
Sequential Projective Measurements for Channel Decoding

Seth Lloyd,1 Vittorio Giovannetti,2 and Lorenzo Maccone3

1Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
2NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, piazza dei Cavalieri 7, I-56126 Pisa, Italy
3Dipartimento Fisica ‘‘A. Volta,’’ INFN Sezione Pavia, Università di Pavia, via Bassi 6, I-27100 Pavia, Italy
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We study the transmission of classical information in quantum channels. We present a decoding

procedure that is very simple but still achieves the channel capacity. It is used to give an alternative

straightforward proof that the classical capacity is given by the regularized Holevo bound. This procedure

uses only projective measurements and is based on successive ‘‘yes-no’’ tests only.
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According to quantum information theory, to transfer
classical signals we must encode them into the states of
quantum information carriers, transmit these through the
(possibly noisy) communication channel, and then decode
the information at the channel output [1]. Frequently, even
if no entanglement between successive information car-
riers is employed in the encoding or is generated by the
channel, a joint measurement procedure is necessary
(e.g., see [2]) to achieve the capacity of the communication
line, i.e., the maximum transmission rate per channel use
[1]. This is clear from the original proofs [3,4] that the
classical channel capacity is provided by the regularization
of the Holevo bound [5]: These proofs employ a decoding
procedure based on detection schemes (the ‘‘pretty good
measurement’’ or its variants [6–17]). Alternative decod-
ing schemes were also derived in Ref. [18] by using a
iterative scheme which, given any good small code, allows
one to increase the number of transmitted messages up to
the size set by the bound and in Refs. [19–22] with an
application of quantum hypothesis testing (which was in-
troduced in this context in Refs. [19,23] for the quantum
and classical setting, respectively). Here we present a
simple decoding procedure which uses only dichotomic
projective measurements acting on the channel output,
which is nonetheless able to achieve the channel capacity
for transmission of classical information through a quan-
tum channel. Our procedure sidesteps most of the techni-
calities associated with similar prior proofs.

The main idea is that even if the possible alphabet states
(i.e., the states of a single information carrier) are not
orthogonal at the output of the channel, the code words
composed of a long sequence of alphabet states approach
orthogonality asymptotically, as the number of letters in
each code word goes to infinity. Thus, one can sequentially
test whether each code word is at the output of the channel.
When one gets the answer ‘‘yes,’’ the probability of error is
small (as the other code words have little overlap with the
tested one). When one gets the answer ‘‘no,’’ the state has
been ruined very little and can be still employed to further
test for the other code words. To reduce the accumulation

of errors during a long sequence of tests that yield no
answers, every time a no is obtained, we have to project
the state back to the space that contains the typical output
of the channel. In summary, the procedure is (i) test
whether the channel output is the first code word; (ii) if
yes, we are done; if no, then project the system into the
typical subspace and abort with an error if the projection
fails; (iii) repeat the above procedure for all the other code
words until we get a yes (or abort with an error if we test all
of them without getting yes); (iv) in the end, we identified
the code word that was sent or we had to abort.
After reviewing some basic notions on typicality, we

will prove that the above procedure succeeds in achieving
the classical capacity of the channel by focusing on an
implementation where yes-no projective measurements are
employed to test randomly for each single base vector of
the typical subspaces. An alternative proof referring to this
same procedure is presented in Ref. [24] by using a decod-
ing strategy where instead one discriminates directly
among the various typical subspaces of the code words
through a deterministic (not random) sequence of yes-no
projective measurements which do not discriminate among
the basis vectors of each subspace.
Definitions and review.—For notational simplicity we

will consider code words composed of unentangled states.
For general channels, entangled code words must be used
to achieve capacity [25], but the extension of our theory to
this case is straightforward (replacing the Holevo bound
with its regularized version).
Consider a quantum channel that is fed with a letter j

from a classical alphabet with probability pj. The letter j is

encoded into a state of the information carriers which is
evolved by the channel into an output �j ¼ P

kpkjjjkijhkj,
where jhk0jkij ¼ �k0k. Hence, the average output is

� ¼ X
j

pj�j ¼
X
j;k

pjpkjjjkijhkj ¼
X
k

pkjkihkj; (1)

where jkij and jki are the eigenvectors of the jth output-

alphabet density matrix and of the average output, respec-
tively. The subtleties of quantum channel decoding arise
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because the �j typically commute neither with each other

nor with �. The Holevo-Schumacher-Westmoreland theo-
rem [3,4] implies that we can send classical information
reliably down the channel at a rate (bits per channel use)
given by the Holevo quantity [5]

� � Sð�Þ �X
j

pjSð�jÞ; (2)

where Sð�Þ � �Tr½ð�Þlog2ð�Þ� is the von Neumann entropy.
This rate can be asymptotically attained in the multichan-
nel uses scenario as limn!1ðlog2NnÞ=n, where a set Cn of

Nn code words ~j ¼ ðj1; . . . ; jnÞ formed by long sequences
of the letters j are used to reliably transfer Nn distinct
classical messages. Similarly to the Shannon random-

coding theory [26], the code words ~j 2 Cn can be chosen
at random among the typical sequences generated by the
probability pj, in which each letter j of the alphabet occurs

approximately pjn times. As mentioned above, the

Holevo-Schumacher-Westmoreland theorem uses the
pretty good measurement to decode the code words of Cn
at the output of the channel. We will now show that a
sequence of binary projective measurements suffices [27].

Sequential measurements for channel decoding.—The
channel output state �~j � �j1 � � � � � �jn associated to a

generic typical sequence ~j ¼ ðj1; . . . ; jnÞ possesses a typi-
cal subspaceH ~j spanned by the vectors jk1ij1 . . . jknijn �
j ~ki ~j, where jkij occurs approximately pjpkjjn ¼ pjkn

times; e.g., see Ref. [3]. The subspaceH ~j has dimensions

�2
n
P

j
pjSð�jÞ independent of the input ~j 2 Cn. Moreover, a

typical output subspace H and a projector P onto it exist
such that, for any � > 0 and sufficiently large n,

Tr �� > 1� �; (3)

where �� � P� � � � � � �P is the projection of the
n-output average density matrix onto H . Notice that H
and the H ~j’s in general differ. Typicality for H implies

that, for � > 0 and sufficiently large n, the eigenvalues �i

of �� and the dimension of H are bounded as [3,4]

�i � 2�n½Sð�Þ���; (4)

# nonzero eigenvalues ¼ dimðH Þ � 2n½Sð�Þþ��: (5)

Define then the operator

~� ¼ P

� X
~j; ~k2typ

p~jp ~kj ~jj ~ki ~jh ~kj
�
P � ��; (6)

where the inequality follows because the summation is

restricted to the ~j’s that are typical sequences of the clas-

sical source and to the states j ~ki ~j which span the typical

subspace of the ~jth output. [Without these limitations, the
inequality would be replaced by an equality.] Then, the
maximum eigenvalue of ~� is no greater than that of ��,

while the number of nonzero eigenvalues of ~� cannot be
greater than those of ��; i.e., Eqs. (3)–(5) apply also to ~�.
Nowwe come to our main result. To distinguish between

the Nn distinct code words of Cn, we perform sequential
von Neumann measurements corresponding to projections

onto the possible outputs j ~ki ~j to find the channel input (as

shown in Ref. [24], these can also be replaced by joint
projectors on the spaces H ~j). In between these measure-

ments, we perform von Neumann measurements that
project onto the typical output subspace H .
We will show that, as long as the rate at which we send

information down the channel is bounded above by the
Holevo quantity (2), these measurements identify
the proper input to the channel with probability one in
the limit that the number of uses of the channel goes to
infinity. That is, we send information down the channel at a
rate R smaller than �, so that there are Nn ’ 2nR possible

randomly selected code words ~j that could be sent down

over n uses. Each code word gives rise to �2
n
P

j
pjSð�jÞ

possible typical outputs j ~ki ~j. As always with Shannon-like

random-coding arguments [26], our set of possible outputs

occupy only a fraction 2�nð��RÞ of the full output space.
This sparseness of the actual outputs in the full space is the
key to obtaining asymptotic zero error probability: All our

error probabilities will scale as 2�nð��RÞ.
The code word sent down the channel is some typical

sequence ~j, which yields some typical output j ~ki ~j with

probability p~kj ~j. We begin with a von Neumann measure-

ment corresponding to projectors P and 1� P to check
whether the output lies in the typical subspace H . From
Eq. (3) we can conclude that for any � > 0, for sufficiently
large n, this measurement yields the result yes with proba-
bility larger than 1� �. We follow this with a binary
projective measurement with projectors

P~k1j ~j1 � j ~k1i ~j1h ~k1j; 1� P~k1j ~j1 ; (7)

to check whether the input was ~j1 and the output was ~k1. If
this measurement yields the result yes, we conclude that

the input was indeed ~j1. Usually, however, this measure-
ment yields the result no. In this case, we perform another
measurement to check for typicality and move on to a

second trial output state, e.g., j ~k2i ~j1 . If this measurement

yields the result yes, we conclude that the input was ~j1.
Usually, of course, the measurement yields the result no,
and so we project again and move on to a third trial output

state, j ~k3i ~j1 , etc. Having exhausted the Oð2n
P

k
pkSð�kÞÞ typi-

cal output states from the code word ~j1, we turn to the

typical output states from the input ~j2, then ~j3, and so on,
moving through the Nn ’ 2nR code words until we even-
tually find a match. The maximum number of measure-
ments that must be performed is hence
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M ’ 2nR2
n
P
k

pkSð�kÞ
: (8)

The probability amplitude that, after m trials without find-
ing the correct state, we find it at themþ 1th trial can then
be expressed as

AmðyesÞ ¼ ~j
h ~kjPð1� P‘mÞP . . .Pð1� P‘1ÞPj ~ki ~j; (9)

where for q ¼ 1; . . . ; m the operators P‘q represent the first

m elements P~krj ~js that compose the decoding sequence of

projectors. The error probability Perrð ~j; ~kÞ of mistaking the

vector j ~ki ~j can then be bounded by considering the worst

case scenario in which the code word sent is the last one
tested in the sequence. Since this is the worst that can
happen, jAMðyesÞj with m ¼ M is the smallest possible,

so that Perrð ~j; ~kÞ � 1� jAMðyesÞj2. Recall that the input

code words ~j are randomly selected from the set of typical

input sequences, and ~k’s are typical output sequences.
Then, the average error probability for a randomly selected
set of input code words can bounded as hPerri �
1� hjAMðyesÞj2i � 1� jhAMðyesÞij2. Here h� � �i repre-
sents the average over all possible code words of a given
selected code book Cn and the averaging over all possible
code books of code words. The Cauchy-Schwarz inequal-
ity hjAMðyesÞj2i � jhAMðyesÞij2 was employed. The last
term can be evaluated as

hAmðyesÞi
¼ Tr

�
P

�
1�X

‘m

�‘mP‘m

�
P . . .P

�
1�X

‘1

�‘1P‘1

�
P~�

�

¼ Tr½ðP� ~�Þm~�� ¼ Xm
k¼0

m

k

 !
ð�1ÞkTr½~�kþ1�; (10)

where �‘ stands for the probability p~jp ~kj ~j and where we

used (6) and (7) to write ~� ¼ P
‘�‘PP‘P. To prove the

optimality of our decoding, it is hence sufficient to show
that hAmðyesÞi � 1 even when the number m of measure-
ments is equal to its maximum possible valueM of Eq. (8).
Consider then Eqs. (4) and (5), which imply

Tr ~�j � XdimðH Þ

i¼0

�j
i � 2n½Sð1�jÞþ�ð1þjÞ�: (11)

Use this and Eq. (3) to rewrite Eq. (10) as

hAmðyesÞi � Tr~�þ Xm
k¼1

m
k

� �
ð�1ÞkTr½~�kþ1�

� 1� �� Xm
k¼1

m
k

� �
2n½�kSð�Þþ�ðkþ2Þ�

¼ 1� �� �; (12)

where � � 22n�½ð1þ �nÞm � 1�, with �n ¼ 2n½�Sð�Þþ��. If
Sð�Þ> �, for large n we can write

ð1þ �nÞm � 1 ’ em�n � 1 ’ m�n: (13)

Hence, � is asymptotically negligible as long as 22n�m�n is
vanishing for n ! 1. This yields the constraint

m � 2n½Sð�Þ��� for all m: (14)

In particular, it must hold for M, the largest value of m
given in (8). By imposing this, the decoding procedure
yields a vanishing error probability if the rate R satisfies

R< �� �; (15)

as required by the Holevo bound [5].
In summary, we have shown that under the condition

(15) the average amplitude hAmðyesÞi of identifying the
correct code word is asymptotically close to 1 even in the
worst case in which we had to check over all the other code
wordsm ¼ M. This implies that the average probability of
error in identifying the codew ord asymptotically vanishes.
In other words, the procedure works even when the mea-
surements are chosen so that the code word sent is the last
one tested in the sequence of tests. Note that the same
results presented here can be obtained also by starting from
the direct calculation of the error probability [24] (instead
of by using the probability amplitude).
We conclude by noting that from Eq. (9) one sees that

the probabilities associated with the various outcomes can
be described in terms of a positive operator-valued mea-
sure fE‘g as
E1 ¼ PP1P; E2 ¼ Pð1� P1ÞPP2Pð1� P1ÞP;
E‘ ¼ Pð1� P1ÞPð1� P2ÞP . . .Pð1� P‘�1ÞP

	 P‘ . . . ð1� P1ÞP;

E0 ¼ 1� XM
‘¼1

E‘; (16)

where P‘ is defined as in (7) and E0 is the ‘‘abort’’ result.
We gave a simple realization of this positive operator-
valued measure by using sequential yes-no projections,
but different realizations may be possible. It is an alterna-
tive to the conventional pretty good measurement. The
operators P‘ in this positive operator-valued measure are
simply projections onto separable pure states or on their
orthogonal complement, and P projects into the typical
output subspace (with which the states involved have
asymptotically complete overlap). Such a sequence of pro-
jective measurements shows that the output state departs at
most infinitesimally from its original (nonentangled) form
throughout the entire decoding procedure. This clarifies
that the role of entanglement in the decoding is analogous
to [28] increasing the distinguishability of a multipartite set
of states that are not orthogonal when considered by sepa-
rate parties. Note that also the pretty good measurement
becomes projective when employed to discriminate among
a sufficiently small set of states [29,30].

PRL 106, 250501 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
24 JUNE 2011

250501-3



Conclusions.—Using projective measurements acting
on the channel output in a sequential fashion, we gave a
new proof that it is possible to attain the Holevo capacity
when a noisy quantum channel is used to transmit classical
information. Such measurements provide an alternative to
the usual pretty good measurements for channel decoding
and can be used in many of the same situations. In par-
ticular, an analogous procedure can be used to decode
channels that transmit quantum information, to approach
the coherent information limit [31–33]. This follows sim-
ply from the observation [33] that the transfer of quantum
messages over the channel can be formally treated as a
transfer of classical messages imposing an extra constraint
of privacy in the signaling.
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