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Dynamic communicability and epidemic spread: a case study on an

empirical dynamic contact network

Isabel Chen1 Michele Benzi2 Howard H. Chang3 Vicki S. Hertzberg4

Abstract

We analyze a recently proposed temporal centrality measure applied to an empirical network
based on person-to-person contacts in an emergency department of a busy urban hospital. We
show that temporal centrality identifies a distinct set of top-spreaders than centrality based on
the time-aggregated binarized contact matrix, so that taken together, the accuracy of capturing
top-spreaders improves significantly. However, with respect to predicting epidemic outcome,
the temporal measure does not necessarily outperform less complex measures. Our results also
show that other temporal markers such as duration observed and the time of first appearance in
the the network can be used in a simple predictive model to generate predictions that capture
the trend of the observed data remarkably well.

1 Introduction

The presence of infectious agents in a confined space bring substantial risks of cross infection. In
this paper we make use of network analysis to better understand contagion processes within such
spaces. We base our study on the interactions of people in an Emergency Department (ED) of a
hospital in the Midtown area of Atlanta, GA [21].

Utilizing network structure in epidemiological models relaxes the assumption that interactions
between agents are well-mixed [7, 15, 19, 33]. The study of empirical contact data has also re-
vealed patterns that differ from a priori contact assumptions [26, 31], which highlights the need
to better understand real-world data. Recent technological advances have made high-dimensional
data available for study, and thorough analyses of empirical temporal network data can be found
in [5, 21, 31, 32] and [39].

In the context of disease spread, temporal information plays a crucial role [2]. The length of
contact time between agents has been shown to be important in the contagion process [31, 38, 42].
The temporal order of contact sequences is also crucial: a person can only pass on the disease to
others after becoming infectious. For illustration, consider the following time-evolving network on
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four nodes shown in 1, with node A being the only infectious node at time T1. An edge between
two nodes is representative of some form of disease-transmitting contact between them.

Figure 1: An example of a dynamic network
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For simplicity, we assume that an infected person is immediately infectious. There is a temporal
path A → B → C which means that the disease can potentially spread from A to both B and
C. On the other hand, it is impossible for D to become infected, because the contact between
C and D occurs before C has contact with B. Note that the static version of the network (Fig
2) loses such information: without the temporal dimension, all nodes, including D, are reachable
from A. Work in [10] and [46] have shown that the non-constancy of contact structure can have a
significant impact on disease spread, and should therefore be incorporated into the disease model
if such information is available.

Figure 2: The aggregated version of Figure 1
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An important objective is to identify key players in the infection process, and centrality mea-
sures are a natural choice to consider for this task. The relationship between centrality and epidemic
outcome has been studied in [1, 3, 17, 35] and [37], but the networks under study did not include
temporal information. It has also been argued that while some centrality measures are able to
identify highly influential nodes, they do not accurately quantify [3, 20], and may even underes-
timate [44] the spreading power of the vast majority of nodes which are not highly influential.
Alternative spreading power metrics such as the accessibility [45, 43] and expected force [20], which
extend centrality by incorporating spreading dynamics, have been shown to have stronger corre-
lation with epidemic outcome than traditional centrality [3, 18, 37]. Before rejecting centrality
measures completely as a means to understand contagion on networks, we seek to answer the ques-
tion: will incorporating temporal information into centrality metrics improve their explanatory
and/or predictive power in relation to epidemic outcome?

We are motivated by examples in [23] and [40] which show that centrality measures based
on time-aggregated versions of temporal networks (as shown in Fig. 2) fail to adequately capture
important nodes. The work in [32] suggests that temporal correlations in network data should not be
underestimated and that consequently, detecting important individuals based on temporal structure
may have a significant impact on targeted intervention strategies. In [35] it was shown that while

2



centrality measures on the time-aggregated network (such as node degree, betweenness centrality,
eigenvector centrality) can improve immunization strategies, node strength, which measures the
total time exposed to others, was the most effective. These results illustrate the importance of
utilizing temporal information in the context of identifying key players in the contagion process.

Our work aims to bring recently developed temporal centrality measures into the analysis.
Temporal centrality measures provide a means of identifying important nodes based solely on time-
dependent network structure. While temporal centrality is a relatively young field compared to
its static counterpart, new measures are constantly being developed [13, 16, 40, 41]. We focus our
attention on dynamic communicability introduced by Grindrod et al. [12]. This is a generalization
of Katz centrality [14] to the dynamic setting. We emphasize that the computation of centrality
scores depend solely on the network structure and is completely independent of any contagion
process on the network.

We simulate an epidemic process on the network, where the duration of contacts is used explicitly
in the infection procedure. We aim to address the following two questions: First, what role does
temporal centrality play in explaining epidemic outcome? Second, can temporal centrality be
used to predict epidemic outcome? It has often been asserted in the literature [1, 17, 18, 20, 37]
that a strong correlation between epidemic outcome (Y ) and some measure, say X, will result
in measure X being a good predictor for Y . The notion of correlation measures the strength of
linear relationship between X and Y , and is intrinsically a goodness-of-fit measure of the dataset
under consideration. Determination of predictive power, on the other hand, must be assessed on
a different dataset. While a strong correlation is suggestive of good predictive power, correlation
will not reflect the predictive power between variables with a non-linear relationship. In our work,
instead of looking at raw correlations, we use multiple linear regression to study the overall effect of
centrality on epidemic outcome. We recognize that centrality measures alone cannot fully explain
epidemic outcome, and the regression framework allows for the inclusion of other variables into the
analysis in order to gain a better understanding of the role that dynamic network centrality plays
in the epidemic process. The regression model generates coefficients that quantify the relationship
between predictor and response, and it is these coefficients that are used in the prediction process,
not the correlation itself. Predictions are performed on different samples of networks drawn from
the same study. This provides a more accurate assessment of the predictive power of centrality in
the context of epidemic spread.

Employing network centrality to explain node characteristics/behavior has been done in the
social sciences [34, 36], where path-based measures, such as betweenness and closeness centrality,
are typically used. Our goal in this work is two-fold: first, to examine the effectiveness of temporal
network centrality in explaining and/or predicting epidemic outcome, and second, to highlight
temporal, walk-based measures such as dynamic communicability, which, due to their formulation
in terms of matrix functions, can be computed with greater computational ease than path-based
measures.

The rest of the paper is organized as follows: In Section 2 we describe the temporal network
under consideration. In Section 3 we introduce the notion of dynamic communicability and in
Section 4 we present the results of dynamic communicability applied to our dataset. Section 5
describes the infection model used to simulate disease spread on the temporal network, and in
Section 6 we present the simulation results. In Section 7 we analyze the relationship between
virulence and centrality. We conclude and discuss future directions in Section 8.

3



2 Description of temporal network

The Emergency Department (ED) of Emory University Hospital (Midtown, Atlanta) was divided
into 95 zones. The zones were designed in such a way that two people in the same zone are within
1 meter of each other with very high probability. Although no physical contact is guaranteed, the
close proximity of any two people within a zone is considered a potential disease-spreading contact.
Such close proximity interactions are particularly pertinent to infections that are transmitted pre-
dominantly via droplets. Participants in the study wear radio-frequency (RFID) tags which track
their movements in the ED. Both patients and staff were recruited to participate. Three groups of
staff were present: medical doctors (MD), registered nurses (RN) and administrative staff (other).
Data was collected over 35 shifts of at most 12 hours. See [21] for more details on the data collection
procedure.

A temporal network is constructed based on the movements of the participants in the ED.
The nodes represent people and the edges represent their interactions within zones. The dynamic
network is viewed as a sequence of adjacency matrices on the same set of nodes, where each
matrix represents the connections present at the corresponding time-step. The time-evolution of
the network is thus captured by the appearance and disappearance of edges over time.

Two people who are in the same zone during a 1-second time-frame are said to share a location.
Two people who are in the same zone during a 1-second time-frame are said to share a location.
The RFID tags transmitted their unique identifier every 10 seconds ([21]). For this reason, the
per-second data is considered incomplete and therefore we work with adjacency matrices at the 10-
second time resolution. Explicitly, the full 12-hour shift is divided into 10-second intervals, labeled
t = 1, . . . , 4321. For each value of t we have an adjacency matrix which aggregates the contact
information within this 10-second time interval:

A
[t]
ij :=

{
1 if person i and person j shared a location within the 10-sec interval t
0 otherwise

We point out that the total contact time between two people within the 10-second interval is not
taken into account. It is possible that two people were in the same location for longer than 1
second, or that they crossed paths at different locations within the 10-second interval.

We analyze the contact data obtained over 7 different shifts. Shift-specific information is shown
in Table 1.

3 Dynamic communicability

Dynamic communicability [12] is a network centrality measure that defines a node’s importance
based on the dynamic walks it participates in. A dynamic walk1 is a sequence of edges connecting
nodes, with the added constraint that the sequence of edges must respect the time ordering. The
rationale is that nodes which participate in many dynamic walks are capable of communicating
well with other nodes in the network, and are therefore potential candidates for effective spreading
or collecting of information, where information is referred to in the broadest sense possible. In

1We emphasize that the same edge can be used multiple times in a walk, in contrast to a path, where edges must be
distinct. Betweenness centrality and closeness centrality are path-based measures, and temporal versions are based
on the analogous notion of temporal paths – see for example [16]. Path-based metrics are typically computationally
more intensive than walk-based measures.
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Table 1: Shift-specific data. Analysis of dynamic communicability and its relationship to epidemic
outcome is performed on Shift 1 (training data). Predictive power is assessed on Shifts 2 to 7 (testing
data). Participation rate (p. rate) is the percentage of people present in the ED who participated
in the study.

Shift n staff patients total patients participation rate (%) shift length am/pm weekday

1 107 33 74 98 76 11 pm y

2 115 33 82 117 70 12 pm y

3 89 25 64 82 78 8 am n

4 129 34 95 108 88 12 pm n

5 133 44 89 117 76 11.75 pm y

6 87 26 61 77 79 8 am n

7 126 35 91 133 68 11.67 am n

addition, within this framework, short walks are given more importance than long walks, since
fewer edges allow for faster and less noisy transmission of information.

Consider a time-evolving network on n nodes, which is represented by a sequence of adjacency
matrices A[k] for k = 1, . . . ,M , where k indexes the time-step. For each adjacency matrix, the
spectral radius is defined as ρ

(
A[k]

)
= max{|λ1|, . . . , |λn|} where the λ’s are the eigenvalues asso-

ciated with A[k]. Let σ∗ = maxk
{
ρ
(
A[k]

)}
be the maximum spectral radius over all the adjacency

matrices. The dynamic communicability matrix is defined as the product of matrix resolvents

Q =
(

I − αA[1]
)
−1 (

I − αA[2]
)
−1

· · ·
(

I − αA[M ]
)
−1

(1)

where, in order to ensure that each resolvent can be expressed as a power series in the matrix, the
parameter α must satisfy 0 < α < 1/σ∗. Expressing each resolvent as a power series and expanding
out the product, we see that Q contains all products of the form

αw
(

A[t1]A[t2] · · ·A[tw]
)

, (2)

where t1 ≤ t2 ≤ · · · ≤ tw. Observe that the ijth entry of (2) counts the number of dynamic
walks of length w from node i to node j, where the kth edge of the walk comes from time-step
tk. Furthermore, this count is downweighted by αw. The restriction that t1 ≤ t2 ≤ · · · ≤ tw
ensures that the dynamic walks are legitimate in the physical sense: subsequent edges in the walk
cannot come from an earlier time-step. Consequently, Qij is a weighted sum of dynamic walks of
all possible lengths between nodes i and j, where walks of length w are downweighted by αw. This
is a measure of ‘communicability’ between node i and node j, with node i being the broadcaster
and node j being the receiver. Let 1 denote the vector of all ones. Summing over all receivers j,
we obtain

n∑

j=1

Qij =

(

Q · 1

)

i

which is a measure of how well node i broadcasts information to the rest of the network as a whole.
The row sums therefore provide a notion of broadcast centrality (BC). On the other hand, the
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column sums
n∑

i=1

Qij =

(

QT · 1

)

j

measures how well node j receives information from all other nodes in the network, and therefore
provides a notion of receive centrality (RC). The matrix Q is therefore able to capture dual notions
of broadcasting and receiving. We reiterate that Q is in general not symmetric, therefore the row
and column sums are in general different from each other. We also point out that because the base
matrices A[k] are symmetric, the resolvents (I − αA[k])−1 are also symmetric. Furthermore, since

for any square matrix A,
(
A−1

)T
=
(
AT
)
−1

, we have

QT =

((

I − αA[1]
)
−1 (

I − αA[2]
)
−1

· · ·
(

I − αA[M ]
)
−1
)T

=
(

I − αA[M ]
)
−1 (

I − αA[M−1]
)
−1

· · ·
(

I − αA[1]
)
−1

.

In other words, broadcast and receive centralities are related by a reversal of the time ordering.
Synthetic examples in [12] and [23] illustrate that broadcast centrality (BC) and receive central-

ity (RC) measures perform better than aggregated measures in identifying nodes with time-sensitive
links as important. The term dynamic communicator coined in [23] refers precisely to the nodes
which rank highly in the dynamic sense but do not stand out in a snapshot or aggregate view of
the network.

3.1 Limit as α → 0

Expressing each resolvent as a power series, then expanding the product and collecting terms, we
see that

Q =
(

I − αA[1]
)
−1

. . .
(

I − αA[M ]
)
−1

= I + α

(
M∑

k=1

A[k]

)

+O(α2).

Letting BC denote the vector of broadcast centrality measures, we have

BC := Q · 1 = I · 1+ α

(
M∑

k=1

A[k]

)

· 1+O(α2).

Shifting by 1 and scaling by the constant α, we have

BC − 1

α
=

Q · 1− 1

α
=

(
M∑

k=1

A[k]

)

· 1

︸ ︷︷ ︸

AD

+O(α)

Observe that the first term on the RHS is a measure of aggregated degree, denoted by AD, which
ranks nodes according to the number of distinct contacts weighted by the duration of contact time,
in the sense that the longer the contact time between a pair of nodes, the higher their corresponding
AD values. (This is in contrast to binarized degree BD, where no temporal information is captured
– see Section 7.) Since a shift and scale of the BC vector will not change the associated BC
rankings, we see that as α → 0, BC rankings should theoretically converge to AD rankings. A
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similar argument shows that the same is true for RC rankings. We will use this fact as a test for
the numerical accuracy of our results, as well as to inform our choice for the parameter α. Recall
that α must be chosen so that 0 < α < 1/σ∗. We aim to choose α sufficiently far away from 0 so
that we do not merely replicate aggregate degree. On the other hand α cannot be too close to the
upper limit, as in this case, the matrix for which the maximum spectral radius is attained will be
close to singular, and the entries of its inverse will dominate the computation of Q. In this regime,
the computation of Q will be sensitive to small changes in α. See also [4] for further discussion on
the role of α as a tuning parameter in the context of non-temporal networks.

3.2 Possible modifications

As discussed in [12], in order to eliminate the possibility of long walks, or closed walks such as
i 7→ j 7→ i taking place within a single time-step, we may enforce the walks to use at most one link
per time window by using this modified version of Q where each term in the product is a first order
approximation of the matrix resolvent:

Q̂ = (I + αA[1])(I + αA[2]) · · · (I + αA[M ]).

This contains all products of the form αwA[t1] . . . A[tw] where t1 < · · · < tw are all distinct. This
modification may be appropriate in ultra-high frequency regimes, where the length of each time
window is so small that it is physically unfeasible for information to pass through more than one
link per time step.

3.3 Data studied

Dynamic communicability has been studied on telecommunication data (MIT [12]) and email data
Enron [12], [23]. It has also been used to characterize learning in the human brain [22]. We would
like to study BC/RC measures in the context of disease spread on a person-to-person contact net-
work. In particular, we want to see how a seed node’s BC ranking/measure is related to epidemic
outcome. We point out that [24] studies the same measure, dynamic communicability, in relation to
contagion on a temporal network. Our work differs in the methodology of the infection simulation,
as well as in the use of regression to analyze the resulting simulation output. Additionally, the
network studied in [24] is based on email communication, on which the notion of epidemic spread is
inherently different from that of a proximity-based contact network. In [28], dynamic communica-
bility was used to find a subset of nodes to maximize influence on the SocioPatterns hospital ward
dynamic contact network. Our work does not focus only on the highly central nodes, but aims to
evaluate the overall effect of dynamic communicability on epidemic outcome.

3.4 Relationship with the matrix exponential

One can also use the matrix exponential instead of the matrix resolvent to compute a measure
of dynamic communicability [8]. The rationale of downweighting long walks remains, with the
difference lying in the downweighting factors themselves: 1/w! versus αw. One can replace the
matrix resolvents with matrix exponentials to obtain another walk-based measure in the following
way:

Q̃ = eA
[1]
eA

[2]
· · · eA

[M]
. (3)
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One difficulty that arises with using the matrix exponential is that the downweighting factor of
1/w! typically penalizes walks of length w much more severely than αw. Especially when, in the
dynamic case, there are many adjacency matrices to work with, the severe downweighting of long
walks may lead to an inability to distinguish between nodes. Preliminary experiments on our data
set are indicative of this: Normalization during the computation of Q̃ (see Section 4.1) results in
the majority of nodes with broadcast centrality close to zero, and only 2 nodes with non-zero values
(see Section 4.4). On the other hand, dynamic communicability based on the matrix resolvent was
able to clearly distinguish about 20 nodes which had broadcast centrality significantly different
from zero.

A possible remedy is to include a tuning parameter β in the matrix exponential as follows:

eβA = I + βA+
β2

2!
A2 + . . .

The parameter β can be viewed, from a thermodynamical point of view, as a form of inverse
temperature of the system [8]. Since β has no upper bound (unlike α in dynamic communicability),
the factor βk/k! can potentially give longer walks more weight than αk. It may be of interest to
perform a comparative study of the results obtained by both methods. We will leave this for future
work: in the rest of this paper, we discuss results based on the resolvent-based formulation defined
in [12].

4 Dynamic communicability applied to the temporal network

We apply dynamic communicability to the contact data of shift 1 (see Table 1). A total of 107
participants agreed to take part in the study, out of which 33 were staff and 74 were patients. An
additional 24 patients were in the ED during that time but did not participate in the study.

4.1 Computational note

Dynamic communicability as defined in Eq. (1) can be computed in two ways:

• Method I: Compute Q explicitly, for example, as suggested in [12], using an iteration of the
form

Q̂[k] =
Q̂[k−1]

(
I − αA[k]

)
−1

‖Q̂[k−1]
(
I − αA[k]

)
−1

‖
, k = 1, 2, . . . ,M

where Q̂[0] is the identity matrix, then compute the row and column sums to obtain BC and
RC measures.

• Method II: Compute BC and RC measures directly using an iteration of the form

BC [k] =

(
I − αA[M+1−k]

)
−1

·BC [k−1]

‖
(
I − αA[M+1−k]

)
−1

· BC [k−1]‖
, k = 1, 2, . . . ,M

where BC [0] = 1. A similar form (using the transpose of the resolvents) is used to compute
RC measures.
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In both methods, normalization is performed to avoid under or overflow in the computations.
Here we use the Euclidean 2-norm, although any matrix norm is applicable. Note that while
normalization changes the absolute values of the centrality measures, it does not change the overall
rankings of the nodes. For the data based on shift 1, αmax = 0.072.

Table 2: Computation times for Method I and Method II

choice of α Method I (in sec) Method II (in sec)

0.25 ∗ αmax 8.20 0.70 (×2 = 1.40)

0.50 ∗ αmax 17.88 0.79 (×2 = 1.58)

0.75 ∗ αmax 9.83 0.71 (×2 = 1.42)

0.85 ∗ αmax 9.54 0.74 (×2 = 1.48)

Computations were done using Matlab. For Method I we use mrdivide which solves systems of
linear equations of the form xA = B; for Method II we use backslash which solves a linear system
of the form Ax = b. Table 2 shows that Method II is an order of magnitude faster than Method
I. However, because the first iteration of Method II uses the resolvent of the last adjacency matrix
A[m], in applications where one needs to compute the BC and RC rankings dynamically, Method I
is more appropriate. Both methods yield quantitatively similar results. Since, in our application,
we do not study how BC/RC rankings themselves change over time, in the following discussion, we
will present the results based on the faster method, Method II.

It is interesting to note that the computation times depend on α. We do not have an explanation
for this behavior.

4.2 Robustness with respect to the choice of α

Recall that the computation of dynamic communicability requires a choice of the parameter α,
where

0 < α <
1

max
k

ρ(A[k])
= αmax.

For the data based on shift 1, αmax = 0.072. In other words, max
k

ρ(A[k]) ≈ 14 is a lower bound for

the maximum degree over all time steps, as illustrated in Figure 3. In this section we present the
results obtained for the following choices of α:

α1 = 0.25 ∗ αmax

α2 = 0.50 ∗ αmax

α3 = 0.75 ∗ αmax

α4 = 0.85 ∗ αmax

4.2.1 BC and RC measures

For interpretative ease, we point out that nodes labeled 1-33 are staff, and nodes labeled 34-107
are patients. We emphasize that the role of centrality metrics is first and foremost to provide a
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Figure 3: Evolution of maximum degree, spectral radius and average degree over time (shift 1,
color online). Note that average degree is computed by dividing the total degree by the number of
people present in the ED at that time step, and this count includes people who are not necessarily
interacting with others.

means to rank nodes relative to each other; the numerical values themselves may not be directly
interpretable.

Figure 4: BC and RC measures (shift 1) associated with different values of α. There is one data
point per node; the horizontal axis is the node ID label. Nodes labeled 1-33 are staff and nodes
labeled 34-107 are patients.

(a) BC (b) RC

From Figure 4 we see that most BC and RC measures are close to zero, irrespective of α.
Although BC and RC measures cannot be exactly zero (if so, Q must have an entire row or column
of zeros which is impossible since Q is an invertible matrix), normalization at each iteration in the
computation of Q is likely to result in very small values.
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The RC measures exhibit a curious feature: regardless of α, the same seven nodes have non-
negligible RC measure, and they all have the same magnitude, agreeing to many decimal places.
We point out that these nodes are registered nurses (RN). Since RN’s are typically the last people
that patients see before leaving the ED, it is conceivable that RN’s are often at the receiving ends
of walks, which explains why the method ranks them as high receivers.

Figure 5a plots the RC measures for α1 = 0.25 ∗ αmax when Q is not normalized. (There
is overflow for α = α2, α3, α4.) The same behavior is observed, ruling normalization out as an
explanation for the highly skewed distribution of the RC measures. We conclude that from a
‘receiving’ point of view, the same seven RN’s are particularly distinct compared to the other
nodes in the network, but are indistinguishable from each other.

Figure 5: RC measures (shift 1) under different constraints. There is one data point per node;
the horizontal axis is the node ID label. Nodes labeled 1-33 are staff and nodes labeled 34-107 are
patients

.

(a) RC measures without normalization
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(b) RC measures when adjacency matrices are aggregated
into 20-min time frames
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We point out that aggregating the base matrices A[k] into longer time frames (20 minutes instead
of 10 seconds) resulted in better distinction among the top 20-30 RC nodes, as shown in Figure
5b. Note, however, that the top seven nodes remain the same, and furthermore, high RC nodes are
typically staff (nodes 1-33).

4.2.2 Comparison of node rankings

We consider the node rankings obtained based on BC and RC measures. Nodes are ranked from
highest to lowest in descending order of the measures; the node with largest measure has rank 1.
For each value of αi for i = 1, . . . , 4, we have a corresponding list of rankings lαi

where

lαi
(k) := ranking of node k when α = αi.

The (i, j)-th position in Figure 6a plots lαi
versus lαj

where the rankings are based on BC mea-
sures. In Figure 6b we plot lists of rankings based on RC measures. The Pearson correlations
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corresponding to these plots are shown in Table 6c.
In Figure 7, we see that the rankings obtained for α = α1, α2, α3, α4, are relatively robust and

furthermore, the chosen values for α are far enough from the limit α → 0, so that the rankings are
significantly different from those based on AD. Noisy behavior for low-ranked RC nodes is probably
due to the small values of the RC measures: small changes can lead to drastic changes in rankings
among low-ranked nodes.

Figure 6: Comparisons of node rankings for different values of α. Rankings according to BC
are shown in 6a and rankings according to RC are shown in 6b. The (i, j)-th position plots the
rankings associated with αi versus αj, for i, j = 1, . . . , 4. Associated Pearson correlation coefficients
are shown in 6c.

(a) BC
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(c) Associated Pearson correlation

α1 v α2 α1 v α3 α1 v α4 α2 v α3 α2 v α4 α3 v α4

BC 0.9946 0.9913 0.9892 0.9982 0.9968 0.9986

RC 0.9164 0.8365 0.7765 0.9422 0.8919 0.9552

From Figure 8 we also see that patients tend to be, on average, slightly better broadcasters
than staff. As mentioned, the fact that high receivers are predominantly staff is not surprising,
given their roles in the ED. Staff are well-placed to be at the receiving ends of dynamic walks.

4.2.3 Comparison of nodes in ranked order

Consider lists of nodes in ranked order. Explicitly, for each value of αi for i = 1, . . . , 4, we have a
corresponding list of nodes tαi

where

tαi
(k) := node that has rank k when α = αi.

We compute Kendall correlation and intersection distance isim [9] as quantitative ways to assess
similarity between the lists. Small values of isim ∈ [0, 1] are indicative of strong similarity between
lists. These are shown in Table 3 and Table 4.
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Figure 7: Spaghetti plots display a line for each node connecting the rankings obtained for the
different values of α. The closer the line is to horizontal, the more similar the rankings are to each
other. Rankings based on aggregate degree (AD) are labeled α = 0.
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Figure 8: Comparison of rankings between staff and patients. We report the average ranks over
α1, . . . , α4. On each box, the horizontal line is the median, the edges of the box are the 25th and
75th percentiles, the whiskers extend to the most extreme data points not considered outliers, and
outliers are plotted individually.

(a) Mean BC ranks (b) Mean RC ranks

4.3 Convergence to AD

Recall that as α → 0, both BC and RC rankings should converge to AD rankings (see Section 3.1).
We present the results for small values of α approaching zero, and in Table 5 we see that according
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Table 3: Kendall correlation between lists of nodes in ranked order.

a1 v a2 a1 v a3 a1 v a4 a2 v a3 a2 v a4 a3 v a4

BC 0.2449 0.1963 0.1825 0.5204 0.4579 0.7366

RC 0.3871 0.2918 0.2721 0.7411 0.6805 0.8173

Table 4: Intersection distance (isim) between lists of nodes in ranked order. Values of isim close
to 0 are indicative of strong similarity between lists.

α1 v α2 α1 v α3 α1 v α4 α2 v α3 α2 v α4 α3 v α4

BC 0.0330 0.0518 0.0561 0.0260 0.0305 0.0060

RC 0.0749 0.0999 0.1286 0.0610 0.0784 0.0525

to various measures, BC and RC rankings do indeed approach AD rankings2. This provides added
assurance that in spite of the fact that the computed BC and RC measures are numerically tiny,
the rankings obtained are nonetheless correct.

Table 5: Convergence to AD: Comparisons of AD, BC, RC node rankings for α approaching
zero. Pearson correlation (corr) compares lists of node rankings. Intersection distance (isim) and
Kendall correlation (kcorr) compare lists of nodes in ranked order. We also report the number of
nodes in common among the top 10 and top 5.

% of αmax 0.01 0.005 10−4 10−5 10−6 10−7 10−8

corr(AD,RC) 0.74735 0.932258 0.998119 0.999951 0.999990 0.999990 0.999990

corr(AD,BC) 0.636092 0.80269 0.997962 0.999951 0.999990 0.999990 0.999990

corr(RC,BC) 0.270381 0.675454 0.99615 0.999892 0.999980 0.999980 0.999980

Top 10 intersection 4 4 7 10 10 10 10

Top 5 intersection 2 3 3 5 5 5 5

isim(AD,RC) 0.219576 0.135918 0.034806 0.002072 0.000091 0.000091 0.000091

isim(AD,BC) 0.250046 0.178938 0.028027 0.001529 0.000123 0.000123 0.000123

isim(RC,BC) 0.364357 0.250965 0.051588 0.003602 0.000214 0.000214 0.000214

kcorr(AD,RC) 0.251984 0.19873 0.435373 0.877623 0.965086 0.965086 0.965086

kcorr(AD,BC) 0.115147 0.343326 0.348968 0.986598 0.989773 0.989773 0.989773

kcorr(RC,BC) 0.119732 0.253747 0.299242 0.864927 0.955563 0.955563 0.955563

4.4 Dynamic communicability based on the matrix exponential

We compute a version of dynamic communicability based on the matrix exponential as defined in
Eq. (3). BC and RC measures obtained are shown in Figure 11. We see that BC measures based

2In Table 5 we observe an initial drop in Kendall correlation between nodes ranked according to AD versus RC
(see % αmax = 0.005). Since the correlation values are at the low end (0.25, 0.20), this anomaly is probably due to
a small change in the number of discordant versus concordant pairs, and is in itself not a significant departure from
the overall trend of convergence.
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Figure 9: Convergence to AD: Comparisons of AD, BC and RC node rankings for α approaching
zero.
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on the matrix exponential are less able to distinguish between the top 20 nodes. In Figure 12 the
resulting rankings are shown in comparison to the resolvent-based formulation of Q. The rankings
obtained appear to be fairly similar, differing mostly in the low-ranking nodes.

5 Infection model

We use a stochastic approach to model the spread of disease in a dynamic network, where the
length of contact time between nodes is explicitly used to compute the probability of infection.
The dynamic nature of the contacts is exploited thereby distinguishing our model from traditional
epidemic processes on static networks [11, 27, 29]. Without the temporal dimension, edges rep-
resenting potential disease-spreading contacts are considered present and unchanging over time.
Consequently, assuming there is no recovery, it is only a matter of time before everyone in (con-
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Figure 10: Convergence to AD: Spaghetti plots of node rankings based on AD, BC and RC for
different values of α approaching zero. The closer the lines are to horizontal, the more similar the
AD, BC and RC-based rankings are to each other.
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nected components of) the network is infected. However, in reality, contacts themselves form and
dissolve over time. By incorporating the dynamic nature of contacts into the infection model, we
hope to paint a more realistic picture of how contagion spreads on a network [2, 46].

We emphasize that the contagion process on the network is completely independent of the
notion of dynamic communicability as discussed in Section 3.

Parameters for infection are chosen based on rates observed for influenza [25, 30, 35]. Within the
framework of a limited observation period, we assume that infected nodes are immediately infec-
tious. In addition, since recovery is not physically feasible within this time frame, the Susceptible-
Infected (SI) model is adequate, and models the early phase of an outbreak.

For each simulation, there is only one initial source of infection, which is infectious upon its
arrival in the ED. Our aim is to associate a measure of virulence with each node. This is in contrast
to the work done in [32] where the source of infection is chosen randomly and proportional to the
number of contacts.
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Figure 11: Dynamic communicability based on the matrix exponential (shift 1). There is one
data point per node; the horizontal axis is the node ID label. Nodes labeled 1-33 are staff and
nodes labeled 34-107 are staff.
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Figure 12: Comparison of node rankings between dynamic communicability based on the resolvent
versus the matrix exponential.
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We assume that infection between Susceptible-Infected pairs is a Poisson process, which is,
in particular, independent and memoryless. Consequently, the time to infection, X, follows an
exponential distribution. We write X ∼ Exp(λ∗). The parameter λ∗ is chosen to satisfy

Pr(X ≤ 60 sec | λ∗) =

∫ 60

0
λ∗e−λ∗t dt = 1− e−60λ∗

= 0.009,
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where the value of 0.009 is chosen based on an approximated attack rate observed in an outbreak
of influenza aboard a commercial airliner [25, 30, 35]. Solving for λ∗, we obtain λ∗ ≈ 1.5 × 10−4.
Note that 1/λ∗ ≈ 664 seconds is interpreted as the average time to infection. Suppose nodes i and
j are in contact for tij seconds, then the probability of disease transmission is given by

pij =

∫ tij

0
λ∗e−λ∗t dt.

In order to determine if infection takes place, a random number u ∈ Unif(0, 1) is generated. If
u < pij, infection occurs, otherwise, infection does not occur. The rationale here is that for ‘large’
pij, we would like infection to occur as much as possible. Note that pij is computed based on the
entire length of uninterrupted contact time between nodes i and j. Infection, and therefore further
spreading potential, occurs not at the end of the contact period tij , but at the time-step when pij
exceeds u. Note that if the pair (i, j) comes into contact multiple times over the course of study,
each contiguous contact period is treated independently.

6 Simulation results

We present the results of the infection simulations performed on the temporal network of Shift 1.
We consider each node in turn as the initial source of infection. For each initial source, we repeat
the simulations N = 1000 times. We consider the total number of infections, or final epidemic size
(EPI), that occur during the entire shift. Observed distributions of EPI per seed node have no
characteristic shape and are typically not symmetric nor unimodal. We consider both the mean
and maximum values as summary measures of virulence. Note that the maximum epidemic size is
conditional on N , but since all nodes are subject to the same number of simulations, we can ignore
the conditional in the following discussion.

Figure 13 displays boxplots of the mean and maximum epidemic size over all initial sources as
well as within staff/patient category. Staff members as infection seeds are associated with larger
mean epidemic size than patients; maximum epidemic size is much more similar between the two
groups. Worst-case epidemics do not affect more than 60% of the population under study, while
on average, less than 31% of the population become infected.

7 Relationship between virulence and centrality

In this section we study the relationship between network-based centrality measures and simulated
epidemic outcome. We analyze the data based on shift 1. The centrality measure of interest
is the temporal measure based on dynamic communicability. For comparison we consider also
the time-aggregated measure AD and the degree based on the binarized aggregated adjacency
matrix. The (i, j)-th entry of the binarized aggregated adjacency matrix is 1 if and only if node
i and node j made contact at least once during the entire shift; otherwise, the (i, j)-th entry is
0. The degree based on this matrix, so-called binarized degree (BD), therefore ranks nodes based
on the number of distinct contacts over time, and therefore does not explicitly contain temporal
information. In contrast, aggregated degree AD can be viewed as BD weighted by the duration
of contacts, thereby encapsulating more temporal information than BD alone. The discussion in
Section 3.1 suggests that BC and RC measures based on dynamic communicability can be seen as
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Figure 13: Comparison of epidemic outcomes between staff and patients. On each box, the
horizontal line is the median, the diamond indicates the mean, the edges of the box are the 25th
and 75th percentiles, the whiskers extend to the most extreme data points not considered outliers,
and outliers are plotted individually. Staff are associated with higher mean epidemic size than
patients.

(a) Mean epidemic size (b) Maximum epidemic size

more nuanced versions of AD, which take into account walks of length > 1. The question at hand
is this: does the increasing complexity of these measures translate into a better understanding of
epidemic outcome? We approach this in two ways: the first approach is concerned with identifying
top-spreaders, while the second uses linear regression to assess the overall effect of centrality on
epidemic outcome. Predictions based on the regression models provide a quantitative means to
evaluate the efficacy of centrality measures in the context of epidemic spread.

Dynamic communicability is computed with α = 0.25∗αmax. As discussed in Section 4, the BC
and RC rankings obtained are fairly robust over the range α ∈ [0.25, 0.85] ∗ αmax. We observed
that node 20 (RN) was present in the ED for less than 20 seconds, and made no contact with other
nodes during that period. We choose this particular value of α because it was the only one out of
four which correctly ranked node 20 last with respect to both BC and RC measures.

7.1 Dynamic communicators

Nodes are ranked according to epidemic outcome and this is compared with rankings based on
network centrality. Table 6 shows that the temporal measure BC outperforms the aggregated
measure AD in identifying the most virulent nodes. In comparison to the non-temporal measure
BD, BC does a better job in identifying nodes associated with worst-case epidemics (max EPI),
but does just as well in identifying nodes associated with large mean epidemic size. None of the
high receivers (RC) are among the top 10 virulent nodes, but a subset are among the top 20.

The three different centrality measures identify similar but not identical sets of top-ranked
nodes. Dynamic communicators are nodes that are not identified as important by aggregated
or non-temporal measures such as AD and BD respectively, but are ranked highly according to
temporal measures such as BC (see Section 3). Among the top 20 nodes associated with large
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mean and maximum epidemic sizes, 5 are dynamic communicators in the sense that they rank
highly according to BC but not by AD or BD. These 5 nodes are all patients, and among these,
3 have acuity categorized as urgent (the remaining 2 have uncategorized acuity). Utilizing all 3
measures together increases the coverage of top-spreaders as shown in Figure 14. There is a clear
benefit in utilizing BC in addition to BD and AD. Doing so increases the accuracy in capturing
virulent nodes from 35% to 90% among the top 10, and from 53% to 88% among the top 20.

Table 6: Comparison of highly central and highly virulent nodes. Listed are the numbers of nodes
which are ranked in the top 10 or 20 by both epidemic outcome and centrality. Note that there
may be overlaps in these counts: nodes that are ranked highly by one measure may also be ranked
highly with respect to a different measure.

Top 10 Top 20

BD AD BC RC BD AD BC RC

mean EPI 5 1 5 0 10 8 10 7

max EPI 1 0 8 0 7 2 14 3

Figure 14: Identification of top spreaders. The vertical axis counts the number of nodes ranked
highly in terms of both epidemic outcome and centrality (horizontal axis). Including centrality
measures in order of complexity increases the coverage of the most virulent nodes.

(a) Top 10 (b) Top 20

7.2 Regression analysis

In this section we study the overall effect of network-based centrality on epidemic outcome. Observe
that if a node enters the ED late in the shift, or is present in the ED for a relatively short amount
of time, it will have less opportunity to develop connections and consequently, walks across the
network, and its network-based centrality measures are likely to suffer as a result. Therefore,
possible confounding factors such as the time of first appearance (T ) and duration observed in the
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ED (D) are included in the analysis, eliminating the need to employ the use of sliding windows in
the infection process as is common in the literature [24, 32]. Staff/patient category is also included
as a predictor in the model.

We point out that we also computed BC and RC measures based on this version of dynamic
communicability:

Q̂ = (I + αA[1])(I + αA[2]) · · · (I + αA[M ]).

Recall that this imposes the restriction that there is at most one edge per time-step. This modifi-
cation only slightly improved the fit of the data (improvements, if any, were in the fourth decimal
place), suggesting that in this application, imposing such a restriction makes little difference to BC
and RC measures and in particular, has little impact on explaining overall epidemic outcome.

We regress the epidemic outcome (mean/maximum EPI) on the centrality measures (BC,
log(BC), AD, BD) while adjusting for the time of first appearance in the ED (T ), duration ac-
tive in the ED (D) and the staff binary indicator (S). We perform standard linear regression (using
Matlab’s fitlm), where the error terms associated with the responses are assumed to be indepen-
dent and normally distributed with mean equal to 0. To have the covariates on a similar scale, we
standardize the AD and BD values. All other quantitative covariates are mean-centered to assist
in the interpretation of the coefficients. Model coefficients and associated 95% confidence intervals
are reported in Table 7.

Table 7: Estimated regression coefficients and associated 95% confidence intervals for the eight
models under consideration. The response/dependent variable is one of mean EPI or max EPI
associated with the seed node; the predictor of interest is the seed node’s centrality measure.
Measures studied are BC, log(BC), AD and BD. AD and BD values are standardized; all other
quantitative covariates are mean-centered.

mean EPI max EPI

intercept 10.90∗ 10.92∗ 12.24∗ 11.92∗ 43.17∗ 43.24∗ 43.36∗ 43.68∗

(8.97, 12.83) (8.84, 12.99) (10.10, 14.37) (10.15, 13.68) (41.91, 44.44) (41.99, 44.49) (41.96, 44.77) (42.49, 44.87)

BC 40.17∗ 16.29∗

(22.09, 58.25) (4.42, 28.16)

log(BC) 0.04 0.04∗

(-0.01, 0.08) (0.02, 0.07)

AD (std) 3.79∗ 0.59

(1.67, 5.92) (-0.81, 1.98)

BD (std) 6.53∗ 3.22∗

(4.65, 8.41) (1.95, 4.49)

D (in hours) 1.02∗ 0.66∗ 0.56 -0.17 0.34 0.11 0.21 -0.22

(0.43, 1.62) (0.02, 1.31) (-0.06, 1.17) (-0.76, 0.43) (-0.05, 0.73) (-0.27, 0.50) (-0.19, 0.62) (-0.62, 0.18)

T (in hours) −0.83∗ 0.68 -1.29 −1.04∗ −3.94∗ −1.88∗ −4.13∗ −4.00∗

(-1.43, -0.23) (-1.70, 3.06) (-1.86, -0.71) (-1.55, -0.54) (-4.33, -3.54) (-3.32, -0.45) (-4.50, -3.75) (-4.34, -3.66)

S 9.09∗ 9.05∗ 4.77∗ 5.81∗ -1.05 -1.26 -1.66 −2.69∗

(5.25, 12.94) (4.91, 13.20) (0.06, 9.48) (2.20, 9.42) (-3.58, 1.47) (-3.76, 1.24) (-4.76, 1.43) (-5.13, -0.26)

R2 0.54 (0.12) 0.46 (0.23) 0.51 (0.31) 0.62 (0.54) 0.87 (0.14) 0.87 (0.86) 0.86 (0.01) 0.89 (0.17)

∗p < 0.05

R2 values in parantheses indicate the values obtained in single-predictor models

We report R2 as a measure of goodness-of-fit. 0 ≤ R2 ≤ 1 can be thought of as a generalized
form of squared Pearson correlation when there is more than one predictor. A high value of R2
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is indicative of a good fit to the data. With the exception of max EPI ∼ log(BC), low R2 values
associated with single-predictor models (see R2 values in parentheses in Table 7) suggest that
centrality measures alone cannot fully explain epidemic outcome, while the inclusion of D and T
improve the fit to the data.

Coefficients of the centrality measures are > 0, suggesting that an increase in centrality score is
associated with higher epidemic outcome. As expected, there is typically a positive estimated effect
of D on epidemic outcome: the longer the seed node is active in the ED, the larger the epidemic
outcome. On the other hand, there is typically a negative estimated effect associated with T :
the later the seed node arrives in the ED, the smaller the associated epidemic outcome3. The
intercept term is interpreted as the expected epidemic outcome among patients with average values
of centrality, T and D. Among staff members with average centrality, T and D, the expected
mean epidemic size is significantly larger (by 9.09, 9.05, 4.77, 5.81) than that associated with
patients; with respect to maximum epidemic size, the reverse is true: staff members are associated
with slightly smaller maximum epidemic sizes compared to patients, but these differences are not
significant.

For each of the models in Table 7, we report the interaction effects of the confounders separately.
In Table 8 we see that the coefficients are typically positive, suggesting that regardless of D, an
increase in centrality is associated with an increase in epidemic outcome. Strong monotonically
decreasing interaction effects are observed for AD: the longer nodes are active in the ED (larger D),
the smaller the effect of AD on epidemic outcome. On the other hand, the effect of AD on epidemic
outcome increases with T (Table 9). This suggests that minimizing AD among later arrivals may
reduce mean epidemic size. The reverse phenomenon is observed for log(BC): the later a node
appears in the ED, the smaller the effect of log(BC) on epidemic outcome. It is interesting to note
that among late arrivals, a unit increase in BD (or equivalently, an additional distinct contact)
on average results in a relatively large increase in maximum epidemic size. Nodes in the higher
quartiles of T having the same BC, D and S values resulted in a rank deficient design matrix —
coefficient estimates are not reported in this case. In Table 10 we see that the effect of centrality
(apart from BC) is similar among both staff and patients.

7.3 Prediction

The regression models from Section 7.2 were used to predict simulations from shifts 2 to 7. Sim-
ulated outcomes are considered to be the ground-truth. Predictions are performed separately for
each shift. Predicted values (Ŷ ) are compared to the values obtained by simulation (Y ). Prediction
errors are computed in two ways (where n is the total number of nodes):

RMSE =

√
√
√
√

1

n

n∑

i=1

(

Ŷi − Yi

)2

BIAS =
1

n

n∑

i=1

(

Ŷi − Yi

)

Since the range of the epidemic outcomes differ by shift, we standardize RMSE and BIAS values
by multiplication by 100/n. The average of the standardized RMSE and BIAS values over 6

3The positive coefficient for T when regressing mean EPI on log(BC) may be due to interaction effects — see
Table 9.
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Table 8: Interaction by D (in hours) is examined by regressing epidemic outcome with respect
to the centrality measure, stratified by duration (D) in hours, while adjusting for T and S. The
coefficients associated with the centrality measure for each group are reported below.

0 < D ≤ 2.51 2.51 < D ≤ 4.78 4.78 < D ≤ 8.05 D > 8.05

mean EPI

BC 52.55∗ 56.15∗ 21.77 4.68

(39.37, 65.73) (1.63, 110.66) (-22.91, 66.44) (-51.60, 60.97)

log(BC) 0.01 0.08 0.05 0.27

(-0.08, 0.10) (-0.01, 0.18) (-0.10, 0.19) (-0.11, 0.65)

AD 125.67∗ 36.37∗ 5.10 2.23

(97.45, 153.90) (16.43, 56.31) (-3.19, 13.40) (-0.16, 4.61)

BD 7.03∗ 9.06∗ 10.19∗ 3.35∗

(2.15, 11.91) (3.64, 14.47) (6.41, 13.96) (0.41, 6.30)

max EPI

BC 9.76 42.26 7.38 26.97∗

(-9.92, 29.43) (-0.48, 85.01) (-11.77, 26.53) (1.97, 51.98)

log(BC) 0.07∗ 0.04 0.04 -0.11

(0.01, 0.13) (-0.04, 0.11) (-0.02, 0.10) (-0.30, 0.07)

AD 47.89∗ 16.62 0.51 -0.48

(5.78, 90.00) (-1.79, 35.04) (-3.14, 4.15) (-1.72, 0.76)

BD 6.73∗ 7.69∗ 3.70∗ 0.25

(3.42, 10.05) (3.69, 11.70) (1.82, 5.59) (-1.36, 1.85)

∗p < 0.05

shifts are reported in Table 11. A standardized RMSE value of 10.32 means that, on average, the
predicted epidemic outcome (mean/max EPI) fails to correctly capture the observed outcome by a
factor of 10.32% of the total population under study. The sign of the bias provides an indication
of over/under-estimation: a positive bias of 1.45 means that on average, the predicted outcome
overestimates the observed outcome by 1.45% of the population. From the perspective of predicting
epidemic outcome, a positive bias is preferable to a negative bias, since one would prefer to err on
the side of caution. From Table 11, we can see that for all the models under consideration, predicted
values overestimate the observed outcome. In addition, within this framework, predictions of the
mean epidemic size are consistently more accurate than predictions of the maximum epidemic size.

To assess the impact of including network centralities in developing predictive models, we con-
sider models without centrality: that is, we regress the response against D, T and S only. The
difference in prediction error relative to the null model quantifies the change in predictive power: a
decrease in RMSE/BIAS values indicate a stronger predictive model compared to the null model.
The percentage changes in prediction error relative to the null model are reported in parentheses
in Table 11. Inclusion of centrality reduces RMSE by 0.04 − 10%, while BIAS increases, albeit
only slightly. This means that the inclusion of centrality results in predictions that tend to slightly
increase overestimation of the true values, but the predictions are overall more accurate.

Figure 15 displays the predictions (based on the full models) relative to the simulated out-
comes for shift 5. The full model generates predictions that capture the overall trend of the
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Table 9: Interaction by T (in hours) is examined by regressing epidemic outcome with respect
to the centrality measure, stratified by T in hours, while adjusting for D and S. The coefficients
associated with the predictor of interest for each group are reported below.

0 < T ≤ 1.14 1.14 < T ≤ 2.25 2.25 < T ≤ 5.65 T > 5.65

mean EPI

BC 55.22∗ 30.97 — —

(35.97, 74.46) (-320.73, 382.66) — —

log(BC) 2.36∗ 0.28 0.03 0.01

(0.92, 3.81) (-0.16, 0.71) (-0.07, 0.12) (-0.01, 0.02)

AD 1.60 2.71 3.91 6.00∗

(-4.68, 7.88) (-2.20, 7.62) (-0.05, 7.87) (3.37, 8.64)

BD 9.54∗ 4.58∗ 7.98∗ 3.71∗

(4.68, 14.40) (0.86, 8.30) (3.81, 12.15) (0.77, 6.65)

max EPI

BC 22.36∗ 11.93 — —

(8.28, 36.44) (-171.06, 194.91) — —

log(BC) 1.89∗ 0.38∗ 0.04 0.06∗

(1.34, 2.45) (0.21, 0.55) (-0.00, 0.08) (0.04, 0.09)

AD -0.90 -0.60 -0.66 0.89

(-4.40, 2.60) (-3.21, 2.01) (-2.65, 1.33) (-7.35, 9.13)

BD 3.84∗ 1.65 3.06∗ 13.33∗

(0.70, 6.98) (-0.42, 3.72) (0.91, 5.21) (8.56, 18.11)

∗p < 0.05

— design matrix is rank deficient

data very well, and there is significant improvement compared to the predicted trends based on
single-predictor models (not shown). Reduction in RMSE suggests that inclusion of network-based
centrality does improve predictive power, but the improvement is marginal, and whether or not
this level of improvement is worth the computational effort remains subjective. Regardless, it is
clear that temporal markers such as D (duration observed) and T (time of first appearance) play
an important role in reproducing realistic prediction patterns.

A key observation is that in terms of predictive power, inclusion of the temporal measure BC
or log(BC) does not necessarily outperform the aggregated/non-temporal measures AD and BD.
With respect to both mean and maximum epidemic size, BD is associated with the largest decrease
in RMSE compared to the null model. This may be due to the fact that BD has the strongest linear
relationship with epidemic outcome (see R2 values in parentheses in Table 7) compared to the other
centrality measures. With respect to maximum epidemic size, inclusion of log(BC) improves the
quality of the predictions more than the inclusion of AD, but does not outperform the non-temporal
measure BD.
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Table 10: Data is stratified according to staff/patient category. Within each group, we regress
epidemic outcome with respect to the centrality measure, while adjusting for D and T . The
coefficients associated with the centrality measure for each group are reported below.

staff patient

mean EPI

BC 3.21 45.21∗

(-36.07, 42.49) (24.15, 66.28)

log(BC) 0.05∗ 0.04

(0.01, 0.09) (-0.02, 0.10)

AD 2.43∗ 36.10∗

(1.07, 3.79) (26.06, 46.14)

BD 1.02 9.86∗

(-1.80, 3.83) (7.46, 12.25)

max EPI

BC 15.13 16.55∗

(-13.24, 43.50) (2.66, 30.44)

log(BC) 0.03 0.05∗

(-0.00, 0.06) (0.02, 0.09)

AD 0.13 11.67∗

(-1.08, 1.34) (4.10, 19.24)

BD 0.63 5.03∗

(-1.45, 2.71) (3.37, 6.69)

∗p < 0.05

Table 11: Prediction errors for full models. Reported values are standardized and averaged over
6 shifts. Values in parentheses are the percentage changes compared to the prediction errors based
on the null model (where the response is regressed against D, T and S only).

Response Predictors RMSE BIAS

mean EPI

BC D T S 10.32 (−2.02%) 1.45 (0.27%)

log(BC) D T S 10.34 (−1.78%) 1.45 (0.31%)

AD D T S 9.99 (−5.14%) 1.52 (5.40%)

BD D T S 9.44 (−10.33%) 1.50 (4.17%)

D T S 10.53 1.44

max EPI

BC D T S 15.57 (−0.04%) 4.26 (0.04%)

log(BC) D T S 15.36 (−1.38%) 4.27 (0.12%)

AD D T S 15.55 (−0.16%) 4.27 (0.28%)

BD D T S 15.10 (−3.10%) 4.29 (0.70%)

D T S 15.58 4.26
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Figure 15: Predictions based on full models (shift 5). Observed values are denoted ‘o’, predicted
values are denoted ‘+’ (color online).

8 Conclusions and future work

We have conducted a thorough case-study of dynamic communicability on an empirical temporal
contact network. Computation of the dynamic communicability matrix Q requires a choice of pa-
rameter α. We have demonstrated the robustness of the node rankings obtained with respect to the
choice of α in the range [0.25, 0.85]∗αmax. To avoid overflow, normalization was performed at each
time-step, resulting in centrality measures that are numerically tiny. In spite of this, convergence
to the aggregated measure AD is also observed empirically, so even though the computed centrality
measures themselves are small, we are fairly confident that the associated rankings are correct.
Furthermore, the rankings obtained for α in the range [0.25, 0.85] ∗ αmax are significantly different
from the rankings based on AD, suggesting that within this range of α the temporal measures BC
and RC provide new insights that cannot be attained from the time-aggregated point of view.

Analysis on the data revealed that high receivers are typically staff. A subset of RN’s have
particularly high receiving scores relative to the other nodes in the network. On the other hand,
patients are on the whole slightly stronger broadcasters than staff. Staff (as seed nodes of infection)
are associated with larger mean epidemic size than patients, but worst-case epidemics are similarly
distributed across both groups.
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Analysis shows that the non-temporal measure BD identifies a largely different set of top-
spreaders from the temporal measure BC. Taken together, both measures are able to correctly
identify a large proportion of highly virulent nodes. The aggregated measure AD also adds value,
but less significantly. We propose using all 3 measures to increase overall accuracy in identifying
nodes associated with large epidemic outcome. Such an approach may increase the efficacy of
disease-prevention/mitigation strategies.

Our results show that network-based centralities identify a good proportion of top-spreaders, but
fail to identify all of them: there are low-ranking nodes associated with large epidemic outcomes.
This is in agreement with the work of [20, 44] and [28]. Network centrality can therefore help
elucidate properties of nodes (such as their broadcasting ability) but centrality alone cannot fully
account for the observed patterns of epidemic spread. Specifically, with respect to the infection
model employed in this study, network centrality on its own cannot be used as a proxy for time-
intensive simulations as claimed in [24].

Instead of using raw correlations to quantify the relationship between centrality and epidemic
spread, we use linear regression to study the overall effect of centrality on epidemic outcome, while
adjusting for possible confounding factors. We find that all forms of centrality studied (BC, AD,
BD) have an estimated positive effect on epidemic outcome. There is also evidence of interaction
effects between centrality and other variables such as time of first appearance (T ) and duration
observed in the ED (D). Inclusion of centrality in the model reduces prediction error, and in this
regard, BD outperforms the other temporal measures. The aggregated measure AD also arguably
does better than the more nuanced measure BC: our results show that the additional information
captured by temporal centrality does not appear to have a substantial effect within this linear
regression framework. The ability of BC to identify top-spreaders is smoothed out in the averaging
process of linear regression. RMSE and BIAS values used to quantify predictive power are also
averaged across all individuals. Nonetheless, the predictive models capture the trend of the data
remarkably well. Improvement relative to the null model (without centrality) is marginal, and
whether or not this level of improvement is worth the computational effort remains subjective.
Regardless, our results also indicate that other temporal markers such as duration observed (D)
and the time of first appearance (T ) are essential in reproducing realistic patterns of epidemic
outcome.

Our approach of using network centrality as a predictor for epidemic outcome in a linear re-
gression model is a first attempt, and we believe that more sophisticated modeling techniques may
be able to take advantage of the nuances provided by temporal centrality to improve predictive
power. A practical difficulty encountered is the fact that the temporal measures BC and RC fail
to differentiate a large majority of the nodes. A measure incorporating temporal information that
is at the same time less highly-skewed may improve predictive performance. The normalization
proposed in [6] may help to normalize the distribution of centrality scores. We also point out that
the techniques in [6] present another way to deal with the confounding temporal effects on BC and
RC scores which are worth exploring in future work.

Another issue is that the summary measures of mean and maximum epidemic size may be too
crude an estimate of virulence. Other measures such as the total number of infection paths, or the
time taken to reach a certain epidemic threshold can also be incorporated into the analysis.

The choice of time-scale at which to aggregate the contact matrices remains to be studied in
greater detail. Preliminary analysis shows that aggregation into 20 minute time frames results in
better distinction among top RC nodes. This is in some sense surprising, because at face-value,
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aggregation would seem to make nodes ‘more equal’: within a 20 minute interval, there is no
distinction between a contact pair lasting for one second and a contact pair lasting for the full
20 minutes. However, aggregation also results in fewer contact matrices, and therefore less severe
normalization effects when computing Q. This competing effect may explain why aggregation into
20 minute time frames results in a more nuanced differentiation among top RC nodes. All three
temporal measures, BC, RC and AD, are expected to be sensitive to the time-scale chosen, and
a balance needs to be drawn between the loss of temporal information on the one hand, and the
computational benefits of having fewer contact matrices to work with on the other hand.

As we analyze the results of our findings, it is important to bear in mind the limitations of our
study. People monitored were allowed to move freely in and out of the ED, but contact data does
not include potential disease-transmitting interactions that took place beyond the designated zones.
There were also staff and patients in the ED who did not participate in the study. Therefore the
infection simulations necessarily underestimate the true epidemic outcomes. Our study also does
not take into account other routes of disease transmission, such as indirect fomite transmission via
shared objects (such as door handles). Including locations in the disease-modeling aspect as well
as in the network-based centrality can potentially provide different insights.
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[26] Joël Mossong et al. Social contacts and mixing patterns relevant to the spread of infectious
diseases. PLoS Medicine, 5(3):e74, 2008.

[27] M. E. J. Newman. Spread of epidemic disease on networks. Physical Review E, 66(1):016128,
July 2002.

[28] Shogo Osawa and Tsuyoshi Murata. Selecting seed nodes for influence maximization in dy-
namic networks. In Giuseppe Mangioni, Stephen Miles Uzzo, Filippo Simini, and Dashun
Wang, editors, Complex Networks VI: Proceedings of the 6th Workshop on Complex Networks,
pages 91–98. Springer, 2015.

[29] Romualdo Pastor-Satorras and Alessandro Vespignani. Epidemic spreading in scale-free net-
works. Phys. Rev. Lett., 86(14):3200–3203, Apr 2001.

[30] Gail E Potter, Mark S Handcock, Ira M Longini, and M Elizabeth Halloran. Estimating
within-school contact networks to understand influenza transmission. The Annals of Applied
Statistics, 6(1):1–26, March 2012.

[31] JM Read, KT Eames, and Edmunds WJ. Dynamic social networks and the implications for
the spread of infectious disease. J R Soc Interface, 5(26):1001–1007, 2008.

[32] Luis E. C. Rocha, Frederik Liljeros, and Petter Holme. Simulated epidemics in an empirical
spatiotemporal network of 50,185 sexual contacts. PLoS Computational Biology, 7(3):e1001109,
2011.

[33] Pejman Rohani, Xue Zhong, and Aaron A King. Contact network structure explains the
changing epidemiology of pertussis. Science, 330(6006):982–985, 2010.

[34] JN Rosenquist, JH Fowler, and NA Christakis. Social network determinants of depression.
Molecular Psychiatry, 16:273–281, 2011.
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