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Abstract
In this paper we propose a method to compute the solution to the fractional diffusion
equation on directed networks, which can be expressed in terms of the graph Laplacian
L as a product f (LT )b, where f is a non-analytic function involving fractional powers
and b is a given vector. The graph Laplacian is a singular matrix, causing Krylov
methods for f (LT )b to converge more slowly. In order to overcome this difficulty and
achieve faster convergence,we use rationalKrylovmethods applied to a desingularized
version of the graph Laplacian, obtained with either a rank-one shift or a projection
on a subspace.

Keywords Network dynamics · Graph Laplacian · Non-analytic matrix functions ·
Rational Krylov methods · Desingularization

Mathematics Subject Classification 65F60

1 Introduction

The use of graph models to represent complex structures is extremely widespread,
ranging from real and digital social networks, to transportation networks, to networks
of chemical reactions and many others. It is often of interest in applications to study
diffusion processes taking place on a network, that evolve in time according to the
distribution of edges in the underlying graph. Such a process can be described in
terms of a system of ordinary differential equations in time, with the Laplacian matrix
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L of the graph as the coefficient matrix, and its solution at time t can be written as
u(t) = exp(−t LT )u(0). An expression of this form can be computed efficiently using
a polynomial Krylov method.

While a diffusion process is a local phenomenon, there are certain phenomena that
allow long-range interactions and are non-local in nature: in the continuous setting,
phenomena of this kind have been effectively modelled using fractional powers of
the Laplace differential operator, that is (−Δ)α for α ∈ [1/2, 1) (see, e.g., [21, Def-
inition 2]). Analogously, in the context of directed graphs, these phenomena can be
well described with a fractional diffusion model, which employs a fractional power of
the graph Laplacian instead of the Laplacian itself. Unlike for the continuous Laplace
operator, in the discrete case there is no need to restrict the values of α to the interval
[1/2, 1), and we can use any exponent α ∈ (0, 1). This modelling approach has been
recently studied in [29] in the undirected case, and in [2] for more general directed
graphs; we refer to the book [26] for more information on fractional dynamics. We
mention that there are alternative approaches for modelling nonlocal phenomena on
graphs, e.g. the one based on the transformed k-path Laplacian presented in [14,15]:
this model shares some properties with fractional diffusion, such as superdiffusive
behaviour on infinite one-dimensional graphs.

In this paper we focus on the computational aspect of fractional dynamics, in par-
ticular on the efficient computation of the solution to the fractional diffusion equation
on both undirected and directed graphs using rational Krylov methods. The solution
at time t ≥ 0 can be expressed as u(t) = f (LT )u(0), where f (z) = exp(−t zα) for
α ∈ (0, 1). The function f has a branch cut on the negative real axis (−∞, 0], and
hence it is not analytic in a neighbourhood of the spectrum of the graph Laplacian L ,
which is a singular M-matrix. The lack of a region of analyticity around the spectrum
of L causes the error bounds for Krylov methods based on the spectrum and the field
of values to be unusable, and in practice this also negatively affects the actual con-
vergence rate of these methods. Moreover, since f is not analytic, it is preferable to
approximate f (LT )u(0) using rational Krylov methods instead of polynomial meth-
ods. In our experiments, in addition to the polynomial Krylov method, we investigate
the performance of the Shift-and-Invert Krylov method with two different shifts, and
of a rational Krylov method with asymptotically optimal poles presented in [24] for
Laplace–Stieltjes functions.

To improve convergence, we propose to remove the singularity of the graph Lapla-
cian with either a rank-one shift or a projection on a subspace. This enables us to
use any rational Krylov method on the (now nonsingular) modified Laplacian, which
exhibit faster convergence, and then recover the solution to the original problem with
only little additional cost. We also show that the improved convergence of the pro-
jection method can be achieved without explicitly projecting the graph Laplacian,
by suitably manipulating the initial vector (see Sect. 5.2.2). These techniques can
be applied with no preliminary computations to any undirected graph, and they only
require the solution of the singular linear system LT z = 0 for a general digraph.

The paper is organized as follows. First, in Sect. 2 we provide the necessary back-
ground and notation on graphs, and we introduce the graph Laplacian L . In Sect. 3 we
define the fractional powers Lα , α ∈ (0, 1), and we briefly discuss the properties of
the fractional Laplacian. In Sect. 4 we introduce rational Krylov methods for the com-

123



Rational Krylov methods for fractional diffusion problems on graphs 359

putation of matrix functions, and in Sect. 5 we present some techniques to remove the
singularity of the graph Laplacian. In Sect. 6 we conduct some numerical experiments
on real-world networks to compare the performance of different Krylov methods and
demostrate the effectiveness of the desingulatization techniques proposed in Sect. 5.

2 Background and notation regarding graphs

A directed graph, or digraph, is a pairG = (V , E), where V = {v1, . . . , vn} is a set of
n nodes or vertices, and E ⊆ V × V is the set of edges. A digraph can be represented
with its adjacency matrix A, an n × n matrix whose entries are

Ai j =
{
1 if (i, j) ∈ E,

0 otherwise.

The out-degree di of a node i is defined as the number of edges going out from i ,
i.e. edges of the form (i, �) ∈ E for some node � ∈ V . The vector d of out-degrees can
be computed as d = A1, where 1 denotes the all-ones vector of size n. If we denote
by D = diag(d) the diagonal matrix of out-degrees, the (out-degree) graph Laplacian
of G is defined as L = D − A.

Note that one can also define the vector of in-degrees as d in = AT 1, and the
in-degree graph Laplacian as L in = diag(d in) − A. Here, we focus solely on the out-
degree graph Laplacian L , and we refer to it as the graph Laplacian whenever there
is no ambiguity. Most of the properties of L also hold for L in, and what we say for
the out-degree graph Laplacian can be extended to the case of the in-degree Laplacian
with only minor adjustments.

One can also consider weighted graphs, where with each edge (i, j) ∈ E is associ-
ated a positive weight wi j , repesenting the strength of the connection between nodes
i and j ; if (i, j) /∈ E , we write wi j = 0. The matrix W = (wi j ) is a weighted adja-
cency matrix associated with G, and it can be used to defined a weighted vector of
out-degrees dW = W1 and a weighted graph Laplacian LW = diag(dW )−W . In this
paper we only consider unweighted graphs for simplicity, but the techniques that we
propose can be applied in the same way to weighted graphs. We also mainly focus
on strongly connected graphs, i.e., graphs on which there exists a directed path from
node i to node j for any pair of nodes (i, j). Recall that a graph is strongly connected
if and only if its adjacency matrix A (and hence also L) is irreducible, i.e., there exists
no permutation matrix P such that PT AP is block triangular.

2.1 Properties of the graph Laplacian

Here we briefly discuss some properties of the graph Laplacian L , which later will be
used in the definition of its fractional powers. We also introduce the classical diffusion
equation on graphs.

It follows from its definition that the graph Laplacian L is a singular matrix, indeed
it holds L1 = 0. More specifically, the graph Laplacian is a singular M-matrix.
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Definition 2.1 (M-matrix [6]) A matrix A ∈ R
n×n is an M-matrix if it holds A =

s I − B for some nonnegative matrix B, where s ≥ ρ(B), the spectral radius of B. It
is a singular M-matrix if s = ρ(B).

One can easily prove the following basic result.

Proposition 2.1 The graph Laplacian L of a digraph G has the following properties:

(a) L is a singular M-matrix.
(b) The nonzero eigenvalues of L have positive real part.
(c) 0 is a semisimple eigenvalue of L, i.e. its algebraic multiplicity and geometric

multiplicity are the same.

These properties are fundamental for being able to define fractional powers of L ,
as we will see shortly.

The graph Laplacian is used as the coefficientmatrix in the diffusion equation on the
graph G. Denote by u(t) ∈ R

n a vector of concentrations at time t of a substance that
is diffusing on the graph. Up to normalization, we can assume that u(t) is a probability
vector, i.e. that u(t) ≥ 0 and u(t)T 1 = 1. The diffusion equation on a directed graph
reads

⎧⎨
⎩

d

dt
u(t)T = −u(t)T L, t ∈ (0, T ],

u(0) = u0 ≥ 0, uT0 1 = 1,
(2.1)

and the solution to this system of ordinary differential equations can be explicitly
stated in terms of the matrix exponential,

u(t)T = uT0 e
−t L .

Using properties of M-matrices, one can easily prove that e−t L is a stochastic matrix,
i.e. that it has nonnegative entries and e−t L1 = 1, and hence the solution u(t) is a
probability vector at all times t ≥ 0. Note that this property would not be preserved
if we used column vectors instead of row vectors in (2.1): see, e.g., the discussion in
[9].

3 The fractional graph Laplacian

In this section, we recall the general definition of a matrix function in terms of the
Jordan canonical form, following [19, Section 1.2], andweuse it to define the fractional
graph Laplacian and the related fractional diffusion process.
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Rational Krylov methods for fractional diffusion problems on graphs 361

Recall that any matrix A ∈ C
n×n can be expressed in the Jordan canonical form as

Z−1AZ = J = diag(J1, . . . , Jp),

Jk = [
λk

]
or Jk =

⎡
⎢⎢⎢⎢⎣

λk 1

λk
. . .

. . . 1
λk

⎤
⎥⎥⎥⎥⎦ ∈ C

mk×mk ,
(3.1)

where Z is nonsingular and m1 +m2 + · · ·+mp = n. An eigenvalue λ is semisimple
if and only if all the Jordan blocks associated with λ are 1× 1. We have the following
definition.

Definition 3.1 The function f is said to be defined on the spectrum of A if the values

f ( j)(λi ), j = 0, . . . ,mi − 1, i = 1, . . . , n,

exist, where f (0) = f and f ( j) is the j-th derivative of f .

Provided that f is defined on the spectrum of A, the matrix function f (A) can be
defined for any matrix using the Jordan canonical form.

Definition 3.2 Let f be defined on the spectrum of A ∈ C
n×n , and let A have the

Jordan canonical form (3.1). Then we define

f (A) = Z f (J )Z−1 = Z diag
(
f (J1), . . . , f (Jp)

)
Z−1,

where

f (Jk) = [
f (λk)

]
or f (Jk) =

⎡
⎢⎢⎢⎢⎢⎢⎣

f (λk) f ′(λk) . . .
f (mk−1)(λk)

(mk − 1)!
f (λk)

. . .
...

. . . f ′(λk)
f (λk)

⎤
⎥⎥⎥⎥⎥⎥⎦

.

ByProposition 2.1, the function f (z) = zα ,α ∈ (0, 1) is defined on the spectrum of
the graph Laplacian L , since the eigenvalue 0 is semisimple and all other eigenvalues
are in the right half-plane. Herewe denote by zα the branch of the fractional powerwith
a cut on the negative real axis (−∞, 0], i.e. if z = ρeiθ , with ρ > 0 and θ ∈ (−π, π),
then zα = ραeiαθ .

With the above definition, the fractional Laplacian Lα is still an M-matrix. Indeed,
we have the following result.

Theorem 3.1 ([2]) If A is a singular M-matrix with a semisimple 0 eigenvalue, then
Aα is a singular M-matrix for every α ∈ (0, 1].
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Moreover, since Lα1 = 0, we can interpret the fractional graph Laplacian as the
Laplacian of a weighted graph on the same set of nodes as G, and we can use it to
define a fractional diffusion process on G, with a system of differential equations
analogous to (2.1):

⎧⎨
⎩

d

dt
u(t)T = −u(t)T Lα, t ∈ (0, T ],

u(0) = u0 ≥ 0, uT0 1 = 1.
(3.2)

The solution of this system can be explicitly written in the form

u(t)T = uT0 e
−t Lα

, t ≥ 0. (3.3)

As in the case of classical diffusion, the solution u(t) to (3.2) is a probability vector
at all times t ≥ 0.

4 Rational Krylovmethods

In this section we briefly introduce rational Krylov methods for the computation of
expressions of the form f (A)b, with the goal of applying them for the computation the
solution to the fractional diffusion equation (3.2), which can be expressed in the form
u(t) = f (LT )u0, where f (z) = e−t zα . For a more extensive treatment of rational
Krylov methods, including the problem of the selection of poles, we refer, e.g., to
[17,18].

Inmany applications it is required to compute the product f (A)b, where A is a large
and sparse matrix. In these cases, the computation of f (A)b by first computing the
whole matrix f (A) and then forming the product f (A)b is extremely expensive and
often unfeasible; moreover, the matrix function f (A) is generally dense even when
the original matrix A is sparse, making the full computation of f (A) costly also in
terms of storage for large scale problems. A rational Krylov methods overcomes these
difficulties by directly approximating the product f (A)b using a low-dimensional
search space, without explicitly computing f (A). In each iteration of a rational Krylov
method it is required to solve a shifted linear system involving A, making the iterations
more expensive than those of a polynomial Krylov method, which only requires a
matrix-vector productwith A at each iteration.However, the increased cost per iteration
of a rational method is offset by the often superior approximation properties of rational
functions, compared to polynomial approximation, especially for functions that are
not analytic.

For any k ≥ 1, define the rational Krylov subspace of order k associated with A
and b as

Qk(A, b) = qk−1(A)−1 span{b, Ab, . . . , Ak−1b},
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where qk−1(z) =
k−1∏
j=1

(1− z/ξ j ) is a polynomial identified by the poles (ξk)k≥1, which

are located in (C∪ ∞) \ (σ (A) ∪ {0}). If all poles are equal to ∞, the rational Krylov
subspace Qk(A, b) reduces to the polynomial Krylov subspace

Pk(A, b) = span{b, Ab, . . . , Ak−1b} = {pk−1(A)b : p ∈ Πk−1},

where Πk−1 denotes the set of polynomials of degree ≤ k − 1.
The rational Krylov subspacesQk(A, b) form a sequence of nested subspaces, each

of dimension k, as long as k ≤ K , where K is the invariance index of the sequence,
i.e. the smallest index such that QK (A, b) = QK+1(A, b) = QK+ j (A, b) for all
j ≥ 0.
Generally it is assumed that k ≤ K . If this is the case, we can compute an

orthonormal basis of Qk(A, b) using Ruhe’s rational Arnoldi algorithm [30], which
is summarized in Algorithm 1. The first basis vector is chosen as v1 = b/‖b‖2. After
j iterations, the columns of the matrix Vj = [v1, . . . , v j ] ∈ C

n× j form an orthonor-
mal basis of Q j (A, b). To construct a basis of Q j+1(A, b), the Arnoldi algorithm
makes use of a continuation vector w j ∈ Q j (A, b) such that (A − ξ j+1 I )−1Aw j ∈
Q j+1(A, b) \ Q j (A, b). As is customary, we assume that the last computed basis
vector v j is a continuation vector, and we compute v j+1 by orthonormalizing
w j = (I − A/ξ j )

−1Av j against all the previous basis vectors.

Algorithm 1 Rational Arnoldi algorithm for computing an orthonormal basis of
Qk(A, b).

Input: A, b, k, {ξ1, . . . , ξk }
Output: {v1, . . . , vk }

1: v1 ← b/‖b‖2
2: for j = 1, . . . , k − 1 do
3: w j ← (I − A/ξ j )

−1Av j
4: for i = 1, . . . , j do
5: hi j ← wT

j vi
6: w j ← w j − hi j v j
7: end for
8: h j+1, j ← ‖w j‖2
9: if h j+1, j = 0 then stop
10: else
11: v j+1 ← w j /h j+1, j
12: end if
13: end for

An approximation to y = f (A)b in the subspace Qk(A, b) can be computed as

ȳk = Vk f (V
∗
k AVk)V

∗
k b. (4.1)

For the solution of the fractional diffusion problem, we are going to use real poles (in
particular, located on (−∞, 0)), so the matrices Vk are going to be real.
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When the sequence of poles (ξk)k≥1 consists of a single repeated pole ξ , the rational
Krylov subspaces that are generated are known as Shift-and-Invert Krylov subspaces,
and they can be written more simply as

Sk(A, b) := (A − ξ I )−k+1 span{b, . . . , Ak−1b} = Pk((A − ξ I )−1, b),

i.e. it corresponds to a polynomial Krylov subspace relative to the matrix (A− ξ I )−1.
The Shift-and-Invert method was first investigated for the approximation of matrix

functions in [13,27]. Even though this type of Krylov subspace sacrifices some flexi-
bility in the choice of the poles, it is appealing because at each iteration we are required
to solve a linear system with the same matrix (A − ξ I ); this allows us, for instance,
to compute an LU factorization of (A − ξ I ) only once, and then we can apply it
at each iteration to solve the linear systems at a reduced cost. Therefore, although a
Shift-and-Invert method will typically require more iterations to converge compared
to a rational Krylov method with a carefully chosen sequence of poles, it can still be
competitive in terms of execution time.

The effectiveness of the approximation to f (A)b given by (4.1) can be related to
the problem of approximating f with rational functions. Denote byW(A) the field of
values of A [20, Definition 1.1.1], i.e. the set

W(A) = {x∗Ax : x ∈ C
n, ‖x‖2 = 1}.

The field of values, also known as numerical range, is a convex and compact set which
contains the spectrum σ(A), and it reduces to the convex hull of σ(A) when A is a
normal matrix.

The following theorem by Crouzeix and Palencia provides a bound for the norm of
a matrix function using the field of values W(A).

Theorem 4.1 ([10,11]) Assume that f is analytic in a neighbourhood ofW(A). Then
it holds

‖ f (A)‖2 ≤ C‖ f ‖W(A), C ≤ 1 + √
2,

where ‖ f ‖E = supz∈E | f (z)| for any set E ⊂ C.

A conjecture by Crouzeix states that the inequality ‖ f (A)‖2 ≤ C‖ f ‖W(A) holds with
C = 2 for any matrix A.

With Theorem 4.1 one can prove the following.

Proposition 4.1 ([18, Corollary 3.4]) Let f be analytic in a neighbourhood ofW(A).
Then the rational Krylov approximation ȳk defined in (4.1) satisfies

‖ f (A)b − ȳk‖2 ≤ 2C‖b‖2 min
pk−1∈Πk−1

‖ f − pk−1/qk−1‖W(A), (4.2)

where Πk−1 denotes the set of polynomials of degree ≤ k − 1.
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The bound given by Proposition 4.1 decays rapidly to zero when f is an entire
function (e.g., f (z) = ez), or if it has a large region of analiticity surrounding the
field of values of A. Unfortunately, in the case of fractional diffusion on graphs, the 0
eigenvalue of the Laplacian is located on the boundary of the region of analiticity of f .
Moreover, for most directed graphs the field of values of the Laplacian intersects the
negative real axis (−∞, 0), preventing us from using convergence results based on the
field of values. The presence of an eigenvalue at 0 can also be detrimental in practice
for the convergence of Krylov methods. With this motivation in mind, in Sect. 5 we
propose some techniques to remove the singularity of the graph Laplacian, in order to
work with nonsingular matrices and improve the convergence of Krylov methods.

4.1 Laplace–Stieltjes functions

The problem of the selection of poles for rational Krylov methods is a highly active
area of reseach, and many different choices have been proposed in the literature,
depending on the function f and on the spectrum of A (see, for instance, [18]). Most
of the existing analysis deals with real symmetric matrices, since in that case the
field of values is reduced to an interval on the real line, and hence the minimization
problem (4.2) becomes easier to handle.

A pole selection strategy for the evaluation of f (A)b was recently proposed in
[24] for the case of a Hermitian positive definite matrix A and a Cauchy-Stieltjes or
Laplace–Stieltjes function f . For a matrix A with spectrum contained in the positive
interval [a, b], the choice of poles described in [24] gives after k iterations an error

‖ f (A)b − ȳk‖2 ∼ O
(
ρ

k
2[a,b]

)
, where ρ[a,b] = exp

( − π2/ log( 4ba )
)
. (4.3)

However, the poles that satisfy the error bound for iteration k + 1 are not obtained
by adding a new pole to the ones of iteration k, so in order to effectively use this
pole selection strategy one would need to decide a priori the number of iterations to
be performed. In order to overcome this drawback, in [24, Section 3.5] the authors
use the method of equidistributed sequences (EDS) to construct an infinite sequence
of poles with the same asymptotic rate of convergence, that can be more easily used
in practice. For the details on the construction of this pole sequence, we refer to the
discussion in [24, Section 3.5].

In this section we observe that the function f (z) = e−t zα is a Laplace–Stieltjes
function, and hence we can use the pole sequence proposed in [24] for the fractional
diffusion problem (3.2). Even though there are no guarantees on the effectiveness of
this pole sequence for general matrices, in our numerical experiments we observed that
it provides a good convergence rate even when A is the (singular and nonsymmetric)
Laplacian of a directed graph.

Definition 4.1 A function f : (0,∞) → R is a Laplace–Stieltjes function if it can be
expressed in the form

123



366 M. Benzi, I. Simunec

f (z) =
∫ ∞

0
e−t zdμ(t),

where μ is a positive measure on [0,∞).

The class of Laplace–Stieltjes functions coincides with the class of completely
monotonic functions, i.e. infinitely differentiable functions defined on (0,∞) such
that

(−1)k f (k)(z) ≥ 0 ∀ z > 0 and k ≥ 0. (4.4)

The equivalence between these two classes of functions is known as Bernstein’s the-
orem [31, Theorem 1.4].

A class of functions which is closely related to completely monotonic functions is
the class of Bernstein functions, that consists of all functions f : (0,∞) → R of class
C∞ such that

f (z) ≥ 0 and (−1)k−1 f (k)(z) ≥ 0, ∀ k ≥ 1 and ∀ z > 0. (4.5)

Observe that a nonnegative function f : (0,∞) → R is a Bernstein function if and
only if f ′ is a completely monotonic function. The fractional power f (z) = zα , for
α ∈ (0, 1), is an example of a Bernstein function. By [31, Theorem 3.7], if f is a
positive Bernstein function, then the function g(z) = e−t f (z) is completely monotonic
for all t > 0. This proves that g(z) = e−t zα is a completely monotonic (equivalently,
Laplace–Stieltjes) function for all t > 0 and α ∈ (0, 1). This fact can also be easily
proven directly by computing the derivatives of g and checking that condition (4.4) is
verified.

5 Dealing with the singularity

As we have discussed previously, the functions f (z) = zα and g(z) = e−t zα that are
involved in fractional dynamics are not analytic at z = 0. Since the graph Laplacian
L always has a zero eigenvalue, the convergence of rational Krylov methods for the
computation of f (LT )b and g(LT )bmay be hindered by the fact that the function has
no region of analyticity surrounding the spectrum of L .

In this section we propose a rank-one shift and a subspace projection that can
be used to transform the graph Laplacian into a nonsingular matrix, and we provide
simple formulas that link f (L) and f (LT )bwith functions of the transformed matrix.
We are also going to show that Krylov methods directly applied to the singular graph
Laplacian can inherit the improved convergence of the projection approach, at least in
exact arithmetic, provided that the initial vector b is suitably modified.

We mention that the idea of removing the singularity when working with a singular
Laplacian has already appeared in previous literature. For instance, in [7] the authors
consider finite element approximations of the pure Neumann problem, and they use
projections to restrict the problem to the subspace of functions that are orthogonal to
constants, where the continuous Laplace operator is nonsingular.
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Rational Krylov methods for fractional diffusion problems on graphs 367

We present these techniques in detail for strongly connected directed graphs. Recall
that in this case the eigenvalue 0 of the Laplacian L is simple.

5.1 Rank-one shift

Recall that L1 = 0, and let z > 0 be such that zT L = 0T and zT 1 = 1 (the positivity
of z is a consequence of the Perron-Frobenius Theorem [25]). The vector z is uniquely
defined by the above identities if the graph G is strongly connected.

The right and left eigenvectors 1 and z can be respectively completed to a right and
left Jordan basis for L with two matrices R, S ∈ C

n×(n−1), so that we have

Z−1LZ = J =
[
0 0
0 J1

]
, where Z = [

1 R
]

and Z−1 =
[
zT

ST

]
.

The matrix J1 ∈ C
(n−1)×(n−1) contains all the other Jordan blocks of L , which corre-

spond to nonzero eigenvalues.
Now, denoting by e1 ∈ R

n the first vector of the canonical basis, observe that
1zT = Ze1eT1 Z

−1, and hence for all θ ∈ R we have

L + θ1zT = Z

[
θ 0
0 J1

]
Z−1,

i.e. the matrix L + θ1zT has the same spectrum as L except for the eigenvalue 0,
which is replaced by θ . Therefore, using basic properties of matrix functions, for any
function f defined on the spectra of L and L + θ1zT it holds

f (L + θ1zT ) = Z

[
f (θ) 0
0 f (J1)

]
Z−1 = f (L) + [ f (θ) − f (0)]1zT . (5.1)

Identity (5.1) allows us to compute f (L + θ1zT ) instead of f (L) and then recover
the latter for a minimal cost. For any θ > 0 (e.g., θ = 1), the matrix L + θ1zT is
nonsingular and all its eigenvalues have strictly positive real part, so we expect Krylov
methods to converge faster when f has a branch cut on (−∞, 0], e.g. for f (z) = zα .

In particular, for fractional diffusion the objective is the computation of f (LT )b
for a probability vector b and f (z) = e−t zα , and identity (5.1) becomes

f (LT )b = f (LT + θ z1T )b + [ f (0) − f (θ)]z. (5.2)

When the matrix L is large and sparse and a rational Krylov method is used to
approximate f (LT + θ z1T ), it would be preferable to solve shifted linear systems
involving the dense matrix LT + θ z1T without explicitly forming it. This can be done
by using the Sherman-Morrison formula: for an invertible matrix A and two vectors
u, v such that 1 + vT A−1u �= 0, the matrix A + uvT is invertible and it holds

(A + uvT )−1 = A−1 − A−1uvT A−1

1 + vT A−1u
. (5.3)
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In our setting, for a pole ξ ∈ (−∞, 0) the invertibility condition 1+1T (LT −ξ I )−1z �=
0 is always satisfied (since (LT − ξ I )−1 ≥ 0, being the inverse of a nonsingular
M-matrix). By applying the identity (5.3) with A = LT − ξ I , and observing that
(LT − ξ I )−1z = −ξ−1z and 1T (LT − ξ I )−1 = −ξ−11, we obtain

(LT + θ z1T − ξ I )−1 = (LT − ξ I )−1 − ξ−2θ

1 − ξ−1θ
z1T

= (LT − ξ I )−1 + θ

ξ(θ − ξ)
z1T . (5.4)

Remark 5.1 Wemention that the Sherman-Morrison formula has already been applied
in the literature in the context of rational Krylov methods. For instance, in [32, Sec-
tion 3.1] the authors use the Sherman-Morrison-Woodbury formula in the construction
of an “augmented” Krylov subspace associated with a singular matrix, arising in con-
nection with the solution of a constrained Sylvester equation.

Remark 5.2 Recalling the Jordan canonical form of L , we have

Z−1ξ(L − ξ I )−1Z =
[−1 0
0 ξ(J1 − ξ I )−1

]
,

where (J1−ξ I ) is invertible for all ξ ≤ 0, since all the eigenvalues of J1 have positive
real part. By taking the limit for ξ → 0− in the above expression we get

lim
ξ→0− ξ(LT − ξ I )−1 = −z1T , (5.5)

and hence for small ξ < 0 and any vector w the identity (5.4) becomes

(LT + θ z1T − ξ I )−1w = (LT − ξ I )−1w + θ

ξ(θ − ξ)
(1Tw)z

≈ −ξ−1(1Tw)z + θ

ξ(θ − ξ)
(1Tw)z, (5.6)

i.e. we are very close to subtracting two multiples of the vector z of approximately
the same length. Hence formula (5.6) may suffer from severe numerical cancellation
when the pole ξ is very close to the origin, and therefore its use is not advised in that
situation. Indeed, in our numerical experiments we observed a large loss of precision
when solving linear systems with formula (5.6) for poles ξ < 0 of order 10−6.

In order to address the issue mentioned in Remark 5.2, we now derive an alternative
way to compute the solution of the shifted linear system (LT − ξ I )φ = w, in order
to avoid the cancellation in (5.6) when ξ is small. We have

1Tw = 1T (LT − ξ I )φ = −ξ 1Tφ �⇒ 1Tφ = −ξ−11Tw,
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so we can define ψ := φ + ξ−1(1Tw)z, and it holds by construction that 1Tψ = 0.
It is also straightforward to verify that ψ is the solution to the linear system

(LT − ξ I )ψ = w − (1Tw)z,

and that the vector w − (1Tw)z is orthogonal to 1. Hence, we can compute φ as

φ = ψ − ξ−1(1Tw)z, where (LT − ξ I )ψ = w − (1Tw)z. (5.7)

With formula (5.7), we have explicitly separated a component of the solution that is
proportional to ξ−1z. By substituting (5.7) in (5.6), we obtain

(LT + θ z1T − ξ I )−1w = φ + θ

ξ(θ − ξ)
(1Tw)z

= ψ − ξ−1(1Tw)z + θ

ξ(θ − ξ)
(1Tw)z

= ψ + 1Tw

θ − ξ
z. (5.8)

Observe that cancellation is avoided when using (5.8), because the subtraction of the
two close multiples of the vector z is performed analytically. Moreover, because of
(5.5) and since (w − (1Tw)z) ⊥ 1, we have

lim
ξ→0− ξ(LT − ξ I )−1(w − (1Tw)z) = 0,

so for small ξ < 0 we do not expect ψ to have a component of order ξ−1 along the
vector z (note that, in general, this argument fails for φ). Our numerical experiments
confirm that the use of formula (5.8) fixes the problem of cancellation.

Remark 5.3 Note that if the graph is undirected, or more generally if it is balanced
(i.e. each node has equal in- and out-degree), we also have z = 1 up to a normalization
factor, so no preliminary computation is needed to use this approach with the rank-one
shift. On the other hand, for a general digraph it is first required to compute a nonzero
vector z such that LT z = 0.

The problem of solving this linear system was recently discussed, for instance, in
[3]. One possible approach is to compute an LDU factorization of the transpose of
the graph Laplacian, LT = LDU , where L is unit lower triangular, U is unit upper
triangular, and D is diagonal with Di i > 0 for i = 1, . . . , n − 1 and Dnn = 0. Such a
factorization always exists since L is an irreducible singular M-matrix [6], and it can
be computed in a stable way using Gaussian elimination, with no pivoting required
[16]. The original linear system LT z = 0 is thus equivalent to DU z = 0, which can
be solved by fixing zn = 1 and solving the lower triangular linear system U z = en
via backward substitution. We remark that L−1 ≥ 0, so the vector z is nonnegative,
and it can be indeed normalized so that zT 1 = 1. We also mention that when L is
sparse this method can be improved by computing the LDU factorization of PT LT P
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instead of LT , where P is a permutation matrix suitably chosen to reduce the fill-in in
the factors L and U . For example, the Matlab routines amd and symrcm can be used
for this purpose.

Alternatively, when L is very large and sparse, the linear system LT z = 0 can be
solved iteratively, e.g. with a preconditioned GMRES method (see [3] and references
therein). Of course, if L is large and we choose to solve LT z = 0 iteratively, we should
also use an iterative method for the solution of the shifted linear systems at each step
of the rational Krylov iteration. However, in this paper we do not address this specific
subproblem, and we instead focus on the case where it is feasible to solve the linear
systems with a direct method.

5.2 Projected Krylovmethods

Another way to obtain a nonsingular matrix from the graph Laplacian is to project L
on the n − 1 dimensional subspace S = span{1}⊥. We remark that the approach we
present here is similar to the one described in [8, Section 4], where the authors separate
the eigenvalue 0 from the rest of the spectrum of a symmetric positive semidefinite
matrix A, to compute f (A)bwith an integral on a contour surrounding σ(A)\{0}. See
also [22,23] for a discussion of more general spectral splittingmethods for symmetric
matrices.

Let {q1, . . . , qn−1} be an orthonormal basis of S, and define the n × (n − 1)

matrix Q := [
q1 . . . qn−1

]
. The matrix Q̃ :=

[
Q 1√

n
1
]
is orthogonal, and we have

QT Q = In−1 and QQT = In − 1
n 11

T . Here we denoted by Ik the identity matrix
of size k × k in order to stress that the two matrices have a different size; in the
sequel, we will drop the subscript when there is no ambiguity. Observe that the matrix
QT LQ is nonsingular, since range Q = span{1}⊥, ker QT = ker L = span{1} and
range L = span{z}⊥.

We are going to rewrite f (L) in terms of f (QT LQ) by using some properties of
matrix functions. Recalling that L1 = 0 and that 1T Q = 0T , we have:

Q̃T L Q̃ =
[

QT

1√
n
1T

]
L

[
Q 1√

n
1
]

=
[

QT LQ 0
1√
n
1T LQ 0

]
.

Now, using well known properties of matrix functions, we have

Q̃T f (L)Q̃ = f (Q̃T L Q̃) =
[
f (QT LQ) 0

ϕT f (0)

]
, (5.9)

for some ϕ ∈ R
n−1. The vector ϕ can be expressed in closed form (see, e.g., [19,

Theorem 1.21]), but this is not necessary for our purposes.
Let us assume at first that our goal is to compute f (LT )v for a vector v such that

1T v = 0. Using (5.9), we get

f (LT )v = Q̃ f (Q̃T L Q̃)T Q̃T v
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=
[
Q 1√

n
1
] [

f (QT LT Q) ϕ

0T f (0)

] [
QT v

0

]
= Q f (QT LT Q)QT v. (5.10)

Now, consider the computation of f (LT )b for a generic vector b. If 1T b = β �= 0, we
can always write b = v + β z for some vector v ⊥ 1 (recall that z satisfies LT z = 0
and 1T z = 1). Hence, using (5.10) we have

f (LT )b = f (LT )v + β f (LT )z

= Q f (QT LT Q)QT v + β f (0)z. (5.11)

Using (5.11), we can compute f (LT )b by using a rational Krylov method on the
nonsingular projected matrix QT LT Q. As the rank-one shift, this requires knowledge
of z, the left 0-eigenvector of the graphLaplacian,whichmust be computed beforehand
by solving the singular linear system LT z = 0. In order to make this approach viable,
we need to be able to compute matrix-vector products with Q efficiently: we address
this problem in Sect. 5.2.1. We are also going to show that in exact arithmetic the
Krylov methods for f (LT )v and Q f (QT LT Q)QT v construct precisely the same
approximations after an equal number of iterations, so it is actually not necessary to
perform the projection explicitly.

5.2.1 Fast matrix-vector products with Q

In this part we show how to construct a matrix Q with orthonormal columns spanning
the subspace S = span 1⊥, such that the matrix-vector products of the form Qu and
QT v can be perfomed with cost O(n).

Let us define the orthogonal matrix Q̃ =
[
Q 1√

n
1
]
as

Q̃ =

⎡
⎢⎢⎢⎢⎢⎢⎣

1/
√
n · · · · · · 1/√n 1/

√
n

r s . . . s 1/
√
n

s r
. . .

...
...

...
. . .

. . . s
...

s . . . s r 1/
√
n

⎤
⎥⎥⎥⎥⎥⎥⎦

, where s = 1

1 − n

(
1 + 1√

n

)
,

r = s + 1

so that we have

Q = 1√
n

[
1

0n−1

]
1Tn−1 + s

[
0

1n−1

]
1Tn−1 +

[
0Tn−1
In−1

]
, (5.12)

where we denoted by 0n−1, 1n−1 and In−1 respectively the all-zeroes vector, the all-
ones vector, and the identity matrix of size n − 1. It is straightforward to see that with
the above definition Q̃ is indeed an orthogonal matrix. Now, for any vector v ∈ R

n
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and u ∈ R
n−1 we have

Qu = 1√
n
1Tn−1u

[
1

0n−1

]
+ s1Tn−1u

[
0

1n−1

]
+

[
0
u

]

QT v = 1√
n
[v]11n−1 + s

n∑
j=2

[v] j1n−1 +
⎡
⎢⎣

v2
...

vn

⎤
⎥⎦ (5.13)

(QT LT Q − ξ In−1)
−1u = QT (LT − ξ I )−1Qu.

The last equality in (5.13) follows from Lemma 5.1(b) in Sect. 5.2.2 below.
Hence the matrix-vector products Qu and QT v can be computed with cost O(n),

and the solution of a shifted linear system with QT LT Q can be reduced with cost
O(n) to the solution of a shifted linear system with LT .

5.2.2 Implicit projection

In the following part, we are going to examine how rational Krylov methods for the
computation of f (LT )b are related to their projected counterpart, i.e. to methods
that first approximate f (QT LT Q)QT b using rational Krylov subspaces and then
use (5.10) to compute f (LT )b, in the case of an initial vector b ⊥ 1. Note that
the assumption b ⊥ 1 is not satisfied when computing the solution to the fractional
diffusion equation, since in that case the initial vector u0 is a probability vector, and
hence 1T u0 = 1. However, with the same procedure used in identity (5.11), the results
of this section can be used with minor modifications for any initial vector b.

We are going to prove our result in a slightly more general scenario: let A ∈ R
n×n ,

and let x be a left eigenvector of A such that xT A = λxT . The specific case of the
graph Laplacian will then correspond to A = LT , x = 1 and λ = 0. Let Q be an
n × (n − 1) matrix whose columns are an orthonormal basis of span{x}⊥. If b ⊥ x,
the same argument used in the proof of (5.10) gives us

f (A)b = Q f (QT AQ)QT b. (5.14)

Recall that the usual rationalArnoldi algorithm for f (A)b computes an orthonormal
sequence {vk}k≥1 such that v1 = b/‖b‖2 and span {v1, . . . , vk} = Qk(A, b). If we
define Vk = [v1 . . . vk], and Bk = V T

k AVk , a rational Krylov method then yields the
approximation

ȳk := Vk f (Bk)V
T
k b. (5.15)

Alternatively, if we work with the right hand side of (5.14), after k iterations the
rational Arnoldi algorithm constructs thematrixUk = [u1 . . . uk] ∈ R

(n−1)×k , whose
columns {u1, . . . , uk} are an orthonormal basis forQk(QT AQ, QT b). Then the vector
f (QT AQ)QT b can be approximated by

Uk f (Ck)U
T
k QT b,
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where Ck = UT
k (QT AQ)Uk . Applying now (5.14), we have the following approxi-

mation to f (A)b:

¯̄yk = QUk f (Ck)U
T
k QT b. (5.16)

Wewill refer to themethod described by equation (5.16) as a projected rational Krylov
method.

The main result of this section is the following.

Theorem 5.1 Let ȳk and ¯̄yk be the approximations to f (A)b defined in (5.15) and
(5.16), respectively, where b ⊥ x. Then, in exact arithmetic it holds that ȳk = ¯̄yk .

We start by proving a few basic properties that we will use repeatedly in the fol-
lowing discussion.

Lemma 5.1 Using the same notation as above, the following properties hold:

(a) Qk(A, b) ⊥ x and QQT v = v for all v ∈ Qk(A, b).
(b) (QT AQ − ξ I )−1 = QT (A− ξ I )−1Q for any ξ ∈ C such that the inverses exist.
(c) Qk(QT AQ, QT b) = QTQk(A, b) and QQk(QT AQ, QT b) = Qk(A, b).
(d) Let wk ∈ Qk(A, b) and zk = QTwk ∈ Qk(QT AQ, QT b). It holds

(A − ξk I )
−1Awk ∈Qk(A, b) ⇐⇒ (QT AQ − ξk I )

−1QT AQzk ∈Qk(Q
T AQ, QT b).

This implies that wk is a continuation vector for Qk(A, b) if and only if zk is a
continuation vector for Qk(QT AQ, QT b).

Proof (a) Let v ∈ Qk(A, b), i.e. v = qk−1(A)−1 p(A)b. Since it holds that xT A =
λxT , we also have xT v = xT qk−1(A)−1 p(A)b = qk−1(λ)−1 p(λ)xT b = 0, since
b ⊥ x. For the second part of the statement, we have QQT v = v − xxT v = v since
v ⊥ x.

(b) Let us show that (QT AQ − ξk I )QT (A − ξk I )−1Q = I . We have:

(QT AQ − ξk I )Q
T (A − ξk I )

−1Q = QT (A − ξk I )QQT (A − ξk I )
−1Q

= QT (A − ξk I )(I − xxT )(A − ξk I )
−1Q

= I − QT (A − ξk I )x(λ − ξk)
−1xT Q = I ,

where in the last two equalitieswe used xT (A−ξk)
−1 = (λ−ξk)

−1xT and xT Q = 0T .
(c) Let v ∈ Qk(QT AQ, QT b), so v = qk−1(QT AQ)−1 p(QT AQ)QT b, for some

polynomial p with deg p ≤ k − 1. Using that QQT = I − xxT and b ⊥ x, we can
prove that p(QT AQ)QT b = QT p(A)b. Because of (b), we also have

(QT AQ − ξk−1 I )
−1QT p(A)b = QT (A − ξk−1 I )

−1(I − xxT )p(A)b

= QT (A − ξk−1 I )
−1 p(A)b,
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since xT p(A)b = p(λ)xT b = 0. Using similar operations on the other factors of
qk−1, we finally obtain

v = qk−1(Q
T AQ)−1 p(QT AQ)QT b = QTqk−1(A)−1 p(A)b ∈ QTQk(A, b).

The second identity follows from the fact that QQT v = v for all v ∈ Qk(A, b).
(d) Using (b) and Qk(A, b) ⊥ x, we have the following:

(QT AQ − ξk I )
−1QT AQzk = QT (A − ξk I )

−1QQT AQQTwk = QT (A − ξk I )
−1Awk .

Because of (c), it follows that (A − ξk I )−1Awk ∈ Qk(A, b) if and only if QT (A −
ξk I )−1Awk ∈ QTQk(A, b) = Qk(QT AQ, QT b). The second statment follows from
the fact that (A − ξk I )−1Av ∈ Qk(A, b) for all v ∈ Qk(A, b), recalling that v ∈
Qk(A, b) is a continuation vector if and only if (A − ξk I )−1Av ∈ Qk+1(A, b) \
Qk(A, b). ��

Having established some basic facts about the projected Krylov subspace, we are
now ready to prove Theorem 5.1.

Proof (Proof of Theorem 5.1) We start by showing that there exists a k × k diagonal
and orthogonal matrix Dk such that Uk = QT VkDk . Since u1 = QT v1 by definition,
it is enough to prove that uk+1 = ±QT vk+1, with the assumption thatUk = QT VkDk ,
for k ≥ 1. If we denote by zk a continuation vector for Qk(QT AQ, QT b), then by
Lemma 5.1(d) we have thatwk = Qzk is a continuation vector forQk(A, b). We have
the following chain of equalities, using Lemma 5.1(b) for the second equality:

span {Uk, uk+1} = span
{
Uk, (QT AQ − ξk I )

−1QT AQzk
}

= span
{
QT VkDk, QT (A − ξk I )

−1Awk

}
= QT span

{
Vk, (A − ξk I )

−1Awk

}
= QT span {Vk, vk+1} = span

{
Uk, QT vk+1

}
.

The vector QT vk+1 is orthogonal to the columns of Uk = QT VkDk , since

vTk+1QQT Vk = vTk+1(I − xxT )Vk = 0T .

So we have uk+1 = ±QT vk+1, since both vectors are inQk(QT AQ, QT b) and they
are orthogonal to the columns of Uk . Hence we have obtained Uk = QT VkDk and
QUk = QQT VkDk = VkDk , where Dk is a diagonal matrix whose diagonal elements
are equal to ±1.
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Now it is straightforward to see that Ck = Dk BkDk and that ȳk = ¯̄yk . Indeed we
have

¯̄yk = QUk f (Ck)U
T
k QT b

= VkDk f (U
T
k QT AQUk)DkV

T
k b

= VkDk f (DkV
T
k AVkDk)DkV

T
k b

= Vk f (Bk)V
T
k b = ȳk .

��
The result of Theorem 5.1 can also be seen as a consequence of the implicit Q

theorem for rational Arnoldi decompositions [5, Theorem 3.2].
Although Theorem 5.1 is guaranteed to hold only in exact arithmetic, we observed

from our experiments that the error curves given by the two approximations (5.15)
and (5.16) are almost always overlapping, so the implicit projection is a valid (and
cheaper) alternative to (5.16).

Remark 5.4 The approach described in this section is similar to the deflation and
augmentation strategies used in the solution of linear systems with Krylov methods:
the aim of these techniques is to include exact or approximate spectral information on
thematrix in order to speed up the convergence. This can be done by either adding a few
known eigenvectors to the Krylov subspace, or by directly solving a deflated problem
constructed using the spectral information on the matrix. Since the implicit projection
method constructs a Krylov subspace that is orthogonal to the vector x (see Lemma
5.1(a)), it can be interpreted as an implicit way to construct an augmented Krylov
subspace, also containing the eigenvector x. For additional details on deflation and
augmentation techniques used in Krylov methods for the solution of linear systems,
we refer to the review article [33, Section 9] and to the references cited therein.

6 Numerical experiments

In this section we test and compare the performance of the various methods for the
computation of f (A)b that we presented earlier, using them to approximate the solu-
tion to the fractional diffusion equation (3.2) on real-world networks, both undirected
and directed. Recall that the solution to (3.2) at time t can be expressed in the form

u(t) = f (LT )u0, f (z) = e−t zα , t ≥ 0, α ∈ (0, 1). (6.1)

Since the graphs we consider are strongly connected, the eigenvalues λ1, . . . , λn of
the graph Laplacian can be ordered in a way such that 0 = λ1 < |λ2| ≤ · · · ≤ |λn|.

We use the result of Theorem 5.1 to compute f (LT )u0 via (5.11) in the following
way: letting β = 1T u0 > 0, there exists w ⊥ 1 such that u0 = w + β z (recall that
LT z = 0), and thus we can compute f (LT )u0 as

f (LT )u0 = f (LT )w + β f (LT )z = f (LT )w + β z. (6.2)
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Theorem 5.1 guarantees that, at least in exact arithmetic, a rational Krylov method for
f (LT )w yields the same approximate solution as the same Krylov method applied
to the projected problem f (QT LT Q)QTw. We refer to the method obtained by
using (6.2) and approximating f (LT )w with a Krylov method as an implicitly pro-
jected Krylov method.

As we mentioned earlier, we use poles located on the negative real axis (−∞, 0).
For the Shift-and-Invert Krylov method, we compare two different choices of poles.
Recall that in the case of a symmetric positive definite matrix A, if a > 0 is a lower
bound for the smallest eigenvalue of A and b > 0 is an upper bound for its largest
eigenvalue, so that σ(A) ⊂ [a, b], an effective pole choice for the Shift-and-Invert
Krylov method is given by ξ = −√

ab (see, e.g., [1, Section 6]). In analogy with
this choice, we use the pole ξ = −√|λ2λn|: if the graph is undirected, when we
use the rank-one shift approach (5.2) with θ ≥ |λ2|, this pole corresponds exactly
to the optimal choice ξ = −√

λminλmax for symmetric positive definite matrices; the
same choice appears to be reasonable also for the singular graph Laplacian and in the
directed case. Indeed, our experiments show that this choice always provides a reliable
convergence rate.

As a second possible choice for the Shift-and-Invert Krylovmethod, we use the pole
ξ = −t−2/α proposed in [28]; this choice is based on an integral bound for the error
of the Shift-and-Invert Krylov method, obtained using an integral expression for the
function f . The choice ξ = −t−2/α was proposed for specific functions that arise in the
context of fractional differential equations, like f (z) = e−t zα or f (z) = (1+ t zα)−1,
with α ∈ (0, 1) and t > 0. This pole choice is particularly effective when t is large,
but it is more sensitive to changes in the parameters.

For the rational Krylov method based on the equidistributed sequence (EDS)
described in Sect. 4.1,we computed the asymptotically optimal poles using the spectral
interval [0.99 · |λ2|, 1.01 · |λn|], once again ignoring the presence of the eigenvalue of
the Laplacian at 0. The resulting poles are located on the negative real axis (−∞, 0).
Similarly to the choice ξ = −√|λ2λn| for the Shift-and-Invert Krylov method, this
pole sequence is guaranteed to have the asymptotic rate of convergence (4.3) on the
rank-one shifted matrix LT + θ z1T when the graph is undirected (for θ ≥ |λ2|). The
experiments that we performed suggest that the same choice is still very effective also
in the directed case and even when applied directly to the singular graph Laplacian.
Note that this method, as well as the Shift-and-Invert method with ξ = −√|λ2λn|,
requires the knowledge of the largest and smallest nonzero eigenvalues of the graph
Laplacian L , that have to be computed beforehand.

All the experiments were performed in Matlab R2019b on a laptop running Ubuntu
20.04, with 8 GB of RAM and an Intel Core i5-3337U CPU running at 1.8 GHz, using
the rat_krylov function in the Rational Krylov toolbox [4]. The shifted linear
systems in the Shift-and-Invert Krylov method were solved by computing beforehand
an LU decomposition of the permuted matrix PT LT P − ξ I , where P is a fill-in
reducing permutation matrix obtained using the amdMatlab function. In the rank-one
shifted and in the projected version of the methods, we used the modified Sherman-
Morrison formula (5.8), with the vector ψ defined in (5.7), and the identities (5.13)
to avoid explicitly forming the dense matrices LT + θ z1T and QT LT Q. The use of
(5.8) over (5.4) allowed us to avoid the cancellation in (5.6) for poles close to zero, as
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Table 1 Some information on the graphs used in the experiments. A denotes the n × n adjacency matrix of
the LCC of each graph

Graph n nnz(A) nnz(A-A’) λ2 λn

minnesota 2640 6604 0 8.45e−04 6.88e+00

Oregon-1 11174 46818 0 8.44e−02 2.39e+03

ca-HepPh 11204 235238 0 3.55e−02 4.92e+02

as-22july06 22963 96872 0 5.07e−02 2.39e+03

Roget 904 4830 4128 8.22e−02 2.27e+01

wiki-Vote 1300 39456 67204 3.73e−01 5.96e+02

enron 8271 146260 212124 7.01e−02 8.79e+02

p2p-Gnutella30 8490 31706 63412 2.47e−01 2.00e+01

hvdc1 24836 133620 4856 2.03e−04 1.80e+02

discussed after Remark 5.2. We set θ = 1 in (5.2) and we used the matrix Q defined
by (5.12).

The error that we display is the relative error in the 2-norm, ‖ y− ȳk‖2, where y is
the solution to (3.2) at a certain time t , or an accurate approximation computed with
a Krylov method when the size of the graph is large. In all our experiments, we first
extracted the largest strongly connected component (LCC) of a graph andwe restricted
our problem to that component. Information on the number of nodes and edges of
these components, as well as the maximum and minimum nonzero eigenvalues of the
corresponding graph Laplacians, are reported in Table 1. The real-world networks that
we used are available in the Sparse Matrix Collection [12].

As we observed in Sect. 3, the solution u(t) to the fractional diffusion equation
(3.2) is a probability vector for all t ≥ 0, and hence it is desirable for the approxima-
tions computed with Krylov methods to have the same property. In our experiments,
we observed that this is indeed the case for the Krylov methods applied to the shifted
matrix LT + z1T , as well as for the projected and implicitly projected Krylovmethods.
On the other hand, in general the approximate solutions obtained by working directly
with the singular graph Laplacian LT do not have entries that sum up to 1, and often
exhibit a wildly oscillating error; moreover, upon closer inspection, we observed that
a significant portion of the error lied along the left null-eigenvector z of the graph
Laplacian L . By subtracting a multiple of z from the approximate solution to enforce
1T ȳk = 1, we were able to “correct” this oscillating component of the error; specif-
ically, for each k we replaced the approximate solution ȳk obtained after k iterations
of a Krylov method with the corrected approximation

ȳk − (1T ȳk − 1)z, (6.3)

whose entries now sum up to 1. We found that this correction greatly reduced the
error both in the undirected and in the directed case, and hence we always applied it
to the standard version of Krylov methods in all our experiments. On the other hand,
the error correction (6.3) was never needed for the shifted, projected and implicitly
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(a)

(b)

Fig. 1 Convergence of Krylov methods for the computation of the solution to the fractional diffusion
equation (3.2) with α = 0.5 and t = 1 on the LCC of the directed graph Roget, with and without the error
correction (6.3). Note the logarithmic scale on the vertical axis

projected variants of the methods. The error with and without the correction (6.3) is
illustrated for the directed graph Roget in Fig. 1.

The first set of experiments is performed on graphs of moderate size (about 1000
nodes),where the solution to (6.1) can still be computed directly in a reasonable amount
of time via an eigendecomposition of the graph Laplacian. In these experiments, we
used the largest connected component (LCC) of the undirected graph minnesota
(2640 nodes) and the LCC ot the directed graph wiki-Vote (1300 nodes). The
results for different values of t and α are shown in Figs. 2 and 3. We can see that the
EDS method always converges in the smallest number of iterations, with a rate that
is always equal to or better than the one predicted by the bound (4.3), even in the
nonsymmetric case. The Shift-and-Invert (S&I) Krylov method with ξ = −√|λ2λn|
has a reliable convergence rate for all choices of the parameters, while the one with
ξ = −t−2/α is more effective for large t (see, e.g., Fig. 3c); however, it is more
sensitive to changes in the parameters, and sometimes converges slowly (Fig. 2a).
As expected, the polynomial Krylov method usually converges very slowly, except
for the case α = 1, corresponding to the matrix exponential (Fig. 2c), for which
polynomial Krylov methods are known to be effective. Note that in Fig. 2b it holds
t−2/α = 10−4, and observe that the rank-one shifted S&I method with ξ = −t−2/α

attains the same accuracy as the other methods, as a result of formula (5.8); because
of the cancellation discussed in Remark 5.2, the same accuracy could not be attained
by using (5.4) in place of (5.8). The error curves of the desingularized methods are
always overlapped to each other (showing, in particular, that the result of Theorem 5.1
also holds in finite precision arithmetic), and they often represent an improvement over
the standard version of Krylov methods. Note that the desingularization techniques
seem to be always effective for the polynomial Krylov method, reducing the error of at
least one or two orders of magnitude compared to the standard version. We also point
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(a) (b)

(c)
(d)

Fig. 2 Convergence of Krylov methods for the computation of the solution to the fractional diffusion
equation (3.2) on the LCC of the undirected graph minnesota, for different values of α and t . Note the
logarithmic scale on the vertical axis

out that in certain cases the desingularized methods manage to attain a higher final
accuracy: this is most apparent in Fig. 3c for the S&I method with ξ = −√|λ2λn|.

The second set of experiments deals with larger graphs with about 10000 or 20000
nodes, for which the computation of an eigendecomposition of the graph Laplacian
would be very expensive. Based on the results of the experiments on smaller graphs,
in this case we compute the error using as the reference solution an approximation to
f (LT )u0 computed using the EDS rational Krylov method with implicit projection,
stopping the iterations when the 2-norm of the difference between two consecutive
iterates is of the order ofmachine precision. To avoid bias in the error curves,we chose a
different starting point for theEDSof the reference solution, thus producing a sequence
of poles that is different from the one used to plot the error of the EDSmethod.We used
the LCC of the undirected graphs Oregon-1 (11174 nodes), ca-HepPh (11204
nodes) and as-july06 (22963 nodes), and of the directed graphs enron (8271
nodes), p2p-Gnutella30 (8490 nodes) and hvdc1 (24836 nodes). The results for
different values of α and t are shown in Figs. 4 and 5. The use of desingularization
is again shown to be beneficial, often leading to faster convergence and attaining a
better maximum accuracy. In Figs. 4b and 5a we can observe that the S&I method
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(a) (b)

(c)
(d)

Fig. 3 Convergence of Krylov methods for the computation of the solution to the fractional diffusion
equation (3.2) on the LCC of the directed graph wiki-Vote, for different values of α and t . Note the
logarithmic scale on the vertical axis

with ξ = −t−2/α does not suffer from cancellation by virtue of (5.8), despite the
presence of poles close to zero. These experiments also show that the polynomial
Krylov method can have a variable and unpredictable convergence rate, depending on
the graph: there are situations in which the convergence can take place quickly (Fig.
5b) or with moderate speed (Fig. 4a), but more often than not this method converges
very slowly and the error practically stagnates (see, e.g., Fig. 4b).

We have reported in Table 2 the execution times required by each method to reach
a relative accuracy of 10−10, using the same graphs and parameters α, t as in Figs. 4
and 5. A “-” indicates that the polynomial Krylov method failed to attain the requested
accuracy after 300 iterations. For each graph, the first line in Table 2 lists the execution
times for the standard Krylov methods, and the second line reports the average of
the times for the 3 different methods with desingularization. For a fixed choice of
poles, the execution times of the desingularized methods are extremely similar, since
these methods require the same number of iterations and roughly the same amount of
work per iteration, with the explicit projection method being slightly more expensive.
Observe that for the graph p2p-Gnutella30 the polynomial Krylov method is
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(a) (b)

(c)
(d)

Fig. 4 Convergence of Krylov methods for the computation of the solution to the fractional diffusion
equation (3.2) on the LCC of the undirected graphs Oregon-1, ca-HepPh and as-22july06, for
different values of α and t . Note the logarithmic scale on the vertical axis

faster than the rational methods in terms of execution time, even though it requires
more iterations. However, in all the other experiments its convergence is too slow for
it to be competitive.

In our implementation, the linear systems in each iteration of a rational Krylov
method are solved with a direct method. This strategy suffers from severe fill-in when
the network has a small-world structure: this is evident in the execution times of the
EDS rational Krylovmethod for the directed graphsenron and p2p-Gnutella30,
where a different shift is used at each iteration, and hence a new factorization has to
be computed. On the other hand, this effect is less pronounced in the case of the
Shift-and-Invert method, since the factorization is only computed once and reused in
each iteration. As an example, if L is the Laplacian of the graph enron with nodes
permuted with amd, the lower triangular factor in the LU factorization of L + I has
1.26 million nonzero entries. In contrast, for the graph hvdc1 the lower triangular
factor of L + I only has 120.714 nonzero elements.

The problem of fill-in can be circumvented by using an iterative method for solving
the linear systems in each iteration of a rational method: however, this strategy gives
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(a) (b)

(c)
(d)

Fig. 5 Convergence of Krylov methods for the computation of the solution to the fractional diffusion
equation (3.2) on the LCC of the directed graphs enron, p2p-Gnutella and hvdc1, for different
values of α and t . Note the logarithmic scale on the vertical axis

rise to a variety of questions, such as the choice of preconditioners and stopping criteria
for the inner iteration, marking it as an interesting direction for future research.

7 Conclusions

In thisworkwehave discussed the use of rationalKrylovmethods for the solution of the
fractional diffusion equation on a graph. In order to improve the convergence speed of
the methods, we have proposed three different procedures to deal with the eigenvalue
at zero of the graph Laplacian, namely a rank-one shift, a subspace projection, and an
implicit version of this projection. The experimentswe conducted show that these three
procedures yield in practice the same convergence curves, and often they are faster and
attain higher accuracy than the original Krylov methods. To be applied, these methods
only require the computation of the left zero-eigenvector of the graphLaplacian, and an
additional cost of O(n) per iteration for the rank-one shift and projection techniques.
The implicit projection approach is extremely easy to implement, since it onlymodifies

123



Rational Krylov methods for fractional diffusion problems on graphs 383

Table 2 Execution times in seconds required to reach a relative accuracy of 10−10, with reference to the
plots in Figs. 4 and 5

Graph Polynomial S&I, ξ = −t−2/α S&I, ξ = −√|λ2λn | EDS

Oregon-1 11.499 0.655 1.766 0.743

7.789 0.669 1.149 0.754

ca-HepPh – 2.778 3.755 4.380

– 2.789 3.372 4.204

as-22july06 – 4.997 4.739 2.051

– 4.981 3.042 2.055

enron – 2.690 3.808 56.714

– 2.693 3.493 53.120

p2p-Gnutella30 1.452 9.141 9.046 19.334

0.957 9.114 8.967 19.352

hvdc1 – 17.209 5.444 3.501

– 17.199 3.944 3.525

For each graph, the first line reports the time for the standard methods, and the second line reports the
average time of the 3 desingularized methods. The best timing for each problem is highlighted in bold.
A “–” denotes failure to converge within 300 iteration. The times are measured as an average across 10 runs

the starting vector for the Krylov method and it requires no additional computations
at each iteration.

Among the Krylov methods that we tested, the one based on the EDS and the S&I
method with ξ = −√|λ2λn| converge quickly regardless of the parameters α and t ;
however, these methods require the computation of approximations to the eigenvalues
λ2 and λn of the graph Laplacian. On the other hand, the S&Imethodwith ξ = −t−2/α

requires no previous knowledge of the spectrum of L , but its rate of convergence is
more sensitive to changes in the parameters; even so, this method can sometimes
outperform the others, especially when t is large.

Acknowledgements Wewould like to thankLeonardoRobol andValeria Simoncini for helpful suggestions.

Funding Open access funding provided by Scuola Normale Superiore within the CRUI-CAREAgreement.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/


384 M. Benzi, I. Simunec

References

1. Beckermann,B., Reichel, L.: Error estimates and evaluation ofmatrix functions via the Faber transform.
SIAM J. Numer. Anal. 47(5), 3849–3883 (2009). https://doi.org/10.1137/080741744

2. Benzi,M., Bertaccini, D., Durastante, F., Simunec, I.: Non-local network dynamics via fractional graph
Laplacians. J. Complex Netw. 8(3), cnaa017 (2020). https://doi.org/10.1093/comnet/cnaa017

3. Benzi,M., Fika, P.,Mitrouli,M.: Graphs with absorption: numerical methods for the absorption inverse
and the computation of centrality measures. Linear Algebra Appl. 574, 123–152 (2019). https://doi.
org/10.1016/j.laa.2019.03.026

4. Berljafa, M., Elsworth, S., Güttel, S.: A rational Krylov toolbox for MATLAB. MIMS EPrint 2014.56,
Manchester Institute for Mathematical Sciences, University of Manchester, Manchester, UK (2014).
http://rktoolbox.org

5. Berljafa, M., Güttel, S.: Generalized rational Krylov decompositions with an application to ratio-
nal approximation. SIAM J. Matrix Anal. Appl. 36(2), 894–916 (2015). https://doi.org/10.1137/
140998081

6. Berman, A., Plemmons, R.J.: NonnegativeMatrices in the Mathematical Sciences. Classics in Applied
Mathematics, vol. 9. SIAM, Philadelphia, PA (1994). https://doi.org/10.1137/1.9781611971262.
Revised reprint of the 1979 original

7. Bochev, P., Lehoucq, R.B.: On the finite element solution of the pure Neumann problem. SIAM Rev.
47(1), 50–66 (2005). https://doi.org/10.1137/S0036144503426074

8. Burrage, K., Hale, N., Kay, D.: An efficient implicit FEM scheme for fractional-in-space reaction-
diffusion equations. SIAM J. Sci. Comput. 34(4), A2145–A2172 (2012). https://doi.org/10.1137/
110847007

9. Chapman, A., Mesbahi, M.: Advection on graphs. In: 2011 50th IEEE Conference on Decision and
Control and European Control Conference, pp. 1461–1466 (2011)

10. Crouzeix, M.: Numerical range and functional calculus in Hilbert space. J. Funct. Anal. 244(2), 668–
690 (2007). https://doi.org/10.1016/j.jfa.2006.10.013

11. Crouzeix, M., Palencia, C.: The numerical range is a (1 + √
2)-spectral set. SIAM J. Matrix Anal.

Appl. 38(2), 649–655 (2017). https://doi.org/10.1137/17M1116672
12. Davis, T.A., Hu, Y.: The University of Florida Sparse Matrix Collection. ACM Trans. Math. Softw.

38(1) (2011). https://doi.org/10.1145/2049662.2049663. Art. 1
13. van den Eshof, J., Hochbruck, M.: Preconditioning Lanczos approximations to the matrix exponential.

SIAM J. Sci. Comput. 27(4), 1438–1457 (2006). https://doi.org/10.1137/040605461
14. Estrada, E., Hameed, E., Hatano, N., Langer,M.: Path Laplacian operators and superdiffusive processes

on graphs. I. One-dimensional case. Linear Algebra Appl. 523, 307–334 (2017). https://doi.org/10.
1016/j.laa.2017.02.027

15. Estrada, E., Hameed, E., Langer, M., Puchalska, A.: Path Laplacian operators and superdiffusive
processes on graphs. II. Two-dimensional lattice. Linear Algebra Appl. 555, 373–397 (2018). https://
doi.org/10.1016/j.laa.2018.06.026

16. Funderlic R.E., Plemmons R.J.: LU decomposition of M-matrices by elimination without pivoting.
Linear Algebra Appl. 41, 99–110 (1981). https://doi.org/10.1016/0024-3795(81)90091-4

17. Güttel, S.: Rational Krylov Methods for Operator Functions. Ph.D. thesis, Technische Universität
Bergakademie Freiberg, Germany (2010). http://eprints.ma.man.ac.uk/2586/. Dissertation available
as MIMS Eprint 2017.39

18. Güttel, S.: Rational Krylov approximation of matrix functions: numerical methods and optimal pole
selection. GAMM-Mitt. 36(1), 8–31 (2013). https://doi.org/10.1002/gamm.201310002

19. Higham,N.J.: Functions ofMatrices. Theory andComputation. SIAM,Philadelphia, PA (2008). https://
doi.org/10.1137/1.9780898717778

20. Horn, R.A., Johnson, C.R.: Topics inMatrix Analysis. CambridgeUniversity Press, Cambridge (1991).
https://doi.org/10.1017/CBO9780511840371
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