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Abstract
In this paper we introduce and investigate the statistical mechanics of hierarchical neural networks:

First, we approach these systems à la Mattis, by thinking at the Dyson model as a single-pattern
hierarchical neural network and we discuss the stability of different retrievable states as predicted by
the related self-consistencies obtained from a mean-field bound and from a bound that bypasses the
mean-field limitation. The latter is worked out by properly reabsorbing fluctuations of the magneti-
zation related to higher levels of the hierarchy into effective fields for the lower levels. Remarkably,
mixing Amit’s ansatz technique (to select candidate retrievable states) with the interpolation proce-
dure (to solve for the free energy of these states) we prove that (due to gauge symmetry) the Dyson
model accomplishes both serial and parallel processing.
One step forward, we extend this scenario toward multiple stored patterns by implementing the Hebb
prescription for learning within the couplings. This results in an Hopfield-like networks constrained
on a hierarchical topology, for which, restricting to the low storage regime (where the number of
patterns grows at most logarithmical with the amount of neurons), we prove the existence of the
thermodynamic limit for the free energy and we give an explicit expression of its mean field bound
and of the related improved bound.
The resulting self-consistencies for the Mattis magnetizations (that act as order parameters) are stud-
ied and the stability of solutions is analyzed to get a picture of the overall retrieval capabilities of
the system according to the mean field and to the non-mean-field scenarios. Our main finding is that
embedding the Hebbian rule on a hierarchical topology allows the network to accomplish both serial
and parallel processing. By tuning the level of fast noise affecting it, or triggering the decay of the
interactions with the distance among neurons, the system may switch from sequential retrieval to
multitasking features and vice versa. However, as these multitasking capabilities are basically due
to the vanishing “dialogue” between spins at long distance, such an effective penury of links strongly
penalizes the network’s capacity, which results bounded by the low storage.

Introduction
Neural networks are such a fascinating field of science to attract an incredibly large variety of scientists,
ranging from engineers (mainly involved in electronics and robotics) [1, 2], physicists (mainly involved
in statistical mechanics and stochastic processes) [3, 4], and mathematicians (mainly working in learning
algorithms and graph theory) [5, 6] to (neuro) biologists [7, 8] and (cognitive) psychologists [9, 10].

Tracing the genesis and evolution of neural networks back in time is very difficult, probably due to the
broad meaning they have acquired along the years1: scientists closer to the robotics branch often refer
to the W. McCulloch and W. Pitts model of perceptron [14] (or the F. Rosenblatt version [15]), while
researchers closer to the neurobiology branch adopt usually the D. Hebb work as a starting point [16].

On the other hand, scientists involved in statistical mechanics, that joined the community in relatively
recent times (after a satisfactory picture of spin glasses was achieved [17, 18], thus in the ′80), usually refer
to the seminal paper by Hopfield [19] or to the celebrated work by Amit, Gutfreund and Sompolinsky
[20], where the statistical mechanical analysis of the Hopfield model is effectively carried out.

1Seminal ideas regarding automation are already in the works of Lee during the XIIX century, if not even back to
Descartes, while more modern ideas regarding spontaneous cognition, can be attributed to A. Turing [11] and J. Von
Neumann [12] or to the join efforts of M. Minsky and S. Papert [13], just to cite a few.
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Confining ourselves within this last perspective and in a streamlined synthesis, the Hopfield model is
a mean field model where neurons are mimicked by binary (Ising) spins, whose possible states represent
firing or quiescence respectively [3, 5], and which interact pairwise via the Hebb prescription. This model
acts as the harmonic oscillator for serial processing: once the system is allowed to relax, it spontaneously
retrieves one of the stored patterns (in suitably regions of the tunable parameters, e.g. low noise level and
not-too-high storage load), pattern retrieval depending on, e.g. the initial state of the system. Recently,
a generalization of this paradigm, i.e. the multitasking associative network [21], appeared as a candidate
mean-field network able to perform spontaneously parallel retrieval [22, 23, 24, 25, 26, 27], that is to
retrieve more patterns at once (without falling into spurious states) [28, 29].
While these two networks perform in a crucial different way (serial versus parallel), they share the same
mean-field statistical mechanics approximation: each neuron interacts with all the others it is linked to
with the same strength, unaware of any underlying topology, namely independently of the actual pairwise
distance among the neurons themselves. This limitation has always been considered as something to
remove as soon as mathematical improvements of available techniques would allow. Far from Artificial
Intelligence, but exactly to this task (i.e. bypassing mean field limitations), a renewal interest is nowadays
raised for hierarchical models, namely models where the closer the spins the stronger their links (see Fig.
1). Starting from the pioneering Dyson work [30], where the hierarchical ferromagnet was introduced and
its phase transition (splitting an ergodic region from a ferromagnetic one) rigorously proven, recently its
extensions to spin-glasses have also been investigated [31]. Although an analytical solution is still not
available, giant step forward toward a deep comprehension of the hierarchical statistical mechanics have
been obtained [32, 33, 34, 35, 36, 37, 38, 39].
In this paper we aim to analyze in details the hierarchical neural networks, and to this task we start
by considering the statistical mechanics of the Dyson model from a novel perspective: we investigate its
metastabilities.

In Section One we deal with Dyson’s model: once fundamental definitions have been introduced, in
the first subsection we prove the existence of the thermodynamic limit of its related free energy within
the spirit of the classical Guerra-Toninelli scheme [41] to the case. The following subsection is dedicated
to a mean-field picture: we mix Amit’s ansatz technique [3] with our interpolation schemes [42]; the
resulting technique allows to think at the Dyson model as a single-pattern associative network (as the
Curie-Weiss plays in mean-field counterpart thanks to the Mattis gauge [5]): a satisfactory picture of
its related thermodynamic and retrieval capabilities is obtained and discussed: Remarkably, the intrinsic
richness of (effectively) possible states in Dyson model drives the system from serial processing to parallel
processing and yields the breakdown of the self-average for the order parameters. Note that parallel
processing may appear strange for a one-pattern neural network, however due to gauge-symmetry, the
stored patterns are actually two, thus if one-half of the network spins retrieve the original pattern and
the other half its gauged version, this can be seen as a multitasking feature, as it will become obvious
when investigating the hierarchical Hopfield model.
The next subsection 1.3 traces the same line of 1.2 but bypassing mean-field limitation: despite we are
not able to completely solve the statistical mechanics of this model yet, thanks to a new interpolation
scheme (developed in [33]), we are able to account (partially) for order parameter’s fluctuations level
by level (of the hierarchy). The idea is to leverage the hierarchical structure of the model in order to
account for such fluctuations: the latter are reabsorbed -again recursively, i.e. level by level- into an
effective Hamiltonian for the underlying block spins whose thermodynamics remains still solvable, thus
improving the mean-field result. The difference between these two scenarios lies only in a different critical
noise for ergodicity breaking, but serial and parallel retrieval capabilities (namely the existence of pure
and meta-stable states) are preserved in both cases. Following the strand paved for the Dyson analysis,
in Section Two we introduce the real hierarchical neural network, namely a hierarchical network with
Hebbian couplings or, equivalently, the Hopfield model on a hierarchical setting. This system is studied
in the low storage regime, that is where the amount of stored patterns scales at most logarithmical with
the amount of neurons the network is built with. For this model we prove at first the existence of its
free energy’s thermodynamic limit (subsection 2.1), then we move toward a mean-field scenario (2.2),
further we investigate the non-mean-field one (2.3). In both cases, the model has an extremely rich phase
diagram, where beyond standard serial retrieval (which is accomplished too), a number of parallel states
suddenly appears by properly tuning the level of (fast) noise affecting the network. A discussion of these
states and their stability analysis is included still in Sec.2, while a discussion regarding network’s capacity
can be found in the following conclusions, which close the paper.
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Figure 1: Schematic representation of the hierarchical topology where the associative network insists.
Green spots represent Ising neurons (N = 16 in this shapshot) while links are drawn with different
thickness mimicking various interaction strengths: The thicker the line, the stronger the link.

1 Analysis of the Dyson hierarchical model
The Dyson Hierarchical Model (DHM) is a system composed -at the microscopic level- by 2k+1 Ising
spins Si = ±1, with i = 1, ..., 2k+1 embedded in a hierarchical topology. The Hamiltonian capturing the
model is recursively introduced by the following

Definition 1. The Hamiltonian of Dyson’s Hierarchical Model (DHM) is defined by

Hk+1(~S|J, σ) = Hk( ~S1) +Hk( ~S2)− J

22σ(k+1)

2k+1∑
i<j=1

SiSj , (1)

where J > 0 and σ ∈ (1/2, 1) are numbers tuning the interaction strength. Clearly ~S1 ≡ {Si}1≤i≤2k ,
~S2 ≡ {Sj}2k+1≤j≤2k+1 and H0[S] = 0.

Thus, in this model, σ triggers the decay of the interaction with the distance among spins, while J
uniformly rules the overall intensity of the couplings.
Note that this model is explicitly a non-mean-field model as the distance di,j between two spins i, j ranges
in 0 and k (see Fig.1). Indeed, it is possible to re-write the Hamiltonian (1) in terms of the di,j as

Hk[{S1...S2k}] = −
∑
i<j

SiSjJij (2)

Jij =

k∑
l=di,j

(
J

22σl

)
= J(dij , k, σ, J) = J

4σ−di,jσ − 4−kσ

4σ − 1
. (3)

Once the Hamiltonian is given (and in this paper we will refer mainly to the form (1)), it is possible to
introduce the partition function Zk+1(β, J, σ) at finite volume k + 1 as

Zk+1(β, J, σ) =

2k+1∑
σ

exp
[
−βHk+1(~S|J, σ)

]
, (4)

and the related free energy fk+1(β, J, σ), namely the intensive logarithm of the partition function, as

fk+1(β, J, σ) =
1

2k+1
log
∑
~S

exp

−βHk+1(~S) + h

2k+1∑
i=1

Si

 . (5)
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We are interested in an explicit expression of the infinite volume limit of the intensive free energy, defined
as

f(β, J, σ) = lim
k→∞

fk+1(β, J, σ),

in terms of suitably introduced magnetizations m, that act as order parameters for the theory because -in
order to satisfy thermodynamic prescriptions- we want to find the free energy minima2 w.r.t. these order
parameters. To this task we introduce the global magnetizationm, defined as the limitm = limk→∞mk+1

where

mk+1 =
1

2k+1

2k+1∑
i

Si, (6)

and, recursively and with a little abuse of notation, the k magnetizations ma, ...,mk level by level (over
k levels and starting to defined them from the largest bulk), as the same k → ∞ limit of the following
quantities (we write explicitly only the two upper magnetizations related to the two main clusters the
system reduces to whenever JK → 0 -see Fig.1-):

mleft =
1

2k

2k∑
i=1

Si, mright =
1

2k

2k+1∑
i=2k+1

Si. (7)

As a last point, thermodynamical averages will be denoted by the brackets 〈·〉, such that

〈mk+1(β, J, σ)〉 =

∑
σmk+1e

−βHk+1(~S|J,σ)

Zk+1(β, J, σ)
, (8)

and clearly 〈m(β, J, σ)〉 = limk→∞〈mk+1(β, J, σ)〉.

1.1 The thermodynamic limit
Argument of this Section is a proof of the existence of the thermodynamic limit for the free energy of the
DHM: despite this result has been already achieved a long time ago by Gallavotti and Miracle-Sole [43],
we exploit here a different interpolating scheme with the pedagogical aim of highlighting the technique
more than the result itself as it will then be used to prove the existence of the thermodynamic limit for
the hierarchical Hopfield network. The main idea is that, since the interaction is ferromagnetic, the free
energy is monotone in k, with the introduction of new levels of positive interactions.

Theorem 1. The thermodynamic limit of the DHM free energy does exist and we call

lim
k→∞

fk+1(β, J, σ) = f(β, J, σ).

To prove this statement let us introduce a real scalar parameter t ∈ [0, 1] and the following interpo-
lating function

Φk+1,t(β) =
1

2k+1
log
∑
~S

exp(β(Hk( ~S1) +Hk( ~S2) +
tJ

2
2(k+1)2(k+1)(1−2σ)m2

k+1(~S)), (9)

with mk+1 = 1
2k+1

∑2k+1

l=1 Sl, such that

Φk+1,1 = fk+1, (10)
Φk+1,0 = fk, (11)

and

0 ≤ dΦk+1,t

dt
=

〈
β

1

2k+1

2(k+1)2(k+1)(1−2σ)J
2

m2
k+1(~S)

〉
t

≤ βJ2(k+1)(1−2σ)

2
. (12)

Since

2Note that as the free energy, strictly speaking, is f(β) = −α(β), we actually look for maxima trough the paper.
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Φk+1,1(h) = Φk+1,0(h) +

∫ 1

0

dΦk+1,t

dt
dt,

fk+1 ≥ fk (the sequence is non-decreasing), thus

fk+1(β, J, σ) ≤ fk(β, J, σ) +
βJ

2
2(k+1)(1−2σ). (13)

Iterating this argument over the levels we obtain

fk+1(β, J, σ) ≤ f0(β, J, σ) +
βJ

2

k+1∑
l=1

2l(1−2σ). (14)

In the limit of k →∞
f ≤ f0 +

βJ

2

∞∑
l=1

2l(1−2σ). (15)

The series on the right of the above inequality converges, since σ > 1
2 , hence

f(β, J, σ) ≤ f0(β, J, σ) +
βJ

2

1

1− 2(2σ−1)
. (16)

The sequence fk(β, J, σ) is bounded and non-decreasing, so it admits a well defined limit for k →∞.

1.2 The mean-field scenario
Plan for this Section is to turn around classical results [30, 43, 44] to investigate meta-stabilities in the
Dyson model at the mean-field level. To this task two schemes must be merged: we start following [33]
for building an interpolating iterative scheme that returns the mean-field free energy in terms of a bound,
then we implement the Amit method of ansatz to evaluate -within the free energy landscape obtained
by this interpolation- the stability and thermodynamic importance of two test-states: the (standard)
ferromagnetic state (with all the spin aligned, hence mleft = mright) and the simplest meta-stable state,
namely a state where all the left spins (that is the first 1, ..., 2k spins) are aligned each other and opposite
to the right spins (that is the remaining 2k + 1, ..., 2k+1 spins), which -in turn- are aligned each other too
(hence mleft = −mright). Operatively, we state the next

Definition 2. Once considered a real scalar parameter t ∈ [0, 1], we introduce the following interpolating
Hamiltonian

Hk+1,t(~S) = − Jt

22σ(k+1)

2k+1∑
i>j=1

SiSj − (1− t)mJ2(k+1)(1−2σ)
2k+1∑
i=1

Si +Hk( ~S1) +Hk( ~S2), (17)

such that for t = 1 the original system is recovered, while at t = 0 the two body interaction is replaced
by an effective but tractable one-body term. The possible presence of an external magnetic field can be
accounted simply by adding to the Hamiltonian a term ∝ h∑2k+1

i σi, with h ∈ R.

This prescription allows defining an extended partition function as

Zk+1,t(h, β, J, σ) =
∑
~S

exp{−β[Hk+1,t(~S) + h

2k+1∑
i=1

Si]}, (18)

where the subscript t stresses its interpolative nature, and, analogously,

Φk+1,t(h, β, J, σ) =
1

2k+1
logZk+1,t(h, β, J, σ). (19)

Since
Φk+1,0(h, β, J, σ) = Φk,1(h+mJ2(k+1)(1−2σ), β, J, σ), (20)
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as shown in [33], (discarding the dependence of Φ by β, J, σ for simplicity) through a long but straight-
forward calculation, we arrive to

Φk+1,1(h) = Φk+1,0(h)− βJ

2
(2(k+1)(1−2σ)m2 + 2−2(k+1)σ) +

βJ

2
2(k+1)(1−2σ)

〈
(mk+1(~S)−m)2

〉
t

≥ Φk,1(h+ Jm2(k+1)(1−2σ))− βJ

2
(2(k+1)(1−2σ)m2 + 2−2(k+1)σ). (21)

Note that, in the last passage, we neglected level by level the source of order parameter’s fluctuations〈
(mk+1(~S)−m)2

〉
t
-which is positive definite- thus we obtained a bound for the free energy.

For the seek of simplicity we extended the meaning of the brackets to account also for the interpolating
structure coded in the Boltzmannfaktor of eq.(18), by adding to them a subscript t, namely 〈·〉 → 〈·〉t.

In order to start investigating non-standard stabilities, note further that Φk+1,0(h) = Φk,1(h +
mJ2(k+1)(1−2σ)) but in principle we can have also two different contributions from the two groups of
2k spins (left and right) thus we should write more generally

Φk+1,0(h) =
1

2

[
Φ1
k,1(h+mJ2(k+1)(1−2σ)) + Φ2

k,1(h+mJ2(k+1)(1−2σ))
]
. (22)

Now let us assume the Amit perspective [3] and suppose that these two subsystems have different mag-
netizazions mleft = m1 and mright = m2 (equal in modulus but opposite in sign, i.e. m1 = −m2):
this observation implies that, starting from the k-th level, we can iterate the interpolating procedure in
parallel on the two clusters using respectively m1 and m2 as trial parameters. Via this route we obtain

Φk+1,1(h) ≥ 1

2
Φ0,1

{
h+ J

[
k∑
l=1

2l(1−2σ)m1 + 2(k+1)(1−2σ)m

]}

+
1

2
Φ0,1

{
h+ J

[
k+1∑
l=1

2l(1−2σ)m2 + 2(k+1)(1−2σ)m

]}

− βJ

2

[
2(k+1)(1−2σ)m2 +

k+1∑
l=1

2−2lσ
]
− βJ

2

k∑
l=1

2l(1−2σ)
(
m2

1 +m2
2

2

)
, (23)

that is

fk+1(h, β, J, σ) ≥ log 2 +
1

2

{
log cosh

[
βh+ βJ

(
m1

k∑
l=1

2l(1−2σ) + 2(k+1)(1−2σ)m

)]}
+

+
1

2

{
log cosh

[
βh+ βJ

(
m2

k∑
l=1

2l(1−2σ) + 2(k+1)(1−2σ)m

)]}
+

− βJ

2

[
2(k+1)(1−2σ)m2 +

k+1∑
l=1

2−2lσ
]
− βJ

2

k∑
l=1

2l(1−2σ)
(
m2

1 +m2
2

2

)
= f(k,m,m1,m2|h, β, J, σ). (24)

Therefore, we have that fk+1(h, β, J, σ) ≥ supm,m1,m2
f(k,m,m1,m2|(h, β, J, σ) and we need to evaluate

the optimal order parameters in order to have the best free energy estimate.
Taking the derivatives of the free energy with respect to m, m1 and m2 we obtain the self consistent
equations holding at the extremal points of f(k,m,m1,m2|h, β, J, σ), which read as

m1 = tanh
[
βh+ βJ

(
m1

∑k
l=1 2l(1−2σ) + 2(k+1)(1−2σ)m

)]
,

m2 = tanh
[
βh+ βJ

(
m2

∑k
l=1 2l(1−2σ) + 2(k+1)(1−2σ)m

)]
,

m = m1+m2

2 ,

where the third equation is only a linear combination of m1 and m2 and it simply states that the global
magnetization is the average of the ones of the two main clusters.
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It is easy to see that, at zero external field h = 0, the Pure solution m1 = m2 = m = mP , where the
whole system has a non zero magnetization, and the Antiparallel (meta-stable) one mA = m1 = −m2

and m = 0, where the system has two clusters with opposite magnetizations and no global magnetization,
both exist.

Clearly, according to the value of the temperature, we can have a paramagnetic solution (mP = mA =
0), or two gauge symmetric solutions for each of the two possible states (±mP ,±mA); we therefore need
to analyze the stability of these solutions, checking if they are maxima or minima of f(h = 0, β, J, σ).
Obtaining an explicit expression for the second derivatives to build the Hessian H(m1,m2) of f(h =
0, β, J, σ) is rather lengthy, yet it is easy to see that the entries of Hessian actually depends on m2

1

and on m2
2 only, namely they are independent of the sign of the two magnetizations m1,m2. This

means that, as the paramagnetic solution becomes unstable, both the pure (i.e. mleft = mright) and
antiparallel (mixture, i.e. mleft = −mright) solutions become stable (this ensures the possibility to take
the thermodynamic limit in (24) and sheds lights on breaking of standard self-averaging [44]).
In this case we get the following

Theorem 2. The mean-field bound for the DHM free energy associated to the meta-stable state reads as

f(h, β, J, σ) ≥ sup
m1,m2,m

lim
k→∞

f(k,m,m1,m2)

= sup
m1,m2

log 2 +
1

2
log cosh(βh+ βJC2σ−1m1)

+
1

2
log cosh((βh+ βJC2σ−1m2)− βJC2σ

2
− βJC2σ−1

2
(
m2

1 +m2
2

2
), (25)

where Cy = 2−y

1−2−y and the trial parameters m1, m2 fulfill the self-consistencies 27 and m is its symmetric
linear combination.
The mean field bound for the DHM free energy associated to the ferromagnetic state can be obtained again
simply by identifying m1 = m2 = m and reads as

f(h, β, J, σ) ≥ sup
m

[
log 2 + log cosh(βh+ βJC2σ−1m)− βJC2σ

2
− βJC2σ−1

2
m2

]
(26)

whose self-consistencies can be found in [33].

In the thermodynamic limit, the last level of interaction (the largest in number of links but the weakest
as for their intensity), that would tend to keep m1 and m2 aligned, vanishes. Thus the system effectively
behaves just as the sum of two non interacting subsystems with independent magnetizations satisfying
the following

Proposition 1. The mixture state of the DHM has two independent order parameters, one for each
larger cluster, whose self-consistencies read as

m1,2 = tanh (βh+ βJC2σ−1m1,2) . (27)

One step forward, if we want to find out the critical value βc that breaks ergodicity, we can expand
them for k →∞, and for h = 0, hence obtaining

m1 ∼ βJm1
21−2σ

1−21−2σ +O(m3
1),

m2 ∼ βJm2
21−2σ

1−21−2σ +O(m3
2),


such that we can write the next

Corollary 1. Mean-field criticality in the DHM has the classical critical exponent one half and critical
temperature βMF

c given by

βMF
c =

1− 21−2σ

J21−2σ
. (28)

It is worth noticing however that the mean-field picture does not hold in this hierarchical setting.
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Figure 2: Behavior of the magnetizations for the Dyson model within the non-mean-field scenario. Left
panel: Pure state (serial processing). Right panel: Mixture state (parallel processing). Note that the
difference in energy among the pure state and the mixture state scales as ∆E ∝ 2(k+1)·(1−2σ), thus -in
the thermodynamic limit- the parallel state becomes effectively stable (see Fig.3 too), but do not alter
the thermodynamical picture of ferromagnetism.

One may still debate however that, while the intensity of the upper links is negligible, it may still
collapse the state of one cluster to the other (thus destroying metastability), as for instance happens
when we use a vanishing external field in a critical mean-field ferromagnet to select the phase by hand.
In the appendix A we give a detailed explanation, and a rigorous proof, that this is not the case here:
The DHM has links too evanescent to drive all the spins to converge always to the same sign and mixture
states are preserved.

1.3 The not-mean-field scenario
Scope of the present Section is to bypass mean-field limitations and show that the outlined scenario is
robust even beyond the mean-field picture. We stress that we do not have a rigorous solution of the
free energy, but rather a more stringent (with respect to the mean-field counterpart) analytical bound
supported by extensive numerical simulations. In particular, we exploit the interpolative technology
introduced in [33] to take into account (at least a) part of the fluctuations of the order parameters (thus
improving the previous description) as, in models beyond mean-field, the magnetization is no longer self-
averaging and its fluctuations can not be neglected. It is indeed the proliferation of these meta-stable
states that avoids the collapse of the order parameter probability distribution on a Dirac delta and breaks
self-averaging.
Let us start investigating the improved bound with the following

Definition 3. Once introduced two suitable real parameters t, x, the interpolating Hamiltonian that we
are going to consider to bypass the mean-field bound has the form

Hk+1,t(~S) = −tu(~S)− (1− t)v(~S) +Hk( ~S1) +Hk( ~S2), (29)

with

u(~S) =
J

22σ(k+1)

2(k+1)∑
i>j=1

SiSj +
xJ

2 · 22σ(k+1)

2k+1∑
i,j=1

(Si −m)(Sj −m),

v(~S) =
J(1 + x)

2 · 22σ(k+1)

 2k∑
i,j=1

(Si −m)(Sj −m) +

2k+1∑
i,j=2k+1

(Si −m)(Sj −m)

+mJ2(k+1)(1−2σ)
2k+1∑
i=1

Si,

where x ≥ 0 accounts for fluctuation resorption and 0 ≤ t ≤ 1 plays as before.
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The associated partition function and free energy are, respectively,

Zk+1,t(x, h) =
∑
~S

exp

−β
Hk+1,t(~S) + h

2k+1∑
i=1

Si

 , (30)

Φk+1,t(x, h) =
1

2k+1
logZk+1,t(x, h). (31)

The procedure that yields to the non-mean-field bound for the free energy permits to obtain (see [33]) the
following expression for the pure ferromagnetic case (where again we omitted the dependence by β, J, σ
for simplicity)

fk+1(h, β, J, σ) ≥ Φk,1(
1

22σ
, h+m2(k+1)(1−2σ))− βJ

2
(2(k+1)(1−2σ)m2 + 2−2σ(k+1)). (32)

However, as shown for the previous bound, let us now suppose that the system is split in two parts, with
two different magnetizations mleft = m1 and mright = m2: resuming the same lines of reasoning of the
previous Section, we obtain

Φk,1(
1

22σ
, h+m2(k+1)(1−2σ)) =

1

2
Φ1
k,1(

1

22σ
, h+m2(k+1)(1−2σ)) +

1

2
Φ2
k,1(

1

22σ
, h+m2(k+1)(1−2σ)). (33)

From this point we can iterate the previous scheme point by point up to the last level of the hierarchy
using as trial order parameter m1,2 for Φ1,2, respectively. As a consequence, formula (32), derived within
the ansatz of a pure ferromagnetic state, is generalized by the following expression

fk+1(h, β, J, σ) ≥ 1

2
Φ0,1(

k+1∑
l=1

2−2lσ, h+ Jm1

k∑
l=1

2l(1−2σ) +mJ2(k+1)(1−2σ)) +

+
1

2
Φ0,1(

k+1∑
l=1

2−2lσ, h+ Jm2

k∑
l=1

2l(1−2σ) +mJ2(k+1)(1−2σ)) +

−βJ
2

k∑
l=1

2l(1−2σ)(
m2

1 +m2
2

2
)− βJ

2

k+1∑
l=1

2−2lσ − βJ

2
2(k+1)(1−2σ)m2.

An explicit representation for Φ0,1 reads as

Φ0,1(

k+1∑
l=1

2−2lσ, h+ Jm1

k∑
l=1

2l(1−2σ) +mJ2(k+1)(1−2σ)) = ln 2 + (34)

+
βJ

2
(1 +m2

1)

k+1∑
l=1

2−2lσ + log cosh

{
βh+ βmJ2(k+1)(1−2σ) + βm1J

[
k∑
l=1

2l(1−2σ) −
k+1∑
l=1

2−2lσ
]}

,(35)

in such a way that

fk+1 ≥ log 2 +
1

2
log cosh

{
βh+ βmJ2(k+1)(1−2σ) + βm1J

[
k∑
l=1

2l(1−2σ) −
k+1∑
l=1

2−2lσ
]}

+

+
1

2
log cosh

{
βh+ βmJ2(k+1)(1−2σ) + βm2J

[
k∑
l=1

2l(1−2σ) −
k+1∑
l=1

2−2lσ
]}

+

− βJ

2

[
k∑
l=1

2l(1−2σ) −
k+1∑
l=1

2−2lσ
](

m2
1 +m2

2

2

)
+

− βJ

2
2(k+1)(1−2σ)m2. (36)

Summarizing, in the thermodynamic limit one has the following
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Theorem 3. The non-mean-field bound for the DHM’s free energy associated to the mixture state reads
as

f(h, β, J, σ) ≥ sup
m1,m2

{
log 2 +

1

2
log cosh [βh+ βm1J(C2σ−1 − C2σ)] + (37)

+
1

2
log cosh [βh+ βm2J(C2σ−1 − C2σ)]− βJ

2
(C2σ−1 − C2σ)

(
m2

1 +m2
2

2

)}
,

where Cy = 2−y

1−2−y , and the trial parameters m1, m2 respect the self-consistencies that we will outline
in Proposition 2. If we assume that the system lives within a pure state, identifying then m1 = m2 = m,
we find again the non-mean-field bound shown in [33], that is

f(h, β, J, σ) ≥ sup
m

{
log 2 + log cosh [βh+ βmJ(C2σ−1 − C2σ)]− βJ

2
(C2σ−1 − C2σ)m2

}
. (38)

Imposing thermodynamic stability we obtain the following

Proposition 2. Even beyond the mean-field level of description, the mixture state of the DHM is described
by two independent order parameters, one for each larger cluster, whose self-consistencies read as

m1,2 = tanh(βh+ βJm1,2(C2σ−1 − C2σ)). (39)

As for the MF approximation, we are going to find the critical temperature βc; considering the system
at zero external field h = 0, thus writing

m1 ∼ βJm1( 1
22σ−1−1 − 1

22σ−2−2σ ) +O(m3
1),

m2 ∼ βJm2( 1
22σ−1−1 − 1

22σ−2−2σ ) +O(m3
2),

so to get the following

Corollary 2. This non-mean-field criticality, in the DHM, has the classical exponent too but a different
critical temperature βNMF

c given by the following formula:

βNMF
c =

(22σ − 1)(1− 21−2σ)

J
. (40)

It is worth noticing that the non-mean-field interpolation we exploited returned classical (i.e. wrong)
critical behavior: this is due to the too rude assumption of self-averaging for the dimers liying in the
lowest levels.

Comparing the values of βMF
c and βNMF

c , we get the following bound

βNMF
c > βMF

c ⇒ TMF
c > TNMF

c . (41)

We do not push further how analysis here as we want to present a streamlined minimal theory, but the
model admits a proliferation of meta-stable states -achievable proceeding hierarchically with the Amit’s
ansatz -hence taking both the blocks built by kk spins and splitting them into sub-clusters of 2k−1 spins
each and so on (and correspondingly the hierarchical neural network has a much richer phase diagram
w.r.t. its mean-field counterpart): Further investigations can be found in [40].

2 Analysis of the Hopfield hierarchical model
As we saw in the previous Section, the Dyson model has a rich variety of retrievable states, where with
retrievable we mean that they are free energy minima in the thermodynamic limit and their basins of
attraction are not negligible. Now we want to apply the analysis previously outlined and the ideas that
stemmed from the related findings to a Hierarchical Hopfield Model.
To this task we need to introduce, beyond 2k+1 dichotomic spins/neurons, also p quenched patterns ξµ,
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µ ∈ (1, ..., p), that do not participate in thermalization: These are vectors of length 2k+1, whose entries
are extracted once for all from centered and symmetrical i.i.d. as

P (ξµi ) =
1

2
δ(ξµi − 1) +

1

2
δ(ξµi + 1). (42)

Mirroring the previous Section, the Hamiltonian of the hierarchical Hopfield model is as well defined
recursively by the following

Definition 4. The Hamiltionian of Hierarchical Hopfield model (HHM) is defined by

Hk+1(~S) = Hk( ~S1) +Hk( ~S2)− 1

2

1

22σ(k+1)

p∑
µ=1

2k+1∑
i,j=1

ξµi ξ
µ
j SiSj (43)

with H0(S) = 0; σ ∈ (1/2, 1) is a number tuning the interaction strength with the neuron’s distance,
and p is the number of stored patterns. Accounting for the presence of external stimuli can be included
simply within a one-body additional term in the Hamiltonian as ∝ hµ

∑2k+1

i ξµi σi, and a survey overall
the stimuli is accomplished summing over µ ∈ (1, ..., p) all the hµ.

Even in this context, we can again write the Hamiltonian of the HHM in terms of a distance di,j
between the spin pair (i, j) (see Fig.1 panel B) obtaining

Hk[{S1...S2k}] = −
∑
i<j

SiSj

 k∑
l=di,j

(∑P
µ=1 ξ

µ
i ξ

µ
j

22σl

) = −
∑
i<j

SiSj J̃ij , (44)

J̃ij =

k∑
l=di,j

(∑P
µ=1 ξ

µ
i ξ

µ
j

22σl

)
= J(di,j , k, σ)

P∑
µ=1

ξµi ξ
µ
j (45)

where, keeping the previous expression (see eq. 3) to encode neuronal distance, it also holds that

J̃ij =
4σ−di,jσ − 4−kσ

4σ − 1
·
P∑
µ=1

ξµi ξ
µ
j , (46)

hence the Hebbian kernel on a hierarchical topology becomes modified by the distance-dependent weight
J(di,j , k, σ). Before starting to implement our interpolative strategy, some definitions are in order.

Definition 5. We introduce the Mattis magnetizations (or Mattis overlaps), over the whole system, as

mµ(~S) =
1

2k+1

2k+1∑
i=1

ξµi Si. (47)

The definition can be extended trivially to the inner clusters restricting properly the sum over the (perti-
nent) spins, e.g. dealing with the two larger sub-clusters as before we have

mµ
left =

1

2k

2k∑
i=1

ξµi Si, mµ
right =

1

2k

2k+1∑
j=2k+1

ξµj Sj . (48)

2.1 The thermodynamic limit
As for the previous investigation, at first we want to prove that the model is well defined, namely that
the thermodynamic limit for the free energy exists. To this task we have the following

Theorem 4. The thermodynamic limit of the HHM’s free energy exists and we call

lim
k→∞

fk+1(β, p, σ) = f(β, p, σ).

11



Let us write the Hamiltonian as

Hk+1(~S) = Hk( ~S1) +Hk( ~S2)− 1

2
2(k+1)2(k+1)(1−2σ)

p∑
µ=1

(mk+1
µ (~S))2,

and let us consider the following interpolation, where again -for the sake of simplicity- hereafter we stress
the dependence by the external fields {hµ} only and use the symbol Eξ to denote averaging over the
quenched patterns:

Φk+1,t({hµ}) = (49)

=
1

2k+1
Eξ log

∑
~S

exp

{
β

[
Hk( ~S1) +Hk( ~S2) + t

1

2
2(k+1)2(k+1)(1−2σ)

p∑
µ=1

(mk+1
µ (~S))2 +

p∑
µ=1

hµξ
µ
i Si

]}
.

We notice that

Φk+1,1(h) = fk+1, (50)
Φk+1,0(h) = fk (51)

and that
d

dt
Φk+1,t =

〈
1

2k+1

2(k+1)2(k+1)(1−2σ)

2

p∑
µ=1

[mk+1
µ (~S)]2

〉
t

≥ 0. (52)

in such a way that fk+1(β, p, σ) ≥ fk(β, p, σ). Now we want to prove that fk+1(β, p, σ) is bounded: it is
enough to see that

fk+1(β, p, σ) = fk(β, p, σ) +

∫ 1

0

d

dt
Φk+1,t : (53)

Since we have

d

dt
Φk+1,t =

〈
β

2(k+1)2(k+1)(1−2σ)

2

p∑
µ=1

(mk+1
µ (~S))2

〉
t

≤ βp2(k+1)2(k+1)(1−2σ)

2
, (54)

we can write

fk+1(β, p, σ) ≤ fk(β, p, σ) + βp
2(k+1)(1−2σ)

2
. (55)

Iterating this procedure over the levels we get

fk+1(β, p, σ) ≤ f0(β, p, σ) +
βp

2

k+1∑
l=1

2l(1−2σ), (56)

such that, in the k →∞ limit, we can write

f ≤ f0 +
βp

2

∞∑
l=1

2l(1−2σ).

Since σ > 1
2 the series on the r.h.s. of the above inequality converges, thus f(β, p, σ) is bounded by

f(β, p, σ) ≤ f0 +
βp

2

1

2(2σ−1) − 1

and non increasing for (52), then its thermodynamic limit exists.
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2.2 The mean-field scenario
Plan of this Section is to investigate the serial and parallel retrieval capabilities in the HHM at the
mean-field level. As usual, we obtain our goal by mixing the Amit ansatz technique (in selecting suitably
candidate states for retrieval) with the interpolation technique.

Definition 6. Let us define the interpolating Hamiltonian Hk+1,t(~S) as

Hk+1,t(~S) = Hk( ~S1)+Hk( ~S2)− t

2 · 22σ(k+1)

p∑
µ=1

2k+1∑
i,j=1

ξµi ξ
µ
j SiSj−(1−t)·2(k+1)(1−2σ)

p∑
µ=1

mµ

2k+1∑
i=1

ξµi Si, (57)

Clearly, we can associate such an Hamiltonian to an extended partition function Zk+1,t(h) and to an
extended free energy Φk+1,t(h) as

Zk+1,t({hµ}) =
∑
~S

exp

−β
Hk+1,t(~S) +

p∑
µ=1

hµ

2k+1∑
i=1

ξµi Si

, (58)

Φk+1,t({hµ}) =
1

2k+1
Eξ logZk+1,t({hµ}), (59)

where, for the sake of simplicity, we stressed only the dependence by the fields. We can rewrite (57) as

Hk+1,t(~S) = Hk( ~S1) +Hk( ~S2)− 22(k+1)t

2 · 22σ(k+1)

p∑
µ=1

m2
k+1,µ(~S)− (1− t)2(k+1)2(1−2σ)(k+1)

p∑
µ=1

mk+1,µ(~S)mµ,

(60)
It is easy to show that

Φk+1,1({hµ}) = fk+1, (61)

Φk+1,0({hµ}) = Φk,1({hµ + 2(k+1)(1−2σ)mµ}), (62)

and that

dΦk+1,t

dt
=

1

2k+1

1

Zk+1,t

∑
~S

exp(−β(Hk+1,t(~S) +

p∑
µ=1

hµ

2k+1∑
i=1

ξµi Si))(−β
dHk+1,t(~S)

dt
)

=
1

2k+1

1

Zk+1,t

∑
~S

exp(−β(Hk+1,t(~S) +

p∑
µ=1

hµ

2k+1∑
i=1

ξµi Si))×

×(
β22(k+1)

2 · 22σ(k+1)

p∑
µ=1

m2
k+1,µ(~S)− β2(k+1)(1−2σ)2(k+1)

p∑
µ=1

mµmk+1,µ(~S))

=
β

2
2(k+1)(1−2σ)

〈
p∑

µ=1

m2
k+1,µ(~S)− 2mµmk+1,µ(~S) +m2

µ

〉
t

− β

2
2(k+1)(1−2σ)

p∑
µ=1

m2
µ

=
β

2
2(k+1)(1−2σ)

p∑
µ=1

〈
(mk+1

µ (~S)−mµ)2
〉
t
− β

2
2(k+1)(1−2σ)

p∑
µ=1

m2
µ.

Since the term in the brackets above 〈·〉t is nonnegative, we get

Φk+1,1 = Φk+1,0 +

∫ 1

0

dΦk+1,t(x, h)

dt
dt

≥ Φk,1({hµ + 2(k+1)(1−2σ)mµ})−
β

2
2(k+1)(1−2σ)

p∑
µ=1

m2
µ

≥ Φ1,0({hµ +

k+1∑
l=2

2l(1−2σ)mµ})−
β

2

k+1∑
l=2

2l(1−2σ)
p∑

µ=1

m2
µ

= Φ0,1({hµ +

k+1∑
l=1

2l(1−2σ)mµ})−
β

2

k+1∑
l=1

2l(1−2σ)
p∑

µ=1

m2
µ,
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where we used (62) recursively.
Now we can estimate the last term, Φ0,1({hµ +

∑k+1
l=1 2l(1−2σ)mµ}), in the following way

Φ0,1({hµ +

k+1∑
l=1

2l(1−2σ)mµ}) = Eξ log
∑

S∈{−1,1}
exp(β

p∑
µ=1

(hµ +

k+1∑
l=1

2l(1−2σ)mµ)ξµS) (63)

= log 2 + Eξ log cosh(β

p∑
µ=1

(hµ +

k+1∑
l=1

2l(1−2σ)mµ)ξµ), (64)

where Eξ averages over the quenched patterns as usual.
Summarizing we have

fk+1 ≥ log 2 + Eξ log cosh(β

p∑
µ=1

(hµ +

k+1∑
l=1

2l(1−2σ)mµ)ξµ)− β

2

k+1∑
l=1

2l(1−2σ)
p∑

µ=1

m2
µ. (65)

which is enough to state the next

Theorem 5. (Mean Field Bound for Serial Retrieval) Given −1 ≤ mµ ≤ +1, ∀µ = 1, ..., p the following
relation holds

f(β, {hµ}, p) ≥ sup
{mµ}

[
log 2 + Eξ log cosh(β

p∑
µ=1

(hµ + C2σ−1mµ)ξµ)− β

2
C2σ−1

p∑
µ=1

m2
µ

]
,

where the optimal order parameters are the solutions of the system

mµ = Eξξµ tanh(β

p∑
ν=1

(hν + C2σ−1m
ν)ξν),

that are the self-consistent equations of a standard Hopfield model with rescaled temperature βC2σ−1.

Again the critical temperature of the model with no external fields, separating the paramagnetic phase
from the retrieval one, can be obtained expanding for small {mµ}, so to get

mµ = Eξ[βC2σ−1ξ
µ

p∑
ν=1

(ξνmν)] +O(mµ2) = βC2σ−1 +O(mµ2) (66)

hence βMF
c = C−12σ−1. As previously outlined for the DHM, it is possible to assume -for the kth level- two

different classes of Mattis magnetizations mµ
left = mµ

1 and mµ
right = mµ

2 such that mµ = mµ
1 + mµ

2 and
then check the stability of this potential parallel retrieval of two patterns. Following this way we write

Φk,1({hµ + 2(k+1)(1−2σ)mµ}) =
1

2
Φ1
k,1({hµ + 2(k+1)(1−2σ)mµ}) +

1

2
Φ2
k,1({hµ + 2(k+1)(1−2σ)mµ}).

Using the procedure developed in the previous analysis for both the elements of the sum and using,
starting from the k-th level, mµ

1,2 as order parameters of Φ1,2 we obtain

fk+1 ≥ 1

2
Φ0,1({hµ +

k∑
l=1

2l(1−2σ)mµ
1 + 2(k+1)(1−2σ)mµ}) +

1

2
Φ0,1({hµ +

k∑
l=1

2l(1−2σ)mµ
2

+ 2(k+1)(1−2σ)mµ})− β

2
2(k+1)(1−2σ)

p∑
µ=1

m2
µ −

β

2

k∑
l=1

2l(1−2σ)
p∑

µ=1

(mµ
1 )2 + (mµ

1 )2

2
. (67)

Now, evaluating both the terms Φ0,1 and taking the infinite volume limit we can finally state the next

Theorem 6. (Mean Field Bound for Parallel Retrieval) Given −1 ≤ mµ ≤ +1, ∀µ = 1, ..., p the following
relation holds

f(β, {hµ}, p) ≥ sup
{mµ}

[log 2 + Eξ log cosh(β

p∑
µ=1

(hµ + C2σ−1m
µ
1 )ξµ)

+ Eξ log cosh(β

p∑
µ=1

(hµ + C2σ−1m
µ
2 )ξµ)− β

2
C2σ−1

p∑
µ=1

mµ
1
2

+mµ
2
2

2
], (68)
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representing the free energy of two effectively independent Hopfield models -one for each subcluster (left
and right), whose optimal order parameters fulfill

mµ
1,2 = Eξξµ tanh(β

p∑
ν=1

(hν + C2σ−1m
ν
1,2)ξν)

and whose critical temperature is again βMF
c = C−12σ−1.

2.3 The not-mean-field scenario
Scope of the present Section is to bypass mean-field limitations and show that the outlined scenario is
robust. To this task, mirroring the previous analysis on DHM, here we provide an improved (with respect
to the mean-field counterpart) bound.
The idea underlying this non-mean-field bound is the same that we used in the DHM, extensively explained
in [33]. Let us start introducing the following

Definition 7. Let us take x ≥ 0 -a real scalar parameter related to order parameter fluctuations-, and
t ∈ [0, 1] -which allows the morphism between the tricky two body coupling and the effective one-body
interaction-, and let us introduce also the following interpolating Hamiltonian

Hk+1,t = −tu(~S)− (1− t)v(~S) +Hk( ~S1) +Hk( ~S2) (69)

with

u(~S) =
1

2 · 22σ(k+1)

p∑
µ=1

2k+1∑
i,j

ξµi ξ
µ
j SiSj +

x

2 · 22σ(k+1)

p∑
µ=1

2k+1∑
i,j=1

(ξµi Si −mµ)(ξµj Sj −mµ), (70)

v(~S) =
(x+ 1)

2 · 22σ(k+1)
(

p∑
µ=1

2k∑
i,j=1

(ξµi Si −mµ)(ξµj Sj −mµ) +

2k+1∑
i,j=2k+1

(ξµi Si −mµ)(ξµj Sj −mµ)) (71)

+

p∑
µ=1

mµ2(k+1)(1−2σ)
2k+1∑
i=1

ξµi Si. (72)

The partition function and free energy associated to the Hamiltonian (69) are, respectively,

Zk+1,t(x, {hµ}) =
∑
~S

exp(−β(Hk+1,t(~S) +

p∑
µ=1

2k+1∑
i

hµi ξ
µ
i Si)), (73)

Φk+1,t(x, {hµ}) =
1

2k+1
Eξ logZk+1,t(x, {hµ}). (74)

As usual we relate Φk+1,0 with Φk,1 as

Φk+1,0(x, {hµ}) = Φk,1(
1 + x

22σ
, {hµ +mµ2(k+1)(1−2σ)}). (75)

It is possible to show that the derivative of Φk+1,t with respect to t is

dΦk+1,t

dt
(x, t) =

1

2k+1

1

Zk+1,t

∑
~S

exp(−β(Hk+1,t(~S) +

p∑
µ=1

hµ

2k+1∑
i

ξµi Si))(βu(~S)− βv(~S))

= −β
2

2(k+1)(1−2σ)
p∑

µ=1

m2
µ +

β(x+ 1)

2(k+1)(1+2σ)

p∑
µ=1

∑
1≤i≤2k

∑
2k+1≤j≤2k+1

〈
(ξµi Si −mµ)(ξµj Sj −mµ)

〉
t
. (76)

Now we are going to neglect the fluctuation source, containing
〈
(ξµi Si −mµ)(ξµj Sj −mµ)

〉
t
, and that we

indicate with C(k+1, β, σ, {mµ}): at difference with before, while in the pure ferromagnetic case Griffiths
inequalities hold [45, 46] and ensure that such a term is positive defined (thus allowing us to get the
bound), in this context -as for neural networks Griffiths theory have not yet been developed- we are left
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with an approximation only. However we stress that this is not a big deal as, already at a mean-field level,
while the true solution of the Hopfield model is expected to be full-RSB (see e.g. [49, 50, 51, 54]) usually
only its replica symmetric approximation is retained for practical purposes (where order parameter’s
fluctuations are disregarded) and it is indeed an approximation and not a bound.

fk+1 = Φk+1,1(0, {hµ}) = Φk,1(
1

22σ
, {hµ + βmµ2(k+1)(1−2σ)})− β

2
2(k+1)(1−2σ)

p∑
µ=1

m2
µ

+ C(k + 1, β, σ, {mµ}) (77)

Iterating the procedure one arrives to:

fk+1 = Φ0,1(

k+1∑
l=1

2−2lσ, {hµ + βmµ

k+1∑
l=1

2l(1−2σ)})− β

2

k+1∑
l=1

2l(1−2σ)
p∑

µ=1

m2
µ

+

k+1∑
l=1

C(l, β, σ, {mµ}). (78)

Calculating the value of Φ0,1, using the (73), (74) and (75) we get the following

Theorem 7. (Non-mean field approximation for Serial retrieval) Given −1 ≤ mµ ≤ +1, ∀µ = 1, ..., p
the Serial NMF-approximation for the Hierarchical Hopfield model reads as

fNMF (β, {hµ}, p) = sup
m

[
log 2 + Eξ log cosh(

p∑
µ=1

(hµ + βmµ(C2σ−1 − C2σ))ξµ)− β

2

p∑
µ=1

m2
µ(C2σ−1 − C2σ)

]
,

representing an Hopfield model at rescaled temperature, with optimal order parameters fulfilling

mµ = Eξξµ tanh(β

p∑
ν=1

(βhν + (C2σ−1 − C2σ)mν)ξν)

and critical temperature βNMF
c = C2σ−1 − C2σ.

Again it is possible to generalize the serial retrieval, assuming two different families of Mattis magne-
tizations ({mµ

1,2}pµ=1) for the two blocks of spin under the k-th level. Following this way and using the
NMF interpolating procedure for the two blocks we get

fk+1({hµ}, β, σ, p) = log 2 +
1

2
Eξ log cosh(

p∑
µ=1

(βhµ + βmµ
1 (

k∑
l=1

2l(1−2σ) −
k+1∑
l=1

2l(−2σ)) + βmµ2(k+1)(1−2σ))ξµ)

+
1

2
Eξ log cosh(

p∑
µ=1

(βhµ + βmµ
2 (

k∑
l=1

2l(1−2σ) −
k+1∑
l=1

2l(−2σ)) + βmµ2(k+1)(1−2σ))ξµ)

− β

2
(

k∑
l=1

2l(1−2σ) −
k+1∑
l=1

2l(−2σ))
p∑

µ=1

mµ
1
2

+mµ
2
2

2
− β

2
2(k+1)(1−2σ)

p∑
µ=1

m2
µ

+ C(k + 1, β, σ, {mµ}) +
1

2

k∑
l=1

(
C(l, β, σ, {m1

µ}) + C(l, β, σ, {m2
µ})
)

(79)

that, in the infinite volume limit, where the interactions between the two block vanish, and partially
neglecting again the correlations, brings to the following

Definition 8. (Non mean field approximation for Parallel retrieval) Given −1 ≤ mµ ≤ +1, ∀µ = 1, ..., p
the Parrallel NMF-approximation for the Hierarchical Hopfield model reads as

f({hµ}, β, σ, p) = sup
{mµ1,2}

{
log 2 +

1

2
Eξ log cosh

[ p∑
µ=1

(βhµ + βmµ
1 (C2σ−1 − C2σ)

]
+

1

2
Eξ log cosh

[ p∑
µ=1

(βhµ + βmµ
2 (C2σ−1 − C2σ)

]
− β

2
(C2σ−1 − C2σ)

p∑
µ=1

mµ
1
2

+mµ
2
2

2

}
, (80)
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i.e., the free energy of two independent Hopfield models for each of the two subgroups of spins, with
disentangled optimal order parameters satisfying

mµ
1,2 = Eξξµ tanh(β

p∑
ν=1

(hν + (C2σ−1 − C2σ)mν
1,2ξ

ν),

and critical temperature βNMF
c = C2σ−1 − C2σ.

3 Outlooks and conclusions
Originally, neural networks were developed on fully connected structures and embedded with mean field
constraints [19], later on -as far as graph theory analyzed complex structures as small worlds [57] or scale
free networks [58], neural networks have been readily implemented on these structures too [56, 59, 60],
hence neurons were no longer fully connected, but the mean-field prescription was retained. Note that
in those cases parallel processing was extensive, up to P ∼ N , but pattern-vectors allowed (extensive)
blank entries [21].
However the quest to bypass mean-field limitation, beyond driven already by clear physical arguments,
has been recently strongly emphasized directly from neurobiology, and right toward hierarchical prescrip-
tions [47].
As a sideline, recently, exactly hierarchical models experienced a renewed interest in statistical mechanics
as structures where testing spin-glasses beyond the mean-field paradigm [31, 48], thus implicitly offering
the backbone for bypassing mean-field limitations in neural networks too 3.
As we recently developed a new interpolation scheme for these structures [33] that, while do not fully
solving the model’s thermodynamics yet, allows however to overcome the mean-field picture still keeping
a formal description (i.e. theorems and bounds available), we extended such a technology to cover neural
networks too and we mixed it with the Amit technique of investigating by an Ansatz the candidate re-
trievable states: this fusion resulted in a stronger method that allowed to analyze both the ferromagnet
on a hierarchical topology (Dyson hierarchical model) as well as the neural network on a hierarchical
topology (Hopfield hierarchical model).
Starting with the former (that we used as a test-guide for the latter), remarkably, beyond the ferromag-
netic scenario already largely discussed [30, 43, 44], we have shown that the model has a huge plethora
of meta-stable states that become stable in the thermodynamic limit and forbid self-averaging for the
magnetization in a way quite similar to the scenario deserved for the overlap in mean-field spin-glasses
[42, 17].
Filtering these results within the neural network perspective, we have been able to show that these net-
works -where clusters of neurons well far apart essentially do not interact- perform both a’ la Hopfield [19],
hence relaxing via a global rearrangement of all the spins in order to retrieve an extensive stored pattern
and in a multitasking fashion very close to the parallel processing performance shown by other (mean-
field) associative networks developed by us in the past two years in a series of paper [21, 22, 23, 24, 27].
A last note of interest, regards the capacity of these networks: we have shown how it is possible to recall
simultaneously two patterns by spitting the system into two subgroups, going down over the levels from
the top and we have seen that, since the upper interaction is vanishing with enough velocity (see further
Appendix A on this point), in the thermodynamic limit the two subgroups of neurons can be thought
of as independent: each one is governed by an Hopfield Hamiltonian and can choose to recall one of the
memorized patterns. Clearly we could use the same argument iteratively and split the system in more
sub-sub-clusters going down over the various levels. Crucially, what is fundamental is that -at least- the
sum of the upper levels of interactions remains vanishing in the infinite volume limit. If we split the
system M times, we have to use different order parameters, for the magnetizations of the blocks, until
the k −M level, where the system is divided into 2M subgroups. The procedure keeps working as far as

lim
k→∞

k∑
l=k−M

2l(1−2σ)
p∑

µ=1

mµ
l = 0. (81)

3Note that hierarchical models in neural networks already appeared [53, 52, 55] but in those papers the adjective was
refereed to the -correlated- patterns and not to the neurons: a completely different research.
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Since the magnetizations are bounded, in the worst case we have
k∑

l=k−M
2l(1−2σ)

p∑
µ=1

mµ
l ≤ p

k∑
l=k−M

2l(1−2σ)

≤ p

∞∑
l=k−M

2l(1−2σ) ∝ 2(1−2σ)(k−M)p : (82)

if we want the system to handle up to p patterns, we need p different blocks of spins and thenM = log(p).
So for example if p = O(k), 2(1−2σ)(k−log(p))p→ 0 as k →∞.
Thus the parallel processing ability works at best with a logarithmic load of patterns, as far as p =
O(k) = O(logN), however such a bound -which is however not enormous as the serial counterpart handle
up to P ∼ N patterns- is never reach in practice: why do these networks have a restricted capacity?
The answer lies in the real fingerprint of not-mean-field spontaneous parallel processing: in order to
explain the network ability to manage two patterns contemporarily, we used the argument that the
upper links connecting the two communities left and right are actually vanishing in the thermodynamic
limit. While this is exciting for parallel processing capabilities as it allows to divide the network into
almost-disjoint communities, is however a disaster for the storage capacity as each time we can use this
argument, we are effectively admitting that a huge amount of synapses for storing the memories are
vanishing. We found thus a novel balancing requirement in non-mean-field processing: extreme parallel
processing implies smallest storage capacity and viceversa: we aim to check this prescription on real
networks in the future.
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Appendix A: Selection of a state
While we have shown that, in the thermodynamic limit, the (intensive) energies associated to the two
states that we used as example (the ferromagnetic and the mixture states) do coincide, thus thermody-
namically the metastable state is not forbidden (while its weight is negligible w.r.t. the ferromagnetic
scenario, and the system must be trapped opportunely with external fields in its basin to keep it in the
large k limit), we still have to face the following addressable question: Let us consider the mixture state
and approach the critical region from the ergodic scenario: the two clusters differ in magnetization, one
has m1 > 0 and the other m1 < 0 and there is the just the upper (hence weakest) link connecting them.
Maybe that one cluster acts on the other playing as an external field in mean-field schemes, thus selecting
the phase /reversing the other cluster magnetization sign), which would result in destruction of mixture
states? Aim of this note is to show that this is not the case.
The way we pave to prove this statement is the following: at first we will address this question within the
more familiar mean-field perspective (namely considering the Curie-Weiss model), then we will enlarge
the observation stemmed in that example toward bipartite ferromagnetic systems and we will show that
they continue holding. As a last step to obtain the result, we will compare the Dyson model (whose
spins are locked in a mixture state) with a bipartite ferromagnet so to enlarge to the present model the
stability argument.

Under the critical temperature systems of spins whose dynamics is no longer ergodic have an equi-
librium state (in the thermodynamic limit) that can be a mixture of several pure states. Each of these
states has its own basin of attraction in the sense that the system will reach one of them, according with
its initial configuration. As far as ferromagnetic systems are concerned, adding a suitable external field,
it is possible to select one of this pure states, i.e. the dynamics is forced into one of the attractors. Now
we can ask when an external field is able to select a state or not. Consider a Glauber dynamics for a
ferromagnetic system of N spins at zero temperature:

Si(t+ 1) = sgn(hi(S(t)) + hN ). (83)
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Figure 3: Analysis of the susceptibility of the system, defined as X = 〈m2〉 − 〈m〉2, versus the noise level
T ≡ β−1, for various sizes (as reported in the legend) and σ = 0.99. Left panel: X(T ) for the pure
state. Right panel: X(T ) for the mixture state. Note that, while in the ferromagnetic (pure) case all the
cuspids are on the same noise level whatever k, this is not the case for the mixture state because such a
state is metastable as the difference in the energy ∆E among the two states scales as ∝ 1/N2σ−1, hence
only for k → ∞ the mixture state becomes stable and its cuspid happens at the same noise level of the
pure counterpart.

For example we can keep in mind the case of the CW model where hi(S(t), the field acting on the i-th
spin is the magnetization m(S(t)) = 1

N

∑N
i=1 Si(t). In that case each initial configuration for which

|hN | > |hi(S0)| will follow the external field. In general (if for example |hN | < 1) there will always exist
initial configuration (|hN | < |hi(S0)|) that do not feel the influence of the external field, but, if we choose
the initial configuration randomly and accordingly to PN (S0), we can say that the field hN selects the
state if

PN (S0 : |hN | > |hi(S0)|) N→∞→ 1. (84)

On the contrary we will say that the field will not select the state if

PN (S0 : |hN | < |hi(S0)|) N→∞→ 1. (85)

In what follow we will consider PN (S0) =
∏N
i=1 p(S

0
i ), with p(S) uniform in {−1, 1}. For the CW model

we can state the following

Theorem 8. In the CW model, where hi(S) = m(S) = 1
N

∑N
i=1 Si, ∀ε > 0,

hN : |hN | > 1

N
1
2
(1−ε) selects the state;

hN : |hN | < 1

N
1
2
(1+ε)

does not select the state.

For what concerns the first statement we note that, if |hN | > 1

N
1
2
(1−ε)

PN (S0 : |hN | > |hi(S0)|) = 1− PN
(
S0 : |hi(S0)| > |hN |

)
≥ 1− PN

(
S0 : |m(S0)| > 1

N
1
2 (1−ε)

)
≥ 1−N1−εEN [m2(S0)] = 1−N−ε N→∞→ 1, (86)

where we used Chebyshev inequality and the fact that EN [m2(S0)] = 1
N . For the second statement we

note that, since |hN | < 1

N
1
2
(1+ε)

,

PN (S0 : |hN | > |hi(S0)|) ≤ PN

(
S0 : |m(S0)| < 1

N
1
2 (1+ε)

)
= PN

(
S0 : |

√
Nm(S0)| < 1

N
ε
2

)
→ µN (0,1)

(
|z| < 1

N
ε
2

)
N→∞→ 0, (87)
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where we just used the fact that the variable
√
Nm(S0) = 1√

N

∑N
i=1 S

0
i satysfies the CLT and tends in

distribution to a N (0, 1) gaussian variable.

We can repeat the same analysis in a mean field bipartite ferromagnetic model where the interaction
inside the parties (modulated by J11 and J22) and the ones among the parties (modulated by J12) have
different couplings. In that case we can ask in which case J12 is able to select the state where the two
parties are aligned and not independent. If we consider for example a spin in the first party we have for
the Glauber dynamics

Si(t+ 1) = sgn(hi(S(t)) + hN ) = sgn(J11m1(S(t)) + J12m2(S(t))), (88)

i.e. we can repeat the same argument of the CW model identifying the field sent by the second party
(proportional to the magnetization m2(S)) as the external field. Thus, using the analogous version of the
previous theorem, we see that J12 is able to select the state only if

J12(N)|m2(S0)| > 1

N
1
2 (1−ε)

, (89)

with probability 1. Since for the CLT |m2(S0)| is O(
√
N) with probability one, vanishing J12 will not be

able to select the totally magnetized state: in that case the system behaves exactly as two non interacting
CW subsystems. The hierarchical model can be considered from this point of view a generalization of a
bipartite model. In fact if we divide the system into two subgroups of spins we have that the external
field (representing the last level of interaction) is proportional to J(N)mN (S), while the internal field is
a sum of contributions coming from all the submagnetizations. Since J(N) = N1−2σ is vanishing in the
thermodynamic limit, the two subgroups behave as they were non interacting: this may puzzle about the
phase transition as the system -when not trapped within the pure state- crossing the critical line (in the
β, σ plane) moves from an ergodic region -where the global magnetization is zero- toward a mixture state
where again is zero. However, regarding the latter, the two sub-clusters have not-zero magnetizations
and even in this case, crossing the line returns in a canonical phase transition (see Fig.3). To give further
proof of this delicate way of breaking ergodicity, we show further results from extensive Monte Carlo runs
that confirm our scenario and are reported in Fig.3.
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