
ar
X

iv
:2

01
0.

05
21

6v
1 

 [
m

at
h.

PR
] 

 1
1 

O
ct

 2
02

0

STOCHASTIC MODEL REDUCTION: CONVERGENCE

AND APPLICATIONS TO CLIMATE EQUATIONS

SIGURD ASSING, FRANCO FLANDOLI, AND UMBERTO PAPPALETTERA

Abstract. We study stochastic model reduction for evolution equations in infinite dimensional Hilbert spaces,
and show the convergence to the reduced equations via abstract results of Wong-Zakai type for stochastic
equations driven by a scaled Ornstein-Uhlenbeck process. Both weak and strong convergence are investigated,
depending on the presence of quadratic interactions between reduced variables and driving noise. Finally, we
are able to apply our results to a class of equations used in climate modeling.

1. Introduction

In this paper we study stochastic model reduction for a system of nonlinear evolution equations in infinite
dimensional Hilbert spaces which is general enough to cover well-established systems of equations used in
climate modeling. The big advantage of such a procedure is the lower complexity of the reduced equations,
since complexity is still one of the major issues when predicting the evolution of systems over time spans which
are typical for climate rather than meteorology.

Following [14], we assume that the climate variables of the system, i.e. those more relevant to climate
prediction, evolve on longer times scales than the unresolved variables, which can be modelled stochastically
and have a typical time scale much shorter than the climate variables. To be able to close the equation for
the climate variables, the task is to understand the effects of unresolved variables when stretching time to
climate-time. In what follows, we also refer to climate variables as resolved variables.

Climate modeling typically starts with equations containing quadratic nonlinearities which can describe many
features of oceanic and atmospheric dynamics at meteorological time—see [15, 20]. In abstract mathematical
terms, such equations would look like

(1)
dZt

dt
= ft +AZt +B(Zt, Zt),

where A : H → H is a linear operator, B : H×H → H is a bilinear operator, and f is an external forcing term.
Here, the variable Z taking values in H is supposed to be a complex mix of climate and unresolved variables,
and hence the space H has to be ‘big enough’ to ‘host’ variables of that type. We therefore choose H to be a
separable infinite-dimensional Hilbert space.

Now, there is a variety of procedures to identify climate variables in practice which we will not discuss in this
paper. We rather assume that climate variables have been identified spanning a Hilbert-subspace Hd ⊂ H , and
we further assume that the orthogonal complement H∞, H = Hd⊕H∞, gives the space of unresolved variables.
When projecting Z onto Hd, H∞ via the projection maps πd, π∞, equation (1) gives raise to two equations

(2)
dXt

dt
= f1

t + Ã1
1Xt +A1

2Yt + B̃1
11(Xt, Xt) +B1

12(Xt, Yt) +B1
22(Yt, Yt)

and

(3)
dYt
dt

= f2
t +A2

1Xt +A2
2Yt +B2

11(Xt, Xt) +B2
12(Xt, Yt) +B2

22(Yt, Yt)

for the collection of climate variables X = πd(Z) and unresolved variables Y = π∞(Z), respectively.
The next step, called stochastic climate modeling, consists in replacing the complicated nonlinear self-

interaction term in (3) by a linear random term. Such a replacement could be justified by the assumption
that quickly varying fluctuations of small scale unresolved variables are more or less indistinguishable from the
combined effect of a large number of weakly coupled factors, usually leading to Gaussian driving forces via
Central Limit Theorem. But such effects would only become visible at climate time and not at meteorological
time used in (2) & (3), so that we are looking to replace B2

22(Yε−1t, Yε−1t) by a linear random term, stretching
meteorological time to ε−1t, using a small parameter ε≪ 1.
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In this work, following [14, 17], we suppose that

B2
22(Yε−1t, Yε−1t) is replaced by − µε−1Yε−1t + σẆt,

where µ, σ are positive constants, and Ẇ is Gaussian noise, white in time, and coloured in space. This way, the
parameter ε is used to scale time, but also to adjust for the size of the involved variables when scaling time.

Another assumption made in [14] is that climate variables at climate time have small forcing and self-
interaction, and hence we also suppose that

f1
ε−1t + Ã1

1Xε−1t + B̃1
11(Xε−1t, Xε−1t) is replaced by εF 1

t + εA1
1Xε−1t + εB1

11(Xε−1t, Xε−1t),

avoiding so-called fast forcing and fast waves.
All in all, when introducing the notationXε

t = Xε−1t for climate variables at climate time, and Y ε
t = ε−1Yε−1t

for the effect of unresolved variables at climate time, equations (2) & (3) translate into

dXε
t

dt
= F 1

t +A1
1X

ε
t +A1

2Y
ε
t +B1

11(X
ε
t , X

ε
t ) +B1

12(X
ε
t , Y

ε
t ) + εB1

22(Y
ε
t , Y

ε
t ),(4)

dY ε
t

dt
= ε−2f2

ε−1t + ε−2A2
1X

ε
t + ε−1A2

2Y
ε
t + ε−2B2

11(X
ε
t , X

ε
t ) + ε−1B2

12(X
ε
t , Y

ε
t )− µε−2Y ε

t + σε−2Ẇt.(5)

The hope is now that, when ε tends to zero, climate variables at climate time can be approximated by a
random variable X̄ which solves a closed stochastic equation with new coefficients not depending on unresolved
variables any more. Of course, these new coefficients will be functions of the coefficients of equations (4) & (5),
and the process of finding these new coefficients is called stochastic model reduction.

Stochastic model reduction of finite-dimensional systems similar to (4),(5) were extensively discussed in [14].
However, one of the key steps, i.e. proving the convergence Xε → X̄, ε ↓ 0, was kept rather short. Indeed,
the authors first sketch a perturbation method based on a theorem by T.G. Kurtz, [13], which is their general
method, and they then briefly describe a so-called direct averaging method for special cases based on limits of
solutions to stochastic differential equations. In particular the latter method lacks a certain amount of rigour
because the convergence of the involved stochastic processes is not shown, and this gap has not been closed in
follow-up papers—see [6, 5, 10] for example.

In this paper we are not only closing this gap, but also develop a new method of proof.
We at first identify X̄ , and then study in very detail the convergence Xε → X̄, ε ↓ 0, when Xε solves an

evolution equation of type

(6)
dXε

t

dt
= F (t,Xε

t ) + σ(t,Xε
t )Y

ε
t + εβ(Y ε

t , Y
ε
t ),

where Y ε is a decoupled infinite-dimensional Ornstein-Uhlenbeck process satisfying

(7)
dY ε

t

dt
= −ε−2Y ε

t + ε−2Ẇt.

Since equation (6) is more general than (4), once stochastic model reduction is established for the system
(6),(7) with decoupled unresolved variables, it also follows for an interesting subclass of systems of type (4),(5)
with coupled unresolved variables—see Theorem 5.3. Part (ii) of this theorem deals with the case of linear
scattering, that is B1

22 = 0, and in this case we achieve showing ‘strong’ convergence in probability:

(8) lim
ε→0

P

{

sup
t≤T

‖Xε
t − X̄t‖Hd

> δ

}

= 0, ∀δ > 0,

on a given climate time interval [0, T ]. When the quadratic interaction term B1
22 is non-trivial, we can only show

convergence in law, as stated in Theorem 5.3(i). We refer to Remark 4.2(ii) for an argument which suggests
that one cannot expect much more than a weak-type convergence in the general case. This insight of course
sheds new light on the results given in [14] and follow-up papers.

At this point it should be mentioned that thoughout this paper we assume that Hd is finite-dimensional
which seems to be a natural choice when it comes to climate modeling. However, our arguments are general
and can be adapted to infinite dimensional subspaces, see [4].

In the case of the more abstract system (6),(7), the process Y ε will eventually behave like white noise, as
ε ↓ 0. This limiting behaviour is fundamental for finding the limit of equation (6) because it opens the door for
using arguments similar to those of Wong & Zakai in [21]. Of course, Wong & Zakai formulated their results in
a finite-dimensional setting. There have been earlier attempts of proving similar results in infinite dimensions,
we refer to [1, 19, 18], for example. However, we would like to emphasise that these earlier attempts dealt with
piecewise linear approximations of noise rather than an infinite dimensional Ornstein-Uhlenbeck process. Note
that it is typical for Wong-Zakai results that stochastic integral terms of limiting equations are interpreted in
the sense of Stratonovich.

The paper is structured as follows.
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In section 2, we formulate our main results on the convergence of solutions to (6),(7). First, the limiting
equation for X̄ is identified, and then conditions for weak convergence Xε → X̄ are stated in Theorem 2.2(i).
However, when (6) is a simpler equation, i.e. β = 0, even the stronger convergence (8) can be shown under the
same conditions—see Theorem 2.2(ii).

In section 3, we give the proof of Theorem 2.2(ii). The proof relies on preliminary localization and discretiza-
tion arguments which allow to consider, instead of (8), its discrete version

lim
ε→0

P

{

sup
k

‖Xε
tk − X̄tk‖Hd

> δ

}

= 0, ∀δ > 0,

for only finitely many tk ∈ [0, T ].
In section 4, we give the proof of Theorem 2.2(i) which, at the beginning, requires a careful analysis of the

quadratic term β(Y ε
t , Y

ε
t ), but otherwise is an adaptation of the proof given in the previous section.

In section 5, we eventually use the results of section 2 to prove Theorem 5.3 under quite natural conditions,
thus making the connection to our main applications in climate modeling.

2. Notation and main Result

Let Hd, H∞ be real separable Hilbert spaces. Assume that Hd is finite-dimensional, dimHd = d, with given
orthonormal basis e1, . . . , ed, and that H∞ is infinite-dimensional with given orthonormal basis f1, f2, . . .

Given two Banach spaces U, V , let L(U, V ) denote the Banach space of continuous linear operators mapping
U to V , endowed with the operator norm.

For each ε > 0, consider the pair of stochastic processes (Xε, Y ε), taking values in Hd × H∞, where Xε

satisfies (6) over a fixed finite time interval [0, T ], and Y ε is given by

Y ε
t =

∫ t

−∞

ε−2e−ε−2(t−s)dWs, t ≥ 0,

where W is a Wiener process in H∞, with real-valued time parameter and self-adjoint trace class covariance
operator Q ∈ L(H∞, H∞).

Remark 2.1. (i) A Wiener process with real-valued time parameter can be obtained in the following way: given
two independent Wiener processes (W+

t )t≥0 and (W−
t )t≥0 defined on filtered probability spaces (Ω+, (F+

t ),P+)
and (Ω−, (F−

t ),P−), respectively, set Wt =W+
t , for t ≥ 0, and Wt =W−

−t, for t < 0.
(ii) Using such a representation of W , we can also write

Y ε
t = −

∫ ∞

0

ε−2e−ε−2(t+s)dW−
s +

∫ t

0

ε−2e−ε−2(t−s)dW+
s , t ≥ 0,

which clearly is a stationary Ornstein-Uhlenbeck process on (Ω,F−
∞ ⊗ F+

∞,P), where Ω = Ω− × Ω+ and P =

P
− ⊗ P

+, see [2]. Furthermore, setting up the stochastic basis for our processes (Xε, Y ε), let (Ω,F ,P) be the
completion of (Ω,F−

∞ ⊗ F+
∞,P), and (Ft)t≥0 be the augmentation of the filtration (F−

∞ ⊗ F+
t )t≥0. Note that

this filtration would satisfy the usual conditions.
(iii) Since Q is trace class, both W and Y ε take values in H∞. Without loss of generality, we can assume

that Q is diagonal with respect to the chosen basis {fm}m∈N of H∞, that the eigenvalues of Q form a sequence
{qm}m∈N satisfying

∑

m qm <∞, and that E
[
〈Wt, fm〉2H∞

]
= |t|qm, for all m.

Adopting the useful notation W ε
t =

∫ t

0 Y
ε
s ds, we can write (6) in integral form as

(9) Xε
t = x0 +

∫ t

0

F (s,Xε
s )ds+

∫ t

0

σ(s,Xε
s )dW

ε
s +

∫ t

0

εβ(Y ε
s , Y

ε
s )ds, t ∈ [0, T ],

where x0 ∈ Hd is a deterministic initial condition, as well as F : [0, T ]×Hd → Hd, σ : [0, T ]×Hd → L(H∞, Hd),
β : H∞ ×H∞ → Hd. We make the following assumptions on these coefficients:

(A1) F ∈ C([0, T ]×Hd, Hd), and F (t, ·) ∈ Liploc(Hd, Hd), uniformly in t ∈ [0, T ];
(A2) σ ∈ C1([0, T ] × Hd,L(H∞, Hd)), and its space-differential Dσ(t, ·) ∈ Liploc(Hd,L(Hd,L(H∞, Hd))),

uniformly in t ∈ [0, T ];
(A3) β : H∞ ×H∞ → Hd is a continuous bilinear map.

Of course, by standard theory (see [2] for example), equation (9) admits a unique local strong solution, for
each ε > 0.

Next, we introduce the limiting equation for the wanted limit X̄ of the processes Xε, when ε ↓ 0. First,
define the so-called Stratonovich correction term C : [0, T ]×Hd → Hd by

(10) Ci(s, x) = 〈C(s, x), ei〉Hd
=

1

2

∑

m∈N

qm

d∑

j=1

Djσ
i,m(s, x)σj,m(s, x), i = 1, . . . , d,
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where

σi,m(s, x) = 〈σ(s, x)fm, ei〉Hd
, i = 1, . . . , d, m ∈ N,

is matrix notation for the linear map σ(s, x) ∈ L(H∞, Hd) with respect to our chosen basis vectors; second, let

(11) biℓ,m = 〈β(fℓ, fm), ei〉Hd

√
qℓqm
2

, i = 1, . . . , d, ℓ,m ∈ N.

Then, our limiting equation would read

(12) X̄t = x0 +

∫ t

0

(

F (s, X̄s) + C(s, X̄s)
)

ds+

∫ t

0

σ(s, X̄s)dWs +
∑

ℓ,m∈N

bℓ,mW̄
ℓ,m
t , t ∈ [0, T ],

where W is the same Wiener process used to define Y ε in Remark 2.1, while {W̄ ℓ,m}ℓ,m∈N is a family of
independent one-dimensional standard Wiener processes, which are also independent of W .

Again by standard theory, this equation admits a unique local strong solution, too. However, in view of the
interpretation of our results with respect to climate modeling, it is natural to further assume that

(A4) both equations (9) and (12) admit global solutions on [0, T ].

Another assumption specific to climate modeling, which has been advocated in [14], for example, would
be that the mean of β(Y ε

s , Y
ε
s ) is zero, for any s, with respect to the invariant measure of the corresponding

Ornstein-Uhlenbeck process. Since all Y ε are stationary under P, see Remark 2.1(ii), this assumption would
translate into

E [〈β(Y ε
s , Y

ε
s ), ei〉Hd

] =
∑

ℓ,m∈N

〈β(fℓ, fm), ei〉Hd
E
[
Y ε,ℓ
s Y ε,m

s

]
=
∑

ℓ∈N

〈β(fℓ, fℓ), ei〉Hd

ε−2

2
qℓ = 0,

where Y ε,ℓ
s is short notation for the coordinates 〈Y ε

s , fℓ〉H∞
, ℓ = 1, 2, . . . , s ∈ [0, T ]. As a consequence, we also

impose the zero-mean condition

(A5)
∑

ℓ∈N
〈β(fℓ, fℓ), ei〉Hd

qℓ = 0, for all i = 1, . . . , d,

which is usually true for equations from fluid-dynamics and can in general be understood as a renormalization
procedure for the quadratic term.

The following theorem is the main result of this paper.

Theorem 2.2. (i) Assume (A1)-(A5). Then, Xε converges to X̄, in law, ε ↓ 0.
(ii) However, if (A1)-(A4) and (A5) comes via β = 0, then the stronger convergence (8) holds true.

In what follows, to keep notation light in proofs, when no confusion may occur, the norms in both spaces
Hd and H∞ will be denoted by | · |, and their scalar products by 〈·, ·〉. The symbol . means inequality up to a
multiplicative constant, possibly depending on the parameters of our equations, but not on ε.

3. Strong convergence

In this section we give the proof of Theorem 2.2(ii), which is divided into several steps.
First, by localization, we argue that we can restrict ourselves to |Xε

t |, |X̄t| ≤ R, for some large R, which is
effectively leading to Lipschitz continuity of the coefficients of (9).

Second, we discretize the problem, which allows us to reduce the proof of Theorem 2.2(ii) to its discrete
version:

lim
ε→0

P

{

sup
k

|Xε
tk

− X̄tk | > δ

}

= 0, ∀δ > 0,

for only finitely many tk ∈ [0, T ]. Here, we choose tk = k∆, where ∆ = ∆ε is a positive parameter whose
ε-dependence has to be carefully chosen in the proof—see Remark 3.8.

Third, we prove the above discretized version.

3.1. Localization. Fix ε > 0, δ ∈ (0, 1), and define

τεR = inf{t ≥ 0 : |Xε
t | ≥ R+ 1} ∧ inf{t ≥ 0 : |X̄t| ≥ R}, for R > 0,
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so that

P

{

sup
t≤T

|Xε
t − X̄t| > δ

}

= P

{

sup
t≤T

|Xε
t − X̄t| > δ, sup

t≤T
|X̄t| ≥ R

}

+ P

{

sup
t≤T

|Xε
t − X̄t| > δ, sup

t≤T
|X̄t| < R

}

= P

{

sup
t≤T

|Xε
t − X̄t| > δ, sup

t≤T
|X̄t| ≥ R

}

+ P

{

sup
t≤T∧τε

R

|Xε
t − X̄t| > δ, sup

t≤T
|X̄t| < R

}

≤ P

{

sup
t≤T

|X̄t| ≥ R

}

+ P

{

sup
t≤T∧τε

R

|Xε
t − X̄t| > δ

}

.(13)

Therefore, since (A4) implies

P

{

sup
t≤T

|X̄t| ≥ R

}

→ 0, as R ↑ ∞,

to prove (8), it is sufficient to show the convergence of the second summand on the right-hand side of (13),
when ε ↓ 0, for fixed δ ∈ (0, 1), R > 0. Furthermore, by Markov inequality,

(14) P

{

sup
t≤T∧τε

R

|Xε
t − X̄t| > δ

}

≤ δ−p
E

[

sup
t≤T∧τε

R

|Xε
t − X̄t|

p

]

,

for every p > 0, δ ∈ (0, 1), and hence showing convergence of the above right-hand side, only, is enough. To
keep notation light, we are going to use τε instead of τεR, as R > 0 will be fixed, in what follows.

3.2. Discretization. Fix ε > 0. We show that the expectation on the right-hand side of (14) can be replaced
by an expectation of the same quantity, but with the supremum taken over a finite number (diverging to ∞, as
ε ↓ 0) of times tk, see Corollary 3.6 below.

To start with, we have the following useful a priori estimate.

Lemma 3.1. For any p > 1, the Ornstein-Uhlenbeck process Y ε satisfies

E

[

sup
t≤T

|Y ε
t |

p

]

. ε−p.

Proof. First, the result is true in one dimension—see [12, Theorem 2.2].
In the infinite dimensional case, by Hölder’s inequality, we can suppose p > 2. Therefore, since Q is trace

class with eigenvalues satisfying
∑

m∈N
qm <∞, when α = (p− 2)/p, we obtain that

E

[

sup
t≤T

|Y ε
t |

p

]

= E




sup
t≤T




∑

m∈N,qm>0

qαmq
−α
m |Y ε,m

t |
2





p/2





.




∑

m∈N,qm>0

q−αp/2
m E

[

sup
t≤T

|Y ε,m
t |

p
]




(
∑

m∈N

qαp/(p−2)
m

)(p−2)/2

. ε−p,

having used the one-dimensional result for the coordinates Y ε,m
t = 〈Y ε

t , fm〉, m = 1, 2, . . . �

Now, we introduce the discretization of the time interval [0, T ]. Let ∆ > 0, and let [T/∆] be the largest
integer less or equal than T/∆. In what follows, ∆ will also depend on ε, in a way to be determined later. Also,
to make it easier to bound terms by powers of ε or ∆, without loss of generality, we will always assume that
both ε,∆ are less than one.

The next two lemmas control the excursion of Xε between adjacent nodes in terms of the ratio ∆/ε.

Lemma 3.2. For any p > 1, and any deterministic time τ > 0,

E




 sup

k=0,1,...,[T/∆]
t≤τ, t+k∆≤T∧τε

|Xε
t+k∆ −Xε

k∆|
p




 .

(τ

ε

)p

.

Proof. Since β = 0, by (9), the increment Xε
t+k∆ −Xε

k∆ can be written as

Xε
t+k∆ −Xε

k∆ =

∫ t+k∆

k∆

F (s,Xε
s )ds+

∫ t+k∆

k∆

σ(s,Xε
s )dW

ε
s , for t+ k∆ ≤ T ∧ τε.
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Therefore, using (A1),(A2), boundedness of Xε on [0, τε], and Lemma 3.1, we obtain that

E




 sup

k=0,1,...,[T/∆]
t≤τ, t+k∆≤T∧τε

|Xε
t+k∆ −Xε

k∆|p




 . τp

(

1 + E

[

sup
t≤T∧τε

|Y ε
t |

p

])

.
(τ

ε

)p

,

where W ε
t =

∫ t

0
Y ε
s ds was defined in section 2. �

Lemma 3.3. For any p > 1, and any fixed k ∈ {0, 1, . . . , [T/∆]} such that k∆ ≤ T ,

E

[

|Xε
(k+1)∆∧τε −Xε

k∆∧τε |p
]

. ∆p/2 + εp +

(
∆

ε

)2p

.

Proof. It suffices to bound every single term on the right-hand side of the equation

Xε
(k+1)∆∧τε −Xε

k∆∧τε =

∫ (k+1)∆∧τε

k∆∧τε

F (s,Xε
s )ds

+

∫ (k+1)∆∧τε

k∆∧τε

(σ(s,Xε
s )− σ(k∆ ∧ τε, Xε

k∆∧τε)) dW ε
s

+

∫ (k+1)∆∧τε

k∆∧τε

σ(k∆ ∧ τε, Xε
k∆∧τε)dW ε

s .

First, by (A1) and boundedness of Xε on [0, τε], we have that

E

[∣
∣
∣
∣
∣

∫ (k+1)∆∧τε

k∆∧τε

F (s,Xε
s )ds

∣
∣
∣
∣
∣

p]

. ∆p.

Second, using Hölder’s inequality with q′ > 1, (A2), Lemma 3.1 and Lemma 3.2,

E

[∣
∣
∣
∣
∣

∫ (k+1)∆∧τε

k∆∧τε

(σ(s,Xε
s )− σ(k∆ ∧ τε, Xε

k∆∧τε)) dW ε
s

∣
∣
∣
∣
∣

p]

. E

[

sup
t≤T

|Y ε
t |

p

∣
∣
∣
∣
∣

∫ (k+1)∆∧τε

k∆∧τε

|σ(s,Xε
s )− σ(k∆ ∧ τε, Xε

k∆∧τε)| ds

∣
∣
∣
∣
∣

p]

. ε−p

(

E





∣
∣
∣
∣
∣

∫ (k+1)∆∧τε

k∆∧τε

|σ(s,Xε
s )− σ(k∆ ∧ τε, Xε

k∆∧τε)| ds

∣
∣
∣
∣
∣

pq′




)1/q′

. ε−p∆p−1/q′

(
∫ (k+1)∆∧τε

k∆∧τε

E

[

|Xε
s −Xε

k∆∧τε |
pq′

+ (s− k∆)pq
′

]

ds

)1/q′

.

(
∆

ε

)2p

.

Finally,

E

[∣
∣
∣
∣
∣

∫ (k+1)∆∧τε

k∆∧τε

σ(k∆ ∧ τε, Xε
k∆∧τε)dW ε

s

∣
∣
∣
∣
∣

p]

. E

[∣
∣
∣W ε

(k+1)∆∧τε −W ε
k∆∧τε

∣
∣
∣

p]

. ∆p/2 + εp,

because, for every t2 > t1 ≥ 0,

W ε
t2 −W ε

t1 =

∫ t2

t1

(∫ s

−∞

ε−2e−ε−2(s−r)dWr

)

ds(15)

=Wt2 −Wt1 −

∫ t2

−∞

e−ε−2(t2−r)dWr +

∫ t1

−∞

e−ε−2(t1−r)dWr .

�

The next lemma controls the excursion of the limiting process X̄ between adjacent nodes.

Lemma 3.4. For any p > 1, any deterministic time τ ∈ (0, 1), and any fixed k ∈ {0, 1, . . . , [T/∆]},

E

[

sup
t≤τ, t+k∆≤T∧τε

|X̄t+k∆ − X̄k∆|
p

]

. τ
p
2 .
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Proof. Since β = 0, by (12), the increment X̄t+k∆ − X̄k∆ can be written as

X̄t+k∆ − X̄k∆ =

∫ t+k∆

k∆

(
F (s, X̄s) + C(s, X̄s)

)
ds+

∫ t+k∆

k∆

σ(s, X̄s)dWs, for t+ k∆ ≤ T ∧ τε.

Therefore, using (A1),(A2), boundedness of Xε on [0, τε], and Burkholder-Davis-Gundy’s inequality, we obtain
that

E

[

sup
t≤τ, t+k∆≤T∧τε

|X̄t+k∆ − X̄k∆|p

]

. τp + E

[

sup
t≤τ, t+k∆≤T∧τε

∣
∣
∣
∣
∣

∫ t+k∆

k∆

σ(s, X̄s)dWs

∣
∣
∣
∣
∣

p]

. τp + τ
p
2 ,

which proves the lemma since τ < 1. �

Corollary 3.5. For any p > 1,

E




 sup

k=0,1,...,[T/∆]
t≤∆, t+k∆≤T∧τε

|X̄t+k∆ − X̄k∆|
p




 . ∆

p
2
−1.

Proof. The claim easily follows from Lemma 3.4 with τ = ∆, and the inequality

E




 sup

k=0,1,...,[T/∆]
t≤∆, t+k∆≤T∧τε

|X̄t+k∆ − X̄k∆|
p




 .

[T/∆]
∑

k=0

E

[

sup
t≤∆, t+k∆≤T∧τε

|X̄t+k∆ − X̄k∆|
p

]

.

�

Corollary 3.6. Let ∆ = ∆ε > 0 depend on ε such that ∆/ε→ 0, as ε ↓ 0. Then,

E

[

sup
t≤T∧τε

|Xε
t − X̄t|

2

]

. E




 sup
k=0,1,...,[T/∆]

k∆≤τε

|Xε
k∆ − X̄k∆|

2




+ o(1).

Proof. First, by Hölder’s inequality with q > 1 and Corollary 3.5, we have that

E




 sup

k=0,1,...,[T/∆]
t≤∆, t+k∆≤T∧τε

|X̄t+k∆ − X̄k∆|
2




 .

(

E




 sup

k=0,1,...,[T/∆]
t≤∆, t+k∆≤T∧τε

|X̄t+k∆ − X̄k∆|
2q






)1/q

. ∆1−1/q.

Thus, the proof can easily be completed by combining the above and Lemma 3.2, while taking into account

Xε
t − X̄t = (Xε

t −Xε
[t/∆]∆) + (Xε

[t/∆]∆ − X̄[t/∆]∆) + (X̄[t/∆]∆ − X̄t),

where [t/∆] is again our notation for the floor of t/∆. �

3.3. Proof of the discretized version. By (14) and Corollary 3.6, it suffices to prove

(16) E




 sup
k=0,...,[T/∆]

k∆≤τε

∣
∣Xε

k∆ − X̄k∆

∣
∣
2




→ 0, ε ↓ 0,

for some ∆ = ∆ε = o(ε). The proof is inspired by [8, Section VI.7].
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To start with, by (9) without β-term, (A2), and (15), we have that

Xε
(k+1)∆ =Xε

k∆ +

∫ (k+1)∆

k∆

F (s,Xε
s )ds+

∫ (k+1)∆

k∆

σ(s,Xε
s )dW

ε
s(17)

=Xε
k∆ +

∫ (k+1)∆

k∆

(F (s,Xε
s )− F (k∆, Xε

k∆)) ds

+

∫ (k+1)∆

k∆

F (k∆, Xε
k∆)ds

+

∫ (k+1)∆

k∆

(σ(s,Xε
s )− σ(k∆, Xε

k∆)) dW ε
s +

∫ (k+1)∆

k∆

σ(k∆, Xε
k∆)dW ε

s

=Xε
k∆ +

∫ (k+1)∆

k∆

(F (s,Xε
s )− F (k∆, Xε

k∆)) ds

+

∫ (k+1)∆

k∆

F (k∆, Xε
k∆)ds

+

∫ (k+1)∆

k∆

(∫ s

k∆

(∂rσ(r,X
ε
r ) +Dσ(r,Xε

r )F (r,X
ε
r )) dr

)

dW ε
s

+

∫ (k+1)∆

k∆

(∫ s

k∆

(Dσ(r,Xε
r )σ(r,X

ε
r )−Dσ(k∆, Xε

k∆)σ(k∆, Xε
k∆)) dW ε

r

)

dW ε
s

+

∫ (k+1)∆

k∆

(∫ s

k∆

(
Dσ(k∆, Xε

k∆)σ(k∆, Xε
k∆)−Dσ(k∆, X̄k∆)σ(k∆, X̄k∆)

)
dW ε

r

)

dW ε
s

+

∫ (k+1)∆

k∆

(∫ s

k∆

Dσ(k∆, X̄k∆)σ(k∆, X̄k∆)dW ε
r

)

dW ε
s

+

∫ (k+1)∆

k∆

σ(k∆, Xε
k∆)dWs

+ σ(k∆, Xε
k∆)ε2

(

Y ε
k∆ − Y ε

(k+1)∆

)

=Xε
k∆ + Ik1 + Ik2 + Ik3 + Ik4 + Ik5 + Ik6 + Ik7 + Ik8 ,

for any k = 0, . . . , [T/∆] such that (k + 1)∆ ≤ T .
Similarly, using (12) instead of (9), the process X̄ satisfies

X̄(k+1)∆ = X̄k∆ +

∫ (k+1)∆

k∆

(
F (s, X̄s)− F (k∆, X̄k∆)

)
ds(18)

+

∫ (k+1)∆

k∆

F (k∆, X̄k∆)ds

+

∫ (k+1)∆

k∆

(
C(s, X̄s)− C(k∆, X̄k∆)

)
ds

+

∫ (k+1)∆

k∆

C(k∆, X̄k∆)ds

+

∫ (k+1)∆

k∆

(
σ(s, X̄s)− σ(k∆, X̄k∆)

)
dWs +

∫ (k+1)∆

k∆

σ(k∆, X̄k∆)dWs

= X̄k∆ + Jk
1 + Jk

2 + Jk
3 + Jk

4 + Jk
5 + Jk

6 .

Having in mind to apply Gronwall’s lemma, it turns out to be useful to summarise the contributions of the
right-hand sides of (17), (18) as follows:

Xε
h∆ − X̄h∆ =

h−1∑

k=0

(
Ik2 − Jk

2

)
+

h−1∑

k=0

(
Ik6 − Jk

4

)
+

h−1∑

k=0

(
Ik7 − Jk

6

)
+

h−1∑

k=0

Ik5(19)

+
h−1∑

k=0

(
Ik1 + Ik3 + Ik4 + Ik8 − Jk

1 − Jk
3 − Jk

5

)
,

for any h = 1, . . . , [T/∆], which splits the difference Xε
h∆ − X̄h∆ into 5 sums.
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We at first prove that the 2nd and the 5th sum can be neglected when proving (16). The summands of
the 5th sum are discussed in Lemma 3.7 below. The contribution of the 2nd sum though is more delicate and
requires a martingale argument similar to that of [8, Theorem VI.7.1].

The remaining sums will be controlled in terms of the difference Xε − X̄ itself, which allows them to be
estimated via Gronwall’s lemma.

Of course, under assumption (A1), the function F is uniformly continuous when restricted to [0, T ]×BR(0),
where BR(0) is the closed ball of radius R in Hd. In what follows, we will denote by ωF : [0, T ] → [0,∞) the
(local) modulus of continuity of F (·, x):

|F (t, x) − F (s, x)| ≤ ωF (|t− s|), for every t, s ∈ [0, T ], and x ∈ BR(0).

Obviously, the function ωF vanishes at zero, and without loss of generality, it can be chosen to be both
non-decreasing and continuous.

Denote by ωσ the corresponding modulus of continuity of the derivative Dσ(·, x), and let ωF,σ = ωF + ωσ.

Lemma 3.7. For any p > 1:

E




 sup
h=1,...,[T/∆]

h∆≤τε

∣
∣
∣
∣
∣

h−1∑

k=0

Ik1

∣
∣
∣
∣
∣

p

+

∣
∣
∣
∣
∣

h−1∑

k=0

Ik3

∣
∣
∣
∣
∣

p



 .

(
∆

ε

)p

+ ωF (∆)p;

E




 sup
h=1,...,[T/∆]

h∆≤τε

∣
∣
∣
∣
∣

h−1∑

k=0

Ik4

∣
∣
∣
∣
∣

p



 .

(
∆2

ε3

)p

+

(
∆

ε2

)p

ωσ(∆)p;

E




 sup
h=1,...,[T/∆]

h∆≤τε

∣
∣
∣
∣
∣

h−1∑

k=0

Ik8

∣
∣
∣
∣
∣

p



 .

(
ε2

∆

)p/2

+

(
ε2

∆

)p

+

(
∆

ε

)p

;

E




 sup
h=1,...,[T/∆]

h∆≤τε

∣
∣
∣
∣
∣

h−1∑

k=0

Jk
1

∣
∣
∣
∣
∣

p

+

∣
∣
∣
∣
∣

h−1∑

k=0

Jk
3

∣
∣
∣
∣
∣

p

+

∣
∣
∣
∣
∣

h−1∑

k=0

Jk
5

∣
∣
∣
∣
∣

p



 . ∆p/2 + ωF,σ(∆)p.

Proof. Throughout this proof, we will frequently make use of (A1),(A2) without explicit mentioning.
For

∑
Ik1 , by Hölder’s inequality and Lemma 3.2,

E




 sup
h=1,...,[T/∆]

h∆≤τε

∣
∣
∣
∣
∣

h−1∑

k=0

Ik1

∣
∣
∣
∣
∣

p



 . E




 sup
h=1,...,[T/∆]

h∆≤τε

∣
∣
∣
∣
∣

h−1∑

k=0

∫ (k+1)∆

k∆

(|Xε
s −Xε

k∆|+ ωF (s− k∆)) ds

∣
∣
∣
∣
∣

p





.

[T/∆]−1
∑

k=0

∫ (k+1)∆

k∆

E [|Xε
s∧τε −Xε

k∆∧τε |
p
+ ωF (∆)p] ds

.

(
∆

ε

)p

+ ωF (∆)p.

For
∑
Ik3 , by Hölder’s inequality and Lemma 3.1,

E




 sup
h=1,...,[T/∆]

h∆≤τε

∣
∣
∣
∣
∣

h−1∑

k=0

Ik3

∣
∣
∣
∣
∣

p



 . E




 sup
h=1,...,[T/∆]

h∆≤τε

∣
∣
∣
∣
∣
sup
t≤T

|Y ε
t |

h−1∑

k=0

∫ (k+1)∆

k∆

(s− k∆) ds

∣
∣
∣
∣
∣

p





. E



sup
t≤T

|Y ε
t |

p
[T/∆]−1
∑

k=0

∫ (k+1)∆

k∆

|s− k∆|p ds



 .

(
∆

ε

)p

.
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For
∑
Ik4 , by Hölder’s inequality, Lemma 3.1 and Lemma 3.2,

E




 sup
h=1,...,[T/∆]

h∆≤τε

∣
∣
∣
∣
∣

h−1∑

k=0

Ik4

∣
∣
∣
∣
∣

p





. E




 sup
h=1,...,[T/∆]

h∆≤τε

∣
∣
∣
∣
∣
sup
t≤T

|Y ε
t |

2
h−1∑

k=0

∫ (k+1)∆

k∆

(∫ s

k∆

(|Xε
r −Xε

k∆|+ ωσ(r − k∆)) dr

)

ds

∣
∣
∣
∣
∣

p





. E




 sup
h=1,...,[T/∆]

h∆≤τε

sup
t≤T

|Y ε
t |

2p
h−1∑

k=0

∫ (k+1)∆

k∆

∣
∣
∣
∣

∫ s

k∆

(|Xε
r −Xε

k∆|+ ωσ(r − k∆)) dr

∣
∣
∣
∣

p

ds






. ε−2p





[T/∆]−1
∑

k=0

∫ (k+1)∆

k∆

(s− k∆)pq
′−1

∫ s

k∆

(

E

[

|Xε
r∧τε −Xε

k∆∧τε |
pq′

+ ωσ(∆)pq
′

]

dr
)

ds





1/q′

. ε−3p





[T/∆]−1
∑

k=0

∫ (k+1)∆

k∆

(s− k∆)2pq
′

ds





1/q′

+

(
∆

ε2

)p

ωσ(∆)p

.

(
∆2

ε3

)p

+

(
∆

ε2

)p

ωσ(∆)p.

We now consider
∑
Ik8 . Here, the idea is to convert Y ε-increments into Xε-increments via integration by

parts since Xε-increments are easier to control. This way, applying Lemma 3.1 and Lemma 3.3,

E




 sup
h=1,...,[T/∆]

h∆≤τε

∣
∣
∣
∣
∣

h−1∑

k=0

Ik8

∣
∣
∣
∣
∣

p



 . E




 sup
h=1,...,[T/∆]

h∆≤τε

∣
∣
∣
∣
∣

h−1∑

k=0

σ(k∆, Xε
k∆)ε2

(

Y ε
k∆ − Y ε

(k+1)∆

)
∣
∣
∣
∣
∣

p





. E




 sup
h=1,...,[T/∆]

h∆≤τε

∣
∣
∣
∣
∣

h∑

k=1

(

σ(k∆, Xε
k∆)− σ((k − 1)∆, Xε

(k−1)∆)
)

ε2Y ε
k∆

∣
∣
∣
∣
∣

p





. E




 sup
h=1,...,[T/∆]

h∆≤τε

sup
t≤T

∣
∣ε2Y ε

t

∣
∣
p

∣
∣
∣
∣
∣

h∑

k=1

(∣
∣
∣Xε

k∆ −Xε
(k−1)∆

∣
∣
∣+∆

)
∣
∣
∣
∣
∣

p





. E

[

sup
t≤T

∣
∣ε2Y ε

t

∣
∣
pq
]1/q

E




 sup
h=1,...,[T/∆]

h∆≤τε

∣
∣
∣
∣
∣

h∑

k=1

(∣
∣
∣Xε

k∆ −Xε
(k−1)∆

∣
∣
∣+∆

)
∣
∣
∣
∣
∣

pq′





1/q′

. εp∆1/q′−p





[T/∆]
∑

k=1

E

[∣
∣
∣Xε

k∆∧τε −Xε
(k−1)∆∧τε

∣
∣
∣

pq′

+∆pq′
]




1/q′

. εp∆−p

(

∆pq′/2 + εpq
′

+

(
∆

ε

)2pq′
)1/q′

.

(
ε2

∆

)p/2

+

(
ε2

∆

)p

+

(
∆

ε

)p

.
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In a similar way, for
∑
Jk
1 and

∑
Jk
3 , now applying Lemma 3.4,

E




 sup
h=1,...,[T/∆]

h∆≤τε

∣
∣
∣
∣
∣

h−1∑

k=0

Jk
1

∣
∣
∣
∣
∣

p

+

∣
∣
∣
∣
∣

h−1∑

k=0

Jk
3

∣
∣
∣
∣
∣

p



 . E




 sup
h=1,...,[T/∆]

h∆≤τε

∣
∣
∣
∣
∣

h−1∑

k=0

∫ (k+1)∆

k∆

(∣
∣X̄s − X̄k∆

∣
∣+ ωF,σ(s− k∆)

)
ds

∣
∣
∣
∣
∣

p





.

[T/∆]−1
∑

k=0

∫ (k+1)∆

k∆

E
[∣
∣X̄s∧τε − X̄k∆∧τε

∣
∣
p
+ ωF,σ(∆)p

]
ds

. ∆p/2 + ωF,σ(∆)p.

For the last sum
∑
Jk
5 , by Burkholder-Davis-Gundy’s inequality and Lemma 3.4,

E




 sup
h=1,...,[T/∆]

h∆≤τε

∣
∣
∣
∣
∣

h−1∑

k=0

Jk
5

∣
∣
∣
∣
∣

p



 . E




 sup
h=1,...,[T/∆]

h∆≤τε

∣
∣
∣
∣
∣

h−1∑

k=0

∫ (k+1)∆

k∆

(
σ(s, X̄s)− σ(k∆, X̄k∆)

)
dWs

∣
∣
∣
∣
∣

p





. E






∣
∣
∣
∣
∣
∣

[T/∆]−1
∑

k=0

∫ (k+1)∆∧τε

k∆∧τε

∣
∣σ(s, X̄s)− σ(k∆, X̄k∆)

∣
∣
2
ds

∣
∣
∣
∣
∣
∣

p/2





. E





∣
∣
∣
∣
∣
∣

[T/∆]−1
∑

k=0

∫ (k+1)∆∧τε

k∆∧τε

∣
∣σ(s, X̄s)− σ(k∆, X̄k∆)

∣
∣
2
ds

∣
∣
∣
∣
∣
∣

p 



1/2

.





[T/∆]−1
∑

k=0

∫ (k+1)∆

k∆

E

[∣
∣X̄s∧τε − X̄k∆∧τε

∣
∣
2p

+ (s− k∆)2p
]

ds





1/2

. ∆p/2.

�

Remark 3.8. The estimates given in Lemma 3.7 motivate the following choice of how ∆ = ∆ε should behave
when ε goes to zero:

∆2/ε3 → 0, ωσ(∆)∆/ε2 → 0, ε2/∆ → 0.

Such a choice is always possible. Indeed, without loss of generality, we can suppose ωσ(t) > t1/2, for every

t ∈ [0, T ], and then define ∆ = ∆ε via ∆
√

ωσ(∆) = ε2.

We now discuss the 2nd sum on the right-hand side of (19), that is

h−1∑

k=0

(
∫ (k+1)∆

k∆

(∫ s

k∆

Dσ(k∆, X̄k∆)σ(k∆, X̄k∆)dW ε
r

)

dW ε
s −

∫ (k+1)∆

k∆

C(k∆, X̄k∆)ds

)

,

the i-th component of which, when plugging in (10), reads

h−1∑

k=0

∑

ℓ,m∈N

∑

j=1,...,d

Djσ
i,m(k∆, X̄k∆)σj,ℓ(k∆, X̄k∆)

(

ckℓ,m(∆, ε)− δℓ,m
qm
2
∆
)

,

where ckℓ,m(∆, ε) is given by

ckℓ,m(∆, ε) =

∫ (k+1)∆

k∆

(∫ s

k∆

dW ε,ℓ
r

)

dW ε,m
s .

Taking the conditional expectation of ckℓ,m(∆, ε) with respect to Fk∆ yields

E
[
ckℓ,m(∆, ε) | Fk∆

]
=

∫ (k+1)∆

k∆

(∫ s

k∆

E
[
Y ε,ℓ
r Y ε,m

s | Fk∆

]
dr

)

ds

=Y ε,ℓ
k∆Y

ε,m
k∆

∫ (k+1)∆

k∆

(∫ s

k∆

e−ε−2(r+s−2k∆)dr

)

ds

+ δℓ,m

∫ (k+1)∆

k∆

(∫ s

k∆

qℓ
ε−2

2

(

e−ε−2(s−r) − e−ε−2(r+s−2k∆)
)

dr

)

ds,

where the following representation of Y ε,

Y ε,m
s = Y ε,m

k∆ e−ε−2(s−k∆) +

∫ s

k∆

e−ε−2(s−r)ε−2dWm
r ,
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has been used, and this conditional expectation can easily be calculated as

E
[
ckℓ,m(∆, ε) | Fk∆

]
=
ε4

2
Y ε,ℓ
k∆Y

ε,m
k∆

(

e−ε−2∆ − 1
)2

+ δℓ,m
qm
2

(

∆+ ε2
(

−
3

2
+ 2e−ε−2∆ −

1

2
e−2ε−2∆

))

.(20)

Now, since
∑

j=1,...,dDjσ
i,m(k∆, X̄τε∧(k∆))σ

j,ℓ(k∆, X̄τε∧(k∆)) is Fk∆ measurable, for every ℓ,m ∈ N, i =

1, . . . , d, each process M i
h, h = 1, . . . , [T/∆], given by

M i
h =

h−1∑

k=0

∑

ℓ,m∈N

∑

j=1,...,d

Djσ
i,m(k∆, X̄τε∧(k∆))σ

j,ℓ(k∆, X̄τε∧(k∆))
(
ckℓ,m(∆, ε)− E

[
ckℓ,m(∆, ε) | Fk∆

])
,

is a discrete martingale with respect to the filtration (Fh∆)
[T/∆]
h=1 .

Lemma 3.9. For each i = 1, . . . , d,

E




 sup
h=1,...,[T/∆]

h∆≤τε

∣
∣M i

h

∣
∣
2




 .

(
∆

ε

)2

+∆.

Proof. Combining Doob’s maximal inequality and martingale property gives

E




 sup
h=1,...,[T/∆]

h∆≤τε

∣
∣M i

h

∣
∣
2




 . E

[∣
∣
∣M i

[T/∆]

∣
∣
∣

2
]

.

[T/∆]−1
∑

k=0

E






∣
∣
∣
∣
∣
∣

∑

ℓ,m∈N

ckℓ,m(∆, ε)− E
[
cℓ,m(∆, ε) | Fk∆

]

∣
∣
∣
∣
∣
∣

2



 ,

where

E






∣
∣
∣
∣
∣
∣

∑

ℓ,m∈N

ckℓ,m(∆, ε)− E
[
ckℓ,m(∆, ε) | Fk∆

]

∣
∣
∣
∣
∣
∣

2



 . E






∣
∣
∣
∣
∣
∣

∑

ℓ,m∈N

ckℓ,m(∆, ε)

∣
∣
∣
∣
∣
∣

2



 ,

for each k = 0, . . . , [T/∆]− 1, because the conditional expectation is an L2-projection. Thus, by independence
of Y ε,ℓ and Y ε,m, for every ℓ 6= m, we can estimate

E




 sup
h=1,...,T/∆

h∆≤τε

∣
∣M i

h

∣
∣
2




 .

T/∆−1
∑

k=0

∑

ℓ,m∈N

E





∣
∣
∣
∣
∣

∫ (k+1)∆

k∆

(

W ε,ℓ
s −W ε,ℓ

k∆

)

dW ε,m
s

∣
∣
∣
∣
∣

2




.

T/∆−1
∑

k=0

∑

ℓ,m∈N

∆

∫ (k+1)∆

k∆

E

[∣
∣
∣

(

W ε,ℓ
s −W ε,ℓ

k∆

)

Y ε,m
s

∣
∣
∣

2
]

ds

.

T/∆−1
∑

k=0

∑

ℓ,m∈N

∆

∫ (k+1)∆

k∆

E

[∣
∣
∣W ε,ℓ

s −W ε,ℓ
k∆

∣
∣
∣

2q
]1/q

E

[

|Y ε,m
s |

2q′
]1/q′

ds

.

T/∆−1
∑

k=0

∑

ℓ,m∈N

qℓqm∆ε−2

∫ (k+1)∆

k∆

(
∆+ ε2

)
ds .

(
∆

ε

)2

+∆.

�

To eventually cover the remainder of the 2nd sum on the right-hand side of (19), after subtracting the
martingale term Mh, we introduce

N i
h =

h−1∑

k=0

∑

ℓ,m∈N

∑

j=1,...,d

Djσ
i,m(k∆, X̄k∆)σj,ℓ(k∆, X̄k∆)

(

E
[
ckℓ,m(∆, ε) | Fk∆

]
− δℓ,m

qm
2
∆
)

.

Lemma 3.10. For each i = 1, . . . , d,

E




 sup
h=1,...,[T/∆]

h∆≤τε

∣
∣N i

h

∣
∣
2




 .

(
ε2

∆

)2

.
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Proof. The proof is an easy consequence of (20). Indeed,

E




 sup
h=1,...,[T/∆]

h∆≤τε

∣
∣N i

h

∣
∣
2




 . E




 sup
h=1,...,[T/∆]

h∆≤τε

∣
∣
∣
∣
∣
∣

h−1∑

k=0

∑

ℓ,m∈N

∣
∣
∣E
[
ckℓ,m(∆, ε) | Fk∆

]
− δℓ,m

qm
2
∆
∣
∣
∣

∣
∣
∣
∣
∣
∣

2





. ε4∆−1

[T/∆]−1
∑

k=0

∑

ℓ,m∈N

qℓqm .

(
ε2

∆

)2

.

�

All in all, Lemma 3.9 and Lemma 3.10 together imply

E




 sup
h=1,...,[T/∆]

h∆≤τε

∣
∣
∣
∣
∣

h−1∑

k=0

(
Ik6 − Jk

4

)

∣
∣
∣
∣
∣

2



 = E




 sup
h=1,...,[T/∆]

h∆≤τε

|(Mh +Nh)|
2




 .

(
∆

ε

)2

+∆+

(
ε2

∆

)2

,

showing that the 2nd sum on the right-hand side of (19) can be neglected, like the 5th one, when ε ↓ 0, and
∆ = ∆ε behaves as described in Remark 3.8.

Recall that we wanted to control the remaining sums in terms of the difference Xε − X̄ itself, which is
obvious for the first and third sum on the right-hand side of (19). However, in case of the fourth sum, applying
almost the same martingale argument used in case of the 2nd sum, each term Ik5 can be formally replaced by
∫ (k+1)∆

k∆

(
C(k∆, Xε

k∆)− C(k∆, X̄k∆)
)
ds, subject to a sufficiently small ε-correction, eventually leading to the

wanted contraction argument in this case, too.
On the whole, we have justified that, if ∆ = ∆ε behaves as described in Remark 3.8, then

E




 sup
k′=0,...,h
k′∆≤τε

∣
∣Xε

k′∆ − X̄k′∆

∣
∣
2




 . r(∆, ε) +

h−1∑

k=0

∆E




 sup
k′=0,...,k
k′∆≤τε

∣
∣Xε

k′∆ − X̄k′∆

∣
∣
2




 , h = 1, . . . , [T/∆],

where r(∆, ε) → 0, ε ↓ 0, finally proving (16), by Gronwall’s lemma.
The proof of Theorem 2.2(ii) is thus complete.

4. Weak convergence

In this section we prove part (i) of Theorem 2.2. The idea of proof is similar to the one of part (ii), except
that now β 6= 0 is possible. It is the existence of this bilinear term which prevents us from proving convergence
in probability—we only succeed in showing convergence in law (see Remark 4.2(ii)).

First, we prove weak convergence of the bilinear term.
Second, we prove convergence in law of Xε, ε ↓ 0, using bounds similar to those obtained in section 3.

4.1. Weak convergence of the bilinear term. For any ε > 0, define the process Uε by

(21) Uε
t =

∫ t

0

εβ(Y ε
s , Y

ε
s )ds, t ∈ [0, T ],

where Y ε is the stationary Ornstein-Uhlenbeck process introduced in Remark 2.1. By (A5), the process Uε has
zero-mean, and, using (A3), its second moments,

E






∫ t

0

ε 〈β(Y ε
s , Y

ε
s ), ei〉

︸ ︷︷ ︸

βi(Y ε
s ,Y ε

s )

ds

∫ t

0

ε 〈β(Y ε
r , Y

ε
r ), ej〉

︸ ︷︷ ︸

βj(Y ε
r ,Y ε

r )

dr




 ,

can be calculated to be

1

2

∑

ℓ,m∈N

〈β(fℓ, fm), ei〉
︸ ︷︷ ︸

βi
ℓ,m

〈β(fℓ, fm), ej〉
︸ ︷︷ ︸

βj

ℓ,m

qℓqm

(

t+
ε2

2

(

e−2ε−2t − 1
))

,

for i, j = 1, . . . , d, and ℓ,m ∈ N.
Recalling (11), using the above short notation, we also have that

biℓ,m = βi
ℓ,m

√
qℓqm
2

, i = 1, . . . , d, ℓ,m ∈ N.
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Next, since dY ε,ℓ
t = −ε−2Y ε,ℓ

t dt+ ε−2d〈Wt, fℓ〉, Itô’s formula implies

Y ε,ℓ
t Y ε,m

t = Y ε,ℓ
0 Y ε,m

0 − 2ε−2

∫ t

0

Y ε,ℓ
s Y ε,m

s ds+ ε−2

∫ t

0

Y ε,ℓ
s d〈Ws, fm〉+ ε−2

∫ t

0

Y ε,m
s d〈Ws, fℓ〉+

tε−4

2
qℓδℓ,m,

for any ℓ,m ∈ N, and hence

Uε,i
t =

∫ t

0

ε
∑

ℓ,m∈N

βi
ℓ,mY

ε,ℓ
s Y ε,m

s ds = ε

∫ t

0

∑

ℓ,m∈N

βi
ℓ,mY

ε,ℓ
s d〈Ws, fm〉

−
ε3

2

∑

ℓ,m∈N

βi
ℓ,m

(

Y ε,ℓ
t Y ε,m

t − Y ε,ℓ
0 Y ε,m

0

)

+
ε−1

4
t
∑

ℓ∈N

βi
ℓ,ℓqℓ

=M ε,i
t −

1

2
V ε,i
t +

ε−1

4
t
∑

ℓ∈N

βi
ℓ,ℓqℓ,

where M ε is a d-dimensional continuous local martingale, while the process V ε satisfies

E

[

sup
t≤T

|V ε
t |

p

]

= E

[

sup
t≤T

∣
∣ε3 (β (Y ε

t , Y
ε
t )− β (Y ε

0 , Y
ε
0 ))
∣
∣
p
]

. εp, ∀ p > 1,(22)

by combining (A3) and Lemma 3.1.
The above representation of Uε, though very simple, has been used in a variety of cases in a fruitful way,

see for instance [16] or [7]. Observe that, by (A5), the Itô-correction actually cancels out, being otherwise a
contribution of order ε−1. The process Uε, nevertheless, has got an interesting limit in law:

Proposition 4.1. The couple of processes (Uε,W ) converges in law, ε ↓ 0, to a pair of processes (η, ω), where

η is a d-dimensional Wiener process with covariance (
∑

ℓ,m∈N
biℓ,mb

j
ℓ,m)di,j=1, and ω is a Q-Wiener process, like

W . Furthermore, η and ω are independent.

Proof. First, by (22), it is sufficient to prove the proposition for (M ε,W ) instead of (Uε,W ).
Since all components of the processes M ε, ε > 0, and of W , are continuous local martingales, the distribu-

tional properties of the limit (η, ω) would follow from [3, Chapter VII, Theorem 1.4], if

E









[
M ε,i,M ε,j

]

t
− t

∑

ℓ,m∈N

biℓ,mb
j
ℓ,m





2



→ 0, ε ↓ 0,(23)

for each t ∈ [0, T ], and i, j = 1, . . . , d, as well as

E
[
(
[
M ε,i, 〈W, fm〉

]

t
)2
]
→ 0, ε ↓ 0,

for each t ∈ [0, T ], i = 1, . . . , d, and m ∈ N.
First, fix t ∈ [0, T ], as well as i, j = 1, . . . , d. Then, the quadratic covariation

[
M ε,i,M ε,j

]

t
is given by

[
M ε,i,M ε,j

]

t
= ε2

∫ t

0

∑

m∈N

∑

ℓ,ℓ′∈N

βi
ℓ,mβ

j
ℓ′,mqmY

ε,ℓ
s Y ε,ℓ′

s ds,

so that

E









[
M ε,i,M ε,j

]

t
− t

∑

ℓ,m∈N

biℓ,mb
j
ℓ,m





2





= ε4
∫∫ t

0

∑

m,m∈N

∑

ℓ,ℓ′∈N

ℓ,ℓ′∈N

βi
ℓ,mβ

j
ℓ′,mβ

i
ℓ,mβ

j
ℓ′,mqmqmE

[

Y ε,ℓ
s Y ε,ℓ′

s Y ε,ℓ
r Y ε,ℓ′

r

]

dsdr

− 2ε2
∫ t

0

∑

m∈N

∑

ℓ,ℓ′∈N

βi
ℓ,mβ

j
ℓ′,mqmE

[

Y ε,ℓ
s Y ε,ℓ′

s

]

ds



t
∑

ℓ,m∈N

biℓ,mb
j
ℓ,m



+



t
∑

ℓ,m∈N

biℓ,mb
j
ℓ,m





2

.

Now, using that one can easily calculate E

[

Y ε,ℓ
s Y ε,ℓ′

s

]

= ε−2

2 qℓδℓ,ℓ′, it follows from Isserlis-Wick’s theorem,

see [11, Theorem 1.28], that

E

[

Y ε,ℓ
s Y ε,ℓ′

s Y ε,ℓ
r Y ε,ℓ′

r

]

=
ε−4

4

(

qℓqℓδℓ,ℓ′δℓ,ℓ′ + qℓqℓ′e
−2ε−2|s−r|

(
δℓ,ℓδℓ′,ℓ′ + δℓ,ℓ′δℓ′,ℓ

))

,
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which yields

E









[
M ε,i,M ε,j

]

t
− t

∑

ℓ,m∈N

biℓ,mb
j
ℓ,m





2



 =



t
∑

ℓ,m∈N

biℓ,mb
j
ℓ,m − t

∑

ℓ,m∈N

biℓ,mb
j
ℓ,m





2

+O(ε2) . ε2,

proving (23).
Second, fix t ∈ [0, T ], as well as i = 1, . . . , d, m ∈ N. Then,

[
M ε,i, 〈W, fm〉

]

t
=

∫ t

0

βi(εY ε
s , Qfm) ds,

where, using Lemma 3.1,

E

[

|

∫ t

0

βi(εY ε
s , Qfm) ds |2

]

= E

[

|βi(ε

∫ t

0

Y ε
s ds ,Qfm) |2

]

. E

[

|

εWt−ε3(Y ε
t −Y ε

0
)

︷ ︸︸ ︷

ε

∫ t

0

Y ε
s ds |2 q2m

]
ε↓0
−→ 0,

finishing the proof of the proposition. �

Remark 4.2. (i) Of course, a d-dimensional Wiener process with covariance (
∑

ℓ,m∈N
biℓ,mb

j
ℓ,m)di,j=1 can always

be represented by
∑

ℓ,m∈N
bℓ,mW̄

ℓ,m, where {W̄ ℓ,m}ℓ,m∈N is a family of independent one-dimensional standard
Wiener processes.

(ii) We would like to stress that we do not expect a much stronger convergence of Uε, when ε ↓ 0, as the one
stated in the above proposition. Indeed, it turns out to be that the sequence {M ε}ε>0 is not even a Cauchy
sequence in L2(Ω;Rd). To see this, for fixed 0 < ε < ε, and some 1 ≤ i ≤ d, consider

E

[

sup
t≤T

∣
∣
∣M

ε,i
t −M

ε,i
t

∣
∣
∣

2
]

= E




sup
t≤T

∣
∣
∣
∣
∣
∣

∫ t

0

∑

ℓ,m∈N

βi
ℓ,m

(
εY ε,ℓ

s − εY ε,ℓ
s

)
d〈Ws, fm〉

∣
∣
∣
∣
∣
∣

2



 .

But, by Burkholder-Davis-Gundy’s inequality, the above expectation can be bound from below by

E





∫ T

0

∑

m∈N

(
∑

ℓ∈N

βi
ℓ,m

(
εY ε,ℓ

s − εY ε,ℓ
s

)

)2

qmds



 = T
∑

ℓ,m∈N

(βi
ℓ,m)2qℓqm

(

1−
2ε−1ε−1

ε−2 + ε−2

)

,

where

lim
ε→0

(

1−
2ε−1ε−1

ε−2 + ε−2

)

= 1, for every fixed ε > 0,

so that {M ε,i}ε>0 cannot be Cauchy in L2(Ω).

4.2. Weak convergence of solutions. We now prove Xε → X̄, in law, when ε ↓ 0.
First, for each ε > 0, let X̂ε be the solution of

X̂ε
t = x0 +

∫ t

0

(

F (s, X̂ε
s ) + C(s, X̂ε

s )
)

ds+

∫ t

0

σ(s, X̂ε
s )dWs + Uε

t , t ∈ [0, T ],(24)

where Uε is given by (21), and let τεR = inf{t ≥ 0 : |Xε
t | ≥ R} ∧ inf{t ≥ 0 : |X̂ε

t | ≥ R}.
Note that, if (A4), then the coefficients F,C, σ, β must have properties such that each of the above equations

admits global solutions on [0, T ], too.
Next, taking into account E [|εβ(Y ε

s , Y
ε
s )|

p
] . ε−p as well as

E

[

|M ε
(k+1)∆∧τε

R
−M ε

k∆∧τε
R
|p
]

. E






∣
∣
∣
∣
∣
∣

∫ (k+1)∆∧τε
R

k∆∧τε
R

∑

m∈N

(
∑

ℓ∈N

βℓ,mεY
ε,ℓ
s

)2

qmds

∣
∣
∣
∣
∣
∣

p/2



 . ∆p/2,

it can easily be verified that Lemma 3.2 & Lemma 3.3 would still be valid, despite β 6= 0, on the one hand, and
that the following versions

E

[

sup
t≤τ, t+k∆≤T∧τε

R

|X̂ε
t+k∆ − X̂ε

k∆|
p

]

. τ
p
2 +

(τ

ε

)p

, p > 1, τ ∈ (0, 1), k ∈ {0, 1, . . . , [T/∆]},



16 S. ASSING, F. FLANDOLI, AND U. PAPPALETTERA

and

E




 sup

k=0,1,...,[T/∆]
t≤∆, t+k∆≤T∧τε

R

|X̂ε
t+k∆ − X̂ε

k∆|
p




 . ∆

p
2
−1 +

∆p−1

εp
, p > 1,

of Lemma 3.4 & Corollary 3.5, respectively, would hold true when replacing X̄ by X̂ε, on the other.
Therefore, when expanding Xε and X̂ε as in (17) & (18), but including the β-term, and then arguing as in

the proof of Theorem 2.2(ii) in section 3, it would immediately follow that Xε
·∧τε

R
− X̂ε

·∧τε
R
→ 0, in probability,

ε ↓ 0, for any R > 0, once the following lemma is also available.

Lemma 4.3. Assume that ∆ = ∆ε behaves as described in Remark 3.8. Then,

E




 sup
h=1,...,[T/∆]

h∆≤τε
R

∣
∣
∣
∣
∣

h−1∑

k=0

∫ (k+1)∆

k∆

(∫ s

k∆

Dσ(r,Xε
r )εβ(Y

ε
r , Y

ε
r )dr

)

dW ε
s

∣
∣
∣
∣
∣

2



→ 0, ε ↓ 0.

Proof. To start with, write

∫ (k+1)∆

k∆

(∫ s

k∆

Dσ(r,Xε
r )εβ(Y

ε
r , Y

ε
r )dr

)

dW ε
s

=

∫ (k+1)∆

k∆

(∫ s

k∆

(Dσ(r,Xε
r )εβ(Y

ε
r , Y

ε
r )−Dσ(k∆, Xε

k∆)εβ(Y
ε
r , Y

ε
r )) dr

)

dW ε
s

+

∫ (k+1)∆

k∆

(∫ s

k∆

Dσ(k∆, Xε
k∆)εβ(Y

ε
r , Y

ε
r )dr

)

dW ε
s ,

which creates two summands, for any fixed 0 ≤ k ≤ [T/∆]− 1.
We estimate the impact of each summand separately.
First, using |Dσ(r,Xε

r )−Dσ(k∆, Xε
k∆)| . |Xε

r −Xε
k∆|+ ωσ(∆), we obtain that

E




 sup
h=1,...,[T/∆]

h∆≤τε
R

∣
∣
∣
∣
∣

h−1∑

k=0

∫ (k+1)∆

k∆

(∫ s

k∆

(Dσ(r,Xε
r )εβ(Y

ε
r , Y

ε
r )−Dσ(k∆, Xε

k∆)εβ(Y
ε
r , Y

ε
r )) dr

)

dW ε
s

∣
∣
∣
∣
∣

2





. ε−4
E




 sup
h=1,...,[T/∆]

h∆≤τε
R

∣
∣
∣
∣
∣

h−1∑

k=0

∫ (k+1)∆

k∆

(∫ s

k∆

(|Xε
r −Xε

k∆|+ ωσ(∆)) dr

)

ds

∣
∣
∣
∣
∣

2





. ε−4
E





⌈T∧τε
R⌉/∆−1
∑

k=0

∫ (k+1)∆

k∆

∣
∣
∣
∣

∫ s

k∆

(|Xε
r −Xε

k∆|+ ωσ(∆)) dr

∣
∣
∣
∣

2

ds





. ε−4

[T/∆]−1
∑

k=0

∫ (k+1)∆

k∆

(s− k∆)

∫ s

k∆

(

E

[

|Xε
r∧τε

R
−Xε

k∆∧τε
R
|2
]

+ ωσ(∆)2
)

drds .

(
∆2

ε3

)2

+

(
∆

ε2

)2

ωσ(∆)2.

Second, we approach

(25)
h−1∑

k=0

∫ (k+1)∆

k∆

(∫ s

k∆

Dσ(k∆, Xε
k∆)εβ(Y

ε
r , Y

ε
r )dr

)

dW ε
s

following the method used when discussing the 2nd sum on the right-hand side of (19) in the proof of Theo-
rem 2.2(ii), but now for triple moments of Y ε.

Indeed, define

ckℓ,m,n(∆, ε) =

∫ (k+1)∆

k∆

(∫ s

k∆

Y ε,ℓ
r Y ε,m

r dr

)

Y ε,n
s ds,

and take the conditional expectation with respect to Fk∆, that is

E
[
ckℓ,m,n(∆, ε) | Fk∆

]
=

∫ (k+1)∆

k∆

(∫ s

k∆

E
[
Y ε,ℓ
r Y ε,m

r Y ε,n
s | Fk∆

]
dr

)

ds.
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Since

E
[
Y ε,ℓ
r Y ε,m

r Y ε,n
s | Fk∆

]
= Y ε,ℓ

k∆Y
ε,m
k∆ Y ε,n

k∆ e−ε−2(s+2r−3k∆)

+
(

Y ε,ℓ
k∆δm,nqn + Y ε,m

k∆ δℓ,nqn + Y ε,n
k∆ δℓ,mqℓ

) ε−2

2

(

e−ε−2(s−k∆) − e−ε−2(s+2r−3k∆)
)

,

we have that

E
[
ckℓ,m,n(∆, ε) | Fk∆

]
= Y ε,ℓ

k∆Y
ε,m
k∆ Y ε,n

k∆

ε4

2

(

1− e−ε−2∆ −
1

3
+

1

3
e−3ε−2∆

)

+
(

Y ε,ℓ
k∆δm,nqn + Y ε,m

k∆ δℓ,nqn + Y ε,n
k∆ δℓ,mqℓ

)

×
ε2

2

(
∆

ε2
e−ε−2∆ +

1

2
−

1

2
e−ε−2∆ +

1

6
−

1

6
e−3ε−2∆

)

.

Next, for each i = 1, . . . , d, the process M i
h, h = 1, . . . , [T/∆], given by

M i
h =

h−1∑

k=0

∑

ℓ,m,n∈N

∑

j=1,...,d

Djσ
i,n(k∆, Xε

τε
R
∧k∆)εβ

j
ℓ,m

(
ckℓ,m,n(∆, ε)− E

[
ckℓ,m,n(∆, ε) | Fk∆

])
,

is a martingale with respect to the filtration (Fh∆)
[T/∆]
h=1 , and arguing as in the proof of Lemma 3.9 yields

E




 sup
h=1,...,[T/∆]

h∆≤τε
R

∣
∣M i

h

∣
∣
2




 .

∆3

ε4
, i = 1, . . . , d.

So, it remains to prove that the remainder, after subtracting the martingale termMh from (25), also vanishes,
when ε ↓ 0. For i = 1, . . . , d, the ith coordinate of this remainder reads

N i
h =

h−1∑

k=0

∑

ℓ,m,n∈N

∑

j=1,...,d

Djσ
i,n(k∆, Xε

k∆)εB
j
ℓ,mE

[
ckℓ,m,n(∆, ε) | Fk∆

]
,

and we can easily calculate the below bound,

E




 sup
h=1,...,T/∆

h∆≤τε
R

∣
∣N i

h

∣
∣
2




 . ∆−1

T/∆−1
∑

k=0

E

[∣
∣εE

[
ckℓ,m,n(∆, ε) | Fk∆

]∣
∣
2
]

.

(
ε2

∆

)2

,

finishing the proof of the lemma. �

Corollary 4.4. For any R > 0, if ∆ = ∆ε behaves as described in Remark 3.8,

E

[

sup
t≤T∧τε

R

|Xε
t − X̂ε

t |
2

]

→ 0, ε ↓ 0,

and hence Xε
·∧τε

R
− X̂ε

·∧τε
R
→ 0, in probability, ε ↓ 0, in particular.

The above corollary suggests that it would be sufficient to show that X̂ε
·∧τε

R
→ X̄·∧τε

R
, in law, when ε ↓ 0,

subject to some procedure allowing to let R go to infinity, afterwards. So, we at first prove the weak convergence
for fixed R, and then discuss the limit-procedure for R → ∞.

Modify the coefficients F, σ outside the set {(t, x) : |x| < R} in such a way that the new coefficients FR, σR,
but also DσR, are globally bounded, and that both functions FR(t, ·) and DσR(t, ·) are globally Lipschitz,
uniformly in t ∈ [0, T ].

Of course, X̂ε
·∧τε

R
coincides with X̂ε,R

·∧τε
R
, where X̂ε,R denotes the solution to the equation obtained when

replacing the coefficients of (24) by FR, σR, and the Stratonovich correction CR associated with σR. Also, let
X̄R denote the solution to the equation obtained when replacing the coefficients of (12) by FR, σR, CR.

Proposition 4.5. Fix R > 0. Then, X̂ε,R converges to X̄R, in law, when ε ↓ 0.

Proof. Since

X̂ε,R
t − Uε

t = x0 +

∫ t

0

(

FR(s, X̂
ε,R
s ) + CR(s, X̂

ε,R
s )

)

ds+

∫ t

0

σR(s, X̂
ε,R
s )dWs,
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by boundedness of the coefficients on the above right-hand side, we obtain that

E

[

sup
t≤T

|X̂ε,R
t − Uε

t |

]

. |x0|+ T + E

[

sup
t≤T

|

∫ t

0

σR(s, X̂
ε,R
s )dWs|

]

,

where Burkholder-Davis-Gundy’s inequality gives E
[

supt≤T |
∫ t

0
σR(s, X̂

ε,R
s )dWs|

]

. T 1/2.

Similarly, E
[

|(X̂ε,R
t2 − Uε

t2)− (X̂ε,R
t1 − Uε

t1)|
p
]

. |t2 − t1|
p/2, for any |t2 − t1| < 1, and any p > 1. Thus, by

Kolmogorov-Chentsov’s theorem, for every α ∈ (0, 1), one can find ∆ ∈ (0, 1) such that

P

{

sup
t1,t2∈[0,T ], |t2−t1|≤∆

|(X̂ε,R
t2 − Uε

t2)− (X̂ε,R
t1 − Uε

t1)|

|t2 − t1|γ
≤ const

}

≥ 1− α, ∀ ε > 0,

where const depends on γ, but not on ε, and γ ∈ (0, 1/2) can be freely chosen.

We therefore have equi-boundedness and equi-continuity of {X̂ε,R−Uε}ε>0 with arbitrarily high probability,

and hence the family {X̂ε,R−Uε}ε>0 is tight with respect to the uniform topology in C([0, T ],Rd), first applying
Arzelà-Ascoli, followed by Prokhorov’s theorem. Moreover, {Uε}ε>0 is trivially tight by Proposition 4.1, so that

adding X̂ε,R − Uε and Uε would make {X̂ε,R}ε>0 tight, too.

All in all, the family of triples {
(
X̂ε,R, Uε,W

)
}ε>0 is tight.

Next, for ε > 0, let PR,ε be the pushforward measure P ◦ (X̂ε,R, U ǫ,W )−1 on the space

Ω̃ = C([0, T ], Hd)× C([0, T ], Hd)× C([0, T ], H∞)

equipped with the Borel-σ-algebra B, and let (ξ, η, ω) denote the coordinate process on Ω̃.

By tightness of {(X̂ε,R, U ǫ,W )}ε>0, there exists a subsequence (εn)n∈N such that PR,εn weakly converges to

a probability measure P
R on (Ω̃,B), when n ↑ ∞.

Let F̃ be the PR- completion of B, and let (F̃t)t∈[0,T ] be the smallest filtration the process (ξ, η, ω) is adapted

to, on the one hand, and which satisfies the usual conditions with respect to P
R, on the other. Also, introduce

F̃n, (F̃n
t )t∈[0,T ] in a similar way with respect to P

R,εn , n ∈ N.

Now, it easily follows from Proposition 4.1 that, on (Ω̃, F̃ ,PR), the following distributional properties must

hold for the pair of processes (η, ω): η is a d-dimensional Wiener process with covariance (
∑

ℓ,m∈N
biℓ,mb

j
ℓ,m)di,j=1,

ω is a Q-Wiener process, η and ω are independent.
Introduce

MR
t = ξt − x0 −

∫ t

0

(FR(s, ξs) + CR(s, ξs)) ds− ηt, t ∈ [0, T ],(26)

and observe that each component of both processes MR and ω, but also

MR,i
t MR,j

t −

∫ t

0

∑

m∈N

σi,m
R (s, ξs)σ

j,m
R (s, ξs)qmds, t ∈ [0, T ], i, j = 1, . . . , d,

MR,i
t ωm

t −

∫ t

0

σi,m
R (s, ξs)qmds, t ∈ [0, T ], i = 1, . . . , d, m ∈ N,

ωℓ
tω

m
t − tδℓ,mqm, t ∈ [0, T ], ℓ,m ∈ N,

are continuous local martingales with respect to (F̃n
t )t∈[0,T ] on (Ω̃, F̃n,PR,εn), for any n ∈ N, and hence they

are continuous local martingales with respect to (F̃t)t∈[0,T ] on (Ω̃, F̃ ,PR), too, by [9, IX. Cor.1.19].

Therefore, applying [2, Theorem 8.2] to the pair of process (MR, ω) yields

MR
t =

∫ t

0

σR(s, ξs)dW
R
s , ωt =

∫ t

0

1 dWR
s =WR

t , t ∈ [0, T ],

on (Ω̃, F̃ ,PR), or an enlargement of this space we still denote by (Ω̃, F̃ ,PR), where WR is another Q-Wiener
process, which, by the above representation, even P

R- almost surely coincides with ω, so that

MR
t =

∫ t

0

σR(s, ξs)dωs, t ∈ [0, T ], P
R- a.s.

Thus, equation (26) can be written as

ξt = x0 +

∫ t

0

(FR(s, ξs) + CR(s, ξs)) ds+

∫ t

0

σR(s, ξs)dωs + ηt, t ∈ [0, T ], P
R- a.s.,

where ω is a Q-Wiener process, while η is a d-dimensional Wiener process, independent of ω, and with covariance
(
∑

ℓ,m∈N
biℓ,mb

j
ℓ,m)di,j=1. Observe that the process X̄R satisfies the same type of equation, as

∑

ℓ,m∈N
bℓ,mW̄

ℓ,m
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from (12) is a d-dimensional Wiener process with covariance (
∑

ℓ,m∈N
biℓ,mb

j
ℓ,m)di,j=1, too. But, since this type

of equation admits a unique strong solution, the laws of ξ and X̄R must be the same, proving X̂εn,R → X̄R,
in law, when n ↑ ∞. However, the same argument applies to any converging subsequence, and the limit will
always be the same, finally proving X̂ε,R → X̄R, in law, when ε ↓ 0. �

It remains to discuss how R can be taken to infinity.
Recall that X̄ is the solution of (12), and it is not difficult to see that X̄R converges to X̄ , in law, as R → ∞.
Now take a function ϕR ∈ C(C([0, T ],Rd), [0, 1]), such that ϕR(u) = 0, if supt∈[0,T ] |ut| ≤ R − 1, and

ϕR(u) = 1, if supt∈[0,T ] |ut| > R.
Then,

P{τεR < T } ≤ P

{

sup
t∈[0,T ]

|X̂ε,R
t | ≥ R

}

≤ E

[

ϕR(X̂
ε,R)

]

,

and because X̂ε,R → X̄R, in law, when ε ↓ 0, we deduce that

lim sup
ε→0

P{τεR < T } ≤ E
[
ϕR(X̄

R)
]
≤ P

{

sup
t∈[0,T ]

|X̄R
t | ≥ R− 1

}

= P

{

sup
t∈[0,T ]

|X̄t| ≥ R− 1

}

,

where the last probability converges to zero, when R → ∞, because X̄ is a global solution.
As a consequence, for any ψ ∈ Cb(C([0, T ],R

d),R),
∣
∣E [ψ(Xε)]− E

[
ψ(X̄)

]∣
∣ ≤

∣
∣
∣E [ψ(Xε)]− E

[

ψ(Xε
·∧τε

R
)
]∣
∣
∣+
∣
∣
∣E

[

ψ(Xε
·∧τε

R
)
]

− E

[

ψ(X̂ε,R
·∧τε

R
)
]∣
∣
∣

+
∣
∣
∣E

[

ψ(X̂ε,R
·∧τε

R
)
]

− E

[

ψ(X̂ε,R)
]∣
∣
∣+
∣
∣
∣E

[

ψ(X̂ε,R)
]

− E
[
ψ(X̄R)

]
∣
∣
∣

+
∣
∣E
[
ψ(X̄R)

]
− E

[
ψ(X̄)

]∣
∣ .

Here, when taking R large enough, we can make all the summands on the right-hand side, except for the second
and fourth, arbitrarily small, uniformly in ε, and, for fixed R, the remaining terms go to zero, when ε ↓ 0.

Thus, by a diagonal argument, the convergence in law of Xε → X̄, ε ↓ 0, follows, completing the proof of
the theorem.

5. Application to Climate Models

We now apply Theorem 2.2 to perform stochastic model reduction for a subclass of the stochastic climate
models given by (4), (5) in the introduction: we restrict ourselves to a simpler version of (5), omitting fast
forcing ε−2f2

ε−1t and ε
−1A2

2Y
ε
t , on the one hand, but also neglecting the interaction B2

12(X
ε
t , Y

ε
t ), on the other.

While the first two terms we omit are technically demanding but look doable from a wider prospective, which is
beyond this paper, the term ε−1B2

12(X
ε
t , Y

ε
t ) involving the neglected interaction is notoriously hard and beyond

our understanding, right now.
For each ε > 0, let (Xε, Y ε) be a pair of processes satisfying

dXε
t

dt
= F 1

t +A1
1X

ε
t +A1

2Y
ε
t +B1

11(X
ε
t , X

ε
t ) +B1

12(X
ε
t , Y

ε
t ) + εB1

22(Y
ε
t , Y

ε
t ),(27)

dY ε
t

dt
= ε−2A2

1X
ε
t + ε−2B2

11(X
ε
t , X

ε
t )− ε−2Y ε

t + ε−2Ẇt,(28)

where A1
1 : Hd → Hd, A

1
2 : H∞ → Hd, A

2
1 : Hd → H∞ are bounded linear operators, B1

11 : Hd × Hd → Hd,
B1

12 : Hd × H∞ → Hd, B
1
22 : H∞ × H∞ → Hd, B

2
11 : Hd × Hd → H∞ are continuous bilinear maps, and

F 1 : [0, T ] → Hd is a deterministic continuous external force. Stochastic basis and Wiener process W are taken
to be the same as in Remark 2.1.

In what follows, the above equations will always have initial conditions (x0, y0), where x0 ∈ Hd can be chosen

arbitrarily, while y0 =
∫ 0

−∞
ε−2eε

−2sdWs will be fixed to ensure pseudo stationarity of the scaled unresolved
variables. Note that fixing y0 ∈ H∞ this way would not restrict the initial data of the reduced equations.

In fluid dynamics settings like (1), it is customary to assume that A is self-adjoint, and that the full nonlin-
earity is skew-symmetric: 〈B(z′, z), z〉H = 0, z, z′ ∈ H , see [15]. We therefore make the following assumptions
on the projected coefficients:

(C1) A2
1 = (A1

2)
∗;

(C2) 〈B1
11(x

′, x), x〉Hd
= 0, for all x, x′ ∈ Hd;

(C3) 〈B1
12(x

′, y), x〉Hd
= −〈B2

11(x
′, x), y〉H∞

, for all x, x′ ∈ Hd, y ∈ H∞.

Also, without loss of generality, we can assume that B1
22 is symmetric in the sense of 〈B1

22(fℓ, fm), ei〉Hd
=

〈B1
22(fm, fℓ), ei〉Hd

, for all i, ℓ,m; and finally we will need the analogue of (A5), that is
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(C4)
∑

ℓ∈N
〈B1

22(fℓ, fℓ), ei〉Hd
qℓ = 0, for all i = 1, . . . , d.

Note that the latter condition is indeed satisfied for many fluid-dynamics models—it usually holds independently
of the structure of the noise because 〈B1

22(fℓ, fm), ei〉Hd
would be zero on the diagonal, when ℓ = m, for all i.

Next, we bring equations (27),(28) into a form which makes them comparable to (6),(7).
Using the definition of y0, we have the following mild formulation of (28),

(29) Y ε
t = Ỹ ε

t +

∫ t

0

ε−2e−ε−2(t−s)
(
A2

1X
ε
s +B2

11(X
ε
s , X

ε
s )
)
ds, t ∈ [0, T ],

where

Ỹ ε
t =

∫ t

−∞

ε−2e−ε−2(t−s)dWs, t ∈ R,

is a stationary Ornstein-Uhlenbeck process. Plugging (29) into (27), Xε alternatively satisfies

Xε
t = x0 +

∫ t

0

(
F 1
s +A1

1X
ε
s +B1

11(X
ε
s , X

ε
s )
)
ds+

∫ t

0

A1
2Z

ε
sds+

∫ t

0

B1
12 (X

ε
s , Z

ε
s ) ds(30)

+

∫ t

0

A1
2Ỹ

ε
s ds+

∫ t

0

B1
12(X

ε
s , Ỹ

ε
s )ds

+

∫ t

0

εB1
22(Ỹ

ε
s , Ỹ

ε
s )ds+ 2

∫ t

0

εB1
22(Ỹ

ε
s , Z

ε
s )ds+

∫ t

0

εB1
22 (Z

ε
s , Z

ε
s ) ds, t ∈ [0, T ],

when using the abbreviation

Zε
s =

∫ s

0

ε−2e−ε−2(s−r)
(
A2

1X
ε
r +B2

11(X
ε
r , X

ε
r )
)
dr.

Since Zε
s is close to A2

1X
ε
s + B2

11(X
ε
s , X

ε
s ), for small ε, and since both terms B1

22(Ỹ
ε
s , Z

ε
s ), B

1
22 (Z

ε
s , Z

ε
s ) will

be shown to vanish with ε, too, the process Xε should be close to X̃ε satisfying

X̃ε
t = x0 +

∫ t

0

(

F 1
s +A1

1X̃
ε
s +B1

11(X̃
ε
s , X̃

ε
s )
)

ds+

∫ t

0

A1
2

(

A2
1X̃

ε
s +B2

11(X̃
ε
s , X̃

ε
s )
)

ds(31)

+

∫ t

0

B1
12

(

X̃ε
s ,
(

A2
1X̃

ε
s +B2

11(X̃
ε
s , X̃

ε
s )
))

ds

+

∫ t

0

A1
2Ỹ

ε
s ds+

∫ t

0

B1
12(X̃

ε
s , Ỹ

ε
s ) ds+

∫ t

0

εB1
22(Ỹ

ε
s , Ỹ

ε
s ) ds, t ∈ [0, T ],

which is an equation of type (6) with

F (t, x) = F 1
t +A1

1x+B1
11(x, x) +A1

2

(
A2

1x+B2
11(x, x)

)
+B1

12

(
x,
(
A2

1x+B2
11(x, x)

))
,

σ(t, x) = A1
2 +B1

12(x, ·) ,

β = B1
22 .

Thus, in this setting, the analogue of (12) would read

X̄t =x0 +

∫ t

0

(
F 1
s +A1

1X̄s +B1
11(X̄s, X̄s)

)
ds+

∫ t

0

A1
2

(
A2

1X̄s +B2
11(X̄s, X̄s)

)
ds(32)

+

∫ t

0

B1
12

(
X̄s,

(
A2

1X̄s +B2
11(X̄s, X̄s)

))
ds+

∫ t

0

C(X̄s) ds

+A1
2Wt +

∫ t

0

B1
12(X̄s, dWs) +

∑

ℓ,m∈N

bℓ,mW̄
ℓ,m
t , t ∈ [0, T ],

where the Stratonovich correction term C : Hd → Hd simplifies to

〈C(x), ei〉Hd
=

1

2

∑

m∈N

qm

d∑

j=1

〈B1
12(ej , fm), ei〉Hd

〈B1
12(x, fm), ej〉Hd

, i = 1, . . . , d,

and

biℓ,m = 〈B1
22(fℓ, fm), ei〉Hd

√
qℓqm
2

, i = 1, . . . , d, ℓ,m ∈ N.

Proposition 5.1. When assuming (C1)-(C3), equation (32) admits a unique global strong solution on [0, T ].
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Proof. First, regularity of coefficients guarantees the existence of a unique local strong solution. Second, by
Itô’s formula,

1

2
|X̄t∧τ |

2 =
1

2
|x0|

2 +

∫ t∧τ

0

〈F 1
s +A1

1X̄s +B1
11(X̄s, X̄s), X̄s〉 ds

+

∫ t∧τ

0

〈A1
2

(
A2

1X̄s +B2
11(X̄s, X̄s)

)
, X̄s〉 ds

+

∫ t∧τ

0

〈B1
12

(
X̄s,

(
A2

1X̄s +B2
11(X̄s, X̄s)

))
, X̄s〉 ds +

∫ t∧τ

0

〈C(X̄s), X̄s〉 ds

+

∫ t∧τ

0

〈A1
2dWs, X̄s〉+

∫ t∧τ

0

〈B1
12(X̄s, dWs), X̄s〉+

∑

ℓ,m∈N

∫ t∧τ

0

〈bℓ,m, X̄s〉 dW̄
ℓ,m
s

+
1

2

∑

m∈N

|A1
2fm|2qm(t ∧ τ) +

1

2

∑

m∈N

∫ t∧τ

0

|B1
12(X̄s, fm)|2qm ds+

1

2

∑

ℓ,m∈N

|bℓ,m|2(t ∧ τ),

for any fixed t ∈ [0, T ], and any stopping time τ smaller than a possible explosion time.
Applying (C1)-(C3), we have the identities

〈B1
11(X̄s, X̄s), X̄s〉Hd

= 0,

〈A1
2B

2
11(X̄s, X̄s), X̄s〉Hd

= 〈B2
11(X̄s, X̄s), A

2
1X̄s〉H∞

,

〈B1
12(X̄s, A

2
1X̄s), X̄s〉Hd

= −〈B2
11(X̄s, X̄s), A

2
1X̄s〉H∞

,

〈B1
12(X̄s, B

2
11(X̄s, X̄s)), X̄s〉Hd

= −‖B2
11(X̄s, X̄s)‖

2
H∞

,

leading to

E

[

sup
t′≤t

|X̄t′∧τ |
2

]

.

(

1 +

∫ t

0

E

[

sup
s′≤s

|X̄s′∧τ |
2

]

ds

)

,

again using the regularity of the coefficients combined with Burkholder-Davis-Gundy’s inequality. Thus, by
Gronwall, the local solution X̄ has to be global on [0, T ]. �

Remark 5.2. In a very similar way, it can be shown that both equations (30) & (31) admit unique global strong
solutions on [0, T ], too, and hence those proofs are omitted. As a consequence, simply substituting the solution
of (30) into (29), for each ε > 0, there is a unique pair of processes (Xε, Y ε) satisfying (27),(28) on [0, T ].

Theorem 5.3. Assume (C1)-(C3), fix ε > 0, and let (Xε, Y ε) be the unique pair of processes satisfying (27),(28)
on a given climate time interval [0, T ].

(i) If (C4), then Xε converges in law, ε ↓ 0, to the unique process X̄ satisfying (32).
(ii) However, if (C4) comes via B1

22 = 0, then the stronger convergence (8) holds true.

Proof. Recall the process X̃ε satisfying (31), which is an equation of type (6) with coefficients F, σ, β satisfying
(A1)-(A3). Furthermore, by Proposition 5.1 and Remark 5.2, condition (A4) is satisfied, too, while (A5) and
(C4) actually are the same condition.

All in all, Theorem 2.2 implies that both parts (i) & (ii) of Theorem 5.3 hold true when replacing Xε by X̃ε.

Thus, it is sufficient to prove convergence in probability of Xε − X̃ε to zero, ε ↓ 0, uniformly on compact
subsets of a localising stochastic interval, which can easily be shown following the lines of proof of Theorem 2.2.

Indeed, by localization and discretization arguments, one would first derive

E




 sup
k′=0,...,h
k′∆≤τε

R

∣
∣
∣Xε

k′∆ − X̃ε
k′∆

∣
∣
∣

2




 . r(∆, ε) +

h−1∑

k=0

∆E




 sup
k′=0,...,k
k′∆≤τε

R

∣
∣
∣Xε

k′∆ − X̃ε
k′∆

∣
∣
∣

2




 , h = 1, . . . , [T/∆],

where τεR = inf{t ≥ 0 : |Xε
t | ≥ R} ∧ inf{t ≥ 0 : |X̃ε

t | ≥ R}, and r(∆, ε) → 0, ε ↓ 0, for a suitable choice of
∆ = ∆ε. Then, combining Gronwall’s lemma and Markov’s inequality, one would obtain

lim
ε→0

P

{

sup
t≤T∧τε

R

‖Xε
t − X̃ε

t ‖Hd
> δ

}

= 0, ∀ δ > 0,

which yields the convergences stated in parts (i) and (ii) of Theorem 5.3 up to time τεR. Since X̄ is globally
defined, both types of convergence can be extended to the whole interval [0, T ], using similar arguments given
in the proof of the corresponding parts of Theorem 2.2. �
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