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The motion of three bodies can be solved perturbatively when a tightly bound inner binary is orbited by a
distant perturber, giving rise, for example, to the well-known Kozai-Lidov oscillations. We propose to study
the relativistic hierarchical three-body orbits by adapting the effective field theory techniques used in the
two-body problem. This allows us to conveniently treat the inner binary as an effective point particle, thus
reducing the complexity of the three-body problem to a simpler spinning two-body motion. We present in
detail the mapping between the inner binary osculating elements and the resulting spin of the effective point
particle. Our study builds towards a derivation of three-body analytic waveforms.
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I. INTRODUCTION

A triple system in nature often comes in hierarchical
configurations [1]. In this kind of setting, a close (or
“inner”) binarym1 −m2 is orbited by a distant perturberm3

(the “outer” object). Studies of systems of this kind include
satellites and asteroids in the Solar System [2,3], triple stars
[4–7], exoplanets [8–11], or triple black holes and neutron
stars systems [12–16]. The first study of hierarchical
triples dates back to Lidov and Kozai [17,18]. They
discovered that the triple system evolves also on a char-
acteristic timescale much longer than the period of the two
orbits, which is now referred to as the Kozai-Lidov (KL)
timescale,

TKL ≃
T3

T
T3; ð1Þ

where T3 (respectively, T) is the period of the outer
(respectively, inner) orbit. On this long timescale, the inner
system can experience eccentricity and inclination oscil-
lations, if it starts from a configuration with a large relative
inclination. Thus, the hierarchical systems of black holes
can feature dramatically reduced merger timescales [19].
Since these systems are quite common in dense stellar
environments [20,21], this makes them especially relevant
to gravitational wave astronomy.

The conventional treatment of the hierarchical problem
proceeds by expanding the Hamiltonian in the ratio of
semimajor axes, which we denote by ε,

ε ¼ a
a3

; ð2Þ

where a an a3 are the semimajor axes of the inner and outer
orbit, respectively. Then, one can average the expanded
Hamiltonian on both orbital timescales to obtain a set of
long-timescale evolution equations of orbital quantities, a
procedure known as adiabatic or secular approximation.
The set of equations thus obtained is commonly referred to
as the Lagrange planetary equations. The quadrupole term
of this averaged expansion gives rise to the KL oscillations.
The next level of approximation in a=a3, namely the
octupole, leads to even richer possibilities like orbital flips,
extreme eccentricities, and chaotic evolution [22–24].
On the other hand, general relativity (GR) brings

corrections to the motion proportional to the relative
velocity between the bodies v, which can be regarded as
an expansion parameter (we will use units in which c ¼ 1).
The interplay between two-body GR effects and Kozai-
Lidov oscillations has been studied by numerous authors,
e.g., [25–28]. Generically, the inner binary precession tends
to suppress the eccentricity oscillations if the GR timescale
is much shorter than the KL one [24]. In other parts of the
phase space, though, post-Newtonian corrections combined
with the three-body ones can excite eccentricities [29].
However, much less is known concerning the corrections

brought by genuine three-body relativistic effects. These
terms are essential to derive a waveform of a hierarchical
three-body system (they can give rise to the so-called “tidal
resonances” [30]) or to obtain the correct time evolution
of the system in some parts of the parameter space [31].
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One can approach the problem with a numerical relativistic
three-body solver [32–36]; however, this method is usually
time consuming and inadequate for the derivation of an
analytic inspiral waveform model to be used in matched
filter analysis [37]. Another valid approach is to further
assume a hierarchy of masses m3 ≫ m1; m2 so that the
system can be studied with black hole perturbation theory
[30,38–45]. However, in this article, we will rather focus on
the similar-mass case m1 ∼m2 ∼m3.
Most previous studies on the fully relativistic hierarchi-

cal three-body problem use a combination of the post-
Newtonian formalism [46] and the quadrupole expansion at
the level of the equations of motion [31,47–51]. Some other
authors use instead a Hamiltonian formalism [29,52].
However, their studies do not take into account the so-
called adiabatic corrections computed by Will [49,50] and
Lim and Rodriguez [51]. The computations needed to get
the “cross terms” representing the interaction of the multi-
pole expansion with relativistic corrections can be quite
cumbersome, and it may be difficult to gather physical
intuition from the results of the calculations.
In this paper, instead, we begin exploring three-body

systems following a new approach, based on a number of
powerful effective field theories (EFT) techniques that have
been developed for the relativistic two-body problem in
recent years. The framework we build on goes under the
name of nonrelativistic general relativity (NRGR) [53,54],
and its generalization to include the spin of the constituents
[55–57], which leads to the computations of new post-
Newtonian terms related to spin [58–69]. In the EFT
language, the gravitational multipole expansion is imple-
mented at the level of the action [70], using symmetries to
restrict the form of the allowed terms [71]. The multipole
expansion derived in this way has then been used to
compute the gravitational dissipative dynamics in the
GR two-body problem.
In the following, we will apply similar ideas to the

hierarchical three-body problem. Such a system is particu-
larly suited to an EFT description for two reasons. First, its
dynamics is characterized by two small dimensionless
ratios of scales, v and ε. The EFT power counting rules
allow us to estimate easily the sizes of different contribu-
tions, thus dictating to what order in perturbation they have
to be computed, at a given experimental accuracy. Ratios of
different scales can be kept to different orders, depending
on their numerical values. In the second place, symmetries
are manifest at the level of the EFT Lagrangian, and they
restrict the form of the allowed terms. As we will see, this
considerably simplifies the form of the cross terms com-
pared to the existing literature, and it allows us to gather
some physical intuition about the effects of relativistic
multipole corrections to the dynamics.
The very nature of the effective field theory framework

requires to first identify the hierarchy of well-separated
length scales involved in a system and remove (integrate

out) each of them, one at a time, starting form the smallest.
In this way, a tower of EFTs is obtained that eventually
leads to the infrared (long-distance) description of the
problem one is interested in.
Thus, we will first focus on the inner binary and integrate

out the gravitational field in the presence of an external
perturbation, which will be ultimately generated by the third
body. The resulting theory will match onto a composite
particle, endowed with spin and multipole moments,
coupled to gravity. Such a treatment will be valid away
from resonances,1 and as long as the ratio of semimajor axes
ϵ remains small at all times. This procedure means replacing
a three-body problem with a simpler two-body one, where
one of the two point particles is the inner binary, as illustrated
in Fig. 1.
Here, we describe briefly the distinct steps to guide the

reader in the rest of the paper.
(i) We will start from a system of three worldlines

minimally coupled to gravity, where we have already
integrated out the modes whose wavelengths are
comparable with the size of the bodies. From this
starting point, we will integrate out the off shell
modes that contribute to the gravitational potential of
the inner binary, having momenta kμ ∼ ðv=a; 1=aÞ.
Thus, we will obtain an action describing the gravi-
tational interaction of the two inner bodies in the

FIG. 1. Structure of the “effective two-body” description. The
inner binary is replaced by an effective point particle, whose mass
and spin are, respectively, the relativistic binding energy and the
angular momentum of the binary system.

1If the perturbation was in resonance with the modes of the
inner orbital motion, then it would be much more difficult to
integrate out these modes and to describe the inner binary as an
effective point particle. The same obstacle is encountered in the
double averaging procedure; see, for instance, Appendix A2 of
Ref. [23].
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presence of an external gravitational field. This will
be done in Sec. II.

(ii) Then, we will first expand the Lagrangian in multi-
poles and, after that, since we are interested in long
timescale evolution, we integrate out the point-
particle orbital modes with frequencies ω > v=a.
In practice, this will be done by averaging over the
period of the inner orbit. Doing so, wewill obtain the
action of a composite particle, whose spin is simply
the orbital angular momentum of the inner binary,
coupled to an external gravitational field. This step
will be carried out in Sec. III. Although the final
result may seem straightforward from an EFT
perspective (gauge invariance fixes all the terms
in the action to dipolar order without any free
parameter, so that the matching might seem super-
fluous), the computation will allow us to find the
exact relation between the center-of-mass choice and
the so-called “spin supplementary condition” (SSC),
which is a particular gauge choice for the spin tensor.

(iii) Similarly to the first step, we will then consider the
two worldlines, one for the third body and the other
for the composite spinning particle representing the
inner binary. We introduce the “effective two-body”
EFT and show explicitly its power-counting rules in
both expansion parameters v and ε. Integrating out
the off shell modes with momenta kμ∼ðV=a3;1=a3Þ,
we will obtain an action describing the gravitational
interaction between the inner binary and the third
body.

(iv) Finally, we will integrate out the remaining point-
particle orbital modes with frequencies ω > V=a3,
doing an average over the period of the outer orbit.
In this way, we will get to a Lagrangian representing
the dynamics of the three-body system as an
interaction between the composite particle represent-
ing the inner binary and the outer body. These last
two steps will be carried out in Sec. IV.

Besides these points, in Sec. II, we will also comment on
the relativistic definition of the center of mass and introduce
the osculating elements that describe the perturbed motion
of the binary. We elaborate on the relation between the spin
kinetic term and the Lagrange planetary equations in
Appendix A, while in Appendix B, we provide details about
the specific spin supplementary condition used in this article.
For the moment being, we will carry out our computa-

tions up to dipole and 1PN order. Already at this stage, we
will highlight a number of conceptual clarifications arising
from the EFT treatment. However, several interesting new
terms also arise at quadrupolar order, related to the
corrections to adiabatic approximation [49,51]. While we
will briefly comment on the allowed form of these terms
(restricted by symmetries) in this paper, we will defer a
complete study of them to further work.
We will use the mostly positive metric signature.

Planck’s mass is defined by M2
P ¼ 1=ð8πGNÞ. Given the

numerous different symbols used in this article, we provide
here a dictionary of our notation:

(i) y1, v1, y2, v2: positions and velocities of the two
constituents of the inner orbit, of masses m1 and m2;

(ii) y3, v3: position and velocity of the external perturber,
of mass m3;

(iii) YCM, VCM: position and velocity of the center-of-
mass of the inner binary, defined in Sec. II B;

(iv) r ¼ y1 − y2, r ¼ jrj, n ¼ r=r v ¼ v1 − v2, R ¼
YCM − y3, R ¼ jRj, N ¼ R=R, V ¼ VCM − v3;

(v) m ¼ m1 þm2 is the mass of the inner binary, M ¼
m1 þm2 þm3 is the total mass of the system,
μ ¼ m1m2=m is the reduced mass of the inner
and ν ¼ μ=m its symmetric mass ratio. Similarly,
μ3 ¼ m3m=M and ν3 ¼ μ3=M are the reduced mass
and symmetric mass ratio of the outer;

(vi) a [a3]: semimajor axis of the inner [outer] orbit;
(vii) e [e3]: eccentricity of the inner [outer] orbit;
(viii) α̂, β̂, γ̂ [α̂3, β̂3, γ̂3]: orthonormal basis of vectors

characterizing the inner [outer] orbit, aligned, re-
spectively, along the semimajor axis (pointing to-
wards the pericenter), the semiminor axis, and the
angular momentum;

(ix) Ω, ω, ι: angles characterizing the orientation of the
inner orbit (the “orbital elements”), defined by α̂ ¼
RzðΩÞRxðιÞRzðωÞûx where the Rxi’s are rotation
matrices along the given axis xi;

(x) u [η]: mean [eccentric] anomaly of the inner orbit;
(xi) L, G, H: conjugate momenta to u, ω and Ω,

respectively, defined in Eq. (A10);
(xii) J¼μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNmað1−e2Þ

p
γ̂ [J3¼μ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNMa3ð1−e23Þ

p
γ̂3]:

angular momentum vector of the inner [outer] orbit;
(xiii) E ¼ m − GNmμ=ð2aÞ: Total (mass and Newtonian)

energy of the inner binary.

II. A BINARY SYSTEM IN AN
EXTERNAL FIELD

In this section, we will obtain the effective Lagrangian at
the first post-Newtonian order for the inner two-body system
using the background field method, which amounts to
integrate out the metric fluctuations in the presence of an
arbitrary external field. Up to the dipole order, we will then
explicitlymatch this Lagrangian to the one of a spinningpoint
particle coupled to gravity. This spin coupling induces the
dominant nontrivial post-Newtonian evolution of the inner
binary parameters in the hierarchical three-body problem.
Before integrating out the gravitational field, let us

introduce a convenient notation. We will write the
Lagrangian of the binary as

L ¼ 1

2
μv2 þ GNμm

r
þ L1 ≡ L0 þ L1; ð3Þ

where μ ¼ m1m2=ðm1 þm2Þ is the reduced mass,
r ¼ y1 − y2, v ¼ v1 − v2, and L1 is called the perturbing
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function. For instance, considering only the Newtonian-
order perturbation due to the additional Newtonian poten-
tial Φ from the third body, the perturbing function reads

L1 ¼
1

2
mV2

CM −m1Φðt; y1Þ −m2Φðt; y2Þ; ð4Þ

where VCM is the (Newtonian) center-of-mass velocity. The
aim of this section is to compute the 1PN terms in the
perturbing function.

A. The Lagrangian up to 1PN order

In order to make the computations as simple as possible,
we will use the Kaluza-Klein decomposition spaceþ time
of the metric presented in [72,73], since in the NR regime,
the time dimension can be considered as compact in
comparison to the spatial dimensions. The full metric is
decomposed into a scalar ϕ, a spatial vector Ai and a spatial
metric γij in the following way:

ds2 ¼ −e2ϕðdt − AidxiÞ2 þ e−2ϕγijdxidxj: ð5Þ

We take the field action to be the standard Einstein-Hilbert
term with a harmonic gauge-fixing term [53],

S ¼ M2
P

2

Z
d4x

ffiffiffiffiffiffi
−g

p
R −

M2
P

4

Z
d4x

ffiffiffiffiffiffi
−g

p
gμνΓμΓν; ð6Þ

where Γμ is the harmonic gauge condition,

Γμ ¼ Γμ
νρgνρ: ð7Þ

In the nonrelativistic limit and in the conservative sector of
the dynamics, temporal derivatives are treated as an
interaction term. Up to 1PN order we will only need the
part of the action defining the ϕ and Ai propagators, so that
the action simplifies to

S ¼ M2
P

2

Z
d4x

�
2ð∂μϕÞ2 −

1

2
ð∂iAjÞ2

�
: ð8Þ

Consequently, the propagators of the (Fourier-space) fields
are given in the nonrelativistic regime by

hTϕðk; t1Þϕðq; t2Þi ¼ −
i

2k2M2
P
δ3ðkþ qÞδðt1 − t2Þ; ð9Þ

hTAiðk; t1ÞAjðq; t2Þi¼
2i

k2M2
P
δijδ

3ðkþqÞδðt1− t2Þ; ð10Þ

and there is an additional scalar temporal vertex whose
expression is −M2

P

R
d4x _ϕ2.

To the Einstein-Hilbert term we add two point particles
A ¼ 1, 2, whose action is

Spp;A ¼ −mA

Z
dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνv

μ
Av

ν
A

q

¼ −mA

Z
dteϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 −A · vAÞ2 − e−4ϕv2A

q
; ð11Þ

where vμA ¼ ð1; vAÞ is the coordinate velocity of the point
particle. We have set γij ¼ δij since the fluctuations of γij
contribute only starting from 2PN order [72]. We expand
the point-particle action for weak-field values. At 1PN
order, the only vertices contributing are

Spp;A ¼ −mA

Z
dt

�
1 −

v2A
2
−
v4A
8
−A · vA

þ ϕ

�
1þ 3

2
v2A

�
þ ϕ2

2

�
: ð12Þ

We now use the background field method by splitting the
fields according to ϕ ¼ ϕ̄þ ϕ̃, Ai ¼ Āi þ Ãi. The tilde
quantities correspond to an external arbitrary field (later on,
we will relate this field to the one generated by the third
point particle), while we integrate out the barred quantities
corresponding to gravitons exchanges between the two
bodies. The part of the Lagrangian that does not depend on
ϕ̃ and Ãi is the so-called EIH Lagrangian [74]. Since it has
already been computed in this framework by several
references [53,72,73], we will simply give its expression
without explicitly computing the relevant Feynman dia-
grams,

LEIH ¼ 1

2
m1v21 þ

1

2
m2v22 þ

GNm1m2

r

þ 1

8
m1v41 þ

1

8
m2v42 þ

GNm1m2

2r

�
3v21 þ 3v22

− 7v1 · v2 − v1 · nv2 · n −
GNm
r

�
; ð13Þ

where r ¼ y1 − y2, r ¼ jrj and n ¼ r=r.
Next, including background fields, we can compute the

perturbing function L1 defined in Eq. (3), integrating out ϕ̄
and Āi. At 1PN order, the result is given by

L1 ≡ L − L0

¼ LEIH − L0 −m1ϕ̃ðy1Þ
�
1þ 3

2
v21

�

−
m1

2
ϕ̃ðy1Þ2 þm1Ãðy1Þ · v1 þ

GNm1m2

r
ϕ̃ðy1Þ

þ ð1 ↔ 2Þ; ð14Þ

whereL0 was introduced in Eq. (3), and the last term comes
from the Feynman diagram with one external ϕ̃ and one
internal ϕ̄, represented in Fig. 2.
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B. Center-of-mass coordinates

Given the full 1PN two-body Lagrangian in Eq. (14),
there remains to expand the two point-particle positions
relatively to their common center-of-mass (CM). It is a
well-known fact that there is no universal CM definition in
general relativity [75]. For example, the ambiguities in the
choice of the CM are related to the so-called “spin
supplementary condition” for spinning point particles,
which is a gauge choice for the spin degree of freedom
[56,76]. We provide a discussion about the spin of our
system and its relation to the center of mass in Appendix B.
In our case, we will adopt the standard post-Newtonian
definition of the CM, i.e., at 1PN order,

EYCM ¼ E1y1 þ E2y2;

EA ¼ mA þ 1

2
mAv2A −

GNm1m2

2r
;

E ¼ E1 þ E2: ð15Þ

Conversely, one can express the coordinates yA using the
relative separation r and the CM position XCM,

y1 ¼YCMþðX2þδÞr; y2¼YCMþð−X1þδÞr; ð16Þ

where we have defined

XA ¼
mA

m
; m¼m1þm2; μ¼m1m2

m
; ν¼ μ

m
; ð17Þ

and to 1PN order, we have

δ ¼ −νVCM · v þ νðX1 − X2Þ
�
v2

2
−
GNm
2r

�
: ð18Þ

In the absence of any external field, the CM follows a
straight line in the post-Newtonian coordinates. However,
in the hierarchical three-body problem, the binary CM will
not follow such a trajectory even at the Newtonian level.

We now expand the Lagrangian (14) in multipoles, e.g.,

ϕ̃ðy1Þ ¼ ϕ̃þ ðy1 − YCMÞi∂iϕ̃

þ 1

2
ðy1 − YCMÞiðy1 − YCMÞj∂i∂jϕ̃þ…; ð19Þ

where the field is now evaluated at the CM position YCM.
The monopole corresponds to the term involving no
derivatives of the fields, the dipole to the term involving
first derivatives of the fields and so on.

C. Osculating elements

Before expanding the Lagrangian (14) into multipoles
and perform a matching with an effective point-particle
action, we must eliminate an unwanted degree of freedom
from the full theory. Indeed, we want to describe the
evolution of the binary over a secular timescale, i.e., a time
much longer than the period of the binary itself. In order to
do so, we average all quantities over the quick periodic
motion of the binary, which can be approximated with an
ellipse. Indeed, if the motion was purely Newtonian, the
trajectory would be described by five constants of motion
(six, if we count the initial time), which are nicely packaged
in a set of geometrical elements. These are, respectively, the
semimajor axis of the ellipse, the unit vector along the
angular momentum and the Runge-Lenz vector,

a ¼ −
GNm
2

�
v2

2
−
GNm
r

�−1
;

γ̂ ¼ r × vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNmað1 − e2Þ

p ;

e ¼ 1

GNm
v × ðr × vÞ − r

r
: ð20Þ

There are two angles in the unit vector γ̂; furthermore, e is
orthogonal to γ̂ (it points towards the perihelion) and its
norm is equal to the eccentricity e. Conversely, the position
and velocity vectors can be written as

r ¼ aððcos η − eÞα̂þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
sin ηβ̂Þ;

v ¼
ffiffiffiffiffiffiffiffiffiffiffi
GNm
a

r
1

1 − e cos η
ð− sin ηα̂þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
cos ηβ̂Þ; ð21Þ

where α̂ ¼ e=e, β̂ ¼ γ̂ × α̂ and η is the eccentric anomaly,
defined by

u ¼
ffiffiffiffiffiffiffiffiffiffiffi
GNm
a3

r
tþ ϕ ¼ η − e sin η; ð22Þ

where ϕ is an arbitrary initial phase, and u is called the
mean anomaly.
Now, if the motion is slightly perturbed by post-

Newtonian or quadrupolar corrections, these constant

FIG. 2. Feynman diagram contributing to the emission of one
scalar, at order v2.
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elements will generically vary slowly with time (compared
to the orbital frequency). Thus, in this generic case, we
define the osculating elements as the (time-dependent)
values of a, e, ϕ, α̂, and γ̂ such that the instantaneous
position and velocity of the binary is given by the formulas
(21). This physically corresponds to drawing at each point
the ellipse defined by the instantaneous position and
velocity of the binary. We have mapped the six components
of r, v into six elements a, e, ϕ, α̂, and γ̂.
The equations of motion for the binary system can then

be translated in a set of first-order equations on the
osculating elements, called the Lagrange planetary equa-
tions (LPE). For completeness, we recall them in
Appendix A. For our present purposes, though, it will
be sufficient to state the result of Eq. (A12), i.e., that the
orbit-averaged LPE are completely equivalent to a spin
kinetic term in the Lagrangian in flat spacetime,

1

2
μv2 þGNμm

r
→ J ·Ω; ð23Þ

where J is the total angular momentum of the binary and Ω
is an angular velocity defined by

J ¼ μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNmað1 − e2Þ

q
γ; Ω ¼ α̂ × _̂α: ð24Þ

Finally, we will average all quantities in the Lagrangian
over one period of the binary, using the formula,

hAi ¼ 1

2π

Z
2π

0

dηð1 − e cos ηÞAðηÞ; ð25Þ

valid to lowest order for any quantity A [we recall that η is
the eccentric anomaly defined in Eq. (22)]. Thus, we will
have removed from the Lagrangian the high-energy degree
of freedom contained in the mean anomaly. As a conse-
quence of the LPE (A4), the semimajor axis a will be
conserved. This can be understood as deriving from the fact
that the conserved conjugate momentum associated to the
mean anomaly depends only on a. As a side remark, notice
that Eq. (25) is valid only if we assume that the binary
exactly follows an ellipse. As explained in Appendix A,
there will be higher-order corrections to this formula, which
however are not needed for our present purposes.

III. MULTIPOLE EXPANSION

A. The internal Lagrangian

To begin with, let us deal with the very first term in the
Lagrangian (14), namely the EIH Lagrangian. This term
does not contain any coupling to the gravitational field. As
explained before, it still contains the short-distance degree
of freedom from the Kepler trajectory of the binary system.
In order to remove it and keep only the long-distance
degrees of freedom that can be excited by the external field

(in other words, the osculating elements), we should
average the Lagrangian over the inner binary timescale,
splitting the variables between the center-of-mass and the
relative variables.
A priori, one should be careful about the fact that in the

Newtonian kinetic energy, one should use the relativistic
center-of-mass definition in Eq. (15). However, the mean-
ing of the supplementary 1PN term will be better under-
stood in terms of spin coupling, so we defer its calculation
to a later subsection. Thus, in this subsection we stick to the
Newtonian definition of the center-of-mass. Carrying out
the heavy but straightforward computations, we find by
using Eq. (25),

hLEIH − L0i ¼
1

2
mV2

CM þ 1

8
mV4

CM

þ 3μ
G2

Nm
2

a2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p −
GNμm
4a

V2
CM; ð26Þ

where we have dropped an unimportant constant term in the
average (depending on the semimajor axis a only, which is
constant in the adiabatic approximation). Each term in
Eq. (26) lends itself to a very simple interpretation. The two
first terms are just the usual relativistic expansion of the
center-of-mass velocity −m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

CM

p
. The third term is

the average of the EIH Lagrangian of a binary system in
isolation: used in the LPE equation (A8), it gives rise to the
celebrated perihelion precession formula. We call such a
term the “internal” Lagrangian Linternal,

Linternal ¼ 3μ
G2

Nm
2

a2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p : ð27Þ

Finally, the meaning of the last term in Eq. (26) will
become clearer in the next subsection.

B. Monopole

Starting from Eq. (14) we can collect all the terms
coupling the binary system to the monopole of the external
gravitational field,

Lmonopole ¼ −mϕ̃

�
1þ 3

2
V2
CM þ 3

2
νv2 −

2GNμ

r

�

−
m
2
ϕ̃2 þmÃ · VCM; ð28Þ

where ϕ̃ and Ã are evaluated at the CM position YCM. Note
that in the term multiplying ϕ̃ in the above equation, we
have used the Newtonian version of the CM [i.e., we have
set δ ¼ 0 in (16)] since the terms involving δ are of higher
post-Newtonian order. Averaging over the binary orbital
timescale, we find
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hLmonopolei ¼ −mϕ̃

�
1þ 3

2
V2
CM −

GNμ

2a

�

−
m
2
ϕ̃2 þmÃ · VCM: ð29Þ

Let us now gather this monopole coupling together with
the average of the EIH Lagrangian (26) computed in the last
subsection. To 1PN order, we find

hLmonopoleþEIHi ¼ Linternal −m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g̃μνV

μ
CMV

ν
CM

q
þ GNμm

2a

�
ϕ̃ −

V2
CM

2

�
: ð30Þ

To 1PN order, the last term can be exactly accounted for by
replacing the mass m of the binary system (which is now
treated as an effective point particle) with its total energy in
the worldline Lagrangian,

hLmonopoleþEIHi ¼ Linternal − E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g̃μνV

μ
CMV

ν
CM

q
; ð31Þ

where E is defined as

E ¼ m −
GNmμ

2a
: ð32Þ

Thus, the binary moves in the external field with a total
mass equal to its binding energy, as could have been
anticipated from an EFT perspective [57]. However, our
computation highlights the fact that one should also include
the internal Lagrangian in the effective action so that the
binary PN precession effects are taken into account.

C. Dipole

Expanding the Lagrangian (14) to the dipole order
(i.e., to first derivatives in the external fields) by taking
into account the relativistic CM definition (15), we find
at 1PN,

Ldipole ¼ μri∂iϕ̃

�
−2VCM · v þ ðX1 − X2Þ

�
v2 −

GNm
2r

��
þ μrivj∂iÃj; ð33Þ

where XA ¼ mA=m. As before, one should average this
Lagrangian over the inner binary timescale. We find that the
term proportional to the difference of masses averages out,
leaving us with an averaged Lagrangian,

hLdipolei ¼
μ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNmað1 − e2Þ

q
ϵijkγ̂

k

× ð2Vi
CM∂jϕ̃þ ∂iÃjÞ: ð34Þ

From this expression, one easily recognizes the coupling of
a spinning point particle to gravity given in, e.g., [56,57].

In our case, the spin tensor Jμν depends on the total

orbital angular momentum of the binary system J ¼
μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNmað1 − e2Þ

p
γ̂ through the relations,

Jij ¼ ϵijkJk; J0i ¼ 0: ð35Þ

The second condition is called a spin supplementary
condition, removing the unwanted degrees of freedom
from the full spin tensor Jμν. As mentioned before, this
gauge condition is related to the choice of a center-of-mass
of the binary system; our particular CM choice in Eq. (15)
has selected the spin supplementary condition J0i ¼ 0,
which has already been discussed, e.g., in [56,77]. We
further elaborate on this in Appendix B. Furthermore, note
that in Eq. (35), the spin tensor has been projected to a
locally flat frame through Jab ¼ eaμebνJμν, where we have
introduced the worldline tetrads defined over all spacetime
by g̃μνe

μ
aeνb ¼ ηab. As a side remark, note that on top of the

spin supplementary condition, the components of the spin
vector are not all independent degrees of freedom following
the remark below Eq. (A13). This reflects the fact that the
spin of the inner binary contains 2 degrees of freedom once
the orbital timescale has been integrated out, instead of the
3 degrees of freedom contained in the Euler angles of a
generic spin.
To 1PN order, the spin coupling (34) can be written in a

compact form using the Ricci rotation coefficients,

hLdipolei ¼
1

2
Jabωab

μ Vμ
CM; ωab

μ ¼ eaνDμebν : ð36Þ

This formula gives back our previous Eq. (34) when
expanded for weak-field values [57,67]. We may be
tempted to add to this spin coupling the kinetic term for
the spin in Eq. (23) to obtain the minimal gravitational spin
coupling which has been discussed at length in the NRGR
formalism [55,56],

Lspin ¼
1

2
JμνΩμν: ð37Þ

In this equation, the total angular velocity Ωμν includes
both the Ricci rotation coefficients from Eq. (36) and the
locally flat angular velocity from Eq. (23). It is defined
through

Ωμν ¼ eμaeνbðΩab
flat þ Vα

CMω
ab
α Þ: ð38Þ

Here Ωab
flat is related to the tensor Ωij ¼ ϵijkΩk by a relation

that we discuss in Appendix B, and the rotation vector Ω ¼
α̂ × _̂α has been defined in Eq. (24). However, there is a
small piece that is still missing to obtain the full Eq. (37),
related to the choice of the center-of-mass. As we show in
Appendix B, in the spin gauge, we are using (J0i ¼ 0),
there should be a supplementary spin kinetic term related to
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Thomas precession, which is 1PN order higher than the
kinetic term (23),

1

2
JμνΩμν ⊃ J ·Ωþ 1

2
JijAi

CMV
j
CM; ð39Þ

whereACM is the acceleration of the center-of-mass. Such a
term is related to the PN corrections to the center-of-mass
position (and speed), which we ignored in Sec. III A.
Indeed, using the full CM definition (15) in the Newtonian
part of the EIH Lagrangian (13) gives a supplementary 1PN
order term,

LThomas ¼ mVCM ·
d
dt
ðδrÞ; ð40Þ

where δ has been defined in Eq. (17). At first sight, we may
be tempted to discard such a term when averaging out the
internal binary timescale. However, one should not forget
to take also the time derivative acting on VCM in δ, giving
rise to

hLThomasi ¼ −μhrivjiVi
CMA

j
CM ¼ 1

2
JijAi

CMV
j
CM; ð41Þ

which is exactly the additional spin kinetic term shown
in Eq. (39).

D. Quadrupole

From the EFT point of view, at 1PN quadrupolar order
the couplings to gravity are contained in two nonminimal
worldline operators [71],

O1 ¼
1

2

Z
dτEijIij; O2 ¼ −

4

3

Z
dτBijJij; ð42Þ

where Iij and Jij are the electric-type and magnetic-type
quadrupole moments of the source, coupled to the corre-
sponding parts of the Weyl tensor Cμναβ,

Eμν ¼ CμναβVα
CMV

β
CM;

Bμν ¼
1

2
ϵμαβσCαβ

νρVσ
CMV

ρ
CM: ð43Þ

Furthermore, in Eq. (42) the tensors have been projected to
the locally flat frame defined below Eq. (35).
We could proceed as before and carry out the integration

procedure to obtain the quadrupole moment of the effective
point particle. However, at this order, the procedure is
somewhat more involved than one could naively expect.
The first complication comes from the corrections to the
time averages introduced in Eq. (25). Indeed, post-
Newtonian corrections to the period of the system will
matter when taking the average of the Newtonian quadru-
pole moment, combining to produce a quadrupolar 1PN
term. In the same way, the Newtonian quadrupolar

corrections to the motion of the inner binary should be
taken into account in the average of the EIH Lagrangian.
The second complication comes from the corrections to

the adiabatic approximation mentioned in the Introduction.
Indeed, in our analysis, we are assuming that all the
variables of the inner binary vary on long timescales
(except of course the mean anomaly). This neglects
short-timescale oscillations, which can ultimately have
an effect on long-wavelength modes [78,79]. It turns out
that at lowest order, this effect produces cross terms of 1PN
quadrupolar order [49,51] (no such corrections appear at
lower multipole orders). While noting in passing that these
kind of corrections have a very transparent meaning in the
EFT language (they are high-energy corrections to an
effective low-energy action), we will defer their complete
calculation to further work.

IV. INTEGRATING OUT THE OUTER
BINARY TIMESCALE

Now that we have replaced the binary system with an
effective point-particle, we can integrate out the external
fields ϕ̃, Ã in the presence of a third point particle of mass
m3. For simplicity, in the following, we will assume this
mass to be of the same order of the mass of the inner binary:
m3 ∼m. We will first derive the Feynman rules of the
effective point particle; then, in a second step, we will
integrate out the outer binary timescale and comment on the
different terms obtained in the expansion of the Lagrangian.
For the 1PN precision we aim to, it will be sufficient to set
the total Newtonian center-of-mass of the three-body
system to the origin of coordinates (it will accelerate only
at 2PN order [80]). Thus, we will have the expressions,

YCM ¼ X3R; y3 ¼ −XCMR; ð44Þ

where we recall that YCM is the position of the center-of-
mass of the inner binary, and we have defined R ¼
YCM − y3, R ¼ jRj, N ¼ R=R, M ¼ m1 þm2 þm3,
X3 ¼ m3=M, and XCM ¼ m=M. The averages over the
outer binary timescale are then taken in the same way than
in the preceding section.

A. Power-counting rules

Let us recap what we have learned so far and set up
power-counting rules for the vertex coupling the binary
system (now treated as an effective point particle) to
gravity. Up to the dipole order, the Lagrangian of the
binary system can be written as

L ¼ Linternal − E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g̃μνV

μ
CMV

ν
CM

q
þ 1

2
JμνΩμν: ð45Þ

Note that this Lagrangian has not yet been averaged over
the period of the outer orbit T3 and can therefore describe
the secular dynamics on timescales shorter than T3. With
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such a simple Lagrangian, one can assign the standard
power-counting rules of NRGR which have been described
in, e.g., [53,54,81], considering the motion of the effective
point particle and the third mass (the outer orbit) for which
one has V2

CM ∼ v23 ∼ GM=a3, where a3 is the semimajor
axis of the outer orbit. Thus, spatial derivatives are treated
as ∂i ∼ a−13 . Time intervals scale as t ∼ a3=VCM, and the

metric perturbations scale as ϕ̃ ∼ Ãi ∼ V1=2
CMðMPa3Þ−1. As

usual in NRGR, the lowest-order Lagrangian scales as the
orbital angular momentum of the outer orbit J3 ∼MVCMa3,
which is treated nonperturbatively, higher-order corrections
coming with higher powers of VCM.
However, one difference with respect to the standard

NRGR power-counting rules is evidently the presence of
two expansions, the first one in v and the second one in
ε≡ a=a3. A priori, we could also have an expansion in the
post-Newtonian parameter of the outer orbit VCM.
However, not all these parameters are independent. We
choose to write all the post-Newtonian corrections as an
expansion in the velocity of the inner binary v, converting
the center-of-mass velocity by means of the relation
VCM ∼ vε1=2, which holds when m ∼m3. In Table I, we
give the power-counting rules of the monopole and dipole
vertex, which we computed in Secs. III B and III C. The
effect of post-Newtonian corrections on the dynamics of the
system is highly nontrivial, as it can lead to suppression as
well as enhancement of the Kozai-Lidov oscillations
depending on the part of parameter space explored [29];
we expect that our power-counting scheme will help in
discriminating between the different behaviors observed.
Notice that the scaling of the spin is somewhat different

than the one usually presented in NRGR [55,67]. Indeed,
when taking compact objects as point particles the spin is
given as an order-of-magnitude by

J ∼mrsvrot < mrs; ð46Þ

where vrot is the rotation velocity of the object and rs ∼
GNm its size. As a consequence, the ratio of the spin
coupling presented in Eq. (34) to the Newtonian gravita-
tional coupling is of v3 (1.5PN) order. However, in our
case, the spin order-of-magnitude is given by J ∼
μ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GNma

p
so that the ratio of (34) to the Newtonian

coupling is

JVCM∂ϕ
mϕ

∼ v2ε3=2: ð47Þ

Thus, the inner binary angular momentum coupling is
formally of 1PN order, although it is suppressed by the
small ratio ε3=2. This power counting is different from the
one of the Lense-Thirring precession caused by the intrinsic
spin of the objects, which has been studied in [47,82] and
enters at 1.5 PN.

B. Monopole

Let us begin by integrating out the vertex contained in
the monopole operators of the effective binary system, i.e.,
in the square root appearing in Eq. (45). The final effective
action, including orders of J3v2ε, is given by

L≤v2ε ¼ Linternal þ L̃CM;3
EIH ; ð48Þ

where LCM;3
EIH is the EIH Lagrangian of the system com-

posed by the CM [of mass E, defined in Eq. (31)] and the
third particle.
The Lagrangian in Eq. (48) involves a nontrivial cou-

pling between the variables of the inner and outer binaries,
given by

Lv2 ¼ −
GNμm
2a

�
V2
CM

2
þ GNm3

R

�
: ð49Þ

This contribution is of order v2 with respect to the standard
Newtonian term L0 ∼GNM=a3. We average this term over
one orbit of the outer binary, which gives

Lv2 ¼ −
G2

NM
2μν3

2aa3

�
1þ X3

2

�
; ð50Þ

whereM ¼ m3 þm, X3 ¼ m3=M, and ν3 ¼ mm3=M. This
new monopole coupling has no effect on the dynamics.
Indeed, it depends only on the semimajor axes a and a3.
Consequently, in the Lagrange planetary equations, this
term will only enter in the equation for the mean anomaly
(A7), which is irrelevant in the adiabatic approximation.
Therefore, at the level of the monopole, the resulting
motion is the one of two ellipses precessing because of
standard two-body GR effects.

TABLE I. Power-counting rules for the vertices obtained by
expanding the effective point-particle action (45) up to 1PN order,
with J3 ¼ ðGNM3a3Þ1=2, v2 ¼ Gm=a and ε ¼ a=a3. For con-
venience, the integral over time is not displayed, although it
should be included to obtain a dimensionless rule.

Operator Rule
1
2
mV2

CM J3
−mϕ̃ J1=23

mÃ · VCM J1=23 vε1=2
1
8
mV4

CM J3v2ε
− 3

2
mϕ̃V2

CM J1=23 v2ε
− 1

2
mϕ̃2 v2ε

GNμm
2a ϕ̃ J1=23 v2

− GNμm
4a V2

CM J3v2

JijVi
CM∂jϕ̃ J1=23 v2ε3=2

1
2
Jij∂iÃj J1=23 vε

1
2
JijAi

CMV
j
CM J3v2ε3=2
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In fact, one can be quite generic about the monopole
terms. Indeed, the only planetary elements upon which the
monopole terms could depend are the semimajor axes a; a3
and the eccentricities e; e3 (they do not involve angles). In
the LPE, the derivatives with respect to these elements enter
only in the equations for the mean anomaly (A7) and the
perihelion angle (A8). Thus, the only effect that monopole
terms can have is to make the ellipses precess.

C. Dipole

In order to integrate out modes contributing to the
potential at dipole order, we have to compute the diagrams
related to spin-orbit coupling. These are shown in Fig. 3.
Using the Lagrangian averaged over the inner orbit
Eq. (34), we find

Lspin−orbit ¼
1

2
Jij

GNm3

R3
Rið4vj3 − 2Vj

CMÞ: ð51Þ

At this order of approximation however, we should also
take into account the Thomas precession term of Eq. (41).
This gives a contribution of the same size of the terms in
Eq. (51). We can replace the center-of-mass acceleration in
Eq. (41) using the equation of motion, since the difference
between the two terms would contribute at a higher
PN order (this is usually called the “double zero trick”
[83–85]). Thus, at order J3v2ε3=2, the full Lagrangian is
given by

Lv2ε3=2 ¼
1

2
Jij

GNm3

R3
Rið4vj3 − 3Vj

CMÞ

¼ −
1

2
Jij

GNm3ð4mþ 3m3Þ
MR3

RiVj; ð52Þ

which recovers the result already known in the NRGR
approach [67]. Carrying out the average over the outer
binary timescale in a way very similar to the previous
section, we find

hLv2ε3=2i ¼ −
4mþ 3m3

2m
GN

a33ð1 − e23Þ3=2
J · J3; ð53Þ

where J3 is the angular momentum vector of the outer
orbit, J3 ¼ μ3ðGNMa3ð1 − e23ÞÞ1=2γ̂3 (here, γ̂3 is the unit

vector along the outer orbit angular momentum, and
μ3 ¼ mm3=M). Thus, this term is indeed a coupling
between the angular momentum vectors of the two orbits.
From this expression, one can obtain a precession

equation for the inner orbit angular momentum. Indeed,
varying the kinetic term for the spin with respect to the
canonical variables α̂ and W ¼ J × α̂, one obtains the
equations of motion,

dW
dt

¼ −ΩprecW × J3; ð54Þ

dα̂
dt

¼ ΩprecJ3 × α̂; ð55Þ

where the precession frequency is equal to

Ωprec ¼
4mþ 3m3

2m
GN

a33ð1 − e23Þ3=2
: ð56Þ

From these two equations, and using the Jacobi identity for
the cross product, one obtains the precession equation,

dJ
dt

¼ ΩprecJ3 × J; ð57Þ

which is in complete accordance with earlier results on the
hierarchical three-body problem [31,51]. Notice that con-
servation of the total angular momentum requires that J3
satisfies an analogous equation,

dJ3
dt

¼ ΩprecJ × J3: ð58Þ

In particular, it was shown that this angular momentum
precession may play an important role for stellar-mass
binary mergers near a supermassive BH [31]. Quadrupolar
terms would lead to further precession effects, of order
J3v2ε2 in the Lagrangian. We leave the computation and
the astrophysical implications of such terms to further
work.

V. CONCLUSIONS

The NRGR approach to the two-body problem was
designed to deal with extended compact objects. In this
article, we have extended NRGR to the setting of a
hierarchical three-body problem. In the approximation that
the inner orbit is much smaller in amplitude than the outer
one, the inner binary system can be replaced by an effective
point particle endowed with multipole moments, which we
explicitly computed up to dipole order. This is very natural
from the EFT perspective and provides a new specific
example of how an extended (and not so compact) system
can be accounted for by means of a point-particle operator.
Our procedure consists in integrating out the short time-

scales associated with the period of the two hierarchical

(a) (b)

FIG. 3. Feynman diagrams contributing to the lowest-order
spin-orbit coupling, at order J3v2ε3=2. The dot represents the
insertion of a spin coupling from Eq. (34). The dotted line
represents propagation of a scalar ϕ, while the dashed line stands
for the propagation of a vector A.
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orbits. One notable result of our study is to make explicit the
link between the Lagrange planetary equations, describing
the long-time evolution of the inner binary Keplerian
parameters, and the kinetic term for a spin in the EFT
language. We have also clarified the relation between the
post-Newtonian definition of the center-of-mass and the spin
supplementary condition for the angular momentum of the
inner binary. The computation of quadrupolar post-
Newtonian terms, including the corrections to the adiabatic
approximation, will be the subject of a future publication.
Our study moves towards a more systematic characteri-

zation of the relativistic hierarchical three-body problem.
Indeed, the EFT techniques that we employed can be
applied to study efficiently three-body trajectories to higher
orders in both PN and multipole expansions. Two imme-
diate fields of application will be the study of the influence
of relativistic three-body interactions on the Kozai-Lidov
mechanism and the production of three-body analytic
waveforms in the PN regime using the effective two-body
description. Another interesting follow-up would be to
obtain (in a matching procedure) the multipole structure of
the inner binary system to higher orders from a numerical
relativistic three-body solver. Finally, while we have
restricted here the discussion to objects of similar mass,
it could also be interesting to generalize our work to the
case where m3 ≫ m1; m2, which is particularly relevant for
binary BHs orbiting a supermassive BH at the core of a
galaxy. While it would be very easy to include this new
large parameter in the power-counting rules in Table I, it
would probably be more efficient to take advantage of the
large ratio of masses in order to explore the interplay
between BH perturbation theory (for the outer orbit) and
post-Newtonian EFT treatment (for the inner orbit). We
plan to explore these avenues in a near future.
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APPENDIX A: LAGRANGE PLANETARY
EQUATIONS AND SECULAR APPROXIMATION

This Appendix introduces a set of equations initially
introduced by Lagrange. To begin with, note that the
time dependence of the osculating elements defined by
Eq. (21) cannot be arbitrary. We must impose a gauge-
fixing condition such that the velocity is indeed given by
Eq. (21). We denote such a condition by

C ¼ dr
dt

¼ v; ðA1Þ

where the expression for the vector v was given in Eq. (21).
Thus, there is a relation between time derivatives of the
osculating elements. This gauge-fixing condition removes
3 degrees of freedom (equivalently, six variables in phase
space) from the 6 degrees of freedom contained in the
six osculating elements (equivalently, twelve variables in
phase space).
Now, we could write a Lagrangian for the osculating

elements by implementing this constraint with a Lagrange
multiplier λ, so that

L ¼ 1

2
μv2 þ Gμm

r
þ λ · ðC − vÞ þ L1; ðA2Þ

where L1 has been defined in Eq. (3). From there, one
could deduce the Lagrange planetary equations (LPE),
which relate time derivatives of the osculating elements to
the perturbing function L1. However, it is much easier to
derive them in a Hamiltonian formalism; see, e.g., [86] to
which we refer the reader interested in the details of the
derivation.
The LPE are traditionally expressed using the following

angles: ι is the inclination, ω the argument of periapsis, and
Ω the longitude of the ascending node. In term of these, the
unit vectors α̂ and γ̂ are expressed as

α̂ ¼ RzðΩÞRxðιÞRzðωÞûx;

γ̂ ¼ RzðΩÞRxðιÞRzðωÞûz; ðA3Þ

where ûx, ûy, ûz are the Cartesian basis vectors. Using
these angles, the LPE are given by [86]

_a ¼
ffiffiffiffiffiffiffiffiffiffiffi
4a

GNm

s
∂L̃1

∂u ; ðA4Þ

_e ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

GNmae2

s
∂L̃1

∂ω þ 1 − e2ffiffiffiffiffiffiffiffiffiffiffiffiffi
GNma

p
e
∂L̃1

∂u ; ðA5Þ

_ι ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GNmað1 − e2Þ
p

sin ι

∂L̃1

∂Ω

þ cos ιffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNmað1 − e2Þ

p
sin ι

∂L̃1

∂ω ; ðA6Þ

_u ¼
ffiffiffiffiffiffiffiffiffiffiffi
GNm
a3

r
−

ffiffiffiffiffiffiffiffiffiffiffi
4a

GNm

s
∂L̃1

∂a −
1 − e2ffiffiffiffiffiffiffiffiffiffiffiffiffi
GNma

p
e
∂L̃1

∂e ; ðA7Þ

_ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

GNmae2

s
∂L̃1

∂e −
cos ιffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GNmað1 − e2Þ
p

sin ι

∂L̃1

∂ι ; ðA8Þ
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_Ω ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNmað1 − e2Þ

p
sin ι

∂L̃1

∂ι ; ðA9Þ

where L̃1 ¼ L1=μ. It can be easily checked that the LPE
can be derived from the following fist-order Lagrangian2:

L ¼ μ

�
GNm
2a

þ L _uþ G _ωþH _Ω
�
þ L1: ðA10Þ

The conjugate momenta are given by

L¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
GNma

p
; G¼L

ffiffiffiffiffiffiffiffiffiffiffiffi
1−e2

p
; H¼Gcos ι: ðA11Þ

This Lagrangian has the nice property to be exact [no
secular approximation has been done, it is completely
equivalent to the original Lagrangian (3)]. However, it is
not manifestly invariant under a rotation of the basis
vectors; such a manifest invariance can be recovered by
noticing that the angular part can be rewritten as

μ½G _ωþH _Ω� ¼ μGβ̂ · _̂α ¼ J ·Ω; ðA12Þ

where J is the total angular momentum of the binary and Ω
is an angular velocity defined by

J ¼ μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNmað1 − e2Þ

q
γ̂; Ω ¼ α̂ × _̂α: ðA13Þ

Thus, the angular kinetic term can be identified with a spin
coupling in flat space (note that our sign convention for the
metric is different from the one used in, e.g., Refs. [56,57],
which explains the sign difference of the kinetic term).
However, note that not all the components of the spin vector
are independent, since the Lagrangian shown in (A12)
displays only 2 degrees of freedom (corresponding to four
equations in phase space once a variational principle is
applied). Indeed, notice that if one wants to vary the
Lagrangian with respect to α̂ and β̂ in order to keep a
manifest rotational invariance, one should also impose that
these vectors should be unitary and orthogonal in order to
preserve the right number of degrees of freedom.
Finally, the LPE are often averaged over the periodic

motion of the binary system: this is called the adiabatic or
secular approximation. This corresponds to eliminating the
short-distance degree of freedom contained in the mean
anomaly u; as a consequence, since the perturbing function
does not depend on u any more, the semimajor axis a is
constant through time from Eq. (A4). Thus, the two-body

Lagrangian shown in Eq. (A10) is indeed equivalent to a
spin kinetic term, since the term GNm=2aþ L _u becomes
an irrelevant constant in the adiabatic approximation.
After this elimination, the binary system is described by

four dynamical quantities (the eccentricity e and the three
Euler angles defined above), which vary over a timescale
much greater than the period of the binary. Technically, we
use the formula valid for any quantity of interest A,

hAi ¼ 1

T

Z
T

0

dtAðtÞ ¼ 1

T

Z
2π

0

dt
dη

dηAðηÞ;

T ¼
Z

2π

0

dt
dη

dη: ðA14Þ

Using Eq. (22), one has

dt
dη

¼ 1 − e cos η
_uþ _e sin η

: ðA15Þ

At lowest order in the perturbing function L1, one has
_uþ _e sin η ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNm=a3

p
and T ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a3=ðGNmÞ

p
, so that

the mean value becomes

hAi ¼ 1

2π

Z
2π

0

dηð1 − e cos ηÞAðηÞ: ðA16Þ

However there will be higher-order corrections to these
quantities as is implied by Eqs. (A5)–(A7). These correc-
tions contribute at the quadrupolar 1PN level, which is
beyond the scope of this paper. They will be investigated in
more details in a forthcoming publication, along with the
corrections to the adiabatic approximation.

APPENDIX B: SPIN KINETIC TERM AND
GAUGE FIXING OF ROTATIONAL VARIABLES

In this Appendix, we provide some details of the
computation of the spin kinetic term (37) as a function
of the intrinsic angular momentum of the inner binary. The
computations are analogous to those carried out in [56],
with the difference that we specialize to the no mass dipole
gauge in which the time components of the spin tensor are
set to zero. This choice will make it simple to connect the
spin tensor to the orbital angular momentum.
First of all, it is useful to introduce a worldline tetrad

eμAðσÞ defined only on the worldline yμðσÞ (σ being the
affine parameter of the curve), which represents a choice
of axes in the rest frame of the body and satisfies:
gμνðyðσÞÞeμAðσÞeνBðσÞ ¼ ηAB. This tetrad can be used to
define the angular velocity of the body: Ωμν ¼
eνAðDeμA=DσÞ, whose conjugate is the spin tensor
Jμν ¼ 2∂L=∂Ωμν. Both these tensors contain gauge
degrees of freedom, since only the spatial orientation of
the worldline tetrad has a physical meaning. In fact, we can
choose arbitrarily its timelike direction, encoded in eμ½0�.

2A subtlety can arise in the fact that the osculating elements are
not appropriate if the perturbing function depends on v and
should be replaced by the so-called contact elements; see, e.g.,
[87]. However, in our case, the difference in the resulting
equations will be of 2PN order so that we do not have to worry
about this.
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This gauge choice corresponds to a redundant boost
transformation of the worldline tetrad (in order to avoid
ambiguities between the different set of indices, we are
using square brackets to distinguish the flat indices of the
worldline tetrad from the others).
The gauge fixing of eμ½0� must be supplemented with a

gauge fixing of the conjugate variables in Jμν, the so-called
spin supplementary condition (SSC). Starting from a
covariant gauge choice in which eμ½0� ¼ pμ=

ffiffiffiffiffiffiffiffiffi
−p2

p
and

the spin tensor satisfies the covariant SSC Jμνpν ¼ 0,
the action of a boost will change the worldline tetrad
and the angular velocity tensor. The changes produced by
this transformation in the Lagrangian can be interpreted by
means of a redefinition of the spin tensor and a consequent
change of the SSC. We will therefore use this boost degree
of freedom to first pick the no mass dipole SSC for the spin
tensor and then to fix the canonical gauge for the angular
velocity vector. In this way, we will get an expression
dependent only on the intrinsic angular momentum of the
binary.
As computed in [56], the transformation of the spin

kinetic term of the Lagrangian under a boost of the
worldline tetrad (starting from the covariant gauge and
SSC) is the following:

1

2
JμνΩμν ¼ 1

2
ĴμνΩ̂μν þ pλ

−p2
Ĵμλ

Dpμ

Dσ
; ðB1Þ

where we have used hatted symbols to label boosted
variables and in particular we have defined the boosted
spin tensor to be Jμν ¼ Ĵμν − δzμpν þ δzνpμ, with
δzμ ¼ Ĵμρpρ=ð−p2Þ. We can interpret this change of the
spin tensor as due to a shift of the center of the body
rotation, that is the point where the worldline intersects the
body. In the case of the no mass dipole gauge, in which the
spin tensor is purely spatial, this shift corresponds to setting
the center of the worldline on the relativistic center of mass,
as shown in the main text. The second term in Eq. (B1) will
instead contribute to the Thomas precession, which we can
understand as due to a gravitational torque associated to the
finite size of rotating objects in GR.
Before specifying the boost needed to get to the desired

SSC, it is useful to disentangle the gravitational field from
the spinning degrees of freedom. We can do so by intro-
ducing the gravitational tetrad field gμνðxÞẽμaðxÞẽνbðxÞ ¼ ηab,
which is defined on thewhole space-time. This tetrad can be
related to the worldline tetrad by means of a Lorentz
transformation: ẽμaðyðσÞÞ ¼ ΛA

aðσÞeμAðσÞ, being ΛA
aðσÞ a

Lorentz matrix dependent on the affine parameter of the
worldline. As for the worldline tetrad flat indices, when
needed, we will use round brackets to distinguish the flat
indices of the tetrad field from the others.
In this notation, once the gauge of the tetrad field is

fixed, we can fix the timelike vector of the worldline tetrad

by choosing the boosted zero components of the Lorentz

matrices: Λ̂½0�
a . Moreover, introducing the tetrad field will

make possible to write all the objects in the right-hand side
of Eq. (B1) in terms of their counterparts with flat indices.
Such quantities correspond to those computed in terms of
the intrinsic angular momentum of the binary, as they are
independent on the external gravitational field. In particu-
lar, we have

1

2
ĴμνΩ̂μν ¼ 1

2
ĴabΩ̂ab

flat þ
1

2
Ĵabωab

μ uμ; ðB2Þ

where ωab
μ ¼ ẽaν∇μẽbν is the spin connection of the tetrad

field, uμ ¼ dyμ=dσ is the worldline speed, and we have
defined Ω̂ab

flat ¼ Λ̂b
AdΛ̂aA=dσ.

At this point, we can fix the gauge boost of the worldline
tetrad. In order to set the time components of the spin tensor
to zero, Ĵað0Þ ¼ 0, we need to choose a boost such thatffiffiffiffiffi
p2

p
Λ̂½0�a ¼ 2p0δ0a − pa (this can be understood by

inspecting the generic expression for Ĵμν, as discussed in
[56]). Doing so, we obtain the following:

1

2
JμνΩμν ¼ 1

2
ĴðiÞðjÞΩ̂

ðiÞðjÞ
flat þ 1

2
ĴðiÞðjÞω

ðiÞðjÞ
μ uμ

þ pðjÞ

−p2
ĴðiÞðjÞẽ

ðiÞ
μ
Dpμ

Dσ
: ðB3Þ

This gauge choice makes possible to unpack Ω̂ðiÞðjÞ
flat and

express Λ̂a
½0�dΛ̂

b½0�=dσ in terms of the momentum of the
worldline, leaving to compute only on the spatial part of the
Lorentz matrices. However, these spatial leftovers will not
be SOð3Þ matrices, since they need to satisfy the condition
Λ̂a
Aη

ABΛ̂b
B ¼ ηab and will carry a dependence on the world-

line momentum, due to the gauge condition on Λ̂a
½0�.

In order to obtain an angular velocity tensor defined in
terms of rotation matrices and to remove its dependence on
the worldline momentum, we can take a further boost of the
worldline tetrad. This time however, we will not use a
redefinition of the spin tensor to absorb the new terms
appearing in the Lagrangian after the transformation.
Rather, we will retain the spin tensor satisfying the no
mass dipole SSC, and we will keep track of the new terms
explicitly.
In order to make Λ̂a

A an SOð3Þmatrix, we need to choose
a gauge in which Λ̂a

½0� ¼ δa0 . Therefore, we implement a
boost of the worldline tetrad that sends the timelike unit
vector ð2p0δ

a
0 − paÞ=

ffiffiffiffiffiffiffiffiffi
−p2

p
to δa0 . This transformation will

change only the first term in Eq. (B3) as follows:

1

2
ĴðiÞðjÞΩ̂

ðiÞðjÞ
flat ¼ 1

2
ĴðiÞðjÞΩ

ðiÞðjÞ
SOð3Þ þ

1

2
ĴðiÞðjÞuðiÞ

duðjÞ

dσ
; ðB4Þ
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where now ΩðiÞðjÞ
SOð3Þ is build out of rotation matrices, and we

have used pa ¼ mua=
ffiffiffiffiffiffiffiffi
−u2

p
, with −u2 ¼ 1 at leading order

in the PN expansion.
Having fixed the gauge for both angular velocity and

spin tensor, we can carry out the explicit computation of the
last two terms in Eq. (B3). In order to do so, we pick the
tetrad field in such a way to have ẽðiÞ0 ¼ 0. Then, at 1PN
order, we obtain

1

2
Ĵabωab

μ uμ ¼ 1

2
ĴðiÞðjÞð4uðiÞ∂ðjÞϕ̃þ ∂ðiÞÃðjÞÞ;

pðjÞ

−p2
ĴðiÞðjÞẽ

ðiÞ
μ
Dpμ

Dσ
¼ ĴðiÞðjÞuðjÞ

�
duðiÞ

dσ
þ ∂ðiÞϕ̃

�
: ðB5Þ

Plugging these results into Eq. (B1), and identifying
the worldline with the trajectory of the center of mass,

uðiÞ ¼ VðiÞ
CM, we finally get

1

2
JμνΩμν ¼ 1

2
ĴðiÞðjÞΩ

ðiÞðjÞ
SOð3Þ þ

1

2
ĴðiÞðjÞA

ðiÞ
CMV

ðjÞ
CM

þ 1

2
ĴðiÞðjÞð2VðiÞ

CM∂ðjÞϕ̃þ ∂ðiÞÃðjÞÞ: ðB6Þ

Then, with a mild abuse of notation, we can drop the index
brackets and the hats so as to match the expressions
used (for simplicity) in the main text: ĴðiÞðjÞ ↦ Jij;

ΩðiÞðjÞ
SOð3Þ ↦ Ωij. We stress however that these are different

from the ðμ; νÞ ¼ ði; jÞ components of Jμν and Ωμν, which
depend on the external gravitational field.
Using this notation and the definitions Jij ¼ ϵijkJk;

Ωij ¼ ϵijkΩk, we can rewrite Eq. (B6) as

1

2
JμνΩμν ¼ J ·Ωþ 1

2
JijAi

CMV
j
CM

þ 1

2
Jijð2Vi

CM∂jϕ̃þ ∂iÃjÞ; ðB7Þ
which is the equation used in the main text.
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