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One sentence summary: To attain the limits to measurement preci-

sion imposed by quantum mechanics, ‘quantum tricks’ are often

required.

Abstract: Quantum mechanics, through the Heisen-
berg uncertainty principle, imposes limits to the pre-
cision of measurement. Conventional measurement
techniques typically fail to reach these limits. Con-
ventional bounds to the precision of measurements
such as the shot noise limit or the standard quan-
tum limit are not as fundamental as the Heisenberg
limits, and can be beaten using quantum strategies
that employ ‘quantum tricks’ such as squeezing and
entanglement.

Measurement is a physical process, and the accuracy to
which measurements can be performed is governed by the
laws of physics. In particular, the behavior of systems at
small scales is governed by the laws of quantum mechan-
ics, which place limits on the accuracy to which measure-
ments can be performed. These limits to accuracy take
two forms. First, the Heisenberg uncertainty relation [1]
imposes an intrinsic uncertainty in the values of measure-
ment results of complementary observables such as posi-
tion and momentum, or the different components of the
angular momentum of a rotating object (Fig. 1). Second,
every measurement apparatus is itself a quantum system:
as a result, the uncertainty relations together with other
quantum constraints on the speed of evolution (such as
the Margolus-Levitin theorem [2]) impose limits on how
accurately we can measure quantities given the amount of
physical resources, e.g. energy, at hand to perform the
measurement.

One important consequence of the physical nature of
measurement is the so-called ‘quantum back action’: the
extraction of information from a system can give rise to
a feedback effect in which the system configuration after
the measurement is determined by the measurement out-
come. For example, the most extreme case (the so-called
von Neumann or projective measurement) produces a com-
plete determination of the post-measurement state. When
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Figure 1: The Heisenberg uncertainty relation. In quan-

tum mechanics the outcomes x1, x2, etc. of the measurements

of a physical quantity x are statistical variables; that is, they

are randomly distributed according to a probability determined

by the state of the system. A measure of the “sharpness” of a

measurement is given by the spread ∆x of the outcomes: An

example is given in (A), where the outcomes (tiny triangles) are

distributed according to a Gaussian probability with standard

deviation ∆x. The Heisenberg uncertainty relation states that

when simultaneously measuring incompatible observables such

as position x and momentum p the product of the spreads is

lower bounded: ∆x ∆p ≥ ~/2, where ~ is the Planck constant.

The same is true when measuring one of the observables (say

x) on a set of particles prepared with a spread ∆p on the other

observable. [In the general case when we are measuring two

observables A and B, the lower bound is given by the expecta-

tion value of the commutator between the quantum operators

associated to A and B.] In (B) we see a coherent state (de-

picted through its Wigner function): it has the same spreads in

position and momentum ∆x = ∆p. In (C) and (D), squeezed

states are shown: they have reduced fluctuations in one of the

two incompatible observables [i.e. x for (C) and p for (D)] at

the expense of increased fluctuations in the other. The Heisen-

berg relation states that the red areas in the plots (given by the

product ∆x∆p) must have a surface larger than ~/2. In quan-

tum optics, the observables x and p are replaced by the in-phase

and out-of-phase amplitudes of the electromagnetic field, i.e. by

its “quadratures”. The Heisenberg principle is so called only

for historical reasons: it is not a principle in modern quantum

mechanics, since it is a consequence of the measurement pos-

tulate [1]. Moreover, Heisenberg’s formulation of a dynamical

disturbance necessarily induced on a system by a measurement

was experimentally proven wrong [3]: it is possible to devise ex-

periments where the disturbance is totally negligible, but where

the Heisenberg relations are still valid. They are enforced by

the complementarity of quantum mechanics.
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performing successive measurements, quantum back ac-
tion can be detrimental, as earlier measurements can nega-
tively influence successive ones. A common strategy to get
around the negative effect of back action and of Heisen-
berg uncertainty is to design an experimental apparatus
that monitors only one out of a set of incompatible observ-
ables: ‘less is more’ [4]. This strategy— called quantum
non-demolition measurement [4, 5, 6, 7]— is not as simple
as it sounds: one has to account for the system’s interac-
tion with the external environment, which tends to extract
and disperse information, and for the system dynamics,
which can combine the measured observable with incom-
patible ones. Another strategy to get around the Heisen-
berg uncertainty is to employ a quantum state in which
the uncertainty in the observable to be monitored is very
small (at the cost of a very large uncertainty in the comple-
mentary observable). The research on quantum-enhanced
measurements was spawned by the invention of such tech-
niques [4, 8, 9] and by the birth of more rigorous treatments
of quantum measurements [10].

Most standard measurement techniques do not account
for these quantum subtleties, so that their precision is lim-
ited by otherwise avoidable sources of errors. Typical ex-
amples are the environment induced noise from vacuum
fluctuations (the so-called shot noise) that affects the mea-
surement of the electromagnetic field amplitude, and the
dynamically-induced noise in the position measurement of
a free mass (the so-called standard quantum limit [11]).
These sources of imprecision are not as fundamental as the
unavoidable Heisenberg uncertainty relations, as they orig-
inate only from a non-optimal choice of measurement strat-
egy. However, the shot-noise and standard quantum limits
set important benchmarks for the quality of a measure-
ment, and they provide an interesting challenge to devise
quantum strategies that can defeat them. It is intrigu-
ing that almost thirty years after its introduction [11], the
standard quantum limit has not yet been beaten experi-
mentally in a repeated measurement of a test mass. In the
meantime, a paradigm shift has occurred: quantum me-
chanics, which used to be just the object of investigation,
is now viewed as a tool, a source of exotic and funky effects
that can be used to our benefit. In measurement and else-
where, we are witnessing the birth of quantum technology.

We describe some of the techniques that have been re-
cently developed to overcome the limitations of classical
measurement strategies. We start with a brief overview of
some techniques to beat the shot noise limit in interfer-
ometry. In the process, we provide a simple example that
explains the idea behind many quantum-enhanced mea-
surement strategies. We then give an overlook on some
of the most promising quantum-technology proposals and
analyze the standard quantum limit on repeated position
measurements. Finally, we show the ultimate resolution
achievable in measuring time and space according to the

known physical laws. A caveat is in order: this review
cannot be in any way be viewed as complete because the
improvement of interferometry and measurements through
non-classical light is at the heart of modern quantum op-
tics. Many more ideas and experiments have been devised
than can be possibly reported here.

B

A

C

DB’

A’

ϕ

Figure 2: Mach-Zehnder interferometer. The light field en-
ters the apparatus through the input ports A and B of the
first beam splitter and leaves it through the output ports C
and D of the second beam splitter. By measuring the inten-
sities (photon number per second) of the output beams one
can recover the phase difference ϕ between the two internal
optical paths A’ and B’. Formally, the input-output rela-
tion of the apparatus is completely characterized by assign-
ing the transformations of the annihilation operators a, b, c
and d associated to the fields at A, B, C and D, respectively.
These are c ≡ (a′ + ieiϕb′)/

√
2 and d ≡ (ia′ + eiϕb′)/

√
2

with a′ ≡ (a + ib)/
√

2 and b′ ≡ (ia + b)/
√

2 the annihila-
tion operators associated to the internal paths A’ and B’,
respectively.

Interferometry: beating the shot noise limit

In this section we focus on the issues arising in ultra-
precise interferometric measurements. A prototypical ap-
paratus is the Mach-Zehnder interferometer (Fig. 2). It
acts in the following way. A light beam impinges on a
semi-transparent mirror (i.e. a beam splitter), which di-
vides it into a reflected and a transmitted part. These two
components travel along different paths and then are re-
combined by a second beam splitter. Information on the
phase difference ϕ between the two optical paths of the in-
terferometer can be extracted by monitoring the two out-
put beams, typically by measuring their intensity (i.e. the
photon number). To see how this works, suppose that a
classical coherent beam with N average photons enters the
interferometer through the input A. If there is no phase
difference ϕ, all the photons will exit the apparatus at out-
put D. On the other hand, if ϕ = π radians, all the pho-
tons will exit at output C. In the intermediate situations, a
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fraction cos2(ϕ/2) of the photons will exit at the output D
and a fraction sin2(ϕ/2) at the output C. By measuring
the intensity at the two output ports one can estimate the
value of ϕ with a statistical error proportional to 1/

√
N .

This is a consequence of the quantized nature of electro-
magnetic field and of the Poissonian statistics of classical
light, which, in some sense, prevents any cooperative be-
havior among the photons. In fact, the quantity cos2(ϕ/2)
can be experimentally obtained as the statistical average
∑N

j=1 xj/N , where xj takes the value 0 or 1 depending
on whether the jth photon in the beam was detected at
output C or D respectively. Because the xjs are indepen-
dent stochastic variables (photons in the classical beam are
uncorrelated), the variance associated with their average is
the average of the variances (central limit theorem): the er-
ror associated with the measurement of cos2(ϕ/2) is given

by ∆(
∑N

j=1 xj/N) ≡
√

∑N
j=1 ∆2xj/N = ∆x/

√
N , where

∆xj is the spread of the jth measurement (the spreads
∆xjs are all equal to ∆x: they refer to the same experi-

ment). Notice that the same
√
N dependence can be ob-

tained if, instead of using a classical beam with N average
photons, we use N separate single-photon beams: in this
case cos2(ϕ/2) is the probability of the photon exiting at
output D and sin2(ϕ/2) is the probability of the photon
exiting at output C. The 1/

√
N bound on the precision (N

being the number of photons employed) is referred to as
the shot noise limit. It is not fundamental and is only a
consequence of the employed classical detection strategy,
where neither the state preparation nor the readout takes
advantage of quantum correlations.

Carefully designed quantum procedures can beat the
1/

√
N limit. For example, injecting squeezed vacuum in

the normally unused port B of the interferometer allows
to achieve a sensitivity of 1/N3/4 [8, 12]. Other strate-
gies can do even better, reaching an 1/N sensitivity with
a
√
N improvement over the classical strategies detailed

above. The simplest example employs as the input to the
interferometer the following entangled state [13, 9]

|Ψ〉 =
1√
2

(

|N+〉A|N−〉B + |N−〉A|N+〉B
)

,

where N± ≡ (N ± 1)/2 and where the subscripts A and B
label the input ports. This is a highly non-classical signal
where the correlations between the inputs at A and B can-
not be described by a local statistical model. As before,
the phase ϕ can be evaluated by measuring the photon
number difference between the two interferometer outputs,
i.e. by evaluating the expectation value of the operator
M ≡ d†d− c†c = (a†a− b†b) cosϕ+(a†b+ b†a) sinϕ, where
a, b, c, and d are the annihilation operators of the optical
modes at the interferometer ports A, B, C, and D respec-
tively (see Fig. 2). This scheme allows a sensitivity of the
order 1/N for the measurements of small phase differences,
i.e. ϕ ≃ 0. In fact, the expectation value of the output pho-

ton number difference is equal to 〈M〉 = −N+ sinϕ and its
variance is ∆2M = cos(2ϕ) + N2

+ sin2 ϕ. The error ∆ϕ
on the estimated phase can be obtained from error prop-

agation, ∆ϕ = ∆M/
∣
∣
∣
∂〈M〉

∂ϕ

∣
∣
∣, and for ϕ ≃ 0, it is easy to

see that it scales as 1/N [13]. Even though this procedure
achieves good precision only for small values of ϕ, other
schemes exist that show the same high sensitivity for all
values of this parameter [14]. Many quantum procedures
that achieve the same 1/N sensitivity have been proposed
that do not make explicit use of entangled inputs. For ex-
ample, one can inject into both interferometer inputs A
and B squeezed states and then measure the intensity dif-
ference at C and D [15, 16] or inject Fock states at A and B,
and then evaluate the photon-counting probability at the
output [17], or, finally, measure the de Broglie wavelength
of the radiation [18]. One may wonder if this 1/N preci-
sion can be further increased, but in line with the time-
energy Heisenberg relation [19] and the Margolus-Levitin
theorem [2], it appears that this is a true quantum limit
and there is no way that it can be beaten [20, 21]: it is
customarily referred to as the Heisenberg limit to interfer-
ometry.

Quantum-enhanced parameter estimation

Some of the above interferometric techniques have found
applications also outside the context of optics, such as in
spectroscopy [20] or in atomic interferometry [22]. In this
section we point out a general aspect of the quantum es-
timation theory on which most of the quantum strategies
presented in this review are based, i.e. the fact that typ-
ically a highly correlated input is used and a collective
measurement is performed (see Fig. 3). A simple exam-
ple [23] may help: consider a qubit, i.e. a two-level quan-
tum system which is described by the two states |0〉 and
|1〉 and their superpositions. Suppose that the dynam-
ics leaves the state |0〉 unchanged and adds a phase ϕ to
|1〉, i.e. |1〉 → eiϕ|1〉. If we want to estimate this phase,
we can use a strategy analogous to Ramsey interferome-
try by preparing the system in the quantum superposition
|ψin〉 ≡ (|0〉+ |1〉)/

√
2, which is transformed by the system

dynamics into |ψout〉 = (|0〉 + eiϕ|1〉)/
√

2. The probability
p(ϕ) that the output state |ψout〉 is equal to the input |ψin〉
allows to evaluate ϕ as

p(ϕ) =
∣
∣〈ψin|ψout〉

∣
∣
2

= cos2(ϕ/2) .

This quantity can be estimated with a statistical error
∆2p(ϕ) = 〈ψout|(|ψin〉〈ψin|)2|ψout〉−p2(ϕ) = p(ϕ)−p2(ϕ).
If we evaluate a parameter ϕ from a quantity p(ϕ), error
propagation theory tells us that the error associated with

the former is given by ∆ϕ = ∆p(ϕ)/
∣
∣
∣
∂p(ϕ)

∂ϕ

∣
∣
∣, which in this

case gives ∆ϕ = 1. We can improve such an error by
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repeating the experiment N times. This introduces a fac-
tor 1/

√
N in the standard deviation (again as an effect

of the central limit theorem) and we find an overall error
∆ϕ = 1/

√
N . (It is the same sensitivity achieved by the ex-

periment of a single photon in the interferometer described
above: these two procedures are essentially equivalent.) As
in the case of the interferometer, a more sensitive quantum
strategy exists. In fact, instead of employing N times the
state |ψin〉, we can use the following entangled state that
still uses N qubits,

|φin〉 =
1√
2

(

|0〉 · · · |0〉
︸ ︷︷ ︸

N times

+ |1〉 · · · |1〉
︸ ︷︷ ︸

N times

)

Now the tensor product structure of quantum mechanics
helps us, as the eiϕ phase factors gained by the |1〉s combine
so that the corresponding output state is

|φout〉 =
1√
2

(

|0〉 · · · |0〉 + eiNϕ|1〉 · · · |1〉
)

.

The probability q(ϕ) that |φout〉 equals |φin〉 is

q(ϕ) = cos2(Nϕ/2),

that, as before, can be estimated with an error ∆2q(ϕ) =
q(ϕ) − q2(ϕ). This means that ϕ will have an error ∆ϕ =

∆q(ϕ)/
∣
∣
∣
∂q(ϕ)

∂ϕ

∣
∣
∣ = 1/N . This is a

√
N enhancement over

the precision of N measurements on unentangled qubits,
which has been achieved by employing an entangled input
and performing a collective non-local measurement on the
output, i.e. the measurement of the probability q(ϕ).

A generalization of the parameter estimation presented
here is the estimation of the input-output relations of an
unknown quantum device. A simple strategy would be to
feed the device with a “complete” collection of independent
states and measure the resulting outputs. More efficiently,
one can use entangled inputs: one half of the entangled
state is fed into the device and a collective measurement
is performed on the other half and on the device’s out-
put [24, 25]. As in the case discussed above, the quantum
correlations between the components of the entangled state
increase the precision and hence reduce the number of mea-
surements required. A similar strategy permits to improve
the precision in the estimation of a parameter of an ap-
paratus, or to increase the stability of measurements [26]:
part of an entangled state is fed into the apparatus to be
probed and an appropriate collective measurement is per-
formed on the output together with the other part of the
entangled state. This permits, for example, to discriminate
among the four Pauli unitary transformations applying the
transformation only on a single qubit probe. It would be
impossible without entanglement.
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Figure 3: Comparison between classical and quantum
strategies. In conventional measurement schemes (upper
panel), N independent physical systems are separately pre-
pared and separately detected. The final result comes
from a statistical average of the N outcomes. In quantum-
enhanced measurement schemes (lower panel), the N phys-
ical systems are typically prepared in a highly correlated
configuration (i.e. an entangled or a squeezed state), and
are measured collectively with a single non-local measure-
ment that encompasses all the systems.

Quantum technology

The quantum-enhanced parameter estimation presented
above has found applications in the most diverse fields.
In this section we give an overview of some of them, leav-
ing aside all the applications that quantum mechanics has
found in communication and computation [27], which are
not directly connected with the subject of this review.

Quantum frequency standards [20, 28]. A typical
issue in metrology and spectroscopy is to measure time or
frequency with very high accuracy. This requires a very
precise clock, i.e. an oscillator. Atomic transitions are so
useful to this aim that the very definition of second is based
on them. To measure time or frequency accurately, we can
start with N cold ions in the ground state |0〉 and ap-
ply an electromagnetic pulse that creates independently in
each ion an equally weighted superposition (|0〉 + |1〉)/

√
2

of the ground and of an excited state |1〉. A subsequent
free evolution of the ions for a time t introduces a phase
factor between the two states that can be measured at the
end of the interval by applying a second, identical, electro-
magnetic pulse and measuring the probability that the final
state is |0〉 (Ramsey interferometry). This procedure is just
a physical implementation of the qubit example described
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above, but here the phase factor is time dependent and is
equal to ϕ = ωt, where ω is the frequency of the transition
|0〉 ↔ |1〉. Hence the same analysis applies: from the N
independent ions we can recover the pursued frequency ω
(from the phase factor ϕ) with an error ∆ϕ = 1/

√
N , i.e.

∆ω = 1/(
√
Nt).

Instead of acting independently on each ion, one can
start from the entangled state |φin〉 introduced above. In
this case, the error in the determination of the frequency is
∆ω = 1/(Nt), i.e. there is an enhancement of the square
root of the number N of entangled ions over the previous
strategy.

Quantum lithography and two-photon mi-

croscopy [29, 30, 31, 32, 33]. When we try to resolve
objects smaller than the wavelength of the employed light,
the wave nature of radiation becomes important: the light
tends to scatter around the object, limiting the achievable
resolution. This defines the Rayleigh diffraction bound,
which restricts many optical techniques: it is not always
practical to reduce the wavelength. Quantum effects can
help by decreasing the wavelength of the light while keep-
ing the wavelength of the radiation field constant. How
can this, apparently paradoxical, effect come about? The
basic idea is to employ physical devices that are sensitive
to the de Broglie wavelength: in quantum mechanics to ev-
ery object we can associate wavelength λ = 2π~/p where
p is the object’s momentum (for radiation p is the energy
E divided by the speed of light c). Obviously the wave-
length of a single photon λ = 2π~c/E = 2πc/ω is the
wavelength of its radiation field. But what happens if we
are able to employ a “biphoton” (i.e. a single entity con-
stituted by two photons)? In this case we find that its
wavelength is 2π~c/(2E) = λ/2: half the wavelength of
a single photon, or equivalently half the wavelength of its
radiation field. Of course, using “triphotons”, “quadripho-
tons”, etc. would result in further decreases of wavelengths.
Experimentalists are able to measure the de Broglie wave-
lengths of biphotons [34, 32, 18], so that theoreticians have
concocted useful ways to employ them: the most impor-
tant applications are quantum lithography [29, 31], where
smaller wavelengths help to etch smaller integrated circuit
elements on a two-photon sensitive substrate, and two-
photon microscopy [33], where they produce less damage
to the speciments. Also in this context, entanglement is a
useful resource as it is instrumental in creating the required
biphotons and in enhancing the cross-section of two-photon
absorption [30].

Quantum positioning and clock synchroniza-

tion [35, 36, 37]. To find out the position of an object,
one can measure the time it takes for some light signals
to travel from that object to some known reference points.
The best classical strategy is to measure the travel times of
the single photons in the beam and to calculate their aver-
age. This allows to determine the travel time with an error

proportional to 1/(∆ω
√
N), where ∆ω is the signal band-

width which induces a minimum time-duration of 1/∆ω for
each photon, i.e. the times of arrival of each of the pho-
tons will have a spread 1/∆ω. The accuracy of the travel
time measure thus depends on the spectral distribution of
the employed signal. The reader will bet that a quantum
strategy allows to do better with the same resources. In
fact, by entangling N photons in frequency, we can create
a “super-photon” whose bandwidth is still ∆ω (i.e. it em-
ploys the same energetic resources as the N photon signal
employed above), but whose mean effective frequency is N
times higher, as the entanglement causes the N photons
to have the same frequency. This means that the super-
photon allows us to achieveN times the accuracy of a single
photon with the same bandwidth. To be fair, we need to
compare the performance of the super-photon with that of
a classical signal of N photons, so that the overall gain of
the quantum strategy is

√
N [35].

The problem of localization is intimately connected with
the problem of synchronizing distant clocks. In fact, by
measuring the time it takes for a signal to travel to known
locations, it is possible to synchronize clocks at these loca-
tions. This immediately tells us that the above quantum
protocol can give a quantum improvement in the precision
of distant clocks synchronization. Moreover, quantum ef-
fects can be also useful in avoiding the detrimental effects of
dispersion [38]. The speed of light in dispersive media has
a frequency dependence, so that narrow signals (which are
constituted by many frequencies) tend to spread out dur-
ing their travel. This effect ruins the sharp timing signals
transmitted. Using the non-local correlations of entangled
signals, we can engineer frequency-entangled pulses that
are not affected by dispersion and that allow clock syn-
chronization [36].

Quantum imaging [39, 40]. A large number of appli-
cations based on the use of quantum effects in spatially
multimode light can be grouped under the common label
of quantum imaging.

The most famous quantum imaging experiment is the
reconstruction of the so called “ghost images” [41], where
non-local correlations between spatially entangled two-
photon states are used to create the image of an object
without directly looking at it. The basic idea is to illumi-
nate an object with one of the twin photons which is then
absorbed by a “bucket” detector (it has no spatial reso-
lution but is just able to tell whether the photon crossed
the object or whether it was absorbed by it). The other
entangled photon is shone onto an imaging array and the
procedure is repeated many times. Correlating the image
on the array with the coincidences between the arrival of
one photon at the bucket detector and the other at the
imaging array, the shape of the object can be determined.
This is equivalent to the following scenario: use a device
that shoots two pebbles in random but exactly opposite
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directions. When one of the pebbles overshoots an object,
it hits a bell. The other pebble instead hits a soft wall,
where it remains glued to it. By shooting many pebbles
and marking on the wall the pebble’s position every time
we hear the bell ring, we will project the outline of the ob-
ject on the wall. The fact that such an intuitive description
exists should make us queasy on the real quantum nature of
the ghost image experiment and, in fact, it was shown that
even if it makes use of highly non-classical states of light,
it is an essentially classical procedure [42]. The quantum
nature of such an experiment lies in the fact that, using the
same apparatus, both the near-field and the far-field plane
can be perfectly imaged. Classical correlations do not allow
this, even though classical thermal light can approximate
it [43]. A related subject is the creation of noiseless im-
ages or the noiseless image amplification [40, 39], i.e. the
formation of optical images whose amplitude fluctuations
are reduced below the shot-noise and can be, in principle,
suppressed completely.

Many applications require us to measure very accurately
the direction in which a focused beam of light is shining:
a typical example is atom-force microscopy, where the de-
flection of a light beam reflected from a cantilever that
feels the atomic force can achieve nanometric resolution.
As a light beam is, ultimately, composed of photons, the
best way to measure its direction is apparently to shine
the beam on an infinitely resolving detector, to measure
where each of the photon is inside the beam and to take
the average of the positions. This strategy will estimate
the position of the beam with an accuracy that scales as
∆d/

√
N , where ∆d is the beam width andN is the number

of detected photons. Analogously as for the shot-noise, this
limit derives from the quantized nature of light and from
the statistical distribution of the photons inside the beam.
As in interferometry, also here quantum effects can boost
the sensitivity up to 1/N [44, 12, 45]. In fact, consider the
following simple example, in which the beam shines along
the z direction and is deflected only along the x direction.
We can measure such a deflection by shining it exactly be-
tween two perfectly adjacent detectors and measuring the
photon number difference between them. If we expand the
spatial modes of the light beam into the sum of an “even”
mode which is symmetrical in the x direction and an “odd”
mode which changes sign at x = 0 (between the two de-
tectors), we see that the beam is perfectly centered when
only the even mode is populated and the odd mode is in the
vacuum. Borrowing from sub-shot noise interferometry, we
see that we can achieve a 1/N3/4 sensitivity by populating
the odd mode with squeezed vacuum instead. Moreover,
we can achieve the Heisenberg limit of 1/N by populating
both modes with a Fock state |N/2〉 [12].

Any object that creates an image (e.g. a microscope
or a telescope) is necessarily limited by diffraction, due
to its finite transverse dimensions. Even though classical

“super-resolution” techniques are known that can be used
to beat the Rayleigh diffraction limit, these are ultimately
limited by the quantum fluctuations that introduce unde-
sired quantum noise in the reconstructed image. By illu-
minating the object with bright multimode squeezed light
and by replacing the part which the finite dimensions of the
device cuts away with squeezed vacuum, we can increase
the resolution of the reconstructed image [46], at least in
the case of weakly absorbing objects (opaque objects would
degrade the squeezed light shining on them).

Coordinate transfer [50, 47, 48, 49]. A peculiar ex-
ample of quantum enhanced strategy arises in the context
of communicating a direction in space [50] or a reference
frame [47, 48, 49] (composed by three orthogonal direc-
tions). If there is no prior shared reference, it requires
some sort of parallel transport such as exchanging gyro-
scopes (which in quantum mechanical jargon are called
spins). Quantum mechanics imposes a bound on the preci-
sion with which the axis of a gyroscope can be measured, as
the different components of the angular momentum are in-
compatible observables: unless one knows the rotation axis
a priori, it is impossible to measure exactly the total angu-
lar momentum. Gisin and Popescu found the baffling result
that sending two gyroscopes pointing in the same direction
is less efficient (i.e. allows a less accurate determination
of this direction) than sending two gyroscopes pointing in
opposite directions [50]. The reason is that the most effi-
cient measurement to recover an unknown direction from
a couple of spins is an entangled measurement, i.e. a mea-
surement that has operators with entangled eigenvectors
associated to it. Such a detection strategy cannot be sepa-
rated in different stages, so that it is not possible to rotate
the apparatus before the measurement on the second spin
which would imply the equivalence of the two scenarios.
The two scenarios could be shown equivalent also if it were
possible to flip the direction of the second spin without
knowing its rotation axis, but this is impossible (it is an
anti-unitary transformation whereas quantum mechanics
is notably unitary). Elaborating on this idea, many quan-
tum enhanced coordinate transfer strategies [47, 48, 49]
have been found.

Repeated position measurements: beating

the standard quantum limit

The continuous measure of the position of a free mass
is a paradigmatic example of how classical strategies
are limited in precision. This experiment is typical of
gravitational-wave detection, where the position of a test
mass must be accurately monitored. The standard quan-
tum limit [11, 51, 4, 7] arises in this context by directly
applying the Heisenberg relation to two consecutive mea-
surements of the position of the free mass, without tak-
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ing into account the possibility that the first measurement
can be tuned to change appropriately the position config-
uration of the mass. The original argument was the fol-
lowing: suppose that we perform the first position mea-
surement at time t = 0 with an uncertainty ∆x(0). This
corresponds (via the Heisenberg uncertainty relation —see
Fig. 1) to an uncertainty in the initial momentum p at
least equal to ∆p(0) = ~/[2∆x(0)]. The dynamics of an
unperturbed the free mass m is governed by the Hamilto-
nian H = p2/2m, which evolves at time t the position as
x(t) = x(0)+p(0)t/m. This implies that the uncertainty in
the initial momentum p(0) transfers into an uncertainty in
the position x(t). The net effect appears to be that a small
initial uncertainty ∆2x(0) produces a big final uncertainty
∆2x(t) ≃ ∆2x(0) + ∆2p(0) t2/m2 ≥ 2∆x(0)∆p(0) t/m ≥
~t/m. In this derivation there is an implicit assumption
that the final uncertainty ∆x(t) cannot be decreased by
the correlations between the position and the momentum
that build up during the unitary evolution after the first
measurement. This is unwarranted: Yuen showed that an
exotic detection strategy exists which, after the first mea-
surement, leaves the mass in a “contractive state” [52], i.e.
whose position uncertainty decreases for a certain period
of time. [The time t for which a mass in such a state has
a spread in position ∆2x(t) below a level 2δ2~/m satis-
fies t ≤ 4δ2]. The standard quantum limit is beaten, i.e.
∆2x(t) ≤ ~t/m, if the second measurement is performed
soon enough. The debate evolved then to ascertaining
wether two successive measurements at times 0 and t can
be performed both of which beat the standard quantum
limit [53]. In fact, a simple application of the Heisenberg re-
lation gives ∆x(0)∆x(t) ≥ 1

2 |〈[x(0), x(t)]〉| = ~t/2m, from
which it seems impossible that both measurements have a
spread ≤

√

~t/2m. However, ∆x(0) is the variance of the
state immediately after the first measurement, which does
not necessarily coincide with the variance of the results of
the first measurement. In fact, it is possible [54] to mea-
sure the position accurately and still leave the mass in a
contractive state with initial variance ∆x(0) ≫

√

~t/2m,
so that the standard quantum limit can be beaten also
repeatedly.

Notice that the back-action introduced in the derivation
of the standard quantum limit would not occur if one were
to measure the momentum instead of the position, since the
above Hamiltonian conserves the momentum, p(t) = p(0),
which is independent of the position. The momentum mea-
sure is an example of a quantum non-demolition detection
scheme [4, 5, 7, 6], in which one removes any feed-back in
the detection by focusing on those observables which are
not coupled by the dynamics to their incompatible coun-
terparts.

The standard quantum limit arises also in the context of
interferometric measurements of position [51, 55, 7], where
the mass is typically one of the mirrors of the interferome-

ter. The movement of the mirror introduces a phase differ-
ence between the arms of the interferometer (see Fig. 2). To
achieve high measurement precision, one is hence tempted
to feed the interferometer with electromagnetic signals that
posses a well defined phase. However, the phase and the
intensity of the electromagnetic field are in some sense
complementary and a well defined phase corresponds to
a highly undetermined intensity. At first sight this seems
without consequences, but any mirror feels a force depen-
dent on the intensity of the light shining on it, through the
mechanism of radiation pressure. Hence, the fluctuations
in intensity of a signal with well-defined phase induce a fluc-
tuating random force on the mirror which ultimately spoils
the precision of the measurement setup. Using sufficiently
intense coherent light and optimizing the phase and in-
tensity fluctuations, one finds that the attainable precision
is again the standard quantum limit [51, 55]. Apparently,
this derivation of the standard quantum limit is completely
independent from the one given above starting from the
Heisenberg relation. However, also here there is an unwar-
ranted assumption, i.e. the treatment of phase and inten-
sity fluctuations as independent quantities. Caves showed
that, by dropping this premise, one can do better [8]. In
fact, a squeezed input signal (see Fig. 1) where the am-
plitude quadrature has less quantum fluctuations than the
phase quadrature produces a reduced radiation pressure
noise at the expense of an increased photon-counting noise,
and vice-versa. This balance allows to fine-tune the param-
eters so that the standard quantum limit can be reached
with much lower light intensity. Refinements of this tech-
nique allows to even beat the standard quantum limit by
tailoring appropriate squeezed states [56, 15, 57, 58, 7] or
by employing quantum non-demolition measurements [4].

The standard quantum limit is not a fundamental preci-
sion threshold. However, at present its conquest is still
an open experimental challenge. In fact, on one hand,
most of the above theoretical proposals are quite impracti-
cal and should be seen only as proofs of principle and, on
the other hand, many competing sources of noise become
important when performing very precise measures. The
most important is, of course, the thermal fluctuations in
the mass to be monitored, but the shot noise at the de-
tection stage or the dissipative part of the mirror response
are also big limitations [4, 59, 60, 61]. Various techniques
to beat this threshold have been proposed. Among others
(by necessity the following list is incomplete), we can cite
the techniques to employ feedback techniques to enforce a
positive back-action [62, 63, 64, 65], or the huge number of
techniques to perform quantum non-demolition measure-
ments [4, 66, 5, 67, 68], or to build contractive states, or
to build speed-meters [69]. At the present stage, the most
promising seem the use of nanotechnologies, where tiny
mechanical oscillators are coupled to high sensitivity elec-
tronics [60, 61], or the new generations of gravitational
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wave detectors [70].

Quantum limits to the measurement of

spacetime geometry

Quantum effects can be used to increase the accuracy of
many different kinds of measurements, but which are the
ultimate limits to the resolution that the physical laws al-
low? Attempts to derive quantum limits to the accuracy
of measuring the geometry of spacetime date back at least
to Wigner [71, 72]. As the preceding discussions show,
however, care must be taken in applying non-fundamental
bounds such as the standard quantum limit. Fortunately,
the Margolus-Levitin [2] theorem and techniques from the
physics of computation [73, 74] can be used to derive limits
to the accuracy with which quantum systems can be used
to measure spacetime geometry.

The first question is that of minimum distance and
time. One can increase the precision of clocks used to
measure time by increasing their energy: the Margolus-
Levitin theorem implies that the minimum ‘tick length’
of a clock with energy E is ∆t = π~/2E. Similarly, the
wavelength of the particles used to map out space can
be decreased by increasing their energy. There appears
to be no fundamental physical limit to increasing the en-
ergy of the clocks used to measure time and the particles
used to measure space, until one reaches the Planck scale,
tP =

√

~G/c5 = 5.391 × 10−44 seconds, ℓP = ctP . At
this scale, the Compton wavelength 2π~/mc of the clocks
and particles is on the same order of magnitude as their
Schwarzschild radius 2mG/c2, and quantum gravitational
effects come into play [75]. The second question is that
of the accuracy to which one can map out the large-scale
structure of spacetime. One way to measure the geometry
of spacetime is to fill space with a ‘swarm’ of clocks, ex-
changing signals with the other clocks and measuring the
signals’ times of arrival. In this picture, the clocks could
be as large as GPS satellites, or as small as elementary
particles.

Let’s look at how accurately this swarm of clocks can
map out a volume of spacetime with radius R over time T .
Every tick of a clock or click of a detector is an elementary
event in which a system goes from a state to orthogonal
state. Accordingly, the total number of ticks and clicks
that can take place within the volume is a scalar quantity
limited by the Margolus-Levitin theorem: it is less than
2ET/π~, where E is the energy of the clocks within the
volume.

If we pack the clocks too densely, they will form a black
hole and be useless for the measurement of spacetime out-
side their horizon. To prevent black hole formation, the
energy of clocks within a spacelike region of radius R must
be less than Rc4/2G. As a result, the total number of ele-

mentary events that can occur in the volume of spacetime
is no greater than

N ≡ π−1(T/tP )(R/lP ). [1]

This quantum geometric limit can also be formulated in
a covariant fashion. The maximum number of ticks and
clicks in a volume is a scalar quantity proportional to the
integral of the trace of the energy-momentum tensor over
the four volume; and 2TR can be identified with the area of
an extremal world sheet contained within the four volume.
The quantum geometric limit of Eq. [1] was derived without
any recourse to quantum gravity: the Planck scale makes
its appearance simply from combining quantum limits to
measurement with the requirement that a region not itself
be a black hole. (If the region is at or above its critical
density, then Eq. [1] still holds if R is the radius of the
horizon of the region as measured by an external observer.)

The quantum geometric limit is consistent with and
complementary to the Bekenstein bound, the holographic
bound, and the covariant entropy bound [76, 77, 78, 79],
all of which limit the number of bits that can be contained
within a region. [It also confirms Ng’s prediction [80] for
the scale of spacetime foam.] For example, the argument
that leads to Eq. [1] also implies that maximum number of
quanta of wavelength λ ≤ 2R that can be packed into a vol-
ume of radius R without turning that volume into a black
hole is bounded by R2/πl2P [81], in accordance with the
Bekenstein bound and holography. Because it bounds the
number of elementary events or ‘ops,’ rather than the num-
ber of bits, the quantum geometric limit [1] implies a trade-
off between the accuracy with which one can measure time,
and the accuracy with which one can measure space: the
maximum spatial resolution can only be obtained by relax-
ing the temporal resolution and having each clock tick only
once in time T . This lack of temporal resolution is char-
acteristic of systems, like black holes, that attain the holo-
graphic bound [73]. By contrast, if the events are spread
out uniformly in space and time, the number of cells within
the spatial volume goes as (R/lP )3/2– less than the holo-
graphic bound– and the number of ticks of each clock over
time T goes as (T/tP )1/2. This is the accuracy to which
ordinary matter such as radiation and massive particles
map out spacetime. Because it is at or close to its critical
density, our own universe maps out the geometry of space-
time to an accuracy approaching the absolute limit given
by R2/πl2P : there have been no more than (T/tP )2 ≈ 10123

‘ticks and clicks’ since the big bang [74].

Conclusion

Quantum mechanics governs every aspect of the physical
world, including the measuring devices we use to obtain
information about that world. Quantum mechanics limits
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the accuracy of such devices via the Heisenberg uncertainty
principle and the Margolus-Levitin theorem; but it also
supplies quantum strategies for surpassing semi-classical
limits such as the standard quantum limit and the shot
noise limit. Starting from strategies to enhance the sensi-
tivity of interferometers and position measurements, scien-
tists and engineers have developed quantum technologies
that employ effects such as squeezing and entanglement to
improve the accuracy of a wide variety of measurements.
Some of these quantum techniques are still futuristic: at
present, methods for creating and manipulating entangled
states are still in their infancy. As we saw, quantum ef-
fects usually allow a precision enhancement equal to the
square root of the number N of employed particles; but it
is usually very complicated to entangle as few as N = 5
or 6 particles. In contrast, it is typically rather simple to
employ millions of particles to use the classical strategy of
plain averaging. As quantum technologies improve, how-
ever, the use of entanglement and squeezing to enhance pre-
cision measurements is likely to become more wide spread.
Meanwhile, as the example of quantum limits to measuring
spacetime geometry shows, examining the quantum limits
to measurement can give insight into the workings of the
universe at its most fundamental levels.
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