minkowski spacetime. One can do it via a matrix
Λ subject to the conditions,

Λ2 = 1 ,
{

Λ , γ0γr
}

= 0 (4.24)

which eliminate the contributions arising from varying Dirac–
like actions, together with[

Λ, γµν
]
= 0 , (4.25)

which grant indeed the conservation of the Lorentz charges,
once the preceding conditions hold. However, when the
spinors are subject to Weyl, Majorana, or Majorana–Weyl con-
ditions, there are further descriptions. Thus, intriguingly, there
is no assignment granting the preservation of the full set
of Lorentz charges in the Dudas–Mourad setting beyond six
dimensions, due to the Majorana–Weyl nature of the ten–
dimensional spinors present in the three ten–dimensional mod-
els at stake. Our analysis of the preceding section involves the
type–I IB theory, whose two Majorana–Weyl gravitinos can be
mixed by

Λ = i γ0 γ1 γ2 γ3 σ2 , (4.26)

with σ2 the Pauli matrix, and all translational symmetries can
be preserved, together with the Lorentz symmetries of the re-
sulting four–dimensional spacetime, once these conditions are
enforced.

5. CONCLUSIONS
The three tachyon–free ten–dimensional string models with
broken supersymmetry have already provided some interest-
ing lessons. Their main lessons so far, in our opinion, are the
following:

• the cosmological solutions driven by the tadpole poten-
tial grant a weak–coupling phase after the initial singu-
larity that has some features suggestive of an intriguing
mechanism to inject an inflationary phase;

• while symmetric vacua with broken supersymmetry are
fraught with instabilities, there is some room for sta-
ble non–symmetric compactifications, above and beyond
what was found in [32] for Dudas–Mourad vacua, since
there is some freedom to adjust their internal scales. It
will be interesting to explore further these directions;

• we have managed to exhibit scenarios where supersym-
metry is broken, the internal r-direction is compact and
the lower–dimensional Planck mass is finite, while the
string coupling has an upper bound. This result, how-
ever, was obtained within the type–I IB theory, and we
have gathered some clear evidence that the string cou-
pling is not bounded in the presence of the tadpole po-
tentials (1.1): asymptotically, they lead to what was seen
in the original Dudas–Mourad vacuum or, as stressed
in [39], to the “closure” of spacetime.

• In contrast with these encouraging results, we have not
managed to eliminate curvature singularities, in any of
the settings that we have explored. A natural expectation
is that this might be possible taking into account system-
atically the curvature corrections of String Theory. How-
ever, the preliminary analysis in [33] is not encouraging
in this respect.

−10 −5 0 5 10

r
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eϕ

FIGURE 7: The two functions eB ( equal to eA for this model) and e
4
3 φ

for the potential of eq. (5.1). In this example the internal length is finite
and the coupling gs is bounded, but the curvature remains singular.

Let us conclude by describing what is perhaps a skew at-
tempt [43] at bypassing the strong–coupling problem, in the
belief that it might be solved by suitable quantum corrections.
The issue is: which types of modifications of the potential of
eq. (1.1) could grant this result? Relying on a beautiful set of
integrable dynamical systems already explored in connection
with the climbing mechanism [44], we have explored toy com-
pactifications in the presence of a wide family of potentials,
identifying the rationale behind those that do grant the desired
property. The strong–coupling problem can indeed disappear,
provided the potential is steep enough and unbounded from below!
For example, the “corrected” potential

V = V0

(
e

3
4 φ − e3 φ

)
(5.1)
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yields the Dudas–Mourad–like vacuum solutions

eA = eA0

[
cosh(ω(r− rϕ̂))

] γ2

1−γ2[
cosh(γω(r− rÂ))

] 1
1−γ2

,

e
4
3 ϕ = eϕ0

[
cosh(γω(r− rÂ))

] γ

1−γ2[
cosh(ω(r− rϕ̂))

] γ

1−γ2
. (5.2)

that are depicted in fig. 7.
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FIGURE 8: Surprisingly, the potential b of eq. (3.6) that emerges from
the solution of fig. 7 is always positive, despite its origin from a poten-
tial V(φ) that is unbounded from below. Consequently, the eigenvalues
of the corresponding Schrödinger problem, which are to lie above its
minimum, are also positive, and the scalar perturbations for this model
system contain no tachyonic modes.

Retracing the steps that led to eq. (3.6), and despite the pres-
ence of a negatively unbounded potential to begin with, the
study of scalar perturbations in this example can be recast in
the form of eq. (3.6), with the positive b function depicted in
fig. 8, so that the model is perturbatively stable. The mechanism
that underlies these results is actually the Euclidean counter-
part of the climbing mechanism in the presence of steep posi-
tive exponential potentials reviewed in Section 2: potentials are
indeed inverted when moving to Euclidean settings, and this
is precisely what one does in the analytic continuation that we
effected at the beginning to connect eqs. (2.1) and (3.1).

FIGURE 9: A typical region of instability that emerged from two–
parameter tests for singlet scalar perturbations with k 6= 0, bounded
from above by a value of h of order one. Within the blue region the
system has complex eigenvalues, and therefore unstable modes, for all
allowed values of k 6= 0, which are treated here, for simplicity, as a
continuum.

One may wonder whether the type of Kaluza–Klein in-
stabilities that we have discussed are the only difficulty that
one may be confronted with. In particular, are Hermitian
Schrödinger-type systems the inevitable endpoint of these in-
vestigations? The answer is no, as will be explained in de-
tail in [41]. The spectrum of singlet scalar perturbations with
k 6= 0 in the fluxed compactifications addressed in Section 3

contains indeed two novel features: it depends on a dimension-
less parameter, h = |H5|ρ√

2
, which sets the scale of the five–form

field strength, and the resulting Schrödinger potential is a non–
symmetric matrix. As a result, complex eigenvalues are generi-
cally present, although we have found some evidence, in varia-
tional tests, that they disappear for h > hmin, with hmin a value
of order one (see fig. 9). Complex eigenvalues signal instabil-
ities, and actually of a far worse kind than those exhibited so
far, since their tachyonic masses grow, in absolute value, with
the Kaluza–Klein momentum k! Still, for h > hmin these insta-
bilities disappear, and the system passes all perturbative tests
that we have been able to perform to date, provided that, as
we have sketched in Section 3, the scale of the internal torus
is small enough compared to the scale ρ that enters eqs. (3.12)
and is proportional to the length ` = ρ h

1
4 of interval. These

conditions translate into the inequality R
ρ < ηc where ηc is of

order 10−2, and these effective field theory considerations are
thus reliable provided, say, ρ ∼

(
104 − 105)√α′, which leaves

an ample window for them.
In conclusion, we have collected some evidence that non–

symmetric internal spaces may allow potentially interesting
stable string compactifications to Minkowski space with bro-
ken supersymmetry. One cannot fail to notice that the lack of
internal symmetries, together with the flatness of the internal
tori, are reminiscent of the Calabi–Yau setup that first linked the
supersymmetric hexagon of fig. 1 to four dimensions. The path
is still long and fraught with potential pitfalls, curvature singu-
larities appear inevitable and strong–coupling regions surface
here and there, but these investigations provide, in our opinion,
some encouragement for the prospects of broken supersymme-
try in String Theory. Time and more work will clarify whether
or not this mild optimism is well grounded.
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