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The unique optoelectronic properties of graphene make this two-dimensional material an ideal platform

for fundamental studies of cavity quantum electrodynamics in the strong-coupling regime. The celebrated

Dicke model of cavity quantum electrodynamics can be approximately realized in this material when the

cyclotron transition of its 2D massless Dirac fermion carriers is nearly resonant with a cavity photon

mode. We develop the theory of strong matter-photon coupling in this circumstance, emphasizing the

essential role of a dynamically generated matter energy term that is quadratic in the photon field and

absent in graphene’s low-energy Dirac model.
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Introduction.—Graphene, a 2D honeycomb crystal of
carbon atoms [1], is emerging as an ideal platform to study
light-matter interactions for both fundamental and applied
purposes [2–5]. Recent experimental advances have made
it possible to monolithically integrate graphene with opti-
cal microcavities [6,7], paving the way for cavity quantum
electrodynamics (QED) [8] at the nanometer scale with
graphene as an active medium. Graphene cavity QED
offers a plethora of unique advantages. First, graphene is
a highly tunable active medium [6] since its electrical and
heat transport properties can be easily controlled by
employing gates. Second, graphene offers many pathways
to achieve the so-called strong-coupling regime of cavity
QED [8]. These include [4,5] the exploitation of intrinsic
Dirac plasmons or the combination of graphene with other
plasmonic nanostructures. Finally, the active medium can
be enriched by embedding inside planar cavities 2D verti-
cal heterostructures [9] comprising graphene as well as
other 2D crystals [10] such as MoS2, h-BN, etc.

A central role in cavity QED is played by the Dicke
model [11], which describes a nondissipative closed sys-
tem of identical two-level subsystems interacting with a
single-mode radiation field. For a sufficiently strong light-
matter coupling constant, the thermodynamic limit of
the Dicke model exhibits a second-order quantum phase
transition to a superradiant ground state (SPT) [12] with
macroscopic photon occupation and coherent atomic
polarization. Wide interest in these SPTs has emerged
recently in the context of circuit QED [13–16] and ultra-
cold atom gases in optical cavities [17,18]. When an ex-
ternal magnetic field is applied to a 2D electron system,
transitions between states in full and empty Landau levels
(LLs) are dispersionless, mimicking atomic transitions and
enabling a condensed matter realization of the Dicke
model. In particular, recent pioneering work [19,20] has
shown that these systems can be driven toward the ultra-
strong coupling [21] limit by tuning the cyclotron transition

energy of an ordinary parabolic-band 2D electron gas to
resonance with the photonic modes of a terahertz metama-
terial. The main scope of this work is to lay down a theory
of the Dicke model of graphene cavity QED. This is not
only a fundamental building block of cavity QED, but it
also offers a number of intriguing twists when it is realized
on a graphene platform.
The light-matter interaction in the Dicke Hamiltonian is

linear in the vector potential Aem of the cavity. For con-
densed matter states described by parabolic band models, a
quadratic A2

em term whose strength is related to the sys-
tem’s Drude weight [22] and f-sum rule [23] also emerges
naturally from minimal coupling. It has long been under-
stood [24] that the Dicke model’s SPT is suppressed when
the quadratic terms are retained. Demonstrations of this
property are often referred to as no-go theorems. (Standard
no-go theorems do not apply [25] to ultracold atoms which
are driven by an external pump field and subject to signi-
ficant cavity losses.) Electronic states near the neutrality
point of a graphene sheet are described at low energies by a
2D massless Dirac fermion (MDF) Hamiltonian [1], which
is linear in momentum p. One of the twists offered by the
Dicke model of graphene cavity QED is therefore the
following [26]: minimal coupling applied to the MDF
Hamiltonian does not generate a term proportional to
A2

em. Cyclotron resonance in this material, which has
been extensively investigated experimentally and theoreti-
cally over the past decade [27], seems therefore to provide
an example of an active medium which could enable a SPT
[26] when the graphene sheet is embedded in a cavity.
In this work we demonstrate, however, that in the strong
coupling regime the Dicke model for graphene cavity
cyclotron resonance must be supplemented by a quadratic
term that is dynamically generated by interband transitions
and again implies a no-go theorem.
Gauge invariance and SPTs.—We consider an elect-

ronic system in D spatial dimensions coupled to an
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electromagnetic (em) field with a single privileged mode
described by a vector potentialAðr; tÞ. We argue below that
the no-go theorem for the SPT requires only unbroken
gauge symmetry. Our ideas are most clearly spelled out
when A is treated classically. Quantization of the em field
can be easily carried out in the final step. Light-matter
interactions are described by minimal coupling: pi ! pi þ
eAðri; tÞ=c, where pi is the canonical momentum of the ith
electron and�e is the electron charge. The Hamiltonian of

a light-matter system can always be written as Ĥ ½A� ¼
Ĥ mat½A� þH em½A�, where Ĥ mat½A� contains all the
electronic degrees of freedom treated quantum mechani-
cally, while H em½A� is the classical energy density of the
em field. The spontaneous coherent photon state is the
ground state when the total energy is lowered by introduc-
ing a finite static vector potential. Since H em½A� is a
positive-definite quadratic form of A, the instability can
occur only if the second derivative of the matter energy
with respect to A is negative for static A.

We therefore consider the variation of the matter energy
�Emat � Emat½�A� � Emat½0� due to an infinitesimal varia-
tion of the static vector potential:

�Emat ¼
Z

dDr�A � h�Ĥ mat½A�=�Ai: (1)

The quantity �Ĥ mat½A�=�A is [28] the physical current

operator, ĴphysðrÞ



The Hamiltonian which describes coupling between
MDFs and light in the cavity does not contain a quadratic
term: H int ¼ vDðe=cÞ� �AemðrÞ. For future purposes we
introduce the notations �� ¼ ð�x � i�yÞ=2 and A�

emðrÞ ¼
Ax
emðrÞ � iAy

emðrÞ. In what follows we neglect [26] the
spatial variation of the em field in the cavity, A�

emðrÞ !
A�
em, since the photon wavelength is normally much larger

than other length scales in the problem. In this quasiuniform
approximation we can easily evaluate the matrix elements
of H int between the unperturbed pseudospinors (4):

h�0; n0; k0jH intj�; n; ki ¼ evD

c
�k;k0 ð�C�

n0C
þ
n �n0;nþ1A

�
em

þ �0Cþ
n0C

�
n �n0;n�1A

þ
emÞ: (5)

The strong coupling limit is most easily obtained when
the Fermi energy "F lies within one of the bands; we
consider the case in which it lies in the conduction band
(� ¼ þ1) between the LL with index n ¼ M, which is
fully occupied, and the LL with index n ¼ Mþ 1, which is
at least partially empty. (See Fig. 1.) The Dicke model of
cavity cyclotron resonance includes only the intraband n ¼
M to n ¼ Mþ 1 transition and acts in the 2N -fold sub-
space spanned by fjþ;M;ki; jþ;Mþ 1; ki; k¼ 1; . . . ;N g,
neglecting interband transitions [26]. Using Eq. (5) and

introducing a set of Pauli matrices f1k; �
z
k; �

�
k ; k ¼

1; . . . ;N g which act in this two-level-system subspace
leads to the following pseudospin Hamiltonian:

H eff ¼
XN
k¼1

�
EM1k ��M

2
�zk þ 	em�

þ
k þ 	�em��k

�
; (6)

where EM¼@!cð
ffiffiffiffiffi
M

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
Mþ1

p Þ=2,�M¼@!cð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Mþ1

p �ffiffiffiffiffi
M

p Þ, and 	em ¼ evDA
�
em=ð2cÞ. In this model the occupied

conduction-band LL shifts down in energy by

�EðintraÞ
M ¼ �N

�
evD

2c

�
2 A2

em

@!c

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mþ 1

p þ ffiffiffiffiffi
M

p Þ (7)

in the limit of a static vector potential, in violation of gauge
invariance, as explained in the previous section. This is the
origin of the SPT found in Ref. [26]. The correct effective
matter Hamiltonian H mat for graphene cavity cyclotron
resonance must repair this defect.
The Dicke model misses a diamagnetic contribution to

H mat, which, according to (3), must precisely cancel the
spurious energy shift (7). To derive this term we first
recognize the intrinsic two-band nature of graphene (see
Fig. 1). A generic valence band state j�; n; ki is coupled by
the em field to two states in conduction band: jþ; nþ 1; ki
and jþ; n� 1; ki. We first consider the undoped limit in
which all valence band states j�; n; ki are occupied.
Because the Dirac model applies over a large but finite
energy region, we must apply a cutoff by occupying va-
lence band levels with 0 � n � �max. Treating the em field
again by second-order perturbation theory, we find the
following change in matter energy for an undoped gra-
phene sheet in a quantizing magnetic field:

�Eundoped ¼
XN
k¼1

X�max

n¼0

2
4pn

jhþ; nþ 1; kjH intj�; n; kij2
"ð0Þ�;n � "ð0Þþ;nþ1

þ pn�1

jhþ; n� 1; kjH intj�; n; kij2
"ð0Þ�;n � "ð0Þþ;n�1

3
5; (8)

where pn ¼ 1� �n;0=2. (The factor pn takes care of tran-

sitions involving the n ¼ 0 LL, which is half filled.) Using
Eq. (5) for the matrix elements, we can write Eq. (8) more
explicitly:

�Eundoped ¼ �N
�
evD

2c

�
2 A2

em

@!c

½1þ Fð�maxÞ�; (9)

with Fð�Þ � P
�
n¼1

�
1ffiffi

n
p þ ffiffiffiffiffiffiffi

nþ1
p þ 1ffiffi

n
p þ ffiffiffiffiffiffiffi

n�1
p

�
. Once again, this

large negative contribution to the change in matter energy
is spurious. It is present because the Dirac model with a
rigid ultraviolet cutoff �max breaks gauge invariance [31].
When a model that is correct at atomic length scales, for
example, a �-band tight-binding model, is used instead, a
static vector potential merely reassigns momentum labels
within the full valence band. We compensate exactly for
this deficiency of the Dirac model at its ultraviolet cutoff

FIG. 1 (color online). Left-hand panel: Dipole allowed tran-
sitions in a neutral graphene sheet in the presence of an external
magnetic field. The horizontal lines denote the unevenly spaced
Landau levels of massless Dirac fermions. The filled valence
band levels (� ¼ �1) and the empty conduction band levels
(� ¼ þ1) are indicated by filled (empty) circles. The zero-
energy (n ¼ 0) Landau level is formed partly from the valence
band and partly from the conduction band and is half filled in a
neutral system. Right-hand panel: In a doped graphene sheet
with a Fermi level "F placed between the conduction band
n ¼ M and the n ¼ Mþ 1 Landau levels, there is an allowed
cyclotron transition within the conduction band (magenta arrow)
while some of the lower energy interband transitions, indicated
by dashed lines, are Pauli blocked. There is a clear energetic
separation between the lowest energy (unblocked) intraband
transition and the (unblocked) interband transitions.
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scale by adding the positive quantity ��Eundoped to the

change in matter energy.
We now reconsider the situation analyzed earlier in which

the Fermi energy "F lies in conduction band (� ¼ þ1)
between LLs with indices n ¼ M and n ¼ Mþ 1, but
account for interband transitions. The interband correction

to the energy shift�EðintraÞ
M in Eq. (7) can be calculated using

an expression which is equivalent to Eq. (8) but accounts
for Pauli blocking of transitions to occupied conduction-
band states. The final result for the interband contribution
is given by

�EðinterÞ
M ¼ ��Eundoped �N

�
evD

2c

�
2 A2

em

@!c

	 ½Fð�maxÞ � FðMÞ�

¼ N
�
evD

2c

�
2 A2

em

@!c

½1þ FðMÞ�; (10)

where the term ��Eundoped takes care of the Dirac model

regularization and Eq. (9) has been used in the last equality.

After noticing that 1þ FðMÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mþ 1

p þ ffiffiffiffiffi
M

p
, we finally

obtain

�EðinterÞ
M ¼ N

�
evD

2c

�
2 A2

em

@!c

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mþ 1

p þ ffiffiffiffiffi
M

p Þ: (11)

The quantity �EðinterÞ
M is a dynamically generated interband

diamagnetic contribution to the effective HamiltonianH eff ,
which (i) is independent of the cutoff �max and (ii) satisfies

�Emat ¼ �EðintraÞ
M þ �EðinterÞ

M ¼ 0; i.e., in the limit of a static
vector potential, it precisely cancels the spurious shift (7)
responsible for the Dicke model SPT.

Because intraband transition energies are much lower
than interband transitions in the weak-field limit relevant
to the strong coupling limit of cavity cyclotron resonance,
we can neglect the frequency dependence of the dynami-
cally generated quadratic term. This energy must be added
to the effective matter Hamiltonian (6) for graphene cavity
cyclotron resonance:

H eff ! H eff þ S
DM

2�c2
A2

em; (12)

where DM ¼ 4EM�uni=@ is the Drude weight [29,31]
expressed in terms of the function EM introduced right after
Eq. (6). This Hamiltonian is the starting point of the cavity
QED theory of graphene cyclotron resonance. The A2

em

quadratic supplement to the Dicke model is always critical
in the strong coupling limit. Equation (12) is the most
important result of this work.

Quantum theory.—We can quantize the em field by
promoting the positive and negative Fourier amplitudes
of Aem to photon annihilation a and creation ay operators:
Aem ¼ A�ðaþ ayÞ, where � is a unit vector describing

the polarization of the em field andA ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�@c2=ð"!VÞp

,
with V ¼ SLz the volume of the cavity (Lz 
 L is the
height of the cavity in the direction perpendicular to

graphene) and " its dielectric constant. When a cavity
mode with frequency ! is nearly resonant with the cyclo-
tron transition frequency �M, the total Hamiltonian (12)
yields a Dicke model supplemented by an A2

em term:

H Dicke ¼ @!aya��M

2

XN
k¼1

�zk þ
gffiffiffiffiffiffiffi
N

p XN
k¼1

�xkðaþ ayÞ

þ 
ðaþ ayÞ2; (13)

where g ¼ @!c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�uni=ð"!LzÞ

p
and 
 ¼ @DM=ð"!LzÞ.

In writing Eq. (13) we have assumed a specific polarization
of the em field; i.e., � ¼ x̂. In the thermodynamicN ! 1
limit the model (13) undergoes a SPT if the condition
!�Mð1þ 4
=!Þ=ð4g2Þ< 1 is satisfied [16,24]. In our
case, however, a SPT is forbidden because the following
identity holds true:

g2 ¼ 
�M; (14)

which specifically establishes a no-go theorem for the
occurrence of a SPT in the graphene cyclotron resonance
cavity QED. It is not a coincidence, and instead follows
directly from the cancellation between paramagnetic and
diamagnetic currents discussed in the first part of this work.
The paramagnetic response of the Hamiltonian (13) to a
static and quasihomogeneous em field is, indeed,
ðg2=N Þlim!!0hh�xtot; �xtotii! ¼ �2g2=�M, where �xtot ¼P

k�
x
k and hh�xtot; �xtotii! ¼ 2N�M=ð!2 ��2

MÞ [32].

According to Eq. (3), this paramagnetic contribution
must be equal in magnitude and opposite in sign to the
diamagnetic response of (13), which is simply 2
; i.e., it
must satisfy 
 ¼ g2=�M, which coincides with Eq. (14).
Summary and discussion.—We have derived a micro-

scopic effective Hamiltonian—Eq. (12)—for graphene cav-
ity cyclotron resonance, highlighting, in particular, the role
of gauge invariance and Drude weight. From the point of
view of graphene fundamental physics and quantum optics,
Eq. (12) is a key result that can be used to address a number of
subtle issues. First of all, it goes without saying that Eq. (12)
is the proper theoretical tool to analyze graphene cavity
cyclotron resonance physics which, even in the absence of
superradiant phases, retains all its appeal due to the gate
tunability and versatility of the active material [2–7,9].
Useful applications ofEq. (12) can also be foreseen in studies
of the poorly understood [27] electron-electron interaction
corrections to cyclotron resonance transition energies in
graphene and other Dirac materials. Finally, it is worth
mentioning that our work does not touch upon the interesting
possibility of realizing superradiant phases when massless
Dirac fermions are driven away from equilibrium.
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