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Coupled quantum electrodynamics (QED) cavities have been recently proposed as new systems to simulate a
variety of equilibrium and nonequilibrium many-body phenomena. We present a brief review of their main
properties together with a survey of the latest developments of the field and some perspectives concerning their
experimental realizations and possible new theoretical directions. © 2010 Optical Society of America
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. INTRODUCTION
he ability to design and fabricate controllable many-
ody systems has been realized as a precious tool to ex-
lore the world of strongly correlated systems. In several
ifferent physical phenomena, ranging from high-
emperature superconductivity to heavy fermions or the
ractional quantum Hall effect, strong local electronic cor-
elations play a crucial role. The seemingly simplified
odels to describe these correlations— the Hubbard
odel of high temperature superconductivity, for

xample—are extremely difficult to solve, and over the
ears a number of judicious analytical and numerical
ethods have been developed. Together with these more

traditional” methods, in recent years it was proposed
hat strongly correlated systems could be studied by
eans of quantum simulators [1], i.e., fabricated systems

hat can experimentally simulate the model Hamiltonian
nderlying the non-trivial properties of the physical sys-
ems under consideration. The advantages of this ap-
roach are twofold. First of all, it is possible to explore the
roperties of strongly correlated model Hamiltonians also
n those regions of the phase diagram that are elusive to
umerical and analytical investigations. Second, it allows
esting the extent to which the model Hamiltonians under
onsideration are appropriate for treating the physical
ystems that they are supposed to describe or determin-
ng whether additional ingredients are necessary.

Quantum simulators have a relatively long and suc-
essful history. Probably the first fabricated systems to
ave these characteristics were Josephson junction ar-
ays [2]. The field boosted with the appearance of cold at-
ms in optical lattices [3], which proved to be excellent
imulators of a large variety of strongly interacting Fermi
nd Bose systems. The topic of the present paper is to re-
iew the latest developments of a newly born direction in
he field of quantum simulators based on arrays of QED-
avities [4–6]. There is already a comprehensive review
0740-3224/10/06A130-7/$15.00 © 2
n the subject [7]; in this paper we will focus on some of
he recent developments.

Cavity-QED arrays offer the possibility to realize
trongly correlated states of light. They can operate at
igh temperatures (as compared to Josephson arrays and
ptical lattices) and allow for single-site addressing thus
pening a way to access correlation functions experimen-
ally. Furthermore, they might allow exploration of a
umber of new equilibrium and nonequilibrium quantum
hase transitions.
This paper is organized as follows. In 2 we will intro-

uce cavity arrays. We define the model Hamiltonians
hat govern their dynamics and the most relevant sources
f dissipation. In Section 3 we discuss the most important
haracteristics of the equilibrium phase diagram and the
ature of the low-lying excitations. Section 4 describes
ow cavity arrays can operate as quantum simulators.
ection 5 reviews some properties of these systems out of
quilibrium. We complete the presentation with the con-
lusions where we will briefly discuss possible experimen-
al realizations and some perspectives in the field.

. THE MODELS
sketch of a cavity array is illustrated in Fig. 1. It con-

ists of a regular arrangement of QED-cavities, which are
oupled by the hopping of photons. Light resonates in
ach cavity and interacts with matter contained therein.
xperimental realization of cavity arrays can be imagined

n different ways. We will briefly discuss this point at the
nd of the paper. Figure 1 illustrates the case in which the
rray is realized using photonic crystals. The salient in-
redient at the base of the rich physics of cavity arrays is
he interplay of two competing effects. Light–-matter in-
eraction inside the cavity leads to a (possibly strong)
onlinearity between photons. On the other hand, photon
opping between neighboring cavities favors delocaliza-
010 Optical Society of America
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ion thus competing with photon blockade. A model that
escribes a cavity array must then take into consideration
he interaction of the light and the matter within each
avity, the coherent coupling between the cavities induced
y the propagation of the light, the leakage of photons out
f the cavities, and the dissipation and decoherence of the
atter. It is also necessary to include an external pump to

opulate the cavities and devise a method to perform the
easurement of the state of each cavity. We first describe

he terms that lead to the unitary evolution of the array
nd afterwards describe the main sources of dissipation.
A single cavity confines several modes of the electro-
agnetic field, and each mode is quantized as an har-
onic oscillator. In the case that a single mode with fre-

uency �C is considered, the corresponding Hamiltonian
s given by HC=�a�

†a� where the operator a� �a�
†� annihi-

ates (creates) a quantum of light in the mode of the �th
avity. If the cavities are sufficiently close to allow for
hoton hopping, an additional kinetic term −J�a��

† a�

H.c.� (J is associated to the tunneling rate) should be
dded to the Hamiltonian. These two terms constitute the
odel for a cavity array in the absence of any interaction
ith the matter field. In the presence of hopping, the
amiltonian of the photons is still harmonic and can be
iagonalized by Fourier transform leading to the disper-
ion law of the photons in the lattice.

The presence of atoms (quantum dots or Cooper pair
oxes depending on the implementation) inside each cav-
ty leads to a strong effective nonlinearity between pho-
ons. It is enough to think of the matter field as a few-
evel system coupled to a cavity mode and possibly to
ome external source. The Hamiltonian for an array of
avities can be written as on each cavity and the photon
opping term between different cavities:

H = �
�

H�
�0� − J �

��,���

�a�
†a�� + H.c.�. �1�

he local contribution H�
�0� describes the light–matter in-

eraction. In the limit in which leakage of photons is ig-
ored, the Hamiltonian in Eq. (1) has been treated in the
rand-canonical ensemble. In this case, one should add a
erm containing the chemical potential. In the next sec-

ig. 1. (Color online) Sketch of a QED-cavity array. It consists of
regular arrangement of QED cavities. Neighboring cavities are

oupled by photon hopping. Nonlinearities in the cavities may
roduce an effective repulsion between the photons leading to an
nharmonic spectrum. The nonlinearity may be produced, e.g.,
y a two-level system (depicted in the inset) coupled to the light
esonating in the cavity and subjected to decay. Photons in the
avities have a finite lifetime; therefore the cavities are pumped
ith an external coherent drive.
ion the phase diagram will be presented in the grand-
anonical ensemble.

The simplest model to describe the interaction between
ight and matter is probably the Jaynes–Cummings

odel in which one mode of the cavity interacts with a
wo-level system [8]. One photon can be absorbed by the
wo-level system, that goes into the excited state, and con-
ersely a photon can be emitted if the two-level system
ips from the excited |2� to the ground state |1�. The
aynes–Cummings model reads

H�,JC
�0� = ���

z + �a�
†a� + g���

+a� + ��
−a�

†�, �2�

here ��
± are the raising/lowering operators for the two-

evel system and � denotes the transition energy between
he two levels. In the rotating frame with respect to the
ncoupled Hamiltonian the relevant quantity is the de-
uning �=�−�. The spectrum of Eq. (2) is anharmonic so
hat, effectively, the two-level system induces a repulsion
etween the photons in the cavity. The strong effective
onlinearity between the photons turns the cavity into a
urnstile device, where only one photon can be present at
time. Intuitively, this can be understood as the fact that

ne photon in the cavity strongly modifies the effective
esonance frequency, inhibiting the injection of a second
hoton. This phenomenon has been termed “photon block-
de” [9], after the Coulomb blockade effect of electrons in
esoscopic structures. The entire cavity thus behaves as

n effective spin system that emits strongly antibunched
ight. The cavity-array Hamiltonian with the Jaynes–
ummings term was first used by Greentree et al. in [5]
nd by Angelakis et al. in [6]. A similar model with many
wo-level systems in each cavity has also been used
10–12], where each two-level system interacts with the
ode of the cavity in a sort of Dicke–Bose–Hubbard
odel. Na et al. in [11] allowed for the number of systems

o fluctuate among the cavities and showed that, if the
avity is strongly red-detuned with respect to the transi-
ion in the two-level systems, the photons experience an
ffective Kerr nonlinearity. Koch and Le Hur [13], though,
ointed out that the substitution of the Jaynes–
ummings coupling with an effective Kerr nonlinearity is
ot appropriate in general.
Since the quantum effects in the cavity may be visible

f the coupling exceeds the decay amplitude of the matter
nd of the light, there has been a lot of effort in increasing
he effective cavity nonlinearity. Strong interaction of
ight is, in general, limited by the absorption of the me-
ium, because the optical nonlinearities are weak in non-
esonant processes, while the absorption plays a domi-
ant role in the resonant processes. One route to access
he strong-coupling regime involves the usage of external
lassical sources that prepare coherently the matter in a
tate with reduced absorption. Electromagnetically in-
uced transparency (EIT) can be used to achieve interac-
ion strengths that are one order of magnitude larger
han what is possible with an ensemble of two-level sys-
ems [14]. Various schemes to obtain strong nonlinearities
ave been discussed [9,15–17]. In this spirit Hartmann et
l. in [4] considered an ensemble of four-level atoms in a
avity array defined, in the rotating frame, by a local in-
eraction of the form
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H�,EIT
�0� = �S�

33 + �S�
44 + ��S�

23 + S�
32� + g1�S�

13a�
† + S�

31a��

+ g2�S�
24a�

† + S�
42a��, �3�

aving defined the global atomic raising and lowering op-
rators Slm=�j=1

N �l�j�m�, �j
lm= �l�j�m� are the atomic raising

nd lowering operators �l�m�, or energy level popula-
ions �l=m� for the jth atom. The transition �3�j→ �2�j is
riven by a classical coupling field with Rabi frequency �;
he cavity mode couples the �1�j→ �3�j and �2�j→ �4�j tran-
itions with coupling constants g1 and g2; the parameters
and � account for the detunings of levels 3 and 4, re-

pectively. They considered a setup similar to [9] and in-
roduced three families of polaritons, delocalized over the
hole atomic ensemble, that diagonalize the Hamiltonian

if the state |4� decouples from the dynamics and the
umber N of atoms is very large). One of the polaritons
rojects only on the lowest-lying metastable states |1�
nd |2� and is thus the longest lived. The polaritons can
e considered independent bosonic particles if their num-
er is much smaller than the number of atoms inside each
avity [18]. The longest-lived polariton decouples from the
thers and experiences an energy shift due to the pertur-
ative coupling to the level |4�, which induces an interac-
ion of the Kerr form. In this way, in the large N limit,
hey were able to show that the cavity model maps onto
n effective Bose–Hubbard (BH) model [19] for polaritons:

HBH = − J �
�����

a��
† a� +

U

2 �
�

a�
†a�

†a�a�. �4�

Up to now we did not take into account the leakage of
hotons out of the cavities and the decoherence and dis-
ipation of the few-level systems. One possibility, in the
ase of slow decay, is to complement the Hamiltonian with
maginary frequencies multiplied by the projectors of the
ecaying states, which render the dynamics non-
ermitian (see application of this method in [14]). Alter-
atively the decay can be given in terms of the density
atrix � of the cavity array, using the master equation

�t��t� = − i�H,��t�� + L���t��, �5�

here the Liouvillian L in the Lindblad form reads, e.g.,

L���t�� =
�

2�
�

�a���t�a�
† − a�

†a���t� − ��t�a�
†a��. �6�

his term describes leakage of photons from all the cavi-
ies of the array, with an equal rate �. A similar term can
e used to describe decoherence and dissipation of the
atter, although these processes can usually be neglected

n the timescale of the photonic decay [7].
In order to have a measurable signal out of the cavity

rray, it is necessary to refill the modes of the cavities
ith photons to contrast the leakage. If a coherent laser
eam of frequency �L is coupled to the cavity, the Hamil-
onian acquires a term ��t�La�

†+��t�L
* a�, where ��t�L is pro-

ortional to the electric field of the beam. To eliminate the
xplicit time-dependence ei�Lt from ��t�L, it is convenient
o use a rotating frame in which the strength of the pump-
ng is constant and the frequency �L is subtracted from
he energy of the photons in the cavity mode. The contri-
ution of the drive to the Hamiltonian reads
H�,D = − �La�
†a� + �La�

† + �L
* a�. �7�

In the next section we will discuss the main features of
he phase diagram deriving from the Hamiltonian (1).

. PHASE DIAGRAM
he phase diagram of the BH model defined in Eq. (4) has
een studied for more than two decades (see, for example,
eferences in [3]). A qualitative understanding of the zero-
emperature phase diagram can be obtained by consider-
ng the two limiting cases in which one of the two cou-
ling energies (J or U) dominates. If the hopping
ominates, the bosons delocalize throughout the whole
attice. In the limit of vanishing interactions, the many-
ody ground state becomes simply an ideal Bose–Einstein
ondensate where all the bosonic particles are in the
loch state of the lattice with vanishing quasi-
omentum, so that the many-body wavefunction is writ-

en as �1/	L��=1
L a�

†�N |vac�, where L is the total number
f cavities, N is the total number of bosons and |vac� is
he vacuum state of the many-body Fock basis. In con-
rast, if the interaction dominates, each site has a well-
efined number of bosons in the ground state. In order to
ut an extra boson on a given site, one has to overcome an
nergy gap of the order of U. In the Mott lobes each cavity
ontains a definite number of bosons, the fluctuations of
he number operator vanish, and each particle is localized
n a given cavity. Each Mott lobe exists up to a maximum
opping �J /U�crit at which it is energetically convenient
or the particles to delocalize over the whole lattice (de-
reasing their kinetic energy) rather than localize in a
iven site (decreasing their mutual interaction). In the
ase of vanishing hopping, the Hamiltonian is the sum of
ommuting local Hamiltonians and the ground state can
e written in the product form 
��n̄��. When the hopping
s comparable with the onsite repulsion, a quantum phase
ransition takes place as a superfluid separates from a
ott insulator. Although there are large quantitative dif-

erences between the case of one-, two-, or three-
imensional lattices, the equilibrium phase diagram of
he model (at zero temperature, in the plane of the hop-
ing and the chemical potential) is similar in all cases
nd consists of a superfluid phase surrounding a sequence
f Mott-insulator lobes [see Fig. 2 (left panel)]. The U�1�

ig. 2. (Color online) (Left) Phase diagram of the BH model [Eq.
4)]. The green regions are the Mott lobes, z is the coordination
umber of the lattice. Each lobe extends up to a maximum criti-
al ratio �J /U�crit. (Right) Phase diagram of the cavity array in
he case of a Jaynes–Cummings model, according to the DMRG
omputation presented in [10]. The green area corresponds to a
ott insulator of polaritons with average filling n=1, 2, and 3.
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ymmetry is broken in the superfluid phase, where the ki-
etic energy dominates.
The phase diagram of the cavity array described by Eq.

1) resembles strong similarities with that of the BH
odel. In Fig. 2 (right panel) we report for comparison the

hase diagram obtained in [10] for a one-dimensional ar-
ay. Quantitative differences arise depending on the
odel of the cavity. For the sake of clarity we will ignore

hese differences and try to highlight only those charac-
eristics that are common to cavity arrays. The phase
ransition between the Mott-insulator and the superfluid
s a symmetry-breaking phenomenon that involves the
onservation of the number of bosons ��n�. The conserved
uantity in the cavity model—take, for example, the
aynes–Cummings interaction—instead is the number of
olaritons that do not have definite quantum statistics. In
avity arrays the detuning � can also be varied so that
he phase diagram becomes effectively three-dimensional
13]. It turns out that the detuning is a convenient experi-
ental knob to tune the system across the phase transi-

ion. Moreover, most importantly, changing the detuning
rom negative to positive values drives the nature of the
xcitations from quasi-localized excitons to polaritons to
eakly interacting photons [20].
A cavity array exhibits spectral properties similar to

he BH models, including gapped particle and hole bands
n the Mott insulating phase and Bogoliubov-type excita-
ions in the superfluid phase. The single-particle excita-
ion spectrum in the Mott phase has been investigated
lso by Aichorn et al. [20] using a variational cluster ap-
roach, in which the self-energy of the infinite lattice of
avities is approximated by a finite reference system.
chmidt and Blatter [21], for the Jaynes–Cummings case,

ound four modes corresponding to particle or hole excita-
ions versus the two modes of the BH model. Pippan et al.
n [22] studied the dynamical structure factor and the
ingle-particle spectrum using a quantum Monte Carlo
imulation in one dimension. An analysis of the nature of
he excitations in small clusters was also performed in
23]. Paternostro et al. in [24] investigated the dynamical
roperties of an array with many two-level systems in
ach cavity, beyond the elementary excitation picture and
ound that the time-evolution of the array, in the mean-
eld approximation, supports a soliton-like excitation.
Following the initial investigations [4–6], the existence

f the Mott lobes in the cavity arrays has been verified
ith several different methods. Makin et al. [25] resorted

o the exact diagonalization of small sets of cavities with
everal topologies and to a cluster-mean-field approxima-
ion. Schmidt et al. in [21] proposed a strong-coupling
heory based on a linked-cluster expansion of Green’s
unctions at finite temperature. This method includes
uantum fluctuations beyond the mean-field results,
hich are recovered instead in the random-phase ap-
roximation. With these spectral methods the border of
he Mott lobe is signaled by the vanishing of the gap. A
uantum Monte Carlo analysis in two dimensions has
een performed by Zhao et al. in [26]. The quantum
onte Carlo results for the phase border compare quan-

itatively with the analytical solution [21] almost up to
he tip of the Mott lobe. In one dimension, the existence of
he insulating Mott lobes has been established in [10] by
eans of a density-matrix renormalization-group
DMRG) calculation. With the same method, it has been
hown in [27] that the polariton fluctuations in a finite
lock of cavities yields a clear signature of the two phases.
he universality class of the transition appears of the
ame type as the BH [21,22].

The nature of the Mott-insulator for polaritons is dif-
erent from the BH case, in that the number of polaritons
s fixed to an integer value, but the fluctuations of the
umber of photons �n�� do not vanish. Similarly, in [22] it
as shown that the exciton and photon structure factors

annot be used to characterize the Mott state. Although
he photons are not the genuine excitation of the system,
t is desirable to characterize the transition in terms of
hotonic observables, since the emission of light from the
avity can be measured in experiments. To measure the
olaritonic state, using the projection on the atomic com-
onent [4,6], it is necessary to address the system with
urther optical probes.

The presence of many two-level systems in each cavity
nd its effect on the phase diagram has been analyzed in
10,11], confirming that even with a moderate number of
toms in each cavity there is a good quantitative agree-
ent with the mapping onto the BH performed in [4].
ew features appear if the number of atoms fluctuates

rom cavity to cavity. In this case a glassy phase for po-
aritons is expected around the Mott lobes [10]. Also, dis-
rder in the distribution of the excitation and cavity fre-
uencies [11] and the effects of a finite temperature
20,25] have been considered.

Using more complex models of cavity arrays, a two-
omponent BH model [28] and super-radiant Mott phase
29] have been shown to be realizable.

. CAVITY ARRAYS AS QUANTUM
IMULATORS
uilding upon the models presented in Section 2, in spe-
ific parameter ranges or with the addition of further op-
ical tools, it is possible to use the cavity array as an
mplementation of other many-body models. In other
ords, the cavity array offers an implementation of a

quantum simulator” for lattice models, in the same spirit
s the Josephson junction arrays or the cold atoms in op-
ical lattices. The first requirement for a quantum simu-
ator is to act as a calculator specifically tailored to the so-
ution of the model that it implements. The knowledge on
he model gained with the quantum simulator can then
e applied to all the other physical systems described by
he same model. With respect to the implementation of a
uantum simulator in an optical lattice, the cavity array
ay offer the advantage that each site of the array can be

ddressed independently. The expectation values of the
bservables could then be measured directly from the
ight emitted by one cavity. Moreover, the cavity arrays
an be implemented with several different experimental
ystems, and this may offer some advantages. On the
ther side, optical lattices seem unbeatable in terms of
calability and absence of imperfections. It should be said
hat presently there have not yet been any experimental
ealizations of cavity arrays. The hypothetical advantages
f these quantum simulators need to be tested against ex-
erimental realizations.
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The earliest family of lattice many-body systems that
ave been investigated in the context of cavity arrays is
pin lattice systems. The indication that a single cavity
ould act as an effective spin system for the photons dates
ack to the recognition of the photon blockade effect [9].
ngelakis et al. [6] derived an effective XY Hamiltonian

rom the Jaynes–Cummings model after decoupling the
pper and lower polaritons in the Mott polaritonic phase.
he realization of a ZZ Ising coupling ��

z��+1
z has also been

iscussed [30], and the possibility to achieve both XY and
Z couplings has been put forward by Hartmann et al. in
31]. The proposal relies on a cavity array containing
hree-level atoms, in a 	 configuration. The two lowest-
ying states |1� and |2� are coupled to the excited state
3� both via the quantized mode of the cavity and via ex-
ernal classical sources. With an appropriate choice of the
ouplings and the detunings, the dominant Raman tran-
ition between the two lowest-lying states involves one la-
er and one cavity photon. This implies that the emission
nd absorption of virtual photons in the cavity is accom-
anied by a transition between the two lowest-lying
tates that become the effective 1/2 spin in the cavity.
he coupling of the virtual photons between neighboring
avities produces an XY model. This effective spin can be
oupled to an effective magnetic field in the z direction.
ith the same atomic spectrum but a different configura-

ion of the external sources, it is possible to implement a
Z interaction of the form ��

z��+1
z . The XY and the ZZ cou-

lings do not act at the same time but are combined in a
nique effective Hamiltonian with the application of the
uzuki–Trotter decomposition in which the lasers that
roduce either interaction are periodically flashed one af-
er the other. Cho et al. [32] focused on the implementa-
ion of high-spin Heisenberg models. Given the lack of
nalytical or numerical information available today on
he phase diagram of high-spin systems, the possibility to
easure the phase diagram directly from a quantum

imulator is very interesting. The scheme includes an en-
emble of three-level atoms in a configuration similar to
31] but which relies on fixed external lasers. The model
llows to simulate terms in the Hamiltonian of the form

�
2, �S�

z�2, S�
z, S�

xS�+1
x , S�

yS�+1
y , and S�

zS�+1
z . Quite a few ex-

ernal sources are necessary to control independently all
he constants in the model, while the magnitude of the
pin is determined by the number of two-level systems in
he cavity.

Taking into account the polarization of light in the mi-
rocavities, Ji et al. in [33] put forward a model that is
ble to exhibit ferromagnetism of the photonic circular po-
arization. The model considers a hexagonal photonic
rystal with a square superlattice of bandgap cavities,
oped with three-level systems. In the same system, it is
lso possible to access adiabatically the antiferromagnetic
hase and an exotic super-counter-fluid phase, in which
he total current of photons is zero as in the Mott phase,
ut the currents with definite circular polarizations are
onzero and opposite.
The local addressability of cavity arrays has been ex-

loited by Cho et al. in [34] to propose the simulation of
ard-core bosons with Abelian vector potentials. In par-
icular this method allows the simulation of the Laughlin
ave function for the fractional quantum Hall effect. The
roposal assumes a two-dimensional array of cavities
ith each containing a single three-level system. To ad-
ress independently the two directions of the array, two
odes of each resonator are used, with the assumption

hat the frequency difference between the two modes is
uch larger than the coupling strength g. The simulation

f the hard-core bosons follows from the simulation of a
pin system using the lowest-lying states of the 	 configu-
ation, along the lines of [32]. The amplitude of the inter-
ction between the spins on neighboring sites is propor-
ional to a position-dependent phase, which defines the
auge potential. This phase is controlled by the external
aser sources acting on the three-level system, and the lo-
al addressability of the cavities is invaluable to the pre-
ise implementation of this phase. Moreover, by an adia-
atic change of the laser phases, it is possible to insert a
ux quantum through the two-dimensional plane, thus
reating and moving a quasi-excitation in the system.

Cavity arrays can be used also to store and manipulate
he resources necessary to perform quantum computa-
ion. The first study in this direction has been made by
ngelakis et al. in [35] with the aim to realize quantum
ates with photonic-crystal waveguides. In this case, the
oupling between the photons and the matter is not
resent in each cavity but is used only in some selected
oints of the quantum circuit to induce a phase gate be-
ween the qubits. The coherent control of the photonic
ransmission through a cavity array has been considered
y Hu et al. in [36], where it was shown, by a Green’s
unction technique, that the dispersion of the hybrid
ight–matter excitations in the array can be controlled by
cting on the population inversion of the dopants. A pro-
edure to generate indistinguishable single photons or
olarization-entangled photonic pairs, which are impor-
ant resources to the implementation of the quantum
omputation algorithms, has been demonstrated in [37]
y Na et al. resorting to the exact integration of a small
umber of cavities. The complete implementation of the
rover’s search algorithm has been proposed recently by
yoseva et al. [38] together with a proposal to implement

ne-way quantum computation with cavity arrays [39].

. NON-EQUILIBRIUM BEHAVIOR
n order to detect experimentally the different quantum
hases presented in Section 3, one assumes that the
ixed light–matter excitations have a lifetime that is

onger than the time necessary for the measurement pro-
ess. Similarly, in order to perform the quantum simula-
ions of a ground state discussed in Secion 4, it is neces-
ary that the timescale of the many-body dynamics is
horter than the decay time. For example, the ground
tate of a many-body system could be reached if the decay
f the polaritons is at least slower than the intercavity
unneling [11]. As the decay times of the photons and of
he matter strongly depend on the specific implementa-
ion [7], it is interesting to consider schemes that allow us
o measure the signatures of the many-body physics with-
ut relying on a negligible dissipation. It is then neces-
ary to study the cavity array under strong non-
quilibrium conditions.



i
l
a
t
s
b
t
a
p
e
o
t
s
t
s

3
m
M
l
c
t
t
u
t
B
s
i
d
f
p
p
t
c
c
m

6
A
c

t
J
a
v
o

w
a
o
m
t
t
r
t
p

c
p
[
v

A
W
C
m
T
t
T

R

1

1

1

F
p
s
s
p
U
a
g
d
p
(

A. Tomadin and R. Fazio Vol. 27, No. 6 /June 2010/J. Opt. Soc. Am. B A135
Carusotto et al. in [40] investigated a system of photons
n a circular array of cavities in the Tonks–Girardeau
imit. All the cavities are driven by a single laser beam,
nd the far-field emission that gives access to the occupa-
ion of the single-particle states in the momentum repre-
entation is computed. The laser couples to the many-
ody wavefunctions supported by the array depending on
he total energy of the state. This yields a spectroscopic
nalysis of a many-body system that is created by the
robe beam itself. In the limit of very strong Kerr nonlin-
arity, the photons become hard-core bosons and, being in
ne dimension, are represented by an effective wave func-
ion for noninteracting fermions. The classification of the
tates given by this mapping is used also to characterize
he absorption in the case of intermediate interaction
trength.

The quantum phase transition of the BH (see Section
), in an open cavity array, has been investigated by To-
adin et al. in [41] who proposed to discriminate the
ott-insulator and the superfluid phases analyzing the

ight emitted by the cavity array following a pulse that
reates a Mott state in the system. The existence of the
wo phases is clearly seen in the coherence properties of
he emitted light (see Fig. 3) for currently achievable val-
es of the ratio between the interaction and the dissipa-
ion. The method relies on the dynamical instability of the
H that follows a quantum quench from the Mott to the
uperfluid phase. The realization of the quantum quench
n the dissipative environment is realized with a careful
esign of the initial pulse, which is substantially different
rom a 
-pulse, and it is shown that the detection of the
hase border is very robust against imperfections in the
umping. The time-evolution of the system produces an-
ibunched light if the ratio J /U is smaller than the criti-
al value �J /U�crit at the tip of the Mott lobe, and the
rossover from antibunched to bunched light clearly
arks the phase boundary.

. CONCLUSIONS
s candidates for simulating strongly interacting models,
oupled cavities present new characteristics as compared

ig. 3. (Color online) Non-equilibrium signature of the quantum
hase transition between the Mott-insulator and the superfluid
tate in the BH model [Eq. (4)] with the leakage of photons de-
cribed by Eq. (6), obtained by Tomadin et al. in [41]. The order
arameter �= �a�, averaged in an interval of time, is shown for
/�=50 (empty circles), 100 (filled circles), and 200 (empty tri-

ngles). The transition of the order parameter takes place to-
ether with a transition from antibunched to bunched light. On
ecreasing the dissipation strength, the onset at which the order
arameter becomes nonzero approaches the equilibrium value
indicated as a vertical line).
o other successful examples such as optical lattices or
osephson junction arrays: most notably it is possible to
ccess their local properties. In this paper we briefly re-
iew their basic properties and some of the latest devel-
pments in the field.

QED-cavities can be realized in a number of different
ays [42–44]. This flexibility in the design is a potential
dvantage to realize different local nonlinearities. More-
ver, different systems may allow for different measure-
ent schemes as well. As already mentioned, at present

here are no experimental realizations of cavity arrays al-
hough it seems that technological requirements are al-
eady at hand to fabricate a small number of coupled cavi-
ies. In this respect, it may be interesting to explore
roperties of small clusters.
In this review we confined the discussion to coupled

avities. There are other systems in which many-body
hysics with light can be realized (see, for example,
45,46]). Due to space limitations we did not touch these
ery interesting directions of research.
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