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Abstract. We give a simple and physically intuitive necessary and sufficient
condition for a map acting on a compact metric space to be mixing (i.e. infinitely
many applications of the map transfer any input into a fixed convergency point).
This is a generalization of the ‘Lyapunov direct method’. First we prove this
theorem in topological spaces and for arbitrary continuous maps. Finally we
apply our theorem to maps which are relevant in open quantum systems and
quantum information, namely quantum channels. In this context, we also discuss
the relations between mixing and ergodicity (i.e. the property that there exists
only a single input state which is left invariant by a single application of the map)
showing that the two are equivalent when the invariant point of the ergodic map
is pure.
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1. Introduction

Repetitive applications of the same transformation is the key ingredient of many control
techniques. In quantum information processing [1] they have been exploited to inhibit the
decoherence of a system by frequently perturbing its dynamical evolution [2]–[6] (Bang–Bang
control) or to improve the fidelity of quantum gates [7] by means of frequent measurements
(quantum Zeno-effect [8]). Recently analogous strategies have also been proposed in the context
of state preparation [9]–[15] and quantum communication [16]–[19]. In [11, 12] for instance,
a homogenization protocol was presented which allows one to transform any input state of
a qubit into a some pre-fixed target state by repetitively coupling it with an external bath.
A similar thermalization protocol was discussed in [13] to study the efficiency of simulating
classical equilibration processes on a quantum computer. In [14, 15] repetitive interactions
with an externally monitored environment were instead exploited to implement purification
schemes which would allow one to extract pure state components from arbitrary mixed inputs.
An application to quantum communication of similar strategies has been finally given in
[16]–[19] where sequences of repetitive operations were used to boost the efficiency of quantum
information transmission along spin chains.

The common trait of the proposals [9]–[19] is the requirement that repeated applications
of a properly chosen quantum operation τ converges to a fixed density matrix x∗ independently
from the input state x of the system, i.e.

τn(x) ≡ τ ◦ τ ◦ · · · ◦ τ︸ ︷︷ ︸
n

(x)

∣∣∣
n→∞

−→ x∗, (1)

with ‘◦’ representing the composition of maps. Following the notation of [20, 21] we call
equation (1) the mixing property of τ. It is related with another important property of maps,
namely ergodicity (see figure 1). The latter requires the existence of a unique input state x0
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Figure 1. Schematic examples of the orbits of a ergodic and a mixing map.

which is left invariant under a single application of the map,3 i.e.,

τ(x) = x ⇐⇒ x = x0. (2)

Ergodicity and the mixing property are of great interest not only in the context of the
above quantum information schemes. They also occur on a more fundamental level in statistical
mechanics [23] and open quantum systems [24, 25], where one would like to study irreversibility
and relaxation to thermal equilibrium.

In the case of quantum transformations one can show that mixing maps with convergency
point x∗ are also ergodic with fixed point x0 = x∗. The opposite implication however is not
generally true since there are examples of ergodic quantum maps which are not mixing (see
the following). Sufficient conditions for mixing have been discussed both in the specific case of
quantum channel [13, 20, 21] and in the more abstract case of maps operating on topological
spaces [23]. In particular the Lyapunov direct method [23] allows one to prove that an ergodic
map τ is mixing if there exists a continuous functional S which, for all points but the fixed one,
is strictly increasing under τ. Here we strengthen this criterion by weakening the requirement on
S: our generalized Lyapunov functions are requested only to have limiting values S(τn(x))|n→∞
which differ from S(x) for all x �= x0. It turns out that the existence of such S is not just a sufficient
condition but also a necessary condition for mixing. Exploiting this fact one can easily generalize
a previous result on strictly contractive maps [20] by showing that maps which are asymptotic
deformations (see definition 6) are mixing. This has, unlike contractivity, the advantage of
being a property independent of the choice of metric (see however [21] for methods of finding
‘tight’ norms). In some cases, the generalized Lyapunov method also permits derivation of an
optimal mixing condition for quantum channels based on the quantum relative entropy. Finally
a slightly modified version of our approach which employs multi-central Lyapunov functions
yields a characterization of (not necessarily mixing) maps which in the limit of infinitely many
applications move all points towards a proper sub-set (rather than a single point) of the input
space.

The introduction of a generalized Lyapunov method seems to be sound not only from a
mathematical point of view, but also from a physical point of view. In effect, it often happens that
the information available on the dynamics of a system are only those related to its asymptotic

3 Definition (2) may sound unusual for readers who are familiar with a definition of ergodicity from statistical
mechanics, where a map is called ergodic if its invariant sets have measure 0 or 1. The notion of ergodicity used
in the case of a discrete time evolution of a quantum system is different [20, 22]. Here, the map τ is not acting
on a measurable space but on the compact convex set of quantum states. A perhaps more intuitive and equivalent
definition of ergodicity based on the time average of observables is given by lemma 5 of the appendix.
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behaviour (e.g. its thermalization process), its finite time evolution being instead difficult to
characterize. Since our method is explicitly constructed to exploit asymptotic features of the
mapping, it provides a more effective way to probe the mixing property of the process.

Presenting our results we will not restrict ourselves to the case of quantum operations.
Instead, following [23] we will derive them in the more general context of continuous maps
operating on topological spaces [26]. This approach makes our results stronger by allowing us to
invoke only those hypothesis which, to our knowledge, are strictly necessary for the derivation. It
is important to stress however that, as a particular instance, all the theorems and lemmas presented
in the paper hold for any linear, completely positive, trace preserving map (i.e. quantum channel)
operating on a compact sub-set of normed vectors (i.e. the space of the density matrices of a
finite dimensional quantum system). Therefore readers who are not familiar with topological
spaces can simply interpret our derivations as if they were just obtained for quantum channels
acting on a finite dimensional quantum system.

The paper is organized as follows. In section 2 the generalized Lyapunov method along with
some minor results are presented in the context of topological and metric spaces. Then quantum
channels are analysed in section 3 providing a comprehensive summary of the necessary and
sufficient conditions for the mixing property of these maps. Conclusions and remarks end the
paper in section 4.

2. Generalized Lyapunov theorem

2.1. Topological spaces

In this section, we introduce the notation and derive our main result (the generalized Lyapunov
theorem). The properties of Hausdorff, compact and sequentially compact topological spaces
will be used [26]. For the sake of readability their definitions and their relations are given in the
caption of figure 2.

Definition 1. Let X be a topological space and let τ : X → X be a map. The sequence
xn ≡ τn(x), where τn is a short-hand notation for the n-fold composition of τ, is called the
orbit of x. An element x∗ ∈ X is called a fixed point of τ if and only if

τ(x∗) = x∗. (3)

τ is called ergodic if and only if it has exactly one fixed point. τ is called mixing if and only if
there exists a convergence point x∗ ∈ X such that any orbit converges to it, i.e.

lim
n→∞

xn = x∗ ∀x ∈ X . (4)

Remark. Here we use the usual topological definition of convergence, i.e. limn→∞ xn = x∗ if
and only if for each open neighbourhood O(x∗) of x∗ only finitely many points of the sequence
are not in O(x∗). This clearly depends on the topology, and there may exist many different points
to which a sequence converges. For example, in the trivial topology of X where the only open
sets are X and the empty set, any sequence is convergent to any point. On the other hand the
uniqueness of the convergence point can be enforced by requiring the topological set X to be
Hausdorff [26] (see figure 2 for an explicit definition of this property).
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Compact
spaces

spaces

Compact

Hausdorff

Topological spaces

metric spaces

spaces

Sequentially
compact

Figure 2. Relations between topological spaces [26]. Hausdorff topological
spaces have the property that any two distinct points of the space can be separated
by open neighbourhoods: for these sets any convergent sequence converges to a
unique point of the set. Compact topological spaces are such that any open cover
of the set has a finite sub-cover. Sequentially compact topological spaces are
those for which the Bolzano–Weierstrass theorem holds, i.e. every sequence has
a convergent subsequence.Any compact metric spaces is Hausdorff, compact, and
sequentially compact. The space of density matrices on which quantum channels
are defined, is a compact and convex subset of a normed vectors space (the space
of linear operators of the system) which, in the above graphical representation
fits within the set of compact metric spaces.

A direct connection between ergodicity and mixing can be established as follows.

Lemma 1. Let τ : X → X be a continuous mixing map on a topological Hausdorff space X .

Then τ is ergodic.

Proof. Let x∗ be the convergence point of τ and let x ∈ X arbitrary. Since τ is continuous we
can perform the limit in the argument of τ, i.e.

τ(x∗) = τ
(

lim
n→∞

τn(x)
)

= lim
n→∞

τn+1(x) = x∗,

which shows that x∗ is a fixed point of τ. To prove that it is unique assume by contradiction
that τ possesses a second fixed point y∗ �= x∗. Then limn→∞ τn(y∗) = y∗ �= x∗, so τ could not be
mixing (since the limit is unique in a Hausdorff space, see figure 2). Hence τ is ergodic. ��
Remark. The converse is not true in general, i.e. not every ergodic map is mixing (not even in
Hausdorff topological spaces). A simple counterexample is given by τ : [−1, 1] → [−1, 1] with
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τ(x) ≡ −x and the usual topology of R, which is ergodic with fixed point 0, but not mixing since
for x �= 0, τn(x) = (−1)nx is alternating between two points. A similar counterexample will be
discussed in the quantum channel section (see example 1).

A well known criterion for mixing is the existence of a Lyapunov function [23].

Definition 2. Let τ : X → X be a map on a topological space X . A continuous map S : X → R

is called a (strict) Lyapunov function for τ around x∗ ∈ X if and only if

S (τ(x)) > S(x) ∀x �= x∗.

Remark. At this point it is neither assumed that x∗ is a fixed point, nor that τ is ergodic. Both
follow from the theorem below.

Theorem 1. (Lyapunov function). Let τ : X → X be a continuous map on a sequentially
compact topological space X . Let S : X → R be a Lyapunov function for τ around x∗. Then τ

is mixing with the fixed point x∗.

The proof of this theorem is given in [23]. We will not reproduce it here, because we will
provide a general theorem that includes this as a special case. In fact, we will show that the
requirement of the strict monotonicity can be much weakened, which motivates the following
definition.

Definition 3. Let τ : X → X be a map on a topological space X . A continuous map S : X → R

is called a generalized Lyapunov function for τ aroundx∗ ∈ X if and only if the sequenceS (τn(x))

is point-wise convergent for any x ∈ X and S fulfills

S∗(x) ≡ lim
n→∞

S (τn(x)) �= S(x) ∀x �= x∗. (5)

In general it may be difficult to prove the point-wise convergence. However if S is monotonic
under the action of τ and the space is compact, the situation becomes considerably simpler. This
is summarized in the following lemma.

Lemma 2. Let τ : X → X be map on a compact topological space. A continuous map S : X →
R which fulfills

S (τ(x)) � S(x) ∀x ∈ X , (6)

and

S∗(x) ≡ lim
n→∞

S (τn(x)) > S(x) ∀x �= x∗. (7)

for some fixed x∗ ∈ X is a generalized Lyapunov function for τ around x∗.

Proof. It only remains to show the (point-wise) convergence of S (τn(x)). Since S is a continuous
function on a compact space, it is bounded. By equation (6) the sequence is monotonic. Any
bounded monotonic sequence converges. ��
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Corollary 1. Let τ : X → X be a map on a compact topological space. A continuous map
S : X → R which fulfills

S (τ(x)) � S(x) ∀x ∈ X ,

and

S
(
τN(x)

)
> S(x) ∀x �= x∗,

for some fixed N ∈ N and for some x∗ ∈ X is a generalized Lyapunov function for τ around x∗.

Remark. This implies that a strict Lyapunov function is a generalized Lyapunov function (with
N = 1).

We can now state the main result of this section.

Theorem 2. (Generalized Lyapunov function). Let τ : X → X be a continuous map on a
sequentially compact topological space X . Let S : X → R be a generalized Lyapunov function
for τ around x∗. Then τ is mixing with fixed point x∗.

Proof. Consider the orbit xn ≡ τn(x) of a given x ∈ X . Because X is sequentially compact, the
sequence xn has a convergent subsequence (see figure 2), i.e. limk→∞ xnk

≡ x̃. Let us assume
that x̃ �= x∗ and show that this leads to a contradiction. By equation (5) we know that there exists
a finite N ∈ N such that

S
(
τN(x̃)

) �= S(x̃). (8)

Since τN is continuous we can perform the limit in the argument, i.e. limk→∞ τN(xnk
) = τN(x̃).

Likewise, by continuity of S we have

lim
k→∞

S(xnk
) = S(x̃), (9)

and on the other hand

lim
k→∞

S(xN+nk
) = lim

k→∞
S

(
τN(xnk

)
) = S(τNx̃), (10)

where the second equality stems from the continuity of the map S and τN . Because S is a
generalized Lyapunov function, the sequence S (xn) is convergent. Therefore the subsequences
(9) and (10) must have the same limit. We conclude that S(τNx̃) = S(x̃) which contradicts
equation (8). Hence x̃ = x∗. Since we have shown that any convergent subsequence of τn(x)

converges to the same limit x∗, it follows by lemma 4 of the appendix that τn(x) converges to x∗.
Since this holds for arbitrary x, it follows that τ is mixing. ��

There is an even more general way of defining Lyapunov functions which we state here for
completeness. It requires the concept of the quotient topology [26].

Definition 4. Let τ : X → X be a map on a topological space X . A continuous map S : X → R

is called a multi-central Lyapunov function for τ around F ⊆ X if and only if the sequence
S (τn(x)) is point-wise convergent for any x ∈ X and if S and τ fulfill the following three
conditions: S is constant on F , τ(F) ⊆ F , and

S∗(x) ≡ lim
n→∞

S (τn(x)) �= S(x) ∀x /∈ F .
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For these functions we cannot hope that the orbit is mixing. We can however show that the
orbit is ‘converging’ to the set F in the following sense.

Theorem 3. (Multi-central Lyapunov function). Let τ : X → X be a continuous map on a
sequentially compact topological space X . Let S : X → R be a multi-central Lyapunov function
for τ around F . Let ϕ : X → X/F be the continuous mapping into the quotient space (i.e.
ϕ(x) = [x] for x ∈ X\F and ϕ(x) = [F] for x ∈ F). Then τ̃ : X/F → X/F given by τ̃([x]) =
ϕ

(
τ
(
ϕ−1([x])

))
is mixing with fixed point [F].

Proof. First note that τ̃ is well defined because ϕ is invertible on X/F\[F] and τ(F) ⊆ F, so
that τ̃([F]) = [F]. Since X is sequentially compact, the quotient space X/F is also sequentially
compact. Note that for O open, τ̃−1(O) = ϕ(τ−1(ϕ−1(O))) is the image of ϕ of an open set in X
and therefore (by definition of the quotient topology) open in X/F . Hence τ̃ is continuous. The
function S̃([x]) : X/F → X/F given by S̃([x]) = S(ϕ−1([x])) is continuous and easily seen to
be a generalized Lyapunov function around [F]. By theorem 2 it follows that τ̃ is mixing. ��

2.2. Metric spaces

We now show that for the particular class of compact topological sets which posses a metric, the
existence of a generalized Lyapunov function is also a necessary condition for mixing. In this
context the convergence of a sequence is defined with respect to the distance function d(·, ·) :
X × X → R on the space, so that for instance equation (3) requires limn→∞ d(xn, x∗) = 0.

Theorem 4. (Lyapunov criterion). Let τ : X → X be a continuous map on a compact metric
space X . Then τ is mixing with fixed point x∗ if and only if a generalized Lyapunov function
around x∗ exists.

Proof. Firstly, in metric spaces compactness and sequential compactness are equivalent, so the
requirements of theorem 2 are met. Secondly, for any mixing map τ with fixed point x∗, a
generalized Lyapunov function around x∗ is given by S(x) ≡ d(x∗, x). In fact, it is continuous
because of the continuity of the metric and satisfies

lim
n→∞

S (τn(x)) = d(x∗, x∗) = 0 � d(x∗, x) = S(x),

where the equality holds if and only if x = x∗. We call d(x∗, x) the trivial generalized Lyapunov
function. ��
Remark. In the above theorem we have not used all the properties of the metric. In fact a
continuous semi-metric (i.e. without the triangle inequality) would suffice.

The trivial Lyapunov function requires knowledge of the fixed point of the map. There is
another way of characterizing mixing maps as those which bring elements closer to each other
(rather than closer to the fixed point).

Definition 5. A map τ : X → X is on a metric space is called a non-expansive map if and
only if

d(τ(x), τ(y)) � d(x, y) ∀x, y ∈ X ,
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a weak contraction if and only if

d(τ(x), τ(y)) < d(x, y) ∀x, y ∈ X , x �= y,

and a strict contraction if and only if there exists a k < 1 such that

d(τ(x), τ(y)) � kd(x, y) ∀x, y ∈ X .

Remark. The notation adopted here is slightly different from the definitions adopted by other
authors [20, 27, 28] who use contraction to indicate our non-expansive maps. Our choice is
motivated by the need to clearly distinguish between non-expansive transformation and weak
contractions.

We can generalize the above definition in the following way.

Definition 6. A map τ : X → X on a metric space is called an asymptotic deformation if and
only if the sequence d(τn(x), τn(y)) converges point-wise for all x, y ∈ X and

lim
n→∞

d(τn(x), τn(y)) �= d(x, y) ∀x, y ∈ X , x �= y.

Remark. Let τ : X → X be a non-expansive map on a metric space X , and let

lim
n→∞

d(τn(x), τn(y)) < d(x, y) ∀x, y ∈ X , x �= y.

Then τ is an asymptotic deformation. Any weak contraction is an asymptotic deformation.

Theorem 5. (Asymptotic deformations). Let τ : X → X be a continuous map on a compact
metric space X with at least one fixed point. Then τ is mixing if and only if τ is an asymptotic
deformation.

Proof. Firstly, assume that τ is an asymptotic deformation. Let x∗ be a fixed point and define
S(x) = d(x∗, x).

lim
n→∞

S(τn(x)) = lim
n→∞

d(x∗, τn(x)) = lim
n→∞

d(τn(x∗), τn(x)) �= d(x∗, x) = S(x) ∀x �= x∗,

hence S(x) is a generalized Lyapunov function. By theorem 2 it follows that τ is mixing. Secondly,
if τ is mixing, then

lim
n→∞

d(τn(x), τn(y)) = d(x∗, x∗) = 0 �= d(x, y) ∀x, y ∈ X , x �= y,

so τ is an asymptotic deformation. ��
Remark. Note that the existence of a fixed point is assured if τ is a weak contraction on a
compact space [29], or if the metric space is convex compact [30]. As a special case it follows
that any weak contraction τ on a compact metric space is mixing. This result can be seen as
an instance of the Banach contraction principle on compact spaces. In the second part of the
paper we will present a counterexample which shows that weak contractivity is only a sufficient
criterion for mixing (see example 2). In the context of quantum channels an analogous criterion
was suggested in [20, 22] which applied to strict contractions. We also note that for weak and
strict contractions, the trivial generalized Lyapunov function (theorem 4) is a strict Lyapunov
function.
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Asymptotic
deformation Mixing

Ergodic

Spectral gap
Generalized Lyapunov
function exists

Ergodic with
pure fixpoint

Strict Lyapunov
function exists

Weak
contraction

Figure 3. Relations between the different properties of a quantum channel. The
red text indicates the new results obtained in this paper, and the black text indicates
formerly known results which we reviewed.

3. Quantum channels

In this section we discuss the mixing properties of quantum channels [1] which account for the
most general evolution a quantum system can undergo including measurements and coupling
with external environments. In this context solving the mixing problem (1) is equivalent to
determining if repetitive application of a certain physical transformation will drive any input
state of the system (i.e. its density matrices) into a unique output configuration. The relationship
between the different mixing criteria one can obtain in this case is summarized in figure 3.

At a mathematical level quantum channels correspond to linear maps acting on the density
operators ρ of the system and satisfying the requirement of being completely positive and trace
preserving (CPT). For a formal definition of these properties we refer the reader to [27, 31, 32]:
here we recall only that a necessary and sufficient condition to being CPT is to allow Kraus
decomposition [31] or, equivalently, Stinespring dilation [32]. Our results are applicable if the
underlying Hilbert-space is finite dimensional. In such regime there is no ambiguity in defining
the convergence of a sequence since all operator norms are equivalent (i.e. given two norms one
can construct an upper and a lower bound for the first one by properly scaling the second one).
Also the set of bounded operators and the set of operators of Hilbert–Schmidt class coincide.
For the sake of definiteness, however, we will adopt the trace-norm which, given the linear
operator � : H → H, is defined as ‖�‖1 = Tr[

√
�†�] with Tr[ · · · ] being the trace over H and

�† being the adjoint of �. This choice is in part motivated by the fact [28] that any quantum
channel is non-expansive with respect to the metric induced4 by ‖ · ‖1 (the same property does
not necessarily apply to other operator norms, e.g. the Hilbert–Schmidt norm, also when these
are equivalent to ‖ · ‖1).

We start by showing that the mixing criteria discussed in the first half of the paper do
apply to the case of quantum channels. Then we will analyse these maps by studying their linear
extensions in the whole vector space formed by the linear operators of H. Similar questions also
arise in the context of finitely correlated states, where one investigates the decay of correlations
in space (rather than in time) [34].

3.1. Mixing criteria for quantum channels

Let H be a finite dimensional Hilbert space and let S(H) be the set of its density matrices ρ.
The latter is a convex and compact subspace of the larger normed vector space L(H) made

4 This is just the trace distance d(ρ, σ) = ‖ρ − σ‖1.
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Example 2. Consider a three-level quantum system characterized by the orthogonal vectors
|0〉, |1〉, |2〉 and the quantum channel τ defined by the transformations τ(|2〉〈2|) = |1〉〈1|,
τ(|1〉〈1|) = τ(|0〉〈0|) = |0〉〈0|, and τ(|i〉〈j|) = 0 for all i �= j. It’s easy to verify that after just
two iterations any input state ρ will be transformed into the vector |0〉〈0|. Therefore the map is
mixing. On the other hand it is explicitly not a weak contraction with respect to the trace norm
since, for instance, one has

‖τ(|2〉〈2|) − τ(|0〉〈0|)‖1 = ‖|1〉〈1| − |0〉〈0|‖1 = ‖|2〉〈2| − |0〉〈0|‖1,

where in the last identity we used the invariance of ‖ · ‖1 with respect to unitary transformations.

3.2. Beyond the density matrix operator space: spectral properties

Exploiting linearity quantum channels can be extended beyond the space S(H) of density
operators to become maps defined on the full vector space L(H) of the linear operators of
the system, in which basic linear algebra results hold. This allows one to simplify the analysis
even though the mixing property (1) is still defined with respect to the density operators of the
system.

Mixing conditions for quantum channels can be obtained by considering the structure of
their eigenvectors in the extended space L(H). For example, it is easily shown that the spectral
radius [37] of any quantum channel is equal to unity [13], so its eigenvalues are contained in
the unit circle. The eigenvalues λ on the unit circle (i.e. |λ| = 1) are referred to as peripheral
eigenvalues. Also, as already mentioned, since S(H) is compact and convex, CPT maps have
always at least one fixed point which is a density matrix [13]. A well-known connection between
the mixing properties and the spectrum is given by the following.

Theorem 7. (Spectral gap criterion). A quantum channel is mixing if and only if its only
peripheral eigenvalue is 1 and this eigenvalue is simple.

Proof. The ‘if’ direction can be found in linear algebra textbooks (see for example [37, lemma
8.2.7] Now let us assume that τ is a mixing quantum channel with fixed point ρ∗. Let � be
a generic operator in L(H). Then � can be decomposed in a finite set of non-orthogonal
density operators5 i.e. � = ∑

� c�ρ�, with ρ� ∈ S(H) and c� complex. Since Tr [ρ�] = 1, we
have have Tr [�] = ∑

� c�. Moreover since τ is mixing we have limn→∞ τn (ρ�) = ρ∗ for all �,
with convergence with respect to the trace-norm. Because of linearity this implies

lim
n→∞

τn (�) =
∑

�

c� ρ∗ = Tr [�] ρ∗. (12)

If there existed any other eigenvector �∗ of τ with eigenvalue on the unit circle, then
limn→∞ τn(�∗) would not satisfy equation (12). ��

5 To show that this is possible, consider an arbitrary operator basis of L(H). If N is the finite dimension of H the
basis will contain N2 elements. Each element of the basis can then be decomposed into two Hermitian operators,
which themselves can be written as linear combinations of at most N projectors. Therefore there exists a generating
set of at most 2N3 positive operators, which can be normalized such that they are quantum states. There even exists
a basis (i.e. a minimal generating set), but in general it cannot be orthogonalized.
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The speed of convergence can also be estimated by [13]

‖τn (ρ) − ρ∗‖1 � CN nN κn, (13)

where N is the dimensionality of the underlying Hilbert space, κ is the modulus of the second
largest eigenvalue of τ, and CN is some constant depending only on N and on the chosen
norm. Hence, for n � N the convergence becomes exponentially fast. As mentioned in [20],
the criterion of theorem 7 is in general difficult to check. This is because one has to find all
eigenvalues of the quantum channel, which is hard especially in the high dimensional case. Also,
if one only wants to check if a particular channel is mixing or not, then the amount of information
obtained is much higher than the required amount.

Example 3. As an application consider the non mixing CPT map of example 1. One can verify
that apart from the eigenvalue 1 associated with its fixed point (i.e. the completely mixed state),
it possesses another peripheral eigenvalue. This is λ = −1 which is associated with the Pauli
operator |0〉〈0| − |1〉〈1|.
Corollary 3. The convergence speed of any mixing quantum channel is exponentially fast for
sufficiently high values of n.

Proof. From theorem 7 mixing channels have only one peripheral eigenvalue and it is simple.
Therefore the derivation of [13] applies and equation (13) holds. ��

This result should be compared with the case of strictly contractive quantum channels whose
convergence were shown to be exponentially fast along to whole trajectory [20, 22].

3.3. Ergodic channels with pure fixed points

An interesting class of ergodic quantum channel is formed by those CPT maps whose fixed
point is a pure density matrix. Among them we find for instance the maps employed in the
communication protocols of [16]–[19] or those of the purification schemes of [14, 15]. We now
show that within this particular class, ergodicity and mixing are indeed equivalent properties.

Theorem 8. (Purely ergodic maps). Let |ψ1〉〈ψ1| be the pure fixed point of an ergodic quantum
channel τ. It follows that τ is mixing.

Proof. We will use theorem 7 showing that |ψ1〉〈ψ1| is the only eigenvector of τ with peripheral
eigenvalue. Assume in fact that � ∈ L(H) is a eigenvector of τ with peripheral eigenvalue, i.e.

τ(�) = eiϕ�. (14)

From lemma 6 of the appendix we know that the density matrix ρ = √
��†/g, with g =

Tr[
√

�†�] > 0, must be a fixed point of τ. Since this is an ergodic map we must have
ρ = |ψ1〉〈ψ1|. This implies � = g|ψ1〉〈ψ2|, with |ψ2〉 some normalized vector of H. Substituting
it into equation (15) and dividing both terms by g yields τ (|ψ1〉〈ψ2|) = eiϕ|ψ1〉〈ψ2| and

|〈ψ1|τ(|ψ1〉〈ψ2|)|ψ2〉| = 1.
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Introducing a Kraus set {Kn}n of τ and employing the Cauchy-Schwartz inequality one can then
write

1 = |〈ψ1|τ(|ψ1〉〈ψ2|)|ψ2〉| =
∣∣∣∣∣∑

n

〈ψ1|Kn|ψ1〉〈ψ2|K†
n|ψ2〉

∣∣∣∣∣
�

√∑
n

〈ψ1|Kn|ψ1〉〈ψ1|K†
n|ψ1〉

√∑
n

〈ψ2|Kn|ψ2〉〈ψ2|K†
n|ψ2〉

=
√

〈ψ1|τ(|ψ1〉〈ψ1|)|ψ1〉
√

〈ψ2|τ(|ψ2〉〈ψ2|)|ψ2〉 =
√

〈ψ2|τ(|ψ2〉〈ψ2|)|ψ2〉 ,

where we used the fact that |ψ1〉 is the fixed point of τ. Since τ is CPT the quantity
〈ψ2|τ(|ψ2〉〈ψ2|)|ψ2〉 is upper bounded by 1. Therefore in the above expression the inequality
must be replaced by an identity, i.e.

〈ψ2|τ(|ψ2〉〈ψ2|)|ψ2〉 = 1 ⇐⇒ τ(|ψ2〉〈ψ2|) = |ψ2〉〈ψ2| .

Since τ is ergodic, we must have |ψ2〉〈ψ2| = |ψ1〉〈ψ1|. Therefore � ∝ |ψ1〉〈ψ1| which shows
that |ψ1〉〈ψ1| is the only peripheral eigenvalue of τ. ��

An application of the previous theorem is obtained as follows.

Lemma 3. Let MAB = MA⊗1B + 1A⊗MB be an observable of the composite system HA⊗HB

and τ the CPT linear map on HA of Stinespring form [32]

τ(ρ) = TrB[U (ρ⊗|φ〉B〈φ|) U†] , (15)

(here TrX [· · ·] is the partial trace over the system X, and U is a unitary operator of HA⊗HB).
Assume that [MAB, U] = 0 and that |φ〉B is the eigenvector corresponding to a non-degenerate
maximal or minimal eigenvalue of MB. Then τ is mixing if and only if U has one and only one
eigenstate that factorizes as |ν〉A⊗|φ〉B.

Proof. Let ρ be an arbitrary fixed point of τ (since τ is CPT it has always at least
one), i.e. TrB[U (ρ⊗|φ〉B〈φ|) U†] = ρ. Since MAB = MA + MB is conserved, and TrA [MAρ] =
TrA [MAτ(ρ)], the expectation value of MB is unchanged. Hence system B must remain in the
state with maximal/minimal eigenvalue, which we have assumed to be unique and pure, i.e.

U (ρ⊗|φ〉B〈φ|) U† = ρ⊗|φ〉B〈φ| �⇒ [U, ρ⊗|φ〉B〈φ|] = 0 .

Thus there exists an orthonormal basis {|uk〉}k of HA⊗HB diagonalizing simultaneously
both U and ρ⊗|φ〉B〈φ|. We express the latter in this basis, i.e. ρ⊗|φ〉B〈φ| = ∑

k pk|uk〉〈uk|, and
perform the partial trace over subsystem A to get

|φ〉B〈φ| =
∑

k

pkTrA [|uk〉〈uk|] .

Hence TrA [|uk〉〈uk|] = |φ〉B〈φ| for all k, and |uk〉 must be factorizing,

|uk〉 = |νk〉A⊗|φ〉B. (16)
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If the factorizing eigenstate of U is unique, it follows that ρ = |ν〉〈ν| for some |ν〉 and that τ is
ergodic. By theorem 8 it then follows that τ is also mixing. If on the other hand there exists more
than one factorizing eigenstate, then all states of the form of equation (16) correspond to a fixed
point ρk = |νk〉〈νk| and τ is neither ergodic nor mixing. ��

The case discussed in lemma 3 is a generalization of the CPT map discussed in [16] in
the context of spin–chain communication. There HA and HB represented two distinct parts of
a chain of spins coupled through Heisenberg-like interactions: the latter including the spins
controlled by the receiver of the message, while the former accounting for all the remaining
spins. Assuming the system to be initially in the ground state (i.e. all spin down), the sender
(located at one of the extremes of the chain) encodes her/his quantum messages (i.e. qubits) into
superpositions of spins excitations which will start propagating toward to receiver (located at the
other extreme of the chain). In [16] it was shown that, by repetitively swapping the spins which
are under her/his control with some ancillary spins prepared in the ground state, the receiver
will be able to recover the transmitted messages. The key ingredient of such a result is the fact
that by applying the swapping operations the receiver is indeed removing all the excitations (and
therefore the corresponding encoded quantum information) from that part of the chain which is
not directly accessible to him/her (i.e. the part represented by HA). In its simplest version, the
resulting transformation on HA can be described by equation (15) with U and MAB representing,
respectively, the free evolution of the spins among two consecutive swaps and the z-component
of the magnetization of the chain. Lemma 3 can then be used to provide an alternative proof of
convergence of the protocol [16] showing that indeed repetitive applications of τ will drive HA

toward a unique convergence point (i.e. the state with no excitation).

4. Conclusion

In reviewing some known results on the mixing property of continuous maps, we derived a
stronger version of the direct Lyapunov method. For compact metric spaces (including quantum
channels operating over density matrices) it provides a necessary and sufficient condition for
mixing. Moreover it allows us to prove that asymptotic deformations with at least one fixed point
must be mixing.

In the specific context of quantum channels we employed the generalized Lyapunov method
to analyse the mixing properties. Here we also analysed different mixing criteria. In particular
we have shown that an ergodic quantum channel with a pure fixed point is also mixing.
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Appendix

Here we derive some lemmas which are not correlated with each other but which are relevant
in our discussion. Lemma 4 discusses a property of sequentially compact topological spaces.
Lemma 5 states a well known theorem [20] which, in the context of normed vector spaces, shows
the equivalence between the definition of ergodicity of equation (4) and its definition using time
averages. Finally lemma 6 discusses a useful property of quantum channels (see also [38]).

Lemma 4. Let xn be a sequence in a sequentially compact topological space X such that any
convergent subsequence converges to x∗. Then the sequence converges to x∗.

Proof. We prove by contradiction: assume that the sequence does not converge to x∗. Then
there exists an open neighbourhood O(x∗) of x∗ such that for all k ∈ N, there is a nk such
that xnk

/∈ O(x∗). Thus the subsequence xnk
is in the closed space X\O(x∗), which is again

sequentially compact. xnk
has a convergent subsequence with a limit in X\O(x∗), in particular

this limit is not equal to x∗. ��
Lemma 5. Let X be a convex compact subset of a normed vector space, and let τ : X → X be
a continuous map. If τ is ergodic with fixed point x∗, then

lim
n→∞

1

n + 1

n∑
�=0

τ�(x) = x∗. (A.1)

Proof. Define the sequence An ≡ 1
n+1

∑n

�=0 τ�(x). Then let M be the upper bound for the norm of
vectors in X , i.e. M ≡ supx∈X ‖x‖ < ∞, which exists because X is compact. The sequence An has
a convergent subsequence Ank

with limit Ã. Since τ is continuous one has limk→∞ τ(Ank
) = τ(Ã).

On the other hand, we have

‖τ(Ank
) − Ank

‖ = 1

nk + 1
‖τnk+1(x) − x‖ � ‖τnk+1(x)‖ + ‖x‖

nk + 1
� 2M

nk + 1
,

so the two sequences must have the same limit, i.e. τ(Ã) = Ã. Since τ is ergodic, we have Ã = x∗
and limn→∞ An = x∗ by lemma 4. ��
Remark. Note that if τ has a second fixed point y∗ �= x∗, then for all n one has 1

n+1

∑n

�=0 τ�(y∗) =
y∗, so equation (A.1) would not apply.

Lemma 6. Let τ be a quantum channel and � be an eigenvector of τ with peripheral eigenvalue
λ = eiϕ. Then, given g = Tr[

√
�†�] > 0, the density matrices ρ = √

��†/g and σ = √
�†�/g

are fixed points of τ.

Proof. Use the left polar decomposition to write � = g ρU where U is a unitary operator. The
operator ρU is clearly an eigenvector of τ with eigenvalue eiϕ, i.e.

τ(ρU) = λ ρU. (A.2)

Hence introducing a Kraus set {Kn}n of τ [30] and the spectral decomposition of the density
matrix ρ = ∑

j pj|ψj〉〈ψj| with pj > 0 being its positive eigenvalues, one gets

λ = Tr[τ(ρU)U†] =
∑
j,�,n

pj〈φ�|Kn|ψj〉〈ψj|UK†
nU

†|φ�〉,
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where the trace has been performed with respect to an orthonormal basis {|φ�〉}� of H. Taking
the absolute values of both terms gives

|λ| = |
∑
j,�,n

pj〈φ�|Kn|ψj〉〈ψj|UK†
nU

†|φ�〉|

�
√∑

j,�,n

pj〈φ�|Kn|ψj〉〈ψj|K†
n|φ�〉

√∑
j,�,n

pj〈φ�|UKnU†|ψj〉〈ψj|UK
†
nU†|φ�〉

=
√

Tr[τ(ρ)]
√

Tr[τ̃(ρ)] = 1, (A.3)

where the inequality follows from the Cauchy-Schwartz inequality. The last identity instead is
a consequence of the fact that the transformation τ̃(ρ) = Uτ(U†ρU)U† is CPT and thus trace
preserving. Since |λ| = 1 it follows that the inequality (A.3) must be replaced by an identity.
This happens if and only if there exist eiϑ such that

√
pj{〈φ�|Kn|ψj〉}∗ = √

pj〈ψj|K†
n|φ�〉 = eiϑ√pj〈ψj|UK†

nU
†|φ�〉 ,

for all j, � and n. Since the |φ�〉 form a basis of H, and pj > 0 this implies

〈ψj|K†
n = eiϑ 〈ψj|UK†

nU
† ⇒ 〈ψj|UK†

n = e−iϑ 〈ψj|K†
nU ,

for all n and for all the not null eigenvectors |ψj〉 of ρ. This yields

τ(ρU) =
∑

j

pj

∑
n

Kn|ψj〉〈ψj|UK†
n = e−iϑ

∑
j

pj

∑
n

Kn|ψj〉〈ψj|K†
nU = e−iϑ τ(ρ)U

which, replaced in (A.3) gives e−iϑ τ(ρ) = eiϕ ρ, whose only solution is e−iϑ = eiϕ. Therefore
τ(ρ) = ρ and ρ is a fixed point of τ. The proof for σ goes along similar lines: simply consider
the right polar decomposition of � instead of the left polar decomposition. ��
Corollary 4. Let τ be an ergodic quantum channel. It follows that its eigenvectors associated
with peripheral eigenvalues are normal operators.

Proof. Let � be an eigenoperator with peripheral eigenvalue eiϕ such that τ (�) = eiϕ �.

By lemma 6 we know that, given g = Tr
[√

�†�
]

the density matrices ρ = √
��†/g and

σ = √
�†�/g must be fixed points of τ. Since the map is ergodic we must have ρ = σ, i.e.

��† = �†�. ��
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