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Decoherence induced by interacting quantum spin baths
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We study decoherence induced on a two-level system coupled to a one-dimensional quantum spin chain. We
consider the cases where the dynamics of the chain is determined by the Ising, XY, or Heisenberg exchange
Hamiltonian. This model of quantum baths can be of fundamental importance for the understanding of deco-
herence in open quantum systems, since it can be experimentally engineered by using atoms in optical lattices.
As an example, here we show how to implement a pure dephasing model for a qubit system coupled to an
interacting spin bath. We provide results that go beyond the case of a central spin coupled uniformly to all the
spins of the bath, in particular showing what happens when the bath enters different phases, or becomes
critical; we also study the dependence of the coherence loss on the number of bath spins to which the system
is coupled and we describe a coupling-independent regime in which decoherence exhibits universal features,
irrespective of the system-environment coupling strength. Finally, we establish a relation between decoherence
and entanglement inside the bath. For the Ising and the XY models we are able to give an exact expression for
the decay of coherences, while for the Heisenberg bath we resort to the numerical time-dependent density

4

matrix renormalization group.
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I. INTRODUCTION

Decoherence refers to the process through which superpo-
sitions of quantum states are irreversibly transformed into
statistical mixtures. It is due to the unavoidable coupling of a
quantum system with its surrounding environment which, as
a consequence, leads to entanglement between the system
and the bath. This loss of coherence may considerably reduce
the efficiency of quantum information protocols [1] and it is
crucial in describing the emergence of classicality in quan-
tum systems [2].

Although desirable, it is not always possible to fully char-
acterize the bath. Therefore it is necessary to resort to inge-
nious, though realistic, modelizations. Paradigmatic models
represent the environment as a many-body system, such as a
set of bosonic harmonic oscillators [3,4] or of spin-1/2 par-
ticles [5]. In some cases it is also possible to recover the
effects of a many-body environment via the coupling to a
single-particle bath, provided its dynamics is chaotic [6]. In
order to grasp all the subtleties of the entanglement between
the system and its environment, it would be of great impor-
tance to study engineered baths (and system-bath interac-
tions) that can be realized experimentally. In this paper we
discuss a class of interacting spin baths which satisfy these
requirements: a two-level system coupled to a one-
dimensional array of spin-1/2 particles, whose free evolution
is driven by a Hamiltonian which embraces Ising, XY, and
Heisenberg universality classes. In several nontrivial cases
we can solve the problem exactly. Moreover we show that it
is possible to realize these system+bath Hamiltonians with
cold bosons in optical lattices. We thus extend the approach
of Jané et al. [ 7] showing that optical lattices can be useful as
open quantum system simulators.

Our analysis can be framed in the context of the recently
growing interest in the study of decoherence due to spin
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baths, see Refs. [8-20]. Starting from the seminal paper of
Zurek [8], several papers analyzed the decoherence due to a
collection of independent spins. Cucchietti, Paz, and Zurek
[9] derived several properties of the Loschmidt echo starting
from fairly general assumptions for the distribution of the
splittings of the bath spins. The effect of an infinite-range
interaction among the spins was introduced in Ref. [10]; the
same model was further exploited by Dawson et al. [11] to
relate decoherence to the entanglement present in the bath.
Properties of decoherence in presence of symmetry breaking,
and the effect of critical behavior of the bath were discussed
in Refs. [12,13]. Most of the works done so far are based on
the so called “central spin model,” where the two-level sys-
tem is coupled isotropically to all the spins of the bath. This
assumption tremendously simplifies the derivation, but at the
same time it may introduce some fictitious symmetries which
are absent in realistic systems. Moreover it can be very hard
to simulate it with engineered baths. A crucial feature of our
work is the assumption that the two-level system interacts
with only few spins of the bath. As we will show, this intro-
duces qualitative differences as compared to the central spin
model, moreover it is amenable to an experimental imple-
mentation with optical lattices.

The paper is organized as follows. In the next section we
introduce the system+bath model Hamiltonians that will be
studied throughout this paper and we define the central quan-
tity that will be used in order to characterize the decoherence
of the system, i.e., the Loschmidt echo. We then show in Sec.
IIT how optical lattices can be used to simulate the class of
Hamiltonians introduced in Sec. II. The rest of the paper is
devoted to the derivation and to the analysis of our results,
both for a single system-bath link (Sec. IV), and for multiple
links (Sec. V). When the two-level system is coupled to an
XY or XX model, it is possible to derive an exact result for
the Loschmidt echo. This is explained in Sec. IV A, where
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FIG. 1. (Color online) (a) A sketch of the system-plus-bath
model we consider in this work. The two-level system (at position
zero) is coupled to the o° component of the first spin of the chain
that acts as a spin bath. Atoms in an optical lattice can simulate this
controlled decoherence by means of series of lasers (b) and lattice
displacements (c), which allow one to realize both the interaction of
the bath with an external magnetic field and the anisotropic ex-
change coupling present in Eq. (3).

we also discuss in detail its short- and long-time behavior
and relate it to the critical properties of the chain. Further
insight is obtained by perturbative calculations which agree
very well, in the appropriate limits, with the exact results. In
Sec. IV B we present our results for the Heisenberg bath. In
this case an analytic approach is not possible. Here we solve
the problem by means of the time-dependent density matrix
renormalization group (t-DMRG — see Appendix A). In
Sec. IV C we analyze the possible relation between decoher-
ence and entanglement properties of the environment: we
relate the short-time decay of coherences to the two-site
nearest-neighbor concurrence inside the bath. In Sec. V we
extend our results to the case in which the system is coupled
to an arbitrary number of bath spins; a regime in which the
decoherence is substantially independent of the coupling
strength between the system and the environment is dis-
cussed in Sec. V A. Finally, in Sec. VI we draw our conclu-
sions. In the Appendixes we give some technical details on
the numerical DMRG approach (Appendix A), we provide
explicit expressions for the Fermion correlation functions
needed for the evaluation of the Loschmidt echo in the XY
model (Appendix B) and we briefly discuss the central spin
model (Appendix C) to make our paper self-contained. A
brief account of some of the results discussed in this paper is
presented in Ref. [21].

II. THE MODEL

The model we consider consists of a two-level quantum
object (qubit) S coupled to an interacting spin bath E com-
posed by N spin-1/2 particles [see Fig. 1(a)]: the idea is to
study how the internal dynamics of E affects the decoherent
evolution of S.
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In our scheme the global system S+FE is fully character-
ized by a standard Hamiltonian of the form

H=Hs+ Hp+ Hin» (1)

with Hg r being the free Hamiltonians of S and E and H;,,
being the coupling term. Without loss of generality we will
assume the free Hamiltonian of the qubit to be of the form

o)
Hs= ?e(l -T)=w, 2)
with 7, being the Pauli matrices of S (@=x,y,z), and |e) its
excited state (the ground state being represented by the vec-
tor |g)). On the other hand, the environment will be modeled
by a one-dimensional quantum spin-1/2 chain described by
the Hamiltonian

7)0 J+1 + AOHZ‘O‘;H

J

J
He=- 5; [(1+Yojos, +(1 -

+2\0%], (3)

where of (@=x,y,z) are the Pauli matrices of the ith spin.
The sum over j goes from 1 to N-1 for open boundary
conditions, or from 1 to N for periodic boundary conditions
(where we assume that oy, ,=o7). The constants J, A, 7,
and A, respectively, characterize the interaction strength be-
tween neighboring spins, the anisotropy parameter along z
and in the xy plane, and an external transverse magnetic
field. The Hamiltonian (3) has a very rich structure [22]. For
the sake of simplicity, we shall consider the following para-
digmatic cases.

The XY model in a transverse field — see Sec. IV A. Here
one has A=0 and \, y generic. For 0< y=1, Eq. (3) belongs
to the Ising universality class, and it has a critical point at
I\.|=1; for y=0 it reduces to the XX universality class,
which is critical for [\| =1.

The XXZ anisotropic Heisenberg model — see Sec. IV B.
Here one has A, y=0 and A generic. In this case the Hamil-
tonian (3) is critical for —1=A =<1 while it has ferromag-
netic or antiferromagnetic order for A>1 or A <-1, respec-
tively.

Finally, the qubit S is coupled to the spin bath through a
dephasing interaction of the form

Jm
Hin == €2, [e)e|07, (4)
J=I1
where € is the coupling constant, and the link number m
counts the number of environmental spins (labeled by
Jis-+-sjm) to which S is coupled — Fig. 1(a) refers to the
case where § is interacting with the first spin of an open-
boundary chain, i.e., m=1, j,=1.

By varying the parameters m,A,y,\, and €, the above
Hamiltonians allow us to analyze several nontrivial S+E sce-
narios. Moreover we will see in Sec. III that it is possible to
use optical lattices manipulation techniques [7,23] to experi-
mentally simulate the resulting dynamical evolution.

Decoherence: The Loschmidt Echo. With the choice of the
coupling (4) the populations of the ground and excited states
of the qubit do not evolve in time, since [ 7, H]=0. Conse-
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quently, no dissipation takes place in the model and the qubit
evolution is purely decoherent: the system S loses its coher-
ence without exchanging energy with the bath [24,25]. To
study this effect of pure phase decoherence, we suppose that
at the beginning the qubit is completely disentangled from
the environment — namely, at time #=0 the global system
wave function is given by

[(0))=]¢(0))s ® |¢(0)). )

where |¢(0))s=c,|g)+c,|e) is a generic superposition of the
ground and the excited state of S and |@(0))z=|G) is the
ground state of the environment Hamiltonian Hz. The global
evolution of the composite system under the Hamiltonian (1)
will then split into two terms: one where E evolves with the
unperturbed Hamiltonian H,="H and the other where E
evolves with the perturbed Hamiltonian

H,=Hg+{e|Hinle). (6)
As a result, one has

[W(0) — [W(0) = ¢ lg) ® |p(D)e+ e 'le) @ [ (1)),
)

where the two branches of the environment are |<pg(t))E
=e M| p(0))p and |@,(t))p=e"|p(0))g. Therefore the
evolution of the reduced density matrix p=Try| ¥){W¥| of the
two-level system corresponds to a pure dephasing process. In
the basis of the eigenstates {|g).|e)}, the diagonal terms p,,
and p,, do not evolve in time. Instead the off-diagonal terms
will decay according to

Peg(1) = Peg(0)e™'D(1),

where

D(1) = (@,(1)]@(1)) = (@(0)]eTs'e™Te!| o(0))  (8)

is the decoherence factor. The decoherence of S can then be
characterized by the so-called “Loschmidt echo,” i.e., by the
real quantity

L) = |D(t)|2 _ |<G|e—i(HE+<e\Him|e>)r|G>|2’ 9)

where in the equality term we used the fact that |¢(0))=|G)
is the ground state of the Hamiltonian Hy; more precisely,
the quantity in Eq. (9) expresses the “survival probability” of
the ground state of H; evolved by the perturbed Hamiltonian
H,. On one hand, values of £(z) close to 1 indicate a weak
interaction between the environment and the qubit [the case
L()=1 corresponds to total absence of interaction]. On the
other hand, values of L(r) close to 0 correspond instead to a
strong suppression of the qubit coherence due to the interac-
tion with E [for £(f)=0 the qubit is maximally entangled
with the environment, and its density matrix p becomes di-
agonal]. In the following we will analyze the time evolution
of the Loschmidt echo to study how the internal dynamics of
the environment E affects the decoherence of the system S.
We will start with the case in which Sis coupled to a single
spin of the chain E (i.e., m=1, see Sec. IV). The case with
multiple links will be instead discussed in Sec. V.
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For the sake of completeness, we finally notice that, since
the function (9) measures the overlap between the time-
evolved states of the same initial configuration under two
slightly different Hamiltonians, one can use it as an indicator
of the stability of motion. This kind of analysis has been
performed in Ref. [26], where the fidelity between the
ground states of quadratic Fermi Hamiltonians has been ana-
lyzed in connection with quantum phase transitions.

II1. SIMULATION OF OPEN QUANTUM SYSTEMS BY
OPTICAL LATTICES

Before analyzing in detail the temporal evolution of the
Loschmidt echo (9), in this section we present a method
which would allow one to experimentally simulate the dy-
namics induced by the Hamiltonian of Eq. (1) in a realistic
setup. The S+FE system introduced in Sec. II can be seen as
an “inhomogeneous” spin network with N+1 sites, where
one of the spins (say, the first) plays the role of the system of
interest S while the remaining N play the role of the environ-
ment E. This immediately suggests the possibility of simu-
lating the dynamical evolution of such a system on optical
lattices by employing the techniques recently developed in
Refs. [7,23]. An important aspect of our scheme, however, is
the fact that we assume the coupling between the system §
and E to be independent from the couplings among the N
spins which compose the environment. Analogously the free
Hamiltonian of S is assumed to be different from the on-site
terms of the free Hamiltonian of E. On one hand, this allows
us to study different environment Hamiltonians without af-
fecting the coupling between E and S. On the other hand, this
also allows us to analyze different S+FE coupling regimes
(e.g., strong, weak) without changing the internal dynamics
of the bath.

In order to include these crucial ingredients we found
more convenient to follow the scheme developed by Jané et
al. in Ref. [7] (the optical lattice manipulation schemes de-
veloped by Duan ef al. in Ref. [23] seem to be less adequate
to our purposes). The key advantage is that we can realize
the system-plus-bath setup by using a single one-dimensional
lattice in which the quantum system is placed on a given
lattice site [for example, the first one, as in Fig. 1(b)]. The
different Hamiltonians for the system and for the bath are
realized by specific pulse sequences which simulate the dy-
namics of the model. The same holds for the coupling
Hamiltonian of the two-level system with the bath, which is
different from the couplings within the bath. In Fig. 1 the
leftmost atom simulates the two-level system, the coupling to
the second site is the interaction between the quantum sys-
tem and the environment, the rest of the chain is the inter-
acting spin environment.

Jané et al. [7] showed that atoms loaded in an optical
lattice can simulate the evolution of a generic spin Hamil-
tonian in a stroboscopic way when subjected to appropriate
laser pulses, Fig. 1(b), and controlled displacements, Fig.
1(c), which allow us to implement the single-site and two-
site contributions to the Hamiltonian. The key point is that in
our case the sequences of gates need to allow for discrimi-
nating between the system and the bath. The types of baths
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that one can simulate by these means embrace Ising, XY and
Heisenberg exchange Hamiltonian. Therefore, by varying the
parameters of the optical lattice, it is possible to test the
impact of the different phases (critical, ferromagnetic, anti-
ferromagnetic, etc.) of the environment on the decoherence
of the two-level system.

Following the idea of a universal quantum simulator de-
scribed in Ref. [7], the time evolution operator associated
with H over a time ¢ can be simulated by decomposing it into
a product of operators acting on very short times 7<t:

n—® 2

o [JA+yT C(JA=y7\ . [JAT "
X j,j+1< 5 )Unu( 5 Ui EWAR

(10)

e_th= 11m|:U6(weT) ](GT)H Uz<])\7-)

where 7=t/n, U3(6) = ¢i00], U“B (6)=e'%; "ﬁ, and the index 0
labels the two-level system S For a e {x,y} one can write
Usi=ViVUs V“'V“T, where V}":(]l—io-j”)/ V2 are fast ho-
mogeneous local unltary operations. These can be realized
with single atoms trapped in an optical lattice [7], each hav-
ing two relevant electronic levels (|0);,
a resonant laser according to

Hi = Q1) 0] + e *|0)(1]). (11)
Uj(t, ¢)
yields the single-qubit operations V* UL(m,O)
vv U]L%,o) U3 2) and UX(0)= UM, s 0) UL,
Whence U ]( —)—lo‘Z while U; (29)—10’6 These operations
can be made very fast by simply 1ncreasing the laser inten-
sity and thereby the Rabi frequency. They can be performed
either simultaneously on all qubits, by shining the laser ho-
mogeneously onto all atoms, or selectively on some of them,
by focusing it appropriately [see Fig. 1(b)]. For our purposes
the individual addressing is needed only for the atom in po-
sition 0, which represents the quantum system; this is any-
way the minimal physical requirement for being able to
monitor its state during the evolution.

Two-qubit operations can be performed by displacing the
lattice in a state-selective way [27], so that state |0); |1>]+1
acquires a phase factor e'¢, as experimentally reahzed in
Ref. [28]. The resulting gate G ]+1(<p) can be composed with
0" rotations to yield Zj+1(0) ¢"[G; ;41 (20)0707,,*. This
will affect all atoms from O to N. Since we want a different
coupling for the {01} pair than for all others, we need to
erase the effect of the interaction for that specific pair using
only local operations on atom 0, as in the sequences
[ US () P=L o5 U3 (0)P=[03Usi (AP =1. Defining U2(6)
—HN U, (6), we can generate each simulation step in Eq.

Jij+
(10) as

The evolution under the Hamiltonian (11),
lH l
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U, = {osvnge— ’—A)f]}z{oﬁug(— el 1)7)}2
2/2 4

_ 2 T
% |:0-(Z)Ug<w>:| Ug(— GT)Ué(weT)U%<%)

(12)

involving only global lattice displacements, global laser-
induced rotations and local addressing of atom 0.

We point out that an alternative scheme exists [23], based
on tunnel coupling between neighboring atoms rather than
on lattice displacements, which can attain the simulation de-
scribed here for the special case y=0 and would require
some additional stroboscopic steps in order to reproduce the
general case. We also note that, beyond the possibility of
using optical lattices, trapped ions interacting with lasers
may also be good candidates as quantum simulators of inho-
mogeneous spin systems [29], thus making it possible to
implement our open quantum system model.

Apart from 1D spin baths, this approach can be extended
to other types of environment. For example, it would be
quite interesting to consider, as an engineered bath, a 3D
optical lattice. In addition to being feasible from an experi-
mental point of view, this could be useful in studying, for
instance, the situation found in solid-state NMR [30]. It
would also be intriguing to study the Bose-Hubbard model as
a bath, which would make the experimental realization even
simpler [31]. Here we just focus on one-dimensional baths
since, in several cases, they are amenable to an exact solu-
tion.

IV. RESULTS: THE SINGLE-LINK SCENARIO

In this section we analyze the time evolution of the
Loschmidt echo from Eq. (9) for several distinct scenarios
where the qubit S is coupled to just one spin of the chain, i.e.,
m=1 in Eq. (4). In this case, in the thermodynamic limit the
interaction H;, between the system S and the environment £
does not affect the description of the bath Hamiltonian H,
since it is local; therefore it can be considered in all senses as
a small perturbation of the environment. The bath is effec-
tively treated as a reservoir, which is in contact with the
system through just one point. In the following we study the
cases in which the bath is described by a one dimensional
spin-1/2 Ising, an XY (Sec. IV A) and a Heisenberg (Sec.
IV B) chain.

A. XY bath

Here we focus on the case of a spin bath E characterized
by a free Hamiltonian (3) of the XY form, i.e., with null
anisotropy parameter along z (A=0). In this case the envi-
ronment is a one-dimensional spin-1/2 XY model, which is
analytically solvable [32]. Below we show that also the
Loschmidt echo can be evaluated exactly [21], both for open
and for periodic boundary conditions.

In the case m <N in which the system S is coupled to just
some of the spins of the bath E, the perturbed Hamiltonian
H, of Eq. (6) is the Hamiltonian of an XY chain in a non-

032333-4



DECOHERENCE INDUCED BY INTERACTING QUANTUM...

uniform magnetic field. In this circumstance one cannot em-
ploy the approach of Ref. [13], and in general the dynamical
evolution of the system has to be solved numerically. In-
stead, the derivation we present here is analytical and it ap-
plies for all values of m=1,...,N. In the following we will
present it for the case of a generic m but, in the rest of the
section, we will explicitly discuss its results only for the
single-link case (i.e., m=1).

The first step of the analytical derivation is a Jordan-
Wigner transformation (JWT), in order to map both Hamil-
tonians H, and H, onto a free-Fermion model, described by
the quadratic form [32]

; 1 . N 1
H = E |:C~,-Ai /Cl + _(C!—Bi ]C' + HC):| + _E Ai i (13)
il R I <
L] 1

where ¢;, clT are the annihilation and creation operators for

the spinless Jordan-Wigner fermions, defined by

k-1
cr=expl im> ojo; |oy.

j=1
The two matrices A, B are given by

[A]j,k: = J(O 1 + 5j,k+1) -2\ + ej)(sj,ks (14)

[Bljx == W(3js1 = Fae1)s (15)

where €;=0 for H,, while

(16)

€ =

{e if S is coupled to the jth spin,
J

0 elsewhere,

for H,. A generic quadratic form, such as Eq. (13) (where A
is a Hermitian matrix, due to the Hermiticity of H, and B is
antisymmetric, due to the anticommutation rules among the
¢;), can be diagonalized in terms of the normal-mode spinless
Fermi operators {7, 7;}:

1
H=2E4%m—5> (17)
k

where 7,=%,(g; .ci+hyc]), or in matrix form
n=g-c+h-c'. (18)

If we rewrite the two change-of-basis matrices g and h as
81i=3(dit i) and hy;=5(dy;— ), we eventually ar-
rive at the following coupled linear equations, whose solu-
tion permits to find the eigenbasis of the nonuniform Hamil-
tonian in Eq. (13):

B(A -B) = Ey,

WA +B) = E,dy. (19)

Since A is symmetric and B is antisymmetric, all of the E}
are real; also the g, ; and the /1, ; can be chosen to be real. The
canonical commutation rules for the normal-mode operators
impose the constraints g-g’+h-h’=1; g-h’~h-g’=0.

It is convenient to rewrite the spin-bath Hamiltonian-plus-
interaction H, in the form

PHYSICAL REVIEW A 75, 032333 (2007)

1
H=JWCw, (20)

where W=(c]---clc - +cy) (¢; are the corresponding spin-
less Jordan-Wigner fermion operators) and C=0*® A+ic”
®B is a tridiagonal block matrix.

The Loschmidt echo, Eq. (9), can then be evaluated by
means of the following formula [33]:

L(1) = (e ™SV = [det(1 - ¢+ re €], (21)

where the elements of the matrix r are simply the two-point
correlation functions of the spin chain r;=(G|¥[¥;|G),
where |G) is the ground state of H,. An explicit expression
of the correlators r;; as well as of the matrix ¢~C" is given in
Appendix B.

Equation (21) provides an explicit formula for the
Loschmidt echo in terms of the determinant of a 2N X2N
matrix, whose entries are completely determined by the di-
agonalization of the two linear systems given by Eq. (19).
This is one of the central results of our work. It allows us to
go beyond the central spin model where all the spins of E are
uniformly coupled with S (m=N), whose solution (at least
for periodic boundary conditions) was discussed in Refs.
[13-15] and, for the sake of completeness, has been re-
viewed in Appendix C [see Eq. (C6)]. Notice that, similarly
to the central spin model, this formula allows to study a
system composed of a large number of spins in the bath N
~10?~10% as it only requires manipulations of matrices
whose size scales linearly, and not exponentially, with N.

1. Ising bath: General features

The generic behavior of £ as a function of time for dif-
ferent values of \, and fixed coupling constant €, is shown in
Fig. 2. For A <1 the echo oscillates with a frequency propor-
tional to €, while for A>1 the oscillation amplitudes are
drastically reduced. The Loschmidt echo reaches its mini-
mum value at the critical point A.=1, thus revealing that the
decoherence is enhanced by the criticality of the environ-
ment. Since the chain is finite, at long times there are reviv-
als of coherence [34]; in the thermodynamic limit N— oo
they completely disappear. In any case, as it can be seen
from the figure, already for N=300 spins there is a wide
interval where the asymptotic behavior at long times can be
analyzed.

2. Short-time behavior

At short times the Loschmidt echo £ decays as a Gauss-
ian [35]:

L)~ e, (22)
as can be seen in Fig. 3(a), which shows a magnification of
the curves from Fig. 2 for small times. This behavior can be
predicted within a second-order time perturbation theory in
the coupling € between the system and the bath: if € is small
as compared to the interaction J between neighboring spins
in the bath (e<J), the decoherence factor D(r) of Eq. (8) can
be expanded in series of e:
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This is a universal feature, entirely due to the underlying
criticality of the Ising model.

Our results show that at short times the Loschmidt echo is
regular even in the presence of a bath undergoing a phase
transition. The critical properties of the bath manifest in the
changes of £ when the bath approaches the critical point.

3. Long-time behavior

At long times, for A>1 the Loschmidt echo approaches
an asymptotic value L., while for A <1 it oscillates ariosuroaches5.579gTJ0-1.15219.an.6i56es-264.7value4 Tj/F509.8.63420TDTj/F21331.
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FIG. 11. (Color online) Single-link XXZ model (m=1,\=7y
=0): Loschmidt echo as a function of time for a qubit coupled to the
central spin of an open ended N=100 spin XXZ-Heisenberg chain,
with coupling strength €=0.1. The various curves are for different
values of the anisotropy: A=0.9 (black), 0.5 (red), O (green), —0.5
(blue), —0.9 (brown), —1 (magenta), —1.5 (violet), =2 (cyan), =2.5
(orange); curves corresponding to noncritical situations are dashed.

down until it is completely suppressed in the perfectly anti-
ferromagnetic regime (A——o). The short-time decay is
again Gaussian at short times and the rate « is shown in Fig.
12 for various sizes of the bath. We notice two qualitatively
different behaviors at the boundaries of the critical region: at
A=+1 there is a sharp discontinuity, while at A=-1 the
curve is continuous. In the critical region —1 =A=' the ini-
tial decay rate « is constant and reaches its maximum value
due to the presence of low energy modes, while in the ferro-
magnetic phase A=1 it is strictly zero. In the figure, finite
size effects are evident: indeed, contrary to the XY model,
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FIG. 12. (Color online) Scaling of the decay rate « at short
times for an open-ended XXZ-Heisenberg chain as a function of A.
The various symbols are for different sizes of the chain: N=10
(black circles), 20 (red squares), 50 (green diamonds), 100 (blue
triangles). The coupling strength between the qubit and the chain is
kept fixed at €=0.1.
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the decay rate « changes with the bath size N outside the
critical region. Nonetheless, as the system approaches the
thermodynamic limit, the dependence on N weakens; more-
over, even if the sizes of the simulated system do not permit
us to guarantee what exactly happens in the limit N— oo,
numerical data seem to indicate that, while at A=—1 the
curve a(A) appears to remain continuous, its first derivative
with respect to A tends to diverge. On the contrary, the fer-
romagnetic transition A=1 is discontinuous, independently
of N.

C. Decoherence and entanglement

We propose here to establish a link between decoherence
effects on the system and entanglement inside the environ-
ment. This study can be justified by the fact that decoherence
properties of the qubit system seem to be intrinsically related
to quantum correlations of the bath, as the proximity to criti-
cal points reveals. On the other hand, entanglement quanti-
fies the amount of these correlations that do not have classi-
cal counterparts, and it has been widely studied in the recent
years, especially in connection with the onset of quantum
phase transitions [37-40].

In Ref. [11] it was shown that two-party entanglement in
the environmental bath of a central spin model can suppress
decoherence; this effect has been explained as a consequence
of entanglement sharing, and it was supposed to be common
to any system whose environment maintains appreciable in-
ternal entanglement, while evolving in time. We now char-
acterize a more complex case of system-plus-bath coupling,
given by Eq. (1), with a richer structure in the ground state
entanglement which suggests the following picture, valid at
short times for Jr< 1.

We expect that when the decay of coherences is quadratic,
only short range correlations in the bath are important, there-
fore it seems natural to relate the short-time decay rate « to
the two-site nearest neighbor entanglement of the chain. All
the information needed to analyze bipartite entanglement be-
tween two spins inside the chain, say 7 and j, is contained in
the two-qubit reduced density matrix p;;, obtained after trac-
ing out all the other spins. We use the concurrence C(|i
—j|) as an entanglement measure for arbitrary mixed state p; ;
of two qubits, defined as [41]

C(|i—j|)=max()\1—)\2—)\3—)\4,0), (34)

where A\, are the square roots of the eigenvalues of the ma-
trix p;;p;;, in decreasing order;* the spin flipped matrix of p;;
is defined as p;=(0,®a,) p;; (0,®0,), and the complex
conjugate is computed in the canonical basis
{11,117 1),11 1,11 1)}. The entanglement of formation of
the mixed state p;; is a monotonic function of the concur-
rence.

We start our analysis by considering again the XY spin
bath: the concurrence C(k) in terms of one-point and two-
point spin-correlation functions can be analytically evaluated
[42,43]. As long as y# 0, this system belongs to the Ising
universality class, for which it has been shown that the con-
currence between two spins vanishes unless the two sites are
at most next-to-nearest neighbor [37,38]. The nearest-
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FIG. 16. (Color online) Decay rate « rescaled with respect to the
number of links m, in a star symmetric configuration (type A) on the
left, and in a nonsymmetric configuration (type B) on the right. The
environment is an N=300 spin Ising chain with periodic boundary
conditions. The interaction strength € is kept fixed for all the links
between the qubit and the environment spins: €=0.25. Various sym-
bols stand for different values of m: 1 (cyan crosses), 2 (orange
triangles right), 3 (magenta triangles down), 5 (brown triangles
left), 10 (blue triangles up), 30 (green diamonds), 100 (red squares),
150 (black circles, left), 300 (dashed black line, right). The insets on
the left figure show a magnification of the same plot, centered in
proximity of the critical point A,=1, and far from it.

(1) Short-time behavior. At short times the Loschmidt
echo exhibits a Gaussian decay, as in Eq. (22), for both con-
figurations. For the setup A the decay rate «, far from the
critical region, scales as

axme, (35)
as it can be seen from Fig. 16(a). The scaling with the num-
ber of links m is a consequence of the fact that the short-time
behavior is dominated by the dynamics of the environment
spins close to those linked to the qubit (see also Sec. IV C).
Therefore, if the linked spins are not close to each other, they
do not interact among them on the short time scale Jr<1.
Near the critical point this picture is not valid, since long-
range correlations between the spins of the bath become im-
portant, even at small times. In this region indeed the scaling
a~m is less appropriate, as it can be seen in the inset of Fig.
16(a).

The scaling of Eq. (35) does not hold any more in the
setup B, as in this case collective modes influence the dy-
namics of the system even at short times, since the spins
linked to the central spin are close to each other and they are
not independent any more. This is clearly visible in Fig.
16(b). We notice also that, as m/N increases, a tends to
remain constant for A =1 and then decreases for A > 1. In the
limiting case m=N, « is positive and strictly constant for A
=\ the first derivative dy« presents a discontinuity at A\,
showing a divergence from the ferromagnetic zone N — 17.

(2) Long-time behavior. Here we concentrate on the setup
B, since the configuration A is less interesting: indeed for
long times the Loschmidt echo behaves as if the qubit was
coupled to an environment with a smaller number of spins.

A

FIG. 17. (Color online) Asymptotic value of the Loschmidt echo
for the setup B; the environment is a 300 spin Ising chain, with €
=(0.25. Various symbols stand for different values of m: 1 (cyan
crosses), 2 (orange triangles right), 5 (magenta triangles down), 10
(brown triangles left), 30 (blue triangles up), 100 (green diamonds),
150 (red squares), 300 (black circles).

In Fig. 17 we plotted the asymptotic value of the Loschmidt
echo L., for the setup B. We observe that, as m increases, the
coherence loss enhances, and the valley around the critical
point A, deepens and gets broader. Notice 